
Universidade do Minho
Escola de Engenharia
Departamento de Eletrónica Industrial

Ricardo João Rei Roriz

Enabling System Survival
Across Hypervisor Failures

October 2018

Universidade do Minho
Escola de Engenharia
Departamento de Eletrónica Industrial

Ricardo João Rei Roriz

Enabling System Survival
Across Hypervisor Failures

Dissertação de Mestrado em Engenharia Eletrónica
Industrial e Computadores

Trabalho efectuado sob a orientação do
Professor Doutor Sandro Pinto

October 2018

Declaração do Autor
Nome: Ricardo João Rei Roriz
Correio Eletrónico: a68536@alunos.uminho.pt
Cartão de Cidadão: 14655239

Titulo da dissertação: Enabling System Survival Across Hypervisor Failures
Ano de conclusão: 2018
Orientador: Professor Doutor Sandro Pinto

Designação do Mestrado: Ciclo de Estudos Integrados Conducentes ao Grau
de Mestre em Engenharia Eletrónica Industrial e Computadores
Área de Especialização: Sistemas Embebidos e Computadores
Escola de Engenharia
Departamento de Eletrónica Industrial

De acordo com a legislação em vigor, não é permitida a reprodução de qualquer
parte desta dissertação.

Universidade do Minho, 26/10/2018

Assinatura: Ricardo João Rei Roriz

v

Acknowledgements

This dissertation consecrates the culmination of my academic journey carried
out over these six years. Thus, there are many people whom I want to thank that
without their time, expertise, patience and support, I would not have completed
this journey.

Firstly, I would like to thank my thesis advisor Dr. Sandro Pinto for the
advices and independence, though always steering me in the right direction.

I wish to express my sincere thanks to Dr. Adriano Tavares for transforming
this "pedreiro" into an embedded system engineer by sharing his knowledge. Thank
you for showing me the beauty of this area.

I would also like to thank my "ESRGianos" colleagues: Ailton Lopes, Ângelo
Ribeiro, Franciso Petrucci, Hugo Araújo, José Martins, José Ribeiro, José Silva,
Miguel Silva, Nuno Silva, Pedro Machado and Sérgio Pereira for their feedback,
cooperation and of course friendship. I also take this opportunity to express
gratitude to all my friends, for their help and support.

Finally, I must express my very profound thankfulness to my mom, dad, sis-
ter, and my beloved Ariana Bezerra for providing me with unfailing support and
continuous encouragement throughout my years of study, researching and writing
this thesis. This accomplishment would not have been possible without your love.
Thank you.

vii

Abstract

Embedded system’s evolution is notorious and due to the complexity growth,
these systems possess more general purpose behaviour instead of its original sin-
gle purpose features. Naturally, virtualization started to impact this matter. This
technology decreases the hardware costs since it allows to run several software
components on the same hardware. Although virtualization begun as a pure soft-
ware layer, many companies started to provide hardware solutions to assist it.

Despite ARM TrustZone technology being a security extension, many devel-
opers realized that it was possible to use this extension to support development
of hypervisors. With TrustZone, hypervisors can ensure one of the most impor-
tant features in virtualization: isolation between guests. However, this hardware
technology revealed some vulnerabilities and since the whole system is TrustZone
dependent, the virtualization can be compromised.

To address this problem, this thesis proposes an hybrid software/hardware
mechanism to handle failures of TrustZone-based hypervisors. By using the pro-
cessor’s abort exceptions and hash keys, this project detects system malfunctions
caused by imperfect designs or even deliberate attacks. Additionally, it provides
a restoration model by checkpoints which allows a system recovery without major
throwbacks. The implemented solution was deployed on TrustZone-based LTZVi-
sor, an open-source and in-house hypervisor, and the revealed results are appeal-
ing. With a 6.5% memory footprint increase and in the worst case scenario, an
increment of 23% in context switching time, it is possible to detect secure memory
invasions and recover the system. Despite of the hypervisor memory footprint
increment and latency addition, the reliability and availability that the system
bring to the LTZVisor are unquestionable.

ix

Resumo

A evolução dos sistemas embebidos é notória e, devido ao aumento da sua com-
plexidade, estes sistemas cada vez mais possuem um comportamento de propósito
geral, em vez das suas características originais de propósito único. Naturalmente,
a virtualização começou a ter impacto sobre este meio, uma vez que permite execu-
tar vários componentes de software no mesmo hardware, diminuindo os custos de
hardware. Embora a virtualização tenha começado como uma camada de software
pura, muitas empresas começaram a fornecer soluções de hardware para auxiliá-lo.

Apesar da TrustZone ter sido projetada pela ARM para ser uma extensão
de segurança, muitos desenvolvedores perceberam que era possível usá-la para
suporte ao desenvolvimento de hipervisores. Com a TrustZone, os hipervisores
podem garantir uma das premissas mais importantes da virtualização: isolamento
entre hóspedes. No entanto, esta tecnologia de hardware revelou algumas vulner-
abilidades e, sendo todo o sistema dependente da TrustZone, a virtualização pode
ficar comprometida.

Para solucionar o problema, esta tese propõe um mecanismo híbrido de soft-
ware/hardware para lidar com as falhas em hipervisores baseados em TrustZone.
Usando as excepções do processador e chaves de hash, este projecto detecta defeitos
no sistema causados por imperfeições no design e também ataques intencionais.
Além disso, este fornece um modelo de restauração por pontos de verificação,
permitindo uma recuperação do sistema sem grandes retrocessos. A solução foi
implementada no LTZVisor, um hipervisor em código aberto e desenvolvido no
ESRG, sendo que os resultados revelados são satisfatórios. Com um aumento de
6,5% da memória usada e um incremento, no pior caso, de 23% no tempo de
troca de contexto, é possível detectar invasões de memória segura e recuperar o
sistema. Apesar do incremento de memória do hypervisor e da adição de latên-
cia, a confiabilidade e a disponibilidade que o sistema oferece ao LTZVisor são
inquestionáveis.

xi

Contents

List of Figures xviii

List of Tables xix

List of Listings xxi

Glossary xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Document Structure . 4

2 Background, Context and State of the Art 7
2.1 Virtualization . 7
2.2 ARM Architecture . 9

2.2.1 ARM TrustZone . 10
2.2.2 Exceptions in ARMv7 with TrustZone 12

2.3 Hypervisors Implementations . 15
2.3.1 LTZVisor . 15
2.3.2 Jailhouse . 16
2.3.3 SafeG . 17
2.3.4 VOSYSmonitor . 18
2.3.5 Discussion . 19

2.4 Exception Handling . 19
2.4.1 Exception Handling Implementations 20

2.5 Fault tolerance concepts and Health-monitor 21
2.5.1 Basic techniques in error handling 22
2.5.2 Hypervisor’s Health-monitors and Recovery mechanisms . . 23

2.6 Non-Encrypted Hash functions and Checksums 24

xiii

2.6.1 FNV-1 and FNV-1a . 25
2.6.2 SDBM . 26
2.6.3 DJB2 . 27
2.6.4 Murmur . 27
2.6.5 CRC32 Checksum . 29
2.6.6 Discussion . 30

3 Platforms and Tools 31
3.1 ZYBO Zynq-7000 SoC . 31

3.1.1 Zynq-7000 family . 31
3.1.2 AMBA Advanced eXtensible Interface 33
3.1.3 AXI Direct Memory Access 36
3.1.4 TrustZone Architecture on the Xilinx Zynq-7000 37

3.2 LTZVisor . 39
3.2.1 Virtual CPU . 39
3.2.2 Scheduler . 40
3.2.3 Memory Partition . 40
3.2.4 MMU and Cache Management 41
3.2.5 Device Partition . 41
3.2.6 Interrupt Management . 42
3.2.7 Time Management . 43
3.2.8 Exception Model . 43

4 Implementation 45
4.1 Exception Handling . 45

4.1.1 Secure Supervisor Data abort and Prefetch abort exceptions 46
4.1.2 Monitor Data abort and Prefetch abort exceptions 49

4.2 Health-Monitor . 51
4.2.1 Detection Module . 52
4.2.2 Memory module . 53
4.2.3 Checkpoint Module . 55
4.2.4 Health-monitor Mechanism Controller 58

4.3 LTZVisor Integration and Health-monitor interface 60
4.4 Intruder Module . 63

5 Evaluation and results 65
5.1 Memory footprint . 65
5.2 Context switching performance . 66

xiv

5.3 Hashes and CRCs Evaluation tests 67
5.4 Hardware Costs . 69
5.5 Case study . 70

5.5.1 Exception Handling . 70
5.5.2 Health-monitor . 74

6 Conclusion 79
6.1 Future work . 80

References 83

xv

List of Figures

1.1 Motivational execution flow. 3

2.1 Hypervisor types. 9
2.2 ARM-v7 with Security Extensions Exception Model 12
2.3 LTZVisor General Architecture . 15
2.4 Jailhouse hypervisor Overview . 17
2.5 SafeG scheduler. 18
2.6 SafeG hypervisor Exception Handling Overview 21
2.7 FNV-1a and FNV-1 algorithms flowchart. 25
2.8 SDBM algorithm flowchart . 26
2.9 DJB2 algorithm flowchart. 27
2.10 Murmur algorithm flowchart. 28
2.11 CRC32 and respective lookup table flowcharts algorithms. 29

3.1 Zynq-7000 SoC overview [XI18a]. 32
3.2 AXI communication overview. 33
3.3 VALID/READY handshake. 33
3.4 Typical AXI DMA system configuration. 37
3.5 Memory partition in Zybo platform. 41
3.6 Interruption model in LTZVisor. 42
3.7 LTZVisor Exception Model. 44

4.1 LTZVisor Exception Handling Overview. 46
4.2 Fault Status register masked bits. 47
4.3 SPSR register masked bits. 48
4.4 Handler decider flowchart. 49
4.5 Non secure guest Execution flow. 51
4.6 Health-Monitor Overview. 51
4.7 Detection module overview. 52
4.8 Memory module overview. 54

xvii

4.9 Memory module sequence diagram. 55
4.10 Checkpoint module overview. 56
4.11 RAM swap. 57
4.12 Control Unit State Machine . 59
4.13 Control Unit actions and states overview. 60
4.14 Intruder Module Overview . 64

5.1 Algorithms Box-and-Whisker Plot. 68
5.2 LTZVisor Hypervisor Data Abort output. 71
5.3 LTZVisor Secure Guest Data Abort output. 72
5.4 LTZVisor Secure Guest External Data Abort output. 73
5.5 LTZVisor Non-Secure Guest External Data Abort output. 74
5.6 LTZVisor without Health-monitor output. 75
5.7 LTZVisor with Health-monitor output. 76
5.8 Health-monitor information output. 76

xviii

List of Tables

2.1 Fault Status encoding table . 13
2.2 Suggested values for FNV constants 26

3.1 AXI-Lite Address Write Channel Signals. 34
3.2 AXI-Lite Address Read Channel Signals. 34
3.3 AXI-Lite Data Write Channel Signals. 35
3.4 AXI-Lite Data Read Channel Signals. 35
3.5 AXI-Lite Write Response Channel Signals. 35
3.6 AXI-Stream Signals. 36

4.1 SPSR.M bit value interpretation. 48

5.1 Memory footprint (bytes). 66
5.2 Performance values: Switching from SGuest to NSGuest. 67
5.3 Performance values: Switching from NSGuest to SGuest. 67
5.4 Algorithms evaluation result. 68
5.5 Resource utilization. 70

xix

List of Listings

4.1 Exception handle instructions to get the FSR and FAR registers. . . 47
4.2 Exception handle instructions to get the SPSR and NS bit. 48
4.3 Hypervisor Linker script with the new non-secure monitor section. . 50
4.4 Code to stop the non-secure guest execution. 50
4.5 Health-monitor trigger code. 61
4.6 Health-monitor error checker. 61
4.7 Healthmonitor Configuration APIs. 62
4.8 Healthmonitor Informative APIs. 63

xxi

xxii

Glossary

ACTLR Auxiliary Control Register
AMP Asymmetric Multiprocessing
APB Advanced Peripheral Bus
API Application Programming Interface
AXI Advanced eXtensible Interface
BRAM Block RAM
CFI Control Flow Integrity
CPSR Current Program Status Register
CRC Cyclic Redundancy Checks
DFAR Data Fault Address Register
DFI Data Flow Integrity
DFSR Data Fault Status Register
DJB2 DJB2 algorithm
DMA Direct Memory Access
DRAM Dynamic Random-Access Memory
ESRG Embedded Sistem R
ExT External bit
FF Flip-Flop
FIQ Fast Interrupt Request
FNV Fowler–Noll–Vo
FPGA Field-Programmable Gate Array
FS Fault status bits
GIC Generic Interrupt Controller
GP General Purpose
GPOS General Purpose Operating System
IDE Integrated Development Environment
IFAR Instruction Fault Address Register
IFSR Instruction Fault Status Register
IoT Internet of Things

xxiii

IP Intelectual Proprety
IRQ Interrupt Request
ISR The Interrupt Status Register
LCG Linear Congruential Generator
LPAE Large Physical Address Extension
LR Link Register
LTZVisor Lightweight TrustZone-assisted hypervisor
LUT Look Up Table
MMU Memory Management Unit
MVBAR Monitor Vector Base Address Register
NS Non Secure
NSACR Non-secure Access Control Register
OS Operative System
OSs Operative Systems
PC Program Counter
PL Programmable Logic
PMU Performance Monitoring Unit
PS Processing System
QSPI Quad Serial Peripheral Interface
RAM Random Access memory
ROM Read Only Memory
RTOS Real Time Operating System
SCR Secure Configuration Register
SCTLR System Control Register
SDBM SDBM database library
SDER Secure Debug Enable Register
SDIO Secure Digital Input/Output interface
SDK Software Development Kit
SE Security Extensions
SMC Secure Monitor Call
SoC System-on-Chip
SP Stack Pointer
SPSR Saved Program Status Register
SRAM Static Random Access Memory
TTBR Translation Table Base Register
TZASC TrustZone Address Space Controller
TZMA TrustZone Memory Adopter

xxiv

TZPC TrustZone Protection Controller
VBAR Vector Base Address Register
VE Virtualization Extensions
VM Virtual Machine
VMCB Virtual Machine Control Block
VMs Virtual Machines
VT Virtualization Technology
XSDK Xilinx Software Design Kit

xxv

1. Introduction

The accentuated growth of the industry has been forcing embedded systems
towards more complex solutions. Nowadays, there is a wide range of embedded sys-
tems applications and domains, from basic consumer electronics [ABK09] and IoT
solutions [PGP+17, OGP18], to aerospace control systems [HHY+12, PPG+17a].
Although the traditional definition is characterized by limited hardware with tim-
ing constraints, the functionality is increasingly making these systems tacking
characteristics towards general-purpose. Also, with the processing power pro-
vided by the modern processors, the old idea of single-purpose is extinguished.
By implementing multiple subsystems in the same platform, the resources sharing
is possible, reducing significantly the cost. However, in addition to the increasing
complexity is the security problem which became an important issue to solve in
this area.

Due to these characteristics and the need for support heterogeneous operating
systems (Real Time Operating Systems (RTOS) and General Purpose Operat-
ing System (GPOS), the virtualization technology arrived naturally as the best
solution [Hei08, Kai09, AH10]. This technology consists of the encapsulation of
each embedded subsystem in its own virtual machine, allowing isolation and fault-
containment. Although the hardware is shared among various subsystems, each
virtualized partition has its own virtualized resources. By creating this layer it
is possible to define a hierarchy hardware resource accesses as well as pure vir-
tualized resources. To monitor the VMs (Virtual Machines) actions, a hypervi-
sor is required. It not only controls the layer between hardware and virtualized
worlds, but also the information shared among them [SML10]. With Inter Par-
tition Communication (IPC) mechanisms, virtualization offers cooperation tools
between environments but without changing the demanded isolation [OMC+18] .

In the beginning of embedded system’s virtualization, software-based solutions
were exclusive, but due to strict timing requirements and constraints imposed
by the real-time nature of such applications [ZMH15], companies like ARM and
Intel have begun to provide hardware to support virtualization. Intel introduced

1

2 Chapter 1. Introduction

Intel Virtualization Technology (VT) [SK10], ARM presented ARM Virtualization
Extensions (VE) and recently Imagination/MIPS released MIPS Virtualization
and OmniShield technology [ZMH15]. However, due to the ubiquitous adoption of
ARM-based processors in the embedded market, ARM solutions are more popular
among the remaining ones. Despite not being design to assist virtualization, ARM
also provides a security extension (ARM TrustZone [Lim09]) to its processors.
It allows to run different security environments in the same processor at lower
cost comparing with VE-enabled processors [PS18]. Interpreting the growth of
TrustZone technology, several virtualization developers and newcomers provided
monitor hardware-based solutions: low print hypervisors assisted by TrustZone
security features.

The TrustZone-based hypervisors rely on extra security bits to virtualize worlds
(33rd ARM processor bit) [PPG+17b]. Since they are processor bits, these hyper-
visors frequently create the illusion of a perfect virtualization solution. However,
projects like CLKSCREW [TSS17] demonstrate that hardware-based hypervisors
can also be vulnerable. By exploiting the processor’s frequency, this project proves
that it is possible to change the secure/non-secure bit of ARM-TrustZone regis-
ters, obliterating the isolation between worlds and eliminating the secure world
control over non-secure world.

In software applications, fault tolerance mechanisms to detect, prevent and
solve the problems are discussed from the very beginning [Ran75]. Various software
mechanisms are developed to hypervisors like Xen [BDF+03], oriented to general
purpose computing, and despite incrementing overhead they provide survivability
to the system. The key difference between this type of hypervisor and embedded
hypervisors is the abundance of hardware resources. Although general purpose
hypervisors are designed with performance and footprint taken into consideration,
the latter is not the main metric. On the other hand, embedded hypervisors
are designed to provide virtualization with the lowest foot print possible. In this
scenario, the most common mechanisms are limited to physical fault tolerance
mechanisms (electrical faults e.g). To increase the mechanism complexity without
increasing system overhead, dedicated hardware with health-monitoring purposes
is the most desired approach.

1.1 Motivation

As Figure 1.1 exposes, there are three different hypervisor execution flows. The
first one is the most common in TrustZone-based hypervisors. Due to its minimal

Chapter 1. Introduction 3

approach, the security is only based on error prevention.

Figure 1.1: Motivational execution flow.

The other two types imply extra mechanisms: error detection and recovery. In
an implementation with error detection only, the hypervisor detects the error but
the only feasible action is the full restart of the system. Although not ideal, this
implementation already prevents the malfunction of the system for indeterminable
time. With the addiction of the recovery mechanism, the system keeps the same
but the throwback produced is reduced since it allows to recover from an healthy
state closer to the current state of the system.

This thesis intent to provide a hybrid hardware/software fault tolerance mecha-
nism with an Health-monitor, on an open source and an in-house TrustZone-based
hypervisor, the Light-weight TrustZone-assisted hypervisor (LTZVisor).

1.2 Goals

The project reported on this thesis aims to achieve three primary goals decom-
posable in more detailed sub goals:

1. Provide an exception handling to the LTZVisor. With this tool, the hypervi-
sor user will know which part of the software is causing problems making the
development more productive. The design of this feature needs to provide
the following information:

4 Chapter 1. Introduction

(a) Faulted World - If a fault occurs on the secure world or thenon-secure
World;

(b) Faulted processor mode - If the fault occur in Monitor mode or Super-
visor.

(c) Fault type - If it is Data Abort or Prefetch Abort;

(d) Faulted subtype - If it is an alignment fault, cache maintenance, access
fault, permission fault, and so on;

(e) Faulted address - The address that causes the fault.

2. Create a mechanism to detect secure memory evasive attacks. As the CLK-
SCREW’s project [TSS17] shows, it is possible to change secure memory
from non-secure side masking the ARM’s secure/non-secure bit, so the de-
tection mechanism needs to:

(a) Distinguish a legitimate secure memory access from non legitimate se-
cure access;

(b) Introduce the minimum of deterioration relative to the LTZVisor native
performance.

3. Create a recovery mechanism responsible for recovering the hypervisor from
memory failures with a minimum system throwback and completely LTZVi-
sor independence, since the secure world is compromised. Although memory
errors occur less often, they can be more disastrous and without an inde-
pendent mechanism it cannot be handled without a full system reset.

In order to be LTZVisor independent and not introduce any overhead, these mech-
anisms should be hardware-based components making possible to run parallel
mechanisms to detect non-legitimate memory accesses and full recover in case of
failure.

1.3 Document Structure

This document structure serves the following order: Chapter 2 begins with an
overview of the basic virtualization concepts, ARM Architecture and Trustzone
technology, exception handling and Health-Monitors. It then proceeds by survey-
ing existing hypervisors as well as their exception handling and health-monitor
implementations. This chapter ends with an introduction to hashes and checksum

Chapter 1. Introduction 5

algorithms, being these possible Health-Monitor mechanisms to detect memory
faults.

Chapter 3 provides a more detailed description about the platforms: the board
ZYBO Zynq-7000, with more indepth information about the DMA and AXI fea-
tures, and the target hypervisor, the LTZVisor. Chapter 4 addresses the design
and implementation of this project. Chapter 5 exposes the system evaluation and
the discussion of the results. Lastly, Chapter 6 provides a summary of this the-
sis, revealing the system limitations and from them outline solutions to future
improvements.

2. Background, Context and State
of the Art

As the main theme of this thesis is error recovery on embedded systems’ hy-
pervisors, this chapter will first expose a general definition of virtualization and
hypervisors, ARM Architecture and TrustZone, exception handling and health-
monitor, followed by some work done in this area. Even though there are many
hypervisors, the focus will be on hypervisors that use hardware to assist virtualiza-
tion, i.e. LTZVisor, SafeG [saf], Jailhouse [Tec13] and VOSYSmonitor [LCP+17].
In fault tolerance and health-monitor section, the basic terminology and concepts
are explained to better understand the project’s Health-Monitor implementation.
Since the detection mechanism uses key comparison as sanity checker, the final
part of this chapter will describe hash functions and checksums algorithms with
the potential to be used.

2.1 Virtualization

The digital evolution is so accentuated that it is impossible to implement a
modern system based on a simple Flip-Flop mindset due to the complexity re-
quired. So to convert an high complex design into a compound of electrical sig-
nals, the system needs to be analyzed as a hierarchy arrangement of abstraction
layers and a well-defined interface between them [SN05]. At lower level, there is
almost no abstraction since it is an electronic level. As we go up in the layers
spectrum, the abstraction rise to the point that the layers become software based
implementations such as code to run in the microcontroller, drivers to control the
hardware or even Operating Systems (OS). They use the hardware infrastructure
(communicating with the layers below) but in a such encapsulated way that they
are unaware about how the hardware works.

The virtualization layer is responsible not only for hardware abstraction, but
also enhances its features by creating unique virtual replicas of the hardware.

7

8 Chapter 2. Background, Context and State of the Art

Thus, each software component has its own virtual replica. This makes possible
to share the same hardware with different applications, run the same application
on a different platform without large engineer efforts, or even distribute the same
application for different platforms [POP+17]. In some cases, the virtualization
layer also creates pure virtual components to meet the hardware requirements of
the system. These replicas, also known as Virtual Machines (VMs), are described
by Popek and Goldberg as an efficient and isolated replica of the real machine
[PG74]. In the virtualization environment, two different terms, "host" and "guest"
are used to distinguish where the software runs. The software that runs on the
physical machine is called host software, and guest symbolises software that runs in
a virtual world. The software responsible to create and monitor virtual machines
on the host hardware is called a hypervisor or Virtual Machine Monitor. Popek
and Goldberg [PG74] also describe this VMM as "a piece of software" with "three
essential characteristics":

1. Equivalence: the provided virtualized environment should be essentially
identical to the original machine. With this characteristic, guests OSs are
directly used in VMs without any modification, minimizing costs of porting
guest software to the VM.

2. Efficiency: It is a requirement that the virtual processor’s main instructions
be executed directly by the real processor without intervention of the virtu-
alization software in order to not substantially reduce the guest’ performance
in relation to its native performance.

3. Resource Control: the VMM must have the full control of all system re-
sources being impossible for a guest to monopolize or manipulate them.
Only with a full resource control is possible to have the temporal and logical
isolation between the machines.

Although the first hypervisor’s designs were bare metal hypervisors, there are
currently two types of hypervisors described in figure 2.1: bare-metal hypervisors
that run directly on the native hardware and hosted hypervisors that run on top
of an OS. An example of hosted hypervisors are software as Oracle Virtual Box
[ora] or Java Virtual Machine (JVM) [JVM] that enables different systems to run
Java programs. Nonetheless, due to rigorous timing and low footprint systems,
embedded systems demand bare-metal hypervisors.

Chapter 2. Background, Context and State of the Art 9

Figure 2.1: Hypervisor types. The hypervisors that run directly on
hardware are defined as Bare metal hypervisors (left) and the ones that

run on top of OSs are Hosted hypervisors (right).

2.2 ARM Architecture

The ARM architecture is well suited for embedded systems due to simplicity
that it present comparing other architectures. Consequently, simple implementa-
tions lead to small implementations, thus providing devices with low power con-
sumption. The ARM architecture is a Reduced Instruction Set Computer (RISC)
architecture, as it incorporates the following features [Lim12]:

• A large uniform register file;
• Load/store architecture, where data-processing operations only operate on

register contents, not directly on memory contents;
• Simple addressing modes, with all load/store addresses being determined

from register contents and instruction fields only.

Also, this architecture provides enrichments that supply a good balance between
high performance and low resources demand like: instructions that combine a
shift with an arithmetic or logical operation, auto-increment and auto-decrement
addressing modes to optimize program loops, load and store multiple instructions
to maximize data throughput and conditional execution of many instructions to
maximize execution throughput.

ARMv7 is the seventh version of the ARM architecture and it provides three
different profiles: ARMv7-A (Application), ARMv7-R (Real-time) and ARMv7-
M (Microcontroller). They present different features in terms of memory. The

10 Chapter 2. Background, Context and State of the Art

ARMv7-A supports a Virtual Memory System Architecture (VMSA) based on
a Memory Management Unit (MMU). Contrary, ARMv7-R supports a Protected
Memory System Architecture (PMSA) based on a Memory Protection Unit (MPU).
Althought both architectures afford mechanisms to split memory into different
regions, specifying memory types and attributes, the MMU provides a virtual
memory system. This feature abstracts memory for different processes, allowing
dynamic memory allocation by operating systems.

Depending on the desired application, the ARMv7 instruction set can be ex-
panded with extensions in order to provide extra features:

• Security Extensions (SE) - Also known as Trustzone. This extension pro-
vides a set of security features that facilitate the development of secure
applications.

• Multiprocessing Extensions - This extension provides a set of features that
enhance multiprocessing functionality. However, this is restrict to profiles
ARMv7-A and ARMv7-R.

• Large Physical Address Extension (LPAE) - This extension provides an ad-
dress translation system supporting physical addresses up to 40 bits. The
LPAE is restrict to ARMv7-A profiles with Multiprocessing Extensions en-
able.

• Virtualization Extensions (VE) - This extension provides hardware support
for virtualization with a virtual machine monitor, also called a hypervisor,
to switch Guest operating systems. The VE requires the Secure Extensions
extension.

2.2.1 ARM TrustZone

TrustZone is an hardware technology that allows the execution of guests with
different levels of security in the same platform. On processors where VE is not
available, TrustZone is considered the only hardware-based deployable approach
in terms of virtualization. The TrustZone expansion to the new generation of
Cortex-M processors [WFM+07] proves that the technology is even spreading to
processors with limited resources.

With ARM TrustZone it is possible to separate the execution environment into
two isolated worlds [Tru], allowing to run secure and non-secure applications in
the same hardware. The 33rd processor bit (Non-Secure NS-bit) indicates the
currently executing world. Also, some registers are baked for each specific world,

Chapter 2. Background, Context and State of the Art 11

which expedites the transitions between two worlds without compromise their
isolation.

In terms of architecture, the main features of the Security extensions are:

1. Monitor mode - This extra processor mode is implemented with the purpose
of context switching between the Secure and Non-secure security states.
Regardless the The Secure Configuration Register (SCR) secure bit, the
software running in Monitor mode has access to both the Secure and Non-
secure resources, even to system registers. Due to the high privileges, this
mode only can be triggered by exceptions and by a special instruction named
Secure Monitor Call (SMC).

2. Security Registers:

• Secure Configuration Register (SCR)- The SCR is the register responsi-
ble to specify the security related parts of the system: the security state
of the processor (Secure or Non-secure), for which mode the processor
branches to if an IRQ, FIQ or external abort occurs (Abort mode or
Monitor), and whether the Current Program Status Register (CPSR)
F and A bits can be modified by the non-secure world.

• Secure Debug Enable Register (SDER) - The SDER enables secure
invasive and non-invasive debug.

• Non-secure Access Control Register NSACR - The NSACR defines the
Non-secure access permission to coprocessors.

• Vector Base Address Register (VBAR) - The VBAR holds the exception
base address for exceptions that are not taken to Monitor mode.

• Monitor Vector Base Address Register (MVBAR) - The MVBAR holds
the exception base address for all exceptions that are taken to Monitor.

• Interrupt Status Register(ISR) - The ISR shows whether an IRQ, FIQ,
or external abort is pending.

3. Secure Monitor Call (SMC) - The only way that the non-secure world ac-
cesses the secure world, which can be an access to data or routines, is through
a special instruction called SMC. This instruction triggers an exception with
predefined routines that run in monitor mode.

4. Exception model - With the addition of the monitor mode, two slightly
different exceptions models are available that will be described on the next
section.

12 Chapter 2. Background, Context and State of the Art

2.2.2 Exceptions in ARMv7 with TrustZone

There are eleven exceptions in ARMv7 with Trustzone: the common six of
the ARMv7 architecture 1) Reset, 2) Data Abort, 3) Prefetch Abort, 4) Fast
Interrupt (FIQ), 5) Interrupt Results (IRQ), 6) Undefined instructions; plus the
7) Secure Monitor Call (SMC), 8)/9) banked data aborts and 10)/11) banked
prefetch aborts, for monitor and for non secure-side.

A data abort exception occurs when a data transfer instruction attempts to
load or store data at an illegal address [Lin12] which can be unmapped memory,
unaligned memory or inaccessible memory. Additionally, this exception takes place
for errors related with paging and translation on virtual memory environments.

Although the prefetch exception also occurs on memory accessing errors, it
arises when the processor fetches an instruction from an illegal address. If a
pipeline architecture is present, the instructions already in the pipeline continue
to execute until the invalid instruction is reached and then a prefetch abort is
generated [Lin12].

Figure 2.2 describes the two possible models that differ from each other in how
external aborts are handled. In the first model (SCR.EA bit set to 0), external
aborts are handled by an abort mode and each world is responsible to handle its
own aborts. In the second model (SCR.EA bit set to 1), the Monitor is responsible
to handle all external aborts regardless of the origin.

Figure 2.2: ARM-v7 with Security Extensions Exception Model. Two
models are described on the figure. At the model on the top, each world
has an abort mode for itself. On the bottom model, the these exceptions
are forced into the monitor despite the origin. Both modules share the

same implementation on normal exceptions.

Chapter 2. Background, Context and State of the Art 13

As defined in ARMv7 Arquitecture Reference manual [Lim12], external aborts
are "errors that occur in the memory system, other than those detected by the
MMU or Debug hardware. External aborts include parity errors detected by the
caches or other parts of the memory system." On other hand, the other aborts are
more usual and by ARM design, they are handled by the respective supervisor
(Guest OS) of each world in both models.

Despite some of the register are not dedicated only to interpret exceptions, the
architecture provides five registers in order to understand the aborts’ origin:

• Saved Program Status Register (SPSR) has the purpose of saving the pre-
exception value of the Current Program Status Register (CPSR), saving the
processor status and control information that causes the exception. Since
there is an SPSR for each processor mode, the CPSR is copied to the SPSR
of the mode to which the exception is taken.

• Instruction Fault Status Register (IFSR) has the purpose of holding the
status information about the last instruction fault. This register has two
important parts: External bit (ExT), a bit that describes if it was an external
abort or not; and Fault status bits (FS), five bits that describe the abort
source. The valid encodings of these bits are present in the table 2.1.

• The Data Fault Status Register (DFSR) is similar to IFSR but its purpose is
holding status information about the last data fault. Due to the similarity,
the DFSR and IFSR share the same register structure and FS enconding
values.

• The Instruction Fault Address Register (IFAR) has the purpose of holding
the address of the access that caused a prefetch abort exception. Depending
on the prefect abort source, this register can be invalid.

• The Data Fault Address Register (DFAR) is the data fault version of the
IFAR.

Table 2.1: Fault Status encoding table. It is exposing the FS encod-
ing and corresponding exception source. On the column Abort type is
expressed which aborts types are enable for each source. The DF means

Data fault and IF means Instruction fault.

Fault
Status

Source Abort
type

Note

00001 Alignment fault DF -

14 Chapter 2. Background, Context and State of the Art

00100 Fault on instruction cache
maintenance

DF -

01100 Synchronous external abort on
translation table walk - First level

DF & IF -

01110 Synchronous external abort on
translation table walk - Second level

DF & IF

11100 Synchronous parity error on
translation table walk - First level

DF & IF -

11110 Synchronous parity error on
translation table walk - Second level

DF & IF -

00101 Translation fault - First level DF & IF MMU Fault

00111 Translation fault - Second level DF & IF MMU Fault

00011 Access flag fault - First level DF & IF MMU Fault

00110 Access flag fault - Second level DF & IF MMU Fault

01001 Domain fault - First level DF & IF MMU Fault

01011 Domain fault - Second level DF & IF MMU Fault

01101 Permission fault - First level DF & IF MMU Fault

01111 Permission fault - Second level DF & IF MMU Fault

00010 Debug event DF & IF -

01000 Synchronous external abort DF & IF -

10000 TLB conflict abort DF & IF -

10100 Implementation defined DF & IF Lockdown

11010 Implementation defined DF & IF Coprocessor
abort

11001 Synchronous parity error DF & IF -

10110 Asynchronous external abort DF -

11000 Asynchronous parity error on
memory access

DF -

Chapter 2. Background, Context and State of the Art 15

2.3 Hypervisors Implementations

This section describes some hardware-assisted hypervisors implementations,
exposing its characteristics. After analysing the hypervisors, the section ends
with a discussion of its similarities and differences.

2.3.1 LTZVisor

The Lightweight TrustZone assisted Hypervisor (LTZVisor) is an open-source
hypervisor developed to seek the benefits and limitations of using TrustZone hard-
ware to assist virtualization [LTZ]. The LTZVisor provides a virtualization solu-
tion based on the two virtual execution environments, Secure VM and Non-Secure
VM. In the Monitor mode, this hypervisor provides software tools for virtualiza-
tion like scheduler and an Inter-VM Communication. Figure 2.3 describes these
three main software components of LTZVisor’s architecture (the hypervisor, the
secure VM and the non-secure VM).

Figure 2.3: LTZVisor General Architecture [PPG+17b]. The LTZVisor
hypervisor is a bare metal hypervisor and through TrusZone technology,
it allows the concurrent execution of a GPOS and RTOS without violate

the isolation between both.

The design of this hypervisor is based on three principles [PPG+17b]:

• Minimal implementation - LTZVisor assures it by thoroughly relying on
the hardware support of TrustZone technology since it reduces the software
components needed to create a fully functional hypervisor without loosing
the features.

16 Chapter 2. Background, Context and State of the Art

• Least privilege - Access to the resources (e.g., I/O devices, system services,
etc) is only allowed if absolutely necessary. This principle is guaranteed by
ARM TrustZone design itself. As described in the Trustzone chapter, two
different worlds are implemented in terms of privileges, allowing resources
to be confined at one or both worlds at the same time.

• Asymmetric scheduling - The adoption of an asymmetric scheduling policy,
where the secure environment has a higher privilege of execution than the
non-secure one, will ensure that timing requirements are met, even while
executing real-time tasks.

This hypervisor does not only guarantee processing and memory isolation, but
also pledge the devices through Device Partition. The technology allows for the
devices to be configured as secure or non-secure, as well as ensures isolation when
the device is shared between the two worlds. Being the receptacle of this thesis,
this hypervisor will be described more in depth in the next chapter.

2.3.2 Jailhouse

Jailhouse is an open-source, real-time, non-scheduling, fully functioning and
Linux-based hypervisor. It combines the operating system Linux with isolated
purpose components, minimising the hypervisor’s activity. Jailhouse was first
developed by Jan Kiszka [Sin15] and later released to the public as open-source
software. Despite this hypervisor is not TrustZone-based, it uses hardware to
support virtualization.

The Jailhouse hypervisor’s core acts as a Virtual Machine Monitor (VMM),
but due to its design, it implements resource access control rather than resource
virtualization. Instead of virtually isolated worlds, the system reserves real cores.
As Figure 2.4 shows, the resources are split in root cells and non-root cells. The
difference between them are the privileges of cell management, offering cell cre-
ation/destruction and hypervisor disabling tools to the root cells.

Although the GPOS in most cases are considerer non-privileged by other hy-
pervisors, in this case the Linux is the root cell guest since it cooperates closely
with Jailhouse. The other cells can be baremetal applications or RTOSs. In-
stead of sharing symmetrically multi-core processor resources between guests, this
hypervisor drives each guest with their own set of resources [Sin15]. Thus, it
implements Asymmetric Multiprocessing (AMP) without losing isolation.

Chapter 2. Background, Context and State of the Art 17

Figure 2.4: Jailhouse hypervisor Overview, based on [Kis14]. The Jail-
house hypervisor divide its guests in root (Linux) and non-root cells (bare-
metals and RTOSs). The root cell, defined as green on figure, is privileged
in terms of controlling the resources. Since this hypervisor do not provide
resource sharing, the non-root cells (represented in light blue) are limited

to used the resources provided by the root cell.

Despite of being a bare metal hypervisor, this Jailhouse is Linux dependent
since it is the system that provide boot and hardware initialization. After the
inicialization, the hypervisor acquire all the hardware resources (e.g., CPU(s),
memory, PCI or MMIO devices), removes them from Linux and reassigns them to
the new domain (other cell). Since Jailhouse only remaps and reassigns resources,
once everything is set up, its ideal execution would to be only intervene if there
was a case of access violation [RKLM17].

2.3.3 SafeG

SafeG was designed by TOPPERS[saf] as a dual-OS TrusZone-based monitor
with the purpose of executing a RTOS and a GPOS concurrently. Like other
Trustzone-based hypervisors, it relies on Trustzone for isolation and on the new
processor mode (Monitor) to perform switches between the Trusted and Non-
Trusted worlds. In this mode, the interrupts are disabled making it deterministic
[SHT13].

18 Chapter 2. Background, Context and State of the Art

One of the key features of this hypervisor is the full control of RTOS over the
GPOS actions and scheduling time, making possible to implement a hypervisor
independent scheduler. As shown in Figure 2.5, the scheduler slices the time
into two different parts: RTOS running time and Cyclic Sched. The first one
is reserved only for RTOS tasks while in the Cyclic Sched slice the processor can
switch between guests. Like other VMMs oriented to real-time systems [YLH+08],
the GPOS is only executed when the RTOS becomes idle, and in that time, the
RTOS schedules the GPOS as a normal RTOS task [SHT13] since it is responsible
for scheduling.

RTOS
Cyclic
Sched

RTOS
Cyclic
Sched

RTOS
Cyclic
Sched

R
T

O
S

G
P

O
S

R
T

O
S

G
P

O
S

R
T

O
S

G
P

O
S

Context Switch

Figure 2.5: SafeG scheduler, based on [SHT13]. The SafeG scheduling
policy is divided in two periodic slices: The RTOS scheduling time (rep-
resented in blue) and a Cyclic Sched (represented in white). The first
portion is fully reserved to RTOS as long as in the Cyclic Sched, the
RTOS can schedule the GPOS (represented in yellow) as well as its own

tasks.

2.3.4 VOSYSmonitor

VOSYSmonitor [VOS], developed by Virtual Open Systems [LCP+17], is a
software monitor which enables, just as the others aforementioned, the concurrent
execution of a safety critical RTOS along with a GPOS. The VOSYSmonitor, simi-
larly LTZVisor, was designed using the TrustZone architecture, insuring by design
peripherals and memory isolation between both OSs, but allowing dynamical cores
sharing.

Since the main goals of the VOSYSmonitor are performance related, the boot
time is taken into consideration. By design, the VOSYSmonitor setup must be
achieved in less than 1% of the full RTOS boot time. For instance, a RTOS
boot time of 60 ms implies a setup performed in less than 600us regardless of the
platform [LCP+17]. Additionally, the context switch is simplified. This hypervisor
periodically transfers the execution from one world to the other, and as a result,

Chapter 2. Background, Context and State of the Art 19

minimises context switches. Even so, most of the code executed is written in ARM
assembly and only vital registers are saved in these switches.

2.3.5 Discussion

Being hardware-assisted hypervisors, it is possible to identify common design
features:

• All support concurrent execution of a GPOS and an RTOS.

• They take advantage of hardware extensions in order to achieve isolation
between guests, a low footprint hypervisor and very low execution overhead.

• Due to TrutZone design, they separate IRQs for the non-secure world and
FIQs for the safe world.

• They provide time isolation of the RTOS creating a deterministic behavior
for him.

Regarding interrupts, the analysed hypervisors separate IRQs for the non-
secure world and FIQs for the secure world because through TrustZone design is
possible to prevent the non-secure world side from disabling FIQ interrupts (IRQs
can be disabled) and IRQs can be treated without the intervention of the secure
world.

As for hypervisors like VOSYSmonitor and LTZVisor, when the processor is
running in the secure world, the IRQs are turned off as it is considered that no
interruption from the non-secure world should stop the normal working of the
secure world. Nevertheless, when the processor is running in the non-secure world
both IRQs and FIQs are enabled and FIQs have higher priority than IRQs because
of their origin.

The Jailhouse is the hypervisor that provides most differences in terms of
design due to the fact that the most privileged guest is the Linux. In summary, it
is possible to conclude that the Jailhouse is a tool to extend hardware virtualization
to Linux providing full guest control without loosing system performance.

2.4 Exception Handling

Anomalies may occur during program execution. Exception handling is the se-
lection of handlers with predetermined actions to respond to those anomalies. Due
to the fact that the exceptions can differ depending on the processor architecture,
this work will focus on exceptions from ARMV7 without VE.

20 Chapter 2. Background, Context and State of the Art

2.4.1 Exception Handling Implementations

Even though this section is about exception handling implementation in hy-
pervisors, it will only bring to light SafeG handlers due to the architecture in-
compatibility of the others. Both Jailhouse and VOSYSmonitor are designed to
run in ARMv7 with Virtualization Extensions or ARMv8 altering completely the
exception handling design. These technologies provide levels of exceptions that
separate monitor, guest and application exceptions, contrary to the ARMv7 with
SE that provides only one for each world.

2.4.1.1 SafeG

Figure 2.6 illustrates the exception handling overview of SafeG hypervisor. It
follows the normal design of the ARM-v7 architecture exceptions. The Undefined
handler is a simple endless loop due to the difficult of understanding the origin
and the exception consequences. Like the LTZvisor, this hypervisor is designed to
define FIQs as secure interrupts and IRQ as a non-secure interrupts. To accomplish
hypervisor atomicity, the FIQs are disabled when the processor is on monitor
mode (when the tasks of the hypervisor are running) so they stay pendent until
one of the guest is active. Like FIQs, the IRQs are disabled on monitor mode
but also when the secure guest is running. This guarantees that the secure world
is not interrupted by the non-secure guest. Only when the non-secure guest is
functioning, in this case the GPOS, the IRQs are enabled and attended.

This hypervisor has a list of APIs that both secure and non-secure guest can
call through Secure Monitor Call (an exeption to call the monitor) in order to
configure some hypervisor features. They are monitored by the Notifier module,
which is designed to avoid race conditions and security leaks. This module allows
the creations of dynamic system calls by the secure guest but by default, the
Notifier defines ten system calls:

• setperm - set permissions for a certain system call.
• switch - initiates a switch to the opposite world.
• restarnt - restart NT OS
• getid - return the ID of a system call.
• signal - signals an interrupt to the opposite world.
• writel - write specific address
• regdyn - register a dynamic system call.
• setntpc - set NS OS Program Counter
• regnot - register a notifier call.

Chapter 2. Background, Context and State of the Art 21

• readl - read specific address

FIQ SMC UND

SafeG exceptions vector

Save abort state

Exception

Handling

IRQ

Select the Notifier

call

Reinjected to

the

NS guest

DATabrt PREFabrt

Not defined

Print error

information

Endless

loop

Reinjected to

the

S guest

System calls

Notifier

Undifined
exception

Secure
Monitor call

FIQs are
disable on

monitor
mode only

IRQs are
turned OFF

when RTOS/
hypervisor run

Prefetch
abortsData aborts

getid

setperm

switch

signal

regdyn

regnot

readl

writel

restarnt

setntpc

Figure 2.6: SafeG hypervisor Exception Handling Overview. This hy-
pervisor has five defined exceptions (represented in grey): FIQ, IRQ,
SMC, Data aborts and Prefetch aborts. The handlers are defined in or-

ange.

To handle data aborts and prefetch aborts, this hypervisor provides the possi-
bility of using guest handlers previously registered in the Notifier. If it is empty,
the SafeG prints the error information and jumps to an endless loop.

2.5 Fault tolerance concepts and Health-monitor

The fault tolerance can be simply defined as the prevention of faults from
becoming failures [ASTM08]. Since these terms are wrongly often used as syn-
onyms, as they describe different concepts, a detailed description of them is needed
[ALRL04]. Also the terms Reliability and Availability are important to define due
to fact that they characterize the system performance in terms of fault tolerance
[ASTM08].

• Faults - A fault is the defect that causes the error.

• Errors - An error is a corrupted system state that may cause a subsequent
failure.

22 Chapter 2. Background, Context and State of the Art

• Failures - A failure is an event that occurs when a system deviates from
the correct work flow.

• Reliability - probability that a system will perform its intended function
satisfactorily, for a specified period of time.

• Availability - probability that a system is performing its required function
at a given point in time.

Implementation of fault tolerance involves in two different subsystems: er-
ror detection and system recovery. Errors detection can be a watchdog, to de-
tect abused deadlines, or a more complexing mechanism like DFI (Data Flow
Integrity)[LMTP18] and CFI (Control Flow Integrity)[WJ10] that detects not-
expected data and instructions flows. System recovery aims to eliminate the error
from the system state and may diagnose the fault, preventing it from being reac-
tivated. The complexity of the mechanism is increased with the fault tolerance
classification of the system. Critical systems in which a failure can cause life losses,
the system’s availability and reliability needs to be as high as possible [Sie91]. Im-
proving the fault tolerance usually depends on implementing extra error detection
mechanisms and even redundancy, features that add more variables to the system
cost equation: cost/reliability and cost/availability.

2.5.1 Basic techniques in error handling

After the detection of an error state, the recovery system is triggered to solve
the error. There are three general techniques for error handling: backward recov-
ery, forward recovery and compensation.

• The backward recovery, also known as rollback technique, is a technique in
which the system is restored to a previous assumed error-free state. In this
technique, the system state is stored periodically in predetermined check-
points, to be able to recover from them [Cri82][XRR+95][RP12].

• In the forward recovery, also called rollforward technique [RLT78], the sys-
tem is taken from an error state to a healthy state but by rolling forward
to a future checkpoint. Since the roll is not a rollback, the deadlines and
real-time constrains are not corrupted. This technique is more system de-
manding due to the predictable behaviour needed on checkpoints creation
[XR96].

Chapter 2. Background, Context and State of the Art 23

• In the compensation technique, the system contains enough redundant in-
formation so that an error do not compromise it’s normal flow. Normaly,
this technique do not depend on error detection but due to the multiples
implementations of the critical parts.

2.5.2 Hypervisor’s Health-monitors and Recovery mecha-
nisms

The hypervisor’s health-monitor is responsible to monitor the hypervisor’s
work flow or, in other words, it is the hypervisor’s fault tolerance mechanism.
During hypervisor’s execution, the Health-monitor will compare the hypervisor’s
actions with it own patterns or redundant parts of itself in hardware. Not only
the actions but the hypervisor’s time spent on them can be monitored to control
his sanity. If the Health-monitor detects issues with the hypervisor, the Recovery
System activates the mechanism to restore the hypervisor to a healthy state.

Using the above definitions, the health-monitor main job is to detect errors
as soon as possible to prevent failures and restore the system to a healthy state,
eliminating faults and improving the system’s reliability and availability.

Concerning health-monitor implementations, hypervisors’ health-monitors are
limited since the main goal is to achieve a system with very low execution overhead.
The sections below describe health-monitors implementation in hypervisors.

2.5.2.1 SafeG

The SafeG hypervisor supports a GPOS health monitoring with the ability
to monitor, suspend, resume and restart the GPOS from the secure world side
(RTOS). Monitoring the GPOS status from the RTOS is possible because the
GPOS resides in Non-Trust space memory, which is accessible from Trust state. To
support GPOS interrupt monitoring (when appear, the frequency and inter-arrival
time), IRQs are first processed by SafeG, which implements a Secure Monitor mode
vector table, before being forwarded to the GPOS.

2.5.2.2 VOSYSMonitor

The VOSYSMonitor developed a secure world monitoring mechanism, despite
not being present in the latest versions of this hypervisor. The developed mecha-
nism was based on a watchdog turned on whenever the processor entered the safe
world. With each context switch, this counter is reset, measuring only the safe

24 Chapter 2. Background, Context and State of the Art

world processor’s time. This watchdog would activate a reset in the safe world if
the time was greater than a certain threshold.

2.5.2.3 Discussion

Despite of the presented health monitors being taken into consideration, only
one of them shares this thesis goal. SafeG provides a mechanism to control the
GPOS from the secure side. This feature is considered a Health Monitor since it
controls and monitor the non-secure guest health. However, it does not improve
the secure world security.

The watchdog introduced by VOSYSMonitor’s developers aims to control the
time spent in the secure world execution, which completely removes the possibility
of running non-secure code in the secure world schedule window. But as described
in the hypervisor’s presentation document, the mechanism failed for two reasons
[LCP+17]: 1) Turning watchdog on and off adds a significant overhead to the
context switch; 2) The ARM Physical Secure Timer was chosen for the watchdog,
but due to the interrupts being treated as IRQs they can no longer be turned off
once the processor is in secure mode, thus breaking the design of the hypervisor
itself.

2.6 Non-Encrypted Hash functions and Check-
sums

In order to detect error states, this thesis sanity check is based on secure
memory patterns. To detect secure memory faults it compares the current memory
state with a sane state. In order to reduce time and resources of comparing all
the of bytes of memory, it compresses the memory states into keys. Although
this task will be implemented in hardware, the function to convert states to keys
have to follow two main metrics: fast conversion and easy implementation. The
two metrics are interconnected with each other in the following way of if the
conversion is a complex algorithm, it can compromise the fast conversion metric.
The conversion occurs twice per context switch, one for the healthy state and
one for the unknown state, which it is mandatory to be as fast as possible. The
second metric removes encryption algorithms from the list since they turn to be
more complex. Also, considering that the generated keys are not accessible from
outside of Health-monitor, the encryption is useless.

Chapter 2. Background, Context and State of the Art 25

Due to the simplicity of the non-encrypted hash functions and the checksums,
the sections below describes some of them.

2.6.1 FNV-1 and FNV-1a

The Fowler–Noll–Vo or FNV is a hash function created by Glenn Fowler, Lan-
don Curt Noll, and Kiem-Phong Vo designed to be fast while maintaining a low
collision rate [Lan]. They took the main idea from a comment reviewing the IEEE
POSIX P1003.2 in 1991 and due to the speed of the algorithm, it is used to hash
large data. The flowcharts below describe the basic algorithm composed by a
multiplication and an multiplexer operation, and the constants FNV_prime and
FNV_offset_basis. The FNV-1a is a FNV-1 alternative hash function that differs
only in the order of the operations. The FNV_prime constant consists on a prime
number and it is dependent of the size of the key. The FNV_offset_basis is an
offset to achieve better dispersion [FNV+11].

FNV-1a

function

Data ended?

Yes

No

Return hash

key

hash= FNV_offset_basis

Get 8 bits of

data

hash = hash XOR byte_of_data

hash = hash × FNV_prime

FNV-1

function

Data ended?

Yes

No

Return hash

key

hash= FNV_offset_basis

Get 8 bits of

data

hash = hash × FNV_prime

hash = hash XOR byte_of_data

Figure 2.7: FNV-1a and FNV-1 algorithms flowchart. On the left,
the FNV-1a hashes eight bits of data per cycle by executing: 1) a XOR
operation between the byte and the previously produced hash key, 2)
a multiplication between the resulting number and a predefined prime
number. The function ends when all the data is fully hashed. On the
right algorithm, the basics are the same but the operations are swapped.

26 Chapter 2. Background, Context and State of the Art

To simplify the selection of the right constants for the hash function, the cre-
ators afford a table with the best pair (FNV_prime and FNV_offset_basis) for
each desired size of the key.

Table 2.2: Suggested values for FNV constants

Size in
bits

FNV prime FNV offset basis

32 16777619 0x811c9dc5
64 1099511628211 0xcbf29ce484222325

2.6.2 SDBM

The SDBM hash algorithm was created for SDBM [SDB] database library
that is a public-domain reimplementation of NDBM. NDBM is an Application
Programming Interface (API) made to maintain key/content pairs in a database
and it uses hash functions to allow a programmer store keys and data in the
database tables. As it is possible to see in the flowchart of Figure 2.9, the function
is a compound of simple mathematical operations and binary shifts.

Data ended?

Yes

No

Return hash

key

Get 8 bits of

data

hash= data + (hash << 6) + (hash << 16) - hash

SDBM

function

Figure 2.8: SDBM algorithm flowchart. The SDBM hash function is
a manipulation of the previously produced key plus the input data un-
touched. It hashes eight bits of data per cycle and ends when all the data

is hashed.

Chapter 2. Background, Context and State of the Art 27

2.6.3 DJB2

The DJB2 hash function was reported by the mathematician and computer
scientist Dan Bernstein in an open group with the form of X = ((a × X) +
c) mod m, where the X is the value produced, c the "increment", a a multiplier
constant and m the "modulus" that truncates the output value.

This function is similar to LCG (Linear Congruential Generator) functions
which are a class of functions that generate pseudo-random numbers proving the
good dispersion of values produced [Knu97]. With an m of 232 and the constant
a having the value of 33 the function can be converted into a less operations
demanding form: X = (X << 5 +X) + c.

DJB2

function

Data ended?

YesNo

Return hash

key

hash= 5381

Get 8 bits of

data

hash = ((hash << 5) + hash) + data

Figure 2.9: DJB2 algorithm flowchart. This algorithm uses the 5381
number as the start-up key value in order to achieve a better distribution.
It hashes eight bits of data per cycle and ends when all the data is hashed.

2.6.4 Murmur

Austin Appleby created the Murmur hash in 2008 and since then several vari-
ants and versions of this hash were made and submitted online [App08]. The main
difference from the others hashes to this one is the number of input bytes (8 bits
for the others and 32 bits for this one) for each generated key. This characteristic

28 Chapter 2. Background, Context and State of the Art

reduces the number of cycles needed to hash the same amount of data to a quarter
but increase the hardware needed due to the redundancy. Figure 2.10 exposes the
algorithm which despite the number of operations, it can be fast since some of
them can be parallel operations due to their independence.

FourthByte= (FourthByte ×

0xcc9e2d51) ROL 15

FourthByte= FourthByte ×

0x1b873593

hash = (hash XOR

FourthByte) ROL 13

hash = hash × 5 +

0xe6546b64

hash = hash XOR

remainingBytes

hash = hash XOR 4

hash = hash XOR (hash >>

16)

hash = hash × 0x85ebca6b

hash = hash XOR (hash >>

13)

hash = hash × 0xc2b2ae35h

hash = hash XOR (hash >>

16)

Murmur

function

Data ended?

YesNo

Return hash

key

hash= 5381

Get 32 bits of

data

remainingBytes= (remainingBytes ×

0xcc9e2d51) ROL 15

remainingBytes= remainingBytes ×

0x1b873593

Figure 2.10: Murmur algorithm flowchart. This algorithm hashes 32
bits of data by modifying its fourth byte and the remaining ones in parallel
operations. The key produced by Murmur algorithm is a 32 bit key.

Chapter 2. Background, Context and State of the Art 29

2.6.5 CRC32 Checksum

CRC checksum was first proposed by W. Wesley Peterson in 1961 with the
purpose of use redundancy for error detection in communication networks [PB61].
In this algorithm, the generated key results from a polynomial long division,
where the message is the dividend, the polynomial is the divisor and the quo-
tient is discarded. To reduce the time of the calculation, the implementation of
this checksum uses a lookup table with the constants of the generator polynomial.
Figure 2.11 describes the CRC32 algorithm that is a variant of this checksum for
a 32 bits output value and also the lookup table algorithm. The variable pos is
the table index used to get the right value from the lookup table.

CRC32

lookup table

index=0

Index=256? Yes

No

crc = index << 24

J=8?
Yes

No

J=J+1

crc = crc << 1

J=0

table[index] =

crc

end

Index=Index+1

(crc & 0x80000000) != 0?

YesNo

crc = crc XOR

0x04C11DB71

crc = crc << 1

Data ended?

Yes

No

Return value

Get 8 bits of

data

CRC32

function

crc = 0xFFFFFFF

pos = (char) ((crc XOR (data << 24)) >>24)

crc = (crc << 8) XOR

table[pos]

Figure 2.11: CRC32 and respective lookup table flowcharts algorithms.
On the left is represented the CRC32 algorithm simplified by its lookup

table. On the right, the algorithm to produce the lookup table.

30 Chapter 2. Background, Context and State of the Art

2.6.6 Discussion

Although all algorithms share the same property of conversion of an input
value to a shorter output value, CRCs and hash functions have different design
purpose. The CRCs are designed to detect not forced errors in data [PB61] while
general purpose hashes, like the above algorithms, are optimized to reduce bias in
the output value even when the input is biased. Even if the CRCs algorithms are
designed for error detection, the origin of hypervisor errors is unknown (they can
be forced to errors on the NS side), which makes CRC a not so ideal option.

3. Platforms and Tools

This chapter exhibits the groundwork platforms that support this thesis. First
will be described the Zybo board, the Zynq device where the entire system, LTZVi-
sor plus Health-monitor is deployed. Lastly, will be exposed the LTZVisor, the
hypervisor on which the exception handler is implemented.

3.1 ZYBO Zynq-7000 SoC

The Zybo (Zynq Board) is an entry-level embedded software and digital circuit
development platform developed by DIGILENT [DIL] . This board is built around
the Xilinx All Programmable System-on-Chip (SoC) Z-7010, which integrates a
dual-core ARM Cortex-A9 processor with Xilinx [XIL] 7-series field programmable
gate array (FPGA) logic. Attached to the processor and the FPGA, this board
provides a rich set of multimedia and connectivity peripherals. To expedite the
system design and deployment on the board, the Xilinx’s Vivado [Viv] Design Suite
as well as the ISE/EDK toolset provide full compatibility with this board. These
features make the Zybo a complete development kit to handle diverse projects
with no additional hardware needed.

3.1.1 Zynq-7000 family

As it is possible to see in Figure 3.1, Zynq-7000 family integrates two dis-
tinct systems: The Processing System (PS) and the Programmable Logic (PL).
The first one is composed by resources to handle software: Dual or single-core
ARM R© CortexTM-A9 MPCore; On-chip memory; External memory interfaces;
I/O peripherals and Programmable Logic interconnects.

The PL provides configurable logic in order to create dedicated hardware: con-
figurable logic blocks (CLBs); configurable ports to the block RAM (BRAM); DSP
slices with a 25 x 18 multiplier and 48-bit accumulator; an user configurable ana-
log to digital convertor (XADC); Clock management tiles (CMT); a configuration

31

32 Chapter 3. Platforms and Tools

block with 256b AES for decryption and SHA for authentication; a configurable
SelectIOTM technology and optionally GTP or GTX multi-gigabit transceivers and
an integrated PCI Express R© (PCIe) block [XI15].

Figure 3.1: Zynq-7000 SoC overview [XI18a].

This system compound extends the functionality of simple processor with
FPGA features, providing flexibility to the FPGA with the dynamic reconfigu-
ration. This allows PL reconfigurations at run-time reducing hardware costs. To
enhance both sides, this SoC provides three types of PL-PS communication based
on AXI protocol [XI18b]:

• General Purpose (AXI_GP) - a communication with 32-bit data bus aims
to genereal purpose without hight performance needs;

• High Performance (AXI_HP) - a comunnication with 32-bit or 64-bit data
bus but with high bandwidth datapaths to the memories and FIFO buffers
(allow burst transactions);

• Accelerator Coherency Port (AXI_ACP)- a low latency communication that
allows memory access to from the PL with cache coherency.

Chapter 3. Platforms and Tools 33

3.1.2 AMBA Advanced eXtensible Interface

The AMBA Advanced eXtensible Interface (AXI) protocol is part of ARM
AMBA, a microcontroller-oriented buses family. Being one of the standard pro-
tocols for ARM SoC, this protocol provides features like address/control and
data separation, unaligned data transfers and burst-based transactions. They
are achieved by implementing five independent transaction channels: two for ad-
dressing, two for data and one for control/confirmation. Figure 3.2 describes the
basic write and read transactions behind AXI protocol [Lim03].

Master Slave

Read address channel

Write address channel

Write response channel

Read data channel

Write data channel

Figure 3.2: AXI communication overview.

In order to both master and slave be able to control the transmission rate, the
handshake process is made by VALID/READY for each individual channel. As
Figure 3.3 demonstrate, the information is set when the VALID (controlled by the
source) and READY (set by the destination) are asserted simultaneously.

Figure 3.3: VALID/READY handshake.

Although the most recent version of AXI is AXI5, the analyzed AXI version is
the second (AXI4) since it is the version provided by the Zybo board. The AXI4

34 Chapter 3. Platforms and Tools

can be characterised in three interface types according to the addressing type:
AXI-Full and AXI-Lite as Memory-mapped interfaces, and AXI-Stream as Point-
to-point interface. The AXI-Lite is the simplest AXI protocol since implements
only the basic features: five channels and their independent signals [Lim03, XI11].
Also, this reduced protocol does not support burst transactions of more than one
data access and its accesses use the full width of the data bus (32bits or 64bits).
Among the signals below exposed, the protocol has two global signals: ACLK as
the Clock signal that serves as tick and the ARESETn that resets the channels.

Table 3.1: AXI-Lite Address Write Channel Signals.

Signal Descripton

AWVALID
Signal controlled by the master when it writes a valid write
address.

AWREADY
Signal controlled by the slave when it is ready to accept a
write address.

AWADDR [31:0] Bus that holds the initial write address.

AWPROT [2:0]
Bus that defines the privileged state of the write access
(00b means normal, 01b means privileged and 10b means
secure).

Table 3.2: AXI-Lite Address Read Channel Signals.

Signal Descripton

ARVALID
Signal controlled by the master when it writes a valid Read
address.

ARREADY
Signal controlled by the slave when it is ready to accept a
Read address.

ARADDR [31:0] Bus that holds the initial Read address.

ARPROT [2:0]
Bus that defines the privileged state of the Read access
(00b means normal, 01b means privileged and 10b means
secure).

Chapter 3. Platforms and Tools 35

Table 3.3: AXI-Lite Data Write Channel Signals.

Signal Descripton

WVALID
Signal controlled by the master when it writes a valid data on
the Data Channel.

WREADY
Signal controlled by the slave when it is ready to accept a
new data.

WDATA [31:0] Bus that holds the data write.

WSTRB [3:0]
Bus that indicates which bytes of the write data bus are
valid for each transfer of data.

Table 3.4: AXI-Lite Data Read Channel Signals.

Signal Descripton

RVALID
Signal controlled by the slave when the data required is
available on the Read Data Channel.

RREADY
Signal controlled by the master when it is ready to accept the
data.

RDATA [31:0] Bus that holds the data required.
RRESP [1:0] Bus that indicates the transfer status.

Table 3.5: AXI-Lite Write Response Channel Signals.

Signal Descripton
BVALID Signal controlled by the slave when the response is available.

BREADY
Signal controlled by the master when it is ready to accept the
response information.

RRESP [1:0] Bus that indicates the write transfer status.

In comparison, the AXI-Stream protocol is slightly different. The address
related signals are removed due to the Point-to-point characteristic. Also, only
one data channel is present since the data always flows from the master to the
slave. Attached to this channel to inform the slave that the packet is over, the
new TLAST signal controls the data flux. The table 3.6 describes the each signal
using the following terms:

• n - Data bus width in bytes

• i - Configurable TID width (8bits max)

36 Chapter 3. Platforms and Tools

• d - Configurable TDEST width (4bits max)

• u - Configurable TUSER width

Table 3.6: AXI-Stream Signals.

Signal Source Descripton

ACLK Clock source Clock signal.

ARESETn Reset source Reset signal (active LOW).

TVALID Master
HIGH when the master is driving a valid

transfer.

TREADY Slave HIGH when the slave is ready to accept.

TDATA[(8n-1):0] Master Data payload.

TSTRB[(n-1):0] Master
Indicates if TDATA is processed as a data

byte or a position byte.

TKEEP[(n-1):0] Master
Indicates if content of the associated byte

of TDATA is processed as part of the data

stream or ignored.

TLAST Master HIGH when the last packet is send.

TID[(i-1):0] Master Stream identifier.

TDEST[(d-1):0] Master Routing information.

TUSER[(u-1):0] Master
User defined information that can be

transmitted alongside the data stream.

3.1.3 AXI Direct Memory Access

The AXI Direct Memory Access (DMA) is an IP core developed by Xilinx
in order to provide high-bandwidth direct memory accesses, taking advantage of
the AXI-Stream data protocol. The AXI DMA provide two different utilisation
modes: Register Mode and Scatter / Gather Mode that [XI18a]. The first is
a simple interface that allows the control and configuration based on AXI-Lite
registers although the Scatter/Gather Mode allows more complex configurations
such as transfer noncontiguous blocks of data in one continuous transfer. The
figure 3.4 describes a typical AXI DMA system configuration with the two modes
associated channels and registers.

Chapter 3. Platforms and Tools 37

Figure 3.4: Typical AXI DMA system configuration.

Three different components are represented on the figure above: the DDR con-
troller, the AXI DMA and the implemented device that will access the memory.
The DDR controller provides two AXI ports that allows to access memory. At-
tached to these are the MM2S Read and S2MM Write channels from the AXI
DMA module in order to read from memory and to write to memory correspond-
ingly. Also, this module has a slave port (Configuration Register) to configure
the communication streams from the device to the DMA and vice versa. These
streams allows independent memory reads and writes from the device with the
full support of the AXI Stream protocol.

3.1.4 TrustZone Architecture on the Xilinx Zynq-7000

In order to extend the ARM TrustZone feature to the board resources, the
Zynq-7000 AP SoC includes a TrustZone module with 21 registers [XI14]. Each
mapped register configures the security of a distinct board component, providing
not only design flexibility (resource configuration as Secure or Non-Secure) but
also resource sharing between different Trust levels.

38 Chapter 3. Platforms and Tools

3.1.4.1 SDIO, Ethernet, USB, QSPI, APB registers

The TrustZone module provides three different registers to configure the Se-
cure Digital Input/Output interface: two registers (the security2_sdio0 and se-
curity3_sdio1) to configure the security of SDIO0 and SDIO1 slaves, and one
register (TZ_SDIO) to configure the SDIO controllers. In terms of Ethernet and
USB, the module supplies two registers that configures their security (TZ_GEM
and TZ_USB respectively). Concerning the Quad Serial Peripheral Interface,
the module offers a register (security4_qspi) to configure the QSPI slave. Also,
this module has two different registers to configure the Advanced Peripheral Bus
(APB): one for configure the APB slaves security (security6_apb_slaves) and one
for resources access control (security_apb).

3.1.4.2 SMC register

In order to control the Secure Monitor Call, the Trustzone module provides a
register (security7_smc) to define the SMC as secure or non-secure.

3.1.4.3 AXI registers

To configure PS and PL masters for PS-PL communications, this module pro-
vides four registers: two to select the security of the PS General Purpose (GP)
AXI masters (security_fssw_s0 configures the master number 0 (M_AXI_GP0)
security and security_fssw_s1 configures the master number 1 (M_AXI_GP1)
and two for PL masters (TZ_FPGA_M for general purpose and TZ_FPGA_AFI
for high performance masters).

3.1.4.4 DMA registers

Since the TrutZone features are extended to the DMA, there are three regis-
ters to configure the DMA Controller security: one to define the DMA Controller
operation state (TZ_DMA_NS); one to select the security state of the exter-
nal interrupt generated by DMA Controller (TZ_DMA_IRQ_NS); and one for
peripherals attached to the DMA Controller (TZ_DMA_PERIPH_NS).

3.1.4.5 Memory registers

To configure the memory security, four registers with 32 bit length are avail-
able: three to configure the On Chip Memory (OCM) and one for DDR. The
TZ_OCM_RAM0 register configures the first 128KB of OCM. Each bit repre-
sents the security status for a 4 KB page; the TZ_OCM_RAM1 register is similar

Chapter 3. Platforms and Tools 39

to TZ_OCM_RAM0, but configures the second 128KB of OCM. Also, each bit
represents the security status for a 4 KB page starting at 128 KB; the TZ_OCM
register configures the third 128KB of OCM. Finally the TZ_DDR_RAM register
that configures the DDR security. Each bit represents the security status for a 64
MB section.

3.2 LTZVisor

As previously introduced, the LTZVisor main goal is to afford virtualized en-
vironments providing coexistence between RTOS and GPOS [PTM16].

This section thoroughly describes the LTZVisor design, presenting how CPU
virtualization and memory isolation are ensured, detailing how MMU and caches
are configured, illustrating how device isolation is achieved and explaining how
interrupts and time are managed in order to achieve real-time.

3.2.1 Virtual CPU

Since the LTZVisor is a Trustzone-based hypervisor, it relies on Trustzone for
CPU virtualization. As mentioned before, the technology provides two virtualized
CPUs of each hardware core: secure world and non-secure world. In the LTZVisor
design, each guest OS runs in a different world to minimise the number of registers
saved and restored in each partition-switching operation since each virtualized
world contains an individual copy of banked registers. On the secure side, the
Virtual Machine Control Block (VMCB) is composed by 16 registers:

• General purpose registers: R0-R12
• System mode registers: the Stack Pointer (SP), the Link Register (LR) and

the Saved Program Status Register (SPSR)

Although the TrustZone provides a monitor mode to context-switching, it is not
provided any additional registers for this mode in the secure world VMCB. On
the non-secure side, the (VMCB) is composed by 25 registers:

• General purpose registers: R0-R12
• Supervisor mode registers: SP, LR and SPSR
• System mode registers: SP, LR and SPSR
• Abort mode registers: SP, LR and SPSR
• Undefined mode registers: SP, LR and SPSR

40 Chapter 3. Platforms and Tools

The reduced size of the secure VMCB endorse the secure side real-time features
since it promotes faster partition switches from non-secure world to this world.

For the IRQ and FIQ modes, the General Registers (R8-R12), as well as the
SP, LR and SPSR registers are not banked. So they are defined from the beginning
in which world they belong.

Among the aforementioned registers, there are some registers shared by both
worlds. Although they can be read from both worlds, they are only modifiable
from the secure side. An example of these are: the System Control Register
(SCTLR) and the Auxiliary Control Register (ACTLR) that provide control and
configuration over memory, cache, MMU, AXI accesses, etc. Since they configure
both worlds, the LTZVisor is responsible to manage these registers before the
guests boot process as well as initialise both VMCBs.

3.2.2 Scheduler

Typically, the hypervisor scheduler and OS scheduler are detached from each
other since they schedule different features: an hypervisor schedules guests while a
guest schedules its own tasks. This model does not fulfil the real-time environment
needs, so the hypervisor implements an asymmetric scheduler in order to only
schedule the non-secure guest OS on the idle periods of the secure guest OS. This
schedule process is carried by the secure side, with higher scheduling priority than
the non-secure which provides a real-time environment to the secure partition.

3.2.3 Memory Partition

On TrustZone SoCs without VE, the MMU provides only a single-level of
address translation instead of the traditional two-level that grants the execution
of unmodified guest and ensures spacial isolation. To overcome the problem,
the Trustzone allows for a memory configuration that separates the memory into
different security segments. These memory regions can be defined with a specific
granularity which in Zybo Zynq-7000 platform is 64MB. As Figure 3.5 illustrate,
each bit of TZ_DDR_RAM selects the secure state of the corresponding 64MB
section. Since the deployable platfrom has only 512MB of DDR RAM and, both
hypervisor and the secure VM have low memory footprint, the first seven sections
are configured as non-secure and the last section as secure.

Chapter 3. Platforms and Tools 41

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

Secure Region

Non-secure

Region

No memory

0

TZ_DDR_RAM [31]

TZ_DDR_RAM [30-14]

TZ_DDR_RAM [13]

TZ_DDR_RAM [12]

TZ_DDR_RAM [11]

TZ_DDR_RAM [10]

TZ_DDR_RAM [9]

TZ_DDR_RAM [8]

TZ_DDR_RAM [7]

TZ_DDR_RAM [6]

TZ_DDR_RAM [5]

TZ_DDR_RAM [4]

TZ_DDR_RAM [3]

TZ_DDR_RAM [2]

TZ_DDR_RAM [1]

TZ_DDR_RAM [0]

448 MB

64 MB

Figure 3.5: Memory partition in Zybo platform.

3.2.4 MMU and Cache Management

With the TrustZone extension, the processor provides two distinct interfaces to
MMU, delivering separate virtual-to-physical memory tables for each world. The
virtualized MMU has an individual copy of the Translation Table Base Register
(TTBR) and an independent configuration. This virtualization feature acceler-
ates the world switching since it removes extra software to validate translation
lookaside buffer (TLB) entries.

At cache-level, the same TrustZone isolation is available. The processor caches
also have the NS bit, not directly accessible by system software since it is set
by hardware. This bit stores the processor security state that tries to access the
memory. LTZVisor’s performance is improved since there is no need to cache man-
agement mechanisms to eliminate memory leaks whenever guest-switches happen.

3.2.5 Device Partition

The devices partition is handled without the LTZVisor interference. The Trust-
Zone allows devices to be configured as Secure and Non-Secure and with LTZVisor
pass-through policy, the devices are managed directly by guests. To guarantee iso-
lation, devices are not shared between worlds. Devices assigned to the RTOS are
configured as secure and devices assigned to the GPOS are configured as non-
secure ensuring that the GPOS cannot ruin the RTOS expected execution.

42 Chapter 3. Platforms and Tools

3.2.6 Interrupt Management

The Trustzone GIC supports the configuration of interruption as secure or
non-secure. This provides provides an additional hierarchy between secure inter-
ruptions and non-secure interruptions.

The LTZVisor claims the FIQ as secure interrupts and IRQ as non-secure in-
terruption due to the GIC interrupts design. The GIC allows the possibility of
masking the IRQs when the secure guest is running, removing the interference
caused in the Secure World by non-secure interrupts and assuring real-time. How-
ever, the FIQ are configured to interrupt both worlds as it is possible to see in
Figure 3.6.

Secure
guest

perspective

Supervisor
mode

Monitor mode

Supervisor
mode

Monitor mode

Supervisor
mode

Monitor mode

Supervisor
mode

Monitor mode

Non-secure

guest

perspective

RTOS
Handing

FIQ
RTOS

GPOS

Handling
FIQ

World
switch

Handing
FIQ

RTOS F
IQ

s

Secure
guest

perspective

Supervisor
mode

Monitor mode

Supervisor
mode

Monitor mode

Supervisor
mode

Monitor mode

Supervisor
mode

Monitor mode

Non-secure

guest

perspective

RTOS

GPOSIR
Q

s

Handling

IRQ
GPOS

SMC

Handling
SMC

World
switch

GPOS

Interrupt

Interrupt

Figure 3.6: Interruption model in LTZVisor. On top, it is represented
how FIQs are handled in LTZVisor. On the bottom part, the same is

represented but for IRQs.

In order to improve the interrupt latency, the FIQ configuration changes de-
pending on which world the processor is running:

Chapter 3. Platforms and Tools 43

• If the non-secure guest is running, the FIQ handler will run in monitor mode
in order to provide the context-switch. The world switch is done and the
secure guest handles the interruption.

• If the secure guest is running, the FIQ will be attended by the secure guest
without hypervisor interference.

The figure above describes how FIQs and IRQs are handled depending on which
guest is running. When the secure guest is running and an IRQ is triggered, it
is ignored until the SMC interruption (interruption triggered by the scheduler)
comes.

3.2.7 Time Management

In the hypervisor there are are two different levels of timing: the real level
that provides the hypervisor tick and the virtual level normally provided by the
hypervisor to the guests. The virtual level can be full virtualized or it can be
an interface to the real level. It is considered virtualized when the guest becomes
inactive, the timer stops and restart as soon as the guest becomes active again. On
the other hand, as an interface, the timer runs independently from the guest but as
soon as the guest becomes active the hypervisor needs to update the guest timing
structure. The LTZVisor isolates completely the time of the worlds providing
one hardware clock for each world. Since the TrustZone extends the security to
the devices, the hypervisor configures the non-secure guest clock as a non-secure
device. By providing two clocks LTZVisor guarantees that the timing structures
of the two worlds are always updated and the RTOS miss none tick system.

3.2.8 Exception Model

In order to control both worlds exceptions, the LTZVisor exception model
routes the external aborts (SMC exception included) to the monitor rather than
to abort mode.

As described in the Figure 3.7, the monitor is responsible to handle all external
aborts (defined as other than MMU and Debug faults). With this configuration
the hypervisor can trace secure access attempts from the non-secure side, which
is an non-secure OS malfunctioning indicator, and take action to prevent secure
side failure.

44 Chapter 3. Platforms and Tools

Figure 3.7: LTZVisor Exception Model. Secure exception are repre-
sented in green and non-secure exception in red.

4. Implementation

This chapter addresses the developed system implementation. Since this thesis
has two different goals, one being the exception handling and the other the hard-
ware mechanism, the implementation chapter is also divided accordingly. In the
beginning of the exception handling section, it will be discussed the reason behind
the implementation of the whole secure side exception handling instead of only
monitor exceptions. After that, it is described the implementation of the excep-
tion handling and how the handler extracts information about the exception. The
second section of the implementation chapter exposes the Health-monitor imple-
mentation divided in its modules. Afterwards, the integration with the LTZVisor is
exposed as well as the Health-monitor Interface, an interface that provides Health-
monitor access from the processing system. In the final part of this chapter, it
is addressed the Intruder Module, a module that deliberately interferes with the
secure memory.

4.1 Exception Handling

As described previously, the secure exceptions are divided in monitor exception
and guest exceptions. Since the main goal is to provide an exception handling
to the LTZVisor, it is mandatory that exceptions originated by the monitor are
handled by hypervisor, not by secure guest. Considering that the secure exceptions
contain hypervisor and secure guest exceptions, the LTZVisor is forced to have full
control over the secure guest exception handler. Figure 4.1 illustrates the LTZVisor
exceptions handler overview. It is possible to observe the four exceptions: two in
the monitor exception vector and two in secure supervisor exception vector (Data
and Prefetch aborts); and their structure.

45

46 Chapter 4. Implementation

Monitor Exceptions

LTZVisor Exception Handling

LTZVisor Exceptions

Data Abort
Prefetch

Abort

Monitor Handler decider

DFSR,

DFAR, SPSR

Interpreters

Supervisor Exceptions

Prefetch

Abort
Data Abort

Handler decider

IFSR, IFAR,

SPSR

Interpreters

DFSR,

DFAR, SPSR

Interpreters

IFSR, IFAR,

SPSR

Interpreters

Figure 4.1: LTZVisor Exception Handling Overview.

The exception handling is divided in interpreters and handlers deciders. First
each handler exposes the information about the exception by analysing the respec-
tive registers. Then, depending on the information collected, the handler decides
the right action to handle the problem. Since there is a fault status register for
each abort and not for each processor mode, both monitor and secure supervisor
exceptions share the interpretation part of the handler. However, each processor
mode has a different decider: the Supervisor exceptions have a Handler Decider
and the Monitor exceptions have the Monitor Handler decider.

4.1.1 Secure Supervisor Data abort and Prefetch abort
exceptions

The implementation of the secure supervised exceptions is delicate due to the
fact that the secure guest and hypervisor exceptions are handled in the same
exception vector. Although the Interpreters are shared, it is essential that the
hypervisor attends its own exceptions. This way, interpreting which processor
mode causes the exception is crucial to later take the right decision.

4.1.1.1 DFSR, DFAR, IFSR and IFAR interpreters

As mentioned before, the Fault Status Register stores important information
about the exception like the DFSR and IFSR interpreters are responsible to extract

Chapter 4. Implementation 47

the information from the register and provide it to the hypervisor/user. Due to
the registers uniformity, the DFSR and IFSR interpreters are similar, with the
peculiarity of the DFSR providing an extra bit to differentiate if faulted instruction
was a read or a write instruction. As depicted in Figure 4.2, there are five bits
from the FSR that are take in consideration. The already explicated WR bit and
the four Fault Status bits.

Figure 4.2: Fault Status register masked bits. The FS bits describes the
fault status and the WR bit describes the type of the instruction (Write

or Read).

The DFSR and IFSR are read into C variables as described in Listing 4.1.
After masking the registers to get the FS bits, the value goes into a switch case
with every fault status possible. Depending of the status value, the DFAR and
IFAR can be valid or not.

Listing 4.1: Exception handle instructions to get the FSR and FAR
registers. C code extract.

1 asm("MRC p15 , 0, r3 , c5 , c0 , 0" : "=r" (dfsr_value));
2 asm("MRC p15 , 0, r3 , c5 , c0 , 1" : "=r" (ifsr_value));
3 asm("MRC p15 , 0, r3 , c6 , c0 , 2" : "=r" (ifar_value));
4 asm("MRC p15 , 0, r3 , c6 , c0 , 0" : "=r" (dfar_value));

4.1.1.2 SPSR interpreter and NS bit

In order to extract information about the faulted processor state, the SPSR
register is analysed. Although it is not an abort special register as the other men-
tioned before, the SPSR holds the information about the last execution processor
mode. Since the last processor mode that executed was a faulted one, the infor-
mation saved into the SPSR is important as it concerns the faulted state. The
bits represented in Figure 4.3 are the ones to took into consideration from this
register and the code to read its value is describe in Listing 4.2.

48 Chapter 4. Implementation

Figure 4.3: SPSR register masked bits. The N,Z,C and V represent
the Negative, Zero, Carry and Overflow condition flag bits respectively.
The Cumulative saturation bit (Q) and the Processor mode (M) are also

extracted from this register.

Listing 4.2: Exception handle instructions to get the SPSR and NS bit.
C code extract.

1 asm ("MRS r3 , SPSR" : "=r" (spsr_value));
2 asm ("mrc p15 , 0, r3 , c1 , c1 , 0" : "=r" (SCR_NS_BIT));

After the SPSR register value being extracted, different masks are applied to
get the bits values (N, Z, C, V, Q). To get the processor mode, the SPSR is
masked with the 0x1f to obtain the last five bits. For each value a corresponding
mode is attributed as Table 4.1 exposes.

Table 4.1: SPSR.M bit value interpretation.

Corresponding processor mode Value
System 0x1f

Undefined 0x1b
Abort 0x17
Monitor 0x16

Guest (Supervisor) 0x13
System 0x12
IRQ 0x11
User 0x10

Although the secure state in Secure Supervisor exceptions is a redundant infor-
mation (every exception that is handled here is necessarily from the secure side),
the SPSR interpreter analyses the state anyway. Thus, both monitor and super-
visor exceptions share the same interpreter. After getting the SCR, its last bit
determines the security state of the processor.

Chapter 4. Implementation 49

4.1.1.3 Handler decider

After interpreting information, the handler determines the right action based
on the faulting processor mode. As presented Figure 4.4, the Handler decider
provides compatibility to both monitor and guest handlers.

Due to the disrupted nature of the hypervisor caused exceptions, its handlers
are limited. By design, monitor exceptions are triggered when something not
expected occurs to hypervisor. Consequently, the entire hypervisor is compromised
and the only option is stop the execution. On the other hand, exceptions which
were originated from the secure guest are not handled by the hypervisor as they
are application-dependent. Instead of trying to recover from them, the hypervisor
roots them to the secure guest. If nothing was defined by the secure guest, its
execution is halted.

Figure 4.4: Handler decider flowchart.

4.1.2 Monitor Data abort and Prefetch abort exceptions

The external aborts’ handlers share the same structure as the secure supervisor
trapped exceptions. First, they provide information about the abort and then they
are handle accordingly to their origin. In contrast to supervisor exceptions, the
monitor exceptions come from different worlds, making the NS bit an important
deciding factor. After parsing the information, the handler decides based on which
world caused the abort:

50 Chapter 4. Implementation

• On non-secure external abort, it stops the non-secure guest execution;

• On secure external abort, the handler full stops the system execution.This
is the only viable option because the secure external aborts are normally
generated by bad secure side designs, making impossible to recover from it.
Additionally, it is not recommended to run the non-secure application after
the collapse of the secure world which involves hypervisor and secure guest.

4.1.2.1 Stopping the non-secure guest

In order to stop the non-secure guest from hampering the execution without
modifying the expected hypervisor flow or increasing the time spent on context-
switching, the non-secure guest execution is routed to a special LTZVisor section
as demonstrate in Listing 4.3. This section is compiled alongside of the hypervisor
but instead of being placed in secure defined memory it is attached to the non-
secure guest code. After a non-secure external abort the non-secure PC register
is loaded with the address of the code within the special section. Since the goal is
to stop the execution, this code is a simple loop (Listing 4.4).

Listing 4.3: Hypervisor Linker script with the new non-secure monitor
section. Linker code extract.

1 MEMORY
2 {
3 ...
4 DDR_MNS (rwx) : ORIGIN = 0x1BFFFF00 , LENGTH = 0xEE
5 }
6 .monitornscode : {
7 _monitornscodestart = .;
8 *(.monitornscode)
9 } > DDR_MNS

Listing 4.4: Code to stop the non-secure guest execution. Assembly
code extract.

1 .section .monitornscode , "awx"
2 LOOOP:
3 b .

Figure 4.5 shows the flow of the non-secure world execution. It is possible to
observe that besides changing the non secure side execution, the flow outside of
the non-secure guest is not really affected.

Chapter 4. Implementation 51

Figure 4.5: Non secure guest Execution flow. After the exception, the
NS Guest runs the hypervisors’s non-secure code (symbolised with a red

cross).

4.2 Health-Monitor

The Health-monitor is the hardware package that includes the mechanisms to
detect and recover from secure memory faults. Although they work in cooperation,
the implementation of these mechanisms are completely independent. This allows
for implementing different detection methods as substitutes or to work alongside
this thesis mechanism, but maintaining the recovery system intact. As Figure 4.6
shows, the Health-monitor is composed by four hardware modules due to the four
main tasks needed.

Software

Hardware

Health-monitor Mechanism controller

Checkpoint

module

Memory

module

Detection

module

DMA

Health-monitor Interface

Hash function

Hash Keys

Hash

comparator

Write/Read

Trigger

Write Memory

Read Memory

Memory

selector

RAM Image

ROM Image

Figure 4.6: Health-Monitor Overview. The four main Health-monitor’s
components: 1) Detection Module, 2) The Recovery mechanism, com-
posed by the Memory and Checkpoint modules (in green), 3) the Con-

troller and 4) the Interface.

52 Chapter 4. Implementation

First, it is mandatory to have a detection module that flags anomalies which
it is the Detection module purpose. In order to be able to read and write on the
system memory, the Memory module was designed. The Checkpoint module is
responsible for saving and controlling the memory check points. These checkpoints
are healthy secure images gathered in run time. Since this module accommodates
ROM and RAMs, it supplies the Memory module with a sane memory in case of
failure. Together, they are the recovery mechanism. Lastly, in order to control all
modules, a control unit is added to the Health-monitor.

4.2.1 Detection Module

The Detection module is responsible to detect memory anomalies based on
data provided by the Memory module. The basic idea behind this module is to
produce two different hash keys based on the secure world memory: one before
and one during the non-secure world execution. By comparing the two keys, it
is possible to detect secure memory irregularities caused by the non-secure guest.
To not produce false positives when the secure guest change its memory, the keys
are produced each time that the non-secure world is scheduled. Figure 4.7 depicts
the Detection module overview.

Figure 4.7: Detection module overview with the representation of the
three sub-modules: Hash function, Hash Keys and Hash comparator. The
red signals describe signals sent by the control unit; The blue signals are

inputs; The green signals are outputs.

Chapter 4. Implementation 53

This module is divided in three subcomponents:

• Hash function - The implemented hash function converts the 32 bits of data
received into a 128 bits hash key. Since all analysed functions produce 32
bits from 8 bits, this sub-module combine four hash functions in order to
achieve the 128 bit output. To produce the full memory corresponding key,
the secure memory is sliced into 32 bits. Although each slice produce a key,
they are reintroduced in the hash function. Consequently, only the final one
is take into consideration.

• Hash keys - After the hash function finalises the first key, it is stored to later
be compared. The Hash keys sub-module is responsible to do exactly this,
providing a 128 bit register that when signalled stores the input value.

• Hash comparator - After the Hash function produces the second key, the
Hash comparator sub-module compares the outputs of the Hash funtion and
the Hash keys. If the keys match, the signal Hash match is set to 1.

4.2.2 Memory module

With the DMA AXI technology, the Memory module creates an additional
abstraction level for the remaining modules that require access to memory. Since
the goal is to read and write the secure memory altogether, this module resumes
the memory access in two possible operations:

• Read Mode - When this module is on Read mode, 32 bits of secure memory
data is sequential outputted into the output data port. It begins on the first
secure memory address and ends on the last used one.

• Write Mode- On Write mode, the module works the same way as in Read
mode but instead of read, it sequentially writes the supplied data into the
secure memory.

In order to achieve these modes, this module is fragmented in four sub-modules,
as Figure 4.8 expose:

• AXI DMA - The IP provided by Xilinx to access the DMA technology. There
are five AXI ports on this IP: one slave to configure the DMA, two masters
to access the DDR memory (one to read and one to write) and two stream
channels to get and set the data to the DMA.

54 Chapter 4. Implementation

• Write/Read Trigger - Based on the control signals sent by the Control Unit,
this sub-module controls the DMA channels. Since the AXI DMA is con-
figured by an AXI Lite communication, the sub-module implements an AXI
Master to access the AXI DMA registers, configuring the channels attributes
(e.g the bandwidth) and triggering the channels transferences.

• Read Memory and Write Memory - Both of these sub-modules are interfaces.
The Read Memory sub-module is responsible to extract the data from the
AXI read stream into the data output. On the other hand, the Write Memory
sub-module is the opposite of the Read Memory. It prepares the AXI write
stream with the data from the input.

Memory Module

Write Memory

- Control Signals

Write/Read

Trigger

- Control Signals

- Data [31:0]

Read Memory
- Control Signals

Data [31:0] -

AXI DMA
- Control Signals

AXI Master -

- AXI Slave

- AXIS Slave

AXIS Master -
AXI Master -

AXI Master -

- AXIS Slave

AXIS Master -

Data [31:0] -

- Data [31:0]

DDR AXI connection -

DDR AXI connection -

Figure 4.8: Memory module overview with the representation of its four
sub-modules: Write/Read Trigger, AXI DMA, Write Memory and Read
Memory. The red signals describe signals sent by the control unit, the

blues are inputs and greens are outputs.

Figure 4.9 exposes the data flow between the modules and sub-modules. As
the sequence diagram describes, the data flow created by these sub-modules allow
Detection and Checkpoint modules to perform writes and reads on the secure
memory without addressing related issues. When the Control Unit selects the
Read mode, the Write/Read Trigger triggers the DMA channel to perform a read
transfer. Then, the provided Xilinx’s AXI DMA module signals the Read module

Chapter 4. Implementation 55

that there is new data to receive. It is through this last sub-module that the
Detection module starts to receive the secure data.

On an Write operation, the Write/Read Trigger triggers the DMA channel to
perform a write transfer with the data provided by the Checkpoint module.

AXI DMAAXI DMA
Write

Memory
Write

Memory
Control

Unit
Control

Unit
Read

Memory
Read

Memory
Write/Read

Trigger
Write/Read

Trigger

Read memory

Checkpoint
Module

Checkpoint
Module

AXI Stream

Trigger DMA
 read transfer

Detection
Module

Detection
Module

32 bits of data/clock

Last word

Matched/Non-matched keys

Read ModeRead Mode

Last word

Write ModeWrite Mode

Write memory

AXI Stream
Trigger DMA

 write transfer

Last word

 Transfer completed

Checkpoint data

Last word

Figure 4.9: Memory module sequence diagram. There are three agents
represented in this figure: the Control Unit, the Detection module and the
Checkpoint module. Also, the sub-modules of the Memory module are
represented: Write/Read Trigger, AXI DMA, Read Memory and Write
Memory. On diagram top part, it is described the data flow when this
module is on Read Mode. On the bottom, Write mode flow is exposed.

4.2.3 Checkpoint Module

The Checkpoint module is responsible to provide a sane memory image when
a failure occurs. This healthy image is gathered in two different situations: be-
fore either world execution and when the detection mechanism confirms that the
running state of the secure side was not changed outside its scheduling time. In
order to keep both, each image is saved into a different dedicated memory. The
first healthy image is pre recorded into a ROM making it not editable. Although

56 Chapter 4. Implementation

it is the purest state of the secure memory, recovery into this state creates an
enormous throwback to the system which it is not ideal. On the other hand, the
checkpoint image confirmed by the detection mechanism is stored in a RAM. The
throwback on this image is almost none since it provides the last healthy state of
the memory.

Figure 4.10 shows how both states savers are connected by the Memory Selec-
tor. This sub-module is responsible to select the right data to use on the recovery
(if it is from ROM or RAM) and it controls the address inputted into the ROM
and RAMs.

Checkpoint Module

- Control Signals

Memory Selector

- Control Signals

RAM Image

- Control Signals

Data [31:0] -

Address [31:0] -

- Data [31:0]

Data [31:0] -

- Data [31:0]

- RAM Data [31:0]

- ROM Data [31:0]

- Address [31:0]

Restored Data [31:0] -

ROM Image

Data [31:0] -

- Address [31:0]

- Data [31:0]

Figure 4.10: Checkpoint module overview with the representation of
its three sub-modules: ROM Image, RAM Image and Memory Selector.
The red signals describe signals sent by the control unit, the blues are

inputs and greens are outputs.

Since the most demanding part of the system in terms of timing is getting
the secure memory, this module can not add an extra repetition of this process
(one to get the first key, one to get the second key and a hypothetical extra to
store the checkpoint). Consequently, the secure memory is stored during the non-
secure guest scheduling window which means that any image stored will be always
undefined until the key comparison. To not store an unhealthy state on top of
the last healthy state, this module affords two RAMs instead of one. Therefore,
an healthy state is guaranteed in one RAM and the still undefined state is not
discarded. To optimize the checkpoint saving process, not having to copy from one
RAM to the other, a rotation method is used. As Figure 4.11 describes, neither
RAM 0 or RAM 1 is set as a healthy state holder. The healthy state holder switch

Chapter 4. Implementation 57

between the two. After the detection module decrees the memory’s veracity, the
undefined data RAM becomes the next healthy state holder and the older holder
receives the new undefined data in the next Health-monitor analysing cycle.

Due to board resource limitation, the implementation of the ROM and RAMs
was not straitforward. The FPGA allows two types of memory that differ which
board resource is implemented: BRAM and Distributed RAM. The Block of RAM
or BRAM technology is a fast and small internal memory that can be used as RAM
and/or ROM. Since the board only provides 240KB of BRAM and the hypervisor
plus secure guest normal footprints only occupy less than 1% of the entire secure
memory, saving all the 64MB is not reasonable. Instead, three 150 KB memories
are implemented.

In fact, not all BRAM is available to implement the memories. After the
deployment of the other modules, only 150 KB of BRAM was left. In order to
implement them, some extra Logic Cells are converted to memory: the ROM is
full implemented in LUTs (Logic Cells converted) since its usage is reduced; The
RAMs implementations are sliced, half implemented in BRAM and half imple-
mented in LUTs. Although this increases the read/write operations complexity
due to address decoding, the half/half method has the benefit of maximize the
BRAMs usage to implement memories, reducing the LUTs used as memory.

RAM1 RAM0 RAM1RAM0

RAM0 RAM1 RAM0RAM1

Recovery
using
RAM0

RAM1

RAM0

Secure
Memory

data

Secure
Memory

data

Secure
Memory

data

Secure
Memory

data

Secure
Memory

data

Schedulling

Figure 4.11: With the RAM swap method, the recovery mechanism
guarantees that the actual state and the healthy state are saved without

an extra memory transfer between RAMs.

58 Chapter 4. Implementation

4.2.4 Health-monitor Mechanism Controller

The Health-monitor Mechanism Controller is the control unit of the Health-
monitor which is responsible to synchronise and control the entire hardware. This
controller is implemented based on a finite state machine with the nine states:

• RESET - As the name describes, the RESET state resets the entire hard-
ware: it clears the saved key, all RAM images and the hash match bit. It
also stops the active AXI streams transfers (read from memory or write to
memory).

• IDLE - In this state, the Health-monitor holds its functionality and waits
for an action.

• FUNCTION - When the Memory module signals that there is new data to
read, the FUNCTION state enables the Hash Function (Detection module)
and it initiates the hash key production.

• SAVE HASH - In the SAVE HASH state, the first produced key is stored
in the Detection Module to later be compared.

• COMPARE - The COMPARE state is responsible for enabling the key com-
parator, testing if the secure data is still untouched.

• ERROR - This state activates the error flag, notifying the hypervisor that
the secure memory is corrupted.

• NEW READ - In the NEW READ state, the Memory module triggers a
new DMA read transfer.

• RAM RECOVERY - The RAM RECOVERY state is responsible to trigger
a new DMA write transfer, using the checkpoint image to restore the secure
memory.

• ROM RECOVERY - The ROM RECOVERY state is similar to RAM RE-
COVERY, however it restores the secure memory by using the original image.

As Figure 4.12 shows, the control unit has three possible execution flows: Reset,
Normal execution and Recovery execution. In the Reset execution flow, the control
unit jumps between the IDLE and RESET states, resenting the entire system.
After the reset, the control unit advances into the IDLE state, entering in Normal
execution.

When the Memory module signals that there is new data to read, the FUNC-
TION state enables the Hash Function (Detection module) and it initiates the
hash key production. While the memory is not completely read, the control unit
stays on this state. After the key is finished, the following state can be the COM-
PARE or SAVE HASH, depending on which type of the key was produced. If

Chapter 4. Implementation 59

the Hash Funtion input data was the secure image right after the secure world
execution, or in other words if it is the first key produced, the SAVE HASH is the
following state; If not, the successive state is the COMPARE.

In the SAVE HASH state, the key is stored in the Detection Module to later
be compared. Subsequently, the Controller progresses into NEW READ state.
On the other hand, the COMPARE state is taken when two keys are formed and
the comparator needs to test if the secure data is still untouched. From here, two
outputs are possible: the keys match and the next state is the NEW READ; or
the keys are not the same and the recovery mechanism needs to intervene. In
order to initiate the key cycle again, the NEW READ state actives the Memory
Module Read Trigger. Then Control Unit waits for new data in the IDLE state.

STARTSTART

07
RAM

RECOVERY

08
ROM

RECOVERY00
RESET

01
IDLE

06
NEW READ

03
SAVE HASH 02

FUNCTION

04
COMPARE

05
ERROR

Transfer ended & Hash
saved

Transfer ended & !Hash
saved

Recovery done

!Error & Data Available

!Matching keys

Matching keys

!Reset

!Transfer
 ended

Error &
!Checkpoint &

Error_c > 5

Error &
Checkpoint &
Error_c <= 5

Figure 4.12: Control Unit State Machine. There are three execution
flows: Reset represented in orange, Normal execution represented in blue

and Recovery execution represented in brown.

60 Chapter 4. Implementation

Contrary to the NEW READ, the ERROR shifts the controller into the recov-
ery execution by setting the error flag. After the hypervisor triggers the Recovery
execution, two outputs are possible: RAM RECOVERY and ROM RECOVERY.
The choice between them depends on whether there is a healthy image checkpoint
and the Error_c counter. This variable counts the consecutive recovers from the
same state. If the state leads into the failure more then certain number (by de-
fault five), this state is considered corrupted and the system will recover from the
beginning (ROM).

Figure 4.13 overviews the control unit operation. As it is possible to observe,
the Health-monitor mechanism is idle until the hypervisor schedules the non-secure
side. The first key is produced right after the context-switch, and the others are
produced and compared during the non-secure guest execution. If one of these
comparisons flags an error, the mechanism notifies the hypervisor and enters in
IDLE state until the LTZVisor’s execution returns, signalling the mechanism to
starts the recover. The normal exception is established after the mechanism unlock
the hypervisor from the error state loop.

SGuest NSGuestLTZV

1st

Hash

LTZV

Schedulling

LTZV SGuest

2nd

Hash

Hashing Hashing

2nd

Hash

Hashing

2nd

Hash

Hashing

Hardware

recovery

Recovering

... …

2 7 or 8 11 3 2 46 2 46 2 46 5 1

States

Figure 4.13: Control Unit actions and states overview.

4.3 LTZVisor Integration and Health-monitor in-
terface

The Health-monitor’s interference in LTZVisor is limited to the scheduler and
configuration interface. Since LTZVisor’s schedule is affected in every guest-
switch, it is mandatory that the code addition is as small as possible. To achieve

Chapter 4. Implementation 61

this, the Health-monitor has a group of memory mapped registers and the com-
munication LTZVisor/Health-monitor is based on reading and writing on these
registers.

Listing 4.5 displays the code that is responsible to trigger the Health-monitor
hash function before the non-secure guest execution. The addr_DMA is the
Health-monitor register address that holds the number of bytes read in the AXI
Read transfer which depends of the secure world compiled size. To trigger a new
transfer, the register must be set to zero before the correct number of bytes. After
this code, the processor mode is changed and the PC is loaded with non-secure
guest instructions.

Listing 4.5: Health-monitor trigger code. Assembly code extract.

1 .macro HM_TRIGGER
2 push {r0 , r1}
3 ldr r0 , addr_DMA
4 ldr r1 , reset_
5 str r1 , [r0] @ reset DMA tranfer
6 ldr r1 , bytes_
7 str r1 , [r0] @ Start DMA tranfer
8 pop {r0 , r1}
9 .endm

When the monitor is called to context-switch into the secure guest, it first
runs the code presented in the listing 4.6. The hypervisor signals the Health-
monitor that the context-switching is happening. Then, it reads the error register
to confirm that the recover is fully completed, there are no errors or if a recovery
is pendant. If the register is not cleared (set to zero when the recovery is done)
the hypervisor execution is halted in the checking loop, waiting a secure restored
image to continue the execution.

Listing 4.6: Health-monitor error checker. Assembly code extract.

1 .macro HM_SANITY_CHECKER
2 push {r0 , r1}
3 ldr r0 , addr_HMCS
4 ldr r1 , NS_
5 str r1 , [r0] @ CS Signal
6 ldr r1 , addr_HM
7 _checking_loop :
8 ldr r0 , [r1]
9 cmp r0 , #1

62 Chapter 4. Implementation

10 bne _checking_loop
11 pop {r0 , r1}
12 .endm

The Health-monitor’s interface is a group of APIs to configure and get hard-
ware information. Since the registers are memory mapped, they use C pointers
to read and write into them. They are divided in two categories: the configura-
tions registers and the informative registers. Two of the first type were already
mentioned in Listings 4.6 and 4.5. These are the only configuration registers used
outside the proper API.

As described in the listing 4.7 the ltzvisor_HM function configures the AXI
DMA streams and the Control Unit. Using the reg pointer to point to the registers
address, it first configures the Read and Write channels (e.g. defining the length
of the data bus and the burst size) and then the addresses. The address value
is received from __startup_start which is a linker variable that defines the first
address of the secure memory. To configure the Control Unit, the Health-monitor
has a configuration register that defines the number of bytes to transfer. Like the
__startup_start, the _secure_size is a linker variable that defines the size of the
memory used by the secure world.

Listing 4.7: Healthmonitor Configuration APIs. C code extract.

1 void ltzvisor_HM (void){
2 uint32_t * reg;
3
4 /* Config DMA MM2S channel */
5 reg = (uint32_t *) (AXI_DMA_BASEADDR + c_MM2S);
6 *reg = 65539;
7 reg = (uint32_t *) (AXI_DMA_BASEADDR + sa_MM2S);
8 *reg = (uint32_t) & __startup_start ;
9

10 /* Config DMA S2MM channel */
11 reg = (uint32_t *) (AXI_DMA_BASEADDR + c_S2MM);
12 *reg = 65539;
13 reg = (uint32_t *) (AXI_DMA_BASEADDR + da_S2MM);
14 *reg = (uint32_t) & __startup_start ;
15
16 /* Set number of bytes to transfer */
17 reg = (uint32_t *) (CONTROLUNIT_BASEADDR +
18 NUMBER_OF_BYTES_REGISTER);
19 *reg = (uint32_t) & _secure_size ;
20 }

Chapter 4. Implementation 63

In the informative part, The Health-monitor provide four registers: the Re-
covery Clock Cycles (RCC), the Hashing Clock Cycles (HCC), the Number of
Checkpoints (NoC) and the Number of Restores (NoR). The first register stores
the number of cycles spent in a recovery. This value is measured from the begin-
ning of the recovery process until the recovery done flag is activated. Similarly
to this register, the Hashing Clock Cycles holds the number of cycles spent in
hashing the secure memory. Since the hash function was designed to provide a
throughput of 32 bits of data per cycle, the register value only depends the size
of the secure memory used. Althought the cycle unit is desired in the hardware
module (hardware clock frequency may vary depending on the implementation),
in software the value needs to be converted into seconds. To achieve this, the API
divides both values by the hardware clock frequency.

Listing 4.8: Healthmonitor Informative APIs. C code extract.

1 uint32_t RCC_HM (void){
2 uint32_t * reg = (uint32_t *) 0 x83C10000 ; // RCC addr
3 return ((* reg)/HFC); // microseconds
4 }
5
6 uint32_t HCC_HM (void){
7 uint32_t * reg = (uint32_t *) 0 x83C10004 ; // HCC addr
8 return ((* reg)/HFC); // microseconds
9 }

The Number of Checkpoints (NoC) and the Number of Restores (NoR) regis-
ters, as their name indicate, hold the number of times that the mechanism create
checkpoints and restores the memory. The hypervisor uses this information to
keep track of its state along the time.

4.4 Intruder Module

In order to test the the hardware mechanism, an extra module was developed.
Althought it is possible to mess up the secure side from the non-secure, the task
is not simple and requires especial system characteristics. To bypass these pro-
cedures, an hardware module with secure privileges is implemented, mimicking
the illicit non-secure access to secure memory. Since it is defined as secure, the
Trustzone does not signals the access due to the fact that is not illegal. This way,
the Intruder Module acts exactly like a non-secure guest which somehow masks
its execution as being secure.

64 Chapter 4. Implementation

As Figure 4.14 shows, this module is composed by two different inputs types:
the control inputs that are controlled by hardware (Control Unit and User since the
board provides a binary switch to trigger the event) and the configuration inputs.
These configuration inputs are mapped registers that can be set by software or
by hardware using the AXI protocol. They provide flexibility on Health-monitor
tests since the registers configure the address that will be modified as well as the
data to write on it. This module also has a AXI master port which connects the
module to the DDR.

Intruder Module

- NS Schedule

AXI

Master

AND DDR

Memory
AXI

slave

Secure Address [31:0]

Value [31:0]

- Error trigger

Figure 4.14: Intruder Module Overview. This module is responsible to
execute a secure write operation when both control signals are actived

(when the trigger is up and when the non-secure guest is running).

5. Evaluation and results

This chapter evaluates the Exception Handling and the Health-monitor im-
plementations. Even thought the Exception Handling is a powerful tool, the hy-
pervisor code size is affected. In the first section of this chapter, this problem is
addressed by exposing how this thesis affects the LTZVisor Memory footprint and
the context-switching performance.

On Chapter 2 are detailed hashing and CRCs algorithms for error detection. In
the section Hashes and CRCs Evaluation tests, these algorithms are compared in
terms of collisions and dispersion, concluding which is the best fitting method for
the sanity checker. After that, the complete Health-monitor mechanism is anal-
ysed based on Hardware costs, providing information about the board resources
spent to implement the mechanism. A case study finalizes this chapter. There, it is
exhibited a side by side comparison between the raw LTZVisor and, the LTZVisor
plus this thesis’ implementation.

The results were taken on Zybo board with the standard frequency values:
the processor ARM Cortex-A9 running at 600MHz and the programmable logic
clock at 100MHz. The LTZVisor runs two bare-metal guests (a secure guest and a
non-secure guest running a logging code) and the entire system is compiled using
the ARM Xilinx toolchain.

5.1 Memory footprint

To extract information about memory footprint, the [size] tool of ARM Xilinx
toolchain was used. As it can be seen in Table 5.1 , three different measures are
take into consideration: i) the LTZVisor running one bare-metal guest in each
security side printing a generic log message, ii) the same LTZVisor configuration
but with the Health-monitor enabled and iii) the LTZVisor running the two guests
with all the features enabled (Exception Handling and Health-monitor).

65

66 Chapter 5. Evaluation and results

Table 5.1: Memory footprint (bytes).

Image .text .data .bss total
LTZVisor plus two bare-metal guests with
logging application code

19812 452 66188 86452

LTZVisor plus two bare-metal guests with
logging application code and Health-monitor
enabled

20458 452 66192 87102

LTZVisor plus two bare-metal guests
with logging application code, Health-monitor
enabled and Exception Handling enabled

25466 452 66196 92114

Using the first measurement as a reference value, it is possible to observe a
memory increase by adding the Health-monitor and the Exception Handling to
the system, inducing an increment of nearly 6.5% on the memory footprint. As
expected, the Health-monitor increment is lower than the Exception handling
due to the nature of the implementation. Despite the obvious increase, these
features enrich the functionality of the hypervisor creating a trade-off between
memory/functionality for the LTZVisor user.

5.2 Context switching performance

The Performance Monitoring Unit (PMU) component was used in order to
evaluate the guests context switch time. By putting a specific instruction at the
beginning of the context switch and other at the end, this component measures the
number of clocks spent during the context switch. Since the results were gathered
in clock cycles, it was converted to microseconds using the processor’s frequency
(600MHz). Each value represents the average value of hundred collected samples.

As it is possible to observe on tables 5.2 and 5.3, the Health-monitor increases
the time spent on switching guests. When the hypevisor switches from the SGuest
to the NSGuest, the Health-monitor trigger code adds 0.74 µs to the overall time,
representing an increment of 23%. On the other hand, the time addition of the
Health-monitor restore is not so apprehensive. Since the overall time spent on
switching from the NSGuest to the SGuest is higher, the increment percentage is
only 7%.

Chapter 5. Evaluation and results 67

Table 5.2: Performance values: Switching from SGuest to NSGuest.

Description Number of clock cycles Time (µs)
Without Health-monitor 1891 3.15 µs
With Health-monitor 2336 3.89 µs

Table 5.3: Performance values: Switching from NSGuest to SGuest.

Description Number of clock cycles Time (µs)
Without Health-monitor 4396 7.36 µs
With Health-monitor 4740 7.9 µs

5.3 Hashes and CRCs Evaluation tests

The analysed algorithms were already designed considering its dispersion and
collisions. However, the results may alter depending on the data input. In order
to determine the best algorithm for the data errors detection, it was designed a
test with the following principals:

1. All the algorithms have an input of 200 kB of data which is 1.25% of the
board secure memory by design. This value is twice the size of the LTZVi-
sor’s secure side.

2. For each algorithm iteration, the output is saved to check its collisions (al-
gorithm output repetition).

3. The 200 kB of data is addressed as a big compacted data and not fragmented.
From the algorithm point of view, it needs to iterate from the first byte until
the end, using the result from the last iterations as a feedback for the new
ones.

4. Since the input is real hypervisor’s data, the algorithm with the less collisions
and in case of close values, the best dispersion is considered the best suit.

As it is possible to observe in Table 5.4, the number of collisions are close
between algorithms that share similar characteristics. Also, due to the fact of
all algorithms are based on simple combinational functions, the number of cycles
spent in each function iteration is the same.

68 Chapter 5. Evaluation and results

Table 5.4: Algorithms evaluation result.

Algorithm
Number of
collisions

Number of
cycles

Keys
produced

FNV-1 48 one setup + one per Byte 200 000
FNV-1A 61 one setup + one per Byte 200 000
SDBM 75 one setup + one per Byte 200 000
DJB2 78 one setup + one per Byte 200 000
CRC32 102 one setup + one per Byte 200 000
Murmur 6 one setup + one per four Byte 50 000

To understand the distribution, the key value space (all possible values that
a key can have) is divided in 256 zones. It is considered that an algorithm has a
good distribution if the 200 000 produced keys (50 000 to Murmur algorithm) are
spread into the 256 zones equally. So, for each algorithm was counted the number
of keys in each zone and this number was divided by the expected number of keys.
Note that in this case, a perfect distribution algorithm exhibits the value 1 in all
zones.

The 5.1 shows the results in a Box Plot graph. All the algorithms demonstrate
values near 1 in the zones. The worst result are the Murmur’s values. It presents
a maximum value of 1,1878 which means that there is a zone in this algorithm
where the number of keys are more 19% of the expected value. In contrast, it
presents a minimum of 0.8089, representing 19% less keys of what it is supposed.

Figure 5.1: Algorithms Box-and-Whisker Plot.

Chapter 5. Evaluation and results 69

The distributions for the other algorithms are similar. Despite the maximum
and minimum values differ a little, the upper and lower quartiles are very much
alike the same.

Since the number of collisions is more related to the number of keys produced
than the number of input bytes, the collision test is not conclusive in terms of
comparing the Murmur algorithm to the others. However, through the analysis
of the results it is possible to conclude that FNV-1 and Murmur are algorithms
with good performances. The CRC performance is expected due to the input data
characteristics and the design of the algorithm itself. As normal in memories,
the input data includes large blocks of empty data and due to its design, the
output key tend to be biassed when the input trend is the same. Regarding the
remaining hashes they present worst results in collision number and similar values
in dispersion. In fact, they are close to FNV-1 which proves that they can be
alternative solutions or in case of applying redundancy to the system, they serve
as secondary algorithms.

5.4 Hardware Costs

To extract the hardware costs, the Vivado post-implementation utilisation re-
port was analysed. The resources are divided in eight categories: Slice LUTs, Slice
Registers, Slice, LUTs as Logic, LUTs as Memory, Block RAM Tile and DSPs.
The Slice LUTs value describes the number of LUTs required by the implementa-
tion. To better understand the LUTs usage, the utilisation report divides LUTs
used as Distributed Memory and LUT used as Logic. Like the Slice LUTs, the
Slice Registers represent the same thing but at Flip-Flops level. Since each slice
has four LUTs and eight FFs (Flip-Flops), the Slice value represents the number
of slices used in the implementation overall. Depending of the mechanism timing
needs, the number of slices can vary since it is not required the completion of each
slice used. Also, the BRAM and DSP resources of the FPGA are shown.

As it is possible to identify in table 5.5, 91% of the board slices are used to
deploy the hardware mechanism. There are two main reasons behind this high
value: the combinational nature of the hash function and the memories imple-
mentation. The first case can be bypassed with pipeline registers. Although they
create an initial delay and increase the Slice registers part, these registers allow
bigger signal travelling, providing a better slice reallocation. On the other hand,
the memories usage is inevitable. Despite the Block RAM being almost fully used,

70 Chapter 5. Evaluation and results

the resultant memory size does not fulfil the implementation requirements. As a
result, the remaining memory was implemented as LUTs, increasing this value.

Table 5.5: Resource utilization.

Resource Available Used Used (%)
Slice LUTs 17600 13377 76%

Slice Registers 35200 9367 27%
Slice 4400 4008 91%

LUT as Logic 17600 9249 53%
LUT as Memory 6000 4128 69%
Block RAM Tile 60 54.5 91%

DSPs 80 12 15%

5.5 Case study

In this section a case study was made in order to understand the improvement
that this project provides to the LTZVisor. First, it is analysed the exception
handling improvement, allowing a side by side comparison between this project’s
implementation and the raw LTZVisor version. Then, in order to evaluate the
Health-monitor implementation, it is simulated a secure side intrusion on the
native LTZVisor and on the monitored LTZVisor.

5.5.1 Exception Handling

The following subsections describe how differently the enhanced LTZVisor re-
acts to exceptions. Since the data and prefetch aborts handlers are similar and
processed the same way after parsing the information, only one of them is present
in each processor mode, minimising the number of tests performed. It was in-
troduced faulty code on the three agents (monitor and both guests) in order to
produce every exception. On the secure guest and monitor aborts, the code was
changed so that a value was written to/read from a non-aligned address. The
same implementation was used for secure external aborts, but instead of using
non-aligned addresses, the code writes the value into an unmapped region. In
contrast, the code to trigger the non-secure external abort had a different design.
Rather than writing into unmapped memory, the non-secure guest tries to read
a memory value that was defined as secure. As result, the TrustZone triggers an
external data abort.

Chapter 5. Evaluation and results 71

5.5.1.1 Raw LTZVisor exceptions

The native LTZVisor already provides the minimum support for exceptions in
every processors mode. However, the exception handlers are generic infinite loops
with the purpose of stopping the system execution. For the user point of view,
the guests are stopped when an exception occurs due to the absence of their log
messages. Nonetheless, without any information, understanding the fault origin
is a difficult task.

5.5.1.2 Enhanced Hypervisor Data Abort

With the exception handling enhancement, the information interpreted by the
handlers is sufficient to understand why the system is failing.

As describe in Figure 5.2, the exception was triggered due to a deficient read
access by the hypervisor (the address read is unaligned), resulting in a secure data
abort. After printing the information about the type and the processor mode
responsible for the abort, the system execution is stopped.

Figure 5.2: LTZVisor Hypervisor Data Abort output.

5.5.1.3 Enhanced Secure Guest Data Abort

Figure 5.3 shows the LTZVisor output when a Secure Guest Data abort occurs.
The normal execution is present until the iteration number 10 of the secure guest.
Instead of printing the "Hello" message, the secure guest tries to write into the

72 Chapter 5. Evaluation and results

address 0x83c10001. Being an unaligned address, the Secure supervisor Data abort
is triggered, exposing information about the type, the address and the faulting
processor. Since the secure guest exceptions have not been defined, the hypervisor
stops the execution of both worlds.

Figure 5.3: LTZVisor Secure Guest Data Abort output.

5.5.1.4 Enhanced Secure Guest and Hypervisor External Abort

The secure guest and the hypervisor share the same external abort handler.
The reason behind it is the dependency that the hypervisor and secure guest had.
An external abort represents a serious malfunction of the entity behind the abort
which means that independently of each processor mode the entire security side is
compromised. Nonetheless, knowing about the abort is important. As Figure 5.4
describes, both guests are executing normally until the secure guest tries to write
in the unmapped memory address 0x93c10000. The external abort is triggered,
the information exposed and the entire system is suspended.

Chapter 5. Evaluation and results 73

Figure 5.4: LTZVisor Secure Guest External Data Abort output.

5.5.1.5 Enhanced Non-Secure External Data Abort

As it can be seen in Figure 5.5, the non-secure guest runs normally until its
10th iteration. As soon as it tries to read the secure memory, the non-secure
external Data abort is triggered. Similar to the other exceptions, the information
is exposed. However, the type of the abort is Unknown, making impossible to
understand which address the non-secure guest was trying to read. Besides the
lack of the type information, the faulted processor mode is fully exposed. Since
the faulting world was the non-secure, the hypervisor stops its execution without
compromising the secure guest (the secure guest continues to function after the
exception occurs).

74 Chapter 5. Evaluation and results

Figure 5.5: LTZVisor Non-Secure Guest External Data Abort output.
The Fault Status value of TrustZone aborts is zero, the same as Unknown

aborts.

5.5.1.6 Conclusion

Although the exception handling increases the size of the LTZVisor signifi-
cantly, the improvement is obvious compared to the raw LTZVisor version. The
information provided about the exception and the faulting state is much higher
which creates a better foundation for the developer that will use the LTZVisor.
Additionally, the separation between hypervisor and secure guest faults in the se-
cure supervisor exception not only grants isolation between secure exceptions but
also it provides the handlers coexistence. To finalize, the "Stop the non-secure
guest execution" feature allows secure side survivability since it removes the full
execution stop after a non-secure side error.

5.5.2 Health-monitor

Like in the exceptions section, a comparison between LTZVisor with and with-
out Health-monitor is analysed in the following subsections. To perform tests,

Chapter 5. Evaluation and results 75

the guests’ code was simple printing "Hello" plus the respective iteration number.
This last value allows two features: enables a visible secure value as the target of
the Intruder Module and visible recovery indicator.

5.5.2.1 LTZVisor without Health-monitor

Without the Health-monitor, the LTZVisor is completely unaware of the secure
side break. As Figure 5.6 exposes, the two guests work normally until the secure
guest iteration number 34. This iteration was the last sane state of the secure side
since its value was changed by the Introduder Module, simulating a non-secure
side attack. For the hypervisor point of view, nothing unusual happened and both
guests continue their execution normally. The shown test was controlled in order
to alter the secure code without creating a exception fault.

Figure 5.6: LTZVisor without Health-monitor output.

5.5.2.2 LTZVisor with Health-monitor

The same procedure was made on the LTZVisor with the Health-monitor but
the Introduder Module changes the secure guest value in the 137th iteration.
Instead of continuing the system execution, the Health-monitor detects that the
secure image was corrupted (by comparing the hash keys) and actives the restore
mechanism. Since the last healthy state was the iteration number 137, the secure
guest re-does the same print and continues its normal execution. The red rectangle
in Figure 5.7 highlights the throwback produced by the Health-monitor.

76 Chapter 5. Evaluation and results

Figure 5.7: LTZVisor with Health-monitor output.

In this test, the secure guest code was slightly modified, as it is possible to
observe in Figure 5.8. Attached to the normal "Hello" function, a subroutine reads
the Health-monitor recovery values using the APIs and prints its values. In order
to not spam the output with large data, the subroutine only runs every 25 secure
iterations.

Figure 5.8: Health-monitor information output.

5.5.2.3 Conclusion

As it is possible to verify in the figures above, the improvement is notorious.
The Health-monitor does not only detects the memory intrusion but also restores
the secure image to a healthy state. Without this tool, the secure guest is fully
exposed after the TrustZone security fails, resulting two possible scenarios: A
successful secure intrusion and a failed intrusion. The first scenario is described
in the test above where the secure guest was unaware of the intrusion and the
execution runs normally. This is the worst scenario since the "secure" guest is
running but controlled by the non-secure guest. If the intrusion alters the code
in such a way that triggers an abort, the error is detected and the execution is
stopped. It is considered a better scenario due to the fact that the secure guest is
not running a faulty code.

Chapter 5. Evaluation and results 77

Figure 5.8 expresses the Health-monitor values. As it is possible to see, the
system takes 21384 PL clocks (213µs) to hash the secure side (86KB). Since the
minimum number of keys for the correct functioning of the Health-monitor are
two, the non-secure execution time has to be higher than 426µs (2 x 213µs). In
this case, the scheduling time is not a problem due to the fact that the non-secure
guest runs almost 5 milliseconds each time. However for bigger secure images
and/or shorter scheduling times, this value can be unworkable. The minimum
non-secure execution time that this Health-monitor supports is calculated by the
following equation:

MinNSexec(µs) = SecureImage(Bytes) + 2
2 × PLfrequency(MHz)

6. Conclusion

The presented thesis sought to deepen the problem of TrustZone hypervisors
failures in embedded systems. In this study, the failures were divided in two
main groups: the processor’s detected faults and undetected faults. The former
group are within the processor exceptions, which are triggered whenever a system
malfunction is detected. The two exceptions contemplated by this project are Data
aborts and Prefetch aborts. The former exceptions are data-related flaws such as
read/write operations in unmapped or unaligned memory. On the other hand, the
prefetch aborts handle the instruction flow failures, for instance a processor jump
into an unaligned code segment. Since this thesis uses the ARMv7 architecture
with security extensions, these exceptions are present on each world (secure world
and non-secure world), as well as on monitor mode.

In this thesis, informative handlers were implemented for the secure side, to
exposing the faulted world, the faulted processor mode, the type of the fault
and even the address that causes the fault. In addition, the non-secure world is
controlled by the handler, stopping its execution whenever the non-secure world
is itself the source of the problem.

For processors’ undetected faults, this thesis implements an Health-monitor
that controls the sanity state of the secure side. This hardware mechanism is
divided in two parts: the detection and the recovery mechanisms. In order to
detect faults, the detection module generates hash keys based on the secure mem-
ory values. By producing and comparing the keys during the non-secure guest
execution, this module guarantees that the secure memory cannot be altered by
others rather than itself. Depending on the detection module verdict, the recovery
module acts differently. After a secure memory validation, this module stores the
secure memory into a dedicated memory, providing a future restoring point to the
system (checkpoint). In contrast, if an hash key disagreement is detected, the
module triggers the recovery using the last valid checkpoint saved. To prevent
faulting loops, this module also provides other dedicated memory (ROM) with
the unmodified secure image. In last case scenario, the secure memory is restored

79

80 Chapter 6. Conclusion

with this image.
Although the main goal of this thesis is to protect the secure memory as a

whole, it is possible to achieve more granularity with small system modifications.
By running the detection mechanism during every guests execution (Secure guest
and non-secure guest) and by having different keys for each section of the memory,
the mechanism can detect not only non-secure intrusion into the secure memory,
but also secure guest intrusions into the hypervisor memory. In other words, if the
non-secure world is running, the keys generated by the hardware mechanism are
based on the whole secure world, since the goal is to detect possible secure memory
changes. However, if the secure guest is the one that is running, the detection
mechanism generates keys exclusively from the hypervisor memory, preventing
hypervisor manipulation from the secure guest or non-secure guest.

In conclusion, this thesis reinforces the TrustZone hardware virtualization with
an extra harware mechanism that detects and recovers from failures, creating an
extra security dimension: manipulation window. This concept allows defining
time windows so the memory can be manipulated. In this case, the windows are
the software component scheduling time and by defining them, the system creates
the demanded isolation between hypervisor and secure guest that the TrustZone
cannot provide.

6.1 Future work

This thesis stands as an open project where work can be developed in the fu-
ture, providing a groundwork for future research on health-monitoring in TrustZone-
assisted hypervisors. The following points are possible system improvements in
terms of power consumption, algorithm efficiency and extra functionalities:

• Sleep the processor - Rather than stopping the non-secure guest execution
by forcing it to run an endless loop, the handlers can use the processors
registers to make the processor sleep during the supposed guest execution
time. This provides a better solution in terms of power saving without
altering the LTZVisor structure. The processor recovers from its sleeping
mode when the FIQ that triggers the secure execution time is taken, allowing
the normal execution of the secure guest and LTZVisor.

• Split the secure memory into hypervisor and secure guest sections -
As already mentioned, splitting the secure memory section in two (hypervisor
and secure guest) allows a distinct approach in terms secure world security.

Chapter 6. Conclusion 81

The implemented Health-monitor protects the secure side memory as a block
from non-secure side masked attacks, but with this improvement each secure
constituent owns its own section and consequently its own key, allowing
separated detection windows. This results in an extra isolation layer between
hypervisor and segure guest codes.

• Increasing the throughput - Although the detection mechanism was de-
signed considering the input data size of the hash functions, limiting the
throughput to 32 bits per clock is low especially when the DMA technology
allows to transfer of 1024 bits per clock cycle. In order to increase and guar-
antee the 1024 bits of throughput, more parallel hashing is needed. Clearly,
this will increase considerable the resources used.

• Hardware timeout - Since the Health-monitor’s control unit actions are
heavily dependent of the LTZVisor scheduler, creating a mechanism that
detects the scheduling defects is a must. There are two phases that are
critical to the Health-monitor: the ending and restarting of the secure guest
execution. The first one triggers the key generation but due to the fact
that this is happening during a secure to non-secure world switching, this
critical point is considered safe. On the other hand, the non-secure to secure
world switch can be problematic. If the non-secure world alters the secure
world code in such a way that it prevents the secure guest execution, the
hypervisor’s trigger to recover/save the checkpoint may never occur. The
proposed solution for this problem consists in implementing an hardware
watchdog to control the non-secure guest execution time, forcing the recovery
mechanism when it detects malfunction.

• Include the processor state in the checkpoints - By adding the proces-
sor’s registers value in the Health-monitor secure checkpoints, the mechanism
becomes more secure and flexible. More secure because it expands the sanity
checker to processor registers. It allows a more flexible recovery since the
recover procedure is not limited to errors detected in the Health-monitor.
Through the Health-monitor APIs, processor aborts would also have access
to secure world restoration.

References

[ABK09] A. Acharya, J. Buford, and V. Krishnaswamy. Phone virtualization
using a microkernel hypervisor. In 2009 IEEE International Confer-
ence on Internet Multimedia Services Architecture and Applications
(IMSAA), pages 1–6. IEEE, December 2009. doi:10.1109/IMSAA.
2009.5439460.

[AH10] A. Aguiar and F. Hessel. Embedded systems’ virtualization: The
next challenge? In Proceedings of 2010 21st IEEE International
Symposium on Rapid System Protyping, pages 1–7, June 2010. doi:
10.1109/RSP.2010.5656430.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. In IEEE
Transactions on Dependable and Secure Computing, volume 1, pages
11–33, Los Alamitos, CA, USA, January 2004. IEEE Computer Soci-
ety Press. doi:10.1109/TDSC.2004.2.

[App08] A. Appleby. MurmurHash, final version, 2008. URL: https://
tanjent.livejournal.com/756623.html.

[ASTM08] F. Afonso, C. Silva, A. Tavares, and S. Montenegro. Application-
level fault tolerance in real-time embedded systems. In 2008 Inter-
national Symposium on Industrial Embedded Systems, pages 126–133,
June 2008. doi:10.1109/SIES.2008.4577690.

[BDF+03] P. Barham, B. Dragovic, K. Fraser, S. Hand, Harris T, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. In SIGOPS Oper. Syst. Rev., volume 37, pages 164–177,
New York, NY, USA, October 2003. ACM. doi:10.1145/1165389.
945462.

[Cri82] F. Cristian. Exception Handling and Software Fault Tolerance. In
IEEE Transactions on Computers, volume C-31, pages 531–540, June
1982. doi:10.1109/TC.1982.1676035.

83

http://dx.doi.org/10.1109/IMSAA.2009.5439460
http://dx.doi.org/10.1109/IMSAA.2009.5439460
http://dx.doi.org/10.1109/RSP.2010.5656430
http://dx.doi.org/10.1109/RSP.2010.5656430
http://dx.doi.org/10.1109/TDSC.2004.2
https://tanjent.livejournal.com/756623.html
https://tanjent.livejournal.com/756623.html
http://dx.doi.org/10.1109/SIES.2008.4577690
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1109/TC.1982.1676035

84 REFERENCES

[DIL] Digilent - Electrical Engineering Store, FPGA, Microcontrollers and
Instrumentation. URL: https://store.digilentinc.com/.

[FNV+11] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, and T. Hansen. The
FNV non-cryptographic hash algorithm. In Ietf-draft, 2011.

[Hei08] G. Heiser. The Role of Virtualization in Embedded Systems. In
Proceedings of the 1st Workshop on Isolation and Integration in Em-
bedded Systems, IIES ’08, pages 11–16, New York, NY, USA, 2008.
ACM. doi:10.1145/1435458.1435461.

[HHY+12] H. Joe, H. Jeong, Y. Yoon, H. Kim, S. Han, and H.-W. Jin.
Full virtualizing micro hypervisor for spacecraft flight computer.
In 2012 IEEE/AIAA 31st Digital Avionics Systems Conference
(DASC), pages 6C5–1–6C5–9, October 2012. doi:10.1109/DASC.
2012.6382393.

[JVM] Java Virtual Machine. URL: https://www.java.com/en/.

[Kai09] R. Kaiser. Complex embedded systems - A case for virtualization. In
2009 Seventh Workshop on Intelligent solutions in Embedded Systems,
pages 135–140, June 2009.

[Kis14] Jan Kiszka. Real Safe Times in the Jailhouse Hypervisor,
2014. URL: http://events.linuxfoundation.org/sites/events/
files/slides/ELCE-2014-Jailhouse.pdf.

[Knu97] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

[Lan] Landon Curt Noll. FNV Hash. URL: http://www.isthe.com/
chongo/tech/comp/fnv/index.html.

[LCP+17] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho. VOSYS-
monitor, a Low Latency Monitor Layer for Mixed-Criticality Systems
on ARMv8-A. In ECRTS, 2017. doi:10.4230/LIPIcs.ECRTS.2017.
6.

[Lim03] ARM Limited. AMBA AXI TM and ACE TM Protocol Specification
AXI3 TM , AXI4 TM , and AXI4-Lite TM ACE and ACE-Lite TM.
Technical report, 2003. URL: https://silver.arm.com/download/
download.tm?pv=1198016.

[Lim09] ARM Limited. ARM Security Technology. Building a Secure Sys-
tem using TrustZone Technology ARM. ARM white paper, page

https://store.digilentinc.com/
http://dx.doi.org/10.1145/1435458.1435461
http://dx.doi.org/10.1109/DASC.2012.6382393
http://dx.doi.org/10.1109/DASC.2012.6382393
https://www.java.com/en/
http://events.linuxfoundation.org/sites/events/files/slides/ELCE-2014-Jailhouse.pdf
http://events.linuxfoundation.org/sites/events/files/slides/ELCE-2014-Jailhouse.pdf
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.6
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.6
https://silver.arm.com/download/download.tm?pv=1198016
https://silver.arm.com/download/download.tm?pv=1198016

REFERENCES 85

108, 2009. URL: http://infocenter.arm.com/help/topic/com.
arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_
security_whitepaper.pdf.

[Lim12] ARM Limited. ARMv7-A and ARMv7-R manual. Technical report,
2012.

[Lin12] Proceedings of the Linux Symposium, 2012. URL: http://landley.
net/kdocs/mirror/ols2012.pdf#page=93.

[LMTP18] J. Lopes, J. Martins, A. Tavares, and S. Pinto. DIHyper: Provid-
ing Lifetime Hypervisor Data Integrity. In 2018 IEEE 27th Inter-
national Symposium on Industrial Electronics (ISIE), pages 645–650,
June 2018. doi:10.1109/ISIE.2018.8433832.

[LTZ] LTZVisor. URL: https://github.com/tzvisor.

[OGP18] D. Oliveira, T. Gomes, and S. Pinto. Towards a Green and Secure Ar-
chitecture for Reconfigurable IoT End-Devices. In 2018 ACM/IEEE
9th International Conference on Cyber-Physical Systems (ICCPS),
pages 335–336, April 2018. doi:10.1109/ICCPS.2018.00041.

[OMC+18] A. Oliveira, J. Martins, J. Cabral, A. Tavares, and S. Pinto. TZ-
VirtIO: Enabling Standardized Inter-Partition Communication in a
Trustzone-Assisted Hypervisor. In 2018 IEEE 27th International
Symposium on Industrial Electronics (ISIE), pages 708–713. IEEE,
2018. doi:10.1109/ISIE.2018.8433781.

[ora] Oracle VM VirtualBox. URL: https://www.virtualbox.org/.

[PB61] W. W. Peterson and D. T. Brown. Cyclic codes for error detection.
In Proceedings of the IRE, volume 49, pages 228–235, January 1961.
doi:10.1109/JRPROC.1961.287814.

[PG74] G. J. Popek and R. P. Goldberg. Formal requirements for virtualiz-
able third generation architectures. In Communications of the ACM,
volume 17, pages 412–421, 1974. doi:10.1145/361011.361073.

[PGP+17] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares. IIo-
TEED: An Enhanced, Trusted Execution Environment for Industrial
IoT Edge Devices. In IEEE Internet Computing, volume 21, pages
40–47, January 2017. doi:10.1109/MIC.2017.17.

[POP+17] S. Pinto, A. Oliveira, J. Pereira, J. Cabral, J. Monteiro, and
A. Tavares. Lightweight multicore virtualization architecture exploit-
ing ARM TrustZone. In IECON 2017 - 43rd Annual Conference of the

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://landley.net/kdocs/mirror/ols2012.pdf#page=93
http://landley.net/kdocs/mirror/ols2012.pdf#page=93
http://dx.doi.org/10.1109/ISIE.2018.8433832
https://github.com/tzvisor
http://dx.doi.org/10.1109/ICCPS.2018.00041
http://dx.doi.org/10.1109/ISIE.2018.8433781
https://www.virtualbox.org/
http://dx.doi.org/10.1109/JRPROC.1961.287814
http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1109/MIC.2017.17

86 REFERENCES

IEEE Industrial Electronics Society, pages 3562–3567, October 2017.
doi:10.1109/IECON.2017.8216603.

[PPG+17a] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares.
Towards a TrustZone-Assisted Hypervisor for Real-Time Embedded
Systems. In IEEE Computer Architecture Letters, volume 16, pages
158–161, July 2017. doi:10.1109/LCA.2016.2617308.

[PPG+17b] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral. LTZVi-
sor: TrustZone is the Key. In 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017), volume 76 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 4:1–4:22. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/
LIPIcs.ECRTS.2017.4.

[PS18] S. Pinto and N. Santos. Demystifying Arm TrustZone: A Compre-
hensive Survey. In ACM Computing Surveys, volume preprint, 2018.

[PTM16] S. Pinto, A. Tavares, and S. Montenegro. Space and Time Partitioning
with Hardware Support for Space Applications. In DASIA 2016 -
Data Systems In Aerospace, volume 736 of ESA Special Publication,
page 19, August 2016.

[Ran75] B. Randell. System Structure for Software Fault Tolerance. In Pro-
ceedings of the International Conference on Reliable Software, pages
437–449, New York, NY, USA, 1975. ACM. doi:10.1145/800027.
808467.

[RKLM17] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look Mum,
no VM Exits! (Almost). In CoRR, volume abs/1705.06932, 2017.
arXiv:1705.06932.

[RLT78] B. Randell, P.A. Lee, and P. Treleaven. Reliability issues in computing
system design. In ACM Computing Surveys (CSUR), volume 10, pages
123–165, June 1978.

[RP12] R. Ragel and S. Parameswaran. Reli: Hardware/software Checkpoint
and Recovery scheme for embedded processors. 2012 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pages
875–880, 2012. doi:10.1109/DATE.2012.6176621.

[saf] SafeG Hypervisor. URL: https://www.toppers.jp/en/safeg.html.

[SDB] Apache Portable Runtime Utility Library: SDBM library.
URL: https://apr.apache.org/docs/apr-util/0.9/group__APR_

http://dx.doi.org/10.1109/IECON.2017.8216603
http://dx.doi.org/10.1109/LCA.2016.2617308
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.4
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.4
http://dx.doi.org/10.1145/800027.808467
http://dx.doi.org/10.1145/800027.808467
http://arxiv.org/abs/1705.06932
http://dx.doi.org/10.1109/DATE.2012.6176621
https://www.toppers.jp/en/safeg.html
https://apr.apache.org/docs/apr-util/0.9/group__APR__Util__DBM__SDBM.html
https://apr.apache.org/docs/apr-util/0.9/group__APR__Util__DBM__SDBM.html
https://apr.apache.org/docs/apr-util/0.9/group__APR__Util__DBM__SDBM.html

REFERENCES 87

_Util__DBM__SDBM.html.

[SHT13] D. Sangorrín, S. Honda, and H. Takada. Dual Operating Sys-
tem Architecture for Real-Time Embedded Systems. In Journal of
Chemical Information and Modeling, volume 53, pages 6–15, 2013.
arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781107415324.004.

[Sie91] D. P. Siewiorek. Architecture of fault-tolerant computers: an his-
torical perspective. In Proceedings of the IEEE, volume 79, pages
1710–1734, December 1991. doi:10.1109/5.119549.

[Sin15] V. Sinitsyn. Jailhouse. In Linux J., volume 2015, Houston, TX, April
2015. Belltown Media.

[SK10] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based Secure
Virtualization Architecture. In EuroSys’10, page 209, 2010. doi:
10.1145/1755913.1755935.

[SML10] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A Survey on
Concepts, Taxonomy and Associated Security Issues. In 2010 Sec-
ond International Conference on Computer and Network Technology,
pages 222–226, April 2010. doi:10.1109/ICCNT.2010.49.

[SN05] James E. Smith and Ravi Nair. Chapter one - introduction to vir-
tual machines. In James E. Smith and Ravi Nair, editors, Virtual
Machines, The Morgan Kaufmann Series in Computer Architecture
and Design, pages 1 – 26. Morgan Kaufmann, Burlington, 2005.
doi:https://doi.org/10.1016/B978-155860910-5/50002-1.

[Tec13] Siemens Corporate Technology. Jailhouse: Static System Partitioning
and KVM, 2013. URL: https://www.linux-kvm.org/images/b/b1/
Kvm-forum-2013-Static-Partitioning.pdf.

[Tru] ARM TrustZone. URL: https://www.arm.com/products/
security-on-arm/trustzone.

[TSS17] A. Tang, S. Sethumadhavan, and S. Stolfo. CLKSCREW: exposing
the perils of security-oblivious energy management. In 26th USENIX
Security Symposium, pages 1057–1074, 2017.

[Viv] Vivado Design Suite. URL: https://www.xilinx.com/products/
design-tools/vivado.html.

[VOS] VOSYSMonitor Hypervisor. URL: http://www.
virtualopensystems.com/en/products/vosysmonitor/.

[WFM+07] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves. Implementing

https://apr.apache.org/docs/apr-util/0.9/group__APR__Util__DBM__SDBM.html
https://apr.apache.org/docs/apr-util/0.9/group__APR__Util__DBM__SDBM.html
https://apr.apache.org/docs/apr-util/0.9/group__APR__Util__DBM__SDBM.html
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1109/5.119549
http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1145/1755913.1755935
http://dx.doi.org/10.1109/ICCNT.2010.49
http://dx.doi.org/https://doi.org/10.1016/B978-155860910-5/50002-1
https://www.linux-kvm.org/images/b/b1/Kvm-forum-2013-Static-Partitioning.pdf
https://www.linux-kvm.org/images/b/b1/Kvm-forum-2013-Static-Partitioning.pdf
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.virtualopensystems.com/en/products/vosysmonitor/
http://www.virtualopensystems.com/en/products/vosysmonitor/

88 REFERENCES

Embedded Security on Dual-Virtual-CPU Systems. IEEE Design &
Test of Computers, 24(6):582–591, November 2007. doi:10.1109/
MDT.2007.196.

[WJ10] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to Pro-
vide Lifetime Hypervisor Control-Flow Integrity. In 2010 IEEE Sym-
posium on Security and Privacy, pages 380–395, May 2010. doi:
10.1109/SP.2010.30.

[XI11] Xilinx and Inc. AXI Reference Guide UG761 (v13.1). Tech-
nical report, 2011. URL: https://www.xilinx.com/support/
documentation/ip_documentation/ug761_axi_reference_guide.
pdf.

[XI14] Xilinx and Inc. TrustZone Architecture on the Xilinx Zynq-7000 All
Programmable SoC. Technical report, 2014.

[XI15] Xilinx and Inc. Zynq-7000 All Programmable SoC Soft-
ware Developers Guide. Technical report, 2015. URL:
https://www.xilinx.com/support/documentation/user_guides/
ug821-zynq-7000-swdev.pdf.

[XI18a] Xilinx and Inc. AXI DMA v7.1 LogiCORE IP Product
Guide (PG021). Technical report, 2018. URL: https:
//www.xilinx.com/support/documentation/ip_documentation/
axi_dma/v7_1/pg021_axi_dma.pdf.

[XI18b] Xilinx and Inc. Zynq-7000 SoC Technical Reference Manual (UG585).
Technical report, 2018. URL: https://www.xilinx.com/support/
documentation/user_guides/ug585-Zynq-7000-TRM.pdf.

[XIL] Xilinx. URL: https://www.xilinx.com/.

[XR96] J. Xu and B. Randell. Roll-forward error recovery in embedded real-
time systems. In Proceedings of 1996 International Conference on
Parallel and Distributed Systems, pages 414–421, June 1996. doi:
10.1109/ICPADS.1996.517589.

[XRR+95] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud, and
Z. Wu. Fault tolerance in concurrent object-oriented software through
coordinated error recovery. In Twenty-Fifth International Symposium
on Fault-Tolerant Computing. Digest of Papers, pages 499–508, June
1995. doi:10.1109/FTCS.1995.466948.

[YLH+08] S. Yoo, Y. Liu, C.-H. Hong, C. Yoo, and Y. Zhang. MobiVMM:

http://dx.doi.org/10.1109/MDT.2007.196
http://dx.doi.org/10.1109/MDT.2007.196
http://dx.doi.org/10.1109/SP.2010.30
http://dx.doi.org/10.1109/SP.2010.30
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/
http://dx.doi.org/10.1109/ICPADS.1996.517589
http://dx.doi.org/10.1109/ICPADS.1996.517589
http://dx.doi.org/10.1109/FTCS.1995.466948

REFERENCES 89

a virtual machine monitor for mobile phones. In Proceedings of the
1st Workshop on Virtualization in Mobile Computing, MobiVirt ’08,
pages 1–5, December 2008. doi:10.1145/1622103.1622109.

[ZMH15] S. Zampiva, C. Moratelli, and F. Hessel. A hypervisor approach with
real-time support to the MIPS M5150 processor. In Sixteenth In-
ternational Symposium on Quality Electronic Design, pages 495–501.
IEEE, Mars 2015. doi:10.1109/ISQED.2015.7085475.

http://dx.doi.org/10.1145/1622103.1622109
http://dx.doi.org/10.1109/ISQED.2015.7085475

	List of Figures
	List of Tables
	List of Listings
	Glossary
	Introduction
	Motivation
	Goals
	Document Structure

	Background, Context and State of the Art
	Virtualization
	ARM Architecture
	ARM TrustZone
	Exceptions in ARMv7 with TrustZone

	Hypervisors Implementations
	LTZVisor
	Jailhouse
	SafeG
	VOSYSmonitor
	Discussion

	Exception Handling
	Exception Handling Implementations

	Fault tolerance concepts and Health-monitor
	Basic techniques in error handling
	Hypervisor's Health-monitors and Recovery mechanisms

	Non-Encrypted Hash functions and Checksums
	FNV-1 and FNV-1a
	SDBM
	DJB2
	Murmur
	CRC32 Checksum
	Discussion

	Platforms and Tools
	ZYBO Zynq-7000 SoC
	Zynq-7000 family
	AMBA Advanced eXtensible Interface
	AXI Direct Memory Access
	TrustZone Architecture on the Xilinx Zynq-7000

	LTZVisor
	Virtual CPU
	Scheduler
	Memory Partition
	MMU and Cache Management
	Device Partition
	Interrupt Management
	Time Management
	Exception Model

	Implementation
	Exception Handling
	Secure Supervisor Data abort and Prefetch abort exceptions
	Monitor Data abort and Prefetch abort exceptions

	Health-Monitor
	Detection Module
	Memory module
	Checkpoint Module
	Health-monitor Mechanism Controller

	LTZVisor Integration and Health-monitor interface
	Intruder Module

	Evaluation and results
	Memory footprint
	Context switching performance
	Hashes and CRCs Evaluation tests
	Hardware Costs
	Case study
	Exception Handling
	Health-monitor

	Conclusion
	Future work

	References

