
Li, X. and Yu, H.-S. (2013) On the stress–force–fabric 
relationship for granular materials. International Journal 
of Solids and Structures, 50 (9). pp. 1285-1302. ISSN 
0020-7683 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/2979/1/Li_On_the_stress.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to 

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham 

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title 
and full bibliographic details are credited, a hyperlink and/or URL is given for the 
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf 

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/20023863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk


On the stress–force–fabric relationship for granular materials

X. Li a,b,⇑, H.-S. Yu b

a Process and Environmental Research Division, Faculty of Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
bMaterials, Mechanics and Structures Research Division, Faculty of Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

a r t i c l e i n f o

Article history:

Received 4 December 2011

Received in revised form 12 December 2012

Available online 17 January 2013

Keywords:

Stress–force–fabric (SFF) relationship

Directional statistics

Anisotropy

Multi-scale investigations

Discrete element method (DEM)

a b s t r a c t

This paper employed the theory of directional statistics to study the stress state of granular materials

from the particle scale. The work was inspired by the stress–force–fabric relationship proposed by Roth-

enburg and Bathurst (1989), which represents a fundamental effort to establish analytical macro–micro

relationship in granular mechanics. The micro-structural expression of the stress tensor rij ¼
1
V

P

c2Vv
c
i f

c
j ,

where f ci is the contact force and vc
i is the contact vector, was transformed into directional integration by

grouping the terms with respect to their contact normal directions. The directional statistical theory was

then employed to investigate the statistical features of contact vectors and contact forces. By approximat-

ing the directional distributions of contact normal density, mean contact force and mean contact vector

with polynomial expansions in unit direction vector n, the directional dependences were characterized

by the coefficients of the polynomial functions, i.e., the direction tensors. With such approximations,

the directional integration was achieved by means of tensor multiplication, leading to an explicit expres-

sion of the stress tensor in terms of the direction tensors. Following the terminology used in Rothenburg

and Bathurst (1989), the expression was referred to as the stress–force–fabric (SFF) relationship.

Directional statistical analyses were carried out based on the particle-scale information obtained from

discrete element simulations. The result demonstrated a small but isotropic statistical dependence

between contact forces and contact vectors. It has also been shown that the directional distributions of

contact normal density, mean contact forces and mean contact vectors can be approximated sufficiently

by polynomial expansions in direction n up to 2nd, 3rd and 1st ranks, respectively. By incorporating these

observations and revoking the symmetry of the Cauchy stress tensor, the stress–force–fabric relationship

was further simplified, while its capacity of providing nearly identical predictions of the stresses was

maintained. The derived SFF relationship predicts the complete stress information, including the mean

normal stress, the deviatoric stress ratio as well as the principal stress directions.

The main benefits of deriving the stress–force–fabric relationship based on the directional statistical

theory are: (1) the method does not involve space subdivision and does not require a large number of

directional data; (2) the statistical and directional characteristics of particle-scale directional data can

be systematically investigated; (3) the directional integration can be converted into and achieved by ten-

sor multiplication, an attractive feature to conduct computer program aided analyses.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Granular materials often exhibit sophisticated collective behav-

ior even though they consist of solid particles with relatively sim-

ple particle–particle interactions. This makes multi-scale

investigation an important branch of granular mechanics. Parti-

cle-scale information, which was a difficult and rare source to ob-

tain in history, has nowadays become easily accessible, mainly due

to the emergence and fast growth of the discrete element method

(DEM) (Cundall and Strack, 1979). The good qualitative agreement

between laboratory observations and DEM simulations has made

DEM a popular numerical tool for multi-scale investigations. One

of the remaining challenges, as addressed in the current paper, is

to extract the key statistical features from the massive amount of

particle-scale information in order to advance our understanding

in granular materials.

The micro-structural definition of the stress tensor is a well-

established starting point of many multi-scale investigations. In

case of static equilibrium, the stresses acting on the material

boundary are transmitted through the internal structure and in

equilibrium with the inter-particle interactions. Viewing a granu-

lar material as an assembly of granular particles with only point
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contact, the macro stress tensor could be evaluated from the tensor

product of contact forces f ci and contact vectors vc
i as:

rij ¼
1

V

X

c2V

v
c
i f

c
j ð1Þ

in which rij stands for the average stress tensor over volume V . To

be consistent with the sign convention in soil mechanics, a contact

vector is defined as the vector pointing from the contact point to the

particle centre. Eq. (1) links the stress tensor defined at equivalent

continuum scale with inter-particle contact forces (Love, 1927; We-

ber, 1966; Goddard, 1977; Christoffersen et al., 1981; Rothenburg

and Selvadurai, 1981; Bagi, 1996; Li et al., 2009). It has been derived

rigorously for quasi-static granular materials based on the Newton’s

2nd law of motion with only the uniformity and point contact

assumption.

Like many other relationships addressing homogenization be-

tweenmacro and micro variables, the expression of Eq. (1) involves

summation over a massive amount of particle-scale information as

appeared on the right hand side of the equation. It is a source of

complication pertinent to the fact that the particle-scale

information, including both contact vectors and contact forces,

are random variables, and intrinsically direction dependent

(Drescher and De Josselin de Jong, 1972; Oda et al., 1982; Cundall

and Strack, 1983).

The development and application of the statistical theory to

process directional data has been pioneered by Kanatani (1984).

His work dealt with unit vectors. Examples in the context of gran-

ular mechanics are contact normals and particle orientations.

Being aware that the physical quantities, like forces, displace-

ments, are to be represented by vectors, reflecting information

on both their directions and magnitudes, Li and Yu (2011) have ex-

tended the mathematical formulations (Kanatani, 1984) to vector-

valued directional data. The form of polynomial expansions in

direction n has been followed to approximate the directional dis-

tributions. And the least square error criterion has been employed

to determine the tensorial coefficients, i.e., the direction tensors.

These direction tensors are macroscopic measures defined on the

statistics of particle-scale directional data. They can be used as

macro variables for the development of the micro–macro relation-

ships and physical laws reflecting fundamental mechanisms. The

theoretical formulations and the applied techniques have been

published in a preceding paper (Li and Yu, 2011).

Directional statistical analyses are of particular importance in

the study of material anisotropy, which has been recognized as

an important aspect of granular material behaviors for many years

(Casagrande and Carrillo, 1944; Drescher and Josselin De Jong,

1972; Oda, 1972; Oda et al., 1985). Rothenburg and Selvadurai

(1981) were among the first to introduce Fourier series in the

description of the directional dependence of contact normal den-

sity. Such an approximation has been shown to have the root in

the directional statistical theory (Kanatani, 1984). Rothenburg

and Bathurst (1989) also used Fourier series to approximate the

directional distributions of mean normal contact force and mean

tangential contact force with coefficients interpretable as mea-

sures of anisotropy in respective quantities. They hence derived

the stress–force–fabric (SFF) relationship for two dimensional

assemblies consisting of disks, and later extended the expression

to two dimensional elliptical-shaped particles (Rothenburg and

Bathurst, 1993) and three dimensional ellipsoidal particles with

anisotropy tensors (Ouadfel and Rothenburg, 2001).

The SFF relationship proposed by Rothenberg and his co-work-

ers formulated the macroscopic stress tensor as an explicit statisti-

cal description in terms of anisotropic parameters. It provides a

micromechanical insight into the continuum-scale shear strength

of granular materials. However, the basic assumptions made

during their derivation have not been fully validated, mainly: (i)

the contact vectors and the contact forces in each direction are sta-

tistically independent; (ii) the Fourier functions up to 2nd rank are

sufficient to approximate the directional distributions of contact

normal density, normal and tangential contact forces.

The main objective of this paper is to apply the mathematical

theory of directional statistics to conduct the multi-scale investiga-

tion on the stress state of granular materials. In particular, we will

revisit and study the validity of the key assumptions made by

Rothenberg and his co-workers with the newly developed direc-

tional statistical theory. In this paper, unless indicated otherwise

an Einstein summation convention is adopted for repeated

subscripts.

2. General form of the stress–force–fabric relationship

2.1. Integral form of the micro-structural stress tensor

Let X represent the unit circle in two dimensional spaces

(D ¼ 2) or the unit sphere in three dimensional spaces (D ¼ 3).

We denote the total number of contacts in a granular assembly

as M, and DMðnÞ represents the number of contacts whose normal

directions fall into the stereo-angle element DX centered at direc-

tion n. The terms on the right hand side of Eq. (1) can be grouped

according to their contact normal directions, leading to:

rij ¼
1

V

X

X

hv ifjijnDMðnÞ ¼
M

V

X

X

ecðnÞhv ifjijnDX ð2Þ

where ⁄|n denotes the value of variable ⁄ in direction n, and h⁄i|n
denotes the average value of all terms of ⁄ sharing the same contact

normal direction n. The discrete spectra of function ecðnÞ ¼ DMðnÞ=

DX is the probability density of contact normals. ec(n)DX repre-

sents the probability that an arbitrary selected contact has a normal

direction falling within the stereo-angle element DX. When the ste-

reo-angle increment approaches zero, we have ecðnÞ ¼ limDX!0

DMðnÞ=DX. It becomes a continuous function at the thermodynamic

limit.

The average number of contacts per particle is x =M/N, where

N is the total number of particles. In the case of thermodynamic

limit, x approaches a limit, i.e., lim
N!1

M=N ¼ x. It is referred to as

the coordination number, an index characterizing the packing den-

sity. When DX ! 0, transition leads to an expression of the stress

tensor in terms of integration over all stereo-angles as:

rij ¼
xN

V

I

X

ecðnÞhv ifjijndX ð3Þ

where dX is an elementary solid angle.

Eq. (3) involves the joint product hvifji|n within the integration.

In general, hvifji|n – hvii|nhfji|n, where hvii|n and hfji|n denote the

mean contact vector and the mean contact force along direction

n respectively. For randomly distributed contact vectors v and con-

tact forces f, the covariance matrix:

Covðvjn; fjnÞ ¼ ðvjn � hvijnÞ � ðfjn � hfijnÞ
T

D E

¼ vjn � fjTn

D E

� hvijn � hfijTn ð4Þ

reflects the statistical dependence in direction n, which could be

direction dependent. The statistical dependence has been investi-

gated using the statistical dependence theory as detailed later in

Section 4. It will be shown based on the particle-scale information

obtained from DEM that the statistical dependence between the

contact vectors and contact forces is almost isotropic, i.e.,

vjn � fjTn

D E

¼ 1hvijn � hfijTn ð5Þ
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where 1 is a direction independent scalar. It is hence taken as an

assumption to avoid unnecessary complication. With this assump-

tion, Eq. (3) can be rewritten as:

r ¼
xN

V

I

X

1ecðnÞhvijn � hfijTndX ð6Þ

In Eq. (6), there are scalar quantities including the coordination

number x, the particle density N=V , the statistical dependence

coefficient 1 and an integration over direction of the multiplication

of the contact normal probability density ec(n), the mean contact

vector hvi|n and the mean contact force hfi|n.

2.2. Contact normal probability density ec(n)

Orientations can be represented by direction vectors of unit

length. For point contacts, each contact is associated with two con-

tact normals, represented by unit normal vectors n and �n, respec-

tively. The probability density of contact normals can be

approximated by an even function Ec(n), symmetric with respect

to direction n, i.e., Ec(n) = Ec(�n). With EcðnÞ being the probability

density distribution, it must satisfy:
I

X

EcðnÞdX ¼ 1 and EcðnÞ P 0 ð7Þ

Using a polynomial in unit direction vector n with indetermi-

nate coefficients (Kanatani 1984; Li and Yu, 2011), the n-th rank

approximation takes the following form:

EcðnÞ ¼
1

E0

Fc
i1 i2 ���in

ni1ni2 � � �nin ð8Þ

where E0 =
H

X
dX. In the two dimensional space, E0 = 2p and in the

three dimensional space, E0 = 4p. The rank of the approximation re-

fers to the highest rank of the power terms in the polynomial

expansion. For symmetric distributions, the rank of approximation

in Eq. (8) should only be even numbers, and the direction tensor

Fc
i1 i2 ���in

is a symmetric tensor, i.e., Fc
i1 i2 ���in

¼ Fc
ði1 i2 ���inÞ

, () over the sub-

scripts designates the symmetrisation of the indices. Fc
i1 i2 ���in

is re-

ferred to as the direction tensor for contact normal density.

Making an orthogonal decomposition, Eq. (8) can be expressed

equivalently as:

EcðnÞ ¼
1

E0

D0 þ Dc
i1 i2

ni1ni2 þ � � � þ Dc
i1 i2 ���in

ni1ni2 � � �nin þ � � �
h i

ð9Þ

Each term in Eq. (9) is independent from the others. In view of its

symmetry, Dc
i1 i2 ...;in

should be also symmetric with respect to sub-

scripts i1, i2, . . . in, i.e., D
c
i1 i2 ...;in

¼ Dc
ði1 i2 ���inÞ

. Being an orthogonal decom-

position, Dc
i1 i2 ���in

is deviatoric, i.e., Dc
i1 ���ik ���il ���in

dik il ¼ 0. Dc
i1 i2 ���in

is termed

as the deviatoric direction tensor for contact normal density. The

direction tensors Fc
i1 i2 ���in

and Dc
i1 i2 ���in

can be calculated from the given

dataset of contact normals as elaborated in Appendix A1. More de-

tails are available in Li and Yu (2011).

2.3. Mean contact vector hvi|n

Vector is a more general form of directional data. For vector-

valued directional data, we are interested in both their probabil-

ity density and their mean values in each direction. This applies

to both the mean contact vector hvi|n and the mean contact force

hfi|n.

Here we approximate the directional distribution of mean vec-

tor hvi|n, (which is the mean of all the contact vectors v associated

with the same contact normal direction n) with a polynomial ser-

ies hvi|n as a linear combination of ni1ni2 � � �nin . The n-th rank

approximation of the contact vector hvi|n takes the following com-

pact form:

V jðnÞ ¼ v0H
v

ji1 ���in
ni1ni2 � � � nin ð10Þ

where v0 =
H

X
hvi|n�ndX/E0 is the directional average of hvi|n�n, i.e.,

the component of hvi|n coaxial with n. It is noted that for contact

vectors the rank of the direction tensors is one order higher than

that of approximation. Hv

ji1 ���in
is a tensor symmetric with respect

to the subscripts i1,i2,. . .in,. . . i.e., H
v

ji1 i2 ���in
¼ Hv

jði1 i2 ���inÞ
, and is referred

to as the direction tensor for mean contact vector. It characterizes

the directional dependence of the mean contact vector hvi|n.

Contact vectors are defined as vectors pointing from the contact

points to the particle centres. Noticing that under quasi-static con-

dition, all the particles are in equilibrium. Eq. (1) holds true with

the particle centre being a fixed reference point for each particle.

It is not necessarily to be the conventional choice as its centre of

mass. If the particles have centre-point symmetric geometries,

we could assume that the contact vectors are anti-symmetric with

respect to direction n, i.e., hvi|n = �hvi|�n. The approximations

should hence have only terms of odd powers of n. Making an

orthogonal decomposition, the n-th rank approximation of hvi|n
takes the following expansion form

V jðnÞ ¼ v0 nj þ Gvji1ni1 þ � � � þ Gvji1 ���inni1 � � �nin þ � � �
h i

ð11Þ

in which Gvji1 ���in is deviatoric and symmetric with respect to the

subscripts i1,i2,. . .in,. . . i.e., G
v

ji1 i2 ���in
¼ Gvjði1 i2 ���inÞ and Gvji1 ���ik ���il ���indik il ¼ 0.

Gvji1 ���in is referred to as the deviatoric direction tensor for the mean

contact vector. The methods and procedures to calculate the direc-

tion tensors Hv

ji1 ���in
and Gvji1 ���in based on the given discrete dataset has

been carefully elaborated (Li and Yu, 2011). It is also briefed in

Appendix A2 for completeness.

2.4. Mean contact force hfi|n

According to Newton’s 3rd law of motion, there are a pair of ac-

tion and reaction forces at each contact point acting on the two

bodies, respectively, which are of equal magnitudes and opposite

directions. Hence, it is reasonable to assume the mean contact

force is an anti-symmetric function with respect to direction n,

i.e., hfi|n = �hfi|�n. Similarly to the method used to approximate

the directional distribution for mean contact vectors, the

contact forces averaged over contacts sharing the same normal

directions can be approximated by following the compacted form

as follows:

F jðnÞ ¼ f0H
f
ji1 i2 ���in

ni1ni2 � � �nin ð12Þ

or by following the form of an orthogonal decomposition as follows:

F jðnÞ ¼ f0 nj þ Gf
ji1
ni1 þ � � � þ Gf

ji1 ���in
ni1 � � �nin þ � � �

h i

ð13Þ

where f0 represents the directional average of mean normal contact

force hfni|n = hfi|n�n, i.e., f0 =
H

X
hfi|n�ndX/E0; Hf

ji1 i2 ���in
and Gf

ji1 ���in
are

the direction tensor and the deviatoric direction tensor for mean

contact force, respectively. Gf
ji1 ���in

is symmetric and deviatoric with

respect to subscripts i1,i2,. . .in,. . . i.e., Gf
ji1 i2 ���in

¼ Gf
jði1 i2 ���inÞ

and

Gf
ji1 ���ik ���il ���in

dik il ¼ 0. The determination of the direction tensors from

discrete directional dataset follows the same methods and proce-

dures as those described for mean contact vectors. They are not re-

peated here due to space limitation.

2.5. General expressions for the stress–force–fabric relationship

Take the sufficient ranks to approximate the directional distri-

butions of contact normal density, mean contact vector and mean

contact force as even number n, odd numbers s and t, respectively.
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Following the expressing given in Eqs. (8), (10), and (12), Eq. (6)

can be transformed as follows:

rij ¼
xN

V
1v0f0F

c
k1 ���kn

Hv

il1 ���ls
Hf

jm1 ���mt
� nk1 � � �nknnl1 � � �nlsnm1

� � �nmt
ð14Þ

where � ¼
H

X
ð�ÞdX=E0 denotes the average of ⁄ over directions. The

identity ni1ni2 � � � ni2n�1
ni2n is a constant matrix. It has been derived in

Li and Yu (2011) that:

ni1ni2 � � �ni2n�1
ni2n ¼ a2ndði1 i2di3 i4 � � � di2n�1 i2nÞ ð15Þ

where a2n ¼

2nCn

22n
;D ¼ 2

1
2nþ1

;D ¼ 3

(

, and dij is the Kronecker delta, and nCk

stands for the number of k-combinations of a n-element set.

The stress tensor in Eq. (1) possesses all the properties of the

Cauchy stress tensor used in continuum mechanics

(Rothenburg and Selvadurai 1981). In the quasi-static condition,

the moment equilibrium imposes the symmetry of the stress

tensor, i.e., rij ¼ rji. Hence, the following equation should be

satisfied:

Fk1 ���kn ðH
v

il1 ���ls
Hf

jm1 ���mt
�Hv

jl1 ���ls
Hf

im1 ���mt
Þ�nk1 � � �nknnl1 � ��nlsnm1

� ��nmt
¼0: ð16Þ

By substituting the orthogonal decomposed expressions Eqs. (9),

(11), and (13) into Eq. (14), we have:

rij ¼
xN

V
v0f0

ninjþ
X/

t¼1

Gf
jm1 ���mt

ninm1
� � �nmt

þ
X/

s¼1

Gvil1 ���lsnjnl1 � � �nls

þ
X/

s;t¼1

Gf
jm1 ���mt

Gvil1 ���lsnl1 � � �nlsnm1
� � �nmt

þ
X/

n¼2

Dc
k1 ���kn

nk1 � � �nknninj

þ
X/

n¼2;t¼1

Dc
k1 ���kn

Gf
jm1 ���mt

nk1 � � �nknninm1
� � �nmt

þ
X/

n¼2;s¼1

Dc
k1 ���kn

Gvil1 ���lsnk1 � � �nknnl1 � � �nlsnj

þ
X/

n¼2;s¼1;t¼1

Dc
k1 ���kn

Gf
jm1 ���mt

Gvil1 ���lsnk1 � � �nknnl1 � � �nlsnm1
� � �nmt

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð17Þ

Being orthogonal decompositions, we have the coefficient ten-

sors satisfying

Dc
i1 ���in

ni1ni2 � � �ninnj1nj2 � � �njm ¼ 0

Gvi0 i1 ���isni1ni2 � � �nisnj1nj2 � � �njt ¼ 0

Gf
i0 i1 ���is

ni1ni2 � � �nisnj1nj2 � � �njt ¼ 0

ð18Þ

whenm < n, t < s,m and n are evennumbers, s and t are oddnumbers.

Following the derivation in Appendix A3, Eq. (17) can be simplified as:

rij ¼
xN

V
1v0f0

ninjþGf
jm1

ninm1
þGvil1nl1njþDc

k1k2
nk1nk2ninj

þ
X/

s¼1

Gf
jm1 ���ms

Gvil1 ���lsnl1 � � �nlsnm1
� � �nms

þ
X/

n¼2;even

Dc
k1 ���kn

Gf
jm1 ���mn�1

nink1 � � �nknnm1
� � �nmn�1

þ
X/

n¼2;even

Dc
k1 ���kn

Gf
jm1 ���mnþ1

nink1 � � �nknnm1
� � �nmnþ1

þ
X/

n¼2;even

Dc
k1 ���kn

Gvim1 ���mn�1
njnk1 � � �nknnm1

� � �nmn�1

þ
X/

n¼2

Dc
k1 ���kn

Gvim1 ���mnþ1
njnk1 � � �nknnm1

� � �nmnþ1

þ
X/

n¼2;s;t¼1;js�tj6n6sþt

Dc
k1 ���kn

Gvil1 ���lsG
f
jm1 ���mt

�nk1 � � �nknnl1 � � �nlsnm1
� � �nmt

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð19Þ

For any symmetric and deviatoric tensor Di1 i2 ���in , we have (Li and Yu,

2011):

Dj1 j2 ���jnnj1nj2 � � �njnni1ni2 � � �nin ¼ a2n
2n

2nCn

Di1 i2 ���in ð20Þ

With this relationship, the terms in Eq. (19) can be calculated indi-

vidually as detailed in Appendix A4. And the stress tensor hence

becomes:

rij ¼
xN

V
1v0f0

a2dijþa2G
f
jiþa2G

v

ij þ
2
3
a4D

c
ij þ
X/

s¼1

a2s
2s

2sCs
Gf

jl1 ���ls
Gvil1 ���ls

þ
X/

n¼2

a2n
2n

2nCn
Dc

im1 ���mn�1
Gf

jm1 ���mn�1
þ
X/

n¼2

a2nþ2
2nþ1

2nþ2Cnþ1
Dc

k1 ���kn
Gf

jik1 ���kn

þ
X/

n¼2

a2n
2n

2nCn
Dc

im1 ���mn�1
Gvjm1 ���mn�1

þ
X/

n¼2

a2nþ2
2nþ1

2nþ2Cnþ1
Dc

k1 ���kn
Gvjik1 ���kn

þ
X/

n¼2;js�tj6n6sþt

a2n
2n

2nCn
Dc

k1 ���kn
Qvf ;st

ijk1 ���kn

2
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7
7
7
7
7
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ð21Þ

This equation expresses the stress tensor in terms of direction ten-

sors that characterize the internal structure (fabric) and inter-parti-

cle reaction forces, and is referred to as the stress–force–fabric (SFF)

relationship, following the terminology proposed by Rothenburg

and Bathurst (1989).

3. Statistical features of granular materials

The expression of Eq. (21) is mathematically derived from the

micro-structural expression of the stress tensor as in Eq. (1). The

only assumption we have adopted is the statistical dependence be-

tween contact vectors and contact forces being isotropic. The rank

of approximation can be very high. Experimental and numerical

work in granular mechanics suggested that the directional distri-

butions can be approximated with limited ranks of approximation

(Oda et al., 1985; Rothenburg and Bathurst, 1989). In this section,

we analyze the particle-scale information obtained from DEM. By

conducting the directional statistical analyses, we could determine

the rank of approximation based on the particle-scale directional

data, and use the observations to simplify the general expression

given as Eq. (21). With the particle scale information obtained from

two dimensional numerical simulations, the analyses described in

this section are limited to two dimensional cases.

Using the numerical experimental technique developed in Li

et al. (2013), the elementary behavior of two dimensional granular

materials subjected to various loading paths have been simulated

and reported (Li and Yu, 2009, 2010). In these numerical experi-

ments, each particle is formed by clumping two equal-sized disks

together. The distance between the centres of the two disks is

equal to 1.5 times the disk radius, r. The particle size was uniformly

distributed within the range (0.2, 0.6 mm) in terms of equivalent

diameter, and the disk thickness was t ¼ 0.2 mm. The number of

particles used is about 3500, and according to Rothenburg and

Bathurst (1989) is sufficient to model an infinite system for pur-

poses of force balance in two dimensional assemblies.

The mechanical interaction between two elastic disks were de-

rived based on the contact theories (Li, 2006) and used in the sim-

ulations. In two dimensional cases, the contact law includes two

linear elastic models (normal and tangential) of equal stiffnesses,

and a slip model. The effect of contact moment is ignored. Both

the normal and tangential particle stiffnesses were set to be

105 N=m. The coefficient of friction was l ¼ 0:5. The properties

of the boundary walls were set to be the same as those of the par-

ticles. The material gravity was set to be zero. Local damping was

used to dissipate kinetic energy.
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An isotropic specimen was prepared using the radius expansion

method, and then subjected to isotropic consolidation up to confin-

ing pressure pc ¼ 1000 kPa before biaxial shearing. The void ratio

at Pc = 1000 kPa was 0.192. The specimen preparation method

and material responses to various loading have been detailed in

Li et al. (2013). The material responses have been observed to be

in qualitative agreement with laboratory observations, though

not repeated here due to space limitation. During shearing, the ma-

jor principal strain direction ae was fixed, the mean normal stress

was kept constant, while the magnitude of deviatoric strain eq was

increasing. Loading applied vertically is denoted by angle 90
�

, in

terms of its deviation to the x1 axis.

3.1. Contact normal density ec(n)

The directional distribution of contact normal density can be

approximated using the compacted form of polynomial expansions

as in Eq. (8) or in the form of orthogonal decomposition as in Eq. (9)

with its main statistical features reflected by the direction tensor

Fc
i1 ���in

or alternatively the deviatoric direction tensor Dc
i1 ���in

. The lat-

ter is used here since the deviatoric tensor can be determined inde-

pendently for different ranks of approximation.

In two dimensional spaces, a symmetric and deviatoric tensor

Dc
i1 ���in

only has two independent components. Denoting

Dc

1 1 � � �1
z}|{
n�1 ¼ an and Dc

2 1 � � �1
z}|{
n�1 ¼ bn, we have the tensor components ex-

pressed as follows:

Dc

11���122 � � �2
zfflffl}|fflffl{

k ¼
ð�1Þk=2an; when k is even

ð�1Þðk�1Þ=2bn; when k is odd

(

ð22Þ

With dn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
n þ b

2
n

q

and tan/n ¼ bn=an, we have an ¼ dn cos/n and

bn ¼ dn sin/n. It is shown in Appendix A5 that the n-th rank power

term in the orthogonal decomposition of Eq. (9) can be expressed

as:

Dc
i1 ���in

ni1ni2 � � �nin ¼ an cosnhþ bn sinnh ¼ d
c
n cosðnh� /c

nÞ ð23Þ

It is a cosine function with the period 2p=n, the magnitude dn and

the phase angle /n=n. With Eqs. (9) and (23), the directional distri-

bution of the contact normal probability density Ec(n) can be ex-

pressed as a summation over even numbers n as

EcðnÞ ¼
1

E0

1þ
X

n

d
c
n cos nh� /c

n

� �

" #

ð24Þ

Based on particle-scale information obtained from discrete ele-

ment simulations, the direction tensors for contact normal density

Fc
i1 ���in

and Dc
i1 ���in

were calculated following the procedure introduced

in Appendix A1. They were then used to determine the magnitudes

and phase angles in Eq. (24). The magnitudes of the 2nd, 4th and

6th rank orthogonal decompositions, d
c
2, d

c
4, d

c
6, are plotted in

Fig. 1(a). It is shown that the magnitude of deviatoric direction ten-

sor decreases rapidly as the rank of approximation increases. The

2nd rank orthogonal decomposition is observed to be the main

contributor to the direction dependent distribution of contact nor-

mal density, while the 4th and 6th rank terms are negligible. As

shear continues, the material fabric anisotropy gradually increases

in order to withstand the external shearing. The phase angle of the

2nd rank approximation is /2=2 = 90
�

as shown in Fig. 2(b), sug-

gesting that the maximum probability density is co-directional

with the loading direction. With the negligible magnitudes for

the 4th and 6th rank terms, the values of their phase angles are

of little significance and hence not plotted in the figure.

In summary, the numerical observation indicates that the direc-

tional distribution of the contact normal probability density Ec(n)

can be sufficiently approximated by up to 2nd rank power terms

as:

EcðhÞ ¼
1

2p
1þ d

c
2 cos 2h� /c

2

� �� �
ð25Þ

In terms of direction tensors, it is:

Dc
i1 i2

¼ d
c
2

cos/c
2 sin/c

2

sin/c
2 � cos/c

2

� 	

ð26Þ

3.2. Mean contact vector hvi|n

The directional distributions of mean contact vector could be

approximated using the compacted form as in Eq. (10) or in the

form of orthogonal decomposition as in Eq. (11) with its main sta-

tistical features reflective by the direction tensor Hv

ji1 i2 ���in
or alterna-

tively the deviatoric direction tensor Gvji1 ���in . In analogy to Eq. (23),

the n-th power term of Eq. (11) in two dimensional spaces could

be expressed as:

gvnj ¼ Gvji1 ���inni1ni2 � � �nin ¼ avnj cosnhþ b
v

nj sinnh

¼ d
v

nj cosðnh� /v

njÞ ð27Þ

where d
v

nj and /v

nj=n stand for the magnitudes and phase angles for

the n-th rank orthogonal decomposition terms, respectively.

Denoting Avn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
v2
n1 þ d

v2
n2 � 2d

v

n1d
v

n2 sinð/
v

n1 � /vn2Þ

q

=2, Bvn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
v2
n1 þ d

v2
n2 þ 2d

v

n1d
v

n2 sinð/
v

n1 � /vn2Þ

q

=2, avn ¼ arctan d
v

n1 sin/vn1�
��

d
v

n2 cos/
v

n2Þ= d
v

n1 cos/
v

n1 þ d
v

n2 sin/vn2
� �

�, bvn ¼ arctan d
v

n1 sin/vn1þ
��

d
v

n2 cos/
v

n2Þ= d
v

n1 cos/
v

n1 � d
v

n2 sin/vn2
� �

�, then-thpower termbecomes:

gvnj ¼ Gvji1 ���inni1 � � �nin ¼ Avn
cos nh� avn

� �

sin nh� avn
� �

 !

þ Bvn
cos nh� bvn

� �

� sin nh� bvn
� �

 !

ð28Þ

The expression suggests that the n-th power term in Eq. (11)

can be decomposed into two components whose magnitudes being

Avn and Bvn , respectively. With Eqs. (11) and (28), the directional

distribution of mean contact vector hvi|n is expressed in terms of

summation taken over odd number n as:

hvijn ¼v0

cosh

sinh

0

B
@

1

C
Aþ

X

n

Avn

cos nh�avn
� �

sinðnh�avnÞ

0

B
@

1

C
Aþ

X

n

Bvn

cosðnh�bvnÞ

�sinðnh�bvnÞ

0

B
@

1

C
A

2

6
4

3

7
5

ð29Þ

The deviatoric direction tensor Gv

ji 1111
z}|{
n�1 is:

Gv

ji1111
zfflffl}|fflffl{

n�1 ¼GvA

ji1111
zfflffl}|fflffl{

n�1 þGvB

ji1111
zfflffl}|fflffl{

n�1 ¼Avn
cosavn sinavn
�sinavn cosavn

� 	

þBvn
cosbvn sinbvn
sinbvn �cosbvn

� 	

ð30Þ

As shown in Appendix A2, we have Gjj ¼ Hjj � djj ¼
D
m0

K jj � djj ¼ 0,

indicating Av1 ¼ 0.

With the n-th power term of mean contact vector given in Eq.

(28), its normal component gvnn in the normal direction n = (cosh, -

sinh) and its tangential component gvtn in the tangential direction

t = (�sinh, cosh) could be determined as:

gvnn ¼ gvn � n ¼ Avn cos ðn� 1Þh� avn
� �

þ Bvn cos ðnþ 1Þh� bvn
� �

ð31Þ

gvtn ¼ gvn � t ¼ Avn sin ðn� 1Þh� avn
� �

� Bvn sin ðnþ 1Þh� bvn
� �

ð32Þ

The approximation of the normal and tangential components of

hvi|n up to n-th rank approximation becomes:
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hvnijh ¼v0 1þ
X

n

Avn cos ðn�1Þh�avn
� �

þ
X

n

Bvn cos ðnþ1Þh�bvn
� �

" #

ð33Þ

hv tijh ¼ v0

X

n

Avn sin ðn� 1Þh� avn
� �

�
X

n

Bvn sin ðnþ 1Þh� bvn
� �

" #

ð34Þ

They are summation of sinusoidal terms whose magnitudes are Avn
and Bvn with the corresponding periods being 2p/(n � 1) and 2p/
(n + 1), and the corresponding phase angles being avn=ðn� 1Þ and

bvn=ðnþ 1Þ.

With the pre-determined approximation for contact normal

density, Hv

ji1 i2 ���in
and Gvji1 i2 ���in were calculated from particle-scale

data following the procedure introduced in Appendix A2, and

then used to determine the magnitudes, Avn , B
v

n , and phase angles,

avn , b
v

n in Eq. (28) accordingly. The magnitudes for 1st, 3rd, 5th

rank terms Av1 , B
v

1 , A
v

3 , B
v

3 , A
v

5 , B
v

5 , are plotted in Fig. 2(a). Av1 � 0

is observed as expected. The anisotropy in the mean contact vec-

tor is observed to be small, despite the non-circular particle shape

used in the simulations. This may be due to the fact that the spec-

imen starts with an almost isotropic distribution of particle orien-

tation. Upon shearing, Bv1 is observed to continuously increase

with the corresponding phase angle given in Fig. 2(b). The phase

angle bv1=2 remains about 0
�

, suggesting the preferred direction is

normal to the loading direction, as a result that as shearing con-

tinues, the particle orientations tend to be normal to the loading

direction.

Considering the possibility of non-circular particle shape and

potential particle orientation anisotropy, 1st rank approximation

is used to approximate the mean contact vector as:

hvijn ¼ v0

cos h

sin h

� 	

þ Bv1
cosðh� bv1Þ

� sin h� bv1
� �

 !" #

ð35Þ

In the form of direction tensors, we have one term Gvji1 as

Gvji1 ¼ Bv1
cosbv1 sin bv1

sinbv1 � cos bv1

� 	

ð36Þ

3.3. Mean contact force hfi|n

The directional distributions of mean contact force can be

approximated using the compacted form as in Eq. (12) or in the

form of orthogonal decomposition as in Eq. (13) with its main sta-

tistical features reflective by the direction tensor Hf
ji1i2 ���in

or alterna-

tively the deviatoric direction tensor Gf
ji1 ���in

. The n-th power term of

Eq. (13) in two dimensional spaces could be expressed as:

gf
nj ¼ Gf

ji1 ���in
ni1ni2 � � �nin ¼ af

nj cosnhþ b
f
nj sinnh

¼ d
f
nj cosðnh� /

f
njÞ ð37Þ
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where d
f
nj and /

f
nj=n stand for the magnitudes and phase angles for

the n-th rank orthogonal decomposition terms, respectively.

Denoting Af
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
f2
n1 þ d

f2
n2 � 2d

f
n1d

f
n2 sinð/

f
n1 � /

f
n2Þ

q

=2, Bf
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
f2
n1 þ d

f2
n2 þ 2d

f
n1d

f
n2 sinð/

f
n1 � /

f
n2Þ

q

=2, af
n ¼ arctan d

f
n1 sin/

f
n1�


h

d
f
n2 cos/

f
n2

�

= d
f
n1 cos/

f
n1 þ d

f
n2 sin/

f
n2


 �i

, bf
n ¼ arctan d

f
n1 sin/

f
n1þ


h

d
f
n2 cos/

f
n2

�

= d
f
n1 cos/

f
n1 � d

f
n2 sin/

f
n2


 �i

, the n-th power term

becomes:

gf
nj ¼ Gf

ji1 ���in
ni1 � � �nin ¼ Af

n

cos nh� af
n


 �

sinðnh� af
nÞ

0

@

1

Aþ Bf
n

cos nh� bf
n


 �

� sinðnh� bf
nÞ

0

@

1

A

ð38Þ

The deviatoric direction tensor Gf

ji1111
z}|{
n�1 is hence expressed as:

Gf

ji1111
z}|{
n�1 ¼ GfA

ji1111
z}|{
n�1 þ GfB

ji1111
z}|{
n�1

¼ Af
n

cosaf
n sinaf

n

� sinaf
n cosaf

n

0

B
@

1

C
Aþ Bf

n

cosbf
n sinbf

n

sinbf
n � cosbf

n

0

B
@

1

C
A

ð39Þ

and Af
1 ¼ 0. With Eqs. (13) and (39), the directional distribution of

mean contact force hfi|n is expressed in terms of summation taken

over odd number n as:

hfijn ¼ f0
cosh

sinh

� 	

þ
X

n

Af
n

cosðnh�af
nÞ

sinðnh�af
nÞ

 !

þ
X

n

Bf
n

cosðnh�bf
nÞ

�sinðnh�bf
nÞ

 !" #

ð40Þ

With the n-th power term of mean contact force given in Eq.

(38), its normal component gfn
n and its tangential component gft

n

could be expressed as:

gfn
n ¼ gf

n � n ¼ Af
n cos ðn� 1Þh� af

n

� �
þ Bf

n cos ðnþ 1Þh� bf
n


 �

ð41Þ

gft
n ¼ gf

n � t ¼ Af
n sin ðn� 1Þh� af

n

� �
� Bf

n sin ðnþ 1Þh� bf
n


 �

ð42Þ

The approximation of the normal and tangential components of

hfi|n with up to n-th rank of approximation becomes:

hf nijh ¼ f0 1þ
X

n

Af
n cos ðn� 1Þh� af

n

� �
þ
X

n

Bf
n cos ðnþ 1Þh� bf

n

h i
" #

ð43Þ

hf tijh ¼ f0
X

n

Af
n sin ðn�1Þh�af

n

� �
�
X

n

Bf
n sin ðnþ1Þh�bf

n

h i
" #

ð44Þ

They are summation of sinusoidal terms whose magnitudes are Af
n

and Bf
n with the corresponding periods being 2p/(n � 1) and 2p/

(n + 1), and the corresponding phase angles being af
n=ðn� 1Þ and

bf
n=ðnþ 1Þ.

With the approximation of directional distributed contact nor-

mal density, the direction tensors for mean contact force Hf
ji1 i2 ���in

and Gf
ji1 i2 ���in

were calculated from particle-scale data, and were used

to determine the magnitudes, Af
n, Bf

n, and phase angles, af
n, bf

n

accordingly. The magnitudes for 1st, 3rd, 5th rank terms, Af
1, B

f
1,

Af
3, B

f
3, A

f
5, B

f
5, are plotted in Fig. 3(a). It is observed that the magni-

tudes of orthogonal decomposition diminish quickly as the rank of

approximation increases. Only terms relating to Bf
1, A

f
3 are consid-

ered to be significant and other terms are negligible. Their corre-

sponding phase angles are given in Fig. 3(b). Both phase angles

b
f
1=2 and af

3=2 are about 90
�

, co-directional with the loading

direction.

The results indicate that the directional distribution of mean

contact force hfi|n could be sufficiently approximated by up to

3rd rank of power terms as:

hfijn ¼ f0
cos h

sin h

 !

þ Bf
1

cosðh� b
f
1Þ

� sinðh� b
f
1Þ

0

@

1

Aþ Af
3

cosð3h� af
3Þ

sinð3h� af
3Þ

0

@

1

A

2

4

3

5

ð45Þ

In the form of direction tensors, we have two deviatoric direction

tensors Gf
ji1

and Gf
ji1 i2 i3

as:

Gf
ji1

¼ Bf
1

cosbf
1 sin b

f
1

sinb
f
1 � cosbf

1

0

@

1

A; Gf
ji111

¼ Af
3

cosaf
3 sinaf

3

� sinaf
3 cosaf

3

0

@

1

A

ð46Þ

The rest component of Gf
ji1 i2 i3

can be found easily as it is symmetric

and deviatoric with respect to i1, i2, i3.

3.4. Simplification based on the chosen limited ranks of approximation

In summary, statistical analyses based on micro-scale data for

an isotropic specimen subjected to biaxial shearing suggest that

it is sufficient to approximate the directional distributions of

contact normal density, mean contact forces and mean contact

vectors with up to 2nd, 3rd and 1st ranks of power terms as given

in Eqs. (25), (35), and (45). These observations can be used to

simplify Eq. (21) by keeping only direction tensors of Dc
i1i2

, Gvji1

and Gf
ji1
, Gf

ji1 i2 i3
.

With the chosen ranks of approximation and Eq. (15), we have:

X/

n¼2;s;t¼1;js�tj6n6sþt

Dc
k1 ���kn

Gvil1 ���lsG
f
jm1 ���mt

nk1 � � �nknnl1 � � �nlsnm1
� � �nmt

¼ Dc
k1k2

Gvil1G
f
jm1

nk1nk2nl1nm1
þ Dc

k1k2
Gvil1G

f
jm1m2m3

nk1nk2nl1nm1
nm2

nm3

¼ 2
3
a4D

c
l1m1

Gvil1G
f
jm1

þ a4
22
4C2

Dc
k1k2

Gvf ;13ijk1k2

ð47Þ

Following Eqs. (A27) and (A28) in Appendix A4, we have

Gvil1G
f
jm1m2m3

nl1nm1
nm2

nm3
np1np2 ¼ a6

23

6C3

Gvil1G
f
jl1p1p2

ð48Þ

Hence Eq. (21) can be simplified as:

rij ¼
xN

V
1v0f0

a2ðdij þ Gf
ji þ Gvij þ Gf

jl1
Gvil1 Þ

þ 2
3
a4ðD

c
ij þ Dc

im1
Gf

jm1
þ Dc

im1
Gvjm1

þ Dc
l1m1

Gvil1G
f
jm1

Þ

þ 2
5
a6ðD

c
k1k2

Gf
jik1k2

þ Dc
k1k2

Gvil1G
f
jl1p1p2

Þ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð49Þ

Eq. (49) is valid for both two dimensional spaces and three dimen-

sional spaces as long as the chosen ranks for approximation are con-

sidered sufficient.

3.5. Stress–force–fabric relationship in two dimensional spaces

In two dimensional spaces, Eq. (15) gives a2 ¼ 1=2;a4 ¼ 3=8;

a6 ¼ 5=16. The stress tensor in Eq. (49) hence becomes:
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rij ¼
xN

2V
1v0f0

dij þ Gf
ji þ Gvij þ Gf

jl1
Gvil1


 �

þ 1
2

Dc
ij þ Dc

ik1
Gf

jk1
þ Dc

jk1
Gvik1 þ Dc

k1k2
Gvik1G

f
jk2


 �

þ 1
4

Dc
k1k2

Gf
jik1k2

þ Dc
k1k2

Gvil1G
f
jl1k1k2


 �

2

6
6
6
6
4

3

7
7
7
7
5

ð50Þ

The expression can be further simplified by invoking the symmetry

in the Cauchy stress tensor, i.e., r12 = r21. Notice that Dc
i1 i2

, Gvji1 and

Gf
ji1

are symmetric and deviatoric tensors. With the expressions of

direction tensors Dc
i1 i2

, Gvji1 and Gf
ji1
, Gf

ji1 i2 i3
given in Eqs. (26), (36),

and (46) respectively, we found that:

Gf
jl1
Gvil1 ¼ Bf

1B
v

1

cosðbf
1 � Bv1Þ � sin b

f
1 � Bv1


 �

sin b
f
1 � Bv1


 �

cos b
f
1 � Bv1


 �

0

B
@

1

C
A ð51Þ

Dc
ik1
Gf

jk1
¼ d

c
2B

f
1

cos /c
2 � b

f
1


 �

� sin /c
2 � b

f
1


 �

sin /c
2 � b

f
1


 �

cos /c
2 � b

f
1


 �

0

B
@

1

C
A ð52Þ

Dc
jk1
Gvik1 ¼ d

c
2B

v

1

cos /c
2 � bv1

� �
� sin /c

2 � bv1
� �

sin /c
2 � bv1

� �
cos /c

2 � bv1
� �

 !

ð53Þ

Dc
k1k2

Gf
jik1k2

¼ 2d
c
2A

f
3

cos /c
2 � af

3


 �

� sinð/c
2 � af

3Þ

sinð/c
2 � af

3Þ cosð/c
2 � af

3Þ

0

@

1

A ð54Þ

Dc
k1k2

Gvik1G
f
jk2

¼ d
c
2B

v

1B
f
1

cosð/c
2 � bv1 þ b

f
1Þ sinð/c

2 � bv1 þ b
f
1Þ

sinð/c
2 � bv1 þ b

f
1Þ � cosð/c

2 � bv1 þ b
f
1Þ

 !

ð55Þ

Dc
k1k2

Gvil1G
f
jl1k1k2

¼2d
c
2B

v

1A
f
3

cosð/c
2þbv1 �af

3Þ sinð/c
2þbv1 �af

3Þ

sinð/c
2þbv1 �af

3Þ �cosð/c
2þbv1 �af

3Þ

 !

ð56Þ

The joint products Dc
k1k2

Gvik1G
f
jk2

and Dc
k1k2

Gvil1G
f
jl1k1k2

are found to be

symmetric and deviatoric. However, Gf
jl1
Gvil1 ;D

c
ik1
Gf

jk1
;Dc

jk1
Gvik1 ;

Dc
k1k2

Gf
jik1k2

could be asymmetric if the eigenvectors of Dc
i1 i2

, Gvji1 and

Gf
ji1

are not co-incident. Since the stress tensor is to be symmetric,

½Gf
jl1
Gvil1 þ

1
2
ðDc

ik1
Gf

jk1
þ Dc

jk1
Gvik1 Þ þ

1
4
Dc

k1k2
Gf

jik1k2
� has to be symmetric.

Hence,

Bf
1B

v

1 sinðb
f
1 � Bv1Þ

�
1

2
d
c
2B

f
1 sin /c

2 � b
f
1


 �

� d
c
2B

v

1 sin /c
2 � bv1

� �
� d

c
2A

f
3 sin /c

2 � af
3


 �h i

¼ 0:

As a result, we can write

Gf
jl1
Gvil1 þ

1

2
Dc

ik1
Gf

jk1
þ Dc

jk1
Gvik1


 �

þ
1

4
Dc

k1k2
Gf

jik1k2
¼ Cdij ð57Þ

where

C ¼
Bf
1B

v

1 cosðb
f
1 � Bv1Þ þ

1
2
d
c
2B

f
1 cosð/

c
2 � b

f
1Þ

þ 1
2
d
c
2B

v

1 cosð/
c
2 � bv1Þ þ

1
2
d
c
2A

f
3 cosð/

c
2 � af

3Þ

" #

:

The stress tensor in Eq. (50) becomes:

rij ¼
xN

2V
1v0f0 ð1þ CÞdij þ Gf

ji þ Gvij þ
1

2
Dc

ij þ
1

2
Dc

k1k2
Gvik1G

f
jk2

�

þ
1

4
Dc

k1k2
Gvil1G

f
jl1k1k2



ð58Þ

The magnitudes of orthogonal decompositions are generally

limited. The anisotropic magnitude in contact vector Gvji1 has been

observed to be small. The contribution from the two joint product

terms, Dc
k1k2

Gvik1G
f
jk2

and Dc
k1k2

Gvil1G
f
jl1k1k2

, are expected to be extremely

small, and hence negligible. This leads to a concise form of the

stress–force–fabric relationship in two dimensional spaces as:

rij ¼
xN

2V
1v0f0 ð1þ CÞdij þ Gf

ji þ Gvij þ
1

2
Dc

ij

� 

ð59Þ

It is interesting to point out that Gf
ji1 i2 i3

do not appear directly in Eq.

(59). It contributes to and only to the coefficient C though the joint

product Dc
k1k2

Gf
jik1k2

. In component form, we have:

r11 ¼
xN
2V
1v0f0 ð1þCÞþ Bf

1 cos2b
f
1þBv1 cos2b

v

1 þ
1
2
d
c
2 cos2/

c
2


 �h i

r12 ¼r21 ¼
xN
2V
1v0f0 Bf

1 sin2b
f
1þBv1 sin2b

v

1 þ
1
2
d
c
2 sin2/

c
2

h i

r22 ¼
xN
2V
1v0f0 ð1þCÞ� Bf

1 cos2b
f
1þBv1 cos2b

v

1 þ
1
2
d
c
2 cos2/

c
2


 �h i

8

>>>>>><

>>>>>>:

ð60Þ
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With Dc
i1 i2

, Gvji1 and Gf
ji1

are symmetric and deviatoric tensors, we

have the expression of the mean normal stress:

p ¼
xN

2V
1ð1þ CÞv0f0 ð61Þ

the normalized deviatoric stress tensor as:

gij ¼
rij

p
� dij ¼

1

1þ C
Gf

ji þ Gvij þ
1

2
Dc

ij

� 

ð62Þ

The stress ratio is mainly determined by Dc
ij, G

v

ij , G
f
ji, and slightly af-

fected by C. The principal stress direction could be predicted with

good confidence based on the information on the magnitudes d
c
2,

Bf
1, B

v

1 and phases angles /c
2, b

f
1, b

v

1 . Among them, the anisotropic

magnitudes from the first two components d
c
2, B

f
1 are observed to

be much larger than Bv1 , their influence is dominant.

3.6. The accuracy of the SFF relationship

With the pre-calculated direction tensors, the stress tensor can

be determined from Eq. (59). The accuracy of the derived stress–

force–fabric relationship was checked by comparing the prediction

from Eq. (59) and the stress measured directly on the specimen

boundary. The result is shown as in Fig. 4 in terms of the stress

invariants p ¼ ðr11 þ r22Þ=2, q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr11 � r22Þ
2 þ 4r12r21

q

and the

principal stress direction ha.

The coincidence of the two set of data confirms that the derived

stress–force–fabric relationship as defined by Eq. (59) predicts the

complete stress state with excellent accuracy. The main reason is

that different from other physical models, the proposed stress–

force–fabric (SFF) relationship has been mathematically derived

by employing the directional statistical theory. Even though the

expression of Eq. (59) seems very different from Eq. (1), they are

equivalent as long as (1) the statistical dependence between the

contact vectors and contact forces can be considered as isotropic;

(2) it is sufficient to approximate the directional distributions of

contact normal density, mean contact forces and mean contact

vectors with up to 2nd, 3rd and 1st ranks of power terms of direc-

tion vector n as given in Eqs. (25), (35), and (45).

3.7. Comparison with Rothenburg and Bathurst’s SFF relationship

(1989)

There is no doubt that even though the derivation process used

in this paper is different from that of Rothenburg and Bathurst

(1989), the resulted SFF relationships should be the same following

the same assumptions. The directional distributions used in Roth-

enburg and Bathurst (1989) are:

EcðhÞ ¼ 1
2p ½1þ ac cos 2ðh� haÞ�

f nðhÞ ¼ f0½1þ cn cos 2ðh� haÞ�

f tðhÞ ¼ �f0ct sin 2ðh� haÞ

8

><

>:

ð63Þ

The mean contact vector was assumed to be isotropic.

By keeping only terms of Bf
1 and Af

3 in Eqs. (43) and (44), the

normal and tangential components of mean contact forces

become:

hf nijh ¼ f0 1þ Bf
1 cosð2h� b

f
1Þ þ Af

3 cosð2h� af
3Þ

h i

ð64Þ

hf tijh ¼ f0 �Bf
1 sinð2h� b

f
1Þ þ Af

3 sinð2h� af
3Þ

h i

ð65Þ

With the assumption of /c
2 ¼ b

f
1 ¼ af

3 ¼ 2ha, and denoting

cn ¼ ðBf
1 þ Af

3Þ, ct ¼ ðBf
1 � Af

3Þ, d
c
2 ¼ ac , the expressions given as Eqs.

(25), (64), and (65) become the same as Eq. (63), and the

coefficient C ¼ ½1
2
d
c
2B

f
1 þ

1
2
d
c
2A

f
3� ¼

1
2
accn. The stress–force–fabric rela-

tionship given in Eq. (59) becomes:

rij ¼
xN

2V
v0f0 1þ

1

2
accn

� 	

dijþ
1

2
ðacþcnþctÞ

cosha sinha

sinha �cosha

� 	� 

ð66Þ

The general stress–force–fabric relationship Eq. (59) developed in

this paper reduces to the special form given in Rothenburg and

Bathurst (1989) with the assumptions of /c
2 ¼ b

f
1 ¼ af

3 ¼ 2ha and

the contact vector distribution being isotropic Gvij ¼ 0.

4. Statistical dependence between contact vectors and contact

forces

Section 2.1 assumed an isotropic statistical dependence be-

tween contact vectors and contact forces, i.e., hvjn � fjTni ¼

1hvijn � hfijTn. Here, we will show how the assumption has been sup-

ported by statistical analyses based on the particle-scale informa-

tion. The statistical dependence can be investigated by

comparing the directional distribution of hvifji|n, hvii|nhfji|n.

4.1. Directional distribution of hvifji|n

The method and procedure proposed by Li and Yu (2011) was

generalized to study direction dependent, multi-dimensional ar-

rays, such as hvifji|n and hvii|nhfji|n, as elaborated in the following.

Taking the average of product hvifji|n as an even function with re-
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spect to direction n, the n-th rank approximation of hvifji|n takes

the compact form (n is an even integer):

ðV iF jÞðnÞ ¼ ðvf Þpa0 Ppa
ijk1k2 ���kn

nk1nk2 � � �nkn ð67Þ

where Ppa
ijk1 ���kn

stands for the direction tensor. It is symmetric with

respect to subscripts k1,k2,. . .kn, i.e., P
pa
ijk1k2 ���kn

¼ Ppa
ijðk1k2 ���knÞ

. The super-

script suggests the sequence of operations. hvifji|nis obtained by

firstly taking the tensor product of contact vectors and contact

forces and then taking the average. ðvf Þpa0 represents the directional

average of dot product hvT�fi|n, i.e., ðvf Þ
pa
0 ¼

H

X
hvT � fijn dX=E0. In the

form of orthogonal decomposition, we have:

ðV iF jÞðnÞ ¼ ðvf Þpa0 �
dij

D
þ Qpa

ij þ Qpa
ijk1k2

nk1nk2 þ � � � þ Qpa
ijk1 ���kn

nk1 � � � nkn þ � � �

� 

ð68Þ

in which Qpa
ijk1k2 ���kn

is the deviatoric direction tensor. It is symmetric

and deviatoric with respect to subscripts k1,k2,. . .kn, i.e., Q
pa
ijk1k2 ���kn

¼

Qpa
ijðk1k2 ���knÞ

and Qpa
ijk1 ���kk ���kl ���kn

dkkkl ¼ 0. The method to calculate the

direction tensors are given as Appendix A6.

4.2. Directional distribution of hvii|nhfji|n

hvii|nhfji|n can be calculated by taking multiplication of Eqs. (11)

and (13). Alternatively, we could apply a similar method and pro-

cedure as detailed in Section 4.1. The approximation can take the

following compact form:

hV iiðnÞhF jiðnÞ ¼ ðvf Þap0 Pap
ijk1k2 ���kn

nk1nk2 � � �nkn ð69Þ

where the direction tensor Pap
ijk1 ���kn

is symmetric with respect to sub-

scripts k1,k2,. . .kn, i.e., P
ap
ijk1k2 ���kn

¼ Pap
ijðk1k2 ���knÞ

. Here what to be investi-

gated is hvii|nhfji|n. It is obtained by firstly taking the averages of

contact vectors and contact forces respectively and then multiply-

ing them to get the product. Hence, we use the superscripts as ap.

ðvf Þap0 represents the directional average of dot product hvi|n
T�hfi|n,

i.e., ðvf Þap0 ¼
H

X
hvijTn � hfijn dX=E0. In the form of an orthogonal

decomposition, we have:

hV iiðnÞhF jiðnÞ ¼ ðvf Þap0

�
dij

D
þ Q ap

ij þ Q ap
ijk1k2

nk1nk2 þ � � � þ Q ap
ijk1 ���kn

nk1 � � �nkn þ � � �

� 

ð70Þ

in which the deviatoric direction tensor Qap
ijk1k2 ���kn

is symmetric and

deviatoric with respect to subscripts k1,k2,. . .kn, i.e., Qap
ijk1k2 ���kn

¼

Qap
ijðk1k2 ���knÞ

and Qap
ijk1 ���kk ���kl ���kn

dkkkl ¼ 0. The method to determine the

direction tensors is the same as that in Section 4.1, hence is not

repeated.

4.3. Observations on the statistical dependence

The statistical dependence between contact vectors and contact

forces can be studied by comparing the direction distributions of

hvifji|n and hvii|nhfji|n. With the two distributions approximated

with polynomial expansions as in Eqs. (68) and (70), the two direc-

tional dependent multi-dimensional arrays hvifji|n and hvii|nhfji|n
can be compared in terms of their directional averages and their

direction tensors of different ranks.

The directional averages and the 0th-rank deviatoric direction

tensors for approximating hvifji|n and hvii|nhfji|n are calculated from

particle-scale information following the procedure introduced in

Appendix A6 and plotted in Fig. 5. The value of v0f0 is also given

in Fig. 5(a) as a reference value. The difference between ðvf Þpa0
and ðvf Þap0 shown in Fig. 5(a) suggests that statistical dependence

between contact vectors and contact forces does exist. ðvf Þap0 is ob-

served to be close to v0f0 as seen from the figure, indicating the

contribution from joint product of higher rank anisotropic terms

being negligible. The ratio of ðvf Þpa0 =ðvf Þap0 has also been plotted

in the figure. It varies from 1.07 at beginning and decrease slightly

to 1.04 at large strain levels.

The components of the deviatoric direction tensors Qpa
ij and Q ap

ij

are given in Fig. 5(b). They are observed to be almost identical,

indicating that the statistical dependence can be considered to be

the same in different directions. Statistical analyses show that

the magnitude of direction tensors decreases as the rank of approx-

imation increases. Hence, higher rank approximation would be ex-

pected to be even less significant. This observation supports the

assumption made in Section 2.1 that the statistical dependence be-

tween the contact vectors and contact forces is isotropic.

Analyses have been carried out on different specimens undergo-

ing various loading paths. The isotropy in statistical dependence

has been found as a generally valid assumption. In cases that sta-

tistical dependence is shown to be strongly direction dependent,

the SFF relationship can be established using similar procedure

only that higher rank terms are to be introduced to reflect its direc-

tional dependence and the results are expected to include some

additional direction tensors.

5. SFF relationship in non-proportional loading

Rothenburg and Bathurst (1989)’s SFF relationship is based on

the assumption that the principal directions of contact normal

density, normal tangential contact force and tangential contact
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force are coaxial with the principal stress direction. It gives a good

prediction in the mean normal stress and the stress ratio for ini-

tially isotropic specimen subjected to proportional loading. How-

ever, the coaxial assumption excludes the ability of predicting

principal stress directions. Moreover, in non-proportional loading,

the fabric and particle interaction may not always be co-axial (Li

and Yu, 2009; Li and Yu, 2011). By characterizing the directional

distributions in terms of direction tensor, the coaxial assumption

is not needed. Hence, Eq. (59) is applicable in non-proportional

loadings.

5.1. Discrete element simulations of non-proportional loading

Material behavior to non-proportional loading, involving rota-

tion of either material fabric or principal stresses, has attracted

much research interest over the last few decades (Arthur et al.,

1980; Towhata and Ishihara, 1985; Gutierrez et al., 1991; Yoshi-

mine et al., 1998; Li and Dafalias, 2004; Tsutsumi and Hashiguchi,

2005; Yu and Yuan, 2006; Yu, 2008).

In the effort to study the dependence of granular material

behavior on initial fabric and loading paths, Li and Yu (2009) pre-

pared two anisotropic specimens and sheared the specimens in dif-

ferent directions to study material anisotropy. One was prepared

using the deposition method, and was referred as the initially

anisotropic specimen. The other was the preloaded specimen, pre-

pared by shearing initially anisotropic specimen monotonically up

to 25% axial strain in the deposition direction, and then unloaded

to isotropic stress state. The two specimens were consolidated to

pc ¼ 1000 kPa, and sheared along various loading directions.

Noticeable difference in non-coaxiality with and without pre-

shearing was reported (Li and Yu, 2009). Later, numerical simula-

tion of stress rotation has been reported (Li and Yu, 2010). The iso-

tropic specimen was firstly sheared in the vertical direction

ar ¼ 90
�

up to stress ratio g ¼ 0:8 and then subjected to pure stress

rotation with continuous rotation of principal stress direction ar.
These two tests involved non-coincidence between the principal

fabric direction, the principal stress directions and their relative

rotations. Both are non-proportional loadings.

5.2. Statistical characteristics in non-proportional loading

The data from these simulations were used here for statistical

analyses. Directional statistical analyses confirmed that even for

non-proportional loadings the previous observations still hold true.

That is to say, the magnitudes of orthogonal decomposition dimin-

ish quickly as the rank of approximation increases. The 2nd rank

approximation of contact normal density d
c
2, the 1st rank and 3rd

rank approximation of contact force, Bf
1 and Af

3, and the 1st rank

approximation of contact vector, Bv1 were all the anisotropic terms

necessary to give sufficient approximations. The 4th rank terms for

contact normal density d
c
4 was observed to increase gradually as

shear continues, while remain limited.

5.2.1. Anisotropic specimen subjected to monotonic shearing

For the anisotropic specimens subjected to monotonic shearing,

results on the specimens when subjected to fixed loading direction

ae ¼ 30
�

were analyzed and presented here. ae denotes the devia-

tion of loading direction to horizontal direction.

Figs. 6 and 7 give the magnitudes and phase angles for the ini-

tially anisotropic specimen and the preloaded specimen, respec-

tively. Initially, the magnitude of contact normal d
c
2 was about

0.22. The phase angle of contact normal /c
2=2 was 90

�

, suggesting

that the initial anisotropic structure had the preferred direction

the same as particle deposition. As shear continued, its magnitude

increased. In the meantime, its phase angle /c
2=2 approached 30

�

,

coaxial with the loading direction.

Different from the previous results on isotropic specimen, devi-

ations between the phase angles of contact normal and contact

forces were clearly shown in Figs. 6 and 7(b), though diminishing

at large strain levels. This clear evidence suggested that the coaxi-

ality assumption between fabric and contact forces may not be va-

lid in non-proportional loading. The rate for the contact normal

density to approach the loading direction was observed to be

slower than that for contact force anisotropy. For the initially

anisotropic specimen, the contact force anisotropy, both the 1st

rank term and the 3rd rank term, became coaxial with loading

direction upon the initiation of loading, while for the preloaded

specimen, it took about 5% deviatoric strain for the 3rd rank aniso-

tropic terms become coaxial with loading direction.

5.2.2. Isotropic specimen to stress rotation

The statistical characteristics of the isotropic specimen sub-

jected to stress rotation were plotted in Fig. 8. The anisotropy in

mean contact vector was observed to be negligible, while the

anisotropy in contact normal density and contact forces were sig-

nificant. The phase angle of the 2nd rank contact normal density

/c
2=2, and those of contact forces, bf

1=2 and af
3=2 were plotted in

Fig. 8(b). It was shown that the phase angles rotated together with

the rotation of the principal stress direction. Again, the non-coax-

iality between the contact normal density and the contact forces

was noticeable. The differences between the phase angles were

plotted in Fig. 9. The 1st rank phase angle b
f
1=2 was observed al-

most coincident with the principal stress direction, while the phase

angles for the contact normal density /c
2=2 and the phase angle for

the 3rd rank contact force af
3=2 were left behind in the range of

10
�

	 20
�

.

5.3. The accuracy of the SFF relationship in non-proportional loading

The comparisons of the stress tensor calculated from Eq. (59)

and those measured on the specimen boundary were given in

Figs. 10 and 11, for the non-proportional loading, i.e., the two

anisotropic specimens to monotonic loading and the isotropic

specimen to stress rotation, respectively. The almost identical re-

sults confirmed the capability of Eq. (59) to provide complete

and accurate prediction on the specimen stress state. The main

reason is that the derivation of SFF relationship involved neither

pre-assumption on the loading path nor material constitutive

relationship. It is a mathematical approach. Eq. (59) provides good

prediction on the material stress as long as the conditions of isotro-

pic statistical dependence and the chosen ranks of approximation

remain valid.

6. Benefits of using directional statistical theories

This paper concerned about the same problem as in Rothenburg

and Bathurst (1989). The novelty of the present paper lies on the

usage of the directional statistical theories. The directional statisti-

cal theory is a technique to interpret a set of directional data and

requires no pre-requisite assumptions. The directional distribu-

tions are approximated by polynomial expansions in unit direction

vector n. The key characteristics of the set of directional data are

embedded in the direction tensors, which are the coefficients

determined by minimizing the least square error. This allows for

the flexibility to choose the proper ranks of polynomial terms for

approximation based on the characteristics of given directional

data. Moreover, this approach simultaneously determines all the

components of the direction tensors. It is different from the con-

ventional scheme, in which minimization only leads to the deter-

mination of one parameter and additional assumptions are often

needed.

X. Li, H.-S. Yu / International Journal of Solids and Structures 50 (2013) 1285–1302 1295



One of the benefits by using the directional statistical theory

was to validate the assumptions made during the derivation of

Rothenburg and Bathurst’s SFF relationship (1989). The statistical

dependence between contact vectors and contact forces has been

investigated and a statistical dependence between contact vectors

and contact forces was demonstrated in Section 4. It was taken into

account by introducing a direction independent scalar 1. Also, by
employing the directional statistical theory, we can determine

the coefficient tensor directly from the discrete particle-scale data-

set, and hence choose the sufficient rank for approximation. In the
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present work, we choose the rank of approximation based on the

discrete element simulation results. The magnitudes of the higher

rank terms have been observed to be small. Observation given in

Sections 3.2–3.4 supported that it is sufficient to approximate the

directional distributions of contact normal density, mean contact

forces and mean contact vectors with up to 2nd, 3rd and 1st power

terms of direction vector n as given in Eqs. (25), (35), and (45). This

leads to the simplified stress–force–fabric relationship as given in

Eq. (59).

The derivation of the stress–force–fabric relationship is a

good example demonstrating the powerful application of the

directional statistical theory in granular mechanics. The conven-

tional directional analyses start with subdividing the directional

space into a number of space segments covering the entire

range of orientations. Given some tolerance Dn on sampling is

allowed, the directional data are grouped to be allocated into

the space segments. This is the first step for further statistical

analyses to study the directional probability function or the

directional distributed characteristics values. In physical terms,

determination of the directional distributions is possible for a

system with such irregular and abundant data that the sets cor-

responding to each group are non-empty no matter how small

the interval can be. In other words, this requires a sufficiently

large amount of directional data. Otherwise, the statistical char-

acterisation may be sensitive to the space subdivision when the

data are limited. However, the data processing method employ-

ing the directional statistical theory do not involve subdivision

of the whole space into small segments, and is hence subjected

to no limitation of the amount of available data. The directional

statistical theory provides a new approach to conduct directional

analyses in granular materials. The method has the benefit of

being readily applied to both two dimensional and three dimen-

sional spaces.

Moreover, by approximating the directional distributions with

polynomial expansions in direction n, the statistical and direc-

tional characteristics of particle-scale directional data are quanti-

fied in terms of the macro-scale direction tensors. The directional

integration is hence converted into tensor multiplication as shown

in Section 2.5. This avoids the difficulty of conducting directional
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Fig. 10. Comparison for anisotropic specimens to monotonic loading.
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integration, and eventually leads to an explicit form of the stress–

force–fabric relationship as defined by Eq. (59). This approach is

advantageous in conducting numerical analyses with the aid of

computer programs.

7. Conclusions

The paper applied the theory of directional statistics in gran-

ular mechanics to study material stress state. The employment

of the directional statistical theory makes it possible to look into

the statistical dependence of contact vectors and contact forces,

and to choose the appropriate ranks of approximation based

on the characteristics of given directional data. Moreover, it

quantifies the directional dependence in terms of direction

tensors and converts the directional integration into tensor

multiplication.

Based on the directional statistical theory, the general stress–

force–fabric relationship has been derived as given in Eq. (21).

Two dimensional granular material behaviors have been studied

including both proportional loading and non-proportional load-

ing paths. The statistical features of the contact vectors and con-

tact forces have been investigated. Incorporating the findings

into the general expression of the stress–force–fabric relation-

ship as in Eq. (21), and imposing the symmetry in the Cauchy

stress tensor, we derived the stress–force–fabric relationship in

two dimensional spaces in a very concise form as in Eq. (59).

The derived SFF relationship predicts the complete stress infor-

mation, including the mean normal stress, the deviatoric stress

ratio as well as the principal stress directions. It explicitly ex-

presses the stress tensor in terms of direction tensors character-

izing contact normal density Dc
ij, contact vectors Gvij and contact

forces Gf
ji. The parameter 1 reflects the statistical dependence be-

tween contact vectors and contact forces, and the parameter C is

due to the contribution from the joint products of deviatoric

direction tensors.

The relationship gives good accuracy in predicting the stress

state of granular materials. This is mainly because the derivation

has been conducted mathematically without pre-assumptions on

loading paths, material states or constitutive relationship.

Although the expression (59) looks quite different from Love’s ini-

tial equation, they describe the same fundamental relationship be-

tween the stress tensor, contact forces and contact vectors in a

granular material. It is a predictive relationship established

starting from the micro-structural stress tensor and based on the

following assumptions:

(1) The statistical dependence between the contact vectors and

contact forces can be considered as isotropic, i.e., the effect

of the statistical dependence between contact vectors and

contact forces could be taken into account by assuming

hvjn � fjTni ¼ 1hvijn � hfijTn, where 1 is a direction independent

scalar.

(2) It is sufficient to approximate the directional distributions of

contact normal density, mean contact forces and mean con-

tact vectors with up to 2nd, 3rd and 1st ranks of power

terms of direction vector n as given in Eqs. (25), (35).

By employing the directional statistical theory, the validity of

the assumptions made by Rothenburg and Bathurst (1989) has

been investigated. The statistical independence between the con-

tact vectors and contact forces may not hold true. And the coaxial-

ity among the directional distributions has been shown invalid in

non-proportional loadings. Following the same set of assumptions,

the expression derived in this paper is found to be identical with

Rothenburg and Bathurst (1989)’s formulation.

The direction tensors serve as the statistical measures of the

particle-scale variables so that they can be used in the develop-

ment of micro-mechanics based constitutive relationship in

the frame-indifferent form. The stress–force–fabric relationship

developed in this paper provides a key analytical tool to under-

stand the micromechanical origin of the shear strength of granular

materials.
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Appendix A1. Calculation of the direction tensors for contact

normal density

To determine the coefficient tensor Fc
i1 i2 ���in

from a given set of

observed discrete directional data, the minimization of the square

error

E ¼

I

X

EcðnÞ � ecðnÞ½ �
2
dX ! min ðA1Þ

can be used as the criterion (Li and Yu, 2011). Let nð1Þ, nð2Þ, . . . and

nðNÞ be unit vectors representing N contact normals. The average

of their n-th rank tensor product is called the moment tensor of

rank n and is defined as:

0 1 2 3
0

200

400

600

800

1000

1200

Number of Cycles

S
tr

e
s
s
 i
n

v
a

ri
a

n
ts

 (
k
P

a
)

p From Eq. (59)

p Measurement

q From Eq. (59)

q Measurement

0 1 2 3
0

50

100

150

Number of Cycles

P
ri

n
c
ip

a
l 
S

tr
e

s
s
 D

ir
e

c
ti
o

n
, θ

a
 (

o
)

From Eq. (59)

Measurement

Fig. 11. Comparison for isotropic specimen to stress rotation.
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Ni1 i2 ���in ¼ ni1ni2 � � �nin

� �
¼

1

N

XN

a¼1

n
ðaÞ
i1
n
ðaÞ
i2

� � �n
ðaÞ
in

¼

I

X

ni1ni2 � � �nine
cðnÞdX ðA2Þ

where h�i designates the sample mean, i.e., h�i ¼
PN

a¼1�
ðaÞ=N; or in

continuous form, h�i ¼
H

X
h�ijne

cðnÞdX. The moment tensor is fully

symmetric. The least square error criteria lead to:

Nc
i1 i2 ���in

¼
1

E0

I

X

Fc
j1J2 ���jn

nj1nj2 � � �njnni1ni2 � � �nindX

¼ Fc
j1 J2 ���jn

nj1nj2 � � �njnni1ni2 � � �nin ðA3Þ

where � ¼
H

X
ð�ÞdX=E0 denotes the average of ⁄ over directions.

The direction tensor Fc
i1 i2 ���in

and the deviatoric direction tensor

Dc
i1 i2 ���in

can then be determined successively. The constraint of

being a probability density distribution leads to F0 ¼ D0 ¼ 1. Start-

ing from here, with the n-th rank moment tensor Ni1 i2 ���in calculated

from observed directional data and the known ðn� 2Þ-th rank

direction tensor Fc
i1 i2 ���in�2

, the n-th rank deviatoric direction tensor

Dc
i1 i2 ���in

can be calculated as:

Dc
i1 ���in

¼
1

a2n

ð2nÞ!

2nðn!Þ2
Ni1 ���in � Fc

j1 ���jn�2
nj1 � � �njn�2

ni1 � � �nin


 �

ðA4Þ

And the n-th rank direction tensor Fc
i1 i2 ���in

can be found in view of the

symmetry in Fc
i1 i2 ���in

and Dc
i1 i2 ���in

as:

Fc
i1 i2 ���in

¼ Dc
i1 i2 ���in

þ Fc
ði1 i2 ���in�2

din�1 inÞ ðA5Þ

Appendix A2. Calculation of the direction tensors for mean

contact vectors

Let vð1Þ, vð2Þ, � � � and vðNÞ be contact vectors associated with the

observed N contact normals nð1Þ, nð2Þ, � � � and nðNÞ respectively. De-

fine the moment tensor as:

Kv

ji1 ���in
¼

1

E0

I

X

hvijn 
 n
 n � � � 
 n
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

n

dX

¼
1

E0

I

X

hv jijnni1 � � � nindX ðA6Þ

Minimizing the least square error

E ¼

I

X

½VðnÞ � hvijn�
T � ½VðnÞ � hvijn�dX ! min ðA7Þ

leads to @E=@Hv

ji1 i2 ���in
¼ 0 and

Kv

ji1 i2 ���in
¼ v0H

v

jk1k2 ���kn
nk1nk2 � � �nknni1ni2 � � �nin ðA8Þ

With the pre-determined approximation of contact normal proba-

bility density of n, Kv

ji1 i2 ���in
can be calculated from discrete observa-

tions by taking the s-th rank approximation of the probability

density with the form given in Eq. (8). Hence:

Kv

ji1 i2 ���in
¼ 1

E0

I

X

hv jijnni1ni2 � � �ninE
cðnÞ 1

EcðnÞ
dX� 1

E0
v jni1ni2 � � �nin=E

cðnÞ
� �

¼ 1
N

XN

a¼1

v jn
a
i1
nai2 � � �n

a
in


 �

= Fc
k1k2 ���ks

nak1n
a
k2
� � �nakn


 �h i

ðA9Þ

The direction tensor Hv

ji1 ���in
and the deviatoric direction tensor

Gvji1 ���in can hence be determined successively. From Eqs. (10) and

(A9), we have v0 calculated from:

v0 ¼

I

X

hvijn � ndX

�

E0 ¼

I

X

hv jijnnjdX

�

E0 ¼ Kv

jj ðA10Þ

And the direction tensor Hji1 and the deviatoric tensor Gji1 can be

determined as follows:

Hv

ji1
¼

D

v0

Kv

ji1
and Gvji1 ¼ Hv

ji1
� dji1 ðA11Þ

where D stands for the dimension of the space. With the moment

tensor Kv

ji1 i2 ���in
calculated from observed directional data and the

known lower rank direction tensor Hv

jk1 ���kn�2
, the n-th rank deviatoric

direction tensor Gvji1 i2 ���in can be determined as:

Gvji1 ���in ¼
1

a2n

2nCn

2n Kv

ji1 ���in

.

v0 � Hv

jk1 ���kn�2
nk1 � � �nkn�2

ni1 � � �nin


 �

ðA12Þ

Noticing the symmetry in Hv

ji1 ���in
and Gvji1 ���in , we have the direction

tensor Hv

ji1 ���in
for the n-th rank approximation determined as

Hv

ji1 ���in
¼ Hv

jði1 i2 ���in�2
din�1 inÞ þ Gvji1 ���in ðA13Þ

Appendix A3. General stress–force–fabric relationship

Being orthogonal decompositions, the coefficient tensors satisfy

Dc
i1 ���in

ni1ni2 � � � ninnj1nj2 � � �njm ¼ 0

Gvi0 i1 ���isni1ni2 � � �nisnj1nj2 � � �njt ¼ 0

Gf
i0 i1 ���is

ni1ni2 � � �nisnj1nj2 � � �njt ¼ 0

ðA14Þ

when m < n, t < s, m and n are even numbers, s and t are odd num-

bers. Hence,

X/

t¼1;odd

Gf
jm1 ���mt

ninm1
� � �nmt ¼ Gf

jm1
ninm1

ðA15Þ

X/

s¼1;odd

Gvil1 ���lsnjnl1 � � �nls ¼ Gvil1njnl1 ðA16Þ

X/

k¼2;even

Dc
k1k2 ���kn

nk1nk2 � � �nknninj ¼ Dc
k1k2

nk1nk2ninj ðA17Þ

Furthermore, since,

Gf
jm1 ���mt

Gvil1 ���lsnl1 � � �nlsnm1
� � �nmt

¼

Gvil1 ���ls ðG
f
jm1 ���mt

nm1
� � �nmtnl1 � � � nls Þ ¼ 0; when s < t

–0; when s ¼ t

Gf
jm1 ���mt

ðGvil1 ���lsnl1 � � �nlsnm1
� � �nmt

Þ ¼ 0; when s > t

8

>>>><

>>>>:

ðA18Þ

Dc
k1k2 ���kn

Gf
jm1 ���ms

nk1nk2 � � �nknninm1
� � �nms

¼

Gf
jm1 ���ms

Dc
k1k2 ���kn

nk1nk2 � � �nknninm1
� � �nms


 �

¼0; when sþ1<n

Dc
k1k2 ���kn

Gf
jm1 ���ms

nm1
� � �nmsnk1nk2 � � �nknni


 �

¼0; when s>nþ1

–0; otherwise

8

>><

>>:

ðA19Þ

Dc
k1k2 ���kn

Gvil1 ���lsnk1nk2 � � �nknnjnl1 � � �nls

¼

Gvil1 ���ls Dc
k1k2 ���kn

nk1nk2 � � �nknninl1 � � �nls


 �

¼0; when sþ1<n

Dc
k1k2 ���kn

Gvil1 ���lsnl1 � � �nlsnk1nk2 � � �nknni


 �

¼0; when s>nþ1

–0; otherwise

8

>>>><

>>>>:

ðA20Þ

we have,
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X/

s¼1;odd;t¼1;odd

Gf
jm1 ���mt

Gvil1 ���lsnl1 � � �nlsnm1
� � �nmt

¼
X/

s¼1;odd

Gf
jm1 ���ms

Gvil1 ���lsnl1 � � �nlsnm1
� � �nms ðA21Þ

X/

n¼2;even;t¼1;odd

Dc
k1k2 ���kn

Gf
jm1 ���mt

nk1nk2 � � �nknninm1
� � �nmt

¼
X/

n¼2;even

Dc
k1k2 ���kn

Gf
jm1 ���mn�1

nink1nk2 � � �nknnm1
� � �nmn�1

þ
X/

n¼2;even

Dc
k1k2 ���kn

Gf
jm1 ���mnþ1

nink1nk2 � � �nknnm1
� � �nmnþ1

ðA22Þ

X/

n¼2;even;s¼1;odd

Dc
k1k2 ���kn

Gvil1 ���lsnk1nk2 � � �nknnl1 � � �nlsnj

¼
X/

n¼2;even

Dc
k1k2 ���kn

Gvim1 ���mn�1
njnk1nk2 � � �nknnm1

� � �nmn�1

þ
X/

n¼2;even

Dc
k1k2 ���kn

Gvim1 ���mnþ1
njnk1nk2 � � �nknnm1

� � �nmnþ1

ðA23Þ

As for the last term in Eq. (17), using the orthogonal

decompositions, Dc
k1k2 ���kn

Gf
jm1 ���mt

nk1nk2 � � �nknnm1
� � �nmt

, Dc
k1k2 ���kn

Gvil1 ���ls

nk1nk2 � � � nknnl1 � � �nls , Gf
jm1 ���mt

Gvil1 ���lsnl1 � � �nlsnm1
� � �nmt

could be ex-

pressed in terms of a polynomial in n up to rank ðnþ tÞ, ðnþ sÞ,

ðsþ tÞ respectively as:

Dc
k1 ���kn

Gf
jm1 ���mt

nk1 � � �nknnm1
� � �nmt

¼
Xnþt

r¼1;odd

Q cf ;nt
jk1 ���kr

nk1 � � �nkr

Dc
k1 ���kn

Gvil1 ���lsnk1 � � � nknnl1 � � �nls ¼
Xnþs

r¼1;odd

Q cv;ns
ik1 ���kr

nk1 � � �nkr

Gvil1 ���lsG
f
jm1 ���mt

nl1 � � �nlsnm1
� � �nmt ¼

Xsþt

r¼2;even

Qvf ;st
ijk1 ���kr

nk1 � � �nkr

ðA24Þ

The coefficient tensors are symmetric and deviatoric with respect to

the subscripts k1,k2,. . .kr. Hence, we also have:

Dc
k1k2 ���kn

Gvil1 ���lsG
f
jm1 ���mt

nk1nk2 � � �nknnl1 � � �nlsnm1
� � �nmt

¼

Xnþt

r¼1;odd

Q cf ;nt
jk1k2 ���kr

Gvil1 ���lsnk1nk2 � � �nkrnl1 � � �nls


 �

¼ 0;

when s > nþ t

Xnþs

r¼1;odd

Q cv ;ns
ik1k2 ���kr

Gf
jm1 ���mt

nk1nk2 � � �nkrnm1
� � �nmt


 �

¼ 0;

when t > nþ s

Xsþt

r¼2;even

Qvf ;st
ijk1k2 ���kr

Dc
k1k2 ���kn

nk1nk2 � � �nkrnk1nk2 � � �nkn


 �

¼ 0;

when n > sþ t

–0; otherwise

8

>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA25Þ

Substituting the above equations into Eq. (17), we have the

stress tensor expressed as:

rij ¼
xN

V
1v0f0

ninj þGf
jm1

ninm1
þGvil1nl1nj þDc

k1k2
nk1nk2ninj

þ
X/

s¼1

Gf
jm1 ���ms

Gvil1 ���lsnl1 � � �nlsnm1
� � �nms

þ
X/

n¼2;even

Dc
k1 ���kn

Gf
jm1 ���mn�1

nink1 � � �nknnm1
� � �nmn�1

þ
X/

n¼2;even

Dc
k1 ���kn

Gf
jm1 ���mnþ1

nink1 � � �nknnm1
� � �nmnþ1

þ
X/

n¼2;even

Dc
k1 ���kn

Gvim1 ���mn�1
njnk1 � � �nknnm1

� � �nmn�1

þ
X/

n¼2

Dc
k1 ���kn

Gvim1 ���mnþ1
njnk1 � � �nknnm1

� � �nmnþ1

þ
X/

n¼2;s;t¼1;js�tj6n6sþt

Dc
k1 ���kn

Gvil1 ���lsG
f
jm1 ���mt

nk1 � � �nknnl1 � � �nlsnm1
� � �nmt

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ðA26Þ

The coefficient direct tensors Pvf ;stijk1k2 ���kn
and Qvf ;st

ijk1k2 ���kn
could be

determined as follows. Multiplying both sides of Eq. (A24) with

np1 � � �npq and integrating, we have the moment tensor:

Rv f ;stijp1p2 ���pq
¼ Gvil1 ���lsG

f
jm1 ���mt

nl1 � � �nlsnm1
� � �nmtnp1 � � �npq

¼
Xsþt

r¼0;even

Qv f ;st
ijn1n2 ���nr

nn1nn2 � � �nnrnp1 � � �npq

¼
Xq

r¼0;even

Qvf ;st
ijn1n2 ���nr

nn1nn2 � � �nnrnp1 � � �npq

ðA27Þ

With Gvil1 ���ls ;G
f
jm1 ���mt

being the deviatoric direction tensor obtained

from orthogonal decompositions, we have Rvf ;stijp1p2 ���pq
¼ 0 when q <

js� tj, so that Pvf ;stijn1n2 ���nr
and Qvf ;st

ijn1n2 ���nr
are both zero when r < js� tj.

When q ¼ js� tj, Rvf ;stijp1p2 ���pq
becomes non-zero while

Pvf ;stijp1p2 ���pq
¼ Qvf ;st

ijp1p2 ���pq
, and:

Rvf ;stijp1p2 ���pq
¼ Qv f ;st

ijn1n2 ���nq
nn1nn2 � � �nnqnp1 � � �npq ¼ a2q

2q

2qCq

Qvf ;st
ijp1p2 ���pq

ðA28Þ

This gives us the start point to calculate Pvf ;stijp1p2 ���pq
and Qvf ;st

ijp1p2 ���pq
suc-

cessively when q > js� tj. With Rvf ;stijp1p2 ���pq
calculated from Eq. (A27),

we have:

Qv f ;st
ijp1 ���pq

¼
1

a2q

2qCq

2q Rvf ;stijp1 ���pq
� Pvf ;stijl1 ���lq�2

nl1 � � �nlq�2
np1 � � �npq

h i

ðA29Þ

Noticing the symmetry in Pvf ;stijp1p2 ���pq
and Qvf ;st

ijp1p2 ���pq
, the direction tensor

Pvf ;stijp1p2 ���pq
for n-th rank approximation is then determined as

Pvf ;stijp1p2 ���pq
¼ Pvf ;stijðp1p2 ���pq�2

dpq�1pqÞ þ Qv f ;st
ijp1p2 ���pq

ðA30Þ

Appendix A4. Simplification of stress–force–fabric relationship

From Eq. (15), we have:

ni1ni2 ¼ a2di1 i2 ðA31Þ

Hence,

Gf
jm1

ninm1
¼ a2G

f
jm1

dim1
¼ a2G

f
ji ðA32Þ

Gvil1nl1nj ¼ a2G
v

il1
dl1 j ¼ a2G

v

ij ðA33Þ

Together with Eq. (20), we have:

Dc
k1k2

nk1nk2ninj ¼ a4
22

4C2

Dc
ij ¼

2

3
a4D

c
ij ðA34Þ
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Gf
jm1 ���ms

Gvil1 ���lsnl1 � � �nlsnm1
� � �nms ¼ a2s

2s

2sCs

Gf
jl1 ���ls

Gvil1 ���ls ðA35Þ

Dc
k1k2 ���kn

Gf
jm1 ���mn�1

nink1nk2 � � �nknnm1
� � �nmn�1

¼a2n

2n

2nCn

Dc
im1 ���mn�1

Gf
jm1 ���mn�1

ðA36Þ

Dc
k1k2 ���kn

Gf
jm1 ���mnþ1

nink1nk2 � � �nknnm1
� � �nmnþ1

¼ a2nþ2
2nþ1

2nþ2Cnþ1

Dc
k1k2 ���kn

Gf
jik1 ���kn

ðA37Þ

Dc
k1k2 ���kn

Gvjm1 ���mn�1
nink1nk2 � � �nknnm1

� � �nmn�1

¼ a2n

2n

2nCn

Dc
im1 ���mn�1

Gvjm1 ���mn�1
ðA38Þ

Dc
k1k2 ���kn

Gvjm1 ���mnþ1
nink1nk2 � � �nknnm1

� � �nmnþ1

¼ a2nþ2
2nþ1

2nþ2Cnþ1

Dc
k1k2 ���kn

Gvjik1 ���kn ðA39Þ

More effort is required for the last term. Gf
jm1 ���mt

Gvil1 ���lsnl1 � � �nlsnm1

� � �nmt can be expressed in terms of a polynomial in n up to rank

ðsþ tÞ using the orthogonal decompositions in the form of Eq.

(A24).

Noticing that,

Dc
k1k2 ���kn

Gvf ;stijk1k2 ���kr
nk1nk2 � � �nknnl1 � � �nlr

¼

Dc
k1k2 ���kn

Gvf ;stijk1k2 ���kr
nk1nk2 � � �nknnl1 � � �nlr


 �

¼ 0; when r > n

Gv f ;stijk1k2 ���kr
Dc

k1k2 ���kn
nk1nk2 � � �nknnl1 � � �nlr


 �

¼ 0; when n > r

–0; otherwise

8

>><

>>:

ðA40Þ

we have,

Xsþt

r¼0;even

Dc
k1k2 ���kn

Gvf ;stijl1 l2 ���lr
nk1nk2 � � �nknnl1 � � �nlr

¼ Dc
k1k2 ���kn

Gvf ;stijl1 l2 ���ln
nk1nk2 � � �nknnl1 � � �nln ðA41Þ

Hence, when js� tj 6 n 6 sþ t, we have

Dc
k1k2 ���kn

Gvil1 ���lsG
f
jm1 ���mt

nk1nk2 � � �nknnl1 � � �nlsnm1
� � �nmt

¼ Dc
k1k2 ���kn

Gvf ;stijl1 l2 ���ln
nk1nk2 � � �nknnl1 � � �nln ¼ a2n

2n
2nCn

Dc
k1k2 ���kn

Gv f ;stijk1k2 ���kn

ðA42Þ

Substituting the above equations into the expanded form Eq.

(19), the stress tensor is expressed as:

rij ¼
xN

V
1v0f0

a2dij þ a2G
f
ji þ a2G

v

ij þ
2
3
a4D

c
ij

þ
X/

s¼1

a2s
2s

2sCs
Gf

jl1 ���ls
Gvil1 ���ls

þ
X/

n¼2

a2n
2n

2nCn
Dc

im1 ���mn�1
Gf

jm1 ���mn�1

þ
X/

n¼2

a2nþ2
2nþ1

2nþ2Cnþ1
Dc

k1 ���kn
Gf

jik1 ���kn

þ
X/

n¼2

a2n
2n

2nCn
Dc

im1 ���mn�1
Gvjm1 ���mn�1

þ
X/

n¼2

a2nþ2
2nþ1

2nþ2Cnþ1
Dc

k1 ���kn
Gvjik1 ���kn

þ
X/

n¼2;js�tj6n6sþt

a2n
2n

2nCn
Dc

k1 ���kn
Qvf ;st

ijk1 ���kn

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ðA43Þ

Appendix A5. Expression of Di1 ���inni1ni2 � � �nin

The value of D

11���122 � � �2
zfflffl}|fflffl{

k given in Eq. (22) can be expressed in

alternative form as

D

11���122 � � �2
zfflffl}|fflffl{

k ¼
i
k
þ ð�iÞk

2
an þ

�i
k
þ ð�iÞk

2
ibn ðA44Þ

where i is the standard imaginary unit with i2 = �1. With

eih = cosh + isinh, expansion of Di1 ���inni1ni2 � � �nin becomes:

Di1 ���inni1ni2 � � �nin ¼
Xn

k¼1

nCk
ikþð�iÞk

2
anþ

�ikþð�iÞk

2
ibn

h i

cosn�k hsin
k
h

¼
Xn

k¼0

nCk
ikþð�iÞk

2
anþ

�ikþð�iÞk

2
ibn

h i
1
2
eihþe�ih
� �� �n�k i

2
e�ih�eih
� �� �k

¼ an
2

Xn

k¼0

nCk
1
2
eihþe�ih
� �� �n�k

�1
2
e�ih�eih
� �� �k

þ 1
2
e�ih�eih
� �� �k

n o

�ibn
2

Xn

k¼0

nCk
1
2
eihþe�ih
� �� �n�k

�1
2
e�ih�eih
� �� �k

� 1
2
e�ih�eih
� �� �k

n o

¼ an
2

1
2
eihþe�ih
� �

� 1
2
e�ih�eih
� �� �n

þ an
2

1
2
eihþe�ih
� �

þ 1
2
e�ih�eih
� �� �n

�ibn
2

1
2
eihþe�ih
� �

� 1
2
e�ih�eih
� �� �n

þ ibn
2

1
2
eihþe�ih
� �

þ 1
2
e�ih�eih
� �� �n

¼ an
2

einhþe�inh
� �

þ ibn
2

�einhþe�inh
� �

¼ an cosnhþbn sinnh¼ dn cosðnh�/nÞ

ðA45Þ

where dn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2n þ b
2
n

q

and tan/n ¼ bn=an.

Appendix A6. Calculation of the direction tensors for hvifjijn

We define the least square error as follows:

E ¼

I

X

ðV iF jÞðnÞ � hv ifjijn
� �

: ½ðV iF jÞðnÞ � hv ifjijn�dX ðA46Þ

Minimizing the least square error leads to @E=@Ppa
ijk1k2 ���kn

¼ 0, and

the expression of the moment tensor as follows:

Rpa
ijk1k2 ���kn

¼ ðvf Þpa0 Ppa
ijl1 l2 ���ln

nl1nl2 � � �nlnnk1nk2 � � �nkn

¼ 1
N

XN

a¼1

v ifjn
a
k1
nak2 � � �n

a
kn


 �.

F l1 l2 ���lsn
a
l1
nal2 � � �n

a
ln


 �h i ðA47Þ

which can be calculated from discrete particle-scale information

with the pre-determined approximation of contact normal density

as in Eq. (8).

From Eqs. (67), (68), and (A47), we have:

Rpa
ij ¼

1

E0

I

X

hv ifjijndX ¼ ðvf Þpa0 Ppa
ij ¼ ðvf Þpa0

1

D
dij þ Qpa

ij

� 

ðA48Þ

Hence, Qpa
ij ¼ Rpa

ij =ðvf Þ
pa
0 � dij=D. Again, we can have Ppa

ijk1k2 ���kn
and

Qpa
ijk1k2 ���kn

determined successively. With the moment tensor

Rpa
ijk1k2 ���kn

and the known lower rank direction tensor Ppa
ijk1k2 ���kn�2

, the

n-th rank deviatoric direction tensor Qpa
ijk1k2 ���kn

can be determined

from:

Qpa
ijk1 ���kn

¼
1

a2n

2nCn

2n Rpa
ijk1 ���kn

.

ðvf Þpa0 � Ppa
ijl1 ���ln�2

nl1 � � �nln�2
nk1 � � �nkn

h i

ðA49Þ

Noticing the symmetry in Ppa
ijk1k2 ���kn

and Qpa
ijk1k2 ���kn

, the direction

tensor Ppa
ijk1k2 ���kn

for n-th rank approximation is then determined as

Ppa
ijk1k2 ���kn

¼ Ppa
ijðk1 ���kn�2

dkn�1knÞ þ Qpa
ijk1k2 ���kn

ðA50Þ
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