

 Pedro Miguel Silvestre Machado

Self-Secured Devices:

Securing shared device access

on TrustZone-based systems

Outubro de 2018

 Pedro Miguel Silvestre Machado

Self-Secured Devices:

Securing shared device access

on TrustZone-based systems

 Dissertação de Mestrado em Engenharia Eletrónica Industrial

 e Computadores

 Trabalho efectuado sob a orientação do

 Professor Doutor Sandro Pinto

Outubro de 2018

Declaração do Autor
Nome: Pedro Miguel Silvestre Machado
Correio Eletrónico: a68526@alunos.uminho.pt
Cartão de Cidadão: 14390510 4ZY0

Titulo da dissertação: Self-Secured Devices: Securing shared device access
on TrustZone-based systems
Ano de conclusão: 2018
Orientador: Professor Doutor Sandro Pinto

Designação do Mestrado: Ciclo de Estudos Integrados Conducentes ao Grau
de Mestre em Engenharia Eletrónica Industrial e Computadores
Área de Especialização: Sistemas Embebidos e Computadores
Escola de Engenharia
Departamento de Eletrónica Industrial

De acordo com a legislação em vigor, não é permitida a reprodução de qualquer
parte desta dissertação.

Universidade do Minho, 29/10/2018

Assinatura: Pedro Miguel Silvestre Machado

v

Acknowledgements

It has been a challenging journey, but there is no easy path to success. And in
the end, I’m really grateful for this journey becoming into a personally rewarding
one. Nothing would be possible without the people that surrounded me throughout
it, and I will hereby try to express my gratitude towards them.

Firstly, I would like to thank my advisor Dr. Sandro Pinto, who challenged me
with his pioneer ideas, always made himself available when I most needed, provided
me opportunities to improve myself, for all the inexhaustible support that gave
me, and for treating me not only as a student but also as a friend. Thanks to
Dr. Adriano Tavares for also giving me advice and insight at our meetings and
for sharing his extensive knowledge during my master’s.

I would also like to thank all my lab colleagues, my companions throughout
this journey: Ailton Lopes, Ângelo Ribeiro, David Cerdeira, Franciso Petrucci,
Hugo Araújo, José Martins, José Ribeiro, José Silva, Nuno Silva, Ricardo Roriz,
and Sérgio Pereira. That proved that the ESRG is more than just a group of
extremely competent people, it’s a family. Where we all support each other and
overcome obstacles as one, with each of these individuals’ skill set combined great
things can be accomplished.

Thanks to my long-term friends: Álvaro Silvestre, Diogo Pinto, João Peixoto,
João Santos, João Coutinho, Jorge Carvalho, Jorge Pereira, Miguel Rego, Paulo
Pontes, Ricardo Marques, and Tiago do Val with whom, lately, I was not able to
spend as much time as I would like, but were always there for me.

Special thanks to my family for being my biggest supporters and to my girl-
friend, Carolina Guimarães, who unconditionally supported me all along and gave
me strength to carry on, especially in those moments I was feeling down, sorry for
my absense during this period.

vii

Abstract

With the advent of the Internet of Things (IoT), security emerged as a sig-
nificant requirement in the embedded systems development. Attacks against em-
bedded systems infrastructures have been increasing, because security is being
misconstrued as the addition of features to the system in a later stage of the sys-
tem development. A new change in the way that systems are being developed is
needed, to start guaranteeing security from the outset.

ARM Trustzone is a hardware technology that adds significant value to the
security picture. TrustZone promotes hardware as the initial root of trust and
has been gaining particular attention in the embedded space due to the massive
presence of ARM processors into the market. TrustZone technology splits the
hardware and software resources into two worlds - the secure world, dedicated
to the secure processing, and the non-secure world for everything else. A lot of
research has been done around TrustZone technology, ranging from efficient and
secure virtualization solutions to trusted execution environments (TEE). Both
cases, despite targeting different applications with different requirements, consoli-
date multiple virtual environments into the same platform and necessarily need to
share resources among them. Currently, hardware devices on TrustZone-enabled
system-on-chips (SoC) can only be configured as secure or non-secure, which means
the dual-world concept of TrustZone is not spread to the devices itself. With this
direct assignment method both worlds are unable to use the same device unless
it is entirely duplicated, significantly increasing overall hardware costs. Existing
shared device access on TrustZone-based architectures have been shown to neg-
atively impact the overall system in terms of security and performance, besides
often come with associated engineering effort or substantial hardware costs.

This thesis proposes the concept of self-secured devices, a novel approach for
shared device access in TrustZone-based architectures. Self-secured devices ex-
tend the TrustZone dual-world concept to the inner logic of the device by split-
ting the device’s hardware logic into a secure and non-secure interface. The
implemented solution was deployed on LTZVisor, an open-source and in-house
lightweight TrustZone-assisted hypervisor, and the achieved results are encourag-
ing, demonstrating that we increase the security properties of the system for an
acceptable cost in terms of hardware.

ix

Resumo

Com o advento da Internet das Coisas (IoT), começaram a surgir mais pre-
ocupações relativas à segurança no desenvolvimento de sistemas embebidos. Os
ataques contra infraestruturas deste tipo de sistemas têm vindo a aumentar expo-
nencialmente, dado que a segurança tem vindo a ser reforçada através da adição
de várias funcionalidades ao invés de ser considerada desde a fase inicial de desen-
volvimento do sistema.

ARM TrustZone, é um exemplo de uma tecnologia de hardware que veio con-
tribuir significativamente para o panorama de segurança. A tecnologia TrustZone
promove o hardware como base inicial de segurança, tendo vindo a ganhar partic-
ular relevância em soluções de sistemas embebidos devido à presença massiva dos
processadores ARM no mercado. A tecnologia TrustZone separa todos os recursos
de software e hardware em dois ambientes de execução diferentes, os quais são
denominados de mundo seguro, onde é realizado todo o processamento seguro, e o
mundo não seguro para tudo o resto. Esta tecnologia já foi alvo de bastante investi-
gação e tem sido explorada na implementação de soluções seguras de virtualização
ou até mesmo ambientes seguros de execução (TEE). Apesar de ambos os casos
visarem diferentes aplicações com diferentes requisitos, ambos consistem em con-
solidar vários ambientes virtuais numa só plataforma e inerentemente necessitam
de partilhar recursos entre os mesmos. Contudo, atualmente, os dispositivos em
system-on-chips (SoC) habilitados com TrustZone podem somente ser configura-
dos como seguros ou não seguros, o que significa que o conceito de duplo ambiente
de execução da TrustZone não está estendido aos próprios dispositivos. Com este
método de atribuição direta, ambos os mundos não podem utilizar simultanea-
mente o mesmo dispositivo a não ser que o mesmo seja duplicado, aumentando
significativamente os custos de hardware. Atualmente, os métodos existentes de
acesso a dispositivos partilhados em sistemas com TrustZone demonstram ter um
impacto negativo no sistema em termos de segurança, desempenho e por vezes
requerem um grande esforço de engenharia ou custos de hardware excessivos.

Esta tese propõe desenvolver o conceito de dispositivos self-secured, um novo
método de acesso a dispositivos partilhados em sistemas com TrustZone. Estes
dispositivos estendem o conceito da TrustZone à logica interna dos dispositivos,
dividindo a sua lógica numa interface segura e não segura. A solução implementada
foi integrada no LTZVisor, um hipervisor em código aberto e de baixo overhead
assistido por TrustZone, demonstrando que a segurança do dispositivo partilhado
é assegurada com reduzidos custos de hardware.

xi

Contents

List of Figures xix

List of Tables xxi

List of Listings xxiii

Glossary xxv

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Document Structure . 4

2 Background, Context, and State of the Art 7
2.1 Background . 7

2.1.1 Virtualization . 7
2.1.2 ARM TrustZone . 15
2.1.3 TrustZone-assisted Virtualization 17

2.2 Related Work . 18
2.2.1 Devices Access in TrustZone 19
2.2.2 Proxy Task . 20
2.2.3 Device Emulation . 21
2.2.4 Device Para-Virtualization 23
2.2.5 Device Para-TrustZone . 24
2.2.6 Device re-Partitiong . 25
2.2.7 Self-virtualizing . 27

2.3 Gap Analysis . 29

3 Platform and Tools 31
3.1 Platform Requirements . 31
3.2 AMBA Advanced eXtensible Interface 32

xiii

3.2.1 AXI-Lite . 32
3.3 ZYBO Zynq-7000 SoC . 34

3.3.1 Zynq-7000 family . 35
3.3.2 TrustZone technology Support in Zynq-7000 AP SoC 37

3.4 Development Toolchain . 39
3.4.1 Vivado Design Suite . 39
3.4.2 Xilinx SDK . 39

3.5 LTZVisor . 40
3.5.1 CPU virtualization . 41
3.5.2 Scheduler . 42
3.5.3 Memory isolation . 42
3.5.4 MMU and Cache . 43
3.5.5 Device partitioning . 43
3.5.6 Interrupt managment . 44
3.5.7 Time management . 46
3.5.8 Execution Flow . 46

3.6 Operating System stacks . 47
3.6.1 FreeRTOS . 47
3.6.2 Linux . 48

4 Self-Secured Devices 51
4.1 Overview . 51
4.2 Self-Secured Private Timer . 53

4.2.1 Device driver . 56
4.2.2 Self-Securing the Private Timer: Minimal Approach 57
4.2.3 Self-Securing the Private Timer: Default Approach 60

4.3 Self-Secured UART . 63
4.3.1 Control and Status Module 64
4.3.2 Baud rate generator Module 68
4.3.3 Transmitter and transmitter FIFO modules 68
4.3.4 Receiver and receiver FIFO modules 70
4.3.5 Mode switch module . 72
4.3.6 Modem control module . 73
4.3.7 Device driver . 74
4.3.8 Self-Securing the UART . 75

4.4 LTZVisor Integration . 84
4.4.1 FreeRTOS . 86
4.4.2 Linux . 87

xiv

5 Evaluation 95
5.1 Engineering effort . 95

5.1.1 Hardware Modifications . 95
5.1.2 LTZVisor Modifications . 96
5.1.3 FreeRTOS Modifications . 97
5.1.4 GPOS Modifications . 98

5.2 Memory Footprint . 98
5.3 Performance . 100
5.4 Hardware Costs . 101

5.4.1 Self-Secured: Private Timer 102
5.4.2 Self-Secured: UART . 102

5.5 Security . 103
5.5.1 Security Guarantees . 103
5.5.2 Security Experiments . 104

5.6 Discussion . 107

6 Conclusion 109
6.1 Future Work . 110

References 111

xv

List of Figures

1.1 Motivational example for shared device access. 2

2.1 System Virtualization Stack. 8
2.2 CPU protection ring levels. 10
2.3 Trap and emulate technique. 11
2.4 System calls in native and para-virtualized systems. 12
2.5 Virtualization Topologies. 14
2.6 Arm TrustZone hardware Architecture. 15
2.7 Direct assignment access method. 19
2.8 Proxy Task method. 21
2.9 Device emulation method. 22
2.10 Ideal device emulation flow control. 22
2.11 Device Para-Virtualization method. 23
2.12 Device Para-TrustZone method. 25
2.13 Device Re-partitioning method. 26
2.14 Self-virtualized devices method. 28

3.1 The ZYBO Zynq-7000 development board. 35
3.2 Zynq-7000 SoC overview . 36
3.3 Advanced eXtensble Interface (AXI) non-secure control signals. . . 38
3.4 LTZVisor architecture overview. 40
3.5 LTZVisor memory configuration. 43
3.6 LTZVisor interrupt management when RTOS is runnning. 45
3.7 LTZVisor interrupt management when GPOS is running. 45
3.8 LTZVisor execution flow. 47
3.9 FreeRTOS software layers. 48

4.1 Self-Secured Device Generic Architecture 51
4.2 Private Timer: Control Register. 53
4.3 Private Timer Counter finite state machine. 54

xvii

4.4 Private Timer control signals finite state machine. 55
4.5 Private Timer Block design. 55
4.6 Private Timer Block diagram. 56
4.7 Self-Secured Private Timer: Minimal Approach architecture. 58
4.8 Minimal Approach control and interrupt status register. 59
4.9 Self-Secured Private Timer: Minimal Approach register access flow. 60
4.10 Self-Secured Private Timer: Default Approach architecture. 61
4.11 Default Approach control register. 62
4.12 Self-Secured Private Timer: Default Approach register access flow. . 62
4.13 UART block diagram. 64
4.14 UART Control register layout. 65
4.15 UART Mode register layout. 66
4.16 UART Interrupt enable/disable/mask registers layout. 66
4.17 UART Channel status register layout. 66
4.18 UART Baudrate generator. 68
4.19 Transmitter finite state machine. 69
4.20 Transmitter data stream. 70
4.21 Receiver finite state machine. 71
4.22 Resynchronized baud rate at data bit mid-point. 71
4.23 UART operation modes. 73
4.24 UART modem registers layout. 73
4.25 Self-Secured UART architecture. 76
4.26 Self-secured UART register access flow. 80
4.27 Self-Secured UART application example. 81

5.1 LoC of the Verilog files, with and without the self-secured imple-
mentation. 96

5.2 Number of LTZVisor lines of source code for each approach. 96
5.3 Number of FreeRTOS and SW device driver LoC for each approach. 97
5.4 GPOS Device drivers number of lines of code on each approach. . . 98
5.5 Number of clock cycles for write/read device operations and in-

curred device latency. 101
5.6 Self-Secured private timer post-implementation hardware costs. . . 102
5.7 Self-Secured UART post implementation hardware costs. 103
5.8 Protection mechanisms of the Self-Secured Timer upon FreeRTOS

accesses. 105
5.9 Protection mechanisms of the Self-Secured Timer upon GPOS ac-

cesses. 106

xviii

5.10 Protection mechanisms of the Self-Secured UART. 107

xix

List of Tables

2.1 Existing shared device access methods comparison 29

3.1 AXI-lite signals. 33
3.2 AXI access protection levels. 37

4.1 Private Timer register map. 53
4.2 Self Secured Private Timer: Default Approach register map. 61
4.3 UART register map. 65
4.4 Self-Secured UART register map. 79

5.1 LTZVisor and FreeRTOS memory footprint (bytes). 99
5.2 Device drivers memory footprint (bytes). 100
5.3 Evaluation results comparison. 108

xxi

List of Listings

4.1 TxFIFO write enable upon AXI TxFIFO register write. 67
4.2 RxFIFO read enable upon AXI RxFIFO register read. 67
4.3 Example of overflow interrupt management on the Control and sta-

tus module. 67
4.4 Tx signal set according to current state. 70
4.5 Secure data transmission prioritization. 82
4.6 Secure data reception prioritization. 83
4.7 Resources security configuration at board inialitzion. 85
4.8 LTZVisor GIC hardware initial security configuration. 86
4.9 FreeRTOS interrupt setup. 87
4.10 Private Timer entry on Linux device tree. 88
4.11 Example of an user application to access a device driver. 88
4.12 Platform driver code extract. 91
4.13 Example of Para-TrustZone driver assembly functions. 92
4.14 Board handler function in board.c. 92

xxiii

xxiv

Glossary

ABI Application binary interface
ACP Accelerator Coherency Port
ACTLR Auxiliary Control Register
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
API Application Programming Interface
APU Accelerated Processing Unit
ASIC Application-Specific Integrated Circuit
AXI Advanced eXtensible Interface
blob Binary Large OBject
BRAM Block RAM
BUFG Global buffer
CLB Bonfigurable Logic Blocks
CPU Central Processing Unit
DECERR Decode error
DMA Direct memory access
DRAM Dynamic random-access memory
DSP Digital signal processing
DTS Device tree source
FF Flip-flop
FIFO First In, First Out
FIQ Fast Interrupt Requests
FPGA Field Programmable Gate Array
GIC Generic Interrupt Controller
GPOS General-purpose operating system
HDL Hardware description language
I/O Input/Output
IDE Integrated Development Environment
IoT Internet of Things

xxv

IP Intelectual Propertie
IPC Inter process communication
IPI Inter-processor interrupt
IRQ Interrupt Request Line
ISA Instruction set architecture
ISR Interrupt Status Register
KB Kilobyte
LoC Lines-of-Code
LTZVisor Lightweight TrustZone-assisted Hypervisor
LUT Look up Table
MB Megabyte
MMU Memory Managment Unit
NS Non-Secure
NSW Non-Secure World
OCM On-chip memory
OS Operating System
PC Program counter
PL Programmable logic
PLL Phase-locked loop
PMU Performance Monitor Unit
PS Processing system
QSPI Quad serial peripheral interface
RAM Random-access memory
RO Read only
ROM Read only memory
RTOS Real Time Operating System
RW Read/Write
SCR Secure Configuration Register
SCTLR System Control Register
SCU Snoop control unit
SDIO Secure Digital Input Output
SLCR System level control register
SLVERR slave error
SMC Secure Monitor Call
SoC System on a chip
SRAM Static Random Access Memory
SW Secure World

xxvi

TCB Trusted Computing Base
TEE Trusted Execution Environment
TLB Translation lookaside buffer
TTC Triple Timer Counter
TXT Intel Trusted Execution Technology
TZ TrustZone
TZASC TrustZone Address Space Controller
TZMA TrustZone Memory Adapter
TZPC TrustZone Protection Controller
UART Universal asynchronous receiver-transmitter
UCB Untrusted Computing Base
UI User interface
VIF Virtual Interface
VM Virtual Machine
VMCB Virtual Machine Control Block.
VMM Virtual Machine Monitor
WO Write only
XSDK Xilinx Software Development Kit

xxvii

1. Introduction

With the rise of embedded system’s complexity, the demand for solutions to ful-
fill security and real-time requirements has been escalating [SYKS14]. For decades
virtualization technology has been used by the scientific community to efficiently
exploit hardware resources between multiple virtual environments [PBB13]. While
the advantages of virtualization are quite clear in embedded systems where size,
weight, power, and cost (SWaP-C) are important considerations, it also enforces
the overall system’s security [MJNH16].

Upon the advent of the Internet of Things (IoT), security emerged even further
as a significant requirement in the embedded systems development. Ensuring se-
curity in such systems is extremely crucial, as they play an important role in many
mission and safety-critical systems (aviation, medical, transportation, military),
and prior attacks on cyber systems have proven that can even cause physical harm
[Lan11]. However, attacks against embedded systems infrastructures have been
increasing because security is being misconstrued as the addition of features (e.g.,
cryptographic algorithms and security protocols) to the system [USK11, PMB15].
A new change in the way that systems are being developed is needed, to start
guaranteeing security from the outset [OGP18].

ARM Trustzone [ARM09] and Intel TXT (Intel Trusted Execution Technol-
ogy) are examples of security-oriented technologies which promote hardware as the
initial root of trust. The former is gaining particular attention in the embedded
space due to the massive presence of ARM processors in the market. TrustZone
technology splits the hardware and software resources into two worlds - the secure
world (SW), dedicated to the secure processing, and the non-secure world (NSW)
for everything else. A lot of research has been done around TrustZone technology,
ranging from efficient and secure virtualization solutions [FLWH10, PPG+17b,
MAC+17, POP+17, PPG+17a, PTM16] to trusted execution environments (TEE)
[SRSW14, PGP+17, POP+15]. Both cases, despite targeting different applications
with different requirements, consolidate multiple virtual environments in the same
platform and necessarily need to share resources among them. Ideally, hardware

1

2 Chapter 1. Introduction

devices should also be capable of being shared between this virtual environments.
However, in TrustZone-enabled SoCs, hardware devices can only be configured
as secure or non-secure, which means the dual-world concept of TrustZone is not
spread to the devices itself. Consequently, with this direct assignment method, if
both worlds require a certain device it needs to be completely duplicated, signifi-
cantly increasing the overall hardware cost.

1.1 Motivation

Figure 1.1 illustrates a motivation example with a shared universal asyn-
chronous receiver-transmitter (UART). In this scenario, a computer terminal re-
quires simultaneously to communicate and exchange data with two separate oper-
ating systems: a Real-Time Operating System (GPOS), and a General purpose op-
erating system (RTOS). Given the security-critical nature of an RTOS [YBW10],
sensitive data exchanged between the computer terminal cannot be accessed or
compromised in any way. With the former presented solution shown in Figure
1.1a, the computer terminal exchanges data between two separate terminal inter-
faces and two individual UART devices. Although this approach can satisfy the
design requirements, it requires duplication of the hardware device, considerably
increasing the hardware costs. In contrast, the latter solution presented in Fig-
ure 1.1b, is based on a virtualized system with device sharing capabilities. This
solutions allows consolidating both operations systems in the same platform and
avoids duplicating the device.

Tx

Rx

Secure
Terminal

Non-Secure
Terminal

UART
Tx

Rx

GPOS
(normal

data)

RTOS
(sensitive

data)

CPU

UART
Tx

Rx

CPU

Tx

Rx

(a) Solution with device duplication.

TxRx

Secure
Terminal

Non-Secure
Terminal

Self-Secured
UART

GPOS
(normal

data)

RTOS
(sensitive

data)

CPU

Hypervisor / VMM

Tx Rx

TxRx

Tx Rx

(b) Solution with shared device access.

Figure 1.1: Motivational example for shared device access.

Herewith, the RTOS can exchange its sensitive data through the secure ter-
minal interface, while simultaneously allowing the GPOS also exchanging its data

Chapter 1. Introduction 3

through the non-secure interface, using the exact same device. With this approach,
the GPOS cannot compromise the device, neither can access or compromise the
sensitive data being exchanged by the RTOS.

Currently, shared device access on TrustZone-based architectures can follow
different approaches:(i) Proxy task [LMH+14]; (ii) Device emulation [SVL01];
(iii) Device Para-virtualization [FLWH10, KLJ+13]; (iv) Device Para-TrustZone
[Pin17]; (v) Device repartitioning [SHT12b]; and (vi) Self-virtualizing devices
[RS07, WSC+07]. Among all these methods, some bring platform independence
and flexibility, with an expense in the TCB size and execution overhead. Others,
although presenting less execution overhead, require a considerable engineering-
effort or/and hardware costs and may present limitations in the number of func-
tionalities. Most importantly, several aforementioned approaches allow the device
to be intentionally manipulated and cause failure or do not even take security into
consideration, compromising the secure state of a device. Therefore, there is a
need for a new shared device method that can fully and simultaneously address
security while not compromising performance.

1.2 Objectives

This thesis proposes the concept of self-secured devices, a novel approach for
shared device access in TrustZone-based architectures. Self-secured devices extend
the TrustZone concept to the device itself by separating the device’s hardware logic
into a secure and non-secure interface.

Under the light of the above arguments, this thesis proposes to achieve the
following goals:

• Study and in-depth analysis of Virtualization and ARM TrustZone technol-
ogy;

• In-depth review and comparison of existing state-of-the-art methods;

• Familiarization with the platform and tools employed throughout this the-
sis development, including the Zynq7000 SoC, LTZVisor, as well as a deep
understanding of the used hardware mechanisms;

• Implementation of the Self-Secured approach on devices of different com-
plexity levels;

4 Chapter 1. Introduction

• Integration of the implemented solution on LTZVisor, an open-source and
in-house lightweight TrustZone-assisted hypervisor, which will be deployed
on the Xilinx Zybo board featuring the ARM TrustZone technology;

• Conducting quantitative studies about the hardware costs introduced by the
Self-Secured approach, relatively to the device complexity level;

• Extensive evaluation of the Self-Secured devices comparatively to relevant
existing state-of-the-art methods in terms of engineering effort, memory foot-
print, achieved speedup, and security enhancements.

1.3 Document Structure

This thesis is structured as follows:

• Chapter 1: The first chapter presents the motivation, goals and the struc-
ture of the thesis.

• Chapter 2: The second chapter is divided into two sub-chapters, the first
part covers up theoretical concepts of virtualization and ARM TrustZone
technology, highlighting the relevant features for this thesis implementation.
The second sub-chapter, the state-of-art, describes and compares existing
shared device access methods on TrustZone-based systems.

• Chapter 3: The third chapter describes the platform and tools. Firstly,
the platform requirements are identified and the development platform cho-
sen according to those requirements. Thereafter, the Advanced eXtensible
Interface (AXI) bus protocol is discussed, given its relevance for the devel-
opment process. Then, the Zybo platform and main features are laid out,
highlighting the platform features that were used throughout the develop-
ment process. Lastly, the LTZVisor, the hypervisor where the developed
work is integrated and tested is carefully analyzed and OSes used as guest
OSes are justified.

• Chapter 4: The fourth chapter proposes the development of the self-secured
approach and the approach application to devices with different complexity
level. This chapter also encapsulates the developed device drivers for man-
aging the devices. Finally, it describes the performed modifications to the
LTZVisor and hosted guests OSs, in order to integrate and test the developed
devices in this hypervisor.

Chapter 1. Introduction 5

• Chapter 5: The fifth chapter addresses the evaluation. It describes the
performed experiments comparing different state-of-the-art solutions.

• Chapter 6: The sixth chapter concludes this thesis, presenting the ob-
tained conclusions derived from this research and tangible results, identify-
ing the limitations, and suggesting future work towards further development
on identified limitations.

2. Background, Context, and State
of the Art

2.1 Background

This chapter is divided into two sub-chapters. Firstly, some background regard-
ing virtualization, ARM TrustZone and shared device access is described. Then,
the state of art, presents up-to-date methods for sharing devices on TrustZone-
based systems, while comparing them among each other, considering their pros
and cons.

2.1.1 Virtualization

A computer system is usually represented as consisting of several abstraction
levels arranged in a hierarchy that allows the separation of concerns and ease
platform independence. The lower layers are implemented in hardware and relate
to the operating system and hardware platforms providing the application binary
interface (ABI) and instruction set architecture (ISA), interfaces that applications
depend on to run. Virtualization technology allows conceiving multiple emulated
environments from a single, physical hardware system. This layers can be vir-
tualized and their available resources and interfaces are simulated and mapped
onto the interface and resources of the real system [SN05]. This concept of vir-
tualization can be applied not only to subsystems but to an entire machine. By
adding a software layer to the real system to support the desired architecture it
appears as an emulated different machine, or even a set of multiple machines,
duplicates of the original one. These machines, so-called virtual machines can be
classified as: Process VMs, providing a virtual ABI or API environment for user
applications delivering replication, emulation, and optimization; or System VMs
[Hei08], the relevant type for this thesis context, providing a complete environ-
ment in which a single-host hardware platform is partitioned into several virtual

7

8 Chapter 2. Background, Context, and State of the Art

machines supporting the concurrent execution of multiple, isolated guest operat-
ing system simultaneously. In Figure 2.1, it is demonstrated the basic software
stack for system virtualization. The Virtual Machine Monitor (VMM) or hyper-
visor component is the software layer that provides the VM environment. The
hypervisor normally runs with full privileges, having access to, and managing all
the hardware resources. While the guest operating system and its application
processes run with lower privilege and are managed under control of the VMM,
which in some cases can verify and perform privileged operations in behalf of the
unprivileged guest, upon a request for shared hardware resources.

Hardware Platform

Virtual Machine Virtual Machine Virtual Machine

Hypervisor / VMM

App App App

Guest OS

App App App

Guest OS

App App App

Guest OS

Figure 2.1: System Virtualization Stack.

The classical Popek and Goldberg virtualization requirements [PG74], derived
under simplifying assumptions, identify the three essential properties of virtual
machines:

• Equivalence: The virtualized environment running under the VMM should
have identical behavior to that demonstrated when running on the original
machine. This also minimizes the engineering effort of porting guest software
to the VM.

• Resource Control: It must be impossible to an arbitrary guest to affect
other guests resources. The VMM must be in complete control of all the
virtualized resources.

• Efficiency: All harmless instructions must be executed by the hardware
directly without VMM intervention, minimizing the overhead mechanisms
of the VMM. Guest software must show none or only a slight deterioration
from their native performance.

Chapter 2. Background, Context, and State of the Art 9

In the Popek and Goldberg’s terminology, a VMMmust present all of the above
mentioned properties. This guarantees an acceptable performance without con-
siderable deterioration, mutual isolation among guests while minimizing porting
efforts.

2.1.1.1 Classical Software Virtualization Techniques

To achieve the necessary technical requirements for virtualization, the target
processor must have several modes with different privilege levels that implicate
different access rights to the system resources, also known as protective rings in a
ring model, illustrated in Figure 2.2. For instance, the well known x86 architecture
has four execution modes (or four rings). Typically, the OS running in a phys-
ical machine is executed in kernel-mode and the user applications in user-mode.
The OS kernel runs with the highest privilege and has access to the full set of
instructions (privileged and unprivileged) of the physical processor. Differently,
applications running in the unprivileged user mode have no direct access to the
privileged instructions, [RHFN+12]. The hypervisor must run on an additional
privileged mode, in order to be protected from the guest OSs, and guest OSs from
their applications, guaranteeing the second property of virtual machines. When
a guest OS executes a privileged instruction and does not have the required priv-
ilege it creates traps, also known as processor exceptions, which are events that
turn control over to the privileged software (hypervisor) by changing the processor
mode and setting the program counter (PC) to a known entry point. This extra
layer that has an extra privileged mode is provided by CPU extensions for virtu-
alization support. When this extra layer is not provided, implementations often
recur to a technique named ring decompression or ring deprivileging [UNR+05]. In
such approach, the hypervisor is placed in kernel mode and both the OS kernel and
user code are pushed back to the unprivileged mode. However, in many processors,
only two privilege levels are provided. In that scenario, through a simple technique
called trap-and-emulate, an extra virtual privileged level is created, subdividing
the OS and user code into two separate privileged layers. Upon the occurrence of
a trap, the hypervisor checks the current state of the VM: if it is running on kernel
mode it performs the required action, otherwise, it emulates a trap in the VM by
changing its state and forwarding the exception to the guest OS. Therefore, both
ring compression and trap-and-emulate techniques incur considerable performance
costs due to every crossing of modes or execution of a sensitive instruction having
to go through the hypervisor, breaking one of the essential properties of virtual
machines [PG74].

10 Chapter 2. Background, Context, and State of the Art

VMM

VM

VirtualizedNon-Virtualized

Guest OS

Apps

Host OS

Apps

Virtualization extensions

Trap-and-Emulate

Figure 2.2: CPU protection ring levels. Adapted from [RHFN+12].

Popek and Goldberg [PG74], introduced a classification of instructions of an
ISA into different groups, according to their behavior when executed in different
processor modes:

• Privileged: Instructions that trap if the machine is in user mode, and do
not trap if it is in kernel mode.

• Control sensitive: Instructions that attempt to change the configuration
of resources in the system.

• Behavior sensitive: Instructions whose behavior or result depends on the
configuration of the system’s resources.

• Innocuous: Instructions which are not sensitive, do not require a privileged
processor mode to run, and cannot change hardware resources context.

That said, to apply classic virtualization to an architecture all sensitive instruc-
tions in its ISA must be privileged. The rest of the sensitive instructions which
are not privileged are considered critical instructions. These requirements, guar-
antee the resource control property, above mentioned, by running the hypervisor
with a higher privilege level than the guests. Consequently, in a trap-and-emulate
approach, depicted in Figure 2.3, whenever a guest executes a sensitive instruc-
tion (in user mode), the following actions are performed in the stated order: the
hypervisor takes full control of that action; the instruction is decoded; the trap
originating instruction is interpreted; the instruction is emulated; the VM state is
updated.

Chapter 2. Background, Context, and State of the Art 11

To comply with the efficiency property, most of the hosted virtual machines
ISA instruction should be identical to the physical underlying hardware in order
to be considered innocuous, consequently enabling their execution directly by the
hardware.

Guest OS code in VM VMM code

Kernel ModeUser Mode

Trap

Privileged Instruction Instruction decoding

Next Instruction

...

...

Instruction interpreting

Emulation Routine

Figure 2.3: Trap and emulate technique.

2.1.1.2 Para-Virtualization

Until this point, the term virtualization has been used to refer to the classic
virtualization, known as full-virtualization [RHFN+12]. With full-virtualization
guest run unmodified and not aware of their virtualization, which may cause per-
formance deterioration for not being able to easily take advantage of virtualization
features. Nonetheless, full-virtualization has to possess the strict requirements of
classic virtualization (previously described) or hardware virtualization support.
Para-virtualization [Chi07, Kai09, VMw06, WSG02] offers potential performance
benefits, a consequence of modifying the guest by exploiting its virtualization
awareness. Modifications to the guest OS code consist in adding a special set of
instructions (named hypercalls) for the execution of critical instructions, replacing
instructions of the real machine’s ISA. These hypercalls are conceptually equal to
a system call. Figure 2.4 shows the difference between system calls and hypercalls
and the ring transitions when a system call from an application is issued. An extra
transition between layers allows applications to run without modification with the
cost of a small speed penalty.

12 Chapter 2. Background, Context, and State of the Art

P
ro

te
ct

io
n

 r
in

g
le

ve
ls

P
ro

te
ct

io
n

 r
in

g
le

ve
ls

Native Paravirtualized

Kernel

Application

Kernel

Application

Hypervisor

HypercallSystem call

Figure 2.4: System calls in native and para-virtualized systems.
Adapted from [Chi07].

A single hypercall can replace a set of many sensitive instructions [Chi07], re-
ducing the frequency of switches between modes and consequently the overhead
incurred by the decoding of those instructions and hardware emulation. Overall,
para-virtualization can provide a solution for non-virtualizable architectures that
do not provide any hardware virtualization support and performance enhance-
ments. Also, due to guest awareness, efficient communication and synchroniza-
tion mechanisms (IPC) among guests can be implemented. One of the biggest
bottlenecks in many full-virtualized systems is device emulation. Device para-
virtualization, later scrutinized, replaces the device driver for the emulated device
with a front-end device driver removing the emulation associated overhead. De-
spite all advantages, para-virtualization implicates high engineering effort and can
break the resource control property of virtual machines, violating guest isolation.

2.1.1.3 Hardware-Assisted Virtualization

All of the virtualization methods formerly referred are still too inefficient due
to the high overhead associated with processor exception mechanisms and con-
text save and restore operations necessary whenever the hypervisor takes control.

Chapter 2. Background, Context, and State of the Art 13

At some point, different manufacturers have extended the architecture in differ-
ent ways to overcome the overhead introduced by these mechanisms and decrease
VMM complexity, providing virtualization hardware support extensions to aid
virtualization adding a set of instructions that makes virtualization considerably
easier. These extensions target a wide range of architectures, such as server, desk-
top architectures (Intel’s VT-x [UNR+05]) and embedded architectures as AMR’s
VE [VH11] or Imagination Technologies’ MIPS VZ [ZMH15]. Conceptually, virtu-
alization extensions can be thought as adding a new privilege processor mode, in
which, the hypervisor is expected to run and can trap-and-emulate operations that
previously, would have failed silently. This added mode, also allows the OS to stay
at the same level it expects to be without virtualization and catching attempts to
access the hardware directly. However, these extensions also provide other different
features, such as replicating and multiplexing important hardware configuration
registers, two-level address translation, and virtual interrupt support. In the con-
text of this thesis, is also worth mentioning ARM TrustZone hardware extensions.
Even though ARM TrustZone is a security extension and not a virtualization
extension, some of the provided features are very similar, for instance, much of
the critical hardware is replicated and also adds an extra privileged mode. ARM
TrustZone is widely spread and available in low-end and mid-end range micro-
processors, contrariwise to virtualization hardware extensions. Hence, it has been
exploited to also enable embedded virtualization [FLWH10, HGX+17]. Compared
to para-virtualization, hardware assisted virtualization allows running unmodified
OSs. However, given that the guest is not aware that is running in a virtual en-
vironment it cannot take easy advantage of virtualization features which makes it
more likely to be slower. Nevertheless, a hybrid approach might be advantageous,
for instance, taking advantage of hardware assisted faster system calls and support
for nested page tables, and para-virtualization better I/O performance due to its
lightweight interfaces to devices.

2.1.1.4 Hypervisor Architectures

Based on the location of the virtualization layer in the system stack and on the
permission of the VMM accesses to the hardware resources, hypervisor topologies
[RHFN+12, SGB+16], despited in Figure 2.5, can be categorized as:

14 Chapter 2. Background, Context, and State of the Art

Hardware Platform

Virtual Machine Virtual Machine Virtual Machine

VMM

App App App

Guest OS

App App App

Guest OS

App App App

Guest OS

Type-1

Hardware Platform

Virtual Machine Virtual Machine

Host OS

Hosted VMM

App App App

Guest OS

App App App

Guest OS

App

Type-2

App App

Figure 2.5: Virtualization Topologies.

• Type-1, or bare-metal Hypervisors, run in a higher privileged mode than
the guest OSs, directly over the hardware where it can manage and access
every hardware resource of the system.

• Type-2, or hosted Hypervisors, run in an unprivileged mode over the priv-
ileged host OS that is already executing, with no direct permissions to the
hardware.

Bare-metal hypervisors also referred to as native virtualization, are more suit-
able for time-critical systems due to the performance degradation of guest OSs
only depending on the hypervisor performance. In addition, hosted hypervisors
lack of privilege and security is not adequate for embedded devices where criti-
cal applications will run, and usually exhibit a poorer performance compared to
type-1 hypervisors.

Chapter 2. Background, Context, and State of the Art 15

2.1.2 ARM TrustZone

TrustZone technology [ARM09, ARM16] refers to security extensions available
in all ARM Application-processors (Cortex-A) for several years, since the ARMv6
architecture. This hardware security extension splits all hardware resources and
virtualizes a physical core into two virtual cores, providing two completely sepa-
rated execution environments: the secure and the non-secure worlds, as illustrated
in Figure 2.6. Hardware mechanisms are provided, to ensure secure world resources
are not accessible by the non-secure world, while the secure world can access any
resource. This strong isolation is important in scenarios where a trusted OS with
a small TCB, executing time-critical and security-critical applications, runs in the
secure side, alongside a rich untrusted GPOS running in the non-secure world.
With the addition of a new architectural feature at the processor level, the 33rd
bit, also referred as the NS (Non-Secure) bit, provides separation between these
two worlds, indicating in which world the processor is currently executing. This
bit is accessible through the added Secure Configuration Register (SCR) present
in the System Control Co-processor (CP15) and exclusively accessible by the se-
cure world. Some of the System Control Co-processor (CP15) registers and other
critical processor bits are banked in both worlds. The remaining registers which
are not duplicated, are either non-accessible by the non-secure world or kept under
close supervision of the secure world.

AMBA Interconnect

CPU

Flash Non-secure
Peripherals

Secure
Peripherals

SRAM

Secure world

Non-Secure world

DMA

Figure 2.6: Arm TrustZone hardware Architecture. Adapted from
[ARM15].

TrustZone adds a special new secure processor mode calledmonitor mode. This

16 Chapter 2. Background, Context, and State of the Art

new mode is used for bridging transactions between both worlds, while preserving
the processor state. Unlike other processor modes, monitor mode is only present
in the secure world, hence always considered secure. A new privileged instruction
was also specified, SMC (Secure Monitor Call) analogous to system calls, through
this instruction the non-secure world is able to enter monitor mode. The monitor
mode can also be enabled by configuring it to handle interrupts (IRQs, FIQs) and
exceptions in the secure side.

Secure and non-secure world partitioning is not only restricted to the proces-
sor, but also propagated to other system resources such as memory, peripherals
and buses. Memory infrastructure can also be partitioned into distinct memory
regions, which can be configured to be used by both worlds or exclusively by the
secure world. If the non-secure world tries to access the secure address space,
an abort routed to the monitor mode is triggered. The processor also provides
two virtual Memory Management Units (MMUs), delivering separate virtual-to-
physical memory address translation tables to each world. Even though the NS
bit is still available in the non-secure side, from the non-secure world perspec-
tive is transparent, since accesses are always performed with with NS set. This
memory isolation is extended and still available at cache level, with the NS bit
tagging each entry with the processor state upon the access. At the cache-level,
entries from both worlds can coexist removing the need for duplication and cache
flushing, consequently accelerating world switching.

To provide the aforementioned memory infrastructure isolation, TrustZone
features hardware peripherals such as the TrustZone Address Space Controller
(TZASC) and the TrustZone Memory Adapter (TZMA). The TZASC hardware
controller provides a programming interface, only accessible by the secure world,
that can configure specific memory regions of the DRAM, after being partitioned
into different memory segments, whose granularity depends on the SoC imple-
mentation. If the TZASC configures one of these memory regions as secure, non-
secure attempts to access it will be denied. TZMA provides the same function-
alities, but targeted at the on-chip memory, such as ROM or SRAM. However,
TZMA cannot be used for partitioning dynamic memories or memories that re-
quire multiple secure regions, unlike TZASC. Additionally, through TrustZone
Protection Controller (TZPC), which is a configurable signal control block placed
on Advanced Peripheral Bus (APB), system devices can be dynamically config-
ured as secure or non-secure. Moreover, to avoid overloading the processor, direct
memory access (DMA) controller can be used for moving data around physical
memory. TrustZone is also extended to this engine, featuring both a secure and

Chapter 2. Background, Context, and State of the Art 17

non-secure concurrent channels with independent interrupts and controlled by a
dedicated APB interface. TZASC, TZMA and TZPC components are all optional
and implementation-specific.

The TrustZone-enabled AMBA Advanced eXtensible Interface (AXI) system
bus, carries extra control signals to restrict access on the main system bus, includ-
ing an additional control bit, the non-secure bit, for each of the read and write
channels on the main system interconnect. This enables TrustZone architecture
to also secure peripherals (e.g. interrupt controllers, timers, and user I/O devices)
through this additional non-secure bit.

To support the robust management of secure and non-secure interrupts, the
Generic Interrupt Controller (GIC) provides both secure and non-secure priori-
tized interrupt sources. Through the Interrupt Security Register of the GIC an
interrupt can be configured as either secure or non-secure. Interrupt prioritiza-
tion is available, allowing to configure secure interrupts as higher priory than
the non-secure interrupts. An important feature that allows secure interrupts to
be handled with higher priority than non-secure interrupts, preventing potential
denial-of-service attacks. Among other possible interrupt models the GIC allows
to configure FIQs as secure and IRQs as non-secure interrupt sources, as suggested
by ARM and adopted by LTZVisor.

2.1.3 TrustZone-assisted Virtualization

Even though ARM TrustZone hardware extension is security-oriented, some
of its features are very familiar to other hardware-assisted virtualization exten-
sions. In particular, the existence of an extra higher privileged mode (monitor
mode) where the hypervisor can run; the ability to have full control over the ex-
ception system; and being able to execute OSs in the other remaining processor
modes. However, classical hardware virtualization depends on two-level address
translation which, in fact, is not provided by TrustZone. Instead, the TZASC
enables memory segmentation for isolation. Nevertheless, unmodified guest OSes
need to cooperate in order to be executed in the respective preassigned segments
achieving memory isolation. TrustZone can be efficiently exploited to assist vir-
tualization with the enormous advantage of being widely spread to most low-end
and mid-range microprocessors used in embedded devices. The segmented mem-
ory model should not impose any problem, given the reduced and fixed number
of VMs normally deployed in embedded use-cases.

TrustZone-assisted virtualization can support systems with different OS con-
figurations [PS18], such as single-guest, dual-guest, and multi-guest systems. The

18 Chapter 2. Background, Context, and State of the Art

simplest architectures use a single-guest setup [FLWH10], in which the single guest
OS and its applications run in the non-secure side and the hypervisor in monitor
mode. The hypervisor has full access to the whole system, composing the entire
system’s TCB, and has the responsibility of keeping the secure resources under
its close supervision. In contrast, the non-secure guest may only manage and
access resources (i.e. devices, memory, and interrupts) configured as non-secure.
However, if the non-secure guest requires accessing secure resources, it is able to
perform those accesses through para-virtualized drivers, under the hypervisor’s
supervision.

Most of the existing solutions commonly implement a dual-OS configuration in
order to have one processor virtual state (non-secure and secure state) dedicated to
each guest OS. In this manner, the hypervisor also runs in the monitor mode, while
each guest OS runs individually in each world. This type of configuration is ideal
in scenarios where an RTOS with real-time functionalities and requirements runs
in the secure world, isolated from the GPOS, which runs in the non-secure world,
usually during the RTOS idle periods to ensure timing requirements are meet.
The LTZVisor [PPG+17b], is an example of an open-source lightweight TrustZone-
assisted hypervisor mainly targeting the consolidation of mixed-criticality systems,
and supports the coexistence of two OSs, one secure RTOS side by side with an
untrusted, rich GPOS.

The number of supported guest OSs on TrustZone-enabled systems has been
a setback for perceiving TrustZone has a viable virtualization solution. However,
recent solutions [MAC+17, PPG+17a] were able to demonstrate how TrustZone-
enabled platforms are capable of hosting several guest OSs without compromising
isolation between guest OSs, neither interfering with their proper execution, by
attentively managing shared resources and the security configurations of memory,
devices, and interrupts at runtime.

2.2 Related Work

Currently shared device access can essentially follow the approaches: (i) Proxy
task; (ii) Device emulation; (iii) Device Dara-virtualization; (iv) Device Para-
TrustZone; (v) Device re-partitioning; (vi) Self-virtualizing devices. In this sec-
tion, the existing shared access methods will be thoroughly analyzed and com-
pared.

Chapter 2. Background, Context, and State of the Art 19

2.2.1 Devices Access in TrustZone

When multiple virtual environments are consolidated in the same platform
there is a need to share resources among them. Ideally, hardware devices should
also be capable of being shared between these virtual environments. However, in
TrustZone-enabled SoCs, hardware devices can only be configured as secure or
non-secure, which means the dual-world concept of TrustZone is not extended
to the devices itself. So, if both worlds require a certain device, it needs to
be completely duplicated. Likewise, typically in dual-OSs systems, devices are
usually duplicated and assigned exclusively to each guest OS: devices that are
critical for the reliability of the system are assigned to the RTOS and the remainder
devices are assigned to the GPOS. This method, denominated direct assignment or
pass-through access only allows the non-secure world to access devices configured
as non-secure and the secure world to access devices configured as secure, as
illustrated in Figure 2.7.

Device 2

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Device 1

Driver Driver

Figure 2.7: Direct assignment access method.

When both OSes need to make use of the exact same device it becomes neces-
sary duplicating the device, which is useful for ensuring the RTOS reliability, and
maximizing the system performance. However, it also adds a significant increase
in the total hardware cost.

For achieving a reliable device sharing mechanism the following requirements
must be satisfied:

• Real-time: Timing requirements are really critical for a RTOS. Device shar-
ing mechanisms must ensure that the SW has full control over the shared

20 Chapter 2. Background, Context, and State of the Art

device and the successful completion of its operations. Meaning that an
operation performed by SW must be completed, regardless of operation re-
quests coming from the NSW. Any action from the NSW that may prevent
the SW use of the shared device for an unbounded amount of time should
not be possible.

• Security: Secure resources and logic must be protected against both mali-
cious and accidental accesses from the non-secure world. The shared device
cannot be, in any way, compromised by the NSW.

• Overhead: The introduced overhead of a device sharing mechanism (e.g.,
due to data copies, data exchange, access policies or context switches) must
be minimized. The device’s native performance should not be affected by
the method application and introduce performance degradation.

• Device latency: Access to the device when a valid request is issued must
be performed as fast as possible.

• Modifications: Modifications to the TCB software and monitor must be
minimized or ideally, avoided. Otherwise, it could incur overhead and require
considerable engineering effort. Moreover, device drivers should be generic
and should not require modifications, regardless of the OS that is using them.

• Hardware Costs: Hardware modifications to the device’s logic must also
be minimized, to prevent a significant increase in terms of hardware costs
when comparing with the native device.

2.2.2 Proxy Task

Proxy Task [LMH+14] illustrated in Figure 2.8, is the most basic shared device
method, which consists in a SW OS client task that can send a request to a proxy
task in the NSW OS, through a communication channel [SHT12a, OMC+18], in
order to take advantage of the GPOS libraries and drivers richness. The intro-
duced overhead is fairly low due to the high level of abstraction of the request.
Despite this method’s performance being ideal, it is completely unreliable. The
SW OS requests might be ignored or act differently than expected due to the
GPOS software being untrusted, excluding this method as a viable secure shared
device access approach.

Chapter 2. Background, Context, and State of the Art 21

Device

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Proxy Task Client Task

Communication

Figure 2.8: Proxy Task method.

2.2.3 Device Emulation

Device emulation, depicted in Figure 2.9, is typically used in full-virtualization
solutions [SVL01] and follows the classical Popek and Goldberg’s trap-and-emulate
approach for virtualization [PG74]. From the GPOS point of view, it owns all the
devices, tricked to think there is a provided legacy driver. However, when the
GPOS tries to make any access to the virtual device, it results in being trapped
by the monitor layer. After being trapped, the hypervisor is responsible for em-
ulating the functionality that the GPOS was intended to perform on the device.
Once the GPOS access is trapped in the monitor layer where security and access
permissions issues will be accounted for, it is forwarded to the SW OS (RTOS),
where a driver will handle the physical device. This method delivers the GPOS
platform independence and flexibility and does not require any changes to guest
OSs. Nonetheless, it comes associated with significant execution overhead and
TCB size expense, due to the required complex extensions in order to implement
the trap mechanism. Moreover, traps are typically delivered to the SW OS as
interrupts, and the interrupt rate must be limited in order to prevent frequent ac-
cesses from the GPOS to the device, that may result in a performance bottleneck.

22 Chapter 2. Background, Context, and State of the Art

Virtual Device

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Device

Legacy Driver Driver

TRAP

Figure 2.9: Device emulation method.

As shown in Figure 2.10, the NSW OS can trigger external aborts, which are
exceptions generated by accessing secure or invalid device memory. Such aborts
trap directly in the monitor if the secure world OS has this feature enabled. This
mechanism could be used to emulate access to devices.

GPOS

Su
p

er
vi

so
r

M
o

d
e

GPOS
Device access RTOS

DATA
ABORT

M
o

n
it

o
r

M
o

d
e

Device

TRAP Emulate
Invalid
Access

Figure 2.10: Ideal device emulation flow control.

However, using these trap-and-emulate techniques is not possible, due to Trust-
Zone protection mechanisms [Kal14]. Consequently, device emulation on TrustZone-
based systems cannot be implemented, as a result of most sensitive instruction in
the non-secure world not having the necessary security privilege to be detected by
the hypervisor. Even so, for those that manage to get detected, such as load/store
instruction to access secure device registers, the CPU will not immediately enter

Chapter 2. Background, Context, and State of the Art 23

the hypervisor when the fault occurs. Instead, the bus transaction will still be
attempted, triggering an external data abort, similar to a device interrupt. Even
though the violation can be detected and can generate an exception, this exception
is imprecise and not always immediate. This leaves no chance to reconstruct what
happened in between the invalid access and the reception of the external abort ex-
ception in the hypervisor, neither can the hypervisor restore the non-secure world
to a useful state.

2.2.4 Device Para-Virtualization

The para-virtualization approach [FLWH10, KLJ+13, Chi07] shown in Fig-
ure 2.11, follows the para-virtualization concept, consists in slight modifying the
GPOS driver (i.e., front-end driver) to send requests to the SW OS driver (back-
end), through hardware-like interfaces that exchange data between NSW and SW,
like a communication channel [SHT12a, OMC+18].

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Device

Front-end
Driver

Back-end
Driver

Communication

restrain

Figure 2.11: Device Para-Virtualization method.

Both the GPOS and the SW OS (normally a RTOS) are modified in order
to support devices allocated to the secure world. If a device is configured as
non-secure both the NSW and SW can access it directly without requiring SW
intervention except for the interrupt delivery. However, if the device is configured
as secure, an access driver (i.e., front-end driver) that sends requests to the secure
world is required. The SW request will be interpreted and the correspondent
action executed or mediated by the secure driver (back-end). The request from

24 Chapter 2. Background, Context, and State of the Art

the NSW is validated and verified according to the specified security policy. Access
to a secure device is not as fast as access to non-secure devices because it evolves
communication between NSW OS and SW OS. This access generally involves the
following steps:

• The access driver in NSW issues a request to the SW;

• The monitor saves the NSW processor state and sends a message to the SW;

• The SW selects the device and handles the request;

• After finishing the request the SW sends a reply message to the monitor;

• The hypervisor restores NSW processor state and initiates the NSW entry.

This method presents less hardware costs relatively to device duplication,
less execution overhead than emulation, and protects shared devices from po-
tential bugs which might arise from software modifications or extensions, unlike
re-partitioning. Although, still requires a considerable engineering-effort like mod-
ifying the OSs (the effort required to modify a kernel can be high), presents limi-
tations in the number of functionalities (the GPOS is limited to the functionality
supported by the RTOS driver) and its performance is still far from native. Also,
this approach comes with associated overhead, which might cause real-time per-
formance issues on the trusted domain, and also a considerable increase in the
TCB complexity.

2.2.5 Device Para-TrustZone

The para-TrustZone approach [Pin17] illustrated in Figure 2.14, is based on the
para-virtualization approach, which consists in slight modifying the GPOS driver
to send requests for the secure device. However, with this approach, instead of
sending the request over to the SW OS, the requests are directly sent to the hy-
pervisor itself, which handles the requests and carries them out. It is implemented
through the added TrustZone privileged instruction SMC (Secure Monitor Call),
which enables the non-secure world entering monitor mode. The SMC instruction
requires kernel privilege to be executed, hence the GPOS driver must be modified
to add the supported instructions.

Chapter 2. Background, Context, and State of the Art 25

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Device

Para-TrustZone
Driver Driver

SMC

Figure 2.12: Device Para-TrustZone method.

This method can out-perform the para-virtualization by removing the overhead
incurred by the communication mechanisms and OSs context switches. However,
a considerable engineering-effort is still required due to the required modifications
at the OS and hypervisor level. The number of functionalities is limited to the
ones supported by the SMC handler within the hypervisor. Most importantly, this
method has security issues, due to not protecting the device against the GPOS
misbehavior and not limiting the performed accesses in any way. Consequently,
once the GPOS is running it can perform massive SMCs, intentionally causing
device failure.

2.2.6 Device re-Partitiong

Figure 2.13 depicts the re-partitioning approach [SHT12b], implemented in
SafeG, with this approach a device that has been already assigned to a certain
OS can be dynamically re-assigned at run-time. Devices can be configured and
re-configured as part of the secure or non-secure world through the TrustZone
Protection Controller (TZPC). This re-assignment occurs with a trigger condition
from the SW OS.

As a result, devices can be directly accessed by both the SW and NSW con-
siderably reducing overhead. Additionally, the monitor requires few or even none
modifications at all. The re-partitioning approach can be implemented in a pure
and hybrid form. A module named Re-partition manager present in both OSs

26 Chapter 2. Background, Context, and State of the Art

is responsible for managing the device sharing through a communication channel
[SHT12a]. The SW OS Re-partition manager is activated whenever a condition is
triggered.

Device

Device

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Driver Driver

Device assigned to NSW

Device re-assigned to SW

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Driver Driver

Figure 2.13: Device Re-partitioning method.

In the pure form, when a device must be re-partitioned to the TCB, the RTOS
sends an "UNPLUG" event to the GPOS manager. To guarantee that the SW
OS usage of the shared device cannot be compromised and is reliable, the RTOS
manager is completely independent of the GPOS manager state. Following the
trigger event, the RTOS manager needs to perform a full reset on the device to a
predefined state, and then the RTOS re-partition manager configures the device as
part of the TCB, finishing the re-partition process and making the device now able
to be reliably used by the RTOS. On the other hand, when the RTOS no longer

Chapter 2. Background, Context, and State of the Art 27

needs the device, it must re-partition the device back to the UCB, the RTOS
manager flushes all the secure and sensitive data from the device, and configures
it as part of the UCB. Then, a "PLUG" event must be sent to the GPOS, where the
respective manager will be responsible for restoring the device state and restoring
the processes that were previously stopped by the "UNPLUG" event, sent when
the RTOS needed the device. Despite the pure mechanism allows maximizing
performance with direct access to the device, it is necessary to perform a full reset
on the device which incurs a considerable device latency that may not satisfy
time-critical applications needs.

In behalf of the incurred high device latency, an alternative hybrid repartitioning
method was introduced based on the para-virtualization approach. With this
method, the interface of the shared device is split into two separate interfaces: an
interface with the operations that are performed at boot time and another with
the remaining operations performed at run-time. In order to reduce the resetting
time of the device, the initialization interface is only accessible by the RTOS guar-
anteeing that certain time-critical conditions are satisfied. This avoids a full reset
when the device is being re-partitioned to the TCB. By denying the GPOS ac-
cess to these device initialization operations, a shorter device latency is achieved.
When the GPOS wants to access the run-time interface a monitor call must be
performed (similarly to para-virtualization). Even though, this approach (if en-
tirely implemented in SW) still requires some changes to the monitor layer and
introduces overhead. As a consequence, the choice lies with a trade-off between
high performance or lower device latency. Despite all benefits of both mechanism,
these solutions still present a huge setback: security. Once the device is assigned
to the GPOS, the GPOS has complete access to the device, meaning that if it
is compromised, the device can be intentionally manipulated to cause a failure.
This mechanism only reclaims access permission from the GPOS when the RTOS
requires the device. Thus, the shared device is not protected against the SW
misbehavior or faults, and incapable to prevent device failure caused by GPOS
accesses (e.g. massive requests from the GPOS).

2.2.7 Self-virtualizing

A self-virtualizing device [RS07, WSC+07] has additional computational re-
sources that support I/O virtualization functionalities. With these resources the
device is capable of: multiplexing/demultiplexing a large number of virtual devices
mapped to a single physical device; managing virtual devices through an API on
the hypervisor; using APIs for accessing virtual devices and interacting with guest

28 Chapter 2. Background, Context, and State of the Art

domains and taking maximum advantage of the computing power of the hardware
platform (e.g., multiple processing cores).

Virtual Device 2

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Virtual Device 1

Driver Driver

Self-Virtualizing Device

Figure 2.14: Self-virtualized devices method.

Each device is represented by a virtual interface (VIF) which is accessed from
the guest OS through a device driver. A simple light-weighted API allows the guest
to send and receive messages through two different queues. The self-virtualized
device is responsible for managing VIFs by creating and destroying them or recon-
figure parameters that define their performance characteristics. When a physical
device wants to send data to the processing system it uses a communication chan-
nel to send data which is then demultiplexed into one of the existing VIF and
sent over to the respective guest through the VIF’s receive queue. The ability to
multiplex/demultiplex various VIFs on a single physical I/O is the key task of a
self-virtualized device. These scheduling decisions made as part as this task must
enforce performance isolation among different VIFs and with built-in support for
real-time reservations could be shared consistently by both the RTOS and the
GPOS through separated interfaces, achieving near-native performance.

Unfortunately, the current availability of these virtual devices that support
this approach, such as, virtual network interfaces, virtual block devices (disk),
virtual camera devices, and others is limited in practice. Also, even though the
API is lightweight, it stills incurs considerable overhead due to the required com-
munication mechanisms, similarly to the Para-Virtualization approach. Therefore,
unless it is targeted to systems where a large number of OSs require using the same

Chapter 2. Background, Context, and State of the Art 29

physical device, it does not deliver benefits comparatively to previously mentioned
approaches. Most importantly, usually this approach does not address device’s se-
curity properly, not protecting the device from possible exploits. Untrusted device
drivers of the non-secure guest OSs may instruct the VIF to perform a malicious
action to susceptible parts of the device logic, potentially compromising the entire
device. Even though additional protection mechanisms could be implemented in
the hypervisor to improve security, it would entail huge engineering efforts and
possibly still not ensure security.

2.3 Gap Analysis

Given all the previously mentioned advantages and disadvantages of existing
shared device access methods, Table 2.1 presents a gap analysis between all ap-
proaches.

Table 2.1: Existing shared device access methods comparison

Shared device access methods
Device sharing Proxy Device Para- Para- Repartitioning Self-
Requirements Task Emulation Virtualization Trustzone Pure / Hybrid Virtualizing
Real-time 7 3 3 3 3/ 3 3

Security 7 7 7 7 7/ 7 7

Overhead 3 7 7 7 3/ 7 3

Device latency 7 3 3 3 7/ 3 3

Modifications 3 7 7 7 3/ 7 7

Hardware Cost 3 3 3 3 3/ 3 7

According to Table 2.1 and taking the reliable device sharing mechanism re-
quirements into consideration, the existing methods fail to fully meet the following
requirements:

• Proxy Task: This approach does not fulfill real-time requirements and does
not take security into consideration, since the device is by default assigned
to the non-secure world which performs the secure world requests.

• Emulation: Device emulation is not implementable in TrustZone-enabled
systems. Even though, theoretically, its implementation has associated over-
head and requires complex TCB modifications.

• Para-Virtualization: This method’s performance is still far from native,
requires considerable engineering effort, and also increases the TCB com-
plexity.

30 Chapter 2. Background, Context, and State of the Art

• Para-TrustZone: Compared to para-virtualization, the Para-TrustZone
approach achieves better performance through SMCs, although it incurs
additional modifications to the monitor layer. Additionally, such as para-
virtualization, it requires considerable engineering effort and some changes
to the hypervisor code.

• Pure/ Hybrid Re-partitioning: The pure approach offers performance at
the cost of higher device latency, and the hybrid approach offers lower device
latency but introduces overhead, hence worst performance. Nonetheless, the
device can also be compromised by the NS world for the same previous
reason (when assigned to the GPOS can intentionally cause device failure).

• Self-Virtualizing: Even though this approach has great performance and
takes into account real-time considerations, it requires adding an API to
the hypervisor (TCB expense and modifications), considerable engineering
effort, and most importantly not ensuring security.

Among the existing methods, the most prevailing and major issue is that the
device’s security is not properly addressed, not protecting the device from many
possible exploits. Untrusted device drivers of the non-secure guest OSs may per-
form a malicious action to susceptible parts of the device logic, potentially com-
promising the entire secure device, and consequently the secure tasks that depend
on the device. Even though many of these methods actions are performed under
the hypervisor supervision and provide protection mechanisms, these incur huge
engineering efforts and are still not sufficiently effective.

3. Platform and Tools

In this chapter the research platform and tools used during this thesis develop-
ment are described. Firstly, the platform requirements are identified, and the de-
velopment platform was chosen accordingly. Thereafter, the Advanced eXtendible
Interface (AXI) bus protocol is discussed, given its relevance for the development
process. Then, the Zynq platform device where the system is deployed and its
most relevant and required features for the development process are scrutinized.
Lastly, the LTZVisor, is carefully analyzed and its hosted OSs choice justified.

3.1 Platform Requirements

The main goal of this thesis is to develop a new approach for shared device
access in TrustZone-based architectures and integrate it within the LTZVisor. For
this goal to be feasible a set of requirements on the selected platform must be met:

• The selected platform must be able to host the LTZVisor, more precisely:

• must include at least one ARM processor;

• the ARM processor must feature a memory management unit (MMU),
in order to run general purpose operating systems (GPOSs).

• must feature ARM TrustZone security extension;

• The selected platform must provide a FPGA with enough resources to deploy
the system design.

ARM Cortex-A9 is a mid-range cost-effectively processor, widely deployed,
providing hardware-assisted virtualization features, and a memory management
unit (MMU) as required. The Xilinx Zynq-7000 [Xil18, Pal14] is a TrustZone-
enabled SoC featuring two ARM Cortex-A9, multiple useful security features and
a FPGA, hence an adequate choice for this thesis. However, there are still several

31

32 Chapter 3. Platform and Tools

development boards featuring a Zynq-7000 SoC. The Zybo was the selected plat-
form due to its characteristic low cost, while still providing the required features
and FPGA resources for this thesis implementation.

3.2 AMBA Advanced eXtensible Interface

ARM AMBA AXI [Xil11, LI04] bus, was introduced in 1996 and is already on
the fifth version (AXI5). Since then, it has been used by ARM as the standard
protocol for SoC communication. AXI can be categorized into three interface
types, targeting applications with different specificities: AXI-Lite, AXI-Full, and
AXI-Stream.

These interfaces can be configured as master or slave. An interface configured
as master is responsible for starting and managing the performed transaction
and its direction. In contrast, an interface configured as slave only answers the
transaction requests from the master, and acknowledges write requests (if memory-
mapped). The AXI BUS provides separate address/control and data channels.
Firstly, control signals are set, then the data is transferred through the respective
channel. Support is provided for unaligned data transfers using byte strobes, and
Burst mode transactions.

AXI interfaces can be further categorized according to the addressing type:
memory-mapped or point-to-point. Memory-mapped interfaces (AXI-Lite and
AXI-Full), are accessible through memory addresses and feature five different
channels: two for read operations, one for the address/control channel, and the
other for the data channel; two for write operations, one for the address/con-
trol channel, and the other for the data channel; and the remaining channel to
acknowledge write operations, if configured as slave. Read operations are not ac-
knowledged because the master can always retry the read transaction whenever
it fails. Point-to-point interfaces (AXI stream) only features one unidirectional
channel for both control and data signals.

3.2.1 AXI-Lite

From the above mentioned interfaces, the AXI-lite [Xil12] memory mapped
interface deserves to be highlighted for its low level complexity and small logic
footprint. It requires fewer control signals, less hardware implementation effort,
and less complexity to manage it from the user-side. Although, only one transac-
tion can be performed each time. To perform an AXI-lite transaction, the following
steps are required:

Chapter 3. Platform and Tools 33

• Handshake: The master sets the respective control signals for the trans-
action. Then, if the issued transaction is a read operation the ARVALID
is asserted, otherwise, if it is a write operation the AW-VALID is asserted
instead. Lastly, to start the transaction the slave asserts the ARREADY or
AWREADY signal accordingly.

• Data Transfer: When the master and slave AR/AW-VALID and AR/AW-
READY signals are both set to high the data transfer is performed.

• Acknowledge: After the data transfer is done, the BRESP signal indi-
cates the status of the transaction(BREADY and BVALID handshake), if
successful is set to LOW.

Table 3.1 shows every AXI-lite signal name, source, channel, and description.

Table 3.1: AXI-lite signals. Adapted from [LI04].

Signal Channel Source Descripton

ACLK Global Clock Global clock signal.

ARESETn Global Reset Global reset signal, active LOW.

AWVALID Write address Master
Indicates that valid write address and control

information are available.

ARVALID Read address Master
Indicates, when HIGH, that the read address and control

information is valid.

AWREADY Write address Slave
Indicates that the slave is ready to accept an address and

associated control signals:

ARREADY Read address Slave
Indicates that the slave is ready to accept an address and

associated control signals.

AWADDR[31:0] Write address Master
Gives the address of the first transfer in a write burst

transaction.

ARADDR[31:0] Read address Master Gives the initial address of a read burst transaction.

AWPROT[2:0] Write address Master
Indicates the normal, privileged, or secure protection level

and whether the transaction is a data access or an instruction access.

ARPROT[2:0] Read address Master
Indicates the normal, privileged, or secure protection level

and whether the transaction is a data access or an instruction access.

WVALID Write data Master Indicates that valid write data and strobes are available.

WREADY Write data Slave Indicates that the slave can accept the write data.

34 Chapter 3. Platform and Tools

WSTRB[3:0] Write data Slave Indicates which byte lanes to update in memory.

RVALID Read data Slave
Indicates that the required read data is available and the read

transfer can complete.

RREADY Read data Master
Indicates that the master can accept the read data and response

information.

RDATA[31:0] Read data Slave Read from data bus can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide.

RRESP[1:0] Read data Slave
Indicates the status of the read transfer. The allowable responses

are OKAY, EXOKAY, SLVERR, and DECERR.

BVALID Write response Slave Indicates that a valid write response is available.

BREADY Write response Master Indicates that the master can accept the response information.

BRESP[1:0] Write response Slave
Indicates the status of the write transaction. The allowable

responses are OKAY, EXOKAY, SLVERR, and DECERR.

3.3 ZYBO Zynq-7000 SoC

Zybo (ZYnq BOard) [Pul16] is a low cost, feature-rich, ready-to-use develop-
ment board featuring the Z-7010, a member of Xilinx Zynq-7000 family, based
on the Xilinx All Programmable System-on-Chip (AP SoC) architecture, which
integrates a dual-core ARM Cortex-A9 processor with Xilinx 7-series Field Pro-
grammable Gate Array (FPGA). The Zybo platform can host a complete system
design by providing a wide variety of multimedia and connectivity peripherals.
The platform features onboard memories, video and audio I/O, dual-role USB,
Ethernet, and SD slot. These above mentioned characteristics are optimal for a
Zynq developer beginner whose system design does not depend on the high den-
sity of I/O, among other large hardware resources capabilities present in mid-level
and above boards. Another advantage is the compatibility with Xilinx’s high-
performance Vivado Design Suite as well as the ISE/XSDK toolset. This toolset
provides an intuitive, facilitated design flow, by melding FPGA design with em-
bedded software development. Targeting a wide range of systems with different
design complexity, from a hypervisor running multiple OSs, down to a bare-metal
application simply controlling LEDs. Figure 3.1 shows the Zybo board, managing
to encompass all these features in a compact board.

Chapter 3. Platform and Tools 35

Figure 3.1: The ZYBO Zynq-7000 development board.

3.3.1 Zynq-7000 family

Figure 3.2 depicts the Zynq-7000 [Xil18] All Programmable SoC (AP SoC)
architecture. Similarly to all Zynq devices, this architecture contains at least one
ARM Cortex-A9 processor, the core component of the processing system (PS).
Furthermore, the processing system encompasses an application processor unit
(APU), memory interfaces (with multiple memory technologies), and I/O periph-
erals (interfaces for external data communication). The APU offers multiple high-
performance features: a single/dual ARM Cortex-A9, with associated computa-
tional units, such as the FPU and NEON engine; an MMU; a 32 KB Level 1 data
and instruction cache; 512 KB Level 2 data and instruction cache; a Snoop control
unit (SCU) to maintaining L1 and L2 coherency; an Accelerator coherency port
(ACP); timers for the watchdog and time-tracking; a General interrupt controller
(GIC); a DMA controller; and 256 KB of on-chip memory (OCM).

36 Chapter 3. Platform and Tools

Figure 3.2: Zynq-7000 SoC overview [Xil18].

The programmable logic, based on the Artix-7 and Kintex-7 field-programmable
gate array (FPGA) fabric with user-configurable capabilities provides Configurable
logic blocks (with LUTs, flip-flops, other logic), block RAMs, clock management,
digital signal processing, and I/O configurable blocks for interfacing.

PS-PL interactions are performed through advanced extensible interface (AXI).
The nine existing PL AXI interfaces have multiple channels and encompass thou-
sands os signals, and are divided into the following types:

• General Purpose (AXI_GP): Interface with a 32-bit data bus, suited for
general-purpose applications without high performance need, and are con-
nected directly to the ports of the master/slave interconnect. Four general
purposes interfaces are provided, two where the PS is the master and the
PL the slave, and the other two where the PL is the master and the PS the
slave.

• High Performance (AXI_HP): Four high performance interfaces with
a 32 or 64-bit data bus, includes high bandwidth datapaths do the DDR

Chapter 3. Platform and Tools 37

and OCM memories, and two FIFO buffers to support burst transactions
for read and write traffic.

• Accelerator Coherency Port (AXI_ACP): A single port with low-
latency that provides access to the PL (master), with optional cache co-
herency (through the SCU).

3.3.2 TrustZone technology Support in Zynq-7000 AP SoC

Zynq-7000 AP SoC includes FPGA programmable logic (PL) that enables de-
signers to program the PL with custom and Xilinx IPs (hardware design language
(HDL) modules). These IP cores are normally connected through a memory-
mapped AXI interface.

3.3.2.1 AMBA Advanced eXtensible Interface

The most relevant feature in the context of this thesis is the extended AMBA
AXI design on TrustZone-enabled SoCs, which provides an extra control signal for
each of the read and write channels on the main system bus. These controls signals
are called the Non-Secure, or bits, and are defined in the public AMBA3 Advanced
eXtensble Interface (AXI) bus protocol specification, [Pal14, ARM09, LI04]. These
mentioned bits are among others in the AWPROT or ARPROT signals, that
provide three levels of access protection, [Pal14, Figure3.2]:

Table 3.2: AXI access protection levels.

ARPROT[2:0]

AWPROT[2:0]
Protection Level

[0]
1 = Privileged Access

0 = Normal Access

[1]
1 = Non-secure Access

0 = Secure Access

[2]
1 = Instruction Access

0 = Data Access

• AWPROT[0] and ARPROT[0], used by a master to indicate their processing
mode, if high indicates a privileged acces, and low indicates a normal access.

38 Chapter 3. Platform and Tools

• AWPROT[1] and ARPROT[1], provided by TrustZone enabled systems where
a greater degree of differentiation between processing modes is required. If
this bit is high indicates a non-secure access, and low a secure access.

• AWPROT[2] and ARPROT[2], differentiates an a data access from an in-
struction access. Low indicates a data access, and high an instruction access.

When a new transaction takes place these signals are set by the bus masters,
and the bus or slave decoding logic interprets them ensuring that the required
security separation is met. Masters configured as non-secure must set their NS
to high in the hardware, which doesn’t allow them to access secure slaves due
to the decoded address not matching any secure slave. Whenever this happens,
its implementation defined weather if a transaction is supposed to fail silently or
generate an error, which in the latter case may be raised by the slave (SLVERR)
or the bus (decode error, DECERR), depending o the on the hardware peripheral
design and bus configuration [ARM09].

However, both secure and non-secure operating states might be supported by
an AXI master, and also extend this concept of security to memory access. As
shown in Figure 3.3, the bit AxPROT[1] identifies an access as secure or non-
Secure, defined so that when it is asserted the transaction is identified as Non-
Secure.

Processing System

Programmable logic

Non-secure
World

Secure
World

Zynq-7000

A
XI

A
XIAWPROT[1]

or
ARPROT[1]

AWPROT[1]
or

ARPROT[1]

HIGH LOW

Figure 3.3: Advanced eXtensble Interface (AXI) non-secure control
signals.

Chapter 3. Platform and Tools 39

3.3.2.2 Xilinx AXI Interconnect IP Support

Zynq-7000 SoC AXI interfaces between the PS and the PL are AXI3 compliant,
differently from Xilix IP cores which are AXI4 compliant. Therefore, the system
designer must instantiate an AXI Interconnect IP core along with IP cores in the
programmable logic to connect them to the processing system. The instantiated
interconnect in the PL provides an additional secure bit checking feature (optional,
and disabled by default). If the system designer enables this features on the
AXI master interface, and a non-secure read/write transaction is attempted the
DECERR will be issued and the transaction will not propagate any further. On
the other hand, if disabled the non-secure transaction will also propagate to the
slave.

3.4 Development Toolchain

This section addresses the development tools from Xilinx used during this
thesis development: Vivado Design Suite, and Xilinx software development kit
(XSDK).

3.4.1 Vivado Design Suite

Xilinx Vivado Design Suite [Xil16a], is a set of tool-chains created to aid de-
velopment challenges throughout system’s design, integration and implementation
incurred by Xilinx devices complexity.

The Vivado IP integrator, allows developers to easily integrate Xilinx IPs from
the IP library into their design and configure them through an user-friendly in-
terface, also lets the user create custom IPs and add them to the library. The
UI enables the user to easily connect the IP blocks and the rest of the system
modules. Vivado enables developers to perform synthesis and implementations of
their designs, perform timing, power, hardware utilization, verification analysis.
Moreover, enables the design behavioral, post-synthesis, and post-implementation
simulation through test benches, testing the system reaction to different stimulus.

3.4.2 Xilinx SDK

The Xilinx Software Development Kit (XSDK)[Xil16b] is the Integrated Devel-
opment Environment(IDE) based on Eclipse, that directly interfaces to the Vivado
embedded hardware design environment, for creating embedded applications on
Xilinx’s microprocessors. XSDK provides a feature-rich C/C++ code editor and

40 Chapter 3. Platform and Tools

compilation environment for software development alongside the hardware devel-
opment on Vivado.

The XSDK provides tools to easily access the hardware design previously cre-
ated and to program the FPGA with the hardware generated and exported in
Vivado. The required files for the PS and target processor initialization, accessing
hardware devices, templates, and so on, are automatically generated, facilitating
the entire development process. An integrated debugger supporting Zynq-7000
SoC is also provided delivering useful features such as: setting breakpoints, step-
ping through the program execution, checking the program variables and stack,
and viewing the system’s memory contents.

3.5 LTZVisor

The LTZVisor [PPG+17b] is an open-source lightweight TrustZone-assisted hy-
pervisor. TrustZone provides, the already mentioned, two execution environments:
the secure world, responsible for hosting the privileged and trusted software, while
the non-secure world is responsible for hosting the non-privileged and untrusted
software. This virtualization architecture is composed of two different VMs (the
secure an non-secure VM) and the hypervisor itself, as depicted in Figure 3.4.

Non-Secure-OS / GPOS Secure-OS / RTOS

Normal Apps

ARM TrustZone-enabled SoC

LTZVisor

Real-time Apps

Monitor
Mode

Supervisor
Mode

User
Mode

Figure 3.4: LTZVisor architecture overview.

LTZVisor runs in monitor mode with the highest privileged processor mode,
thus, is always considered secure. By running in monitor mode, the hypervisor has
full control of all hardware and software resources and is in charge of configuring
memory, interrupts and devices assigned to each VM, as well as managing the

Chapter 3. Platform and Tools 41

Virtual Machine Control Block (VMCB) of each VM during partition switches.
Whenever a VM is about to be executed, the hypervisor is responsible for trans-
ferring the VM state from its respective VMCB to the physical processor context.
Upon a new partition switch, the state of the active VM is saved back by the
hypervisor into its respectiveVMCB and the same former procedure for the VM
execution process is repeated. Both VMs run in the supervisor mode. The secure
VM, running on the secure side runs privileged code that can access or modify
any of the non-secure VM resources, such as its memory and associated devices.
Therefore, the OS hosted on the secure VM must be aware of its virtualization
and considered part of the TCB, hence must keep a small TCB. An RTOS is
ideal to run on the secure side due to its characteristic small footprint and strict
time constraints, which can be met because of the higher execution privilege. The
non-secure VM, running on the non-secure side is ideal to host a GPOS, useful
for running human-machine interfaces and containing rich libraries and drivers.
Software in the non-secure world is completely isolated from privileged software in
the secure world. An exception to the hypervisor is triggered whenever an attempt
from the non-secure world to access secure world resources is performed.

3.5.1 CPU virtualization

TrustZone hardware security extensions virtualizes a physical core into two
virtual cores, providing two completely separated execution environments, the
secure and non-secure world. Each world contains an individual copy of banked
registers. On the non-secure side the VMCB is composed by 25 registers: General
Purpose Registers (R0-R12), the Stack Pointer (SP), the Linker Register (LR)
and Saved Program Status Register (SPSR) for the Supervisor, System, Abort
and Undef modes. However, for the IRQ and FIQ modes the General Purpose
Registers (R8-R12), as well as the SP, LR and SPSR registers are not replicated
and included due to being mutually exclusive for each world. The monitor mode
is only dedicated to the secure world. On the secure side, the VMCB is composed
only by 16 registers: General Purpose Registers (R0-R12), the SP, the LR and
SPSR for the System mode. The reduced size of the secure VMCB promotes faster
partition switches from the non-secure to the secure world, reducing the secure
interrupts latency when the non-secure is executing.

Most of the co-processor register are banked, however, some must be preserved,
such as the System Control Register (SCTLR) and the Auxiliary Control Register
(ACTLR) which are responsible for configuring and controlling memory, cache,
MMU (enabling or disabling), AXI accesses, and so on. To promote system’s

42 Chapter 3. Platform and Tools

security, TrustZone denies any attempt from the non-secure world to change any
of these registers. Is the hypervisor’s responsibility to initialize the non-secure
VMCB registers before the boot process, enabling MMU, Level1 cache and other
functionalities required for the GPOS to run. Otherwise, if attempted to modify
these registers during the non-secure boot, the GPOS will get stuck.

3.5.2 Scheduler

LTZVisor implements an asymmetric or idle scheduler where the hypervisor
behaves in a passive way. The scheduling process is carried out by the secure
guest OS itself, with higher scheduling priority than the non-secure guest OS. The
asymmetric design principle ensures that the non-secure guest is only scheduled
during the idle periods of the secure guest OS and the secure guest is able to
preempt the execution of the non-secure guest.

3.5.3 Memory isolation

As aforementioned, on TrustZone enabled SoCs without virtualization exten-
sions, only MMU single-level address translation is provided, instead of the tra-
ditional 2-level address translation offered by virtualization extensions that al-
low the execution and spatial isolation of unmodified guests. However, through
TZASC, memory can be configured and partitioned into different memory seg-
ments with different security privileges. Memory regions can be configured with a
specific, implementation-defined, granularity which in Zybo Zynq-7000 platform is
64MB. The non-secure VM must have its respective memory segments configured
as non-secure and the remaining memory as secure. An exception is automati-
cally triggered and the execution control redirected to the hypervisor whenever
the non-secure guest attempts to access any of the secure memory segments. The
security status of each particular memory segment is defined by a system level
control register named TZ_DDR_RAM. Figure 3.5 shows the LTZVisor memory
security configurations on the Zybo platform, in which the non-secure memory
region was reduced from the original memory configuration due to Zybo smaller
memory resources.

Chapter 3. Platform and Tools 43

No memory

Non-secure
region

Secure region

TZ_DDR_RAM = 0x0000_007F

 0xFFFF_FFFF

 0x2000_0000

 0x1FFF_FFFF

 0x1C00_0000

 0x0000_0000

 0x1BFF_FFFF

Figure 3.5: LTZVisor memory configuration.

3.5.4 MMU and Cache

With TrustZone security extension, the processor provides two virtual Mem-
ory Management Units (MMUs), delivering separate virtual-to-physical memory
address translation tables to each world. Therefore, each world has an individual
copy of the TTBR register set and an independent MMU configuration, accelerat-
ing world switching due to removing the need to invalidate translation lookaside
buffer (TLB) entries. This memory isolation is extended and still available at
cache level, again with the NS bit, tagging each entry with the processor security
state upon the access. At the cache-level, entries from both worlds can coexist
removing the need for duplication and cache flushing, consequently accelerating
world switching and improving LTZVisor performance. On Zybo Zynq-7000 plat-
form the L2 cache can only be enabled/disabled from the secure world side, hence
is the hypervisor responsibility to manage the L2 Control register (reg1_control),
enabling it before non-secure guest boot (similarly to L1 cache) so that the non-
secure world can, thereafter, manage its non-secure entries.

3.5.5 Device partitioning

Devices can be either dynamically or statically configured as secure or non-
secure in TrustZone-based systems. Isolation at the device level is ensured when
devices are partitioned between both worlds and not shared among them. Device

44 Chapter 3. Platform and Tools

virtualization on the LTZVisor is divided into three phases: Firstly, at design
time, devices are assigned to a specific partition; then, during boot time, devices
are configured; thereafter, devices are managed directly by the guest partition, i.e.
following the so-called pass-through policy. Consequently, devices assigned to the
RTOS are configured as secure, and devices assigned to the GPOS configured as
non-secure. When an access from the GPOS to a device that has been configured
has secure is attempted an exception will be triggered and immediately handled
by the hypervisor. To configure the device security settings, on Zybo Zynq-7000
platform its provided a set of registers accessible from the secure side, such as,
Secure Digital Input Output (SDIO) slave security registers (TZ_SDIO), APB
slave security registers (security_apb), AXI GP0 master port (fssw_s1) security
setting register, and so on.

3.5.6 Interrupt managment

The Generic Interrupt Controller (GIC) in TrustZone-enabled SoCs, provides
both secure and non-secure prioritized interrupt sources. The GIC enables an
interrupt model where secure interrupts are configured with higher priority as FIQs
and non-secure interrupts with lower priority assigned to IRQs. This interrupt
model is suggested by ARM and adopted by the LTZVisor, and prevents a denial-
of-service attack against the secure world (from the GPOS). Every implemented
interrupt security must be configured by setting the respective bit in the Interrupt
Security Registers set (ICDISRn) accordingly. To assign a secure interrupt source
to the processor FIQ interrupt mechanism, the FIQen bit in the CPU Interface
Control Register (ICPICR) must be set. With this implementation shown in
Figure 3.6, when the secure world is executing, if a secure interrupt (FIQ), is
triggered it is handled by the RTOS itself, in order to avoid adding overhead to
the RTOS interrupt latency, hence not requiring hypervisor’s intervention. This
behavior is achieved by disabling the FIQ bit in the Secure Configuration Register
SCR. Also when the RTOS is running, if a non-secure interrupt (IRQ), arises
(using the processor IRQ mechanism) it does not affect the guest behavior and
the interrupt is only attended as soon as the non-secure guest becomes active
again.

Chapter 3. Platform and Tools 45

RTOS
M

o
n

it
o

r
M

o
d

e
Su

p
er

vi
so

r
M

o
d

e

RTOS
FIQ handling

RTOS

FIQ

RTOS

M
o

n
it

o
r

M
o

d
e

Su
p

er
vi

so
r

M
o

d
e

GPOS
IRQ handling

GPOS

IRQ SMC

SMC
handling

World
switch

Figure 3.6: LTZVisor interrupt management when RTOS is runnning.

Otherwise, if the non-secure guest (GPOS) is running and a FIQ arises, the
hypervisor takes immediate control and handles the secure interrupt directly in
monitor mode. If an IRQ arises instead, the interrupt is directly handled by the
non-secure guest itself. Figure 3.7 shows the described interrupt behavior in the
mentioned scenario.

GPOS
GPOS

IRQ handling
GPOS

IRQ

GPOS
RTOS

FIQ handling
RTOS

FIQ

FIQ
Handling

World
switch

M
o

n
it

o
r

M
o

d
e

Su
p

er
vi

so
r

M
o

d
e

M
o

n
it

o
r

M
o

d
e

Su
p

er
vi

so
r

M
o

d
e

Figure 3.7: LTZVisor interrupt management when GPOS is running.

46 Chapter 3. Platform and Tools

3.5.7 Time management

Due to its asymmetric scheduler and dual-OS configuration, time management
on the LTZVisor is performed using two independent timers, one for each guest
OS. The hypervisor dedicates the Triple Timer Counter (TTC) 0 to the secure VM
and the Triple Timer Counter (TTC) 1 to the non-secure VM, thus it must be
configured as non-secure at boot time to prevent undesired exceptions. This time
management implementation ensures: all timing structures are always updated
correctly; The GPOS, even though tick-less, has notion of the real-time; The
RTOS does not miss any system-tick interrupt.

3.5.8 Execution Flow

A set of initialization configurations must be performed at the beginning of the
LTZVisor execution, in the boot process, for the system to act as expected. These
include the previously mentioned, processor and co-processor registers, memory
(partition and security), stack, peripherals (partition and security) and the inter-
rupt controller (GIC, interrupt model setup). Following the system boot process,
the RTOS is booted and its real-time tasks are scheduled. As soon as the RTOS
tasks become idle, a system call is performed to enter the monitor mode (hyper-
visor), through a SMC instruction and prepare a world switch. Then, the hy-
pervisor handles the SMC instruction, preparing the transition to the non-secure
world. During this preparation phase the hypervisor’s responsibility is to: save the
processor state of the secure world, RTOS, in the respective VMCB, and restore
the GPOS context saved in its VMCB; enable the FIQ and NS bits of the SCR
register; set supervisor mode; update the linker register with the start of the NS
OS address space; and jump to the restored non-secure address. Thereafter, the
GPOS will run until a FIQ arises, switching the processor to monitor mode and
entering the FIQ handler on the monitor vector table. The hypervisor, handles
the FIQ, disables FIQ and NS bits of the SCR register, saves the current processor
state into the non-secure VMCB and restores the context from the secure VMCB.
When the processor is in supervisor mode running the RTOS, its real-time tasks
are dispatched until the moment the idle task is re-scheduled, and all previous
steps need to be repeatedly performed. Figure 3.8 depicts and summarizes the
described execution flow.

Chapter 3. Platform and Tools 47

GPOS RTOS

LTZVisor

IRQ handler
Idle

TASK

Scheduler
FIQ

handler

M
o

n
it

o
r

M
o

d
e

Su
p

er
vi

so
r

M
o

d
e

Real-time
 TASK

IRQ FIQ

Scheduler FIQ handler BootSMC handler

FIQ IRQ

Figure 3.8: LTZVisor execution flow.

3.6 Operating System stacks

LTZVisor, as a virtualization infrastructure, is able to consolidate and run two
guest OSes on the same platform. This section describes the OSes which were
used as guest OSes to run on top of LTZVisor.

3.6.1 FreeRTOS

FreeRTOS [Fre, Rea16] is a real-time operating system(RTOS) offering a com-
pletely free, smaller and easier real-time processing alternative for applications
where GPOSs are not sufficient enough to meet the design security and timing
requirements. FreeRTOS core kernel is very simple and kept minimal, with most
of its source code written in ’C’ language. FreeRTOS software architecture can
be separated in two different layers [WW09], illustrated in Figure 3.9. The hard-
ware independent layer contains most of the OS functions and remains intact
for all architectures. This layer is composed of two mandatory files, ’list.c’ and
’task.c’ that provide task management and scheduling functionalities and a list
data structure for maintaining task queues, respectively. Task scheduling follows
a priority-based policy, prioritizing the execution of highest priority level tasks,
although if two equally privileged tasks are set to be executed the scheduler uses
a round-robin model. In this same layers, three other optional files are available:
’queue.c’, implements priority queues data structures for inter-task communication
and synchronization purposes; ’timers.c’, provides functions facilitating software

48 Chapter 3. Platform and Tools

timers implementation, for the application tasks; ’croutine.c’, offers support for
co-routines, a special type of task with additional memory efficiency.

The portable layer is responsible for architecture-specific processing (e.g. con-
text switching) and should at least contain the ’port.c’ file, with hardware-specific
code and the standard API for the hardware independent layer. And, the ’heap.c’
file, with the architecture-specific memory allocation and deallocation functional-
ities.

The main reason of the FreeRTOS selection over other RTOS are: the ability
for scalability and internal design modifications due to its open-source code, the
acceptable engineering effort to perform modifications given its minimal kernel
core, and the large support availability on different architectures, application and
configurations [PPO+14].

Hardware Independent layer

list.c tasks.c

croutine.c queue.c timers.c

Portable Layer

port.c heap.cRequired
 files

Optional
files

Figure 3.9: FreeRTOS software layers.

3.6.2 Linux

Linux is a free and open-source GPOS, initially developed for personal com-
puters use. Currently, Linux is ported to more platforms than any other OS,
mainly due to the large presence of Linux kernel-based Android OS, wide use in
embedded devices, and many smartphones and tablets running on Linux kernel-
based OSs. Linux is one of the OSs with most community support and largest
user base, an extremely advantageous characteristic delivering support to new fea-
tures, technical issues, or even to manage added hardware resources that require
device drivers, which might be already developed by someone among the open-
source community. Another huge advantage, especially in embedded devices, is
the possibility to compile a custom Linux kernel.

Given the massive prevailing presence of Linux in embedded systems, many
commercial specialists focused on porting Linux to embedded systems. Xilinx
company already provides support for various Linux distributions ported to their

Chapter 3. Platform and Tools 49

platforms, including platforms from the Zynq family, such as the chosen Zybo
development board.

Xilinx Zynq Linux [Xil] is based on the original Linux kernel with additional
Xilinx features (board support packages, and Xilinx drivers), and is frequently
updated to the last Linux Kernel versions. The building and running processes
for ARM Linux are very similar in Xilinx Zynq Linux. To perform the Linux boot
process on Zynq platforms, the processing system (PS) and custom developed
hardware information must be jointly provided.

4. Self-Secured Devices

This chapter addresses the implementation of the self-secured approach and
its application to devices with different complexity levels. This chapter also de-
scribes the developed device drivers for managing the devices, and the performed
modifications to the LTZVisor and hosted guests OSs, required to integrate and
test the developed devices in this hypervisor.

4.1 Overview

Figure 4.1 illustrates the proposed generic architecture of a self-secured device.
Self-secured devices extend the TrustZone dual-world concept to the inner logic
of the hardware device, aiming to enable security improvements to shared devices
access in TrustZone-based architectures.

Secure-OS/RTOSGPOS

Monitor Layer

Secure WorldNon-Secure World

Secure Interrupts

Driver Driver

Self-Secured Device

Secure Interface

Non-Secure Interrupts

Non-Secure Inteface

FIQ FIQ

IRQ

IRQ

FIQ

IRQ

FIQ

IRQ

Figure 4.1: Self-Secured Device Generic Architecture

51

52 Chapter 4. Self-Secured Devices

Certain accesses and actions performed by the non-secure world to a device can
be potentially exploited to compromise the device and consequently, the secure
world itself and its execution. In reconfigurable SoCs (e.g., Zynq-7000) access
to the hardware device, in the programmable logic, is performed through the
Advanced eXtensible Interface (AXI). In TrustZone-enabled SoCs this interface
includes an additional control bit for each of the read and write channels. The
AXI security state can be checked through the AWPROT and ARPROT signals by
reading the non-secure bit that indicates which world is accessing the device. This
allows checking if the non-secure world is trying to access some sensitive registers
or configurations of the device and denying access when requested. However, it is
imperative to split these sensitive registers and configurations from the rest of the
device’s logic and eventually deny non-secure world access to the vulnerable logic
part of the device.

A possible approach to solve non-secure world inaccessibility to the vulnera-
ble logic is by replicating the vulnerable logic part of the device, that could be
potentially exploited. By creating a separate non-secure interface with an extra
copy of this sensitive registers and isolating them into two different interfaces,
with different banked registers in both interfaces, it enables both the non-secure
and secure world to perform concurrent accesses to the device while reassuring
its security cannot be compromised. Following this approach, the secure world is
granted access to both the secure and non-secure logic interfaces, while the non-
secure world access is restricted to the non-secure logic interface. Access from the
non-secure world to the device’s configurations is performed under the supervision
of the secure side.

Another important condition to self-secure a device is to discriminate non-
secure from secure interrupts and route them accordingly, from the programmable
logic to the processing system. Therefore, the system GIC should also be con-
figured to route FIQs to the secure world, and IRQs to the non-secure world.
Likewise, secure interrupt sources from the device must be routed as FIQs and
non-secure interrupts as IRQs. Following the same interrupt model as the LTZVi-
sor and suggested by ARM, if the secure world is executing and a FIQ arises, it is
handled by the RTOS itself in order to avoid adding overhead to the RTOS inter-
rupt latency. In contrast, if a non-secure interrupt, IRQ, arises it does not affect
the guest behavior and the interrupt is only handled as soon as the non-secure
guest becomes active. Otherwise, if the non-secure guest (GPOS) is running and
a FIQ arises, the hypervisor takes immediate control and handles the secure inter-
rupt directly in monitor mode. If an IRQ arises instead, the interrupt is directly

Chapter 4. Self-Secured Devices 53

handled by the non-secure guest.

4.2 Self-Secured Private Timer

The ARM’s Cortex-A9 private timer [ARM12] was selected as an example of
a low-complexity device for implementing the self-secured approach. This im-
plementation consists on a replica of the original private timer based on ARM’s
provided documentation. Table 4.1 depicts the private timer register address map,
which is composed of four main registers: Load value, Counter Value, Control (i.e.,
prescaler, auto-reload, enable), and Interrupt Status.

Table 4.1: Private Timer register map.

Baseaddress

(0x43C00000)
+ Offset Type Name

0 RW Private Timer Load Register

4 RW Private Timer Counter Register

8 RW Private Timer Control Register

12 RW Private Timer Interrupt Status

The device supports the following features:

• 32-bit Counter that triggers an interrupt when reaching zero.

• Two configuration modes: Single-shot or auto-reload.

• Load value that can be used to configure counter starting values.

The timer configuration and control is performed through the control register,
detailed in Figure 4.2.

23 01...31 ...8

Timer
Enable
Timer
Enable

Auto
Reload
Auto

Reload
IRQ

Enable
IRQ

Enable

15 ...

PrescalerPrescaler

Private Timer Control Register
Figure 4.2: Private Timer: Control Register.

The Counter register keeps the counter value, decremented every clock tick
while its value is greater than zero and the timer enable bit is set, in the Timer

54 Chapter 4. Self-Secured Devices

Control register. When the counter value reaches zero, if the auto reload bit in
the control register is set, the value on the load register is used to reload the
counter which will be again decremented until zero. Otherwise, if in single-shot
mode (auto-reload bit disabled), when the counter reaches zero, the timer stops
until it gets re-enabled on the control register. Moreover, in both cases, whenever
the counter reaches zero and the IRQ enable bit is set the event flag is set and the
overflow interrupt is generated. This described behavior is shown in Figure 4.3.
The interrupt event flag is a sticky bit set in the interrupt status registers, that
must be cleared by the interrupt handler.

Counter
decrement

Counter
Configuration

STOP
COUNTER

Overflow
Interrupt

STARTSTART

New control parameter

Timer enable
AND

Counter value > 0

Counter value = 0
AND

Auto reload ON

Counter value = 0 AND Auto reload OFF

Counter value = 0 AND Interrupt enabled

Figure 4.3: Private Timer Counter finite state machine.

Figure 4.4 illustrates how the counter, control parameters and interrupt status
are updated, through control signals set upon any AXI register modification. The
counter value can be updated by changing the AXI load or counter register, which
will replace the current counter value. The counter is also updated with the load
register value whenever the counter reaches zero and auto-reload is set. After
generating the overflow interrupt, it can be cleared by setting the respective bit
on the interrupt status register. Whenever the AXI control register is modified, its
associated parameters (i.e. timer emable, auto-reload, prescaler, interrupt control)
are all updated.

Chapter 4. Self-Secured Devices 55

IDLE

Counter =
Counter reg

Counter = Load
reg

Control
parameters

updated

Clear
interrupt

STARTSTART

Figure 4.4: Private Timer control signals finite state machine.

The prescaler allows the timer clock tick to be set at the desired rate, which
value is defined through the control register. The value between two timer ticks
can be calculated by the following equation:

(prescaler + 1) × (Load_value + 1)
CLK

The block design of the implemented timer is shown in Figure 4.5. The hard-
ware logic is composed by the Zynq processing system, a reset module, the AXI
interconnect, and the timer itself, driven by the clock divider module which divides
the user-defined prescaler by the original reference clock source.

DDR

FIXED_IO

clk_div_0

clk_div_v1_0

clk

reset

prescaler[8:0]

clk_out

processing_system7_0

ZYNQ7 Processing System

MDIO_ETHERNET_0

DDR

FIXED_IO

SDIO_0

USBIND_0

M_AXI_GP0

TTC0_WAVE0_OUT

TTC0_WAVE1_OUT

TTC0_WAVE2_OUT

M_AXI_GP0_ACLK

IRQ_F2P[0:0]

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

ptimer_fixed_0

ptimer_fixed_v1.0 (Pre-Production)

S00_PTIMER

interrupt_flagclk_signal

prescaler[8:0]s00_ptimer_aclk

s00_ptimer_aresetn

rst_ps7_0_50M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

Figure 4.5: Private Timer Block design.

56 Chapter 4. Self-Secured Devices

Firstly, the Zynq processing system must be instantiated and configured through
an user interface, enabling the following features: (i) PL-PS shared interrupt ports,
(ii) the general purpose AXI master interface 0 to connect with AXI-lite private
timer slave interface, (iii) the UART for debug and test purposes, and the rest of
the configurations left as default. Then, as illustrated in Figure 4.6, the private
timer is instantiated based on an AXI-lite IP, the prescaler is connected to the
clock divider module, and the overflow interrupt connected to the PL interrupt
ports. An AXI interconnect is required since the interfaces of the PL need to
be AXI3 compliant, differently from the instantiated IP cores, which are AXI4
compliant.

AXI4-lite Interface

Control register

Private timer

AXI4-lite
AXI

Interconnect

Counter register

Load register

Interrupt status register

Timer registers Counter

Interrupt control

prescaler

Interrupt

prescaler

Figure 4.6: Private Timer Block diagram.

4.2.1 Device driver

To access and manage the device, a software interface to the hardware device
must be provided, enabling both the GPOS and the RTOS access to hardware
functions through an abstraction layer. The device driver contains the private
timer registers physical addresses shown in Figure 4.1, and provides the following
functions to manage the timer, by accessing its respective AXI registers:

• PrivateTimer_CnfgInitialize: Initializes the device structure with device’s
physical base address, ID, and status;

• PrivateTimer_Start: Sets the enable bit in the control register, enabling the
timer;

• PrivateTimer_Stop: Disables the enable bit in the control register, disabling
the timer;

Chapter 4. Self-Secured Devices 57

• PrivateTimer_SetPrescaler: Sets the prescaler bits in the control register
with the respective value;

• PrivateTimer_GetPrescaler: Reads the prescaler bits in the control register;

• PrivateTimer_Set_Load_register: Sets the load register with the passed
argument value, also updating the counter value.

• PrivateTimer_Get_Load_register: Reads the load register.

• PrivateTimer_Set_Counter_register: Sets the counter register with the
passed argument value, updating the counter value.

• PrivateTimer_Get_Counter_register: Reads the counter register.

• PrivateTimer_Set_Control_register: Sets the control register value with
the passed argument value.

• PrivateTimer_Get_Control_register: Reads the control register value.

• PrivateTimer_Set_Interrupt_status_register: Allows the interrupt handler
to clear the interrupt flag by setting the interrupt status register.

• PrivateTimer_Get_Interrupt_status_register: Reads the interrupt status
from the interrupt status register.

4.2.2 Self-Securing the Private Timer: Minimal Approach

Following the self-secured concept, the device logic is divided into two sepa-
rate interfaces with different banked registers. To self-secure the private timer two
different approaches can be adopted. The choice lies in a trade-off between less
engineering effort and additional support for the extra provided interface. The
vulnerable logic part of the device must be isolated from the non-secure world,
which encompasses registers that may: (i) compromise the counter value of the
secure world; (ii) trigger unexpected and unintended interrupts by changing inter-
rupt configurations; (iii) change device configurations that are normally performed
at boot time (e.g. prescaler); (iv) tamper with device’s normal flow by changing
the device secure configuration (e.g. auto-reload).

With the former approach, the AXI registers remain intact but the main inter-
nal counter and load registers are entirely duplicated as they compose the func-
tional part of the counter infrastructure. These registers are distinct from the
controller and interrupt status registers which are only extended and partially

58 Chapter 4. Self-Secured Devices

replicated. This allows each world to have its own configurable counter interface.
However, the secure interface is exclusively accessible by the secure world and
the non-secure interface is exclusively accessible by the non-secure world. This
spares adding additional AXI registers and making any kind of modification to
the device drivers. Although, it does not allow the secure world to take advantage
of the extra provided counter interface. Nonetheless, an additional interrupt is
provided in order to assign different interrupts for each counter overflow. In this
sense, whenever the counter value from the non-secure register bank overflows, an
IRQ is triggered, and whenever the counter value from the secure register bank
overflows, a FIQ is triggered instead. The described architecture is illustrated in
Figure 4.7.

Non-Secure Interface

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Secure Overflow

Driver Driver

Self-Secured Private Timer

Secure Interface

Non-Secure Overflow

Contoller ISR Counter Load

Load

FIQ FIQ

IRQ

IRQ

IRQ

FIQ FIQ

IRQ

Counter

Figure 4.7: Self-Secured Private Timer: Minimal Approach architec-
ture.

The extended control and interrupt status registers shown in Figure 4.8 do
not provide non-secure world access to the entire registers, and do not require
a banked copy of the entire register in the non-secure interface. Instead, they
provide additional bits for the interrupt configuration and interrupts event flags
for the non-secure world. Besides, the secure parameters in the control register
cannot be accessed by the non-secure world. For instance, the prescaler value pre-
determines the counter tick and influences the whole timer, thus the non-secure

Chapter 4. Self-Secured Devices 59

world cannot modify the respective registers bit, which is configured by the se-
cure world, typically at boot time. Likewise, the interrupts configuration is also
exclusively configured by the secure world, avoiding the generation of unintended
interrupts. Similarly, the secure interrupt FIQ event flag in the interrupt sta-
tus register should only be modified by the secure world. Therefore, non-secure
world accesses to these mentioned secure parameters and events flags are restricted
through the TrustZone protection signals. Moreover, the auto-reload and timer
enable bit parameters are replicated and banked in both worlds, allowing each
world’s interface to access the respective copy of its banked registers. Therefore,
from the secure interface only the auto-reload and timer bits banked in the se-
cure world are exclusively accessible, and from the non-secure interface only the
non-secure banked bits are accessible.

23 01...31 ...8

Timer
Enable
Timer
Enable

Auto
Reload
Auto

Reload
IRQ

Enable
IRQ

Enable

15 ...

PrescalerPrescaler
FIQ

Enable
FIQ

Enable

Secure world access

Non-Secure world access

23 01...31 ...8

Timer
Enable
Timer
Enable

Auto
Reload
Auto

Reload
IRQ

Enable
IRQ

Enable

15 ...

PrescalerPrescaler
FIQ

Enable
FIQ

Enable

0131

FIQ
Event flag

FIQ
Event flag

IRQ
Event flag

IRQ
Event flag

...

Control Register

Interrupt Status Register

0131

FIQ
Event flag

FIQ
Event flag

IRQ
Event flag

IRQ
Event flag

...

Interrupt Status Register

Control Register

Figure 4.8: Minimal Approach control and interrupt status register.

The behavior of the AXI registers access upon read/write operations from both
the secure and non-secure world is illustrated in Figure 4.9. From the secure world
perspective when accessing the timer register only the secure banked registers can
be accessed and from the non-secure world perspective only non-secure register.
As previously explained, and illustrated, write accesses are restricted based on

60 Chapter 4. Self-Secured Devices

the AWPROT TrustZone extended protection signal and read accesses restricted
based on the ARPROT signal.

Load register

Counter register

Control register

Interrupt status register

Secure perspective

Control register

Counter register

Load register

Interrupt status register

Non-Secure perspective

START

IDLE

WR_EN RD_EN

AWPROT[1]==1AWPROT[1]==1AWPROT[1]==0 AWPROT[1]==0

Secure
world

Read

Non-Secure
world

Write

Secure
world

Write

Non-Secure
world

Read

Figure 4.9: Self-Secured Private Timer: Minimal Approach register
access flow.

4.2.3 Self-Securing the Private Timer: Default Approach

Differently, in the default approach, illustrated in Figure 4.10, the secure world
can access both the secure and non-secure interfaces. Although the secure world is
now able to use both virtual timer interfaces, the non-secure world is still unable
to tamper with the timer’s normal flow and values of the secure interface, used
by secure applications. In contrast to the minimal approach, not only the main
internal counter and load registers need to be replicated, but also their respective
AXI registers. Differently, the ISR and Controller AXI registers are not replicated,
similarly to the minimal approach, where these registers are only extended and
partially replicated internally. The previously described behavior implies changes
in the device AXI register map, as shown in Table 4.2, providing access to the
non-secure extra interfaces.

Chapter 4. Self-Secured Devices 61

Table 4.2: Self Secured Private Timer: Default Approach register map.

Baseaddress
(0x43C00000)

+ Offset Type Name

0 RW Private Timer Load Register
4 RW Private Timer Counter Register
8 RW Private Timer Control Register
12 RW Private Timer Interrupt Status
16 RW Non-Secure Private Timer Load Register
22 RW Non-Secure Private Timer Counter Register

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Secure Overflow

Driver Driver

Self-Secured Private Timer

Secure Interface

Non-Secure Overflow

Contoller ISR Counter Load

Non-Secure Interface
Counter Load

FIQ FIQ

IRQ

IRQ

IRQ

FIQ FIQ

IRQ

Figure 4.10: Self-Secured Private Timer: Default Approach architec-
ture.

Since the secure world can now access both interfaces, a method to control them
simultaneously was implemented, hence two additional control bits were added to
the control register to configure and manage the non-secure interface (auto_reload
and enable bit for non-secure), as depicted in Figure 4.11. This enables the secure
world to configure and manage both the secure and non-secure timer interfaces,
while still restricting the non-secure world to access the above mentioned secure
control parameters and secure interface configurations. Interrupts and interrupt
event flags are managed the exact same way as the minimal approach.

62 Chapter 4. Self-Secured Devices

23 01...31 8

Timer
Enable_S

Timer
Enable_S

Auto
Reload_S

Auto
Reload_S

IRQ
Enable

IRQ
Enable

15 ...

PrescalerPrescaler
FIQ

Enable
FIQ

Enable

Control Register Secure world access

Control Register Non-Secure world access

45...

Auto
Reload_NS

Auto
Reload_NS

Timer
Enable_NS

Timer
Enable_NS

23 01...31 8

Timer
Enable_S

Timer
Enable_S

Auto
Reload_S

Auto
Reload_S

IRQ
Enable

IRQ
Enable

15 ...

PrescalerPrescaler
FIQ

Enable
FIQ

Enable

45...

Auto
Reload_NS

Auto
Reload_NS

Timer
Enable_NS

Timer
Enable_NS

Figure 4.11: Default Approach control register.

Upon a read/write transaction, from the secure world perspective it can see/ac-
cess the non-secure interface registers, and consequently take advantage of both
interfaces. Nevertheless, the non-secure world can only access the secure inter-
face registers, and any access to a secure interface register is denied through the
AWPROT/ARPROT TrustZone extended protection signals. This behavior is
illustrated in Figure 4.12.

Load register

Counter register

Control register

Interrupt status register

Secure perspective

Interrupt status register

Load register

Counter register

Non-Secure perspective

START

IDLE

WR_EN RD_EN

AWPROT[1]==1AWPROT[1]==1
AWPROT[1]==0

AWPROT[1]==0

Load register

Counter register

Control register

Secure
world

Read

Non-Secure
world

Write

Secure
world

Write

Non-Secure
world

Read

Figure 4.12: Self-Secured Private Timer: Default Approach register
access flow.

Chapter 4. Self-Secured Devices 63

4.2.3.1 Device driver modifications

To enable access from the secure world to both interfaces, and as a consequence
of the implicated changes in the AXI registers addresses, some minor modifications
to the device drivers must be performed. The changes encompass the following
functions:

• PrivateTimer_Set_Load_register_S: Sets the secure banked Load register,
exclusively from the secure world.

• PrivateTimer_Set_Load_register_NS: Sets the non-secure banked Load
register.

• PrivateTimer_Get_Load_register_S: Reads the secure banked Load regis-
ter, exclusively from the secure world.

• PrivateTimer_Get_Load_register_NS: Reads the non-secure banked Load
register.

• PrivateTimer_Set_Counter_register_S: Sets the secure banked counter reg-
ister, exclusively from the secure world.

• PrivateTimer_Set_Counter_register_NS: Sets the non-secure banked counter
register.

• PrivateTimer_Get_Counter_register_S: Reads the secure banked counter
register, exclusively from the secure world.

• PrivateTimer_Get_Counter_register_NS: Reads the non-secure banked counter
register.

4.3 Self-Secured UART

The Cadence universal asynchronous receiver-transmitter [DD03], available in
Zynq-7000 SoC, was chosen as a medium-complexity device for implementing the
self-secured approach. Used for serial data communication the UART provides
full-duplex asynchronous receiver and transmitter. The device is structured with
separate Receiver (Rx) and Transmitter (Tx) data paths, each with a dedicated
64-byte FIFO, which contains the data that is serialized/de-serialized, within the
provided following features:

• Programmable baud rate generator;

64 Chapter 4. Self-Secured Devices

• Receive and transmit FIFOs with 64 bytes;

• Programmable protocol, 6/7/8 data bits, 1/1.5/2 stop bits, and odd/even/s-
pace/mark/no parity;

• Error detection for parity, framing and overrun;

• Line-break and interrupt generation;

• Multiple opertaion modes por RxD an TxD (e.g. normal, echo, diagnostic
loopback).

• Model control for modem control signals.

The device was replicated in hardware, by implementing six main modules: (i)
Control and Status; (ii) Baud-rate Generator; (iii) Transmitter and transmitter’s
FIFO; (iv) Receiver, and receiver’s FIFO; (v) Mode switch; and (vi) Modem con-
trol. Figure 4.13 depicts the UART block diagram.

AXI4-lite Interface

Control And Status

Modem Controller

UART

AXI
Interconnect

Interrupts

Mode
Switch

Baudrate generator

Tx FIFO RxFIFO

Receiver

Transmitter

AXI4-lite

TxD

RxD

UART Ref clock

DSR, DCD, DRI
and CTS signals DTR, RTS signals

Figure 4.13: UART block diagram.

4.3.1 Control and Status Module

The Control and Status module is composed of the whole UART’s seventeen
AXI registers, shown in Table 4.3. This Module is the device’s control unit,
responsible for managing all the modules through the AXI-lite interface, some of
its main tasks are: configure UART’s operation mode, baud rate, interrupts, and

Chapter 4. Self-Secured Devices 65

data format; store and read characters in the Tx/Rx FIFOs; enable, disable and
issue soft resets to the receiver and transmitter; manage the generated interrupts;
and configure user-defined parameters (e.g. FIFOs trigger level, baud rate divider).

Table 4.3: UART register map.

Base address
(0x43C00000)

+ Offset Type Name

0 RW Control register
4 RW Mode register
8 RW Interrupt enable register
12 RW Interrupt disable register
16 RO Interrupt mask register
20 RW Interrupt status register
24 RW Baudrate generator register
28 RW Receiver timeout register
32 RW RxFIFO Trigger value register
36 RW Modem Control register
40 RW Modem status register
44 RO Channel status register
48 RW TxFIFO register
52 RW Baud rate divider register
56 RW Flow delay register
60 RW TxFIFO Trigger value register
64 RW RxFIFO register

The control register (Figure 4.14), controls the transmitter and receiver mod-
ules through its eight less significant bits. Each bit represents a control signal
that allows enabling, disabling, and resetting the transmitter and receiver mod-
ules. Furthermore, it allows to introduce transmission breaks in the transmitter
module and to reset the timeout counter of the receiver module.

23 01...31

Receiver
Reset

Receiver
Reset

Transmitter
Reset

Transmitter
Reset

Receiver
Enable

Receiver
Enable

8 45679

Receiver
Disable

Receiver
Disable

Transmitter

Enable
Transmitter

Enable
Transmitter

Disable
Transmitter

Disable

Time-out

counter

Reset

Time-out

counter

Reset

Start
Transmitter

Break

Start
Transmitter

Break

Stop
Transmitter

Break

Stop
Transmitter

Break

UART Control RegisterFigure 4.14: UART Control register layout.

The mode register illustrated in Figure 4.15 allows to configure: the UART
operation mode; the data format, by defining the received/sent data number of
stop bits, parity type, and number of data bits (i.e. character length); and the
selected clock source of the baud rate generator module.

66 Chapter 4. Self-Secured Devices

Figure 4.15: UART Mode register layout.

The enable/disable/mask interrupt registers (Figure 4.16), present the same
bit disposition and are used to configure the desired interrupts. These include:
interrupts generated by the receiver and transmitter modules; FIFOs indicating
their status, such as full, nearly full, empty, and above the trigger value; and
receiver interrupts issued upon (i) the received character not matching the config-
ured parity (parity interrupt), (ii) the received character not matching the number
of configured stop bits (framing interrupt), (iii) the reception of another character
before the previous reception is over (overflow interrupt), and (iv) exceeding the
programmed amount of time waiting for data reception (time-out interrupt). The
timeout interrupt value is configured in the receiver timeout register, and the trig-
ger level of the Tx and RxFIFOs are respectively configured through the TxFIFO
trigger value and RxFIFO trigger value registers.

23 01

RxFIFO
Trigger
RxFIFO
Trigger

RxFIFO
Empty
RxFIFO
Empty

RxFIFO
Full

RxFIFO
Full

8 45679

TxFIFO
Empty
TxFIFO
Empty

TxFIFO
Full

TxFIFO
Full

Receiver
Overflow
Receiver
Overflow

Receiver
Framing
Receiver
Framing

Receiver
Parity

Receiver
Parity

Receiver
Time-out
Receiver
Time-out

101112...31

Delta
Modem
Status

Delta
Modem
Status

TxFIFO
Trigger
TxFIFO
Trigger

TxFIFO
Nearly
FULL

TxFIFO
Nearly
FULL

TxFIFO
Overflow

TxFIFO
Overflow

UART Interrupt enable/disable/mask RegistersFigure 4.16: UART Interrupt enable/disable/mask registers layout.

The channel status register provides continuous monitoring of the TxFIFO and
RxFIFO levels and trigger status, the transmitter/receiver state machines status
(active or inactive), and the flow delay trigger status.

23 01...31

RxFIFO
Trigger
status

RxFIFO
Trigger
status

12 4...101113

UART Channel status Register

14

RxFIFO
Empty
status

RxFIFO
Empty
status

RxFIFO
Full

status

RxFIFO
Full

status

TxFIFO
Empty
status

TxFIFO
Empty
status

TxFIFO
Full

status

TxFIFO
Full

status
ReservedReserved

Receiver
active
status

Receiver
active
status

Transmitter
active
status

Transmitter
active
status

Flow delay
trigger
status

Flow delay
trigger
status

Transmitter
Trigger
status

Transmitter
Trigger
status

TxFIFO
Nearly full

status

TxFIFO
Nearly full

status

Figure 4.17: UART Channel status register layout.

One of the Control and status module main functionalities is to receive data
from the AXI interconnect and store it into the TxFIFO, allowing the UART
transmitter module to retrieve the data from the respective FIFO, and transmit
it over to the terminal (Tx). This behavior, shown in Listing 4.1, is achieved by

Chapter 4. Self-Secured Devices 67

connecting the AXI register into the TxFIFO and enabling the write enable when-
ever this register is written. The written enable should be cleared immediately in
the following clock cycle in order to prevent the same value getting written into
the FIFO more than once.

1 if (slv_reg_wren) begin

2 case (awaddr [ADDR_LSB + OPT_MEM_ADDR_BITS : ADDR_LSB])

3 5’h0C:

4 for(byte_index = 0; byte_index <=(C_S_AXI_DATA_WIDTH /8) -1; byte_index = byte_index +1)

5 // TxFIFO AXI register being written

6 if (S_AXI_WSTRB [byte_index] == 1) begin

7 slv_reg12 [(byte_index *8) +: 8] <= S_AXI_WDATA [(byte_index *8) +: 8];

8 if(wr_en_flag == 0 && byte_index <= (C_S_AXI_DATA_WIDTH /8) -1) begin

9 Tx_fifo_wr_en <= 1; wr_en_flag <= 1; // write enable signal issued

10 end

11 end

Listing 4.1: TxFIFO write enable upon AXI TxFIFO register write.
Verilog code extract.

Among the main functionalities is the reverse operation, reading the received
characters from the UART, which were stored into the RxFIFO. Upon issuing a
read of the respective AXI register (RxFIFO), the read enable signal is activated
for one clock cycle and the returned FIFO value stored into the respective read
AXI register, as depicted in Listing 4.2.

1 if (! rd_en_flag & araddr [ADDR_LSB + OPT_MEM_ADDR_BITS : ADDR_LSB]==5 ’h10& slv_reg_rden)

2 // RxFIFO AXI register being read

3 begin Rx_fifo_rd_en <= 1; rd_en_flag <= 1; end // read enable signal issued

4 if(rd_en_flag) begin Rx_fifo_rd_en <= 0; rd_en_flag <= 0; end

5 if (slv_reg_rden) axi_rdata <= reg_data_out ; // read selected axi register data

6 end

Listing 4.2: RxFIFO read enable upon AXI RxFIFO register read.
Verilog code extract.

Interrupt management is another task of the control and status module, which
checks the enable, disable, and mask registers of each interrupt and detects the
raising edge of each generated interrupt by the other modules. If all this conditions
are identified, the generated interrupt is let through to the PL interrupt ports until
it is cleared in the respective bit of the interrupt status register, as demonstrated
in Listing 4.3.

1 // Checks enable / disable / mask

2 assign ir_rxovr = (slv_reg2 [0] && ! slv_reg3 [0] && slv_reg4 [0]) ? 1 : 0;

3 // Checks for the interrupt rising edge

68 Chapter 4. Self-Secured Devices

4 assign pos_rxovr = (prev_rxovr == 0 && i_slv_reg11 [0]) ? 1 : 0;

5 ...

6 if(slv_reg_wren & (awaddr [ADDR_LSB + OPT_MEM_ADDR_BITS : ADDR_LSB]==5 ’h05)) begin

7 // interrupt status register modified , interrupt can be cleared

8 for(byte_index =0; byte_index <=(C_S_AXI_DATA_WIDTH /8) -1; byte_index = byte_index +1)

9 if (S_AXI_WSTRB [byte_index] == 1) begin ...

10 slv_reg5 [(byte_index *8) +: 8] <= S_AXI_WDATA [(byte_index *8) +: 8];

11 end

12 end else begin

13 // updates interrupt status upon trigger and after clear

14 slv_reg5 [0] <= (ir_rxovr & pos_rxovr)? 1 : slv_reg5 [0]; ...

15 end

Listing 4.3: Example of overflow interrupt management on the Control
and status module. Verilog code extract.

4.3.2 Baud rate generator Module

The baud rate generator provides the receiver and the transmitter modules
with a clock source. This module uses the general clock source and based on the
introduced user baud rate configurations parameters generates the baud rate with
the appropriate frequency. The required user-defined parameters are set at the
baud rate generator and baud rate divider registers, the reference clock frequency is
divided by these parameters, as shown in Figure 4.18. Moreover, two independent
baud rate signals are provided, for each the transmitter and receiver modules.
This is required to perform the baud rate synchronization by the receiver module
whenever the data transition begins, as explained later on.

UART Baud Rate Generator

Sel_clk

Mode_reg[0]

UART
Ref clock

S1

S2

D

C ENB

Mux
Clock

programmable
 divider

Baudrate
programmable

divider
Ref clock / 8

Baudrate_gen_reg[15:0]

Sel_clk /
Clk_divider

Baud sample

Baudrate_divider_reg[15:0]

Sel_clk /
(Clk_divider * (baudrate_divider+1))

Figure 4.18: UART Baudrate generator.

4.3.3 Transmitter and transmitter FIFO modules

The transmit FIFO (TxFIFO) stores the data from the AXI TxFIFO register,
up to eight bits upon a write transaction. When data is written, the empty flag

Chapter 4. Self-Secured Devices 69

is cleared, remaining low until all the data is removed and sent by the transmit-
ter. This FIFO provides event and interrupt flags such as, TxFIFO full interrupt
status (TFULL), TxFIFO nearly-full flag (TNFULL), threshold trigger (TTRIG),
that indicate if the FIFO is full, nearly full (one more write left), or reached the
programmed fill level, respectively.

The Transmitter gets the data from the TxFIFO and serializes it, Figure 4.19
illustrates this module state machine. Firstly, the TxFIFO level is verified, and if
it is not empty a read enable to the TxFIFO is issued and the start bit is sent.
If the data was successfully read from the FIFO (TxFIFO valid signal high) the
data bit transmission is started, otherwise the transmission is restarted. Once in
the data bits transmission state, the character is serialized and each data bit is
sent one by one at the corresponding baud rate. Also, high level data bits are
accounted in order to send the parity bit afterwards, if enabled at the device’s
configurations. When the number of sent data bits reaches the value configured at
the mode register, the transmitter state is updated. If the parity bit is enabled at
the mode register, the parity of the sent data bit is verified and sent accordingly
high/low, for one baud rate clock, otherwise this last step is disregarded. Then,
for the stop bit state, the number of configured stop bits at the mode register is
transmitted, also at the baud rate.

Counter = bit nbr
&

 No parity bit

IDLE

DATA_BIT

PAR_BIT
START_BIT

(TxFIFO

WR_enable)

BREAK

STOP_BIT

Stop
Transmission

Break

TxFIFO
Valid write

No
Transmission

Break

STARTSTART

Figure 4.19: Transmitter finite state machine.

70 Chapter 4. Self-Secured Devices

Lastly, before returning to idle state and ready to transmit other data, the
transmitter checks if a transmission break was issued, and in such case, the trans-
mitter will be locked in a "break" state until a stop transmission break is issued,
thereupon returning to the idle state and ready for the next transmission. Other-
wise, without receiving any transmitter break the transmitter returns directly to
the idle state after the sending the stop bits. Throughout the various transmitter
states, the Tx signal is set accordingly to the current state, parity configuration,
and current data bit (if in data bit state), as shown in Listing 4.4.

1 assign Tx =

2 (state == IDLE) ? 1’b1 :

3 (state == START_BIT)? 1’b0 :

4 (state == PAR_BIT && mr_par [0] == 0 && mr_par [1] == 0) ?

5 (nbr_of_ones_reg % 2 == 0) :

6 (state == PAR_BIT && mr_par [0] && mr_par [1] == 0) ?

7 (nbr_of_ones_reg % 2 != 0) :

8 (state == PAR_BIT && mr_par [0] == 0 && mr_par [1]) ? 0 :

9 (state == PAR_BIT && mr_par [0] && mr_par [1]) ? 1 :

10 (state == STOP_BIT) ? 1’b1 :

11 (state == BREAK) ? 1’b0 :

12 (state == DATA_BIT) ? data_reg [global_counter] : 1’b0;

Listing 4.4: Tx signal set according to current state. Verilog code
extract.

Figure 4.20 illustrates a complete transmitted data stream synchronized with the
respective baud rate, and configured with a eight data bit length, parity bit and
one stop bit.

Figure 4.20: Transmitter data stream.

4.3.4 Receiver and receiver FIFO modules

The receiver FIFO (RxFIFO) stores data up to eight bits, from the receiver
mode. This FIFO provides event and interrupt flags such as, RxFIFO full interrupt
status (RFULL) and the threshold trigger (RTTRIG) that indicate if the FIFO is
full or reached the programmed fill level, respectively.

Chapter 4. Self-Secured Devices 71

Counter = char number
 & No parity bit

IDLE

CHAR_LENGTH

WAIT FIFO

LAST
THREE

SAMPLES

DONE
(RxFIFO write

enable)

STOP_BIT

STARTSTART

Character stored

PAR_BIT

Counter < stop bit nbr

Figure 4.21: Receiver finite state machine.

The receiver module is responsible for continuously over-sampling the RxD
signal, gathering the data which is being serialized, and storing the received UART
data. This state machine is illustrated in Figure 4.21. When a sample detects the
RxD transition to low level it waits for half of the configured baud rate divider
value, collects three more samples and verifies if the RxD signal remained low.
If the signal remained low until this point, the receiver considers it as a valid
start bit, otherwise, the same process is performed in the next RxD negative edge.
Upon a valid start bit detection, the receiver baud rate clock is resynchronized in
order to collect three samples around the data bit mid-point, as shown in Figure
4.22.

Baud sample

RxD

Rx Baud rate

Data bit

Last 3 samples determi ne

the data bit

Figure 4.22: Resynchronized baud rate at data bit mid-point.

72 Chapter 4. Self-Secured Devices

When the resynchronized baud rate is high, the last three samples are collected
and the selected data bit is determined by majority voting, and the number of high
level selected bits is recorded for parity checking purposes. The former process
is repeated at a specific baud rate, until the number of selected bits meets the
number of characters configured in the mode register. Then, the receiver enters
the stop bit state, receiving the number of expected stop bits, also configured in
the mode register. After receiving the stop bits, if the RxFIFO has space for
the received data, the write enable signal is activated and the data stored in the
FIFO. Otherwise, if the FIFO is full, the receiver waits for available space to store
the data in the FIFO. However, if a new valid start bit arises when the receiver
is waiting for FIFO space, the assembled character is dumped and the overflow
interrupt issued.

In addition to the overflow interrupt, the receiver module also generates other
already mentioned interrupts, such as: parity interrupt, when the parity of the
received data bits is calculated, in accordance with the respective mode register
bit field, and does not match the received parity bit; framing interrupt, when
the received number of stop bits counter doesn’t match the expected number
(configured on mode register); and the timeout interrupt, when a global counter
that keeps track of the amount of time since the receiver is in idle state waiting
for a valid start bit exceeds the programmed value, configured in the respective
AXI register.

4.3.5 Mode switch module

The mode switch module uses the mode register configuration bit to control
the RxD and TxD signals routing. This module enables the UART to operate
in several modes show in Figure 4.23, such as: (i) normal mode, the standard
for UART operations, where the receiver and Rx and Tx signals pass-through the
mode switch module, directly to the respective RxD and TxD pins; (ii) automatic
echo mode, where the received data from the RxD pin is routed to both the re-
ceiver module and the TxD Pin, immediately transmitting what is being received
and stored; (iii) local loopback mode, where both the RxD or TxD pins are un-
connected, instead the transmitter Tx output signal is directly connected to the
receiver Rx signal (normally used for test purposes); (iv) remote loopback mode,
where the RxD and TxD pins are connected to each other and the UART cannot
transmit or receive any data, consequently received data is directly transmitted
back.

Chapter 4. Self-Secured Devices 73

Mode
Switch

Normal Mode

TransmitterTx FIFO

Rx FIFO

AXI4-lite Interface

Control
And

Status Receiver
RxD Pin

TxD Pin

Mode
Switch

Local Loopback Mode

TransmitterTx FIFO

Rx FIFO

AXI4-lite Interface

Control
And

Status Receiver
RxD Pin

TxD Pin

Mode
Switch

Automatic Echo Mode

TransmitterTx FIFO

Rx FIFO

AXI4-lite Interface

Control
And

Status Receiver
RxD Pin

TxD Pin

Remote Loopback Mode

TransmitterTx FIFO

Rx FIFO

AXI4-lite Interface

Control
And

Status Receiver RxD Pin

TxD Pin

Mode
Switch

Figure 4.23: UART operation modes.

4.3.6 Modem control module

The modem control module is used to manage communication between the
UART and a modem. The module has two associated registers, illustrated in
Figure 4.24: The modem status register, contains the current status of Delta
Clear to Send, Delta Data Set Ready, Trailing-edge Rind indicator and Delta
data carrier detect. Whenever one of these modem signals status changes, an
interrupt is issued, by setting the interrupt status bit at the DMSI bit in the
interrupt status register. The modem control register sets the data terminal ready
(DTR) and request to send signals, and is able to configure the flow control mode
as either automatic or Manual. The flow control mode is by default manual,
hence the request to send (RTS), and data terminal ready (DTR) are completely
controlled by the modem control register. However, if the flow control mode is
configured as automatic, these signals are asserted and de-asserted based on the
current FIFO level and configured flow delay register, and transmission in only
possible when the clear to send signal is asserted.

... 01...31

Data
Terminal

Ready

Data
Terminal

Ready

Request
To Send
control

Request
To Send
control

5

Automatic Flow
Control Mode

Automatic Flow
Control Mode

UART Modem Control Register

23 01...31

Delta
Clear to

Send

Delta
Clear to

Send

Delta
Data
Set

Ready

Delta
Data
Set

Ready

Trailing
Edge
Ring

Indicator

Trailing
Edge
Ring

Indicator

8 4567

Delta
Data

Carrier
Detect

Delta
Data

Carrier
Detect

Clear
to

Send

Clear
to

Send

Data

Set
Ready

Data

Set
Ready

Ring
Indicator

Ring
Indicator

Data
Carrier
Detect

Data
Carrier
Detect

Flow
Control
Mode

Flow
Control
Mode

UART Modem Status Register

Figure 4.24: UART modem registers layout.

74 Chapter 4. Self-Secured Devices

4.3.7 Device driver

To access the device’s functionalities, a software interface to the hardware
devices was implemented, enabling both the GPOS and the RTOS facilitated
access to hardware functions through an abstraction layer. Therefore, to manage
the UART by accessing the respective AXI registers, the following functions are
provided:

• UART_SetBaudrate: calculates and sets the most adequate baudrate given
the input clock and baudrate divider. Also, resets the transmitter and re-
ceiver modules and calls the enable function;

• UART_Init: sets up the device data format, operation mode, FIFOs triggers
to default values, disable all interrupts and calls the function responsible for
configuring interrupts;

• UART_Enable: enables the transmitter and receiver modules on the control
register and disables stop breaks;

• UART_Disable: disables the transmitter and receiver modules on the con-
trol register and enables stop breaks;

• UART_Reset: disables all interrupts and the receiver and transmitter mod-
ules, resets the transmitter and receiver modules consequently clearing all
FIFOs, clears status flags and restores FIFO trigger levels and transmitter
and receiver to default reset value;

• UART_SelfTest: disables all interrupts, sets the device in local loopback
operation mode, sends a full string with "puts" function and compares it
with the received string by the receiver, if the comparison returns valid
means the device is working correctly, thus, the self test returns successful;

• UART_getc: attempts to read the character from the receiver FIFO by
reading the RxFIFO AXI register;

• UART_putc: attempts to write a character to the secure transmitter FIFO
by writing the character into the TxFIFO AXI register;

• UART_puts: attempts to write a string to the transmitter FIFO, by se-
quentially writing the string’s constituent characters into the TxFIFO AXI
register;

Chapter 4. Self-Secured Devices 75

4.3.8 Self-Securing the UART

Following the self-secured concept, the device logic is divided into two separate
interfaces composed of different banked registers: the secure interface, exclusively
accessible by the secure world and the non-secure interface, accessible by both the
secure and non-secure worlds. Most of the required modifications to the original
hardware logic are confined to the AXI peripheral and registers within the control
and status module. The vulnerable logic part of the device, the secure interface,
must be isolated from the non-secure world., This includes registers that may:

• Compromise data validity, as the mode register, where data format is set;

• Trigger unexpected and unintended interrupts by changing interrupt con-
figurations registers, data formats, timeout configurations, operation modes
and so on;

• Change devices configuration, which are normally performed at boot time
(baud rate and data formats configurations);

• Tamper with the device’s normal flow by changing the operation mode of
the device through mode and modem control registers (normal, automatic
echo, local/remote loopback and flow control modes) or also by transmitting
breaks to the receiver through the modem register;

• Contain sensible and secure data that should not be accessible by the non-
secure world as data being sent over by the UART while in the secure world
or even received secure data. This type of data is stored in the secure
transmit and receive FIFOs respectively, present in the secure bank.

Therefore, every AXI register was individually evaluated taking these propri-
eties into consideration and classified as secure or non-secure registers. Secure
banked registers exclusively belong to the secure interface, unlike non-secure reg-
isters which are be replicated to the non-secure registers bank, allowing access
from both interfaces (Figure 4.25).

76 Chapter 4. Self-Secured Devices

GPOS Secure-OS/RTOS

Monitor Layer

Secure WorldNon-Secure World

Secure
Interrupts

Driver Driver

Self-Secured Xilinx Uart

Secure Interface

Non-Secure
 Interrupts

Control

Non-Secure
Interface

FIQ FIQ

IRQ

IRQ

Mode

Int_en

Int_dis

Int_mask

Int_status

baudgen

Rx_tout
Rx_trig

Modem_status

Modem_control

Channel_status

Rx_FIFO

tout

Tx_FIFO

Baudrate_div

Tx_trig

Flow_delay

Int_statusChannel_status
Rx_trig

Rx_FIFOTx_FIFO

Tx_trig

Overflow

Near Full Empty
Full

Trigger

 TxFIFO

Overflow

Near Full Empty
Full

Trigger

 RxFIFO

Overflow

Near Full Empty
Full

Trigger

 TxFIFO

Overflow

Near Full Empty
Full

Trigger

 RxFIFO

 ReceiverOverflow Parity Timeout Framing

FIQ

IRQ

FIQ

IRQ

Figure 4.25: Self-Secured UART architecture.

According to Figure 4.25, the exclusive registers from the secure interface en-
compass the:

• Control register, due to the possibility of compromising UART’s main mod-
ules by changing configurations such as enable, disable, reset, and break
transmissions of the transmitter and receiver modules, shared by both the
secure and non-secure interfaces;

• Mode register, sets the transmitted and received data format. If the data
format is modified during a transmission/reception, data validity cannot be
guaranteed. Data format should be set at configuration time, accordingly
to the terminal configuration. If this register is changed by the non-secure
world and mismatches terminal configurations, the data validity would be
compromised and unintended interrupts could be triggered;

• Interrupt enable/disable/mask registers, used to enable/disable UART’s in-
terrupts. Such configurations are normally performed at boot time, and if

Chapter 4. Self-Secured Devices 77

modified at any other moment could trigger unintended interrupts. So, the
non-secure world should not be able to access it;

• Baud rate generator register, contains the value by which the reference clock
is divided to generate the desired baud rate and baud sample. It is also
typically set at configuration/boot time, accordingly to the terminal con-
figuration. Hence, if this register is modified and mismatches the terminal
configurations, the data validity is compromised;

• Baud rate divider register, contains the value by which the baud sample is
divided to generate the desired transmitter and receiver baud rates. Thus,
it should also be secured, as the previous register.

• Receiver timeout register, enables the UART to detect an idle condition on
the receiver data line. The timeout value indicates the maximum delay for
which the UART should wait for a new character to arrive, before issuing a
timeout interrupt. Therefore, should only be changed by the secure world,
otherwise an unintended timeout interrupt on the receiver module might be
triggered;

• Modem control register, controls the interface with the modem. The secure
world should be exclusively capable of altering UART’s operation mode and
setting automatic or manual flow control, due to the possibility of disrupting
the device;

• Flow Control Delay register, only used if enabled in the modem control
register, and specifies the receiver FIFO level at which the terminal request
to send signal (RTS) is asserted/de-asserted. Such as the modem control
register it should only be accessible through the secure interface, since it
modifies the UART operation mode;

Also according to Figure 4.25, the registers from the non-secure interface encom-
pass the:

• Modem status register, indicates the current state of the control lines of the
modem. Since this register does not break any of the above properties, it
can be accessed by both worlds without being replicated.

• Interrupt status register, indicates any interrupt event that has occurred
since this register was last cleared. This register must be replicated to the
non-secure register bank, so that non-secure interrupts status can also be set

78 Chapter 4. Self-Secured Devices

and cleared by the non-secure world, while protecting the secure interrupts
status;

• Status register, enables the continuous monitoring of the raw unmasked sta-
tus information of the UART. This register must be replicated to both reg-
ister banks so that both the secure/non-secure FIFOs status are accessible
by the respective interfaces;

• Transmit FIFO, data written to this register is stored into the respective
FIFO in order to be sent over by the transmitter. A copy of this register
is required in both the secure and non-secure interfaces, preventing secure
data from being accessed or non-secure data from being stored in the secure
FIFO.

• Receiver FIFO, contains the last data read from the receiver FIFO. A copy of
this register is required in both the secure and non-secure banks, preventing
secure data from being read through the non-secure interface or non-secure
data from being stored into the secure FIFO.

• Transmitter/Receiver FIFO Trigger Level registers, used to set the value at
which the receiver and transmitter FIFOs trigger an interrupt event. These
registers must be replicated, such as both FIFOs, so that both the secure
and non-secure receiver FIFOs level trigger can be respectively configured;

Following the same interrupt model as the timer use case, secure and non-secure
interrupts must be differentiated. In this sense, whenever the receiver incoming
data source is the secure terminal port, the receiver interrupts are routed as fast
interrupt requests (FIQs) to the secure world. Otherwise, if the source is the
non-secure terminal, interrupts are routed as interrupt requests (IRQs) to the
non-secure world. Differently, interrupts upcoming from the non-secure FIFOs
are exclusively routed as IRQs and interrupts upcoming from the secure FIFOs
are exclusively routed as FIQs.

Summing up, the non-secure bank accessible by both interfaces contains the
non-secure FIFOs and their associated triggers level registers, as well as other
status registers. Non-secure data is only stored into the non-secure FIFOs and
unable to be stored into the secure FIFOs. Both register banks are mapped into
the AXI-lite peripheral address space, shown in Table 4.4.

Chapter 4. Self-Secured Devices 79

Table 4.4: Self-Secured UART register map.

Base address

(0x43C00000)
+ Offset Type Name

0 RW Control register

4 RW Mode register

8 RW Interrupt enable register

12 RW Interrupt disable register

16 RO Interrupt mask register

20 RW Interrupt status register

24 RW Baudrate generator register

28 RW Receiver timeout register

32 RW RxFIFO Trigger value register

36 RW Modem Control register

40 RW Modem status register

44 RO Channel status register

48 RW TxFIFO register

52 RW Baud rate divider register

56 RW Flow delay register

60 RW TxFIFO Trigger value register

Secure

Register

Bank

64 RW RxFIFO register

68 RW NS RxFIFO Trigger value register

72 RW NS TxFIFO Trigger value register

86 RW NS RxFIFO register

80 RW NS TxFIFO register

84 RW NS Interrupt status register

Non-Secure

Register

Bank

88 RW NS Channel status register

The behavior of the AXI registers access upon read/write operations from
both the secure and non-secure interfaces is illustrated in Figure 4.26. When ac-
cessing the UART from the secure world, all banked registers can be accessed.

80 Chapter 4. Self-Secured Devices

Although, not all are illustrated in Figure 4.26 (extensive list). Differently, from
the non-secure world perspective, only the non-secure register bank is accessi-
ble. As previously explained and hereby illustrated, write accesses are restricted
based on the AWPROT TrustZone extended protection signal and read accesses
restricted through the ARPROT signal.

Control register

Mode register

Secure perspective

NS TxFIFO trigger register

Non-Secure perspective

START

IDLE

WR_EN

RD_EN

ARPROT[1]==1
AWPROT[1]==1

AWPROT[1]==0

NS RxFIFO trigger register

Secure
world

Read

Non- Secure
world

Write

NS TxFIFO register

NS RxFIFO register

NS Channel status register

NS Interrupt status register

Interrupt status register

Channel status register

…

TxFIFO register

TxFIFO trigger register

NS TxFIFO trigger register

NS RxFIFO trigger register

NS TxFIFO register

NS RxFIFO register

NS Channel status register

NS Interrupt status register

AWPROT[1]==0

Figure 4.26: Self-secured UART register access flow.

In addition to the register and control signals modifications to self-secure the
device, some minor modifications are still required at the UART’s main modules
used by both interfaces. These modifications, shown in Figure 4.27, encompass
the previously mentioned duplication of receiver and transmitter FIFOs (data
isolation), and minor modifications to the receiver and transmitter modules to
store the data in the respective FIFOs, accordingly to the terminal data source
security. Given the time-criticality of secure applications using the UART through
the secure interface, secure data transmission and reception must be prioritized.

Chapter 4. Self-Secured Devices 81

Self-Secured Uart

TxFIFO RxFIFO

S Tx S Rx

Rx TxRx Tx

Secure Ports Non-Secure Ports

S NS NS S

S_F IFO
 empty?

NS Rx

S Rx
Active?

NS Rx
Active?

N o

Yes

Yes

NS Tx

Selector

N o

Yes

Terminal

Figure 4.27: Self-Secured UART application example.

At the transmitter level, secure data transmission prioritization is ensured by
only transmitting non-secure data when the secure FIFO is completely empty.
Whenever the transmitter is in idle state, it verifies if a read request has already
been issued to the Transmitter FIFO and validated, through the valid TxFIFO
signals. If so, the transmitter changes to the next state to begin transmitting the
data and the output Tx signal is selected according to the data source security
(secure or non-secure FIFO). Otherwise, if no read request has been issued to
both TxFIFOs yet, the transmitter verifies which FIFO has available data to be
transmitted, through the FIFOs empty status signals. Since the secure FIFO data
is prioritized, the transmitter starts by checking the secure FIFO for available
data. If there is available data to read in this FIFO the read enable signal is
issued, for one active clock, to the secure FIFO. However, if the secure FIFO is

82 Chapter 4. Self-Secured Devices

empty, the transmitter further checks for available data on the non-secure FIFO.
If data is available for transmission on the non-secure FIFO, the enable signal is
issued to the non-secure FIFO instead. Once the transmission is completed, the
transmitter waits in idle state for a new FIFO read operation to be validated,
in order to proceed to the next transmission state, with the Tx signal selected
according to the transmission security state. Listing 4.5 shows the aforementioned
behavior Verilog implementation.

1 if(rd_flag) begin TxFIFO_rd_en_S <=0; TxFIFO_rd_en_NS <=0; end

2 case (state) IDLE: begin

3 if (!(TxFIFO_valid_S | TxFIFO_valid_NS) & ! valid_flag) begin

4 if(! TxFIFO_empty_S)begin

5 rd_flag <= 1; TxFIFO_rd_en_S = 1; tx_state <= 1; end

6 else begin if (! TxFIFO_empty_NS)begin

7 rd_flag <= 1; TxFIFO_rd_en_NS =1; tx_state <= 0; end

8 end end

9 if(TxFIFO_valid_S) begin

10 data_reg <= i_data_S ;

11 valid_flag <= 1; end

12 if(TxFIFO_valid_NS) begin

13 data_reg <= i_data_NS ;

14 valid_flag <= 1; end

15

16 if(valid_flag & baudrate_Tx_neg)begin

17 state <= START_BIT ;

18 rd_flag <= 0;

19 valid_flag <= 0; end

20 end

21 assign Tx_S = (tx_state) ? Tx : 1’b1;

22 assign Tx_NS = (tx_state) ? 1’b1 : Tx;

Listing 4.5: Secure data transmission prioritization. Verilog code
extract.

At the receiver module, the security of the receiving data is ensured by contin-
uously monitoring of both the secure and non-secure RxD signals, at the specific
baudsample frequency. Upon a start bit detection from the secure RxD, the re-
ceiver prepares for a secure data reception. Whether if the receiver is in idle mode
or already receiving non-secure data, the new data is prioritized. In the latter
case, the receiver dumps the non-secure data and forces the receiver to restart
and receive the secure data immediately, unless the data being received is already
secure. Otherwise, if the secure reception has already been performed, while in
idle mode the receiver is able to start receiving the non-secure data.

Chapter 4. Self-Secured Devices 83

Receiver’s parity, framing and timeout interrupts are duplicated, enabling re-
ceiver interrupts to be routed as either FIQs or IRQs according to security source
of the data being received whenever an interrupt is triggered. Listing 4.6 shows
the aforementioned behavior Verilog implementation.

1 assign RxD = (S_STATE) ? RxD_S : RxD_NS ;

2 assign i_RxD_S_negedge = (i_RxD_S_previous && RxD_S == 0) ? 1 : 0;

3 assign i_RxD_NS_negedge = (i_RxD_NS_previous && RxD_NS == 0)? 1:0;

4 if(baudsample)begin // iRxD NEGEDGE DETECTION

5 ...

6 if(! S_STATE)begin

7 if(i_RxD_S_negedge)begin

8 // dump NS data and restart S reception

9 ... // clean global counters

10 state <= IDLE;

11 first_negedge <= 1;

12 S_STATE <= 1; end

13 else if (i_RxD_NS_negedge) first_negedge <= 1;

14 end

15 if(state != IDLE & state != WAIT_FIFO) first_negedge <= 0;

16 end

17 case (state) ...

18 // After detecting the negedge , the start bit must be validated

19 IDLE: if(first_negedge) ... if(start_bit) state <= next_state ;

20 DONE: ... S_STATE = <0; state <= IDLE; endcase

21 assign NS_RxFIFO_wr_en = (state == DONE & ! S_STATE) ? 1 : 0;

22 assign S_RxFIFO_wr_en = (state == DONE & S_STATE) ? 1 : 0;

Listing 4.6: Secure data reception prioritization. Verilog code extract.

4.3.8.1 Device Driver Modifications

To provide access from the secure world to both the secure and non-secure
interfaces, and as a consequence of the implemented changes in the AXI registers
addresses, some minor modifications to the device driver were performed. These
include the following functions:

• UART_getc, attempts to read the character from the secure receiver FIFO
by reading the RxFIFO AXI register of the secure register bank, accessible
exclusively through the secure interface;

• UART_get_NS, attempts to read the character from the non-secure receiver
FIFO by reading the NS_RxFIFO AXI register of the non-secure register
bank, accessible through both interfaces;

84 Chapter 4. Self-Secured Devices

• UART_putc, attempts to write a character to the secure transmitter FIFO
by writing the character into the TxFIFO AXI register of the secure register
bank, accessible exclusively through the secure interface;

• UART_putc_NS, attempts to write a character to the non-secure transmit-
ter FIFO by writing the character into the NS_TxFIFO AXI register of the
non-secure register bank, accessible through both interfaces;

• UART_puts, attempts to write a string to the transmitter FIFO, by sequen-
tially writing the string’s constituent characters sequentially into the secure
TxFIFO AXI register, accessible exclusively through the secure interface;

• UART_puts_NS, attempts to write a string to the transmitter FIFO, by
sequentially writing the string’s constituent characters sequentially into the
non-secure TxFIFO AXI register, accessible through both interfaces;

The device driver used in both the secure and non-secure OSs is exactly the same.
Modifications at the device driver level are not required, because the security
mechanisms for isolating both secure and non-secure accesses are implemented at
the hardware level.

4.4 LTZVisor Integration

The Self-secured devices were integrated in an LTZVisor-based system to test
all the provided features, while being simultaneously shared by both the secure and
non-secure worlds. Targeting a dual-guest OS configuration, the LTZVisor config-
ures as non-secure the required resources for the non-secure guest execution. As
previously mentioned, the LTZVisor memory configuration is performed through
the TrustZone system level control register (SLCR), which enables memory seg-
ments to be configured as either secure or non-secure. Based on this configuration
the non-secure guest must be previously compiled to run within the respective as-
signed memory region. To assign the non-secure region, it is mandatory accessing
the SLCR, which needs to be unlocked before changing any of its registers. There-
upon, in Zynq-based devices, through TZ_DDR_RAM the seven first memory
segments are configured as non-secure.

In order to allow non-secure accesses to propagate to the AXI-lite slaves used
by the devices, both TZ_FPGA_M and security_fssw_s0 must be set, enabling
non-secure accesses to be propagated through the PL AXI master ports and the
general purpose interface (AXI_GP), respectively. This allows self-secured devices

Chapter 4. Self-Secured Devices 85

to identity the security state of the access, and restrain non-secure accesses through
their internal hardware logic.

Moreover, resources required for the Linux OS execution, such as the global
timer must be set has non-secure. Other optional resources might also be config-
ured as non-secure, such as the SDIO and QSPI. For instance, it can be used to
store the Linux image in these interfaces. Lastly, after configuring the resources
security, the SLCR must be locked again with the respective key. If the SLCR
registers are left unlocked it would expose them to being accidentally overwrit-
ten. These configurations are performed at the board initialization and shown in
Listing 4.7.

Listing 4.7: Resources security configuration at board inialitzion.

1 uint32_t board_init(void){...

2 /** Unlocking SLCR register */

3 write32((void *)SLCR_UNLOCK, SLCR_UNLOCK_KEY);

4 /* Handling DDR memory security (first 7 segments NS)l */

5 write32((void *)TZ_DDR_RAM, 0x0000007f);

6 /* M_AXI_GP0 master security (NS) */

7 write32((void *)TZ_FPGA_M, 03);

8 /* M_AXI_GP0 slave security (NS) */

9 write32((void *)SECURITY_FSSW_S0, 0x1);

10 // SCU access control register , contains global timer

11 write((void *) SECURITY_SCU, 0xf);

12 // SCU Non - secure Access Control Register , contains global timer

13 write((void *) SECURITY_NS_SCU, 0xfff);

14 /* SDIO0 slave security (NS) */

15 write32((void *)SECURITY2_SDIO0, 0x1);

16 /* SDIO1 slave security (NS) */

17 write32((void *)SECURITY3_SDIO1, 0x1);

18 /* QSPI slave security (NS) */

19 write32((void *)SECURITY4_QSPI, 0x1);

20 /** Locking SLCR register */

21 write32((void *)SLCR_LOCK, SLCR_LOCK_KEY);

22 }

Nonetheless, for devices configured as non-secures, their respective interrupts
should also be configured as non-secure, through the interrupt security configu-
ration (ICDISRX) registers of the GIC distributor. Instead, devices configured
as secure should have their associated interrupts configured as secure. Likewise,
interrupts from the implemented hardware devices should also be set accordingly.
Furthermore, the CPU Interface Control Register (ICCCICR) is configured, so

86 Chapter 4. Self-Secured Devices

secure interrupts are routed as FIQs. These configurations are performed through
GIC API at the hardware initialization phase, as shown in Listing 4.8.

Listing 4.8: LTZVisor GIC hardware initial security configuration.

1 uint32_t ltzvisor_hw_init(void){

2 /* Config Interrupts Security */

3 interrupt_security_configall();

4 // Self - Secured UART

5 interrupt_security_config(RX_PAR_Intr_NS, Int_NS);

6 interrupt_security_config(RX_PAR_Intr_S, Int_S);

7 // Global Timer

8 interrupt_security_config(27 , Int_NS);

9 // Triple Timer Counters

10 interrupt_security_config(TTC1_TTCx_2_INTERRUPT,Int_S);

11 interrupt_security_config(TTC0_TTCx_2_INTERRUPT,Int_S);

12 // ENABLE NON - SECURE INTERRUPTS

13 interrupt_enable(RX_PAR_Intr_NS,TRUE);

14 }

4.4.1 FreeRTOS

The chosen OS to run on the secure world was the FreeRTOS, more specifically
version 7.0.2. To deploy this OS on the LTZVisor its source code needs to be
copied into the LTZVisor secure guest directory. Due to the implementation-
defined secure guest and hypervisor compounded compilation into a single image,
modifications in the LTZVisor makefile are mandatory, enabling the compiler and
linker to add the FreeRTOS files upon the image generation. The directory path
of each FreeRTOS added source file and included library must be added to the
LTZVisor global makefile, along with the FreeRTOS objects makefile where all the
respective output objects that should be generated upon compilation are included.

4.4.1.1 Interrupt management

Modifications on the FreeRTOS source code mainly consisted on: replacing
IRQs, so that it can execute using FIQs instead; and adding support for the re-
quired FIQ handling (Listing 4.9), which is the secure OS responsibility, according
to the LTZVisor interrupt model where all the secure interrupts must be handled
by the secure guest.

LTZVisor asymmetrical scheduler depends on FIQ handling to perform par-
titions scheduling and resume the RTOS tasks. Moreover, the FreeRTOS must

Chapter 4. Self-Secured Devices 87

be able to handle the system tick FIQ, triggered by its Triple Timer counter in-
terrupt. To achieve such behavior, at FreeRTOS interrupt setup, the system tick
interrupt (previously configured as secure) should: (i) be associated with the re-
spective handler that will increment the RTOS system tick count, run the highest
priority task ready, and clear the interrupt; (ii) set the interrupt target; (iii) set
the priority level; and lastly, (iv) enable the interrupt. The same process is per-
formed to set up other secure interrupts, such as interrupts from the implemented
devices. Another important consideration during secure interrupt configuration
is to assign their priority with a higher level than IRQs, in the lower half of the
spectrum (ARM interrupt priority scale is inverted). The FreeRTOS interrupts
setup is shown in Listing 4.9.

Listing 4.9: FreeRTOS interrupt setup.

1 uint32_t prvSetupInterrupt(void){

2 interrupt_enable(TTC1_TTCx_2_INTERRUPT,TRUE);// System tick intterupt

3 interrupt_enable(RX_PAR_Intr_S,TRUE);// UART Secure parity interrupt

4 interrupt_target_set(RX_PAR_Intr_S,0 ,1);

5 interrupt_target_set(RX_FRAM_Intr_S,0 ,1);

6 vFreeRTOS_handler_set(TTC1_TTCx_2_INTERRUPT,vTickISR);

7 vFreeRTOS_handler_set(RX_PAR_Intr_S, handler_RX_PAR_Intr_S);

8 interrupt_priority_set(TTC1_TTCx_2_INTERRUPT,6);

9 interrupt_priority_set(RX_PAR_Intr_S,7);

10 }

4.4.2 Linux

Differently from FreeRTOS, the non-secure Linux OS is compiled separately
and then loaded to the non-secure guest memory during boot phase. Even though
the non-secure OS does not need as many modifications as FreeRTOS to run on
top of LTZVisor, some minor changes in the device file tree, disabling FIQs, and
compiling Linux to the pre-established address in LTZVisor shall be performed.
Nonetheless, to deploy Linux in the LTZVisor four main components are required:
the device tree, Linux file system, Linux built image, and Linux boot loader.

4.4.2.1 Linux device tree

Firstly, modifications were performed to the Linux device tree (DTS), which
maps every device used by Linux and allows associating the devices with the
respective device drivers and device interrupts. The device tree should be kept

88 Chapter 4. Self-Secured Devices

minimal, therefore modifications consisted on only adding the mandatory devices
for Linux, such as the CPU, memory, interrupt controller, UART, global timer,
SLCR, SD card, and user implemented devices. For instance, in order for the
implemented timer device interrupts to be detected and handled by Linux, an
entry containing device information, physical address, associated device driver
and interrupts must be added, as demonstrated in Listing 4.10.

Listing 4.10: Private Timer entry on Linux device tree.

1 amba_pl: amba_pl {

2 #address - cells = <1>;

3 #size - cells = <1>;

4 compatible = "simple -bus";

5 ranges ;

6 SelfSecured_PTIMER_approach1_0: SelfSecured_PTIMER_approach1@43c00000 {

7 compatible = "mycompany , ptimer_driver ";

8 interrupt-names = " interrupt ";

9 interrupt-parent = <&intc>;

10 interrupts = <0 29 4>;

11 reg = <0x43c00000 0x10000>;

12 xlnx,s00-axi-addr-width = <0x4>;

13 xlnx,s00-axi-data-width = <0x20>;

14 }...};

Other required modifications are necessary in the device tree boot arguments,
enabling Linux single core execution and defining the memory location of the
initial Linux file system specified in the linker script.

4.4.2.2 Linux file system

Linux file system has the initial composing files of Linux system and can be
built with two different formats: ramdisk and initramfs. To modify the default
file system (e.g. adding custom precompiled user space applications) the following
operations must performed in the respective order: (i) extract the initial ramdisk
image from the zipped archive; (ii) mount the extracted disk image; (iii) access
the mounted file system and perform the pretended modifications, (iv) unmount
the extracted disk image and recompress the image which will be used in the boot
loader phase that will be further addressed. A relevant example of a precompiled
user application added to the Linux file system to access the implemented device
driver is illustrated in Listing 4.11.

Listing 4.11: Example of an user application to access a device driver.

Chapter 4. Self-Secured Devices 89

1 int main() {...

2 // Open device with read / write access ...

3 fd = open("/dev/ UART_driver ", O_RDWR);

4 // Send the string to the device driver

5 ret = write(fd, stringToSend, strlen(stringToSend));

6 // Read the response from the device deriver

7 ret = read(fd, receive, rcv_length);

8 ...}

4.4.2.3 Linux modifications and build

We have selected Xilinx Linux version 2015.4, available at XilinxGit repository.
Vivado toolchain already provides a set of default kernel configurations (kconfig)
for their different SoCs, including for the Zynq-7000 SoC, which facilitates the
kernel custom configuration. Therefore, before performing any modification, the
Zynq default configurations should be applied beforehand. The kernel configura-
tion can be further modified through the kconfig menu interface to add necessary
features, device drivers, and other custom options.

Due to LTZVisor’s interrupt model, the FIQ stack initialization had to be
removed, since FIQs are exclusively routed to the secure world, and IRQs routed to
the non-secure world. Furthermore, devices configured as secured are occasionally
required by the non-secure world, imposing accessibility problems. Hence, to
access some required secure devices the non-secure world needs to perform this
accesses mediated by the hypervisor. To perform this accesses, as well as access
some secure CP15 and SLCR registers, three SMC instruction were added (i.e.
secure_read, secure_write, secure_cp15_write), allowing the non-secure guest OS
to perform this operations, under the LTZVisor’s supervision.

4.4.2.4 Second stage bootloader

The employed Linux bootloader zcomposite is a minimal boot loader which
assembles the four required components into a single binary file. Apart from the
Linux components, the boot loader requires three other files: the linker script, a
makefile, and an assembly file. In the Linux linker script Zynq file the entry point
for the zcomposite image, device tree offset, file system offset, and Linux image
offset addressed are all specified. The cleareg assembly file, added to the first
section of the linker script, provides a simple register setup code for stand-alone
Linux booting setting parameters, such as Xilinx machine number, Linux starting
point address, and device tree blob address. The makefile generates the binary

90 Chapter 4. Self-Secured Devices

file image, which must be included in the secure world memory, from where the
hypervisor will copy the file to the non-secure world and jump to its address. This
binary file is generated in a specified address entry point, based on the agglom-
eration of the previous cross-compiled Linux image, compressed file system, and
device tree blob.

In the LTZVisor non-secure guest configuration file, the binary load address
should be changed to the same address specified in the Linux boot loader linker
script. Also, the Linux binary file should be included by adding the binary path
to the include binary parameter in the LTZVisor non-secure guest file.

4.4.2.5 Device Drivers

Device drivers must be integrated into Linux OS kernel, providing access to
the hardware device’s functionalities and perform associated non-secure interrupts
(IRQs) handling. The device driver should be added before the Linux image compi-
lation in the device drivers directory, where the makefile and kernel configurations
file should be appropriately updated with the added device drivers. Inside the
driver’s directory, a makefile and kernel configuration file should also be created
for calling upon the driver’s files when the driver is enabled. Lastly, in order
to add the created kernel configuration file and install the respective driver, the
architecture specific configuration (Xilinx Zynq default config.) should also be
updated.

Occasionally in some devices, such as the implemented hardware devices, the
kernel is unable to retrieve some of its information, such as its associated interrupt
lines, even if mapped in the kernel device tree. Platform drivers [Cor] are able to
bound these undiscoverable devices and respective information with their drivers
by matching names. By registering the platform driver with resources information
specified on its structure, the kernel is able to get device’s information, as the
associated device tree entry, IRQ number, memory locations, and so on. The
platform driver should include at least the probe and remove functions. The
driver’s init function calls the device registration function, providing the kernel
with a list of the devices able to service, along with a pointer to the structure which
contains device’s information (e.g. device name), probe and remove functions.
Then, the kernel is responsible for calling the probe function of each device where
hardware is initialized, the device’s resources allocated, and the device registered
within the kernel. Inside this function, the device’s physical address space is
mapped into the virtual address that will be used to access the device from the
kernel space, and the interrupt line read from the DTS entry and assigned to the

Chapter 4. Self-Secured Devices 91

respective IRQ handler. An example of a platform driver is shown in Listing ,
4.13.

Listing 4.12: Platform driver code extract.

1 static irqreturn_t mydriver_interrupt(int irq, void * dev_id)

2 {/* service iterrupt here */ return IRQ_HANDLED;}

3 static int mydriver_of_probe(struct platform_device *ofdev)

4 {...

5 // Map Physical address to Virtual address

6 dev_virtaddr = ioremap(PTIMER_BASEADDR, PTIMER_HIGHADDR-PTIMER_BASEADDR+1);

7 res = platform_get_resource(ofdev, IORESOURCE_IRQ, 0); ...

8 // save the returned IRQ

9 dm.irq = res->start;

10 printk(KERN_INFO "IRQ read form DTS entry as %d\n", dm.irq);

11 rval = request_irq(dm.irq, mydriver_interrupt, 0 , P_TIMER, &dm);...

12 // Device initialization actions ...

13 }

14 static int mydriver_of_remove(struct platform_device *of_dev)

15 { free_irq(dm.irq, &dm); return 1; iounmap(dev_virtaddr);}

16 static const struct of_device_id mydriver_of_match[] = {

17 { .compatible = "mycompany , ptimer_driver ", },

18 };

19 static struct platform_driver mydrive_of_driver = {

20 .probe = mydriver_of_probe,

21 .remove = mydriver_of_remove,

22 .driver = { .name = P_TIMER},

23 };

24 module_init(mydrive_of_driver_init);

25 module_exit(mydrive_of_driver_cleanup);

4.4.2.6 Para-TrustZone modifications

The state-of-the-art Para-TrustZone method was implemented on the LTZVi-
sor in order to perform comparative evaluations with other methods. Some slight
modifications were performed to enable the GPOS driver to send requests for
the secure device. These requests are performed through TrustZone privileged in-
struction SMC (Secure Monitor Call), which enables the non-secure world entering
monitor mode.

Within Linux device drivers, instead of the device’s operations being carried
out through the usual accesses to the physical address of the device, which in
this scenario is configured as secure and would trigger an external abort, the
device’s operations are now replaced with calls to the following shown assembler

92 Chapter 4. Self-Secured Devices

functions. These calls will execute a SMC with the required kernel privilege, for
the hypervisor to carry out the pretended device operation in the secure side.

Listing 4.13: Example of Para-TrustZone driver assembly functions.

1 # include <asm/ assembler .h>

2 ...

3 .global set_counter
4 .global set_timer
5 .global get_counter
6 set_counter:

7 mov r1, r0
8 ldr r0, = PTIMER_SETCOUNTER
9 smc #0

10 bx lr
11 set_timer:

12 mov r1, r0
13 ldr r0, = PTIMER_SET
14 smc #0

15 bx lr
16 get_counter:

17 ldr r0, = PTIMEMR_GETCOUNTER
18 smc #0

19 bx lr
20

The LTZVisor must handle the requests from the GPOS driver, thus the pre-
tended supported device operations are added to the the system call handling fun-
cion (board_handler) and carried out depending on the SMC passed arguments
upon the driver call.

Listing 4.14: Board handler function in board.c.

1 uint32_t board_handler(uint32_t arg0, uint32_t arg1, uint32_t arg2){

2 switch (arg0) {

3 case (PTIMER_SETCOUNTER):

4 write32((void *) (0x43C00004) , (uint32_t)(arg1));

5 break ;

6 case (PTIMER_SET):

7 backup = read32((volatile void *)0x43C00000 + (uint32_t)(8));

8 if (arg1) backup = backup | 0x00000001; else backup = backup &

~(0x00000001);

9 write32((void *) (0x43C00008) , (uint32_t)(backup));

10 break ;

11 case (PTIMER_GETCOUNTER):

Chapter 4. Self-Secured Devices 93

12 arg0 = read32((volatile void *)0x43C00000 + (uint32_t)(4));

13 break ;

14 ... default : break ;

15 }

16 return arg0;

17 }

5. Evaluation

This section evaluates the developed self-secured devices, along with the most
relevant existing shared device methods. The evaluation was conducted on a Zybo
Board running at 50 MHz. More details regarding the hardware platform are avail-
able in Section 3.3. The system was configured to run FreeRTOS (version 7.0.2)
and Linux (2015.4 Xilinx version) as secure and non-secure VMs, respectively, run-
ning on top of LTZVisor with a single-core configuration. Hereby are described
the performed experiments in order to test the developed work. Then, the ob-
tained results are discussed, displayed, and compared quantitatively among most
important state-of-the-art solutions in order to obtain tangible results in terms
of: (i) security; (ii) engineering effort; (iii) memory footprint; (iv) hardware costs;
and (v) performance.

5.1 Engineering effort

In order to assess the engineering effort associated with the implementation
of the self-secured devices in a concrete system, we used the Understand software
tool to measure the number of lines-of-code (LoC) of both the HDL and software
files.

5.1.1 Hardware Modifications

Figure 5.1 shows the LoC of the Verilog files implemented for each self-secured
device. In the timer device, the additional effort to implement both self-secured
approaches is less than 20% relative to the native solution, while device duplication
would have duplicated the number of required LoC. In the self-secured timer de-
fault approach, the few additional LoC are related to the provided support for the
secure world to access the non-secure interface. While on the minimal approach,
the self-secured timer is only able to access the non-secure interface exclusively
from the non-secure world, hence support is not required for the additional AXI
interfaces.

95

96 Chapter 5. Evaluation

In the UART device, the required modifications are reduced to approximately
15%, due to the higher complexity of the device hardware logic, which enables for
the approach application efforts to be dispersed among the overall logic.

637

1695

755 771

1970

TIMER UART

LI
N

ES
 O

F
V

ER
IL

O
G

 C
O

D
E

Native Self-Secured: Minimal Self-Secured: Default

Figure 5.1: LoC of the Verilog files, with and without the self-secured
implementation.

5.1.2 LTZVisor Modifications

Figure 5.2 illustrates the LTZVisor LoC for each method. For the self-secured
approach, in both devices, the few additional lines are related to the security
configuration and routing of the differentiated interrupts upcoming from the secure
and non-secure device interfaces. The re-partitioning approach does not require
any changes to the hypervisor, since the pure method mechanisms are entirely
implemented in both OSes.

2259 22592259 22592265

2283

2302

2334

T I M E R U A R T

LI
N

ES
 O

F
 C

O
D

E

Native Re-partitioning Self-Secured Para-TrustZone

Figure 5.2: Number of LTZVisor lines of source code for each approach.

Chapter 5. Evaluation 97

The Para-TrustZone approach has a significantly associated engineering effort
when compared to other methods. As a consequence of the hypervisor itself having
to handle every SMC upcoming from the GPOS driver and carrying the respective
device operation, based on the passed arguments of every request. However, if only
minimal support to the device’s operations is provided to the GPOS, this cost could
be further reduced, a trade-off between the number of supported functionalities
and the necessary engineering effort.

5.1.3 FreeRTOS Modifications

As depicted in Figure 5.3, the Para-TrustZone method has no associated
changes with the RTOS, since it only depends on the hypervisor to perform the
non-secure requests. Besides, the Self-Secure Private Timer minimal approach
also does not impose changes to the RTOS device drivers, due to only support-
ing accesses to the secure interface. However, the default Self-Secure approach
introduces some minor modifications, that merely consist in providing support for
the secure world to perform accesses to both the secure and non-secure device
interfaces.

In contrast, on the Repartitioning approach, the added effort is related to
the required repartitioning mechanisms, which are responsible for sending the
"UNPLUG" event whenever the RTOS needs the device, and the "PLUG" event
when it is no longer needed. Furthermore, upon these events the RTOS should save
and restore every device register at each device repartition, as well as reconfigure
the device security according to the world context switch event.

2298

2458

2298

2458

2311

2476

2333

2505

T I M E R U A R T

LI
N

ES
 O

F
 C

O
D

E

Native / SS Timer: minimal Para-TrustZone Self-Secured Re-partitioning

Figure 5.3: Number of FreeRTOS and SW device driver LoC for each
approach.

98 Chapter 5. Evaluation

5.1.4 GPOS Modifications

Figure 5.4 shows the LoC of the GPOS device driver source code implemented
for each approach. On the self-secured approach, modifications only consisted of
re-mapping the registers accesses to the non-secure interface registers and provid-
ing support for the non-secure interface interrupt handling.

Diversely, in the Re-Partitioning method, considerable modifications to the
GPOS are necessary, but at the user-level instead. Although, for a fair comparison,
these modifications are also included in this evaluation. These modifications are
related to the task that runs continuously, checking for upcoming UNPLUG and
PLUG events, which are responsible for unloading and re-loading the device driver,
respectively.

The Para-TrustZone requires extensive modification to the GPOS driver, as a
consequence of being mandatory replacing the devices operations for SMCs with
the respective arguments. This SMCs enable the GPOS to access the secure device
through operation requests, sent out directly to the hypervisor.

95

225

107

243

131

279

159

305

T I M E R U A R T

LI
N

ES
 O

F
 C

O
D

E

Native Self-Secured Re-partitioning Para-TrustZone

Figure 5.4: GPOS Device drivers number of lines of code on each ap-
proach.

5.2 Memory Footprint

The memory footprint of each implemented approach was measured using the
size tool of the ARM GNU toolchain. This tool is able to calculate the memory
footprint of an output or image file, and report it into three different categories:
(i) .text, contains executable code, constant variables, and vector tables; (ii) .data,
contains initialized system variables; (iii) .bss, contains non-initialized system vari-
ables, stack and heap dynamic variables.

Chapter 5. Evaluation 99

Table 5.1 depicts the measured overhead of the entire LTZVisor image for the
different approaches. The presented values include the hypervisor code itself, boot
code, libraries, FreeRTOS code, and its device drivers. As a consequence of the
previously shown incurred modifications to the LTZVisor, FreeRTOS, and device
drivers, these modifications are also reflected in terms of memory overhead. Mean-
ing, the Para-TrustZone, and Repartitioning approach, respectively introduce the
highest overall.

Table 5.1: LTZVisor and FreeRTOS memory footprint (bytes).

Memory Footprint in bytes

LTZVisor image .Text .data .bss Total

Self-Secured Timer: Minimal 51530 468 460432 512430

Self-Secured Timer: Default 51828 468 460440 512736

Timer Repartitioning 52375 476 460448 513299

Timer Para-TrustZone 52898 468 460456 513822

Self-Secured UART 52341 500 460472 513313

UART Repartitioning 52818 508 460488 513814

UART Para-TrustZone 53582 500 460504 514586

Table 5.2 the size (bytes) of the GPOS device driver for the different imple-
mented approaches. The observed differences among the methods are related to
the previously mentioned modifications, required by each approach.

100 Chapter 5. Evaluation

Table 5.2: Device drivers memory footprint (bytes).

Memory Footprint in bytes

Device drivers .Text .data .bss Total

Native Timer 1764 164 292 2220

Timer Repartitioning 1764 164 292 2220

Self-Secured Timer: Mininal 1764 164 292 2220

Self-Secured Timer: Default 1780 164 292 2236

Timer Para-TrustZone 1856 164 300 2324

Native UART 1884 164 548 2496

UART Repartitioning 1884 164 548 2496

Self-Secured UART 1904 164 548 2616

UART Para-TrustZone 1986 164 564 2714

5.3 Performance

Performance was evaluated using the PMU component to accurately deter-
mine the number of clock cycles consumed by read/write operations, and device
re-partitioning associated latency of each re-partitioning event. Results shown in
Figure 5.5 represents the average of one hundred collected samples and demon-
strate a considerable performance overhead introduced by the para-TrustZone
method upon read/write accesses to the device. In contrast, both the self-secure
and re-partitioning approaches has a performance similar to the native execution,
due to device accesses being performed directly to the hardware. Even though the
re-partitioning method does not incur any overhead on read/write accesses, this
method introduces considerable device latency (7055 clock cycles) on every device
repartitioning, which is the amount of time that the FreeOS has to wait until the
shared device can be again used reliably.

Chapter 5. Evaluation 101

46 46 46

2233

129 129 129

2125

0 0

7055

0

N A T I V E S E L F - S E C U R E D R E P A R T I T I O N I N G P A R A - T R U S T Z O N E

A
V

ER
A

G
E

N
U

M
B

ER
 O

F
C

LO
C

K
 C

YC
LE

S

PERFORMANCE RESULTS

Write access Read access Latency

Figure 5.5: Number of clock cycles for write/read device operations and
incurred device latency.

5.4 Hardware Costs

In order to measure the impact at the hardware level, the post-implementation
hardware results of the Private Timer and UART, with and without the self-
secured extension, and upon device duplication were assessed and compared.

FPGAs are programmable semiconductor devices, based around a matrix of
Configurable Logic Blocks (CLBs) connected through programmable interconnects
[BGM11]. Therefore, a CLB can be considered the basic logic unit of an FPGA,
which consists of a configurable Look-Up Table (LUT), Flip-Flops (FF), and some
selection circuitry (e.g. multiplexer). LUTs are highly flexible and can be config-
ured to handle combinatorial logic, shift registers or RAM. LUTRAMs are faster,
used for smaller memory needs, the read is asynchronous, and they place less bur-
den on the place and router. However, when a large amount of memory is required
BRAM should be used instead if this memory does not need to be accessed during
the same cycle in which the address is provided. Global buffer (BUFG) resource
is one of the most expensive resources in FPGA, used for distribution of internal
clocks throughout the FPGA. Furthermore, whenever logic operations require a
large number of LUTs, consequently require a large area of the FPGA which makes
these operations slower. However, the FPGA contains dedicated DSP blocks that
can be used instead, to perform these operations faster, use less power and within
a smaller FPGA area.

Vivado utilization report parameters indicates the number of registers, LUTs,

102 Chapter 5. Evaluation

I/Os, BUFGs, DSPs and FFs of the current design required for the implementa-
tion. The more logic is added to the current design, consequently increases the
utilization rate of these parameters.

5.4.1 Self-Secured: Private Timer

The assessed post-implementation hardware results of the Private Timer are
depicted in Figure 5.6. In both self-secured devices the utilization rate of global
buffers (BUFG) and (LUTRAM) remained the same, while the Look-Up table
(LUT) utilization increased from 3,5% to 4,3% in the minimal approach, or to 4,5%
in the default approach. Also, Flip-flop (FF) utilization had just a slight increase
from 2% to 2,16% or 2,6% for the minimal and default. However, in case of device
duplication in the same scenario, the following hardware costs are increased: Flip-
flop (FF) utilization from 2% to 3.2%; Look-Up table (LUT) utilization from 3,5%
to 5,7%; and (LUTRAM) utilization has a slight increase of 0,05%.

Therefore, on the minimal self-secured approach the Look-Up table (LUT) and
Flip-flop (FF) utilization had a relative change of 23% and 8%, respectively. While
on the default approach the relative change was of 28% and 30%, respectively. In
contrast, with device duplication, the Look-Up table (LUT) and Flip-flop (FF)
utilization had a considerable relative change of 60% and 63%, and also a 5%
increase of LUTRAM utilization.

610

60

705

1

766

60

762

1

808

60

938

1

1000

62

1125

1

0% 1% 2% 3% 4% 5% 6%

LUT

LUTRAM

FF

BUFG

Utilization (%)

Timer duplication Self-Secured Timer approach 2 Self-Secured Timer approach 1 Timer

Figure 5.6: Self-Secured private timer post-implementation hardware
costs.

5.4.2 Self-Secured: UART

Figure 5.7 shows the assessed post-implementation hardware results of the
UART device. With the application of the Self-Secured approach to the device, the
utilization rate of global buffers (BUFG), digital signal processing (DSP) blocks

Chapter 5. Evaluation 103

and distributed RAM (LUTRAM) remained the same, while the I/O utilization
increased from 8% to 10%, block RAM (BRAM) from 1,7% to 3,33%, Flip-flop
(FF) utilization raised from 3,9 % to 4,7%, and Look-Up table increased from 39%
to 40,5%. However, if the device is completely replicated the hardware costs are the
following: I/O utilization increased from 8% to 16%; DSP blocks utilization raised
from 1,25% to 2,5%; Block RAM (BRAM) from 1,7% to 3,33%; Flip-flop(FF)
utilization increased from 3,9 % to 6,9%; LUTRAM had a slight increase from 1%
to 1,03%; and Look-Up table had the highest increase, from 39% to 74%.

Therefore, with the Self-Secured method I/O, BRAM, FF and LUT utilization
had a relative change of 25%, 95,8%, 20,5% and 3,8%, respectively. However, when
duplicating the entire device I/O, DSP blocks, BRAM, FF, LUTRAM, LUT and
LUTRAM utilization rate has a considerable relative increase of 100%, 100%,
95,8%, 77%, 89% and 3%, respectively.

13024

62

2415

2

2

16

1

7126

60

1677

2

1

10

1

6834

60

1364

1

1

8

1

0% 4% 8% 12% 16% 20% 24% 28% 32% 36% 40% 44% 48% 52% 56% 60% 64% 68% 72% 76% 80%

LUT

LUTRAM

FF

BRAM

DSP

IO

BUFG

Utilization (%)

UART Duplication Self-Secured UART UART

Figure 5.7: Self-Secured UART post implementation hardware costs.

5.5 Security

In this section, the security properties of the developed self-secured devices are
analyzed, outlining the security guarantees provided by the implemented solution
regarding the four fundamental elements of CIA (control, integrity, and availabil-
ity, and confidentially). Furthermore, to evaluate security on self-secured devices
some performed experiments are demonstrated in order to test the implemented
protection mechanisms against device misuse.

5.5.1 Security Guarantees

Self-Secured devices have fully or partially achieved the three fundamental
elements of CIA:

104 Chapter 5. Evaluation

• Confidentiality is the ability to restrict data to those authorized to ac-
cess it. Self-Secured devices provide confidentiality by means of TrustZone’
strong spatial isolation mechanisms. The GPOS cannot access any data
allocated on the secure interface nor registers stored in the secure register
bank, because the implemented protection mechanism denies any unautho-
rized access.

• Integrity enforces the consistency and trustworthiness of the device over
its entire life cycle. Self-Secured devices ensure the successful completion of
its secure operations. Meaning, that an operation performed by the secure
world must be completed, regardless of operation requests coming from the
non-secure side. Device’s integrity is also ensured by denying the non-secure
access to configuration registers that may tamper with the device’s normal
flow;

• Availability refers to the ability that authorized parties to have access to the
device whenever needed. Self-Secured devices ensure that the secure world
has full access over the secure interface of the device at any time. Preventing
any action from the non-secure world that may inhibit the secure-world usage
of the shared device for an unbounded amount of time. Additionally, due
to the co-existence of privileged (FIQs) and unprivileged (IRQs) interrupt
sources, FIQs belonging to the secure interface of the device are able to
preempt the execution of the GPOS, even when executing an IRQ request;

5.5.2 Security Experiments

The first experiment was performed with the self-secured private timer and is
illustrated in Figure 5.8. This experiment consisted on setting both self-secured
timer interfaces counter values, from a FreeRTOS secure task. Both secure and
non-secure interrupts were enabled, as well as the timer itself. Then, the respective
counters from each interface were decremented until reaching zero and triggering
an overflow. The non-secure counter, was configured with a lower value, thus
reached the overflow first and triggered a non-secure interrupt (IRQ). Soon after,
the secure counter , with the highest configured value, reached the secure overflow
and triggered a FIQ instead, proving that both interfaces can be accessed through
the secure world and its respective interrupts are routed according to their security.

Chapter 5. Evaluation 105

RTOSRTOS GPOSGPOS

Load Timer value

Timer value loaded
 successfully

Secure
Interface

Secure
Interface

Non-Secure
Interface

Non-Secure
Interface

Load Timer Value

Timer value loaded successfully

Non-secure counter overflow

Overflow handled and cleared

Self-Secured Timer

Secure counter
 overflow

Overflow
handled and cleared

Figure 5.8: Protection mechanisms of the Self-Secured Timer upon
FreeRTOS accesses.

On a second experiment (Figure 5.9) the same exact accesses were performed,
this time from the GPOS side instead. As expected, the secure timer interface
remained unaltered, while the non-secure interface is successfully accessed, and
its respective interrupt triggered whenever the non-secure counter overflows. On
both experiments, the values of both counter interfaces were printed continuously,
and TrustZone signals debugged through the Integrated Logic Analyzer to confirm
the device hardware logic protection mechanisms against the illegal accesses.

106 Chapter 5. Evaluation

GPOSGPOS

Load Timer value

Operation denied

Secure
Interface

Secure
Interface

Non-Secure
Interface

Non-Secure
Interface

Load Timer Value

Self-Secured Timer

Timer value loaded successfully

Non-secure counter overflow

Overflow handled and cleared

Figure 5.9: Protection mechanisms of the Self-Secured Timer upon
GPOS accesses.

Another relevant experiment was performed with the Self-Secure UART and is
illustrated in Figure 5.10. Following the same principles as previously performed
tests on the Self-Secured Timer, a specific device operation is performed from both
worlds. In this illustrated case, the chosen UART operation is a string transmis-
sion. The FreeRTOS was able to send the string to both separate terminals, while
the GPOS is only capable of transmitting to the non-secure terminal. The same
experiment was also performed with wrong data formats in order to trigger the
respective interrupts and verify that the triggered interrupts security matches the
data security type. All experiments were performed with the support of two sepa-
rate auxiliary terminals connected to the corresponding ports, capable of sending
data and displaying the received data.

Chapter 5. Evaluation 107

RTOSRTOS
Self-Secured

UART
Self-Secured

UART

Send secure string

String successfully sent

Secure
Terminal
Secure

Terminal
Non-Secure

Terminal
Non-Secure

Terminal

String sent

Send non-secure string

String sent

String successfully sent

String sent/received

String successfully sent/received

GPOSGPOS

Send secure string

Operation denied

Send
nonsecure string

opt

Wrong Data format

opt

Wrong Data format

FIQ triggerd

FIQ
handled and cleared

opt

Wrong Data format

opt

Wrong Data format

IRQ triggered

IRQ handled and status cleared

Figure 5.10: Protection mechanisms of the Self-Secured UART.

5.6 Discussion

Given all the previously evaluated metrics of the new self-secured approach
along with other implemented existing shared device access methods, Table 5.3
shows a side by side comparison of all the collected evaluations.

Starting the table analysis from the top, with device duplication each guest
OS owns a dedicated copy of the device by simply duplicating the entire hardware
logic, without any required modifications or additional engineering effort, and
leaving no margin for security issues nor performance degradation. Although, it
is not a reasonable solutions since it implicates huge hardware costs, unsuitable
for embedded system solutions with a small form factor.

With the novel self-secured approach at the acceptable costs of additional hard-
ware protection mechanisms and minimal device driver modifications, native per-
formance is maintained and security utterly safeguarded by TrustZone extensions.

108 Chapter 5. Evaluation

Besides, is clearly noticeable that when the concept is applied to higher complexity
level devices, the incurred hardware costs are dispersed by the overall logic, causing
additional costs to become acceptable under the performance-security-hardware
spectrum.

Additionally, two software state-of-art methods were also evaluated. Device
Para-TrustZone grants the GPOS access to the secure device through SMC, conse-
quently introducing overhead to read/write device operation, beyond the required
engineering effort to handle and carry out each SMC. Device Re-partitioning dy-
namically reassigns the device security on run-time, and once the device is assigned
it allows both OSs to perform read/write accesses without any overhead. However,
the reassignment mechanism implementation requires considerable engineering ef-
forts and introduces performance overhead. Furthermore, during the reassignment
process period, the device is unusable, incurring a considerable device latency that
may break time-critical needs.

Most importantly, in both methods, the frequency of GPOS accesses is not
limited, which in case of GPOS misbehavior massive request may be performed,
potentially causing the secure device failure. From a general point of view, both
existing methods lack in terms of security and performance, especially when com-
pared with the new approach proposed in this work.

Table 5.3: Evaluation results comparison.

Device

access method
Ha
rd
wa
re
Co
sts

En
gin
ee
rin
g e
ffo
rt

M
em
or
y F
oo
tpr
in
t

Pe
rfo
rm
an
ce

Se
cu
rit
y

Device duplication

Self-Secured on

low complexity devices

Self-Secured on

higher complexity devices

Device Re-partition

Device Para-TrustZone

Excellent Good Satisfactory Poor Unsuitable

6. Conclusion

With the advent of the IoT, security concerns have been escalating exponen-
tially. In an endeavor to enhance security, embedded systems development has
been unsuccessfully focusing on providing additional security features to the sys-
tem in a later stage. Instead, security must start to be guaranteed from the outset.

ARM TrustZone is an example of a security technology which promotes hard-
ware as the initial root of trust and has been proven that it can be efficiently
exploited as a secure virtualization solution. As in any virtualized system, hard-
ware resources need to be shared between multiple virtual environments in the
same platform. However, in TrustZone-enabled SoCs, devices can only be con-
figured as secure or non-secure. Not being able to share devices between virtual
environments is an enormous bottleneck to the characteristic scalability of virtu-
alization.

This thesis presented a novel approach for shared device access in TrustZone-
based architectures, extending the dual-world concept of TrustZone to the inner
logic of the device by splitting the device’s logic into a secure and non-secure
interface. To accomplish this, it was imperative to identify the vulnerable part of
the device’s logic, that can potentially be exploited, and restrain accesses through
the TrustZone extended protection signals, present in the main system bus.

This concept was experimented through the implementation of low and medium
complexity devices, in order to assess the hardware costs behind such implemen-
tations and link them to their complexity level. The obtained results are encour-
aging, managing to keep the additional hardware costs acceptable for the achieved
security enhancements. As demonstrated, the hardware costs diminish with higher
complexity level, as the implementation costs are dispersed throughout the overall
logic.

Additionally, a comparative study between current existing shared devices ac-
cess approaches and the new self-secured approach was performed, assessing results
in terms of security, engineering effort, performance and memory footprint. The

109

110 Chapter 6. Conclusion

evaluation demonstrated that the self-secured approach is able to achieve a no-
ticeable speedup, without the considerable TCB expense and memory footprint
increase when compared to existing state-of-art methods, while safeguarding the
device through TrustZone extended control signals.

6.1 Future Work

The concept was implemented and can be used on reconfigurable platforms,
however hardware costs could be estimated for application-specific integrated cir-
cuit (ASIC) deployments. Although the obtained results clearly demonstrate con-
siderable enhancements, this methods’ application is use-case dependent, i.e. to
apply this approach to a device it requires an in-depth analysis of its internal logic.

The application of the self-secured approach to a device with an even higher
complexity would enable establishing a more accurate relation of the hardware
cost to the complexity level. Also, it might aid to comprehend from which device
complexity level is worth applying the concept and how to reduce the engineering
effort even further. After linking each device results and hardware costs with their
respective complexity level, further research should focus on achieving a generic
methodology of the concept to any device, regardless of their complexity level.

Furthermore, future research could focus on developing an automated design
process that interprets the device hardware logic and generates the hardware de-
vice with the self-secured extension embedded in it.

Lastly, microcontrollers have been evolving towards recent demands and are
now capable of consolidating multiple OSes in the same platform. Moreover,
some modern microcontollers already feature TrustZone technology. Therefore,
the self-secured concept might be hereafter exploited in low-end heterogeneous
architectures.

References

[ARM09] ARM. ARM Security Technology. Building a Secure System using
TrustZone Technology ARM. Technical report, 2009.

[ARM12] ARM. Cortex -A9 MPCore: Technical Reference Manual. 2012.

[ARM15] ARM. New amba specification extends security to embedded design:
Amba 5 ahb5, 2015.

[ARM16] ARM. ARM R© Cortex R© -A Portfolio ARMv8-A. Technical report,
2016.

[BGM11] Alexander Biedermann and H Gregor Molter. Design Methodologies
for Secure Embedded Systems, volume 78. January 2011.

[Chi07] David Chisnall. The Definitive Guide to the Xen Hypervisor. First
edition, 2007.

[Cor] Jonathan Corbet. Platform devices and drivers. https://lwn.net/
Articles/448499/.

[DD03] James P Davis and James P Davis. Universal Asynchronous Receiver
Transmitter (UART - 8251). In Spring, page 12, March 2003.

[FLWH10] Torsten Frenzel, Adam Lackorzynski, Alexander Warg, and Hermann
Härtig. ARM trustzone as a virtualization technique in embedded sys-
tems. In Proceedings of Twelfth Real-Time Linux Workshop, Nairobi,
Kenya, October 2010.

[Fre] FreeRTOS website. https://www.freertos.org/.

[Hei08] Gernot Heiser. The Role of Virtualization in Embedded Systems.
In Proceedings of the 1st Workshop on Isolation and Integration in
Embedded Systems, IIES ’08, pages 11–16, April 2008.

[HGX+17] Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and
Haibing Guan. vTZ: Virtualizing ARM Trustzone. In Proceedings of
the 26th USENIX Conference on Security Symposium, SEC’17, pages
541–556, August 2017.

111

https://lwn.net/Articles/448499/
https://lwn.net/Articles/448499/
https://www.freertos.org/

112 REFERENCES

[Kai09] Robert Kaiser. Complex embedded systems - A case for virtualiza-
tion. In 2009 Seventh Workshop on Intelligent solutions in Embedded
Systems, pages 135–140, June 2009.

[Kal14] Stefan Kalkowski. Virtualization Dungeon on ARM - Hands on ex-
perience talk about virtualization experiments. February 2014.

[KLJ+13] Se Won Kim, Chiyoung Lee, Moowoong Jeon, Hae Young Kwon,
Hyun Woo Lee, and Chuck Yoo. Secure device access for automotive
software. In 2013 International Conference on Connected Vehicles
and Expo, ICCVE 2013 - Proceedings, pages 177–181, January 2013.

[Lan11] Ralph Langner. Stuxnet: Dissecting a Cyberwarfare Weapon. In
IEEE Security Privacy, volume 9, pages 49–51, May 2011.

[LI04] ARM Limited and ARM Ihi. AMBA AXI Protocol. Technical report,
2004.

[LMH+14] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Binyu Zang,
Cheng-Kang Chu, and Tieyan Li. Building Trusted Path on Un-
trusted Device Drivers for Mobile Devices. In Proceedings of 5th
Asia-Pacific Workshop on Systems, APSys ’14, pages 8:1–8:7, June
2014.

[MAC+17] José Martins, João Alves, Jorge Cabral, Adriano Tavares, and Sandro
Pinto. µRTZVisor: A Secure and Safe Real-Time Hypervisor. In
Electronics, volume 6, page 93, October 2017.

[MJNH16] Carlos Moratelli, Sergio Johann, Marcelos Neves, and Fabiano Hessel.
Embedded virtualization for the design of secure IoT applications. In
2016 International Symposium on Rapid System Prototyping (RSP),
pages 1–5, October 2016.

[OGP18] Daniel Oliveira, Tiago Gomes, and Sandro Pinto. Towards a Green
and Secure Architecture for Reconfigurable IoT End-devices. In Pro-
ceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, August 2018.

[OMC+18] André Oliveira, José Martins, Jorge Cabral, Adriano Tavares, and
Sandro Pinto. TZ- VirtIO: Enabling Standardized Inter-Partition
Communication in a Trustzone-Assisted Hypervisor. In 2018 IEEE
27th International Symposium on Industrial Electronics (ISIE), pages
708–713, June 2018.

REFERENCES 113

[Pal14] Prushothaman Palanichamy. TrustZone Technology Support in Zynq-
7000 All Programmable SoCs. Technical report, May 2014.

[PBB13] Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. A survey of
security issues in hardware virtualization. In ACM Comput. Surv.,
volume 45, pages 40:1–40:34, June 2013.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal Requirements for
Virtualizable Third Generation Architectures. In Commun. ACM,
volume 17, pages 412–421, July 1974.

[PGP+17] Sandro Pinto, Tiago Gomes, Jorge Pereira, Jorge Cabral, and Adri-
ano Tavares. IIoTEED: An Enhanced, Trusted Execution Environ-
ment for Industrial IoT Edge Devices. In IEEE Internet Computing,
volume 21, pages 40–47, January 2017.

[Pin17] Sandro Pinto. Thesis: Safe Virtualization-based Framework for Em-
bedded Systems Development. PhD thesis, Universidade do Minho,
2017.

[PMB15] Dorottya Papp, Zhendong Ma, and Levente Buttyan. Embedded sys-
tems security: Threats, vulnerabilities, and attack taxonomy. In 2015
13th Annual Conference on Privacy, Security and Trust (PST), vol-
ume 00, pages 145–152, July 2015.

[POP+15] Sandro Pinto, Daniel Oliveira, Jorge Pereira, Jorge Cabral, and Adri-
ano Tavares. FreeTEE: When real-time and security meet. In 2015
IEEE 20th Conference on Emerging Technologies Factory Automa-
tion (ETFA), pages 1–4, September 2015.

[POP+17] Sandro Pinto, André Oliveira, Jorge Pereira, Jorge Cabral, João Mon-
teiro, and Adriano Tavares. Lightweight multicore virtualization ar-
chitecture exploiting ARM TrustZone. In IECON 2017 - 43rd Annual
Conference of the IEEE Industrial Electronics Society, pages 3562–
3567, October 2017.

[PPG+17a] Sandro Pinto, Jorge Pereira, Tiago Gomes, Mongkol Ekpanyapong,
and Adriano Tavares. Towards a TrustZone-Assisted Hypervisor for
Real-Time Embedded Systems. In IEEE Computer Architecture Let-
ters, volume 16, pages 158–161, July 2017.

[PPG+17b] Sandro Pinto, Jorge Pereira, Tiago Gomes, Adriano Tavares, and
Jorge Cabral. LTZVisor: TrustZone is the Key. In 29th Euromicro

114 REFERENCES

Conference on Real-Time Systems (ECRTS 2017), volume 76 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 4:1–4:22,
June 2017.

[PPO+14] Sandro Pinto, Jorge Pereira, Daniel Oliveira, F. S. Alves, Esam Qar-
alleh, Mongkol Ekpanyapong, Jorge Cabral, and Adriano Tavares.
Porting SLOTH system to FreeRTOS running on ARM Cortex-M3.
In 2014 IEEE 23rd International Symposium on Industrial Electron-
ics (ISIE), pages 1888–1893, June 2014.

[PS18] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone:
A Comprehensive Survey. In ACM Computing Surveys, volume
preprint, 2018.

[PTM16] Sandro Pinto, Adriano Tavares, and Sergio Montenegro. Space
and time partitioning with hardware support for space applica-
tions. In Data Systems In Aerospace (DASIA), European Space
Agency,(Special Publication) ESA SP, August 2016.

[Pul16] Henley Court Pullman. ZYBOTM FPGA Board Reference Manual.
Technical report, 2016.

[Rea16] Real Time Engineers Ltd. The Free RTOSTM Reference Manual.
Technical report, 2016.

[RHFN+12] Fernando Rodríguez-Haro, F Freitag, Leandro Navarro, Efraín
Hernánchez-sánchez, Nicandro Farías-Mendoza, Juan Guerrero-
Ibañez, and Apolinar González. A summary of virtualization tech-
niques. In Procedia Technology, volume 3, pages 267 – 272, December
2012.

[RS07] Himanshu Raj and Karsten Schwan. High Performance and Scal-
able I/O Virtualization via Self-virtualized Devices. In Proceedings of
the 16th International Symposium on High Performance Distributed
Computing, HPDC ’07, pages 179–188, June 2007.

[SGB+16] Junaid Shuja, Abdullah Gani, Kashif Bilal, Atta Ur Rehman Khan,
Sajjad A. Madani, Samee U. Khan, and Albert Y. Zomaya. A Survey
of Mobile Device Virtualization: Taxonomy and State of the Art. In
ACM Comput. Surv., volume 49, pages 1:1–1:36, April 2016.

[SHT12a] Daniel Sangorrín, Shinya Honda, and Hiroaki Takada. Reliable and
efficient dual-OS communications for real-time embedded virtualiza-
tion. volume 29, pages 182–198, November 2012.

REFERENCES 115

[SHT12b] Daniel Sangorrín, Shinya Honda, and Hiroaki Takada. Reliable De-
vice Sharing Mechanisms for Dual-OS Embedded Trusted Comput-
ing. volume 7344, pages 74–91, June 2012.

[SN05] James E. Smith and Ravi Nair. The Architecture of Virtual Machines.
In Computer, volume 38, pages 32–38, May 2005.

[SRSW14] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using
ARM Trustzone to Build a Trusted Language Runtime for Mobile
Playstation. In SIGARCH Comput. Archit. News, volume 42, pages
67–80, February 2014.

[SVL01] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Vir-
tualizing I/O Devices on VMware Workstation’s Hosted Virtual Ma-
chine Monitor. In Proceedings of the General Track: 2001 USENIX
Annual Technical Conference, pages 1–14, June 2001.

[SYKS14] Takumi Shimada, Takeshi Yashiro, Noboru Koshizuka, and Ken
Sakamura. A real-time hypervisor for embedded systems with hard-
ware virtualization support. In 2015 TRON Symposium (TRON-
SHOW), pages 1–7, December 2014.

[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando
C. M. Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi,
Felix H. Leung, and Larry Smith. Intel virtualization technology. In
Computer, May 2005.

[USK11] Arijit Ukil, Jaydip Sen, and Sripad Koilakonda. Embedded security
for Internet of Things. In 2011 2nd National Conference on Emerg-
ing Trends and Applications in Computer Science, pages 1–6, March
2011.

[VH11] Prashant Varanasi and Gernot Heiser. Hardware-supported Virtual-
ization on ARM. In Proceedings of the Second Asia-Pacific Workshop
on Systems, APSys ’11, pages 11:1–11:5, July 2011.

[VMw06] VMware. Virtualization overview. Technical report, 2006.

[WSC+07] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott
Rixner, Alan L. Cox, and Willy Zwaenepoel. Concurrent Direct Net-
work Access for Virtual Machine Monitors. In Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer
Architecture, HPCA ’07, pages 306–317, February 2007.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven Gribble. Denali:

116 REFERENCES

Lightweight Virtual Machines for Distributed and Networked Appli-
cations. March 2002.

[WW09] Yi-Hsien Wang and I-Chen Wu. Achieving high and consistent ren-
dering performance of Java AWT/Swing on multiple platforms. In
Softw., Pract. Exper., volume 39, pages 701–736, March 2009.

[Xil] Xilinx. Zynq linux support, Xilinx wiki. http://www.wiki.xilinx.
com/Zynq+Linux.

[Xil11] Xilinx. Xilinx AXI Reference Guide. Technical report, 2011.

[Xil12] Xilinx. LogiCORE - AXI4-Lite IP Interface. Technical report, 2012.

[Xil16a] Xilinx. Bringing Ultra High Productivity to Mainstream Systems
& Platform Designers Vivado Design Suite HLx Editions. Technical
report, 2016.

[Xil16b] Xilinx. Xilinx Software Development Kit (SDK). Technical report,
2016.

[Xil18] Xilinx. Zynq-7000 SoC Manual. Technical report, 2018.

[YBW10] Weider Yu, Dipti Baheti, and Jeremy Wai. Real-Time Operating
System Security. PhD thesis, Computer Engineering Department,
San Jose State University, 2010.

[ZMH15] Samir Zampiva, Carlos Moratelli, and Fabiano Hessel. A hypervi-
sor approach with real-time support to the MIPS M5150 processor.
In Sixteenth International Symposium on Quality Electronic Design,
March 2015.

http://www.wiki.xilinx.com/Zynq+Linux
http://www.wiki.xilinx.com/Zynq+Linux

	List of Figures
	List of Tables
	List of Listings
	Glossary
	Introduction
	Motivation
	Objectives
	Document Structure

	Background, Context, and State of the Art
	Background
	Virtualization
	ARM TrustZone
	TrustZone-assisted Virtualization

	Related Work
	Devices Access in TrustZone
	Proxy Task
	Device Emulation
	Device Para-Virtualization
	Device Para-TrustZone
	Device re-Partitiong
	Self-virtualizing

	Gap Analysis

	Platform and Tools
	Platform Requirements
	AMBA Advanced eXtensible Interface
	AXI-Lite

	ZYBO Zynq-7000 SoC
	Zynq-7000 family
	TrustZone technology Support in Zynq-7000 AP SoC

	Development Toolchain
	Vivado Design Suite
	Xilinx SDK

	LTZVisor
	CPU virtualization
	Scheduler
	Memory isolation
	MMU and Cache
	Device partitioning
	Interrupt managment
	Time management
	Execution Flow

	Operating System stacks
	FreeRTOS
	Linux

	Self-Secured Devices
	Overview
	Self-Secured Private Timer
	Device driver
	Self-Securing the Private Timer: Minimal Approach
	Self-Securing the Private Timer: Default Approach

	Self-Secured UART
	Control and Status Module
	Baud rate generator Module
	Transmitter and transmitter FIFO modules
	Receiver and receiver FIFO modules
	Mode switch module
	Modem control module
	Device driver
	Self-Securing the UART

	LTZVisor Integration
	FreeRTOS
	Linux

	Evaluation
	Engineering effort
	Hardware Modifications
	LTZVisor Modifications
	FreeRTOS Modifications
	GPOS Modifications

	Memory Footprint
	Performance
	Hardware Costs
	Self-Secured: Private Timer
	Self-Secured: UART

	Security
	Security Guarantees
	Security Experiments

	Discussion

	Conclusion
	Future Work

	References

