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Abstract

Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp)
129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide
valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus
enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp 129Xe. Straightforward hp
129Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp 129Xe
probe volumes during the inhalation cycle. Hp 129Xe MRI of lung function in the excised organ demonstrates the persistence
of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables
physiology of lung function in health and disease without additional regulatory approval requirements and reduces the
technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment
histological measurements and should be of interest for drug development studies.
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Introduction

The use of animal models of pulmonary diseases is well

established in many areas of biomedical research, however in vivo

functional respiratory measurements of ventilated and anesthe-

tized small animals are technically challenging to achieve [1–3].

Nonetheless, ex vivo ventilated lungs have been used as a model to

investigate airway responses [4–6].

Several investigators have since utilized isolated and perfused

rodent lungs to study lung vascular function and to monitor

inflammatory responses to noxious stimuli, for example, lipopoly-

saccharides and prolonged hyperventilation in the absence of

systemic interactions [7–13]. In addition isolated and perfused

murine lungs have been used to investigate pharmacokinetics of

inhaled aerosols [14,15].

Uhlig et al. have performed technically challenging experiments

on the intact ex vivo murine lungs examining both the airway and

the vascular responses to intravenous delivery of a variety of

pharmacologically active substances including methacholine,

serotonin, endothelin-1 and leukotriene C4. [16]. The reported

changes in airway resistance and vasoconstriction correlated well

with the results obtained from precision cut lung slice models.

Hyperpolarized Noble Gas Magnetic Resonance Imaging
(MRI)

Current imaging techniques provide regional information but

suffer from notable difficulties when applied to the pulmonary

system. High resolution computed tomography (HRCT) provides

high temporal and spatial resolution images but generates limited

functional information. Nuclear medicine techniques such as

single photon emission computed tomography (SPECT) and

positron emission tomography (PET) have provided important

additional information [17–21] but offer limited temporal and

spatial resolution with higher doses of ionizing radiation.

Conventional proton MRI of the lungs aimed at studying lung

parenchyma suffers from low sensitivity resulting from the

inherently low tissue to volume ratio and local magnetic field

inhomogeneities associated with the void space of the lungs.

Furthermore, low signal intensities combined with short T2
*

relaxation times place significant limitations on MRI hardware

and on MRI protocols resulting in diminished image resolution

[22,23].

Hyperpolarized (hp) noble gas MRI of the lungs increasingly

establishes itself as an alternative technique for imaging of the lung

airspaces [24,25]. Due to the large gyromagnetic ratio (c) of

helium-3 (3He), its high diffusivity, and its ability to assume high

levels of hyperpolarization, hp 3He has been extensively used in

lung ventilation imaging studies and in characterization of alveolar

geometry [26–28]. An additional noble gas isotope, xenon-129

(129Xe) has attracted increasing attention for hp pulmonary MRI

applications partially due to the limited availability of 3He but also

because of the ability to interrogate additional clinical parameters

[29–33]. For example, surface to volume ratio in lungs can be

probed with hp 129Xe because of the high solubility of 129Xe in
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tissue and its wide chemical shift range. The 129Xe chemical shift

leads to distinguishable MR signals for xenon dissolved in blood,

tissue, and xenon in the gas phase, thus enabling regional studies

of gas exchange through the parenchyma [32].

Hp 129Xe can be produced by spin exchange optical pumping

(SEOP) [34,35] with pulmonary MRI obtained after inhalation of

the hp 129Xe [24,33,36,37]. As xenon becomes a general

anesthetic if inhaled in high concentrations special care is required

for its in vivo clinical usage [38]. Oxygen can be added to the hp

gas for inhalation but the presence of paramagnetic O2 leads to the

faster destruction of hp xenon state thus limiting the duration of

experiments. [39].

In addition to the difficulties of performing MR measurements

on anaesthetized and ventilated subjects, not excluding logistical

concerns, in vivo hp 129Xe MRI in small animals requires precision

control of hp gas delivery with large amounts of specialist technical

hardware such as hp 129Xe compatible ventilators and delivery

systems [40,41] further adding to the significant costs involved.

Excellent high quality MR images have been reported, although

thus far the technique is limited to a few, highly specialized,

research centers.

Ex vivo lung models in conjunction with hp gas MRI therefore

offer the opportunity to reduce the experimental complexity. The

use of the ex vivo model should facilitate rapid development and

testing of hp gas MRI protocols whilst allowing regional study of

lung responses in the absence of systemic effects. Furthermore, ex

vivo pulmonary MRI allows for tests of lung function using

protocols, such as prolonged breath holds or the omission of

oxygen, that may be beneficial for obtaining certain parameters

but that are not feasible for studies with living animals. Finally, ex

vivo lung models may reduce the severity of the procedure to the

experimental animals minimizing regulatory approval require-

ments, whilst potentially providing a solid platform for rapid drug

development and advancement.

Materials and Methods

Animal care and preparation
The University of Nottingham Ethical Review Committee

approves the study, which is carried out in strict accordance with

local animal welfare guidelines and the UK Home Office Animals

(Scientific Procedures) Act 1986. All efforts are made to minimize

animal suffering.

Healthy male Sprague-Dawley rats (175–300 g, n = 20, Charles

River UK Ltd, Margate, UK) and Dunkin Hartley guinea pigs

(200–300 g, n = 8, Harlan UK Ltd, Shardlow, UK) are terminated

by overdose of pentobarbital (Sigma-Aldrich Ltd, Gillingham,

UK). After confirmation of death, surgery is performed postmor-

tem. A catheter is inserted into the right ventricle or caudal vena

cava to permit flushing of the pulmonary circulation with heparin-

saline solution (Wockhardt UK Ltd, Wrexham, UK) followed by

Dublecco’s phosphate buffer solution (D-PBS, Sigma-Aldrich Ltd,

Gillingham, UK) to remove remaining blood from the pulmonary

circulation.

The heart and lungs are subsequently removed en masse. A

plastic adapter tube is placed 5–10 mm above the carina and

sutured into place. The heart and lungs are then transferred into a

custom-built acrylic ventilation chamber with the lungs suspended

in 5% glucose solution (weight/volume) (Baxter Healthcare Ltd,

Thetford, UK) to minimize dehydration or swelling of the tissues

[42] with the trachea pointing downwards as detailed in Fig. 1. In

this situation it is known that there is a pressure gradient of no

more than 0.5 kPa (5 cm H2O) from the base to the apex of the

lung as the fully expanded lung never exceeded 5 cm in length.

The ex vivo lungs are checked on repeated inflations with 4–5 mL

of ambient air for leakage either from the suture around the

trachea or the lungs themselves. The lungs are chilled for

transportation to the imaging facility with temperature main-

tained, well above the freezing point, at 278 K. The transfer from

the extraction to the experiment facility takes approximately

90 min. After transportation, the lungs are then passively warmed

to ambient temperature before imaging experiments.

Production of hp 129Xe
Hp 129Xe is produced in batch mode using spin exchange

optical pumping (SEOP) [34] of a gas mixture containing 25% Xe

(enriched to 83% 129Xe, Nova Gas Technologies, Charleston, SC,

USA) and 75% N2 (99.999% pure, Air Liquide, Coleshill, UK).

SEOP is performed at 40 kPa followed by expansion of the hp gas

into the evacuated chamber of the hp gas extraction unit [43]. The

chamber allows for the recompression of the hp gas to ambient

pressure and thus makes it available for inhalation. The technical

details of the extraction and compression process are beyond the

scope of this paper and will be reported elsewhere [44]. The hp

xenon delivered to the excised rodent lung for inhalation is spin

polarized to P = 40%. However, taking the four fold dilution with

nitrogen in the SEOP gas mixture into account, the apparent spin

polarization [43] is Papp = (4044)% = 10% (i.e. leading to the same

signal intensity that would be obtained from pure xenon polarized

to P = 10%).

Ex vivo lung ventilation
Active inhalation of air or hp 129Xe inside the magnet is

accomplished by a small degree of suction provided by a

ventilation syringe that causes the lung to inflate as previously

demonstrated with hp 83Kr [45,46]. Briefly, negative pressure is

applied to the artificial pleural cavity of the breathing apparatus by

creating a desired suction volume Vs within the air filled ventilation

syringe shown in Fig. 1. The application of the suction volume Vs

typically leads to ‘pleural pressures’ in the artificial pleural cavity

around +0.5 to 23 kPa (+5 to 230 cm H2O) causing the lungs to

inflate and therefore inhale a volume Vi. Due to the use of the

compressible fluid (i.e. air) within the ventilation syringe and the

tubing, the inhaled volume Vi is not identical to Vs but can be

determined experimentally. Following inhalation to Vi, this gas

volume is completely exhaled through an increase in the pleural

pressure by the reversal of the suction volume to Vs = 0. The

exhaled gas is channeled via teflon tubing into a water bell located

outside of the magnet. The exhaled gas volume is determined

directly by the volume of displaced water. The average Vi values

obtained in 3 healthy lungs as a function of the suction volume Vs

are listed in Table 1.

Ventilation Schemes
Prior to hp gas administration the lungs are purged of oxygen.

The transfer line with storage volume VB (Fig. 1a) is flushed with

N2 (99.999% pure, Air Liquide, Coleshill, UK) and the lungs are

ventilated 8–10 times with N2 to remove any residual O2. The hp

gas is then delivered into the storage volume VB and a suction

created through Vs is applied to the artificial pleural cavity causing

the lungs to inhale the hp gas. The maximal Vs applied to create

suction was 5–6 mL during all experiments, equating to an

inhalation volume Vi of 4–5 mL depending on the ex vivo lung as

detailed in Table 1. In order to target specific regions of the lung,

gas is inhaled at different stages of the ventilation cycle. For

instance, a small amount of the hp gas is inhaled at the start of the

inhalation followed by ‘dark’ (non hp) gas, usually N2, or a small

volume of hp gas is inhaled at the end of the inhalation following

Hyperpolarized 129Xe MRI of Ex Vivo Rodent Lungs
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Figure 1. Outline of the hyperpolarized 129Xe gas delivery to the ex vivo lung. (A) Experimental ex vivo setup with hp 129Xe administered
from a balloon reservoir chamber into the storage volume (VB) before being inhaled by the lung. The lung is caused to inhale (exhale) by the
negative (positive) external ‘pleural’ pressure applied via the suction volume (Vs) from the ventilation syringe upon the artificial pleural cavity; (B)
Ex vivo lung submerged with its orifice down (sutured to a cannula) in 5% glucose solution within the ventilation chamber with its posterior-
anterior axis aligned in z-direction. In this sketch, a negative pleural pressure caused by Vs leads to a partial inflation of the ex vivo lung, inhaling
a selected gas (hp 129Xe, or N2 or O2) from the storage volume VB. Drugs are administered via a cannula sited in the right ventricle with the
excess fluid outlet located below the fluid level in the chamber. All resulting MR images shown in subsequent figures are depicted with the lung
orifice pointing upwards.
doi:10.1371/journal.pone.0073468.g001

Table 1. Relationship between syringe suction volume and inhaled gas volume1.

Applied Syringe Volume, Vs (mL) Corresponding Inhaled Volume, Vi (mL) Average Vi (mL)

0.560.1 - - 0.360.1 0.3±0.1

1.060.1 0.360.1 0.260.1 0.560.1 0.3±0.1

1.560.1 - 0.560.1 - 0.5±0.1

2.060.1 0.560.1 1.260.1 1.160.1 0.9±0.2

2.560.1 - 1.560.1 - 1.5±0.1

3.060.1 1.460.1 2.260.1 1.760.1 1.8±0.2

4.060.1 2.260.1 3.360.1 2.160.1 2.5±0.2

5.060.1 2.960.1 3.660.1 3.360.1 3.3±0.2

6.060.1 3.960.1 5.060.1 4.260.1 4.4±0.2

1Applied syringe suction volumes, Vs, with corresponding values for inhaled volume, Vi, determined by the water bell method for three Sprague-Dawley rats (weight
250–300 g). Errors listed are experimental relative errors. The omitted values were not determined.
doi:10.1371/journal.pone.0073468.t001
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the initial dark gas inhalation to localize the gas to different regions

of the lung.

Bronchoconstriction and reversal
Animals used for airway responsiveness experiments have the

catheter used for flushing of the pulmonary circulation retained

with the cranial and caudal vena cava ligated to ensure drug

delivery to the pulmonary circulation. The cannula is sutured into

place and attached to a fine perfluoroalkoxy (PFA) tube passed

through a modified ventilation chamber as detailed in Fig. 1b) with

the drug syringe located outside the superconducting magnet.

In order to satisfy tissue metabolic demands, the storage volume

VB is flushed with 50 mL O2 prior to hp gas delivery whilst the

lungs are ventilated 8–10 times with the oxygen. This is followed

by purging the transfer line with N2 prior to hp 129Xe delivery as

described above.

Bronchoconstriction is achieved by injecting methacholine

(Sigma-Aldrich Ltd, Gillingham, UK) through the pulmonary

circulation. For rat and guinea pig lungs, 60 mg and 10 mg of

methacholine dissolved in 1 mL 0.9% saline solution (Baxter

Healthcare Ltd, Thetford, UK) are used respectively. The

methacholine solutions are delivered using the drug cannula at a

rate of 1 mL/minute and are followed by a 2–3 mL bolus of 5%

glucose solution over 2–3 minutes to ensure complete drug

delivery through the pulmonary circulation. The reversal is

produced by flushing the challenged lungs with 5–10 mL 5%

glucose solution and 1000 mg of salbutamol (Allen and Hanbury’s

Ltd, Middlesex, UK) dissolved in 1.0 mL of 0.9% saline solution

over 6–11 minutes with the lungs from both species of animal.

Pulmonary MRI
Imaging experiments are performed using a 9.4 T vertical bore

BrukerH Avance III microimaging system (Bruker Corporation,

Billerica, Massachusetts, USA). A custom-built 25 mm low-pass

birdcage volume coil tuned to the resonance frequency of 129Xe

gas in the lung of 110.69 MHz is used in all experiments.

Spectroscopic data are collected using experimental schemes

discussed in the Results using 30 hard pulses of 4.47 ms at 53 W.

Images are acquired using a modified variable flip angle (VFA)

FLASH gradient echo pulse sequence [47]. Hard pulses of 134 ms

and sinc-shaped pulses of 1000 ms at variable power levels are used

for non-slice-selective and slice-selective image acquisition. An

individual phase increment is recorded during 2.61 ms; subse-

quent phase increment acquisitions are separated by 214.5 ms.

Therefore the total acquisition time for an image with 128664

resolution is 13.8 s. All coronal images are acquired in 128664

image matrices with field of view (FOV) of 46.9 mm and 30.0 mm

in the superior and inferior direction, respectively. Slice thickness

in slice-selective imaging experiments is 4 mm and the slice-

selective frequency offset corresponds to the excitation of the

central slice.

Image processing and analysis
Raw data are analyzed using Prospa� (v. 3.06, Magritek,

Wellington, New Zealand) where a sine-bell squared function is

used to window the data in both dimensions to result in magnitude

images with increased signal to noise ratio. The images are further

processed using IGOR Pro� (Wavemetrics, Lake Oswego,

Oregon, USA) as follows. A threshold procedure is applied to

remove the background noise. To achieve this, the lower threshold

is derived from the mean signal intensity plus two standard

deviations obtained from a 10610 voxel region randomly selected

outside the lung region within the image limits [48,49]. This value

is subtracted from the intensity in each pixel of the image resulting

in reduced noise images. The signal to noise ratio (SNR) with the

threshold procedure typically improves by a factor of four from

,60 to ,240. Subsequent image analysis is also performed with

IGOR Pro�.

Results

Measurement of ex vivo lung residual volume
Hp 129Xe MRI and NMR (Nuclear Magnetic Resonance)

spectroscopy of excised lungs can be used straightforwardly to

measure residual volume (RV) of excised lungs. The most basic hp
129Xe protocol that can be used for RV determination, using non

slice selective and non-spatially resolved 1D NMR spectroscopic

measurements is described by Eq. 1:

Inhalation0?5mL{30pulseNMRacquisition{

Exhalation5?0mL{30pulseNMRacquisition
ð1Þ

Upon inhalation, the hp gas will be diluted by the gas in the

residual volume RV (i.e. N2 or thermally polarized, MRI non-

detectable xenon with N2) to an unknown hp gas concentration

with total volume Vi+RV. The residual volume, as defined in this

paper, is composed of the alveolar residual volume and, to a

lesser extent, the anatomic dead space in the ‘conducting zone’.

The hp gas concentration will remain unchanged during

exhalation. Therefore the difference between the signal inten-

sities found between inhalation and exhalation is caused only by

the difference in the respective hp gas volumes in the lung and is

not affected by the gas mixture. The signal change relates

directly to the ratio of gas volume in the inhaled lung to the

residual volume RV:

VizRV

RV
~

I
hp
inhale

I
hp
exhale

ð2Þ

where I
hp
inhale is the NMR signal intensity recorded with a 3u

pulse from a lung with the gas phase volume Vi+RV after

inhalation of a Vi volume of hp gas and I
hp
exhale is the signal

intensity from a 3u pulse on exhalation to RV.

In order to obtain the residual volume RV, the inhaled volume

Vi for each lung is determined at a constant suction volume

Vs = 5 mL (i.e. 0?5mL) using the water displacement method as

described in the experimental section. The residual volume can

then be calculated using:

RV~
I

hp
exhale

I
hp
inhale{I

hp
exhale

|Vi ð3Þ

The RV values obtained for three different, but similar sized, rat

lungs are shown in Table 2. Please note the underlying assumption

is that the lung is ventilated without areas affected by ventilation

defects (i.e. non-ventilated lung regions) as further elaborated on in

the Discussion section.

The second scheme uses spatially resolved experiments in order

to determine the uniformity of ventilation. In this scheme the total

MRI signal obtained after full inhalation of hp 129Xe (i.e.

Vs = 5 mL, see Eq. 4) is compared with the signal of a second

MRI scan obtained in a separate experiment using full inhalation

of hp 129Xe followed by immediate complete exhalation (Eq. 5).

Hyperpolarized 129Xe MRI of Ex Vivo Rodent Lungs
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Inhalation0?5mL{VFA:FLASH:MRI ð4Þ

Inhalation0?5mL{Exhalation5?0mL{VFA:FLASH:MRI ð5Þ

Coronal non-slice selective VFA FLASH imaging sequences are

used in both cases and Fig. 2 displays the resulting images. The

residual volume can be determined using the total MRI signal

intensity resulting from the sum of intensities from each of the n6m

volume elements (voxels) according to:

RV~

P
n|m

I
hp
exhale

h i
n,m

P
n|m

I
hp
inhale

h i
n,m

{
P

n|m

I
hp
exhale

h i
n,m

|Vi ð6Þ

where (n, m) is the voxel index,
P

n|m

I
hp
inhale

h i
n,m

and
P

n|m

I
hp
exhale

h i
n,m

are the summated voxel intensities on inhale and exhale

respectively.

Since each VFA Flash MRI sequence uses – and therefore

destroys – the complete hyperpolarization to record the image, the

two MR images for inhalation and inhalation with exhalation need

to be acquired in two separate experiments with separate hp gas

deliveries. As a consequence, these measurements may be

complicated by fluctuations in the SEOP process leading to a

scatter in the obtained hyperpolarization levels. Therefore, the two

MR images require a normalization that can be readily

accomplished by recording a small flip angle pulse NMR spectrum

for calibration purposes after the initial inhalation (Vs = 5 mL) in

both experiments as shown below:

Inhalation0?5mL{ 30pulseNMRacquisitionð Þ2
{VFA:FLASH:MRI

ð7Þ

Inhalation0?5mL{30pulseNMRacquisition{

Exhalation5?0mL{30pulseNMRacquisition

{VFA:FLASH:MRI

ð8Þ

Note that the sequence in Eq. 8 also contains a second small flip

angle pulse (after exhalation) that is used for the additional RV

determination through the non-spatially resolved (spectroscopic)

scheme described in Eq. 1. As an additional refinement, Eq. 7

contains a second 3u pulse – NMR acquisition step after inhalation

to ensure that the spin polarization is similarly depleted by an

identical number of 3u pulses in schemes 7 and 8. Values for RV

obtained through both schemes (i.e. spectroscopic and through

MRI) are displayed in Table 2 for three rat lungs with an average

value of RV = 1.160.1 mL and RV = 1.060.1 mL using the NMR

spectroscopic and MRI methods respectively.

Studying lung ventilation as a function of inhalation
volume Vi

The ex vivo lung imaging apparatus described in Fig. 1 allows for

a large range of ventilation volumes, Vi, to be used for pulmonary

hp 129Xe MRI. These experiments can provide insights into how

lungs are ventilated regionally as the ex vivo model permits

‘freezing’ of ventilation to take the MR images at various points of

the ventilation cycle. In this work we use lungs from similarly sized

and healthy Sprague Dawley rats. Non-slice selective coronal MRI

images displayed in Fig. 3 are acquired as the inhalation volume Vi

is increased from 0.3 ml to 5.0 mL (i.e. with the suction volume Vs

ranging from 1.0 ml to 6.0 mL). The corresponding integrated

intensities
P
n

I
hp
inhale

h i
n,m

for each of the m rows are shown to the

Table 2. Experimentally determined ex vivo lung residual volumes (RV)1.

Rat Weight (g) Inhaled Gas Volume, Vi (mL)
Calculated Residual Volume,
RV (mL) spectroscopy

Calculated Residual Volume,
RV (mL) VFA FLASH images

276 3.6560.10 1.0360.08 1.0460.09

286 3.5860.10 1.0360.04 1.0760.10

266 3.5860.15 1.2260.03 0.9160.07

276 3.60±0.06 1.09±0.03 1.01±0.04

1The ex vivo lung residual volume, RV, calculated using inhaled volume Vi values determined experimentally for the suction volume Vs = 5.0 mL with respective standard
errors (n = 4). The RV values are derived with standard errors (n = 4) from non-spatially resolved spectroscopic measurements (Eq. 4) and from the non-slice selective
coronal VFA FLASH imaging sequence (Eq. 5) are also shown for comparison.
doi:10.1371/journal.pone.0073468.t002

Figure 2. Non-slice selective coronal VFA FLASH MR images
used for calculation of residual volume (RV). (A) Acquired after
inhalation to Vs = 5 mL (actual inhalation, Vi = 3.09 mL); (B) Inhalation to
Vs = 5 mL followed by full exhalation to Vs = 0 mL (Vi = 0 mL) before the
MR image is acquired. Image resolution is 128664 with FOV = 46.9 mm
in the longitudinal and FOV = 30.0 mm in the axial dimensions,
respectively. In this presentation, the orifice of the lung is pointing
up with the posterior-anterior axis aligned with the z-direction.
doi:10.1371/journal.pone.0073468.g002
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right of the MR images in Fig. 3. The histograms are obtained

using a voxel counting algorithm where all voxels across each row

are added to give a measure of ventilation as longitudinal position

(i.e. along the z axis) from the base to the end of the trachea (Fig. 3).

As can be seen from the histograms in Fig. 3, at Vs = 1.0 mL the

initial region of lung inflation is largely located in the base of the

lung with the majority of the signal resulting from either the base

or the major conducting airways. As the base expands between

Vs = 1.0–2.5 mL the further drop in negative pleural pressure

causes adjacent lung regions to inflate and the apices start to

display significant inflation at Vs.2.5 mL. Further inflation

increases lung length with signal intensity growing across all lung

regions. To better illustrate the inhalation physiology, the

histograms of Fig. 3 are further processed and presented in a

slightly different format in Fig. 4.

It is instructional to normalize each histogram from Fig. 3 by

the total signal intensity arising from the lung after inhalation of

the volume Vi of hp gas,
P

n|m

I
hp
inhale

h i
n,m

, to allow for better

comparison of the regional gas distribution between the various

inhalation volumes Vs as shown in Fig. 4b). In Fig. 4c) a further

normalization has been performed on the data where the x-axis

(row number in the histograms in Fig. 4b)) is divided by the length

of the expanding lung to reveal the relative position within the

lung. Normalized intensities as a function of relative position

within the lung allow for a better visualization of the regional

differences in ventilation as the total inhalation volume Vi is

changed. Initially at low suction volume Vs = 1.0 mL (Vi = 0.2 mL),

it is seen that that the largest portion of the MR signal originates

from the base of the lung with a smaller contribution from the

larger conducting airways. On increasing inhalation the base

receives a growing share of the signal until at Vs = 2.5 mL

(Vi = 1.2 mL) the distribution begins to shift from the base towards

the apices. The grey line in Fig. 4c) indicates the position with

equal integrated intensity on both sides of this position. This 50%

signal intensity position marker serves as an additional aid to

visualize regional ventilation of the lung. Initially, this line shifts

towards the base of the lung as the suction volume is increased up

to Vs = 2.5 mL. This shift reflects the placement of the inhaled gas

predominantly into the lung base. With further increasing

inhalation causing increasing ventilation of the apices, the line

shifts into the opposite direction and at Vs = 5.0 mL (Vi = 3.6 mL)

it is centered approximately at the midpoint of the lung.

Timed release of a small quantity of hp 129Xe during
constant volume Vi inhalation

Ex vivo pulmonary 129Xe MRI also allows for the timed release

of a small bolus (0.5–1.0 mL) of hp gas during the inhalation

period. This method provides further data to support the assertion

that the initially inhaled gas localizes to the base of the lung and is

directed towards the apices mostly at the end of the inhalation.

Two inflation schemes with a total suction volume of Vs = 5.0 mL

are employed. For scheme 1 in Fig. 5a–c)- the initial inhalation

consists of a chosen fraction of hp gas, inhaled through application

of suction volume Vs(hp), followed by ‘dark’ (i.e. MRI inactive,

usually N2) gas. The dark gas is inhaled after flushing of the storage

volume VB with N2 and applying suction volume Vs(dark). In scheme

2 in Fig. 5d–e) the delivery order is reversed with the initial dark

gas delivery using N2 and suction volume being Vs(dark) followed by

hp 129Xe delivery into VB and suction volume Vs(hp). Using

ventilation scheme 1 with Vs(hp) = 1.0 mL followed by

Vs(dark) = 4.0 mL, the MRI shows that the hp gas signal is directed

to the base. As the ratio Vs(hp)/Vs(dark) increases, at constant

Vs(hp)+Vs(dark) = Vs = 5.0 mL, the hp gas is progressively found

further towards the apices. In scheme 2 the hp gas is directed

more to the apical regions of the lung with the hp gas seen in the

larger conducting airways. Further increase of the dark gas

component in scheme 2 (Fig. 5e)) results in the hp gas being

localized to the conducting airways themselves.

Airway Responsiveness
Excised lung tissue, including lung slices for optical microscopy,

has regularly been used to study airway responsiveness to

challenges with bronchial smooth muscle agonists such as

methacholine (MCh) [50–52]. In this work, it is investigated

whether the whole organ can be used many hours post mortem for

pulmonary hp 129Xe MRI of MCh challenges. Furthermore, the

possibility of the reversal of airway responsiveness by flushing the

pulmonary circulation with glucose and salbutamol solutions

followed by subsequent challenges and reversals are also explored.

Images obtained from rat lungs, positively responding to MCh

challenges, are shown in Fig. 6. Initially it can be seen on the first

MCh challenge that the lung hyperinflates due to gas trapping

with increasing inflation of other pulmonary units if the suction

volume Vs is kept constant. The hyperinflation then recovered on

reversal with flushing the lung with glucose and salbutamol. A

subsequent, second challenge produces significant ventilation

defects. After reversal, the third challenge causes the majority of

lung tissue to fail to receive hp gas due to the severity of the

bronchoconstriction. Nevertheless, these severe effects, that would

have likely caused termination of any in vivo experiment, could still

be partially reversed again.

A very similar response is demonstrated on three further

occasions but subsequent rat lungs (seven in total) showed little or

no response to MCh at the dosages under investigation (data not

shown). Note that the Sprague Dawley rats are healthy and have

not been not sensitized to display any airway hyper-responsiveness.

The purpose of this proof of principle study is not to explore

airway responsiveness in detail but to demonstrate that respon-

siveness, if present, can be triggered, observed and reversed for

several hours post mortem.

Rat lungs are compared to guinea pig lungs as the latter are

known to have greater quantities of bronchial smooth muscle

[53,54]. Similar patterns of ventilation defects are produced by

smaller dosages of MCh on the three lungs imaged with these

again found to be partially reversible with glucose and salbutamol

flushes allowing further challenges for several hours post mortem

as demonstrated in Fig. 7. It is however noted that reversal of the

ventilation defects in guinea pig lungs depends more on flushing of

Figure 3. Hyperpolarized 129Xe gas distribution on increasing inhalation volumes. Non-slice selective coronal VFA FLASH images as a

function of increasing suction volume (Vs) (and inhaled volume (Vi)). The corresponding histograms displaying integrated intensities,
P

n

I
hp
inhale

h i
n,m

, for

each row, m, are shown to the right of the images. The vertical axis of the image is parallel to the direction of the Bo field (z-direction) and

corresponds to the posterior-anterior axis (base to apex) of the lung in the magnet. Phase encoding is applied transverse to the Bo field direction. As

the suction volume increases from 0.5 mL to 6.0 mL the image contrast is greatly enhanced. The effect is caused by the increasing quantities of

inhaled hp gas contained in the lung as the suction volume rises. Matrix 128664 with FOV = 46.9630.0 mm2.
doi:10.1371/journal.pone.0073468.g003
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residual MCh from the pulmonary circulation rather than

significant improvements with salbutamol.

Discussion

The residual volume, RV, of ex vivo lungs
Residual volume, RV, is an important functional parameter used

in both animal models of pulmonary disease and in the clinical

setting. RV is found to decrease in patients with restrictive lung

diseases such as fibrotic lung disease and rises in patients with

obstructive disease due to hyperinflation. Many methods have

been utilized for measurement of RV in small animals [1]. In this

work, the calculated value of the residual volume of 1.160.1 mL

using the MR spectroscopic measurements and 1.060.1 mL using

the spatially resolved MRI method agree within the experimental

error. The values are however lower than the 1.26 mL that was

previously determined using body plethysmography [55] and of

,1.6 mL with neon dilution [56] for similar sized rats. In the ex

vivo rodent lung at Vs = 0 mL it is likely that this situation is more

akin to an open-chested animal where there is no chest wall recoil

holding the airways open with the result that the calculated value

of RV will be reduced as has been noticed in dog lungs [57]. A

further, small contribution to the difference found between our

value and previous data is caused by the shortening of the

Figure 4. Normalization of hyperpolarized 129Xe distribution by total signal intensity and position along the anterior-posterior
axis. (A) Integrated signal intensity (taken from Fig. 3) in arbitrary units (a.u.) as a function of the image row number m (in z-direction); (B) Integrated

signal intensity after normalization by the total signal intensity (i.e. the integrated intensity of all voxels,
P

n|m

I
hp
inhale

h i
n,m

, of the respective MR image);

(C) Normalized integrated signal intensity as in (B) but as a function of position along the lung posterior-anterior axis (z-axis) from base to apices.

Independent of inhalation volume and actual lung expansion, the 0.0 point refers the base of the lung, whereas 1.0 refers to the apices. The 50%

signal intensity position in the lungs is indicated by grey vertical line (C) i.e. 50% of the total signal intensity lies to both sides of the grey line.
doi:10.1371/journal.pone.0073468.g004
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conducting airways (and hence a shorting of the anatomic dead

space) as the cannula was sited just above the carina rather than

higher below the larynx in the in vivo experiments. On the other

hand, it is known that lung compliance decreases with temperature

[58] with the result that as the lungs are kept at ambient

temperature or just below this will compensate for some of the

aforementioned reduction in RV. Finally, it has been noted by

several groups that gas trapping is an issue with excised lung tissue

Figure 5. Timed release of hyperpolarized 129Xe during constant inhalation volumes. Coronal slice selective VFA FLASH images for
directed ventilation schemes with a histogram that displays the integrated intensities in each row are shown to the right of the images. Scheme 1 (A–
C)- initial inhalation consists of a known volume of hp gas, Vs(hp), followed by dark gas, Vs(Dark). Scheme 2 (D–E)- the reversal with the inhalation of
Vs(Dark) followed by Vs(hp). Full 5.0 mL inhalation of hp gas with edge detection using Kirsch operator [71] with window level adjusted to show lower
signal intensities (F). Z-axis along Bo in posterior-anterior axis (base to apex) of the lung in the magnet and x-axis along indirect (phase encoding)
dimension. Imaging parameters: 4 mm central slice, matrix 128664, FOV = 46.9630.0 mm2. Positioning of the lung as in Fig. 2.
doi:10.1371/journal.pone.0073468.g005
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used for ventilation studies [4,59,60]. Gas trapping has not been a

noticeable feature in the current study as no significant gas

trapping is seen with prolonged lung ventilation. It its unknown

whether the lack of gas trapping is due to differences in the method

of organ preparation, smaller total inhaled volume in the current

work, or the different rat strain used (Sprague-Dawley in the

current study). Note that significant gas trapping is seen with some

of the guinea pig lungs causing them to be rejected for imaging.

The presented method is a fast and straightforward addition to

hp gas MRI of excised lungs requiring no additional instrumen-

tation. Furthermore, the spatially resolved 2D method could also

be modified to reduce the contribution from the signal of the

airways (i.e. the anatomical dead space) to the residual volume

determination. Some airway contribution to the MRI signal can

be taken directly from the images in Fig. 2a–b) or could be

measured in more detail for example through a directed

ventilation scheme as in Fig. 5e). The directed ventilation scheme

can in principle also provide information about regional contri-

butions to the residual volume. Note however, that the underlying

assumption made for the RV determination in this work is that the

hp gas mixes with the ‘dark’ gas in the residual lung volume

uniformly. This requires, that the lungs are being inhaled with hp

gas without areas of restricted or obstructed ventilation. Deviations

form the expected RV in healthy lungs would be indicative of the

presence of pulmonary diseases. However this was not further

investigated as animal models of disease are beyond the scope of

this work.

Measuring functional respiratory parameters, such as RV in vivo

using hp gas imaging experiments in rodents has proven difficult

due to the small gas volumes. The schemes to calculate RV

developed with the ex vivo model in this work may provide a

valuable addition to physiological methodology. As an alternative

to existing lung function tests, the ex vivo hp 129Xe MRI method

provides spatially resolved information of the distribution of the

RV which might provide a sensitive test to identify regions

disproportionately affected by the disease process. The hp 129Xe

MRI method detailed here, being exceptionally simple, could

easily be translated to in vivo MRI in the preclinical or clinical

setting.

Ventilation physiology using ex vivo lungs
Image data on increasing ventilation volume presented in this

work potentially provide new insights into pulmonary physiology.

It is shown that ventilation in the ex vivo models produces initial

ventilation from the bases of the inverted lungs increasing

downward towards the apices. Whether this is due to an inherent

Figure 6. Airway responsiveness testing in an excised rat lung. Slice selective VFA FLASH images of positively responding ex vivo rat lungs
after intravenous challenges of 60 mg methacholine with subsequent reversal produced by flushes of intravenous 5% glucose and 1000 mg
salbutamol. Images were performed using a constant inhalation syringe (suction) volume of VS = 5 mL. Imaging parameters: 4 mm central slice,
matrix 128664, FOV = 46.9630.0 mm2. Positioning of the lung as in Fig. 2.
doi:10.1371/journal.pone.0073468.g006

Figure 7. Airway responsiveness testing in an excised guinea pig lung. Slice-selective VFA FLASH images of ex vivo guinea pig lungs after
intravenous challenges with 5% glucose solution alone and 10 mg methacholine. Subsequent reversal was produced by flushes of intravenous 5%
glucose and 200 mg salbutamol. Images were performed with a constant inhalation syringe (suction) volume of VS = 5 mL. Imaging parameters: 4 mm
central slice, matrix 128664, FOV = 46.9630.0 mm2. Positioning of the lung as in Fig. 2.
doi:10.1371/journal.pone.0073468.g007
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property of the lung or some element of the experimental set up,

for instance, with the lungs submerged in glucose solution with a

small pressure gradient of ,0.5 kPa (5 cm H2O) along the length

of the lung, is as yet unknown.

Classical pulmonary physiological theory has tended to explain

differences in regional ventilation in humans due to the

gravitational effects on pleural pressure resulting in the lower,

most dependent, lung regions being under higher resting pressure

and hence on inhalation receive higher volumes of gas [61,62].

Previous works with SPECT and xenon enhanced CT have

shown regional differences in ventilation and changes due to

posture in animals [17,63,64]. Marcucci et al., using xenon

enhanced CT, studied the vertical ventral/dorsal (V/D) ventila-

tion gradient in supine canines where it was noted that the dorsal

lung receives the greatest ventilation in the supine position [65].

This gradient was abolished once the animals were placed in the

prone position. Interestingly, the group also found a ventilation

gradient between the base of the lung and the apex (anterior–

posterior) where the base experiences higher levels of ventilation

compared to the apex with the animal supine, although this was

removed with the animal prone.

Månsson et al. studied V/D fractional ventilation gradients in

vivo using hp 3He MRI in rats noting a similar V/D gradient in the

supine position and reporting the removal of the gradient with the

animal prone [66]. Couch et al. subsequently confirmed this in rats

using both hp 3He and hp 129Xe, also noting a small positive

posterior/anterior (base to apex) fractional ventilation gradient in

this work [67].

However recently Kyriazis et al. have noted that in a rat elastase

model of emphysema ventilated by positive pressure and imaged

using hp 3He, inflation rates at the bases reduced more than at the

apices compared to controls despite apparent diffusion coefficients

(markers of emphysematous damage) indicating changes through-

out the lung [68]. It is therefore possible that this was due to some

inherent elastic property of the lung indicating underlying regional

differences.

In this work, the experimental arrangement provides further

evidence that regional differences in ventilation may be due to

inherent elastic properties of the lung as at values of inhaled

volume close to those studied elsewhere (1–2 mL in this size of

rats), most of the inhaled gas localizes to the bases even when these

regions are most superior. Further work to confirm this would be

required to see if this situation changed once the lungs were

suspended from the trachea without the lungs submerged in

solution (i.e. trachea most superior) and also if the lungs were, in

supine or prone position as has been performed by other groups

with excised lung tissue [59].

Whole organ response to post mortem MCh challenges
The image data presented in this work confirms post mortem

airway responsiveness to MCh challenges and glucose/salbutamol

reversal in ex vivo rat and guinea pig lungs. Not all of the healthy ex

vivo rat lungs respond to MCh challenge but those that do respond

show regional ventilation defects at drug dosages similar to those

reported elsewhere with a significant increase in sensitivity to

methacholine in guinea pig lung tissue. The variation in the airway

responsiveness of rat lungs has been documented with review of

the literature revealing that there is significant variation in

response to MCh amongst rats, especially out-bred strains, when

recorded with body plethysmography often requiring very large

dosages of MCh [54,69,70]. Guinea pig lungs were studied as they

are known to have higher levels of bronchial smooth muscle and so

are more responsive to MCh [53,54]. The results confirm this

increased airway responsiveness with lungs showing large degrees

of bronchoconstriction with one sixth of the dosage. Reversal

however appeared to be unaffected by salbutamol and relied more

on flushing methacholine from the pulmonary circulation.

The severity of observed bronchoconstriction in some cases in

this work is unlikely to be recorded in vivo due to the significant

physiological deterioration that would result (likely resulting in

death before imaging). Therefore the ex vivo model offers the

opportunity to explore the most extreme of pathophysiological

situations for prolonged periods of time in the absence of systemic

effects and considerations. The current model could be further

improved to incorporate recirculation of fluid and the use of

bubble traps to prevent gas emboli in the lung vasculature [10].

With such improvements and the use of more physiological

perfusate the model might be able to last beyond the currently

reported 7–8 hours.

Spatial resolution of Ex vivo hp 129Xe MRI
As a final technical note, the ex vivo model may potentially allow

for higher resolution of the MR images compared to in vivo hp
129Xe MRI that typically relies on signal averaging over multiple

breaths. All MR images presented in this proof of concept work

are acquired in a single scan without motional artifacts and

provide sufficient image spatial resolution using hp 129Xe with an

apparent polarization of Papp = 10%.

Conclusions

The aim of this work is to demonstrate the utility of the ex vivo

pulmonary model for hp 129Xe MRI studies. The pulmonary ex

vivo model offers a nimble platform for developing and testing

novel hp gas MRI protocols before translation of the methods for

preclinical in vivo studies and ultimately into clinical research. The

usage of ex vivo whole organs also reduces the regulatory

requirements for animal care, handling and monitoring for hp

gas MRI experiments. In addition, the ability to investigate lung

function, for example in the absence of oxygen and by precise

control and freezing of the ventilation cycle, demonstrates that ex

vivo models offer a new investigative tool for lung physiology in

their own right. The imaging of dynamic changes in ex vivo whole

organ may be of interest for drug development studies or as an

additional technique to elucidate airway responses in the absence

of systemic effects or considerations, allowing the study of extreme

pathophysiology.

Acknowledgments

The authors wish to thank Clive Dixon, Alan Dorkes, Mike Olsen, Ian

Taylor, and Ian Thexton for the fabrication of specialized glassware and

equipment used in this work.

The authors would also like to thank Dr. Ian Hall and Dr. Peter Morris

for useful discussions and express appreciation to Clémentine Lesbats for

assisting with the experiments.

Author Contributions

Conceived and designed the experiments: DMLL GEP TM. Performed the

experiments: DMLL THR JS KFS GEP TM. Analyzed the data: DMLL

DES TM. Contributed reagents/materials/analysis tools: GEP. Wrote the

paper: DMLL DES TM.

Hyperpolarized 129Xe MRI of Ex Vivo Rodent Lungs

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e73468



References

1. Oneil JJ, Raub JA (1984) Pulmonary-Function Testing in Small Laboratory
Mammals. Environmental Health Perspectives 56: 11–22.

2. Bates JH, Irvin CG (2003) Measuring lung function in mice: the phenotyping

uncertainty principle. J Appl Physiol 94: 1297–1306.

3. Hoymann HG (2007) Invasive and noninvasive lung function measurements in

rodents. J Pharmacol Toxicol Methods 55: 16–26.

4. Frazer DG, Weber KC (1976) Trapped Air in Ventilated Excised Rat Lungs.
Journal of Applied Physiology 40: 915–922.

5. Greenwald SE, Collino CE, Berry CL (1988) Invitro Determination of Lung

Airway Compliance in Small Animals. Medical & Biological Engineering &
Computing 26: 497–502.

6. Struhar D, Harbeck RJ (1990) An Apparatus for the Measurement of Lung-

Volume and Compliance in Mice. Laboratory Animals 24: 328–331.

7. Herget J, Chovanec M (2010) Isolated perfused murine lung: A well
characterized preparation for studying lung vascular function. Drug Discovery

Today: Disease Models 7: 131–135.

8. Herget J, Mcmurtry IF (1985) Effects of Ouabain, Low K+, and Aldosterone on

Hypoxic Pressor Reactivity of Rat Lungs. American Journal of Physiology 248:
H55–H60.

9. Herget J, Mcmurtry IF (1987) Dexamethasone Potentiates Hypoxic Vasocon-

striction in Salt Solution-Perfused Rat Lungs. American Journal of Physiology
253: H574–H581.

10. Uhlig S, Wollin L (1994) An Improved Setup for the Isolated-Perfused Rat

Lung. Journal of Pharmacological and Toxicological Methods 31: 85–94.

11. von Bethmann AN, Brasch F, Nusing R, Vogt K, Volk HD, et al. (1998)

Hyperventilation induces release of cytokines from perfused mouse lung.
American Journal of Respiratory and Critical Care Medicine 157: 263–272.

12. Barrenschee M, Lex D, Uhlig S (2010) Effects of the TLR2 agonists MALP-2

and Pam3Cys in isolated mouse lungs. PLoS One 5: e13889.

13. Siegl S, Uhlig S (2012) Using the one-lung method to link p38 to pro-
inflammatory gene expression during overventilation in C57BL/6 and BALB/c

mice. PLoS One 7: e41464.

14. Ewing P, Eirefelt SJ, Andersson P, Blomgren A, Ryrfeldt A, et al. (2008) Short

inhalation exposures of the isolated and perfused rat lung to respirable dry
particle aerosols; The detailed pharmacokinetics of budesonide, formoterol, and

terbutaline. Journal of Aerosol Medicine and Pulmonary Drug Delivery 21: 169–
180.

15. Selg E, Ewing P, Acevedo F, Sjoberg CO, Ryrfeldt A, et al. (2012) Dry Powder

Inhalation Exposures of the Endotracheally Intubated Rat Lung, Ex Vivo and In
Vivo: The Pulmonary Pharmacokinetics of Fluticasone Furoate. J Aerosol Med

Pulm Drug Deliv.

16. Martin C, Held HD, Uhlig S (1999) Characterization of pulmonary responses in

mice: Comparison of lung slices and perfused lung. American Journal of
Respiratory and Critical Care Medicine 159: A871–A871.

17. Orphanidou D, Hughes JMB, Myers MJ, Alsuhali AR, Henderson B (1986)

Tomography of Regional Ventilation and Perfusion Using Krypton 81 m in
Normal Subjects and Asthmatic-Patients. Thorax 41: 542–551.

18. Nagao M, Murase K, Ichiki T, Sakai S, Yasuhara Y, et al. (2000) Quantitative

analysis of technegas SPECT: Evaluation of regional severity of emphysema.

Journal of Nuclear Medicine 41: 590–595.

19. Harris RS, Schuster DP (2007) Visualizing lung function with positron emission
tomography. Journal of Applied Physiology 102: 448–458.

20. West JB, Matthews CM, Holland RAB, Dollery CT (1962) Interpretation of

Radioactive Gas Clearance Rates in Lung. Journal of Applied Physiology 17:
14–&.

21. West JB (1962) Regional Differences in Gas Exchange in the Lung of Erect Man.

Journal of Applied Physiology 17: 893–898.

22. Su S, Saunders JK, Smith ICP (1995) Resolving Anatomical Details in Lung

Parenchyma: Theory and Experiment for a Structurally and Magnetically
Inhomogeneous Lung Imaging Model. Magnetic Resonance in Medicine 33:

760–765.

23. Puderbach M, Hintze C, Ley S, Eichinger M, Kauczor HU, et al. (2007) MR
imaging of the chest: A practical approach at 1.5 T. European Journal of

Radiology 64: 345–355.

24. Albert MS, Cates GD, Driehuys B, Happer W, Saam B, et al. (1994) Biological
Magnetic Resonance Imaging Using Laser Polarized Xe-129. Nature 370: 199–

201.

25. Middleton H, Black RD, Saam B, Cates GD, Cofer GP, et al. (1995) Mr-

Imaging with Hyperpolarized He-3 Gas. Magnetic Resonance in Medicine 33:
271–275.

26. Altes TA, Powers PL, Knight-Scott J, Rakes G, Platts-Mills TAE, et al. (2001)

Hyperpolarized He-3 MR lung ventilation imaging in asthmatics: Preliminary
findings. Journal of Magnetic Resonance Imaging 13: 378–384.

27. Fain SB, Korosec FR, Holmes JH, O’Halloran R, Sorkness RL, et al. (2007)

Functional lung imaging using hyperpolarized gas MRI. Journal of Magnetic

Resonance Imaging 25: 910–923.

28. Fain S, Schiebler ML, McCormack DG, Parraga G (2010) Imaging of Lung
Function Using Hyperpolarized Helium-3 Magnetic Resonance Imaging:

Review of Current and Emerging Translational Methods and Applications.
Journal of Magnetic Resonance Imaging 32: 1398–1408.

29. Sakai K, Bilek AM, Oteiza E, Walsworth RL, Balamore D, et al. (1996)
Temporal dynamics of hyperpolarized Xe-129 resonances in living rats. Journal

of Magnetic Resonance Series B 111: 300–304.

30. Swanson SD, Rosen MS, Coulter KP, Welsh RC, Chupp TE (1999)

Distribution and dynamics of laser-polarized Xe-129 magnetization in vivo.
Magnetic Resonance in Medicine 42: 1137–1145.

31. Patz S, Muradian I, Hrovat MI, Ruset IC, Topulos G, et al. (2008) Human

pulmonary imaging and spectroscopy with hyperpolarized Xe-129 at 0.2T.
Academic Radiology 15: 713–727.

32. Driehuys B, Cofer GP, Pollaro J, Mackel JB, Hedlund LW, et al. (2006) Imaging

alveolar-capillary gas transfer using hyperpolarized Xe-129 MRI. Proceedings of
the National Academy of Sciences of the United States of America 103: 18278–

18283.

33. Lilburn DM, Pavlovskaya GE, Meersmann T (2013) Perspectives of hyperpo-

larized noble gas MRI beyond (3)He. J Magn Reson 229: 173–186.

34. Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas
nuclei. Review of Modern Physics 69: 629–642.

35. Raftery D, Long H, Meersmann T, Grandinetti PJ, Reven L, et al. (1991) High-

Field NMR of Adsorbed Xenon Polarized by Laser Pumping. Physical Review
Letters 66: 584–587.

36. Goodson BM (2002) Nuclear magnetic resonance of laser-polarized noble gases

in molecules, materials, and organisms. Journal of Magnetic Resonance 155:

157–216.

37. Oros AM, Shah NJ (2004) Hyperpolarized xenon in NMR and MRI. Physics in
Medicine and Biology 49: R105–R153.

38. Cullen SC, Gross EG (1951) The Anesthetic Properties of Xenon in Animals and

Human Beings, with Additional Observations on Krypton. Science 113: 580–
582.

39. Jameson CJ, Jameson AK, Hwang JK (1988) Nuclear-Spin Relaxation by

Intermolecular Magnetic Dipole Coupling in the Gas-Phase - Xe-129 in

Oxygen. Journal of Chemical Physics 89: 4074–4081.

40. Driehuys B, Hedlund LW (2007) Imaging techniques for small animal models of
pulmonary disease: MR microscopy. Toxicologic Pathology 35: 49–58.

41. Santyr GE, Lam WW, Parra-Robles JM, Taves TM, Ouriadov AV (2009)

Hyperpolarized noble gas magnetic resonance imaging of the animal lung:
Approaches and applications. Journal of Applied Physics 105.

42. Faridy EE (1973) Effect of Hydration and Dehydration on Elastic Behavior of

Excised Dogs Lungs. Journal of Applied Physiology 34: 597–605.

43. Six JS, Hughes-Riley T, Stupic KF, Pavlovskaya GE, Meersmann T (2012)
Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and

Xenon-129. PLOS ONE 7: e49927.

44. Hughes-Riley T, Six JS, Lilburn DML, Stupic KF, Pavlovskaya GE, et al. (2013)

Unpublished results.

45. Cleveland ZI, Pavlovskaya GE, Elkins ND, Stupic KF, Repine JE, et al. (2008)
Hyperpolarized Kr-83 MRI of lungs. Journal of Magnetic Resonance 195: 232–

237.

46. Stupic KF, Elkins ND, Pavlovskaya GE, Repine JE, Meersmann T (2011) Effects
of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T-1

relaxation. Physics in Medicine and Biology 56: 3731–3748.

47. Zhao L, Mulkern R, Tseng CH, Williamson D, Patz S, et al. (1996) Gradient-

echo imaging considerations for hyperpolarized Xe-129 MR. Journal of
Magnetic Resonance Series B 113: 179–183.

48. Kauczor HU, Markstaller K, Puderbach M, Lill J, Eberle B, et al. (2001)

Volumetry of ventilated airspaces by He-3 MRI preliminary results. Investiga-
tive Radiology 36: 110–114.

49. Woodhouse N, Wild JM, van Beek EJR, Hoggard N, Barker N, et al. (2009)

Assessment of Hyperpolarized He-3 Lung MRI for Regional Evaluation of

Interventional Therapy: A Pilot Study in Pediatric Cystic Fibrosis. Journal of
Magnetic Resonance Imaging 30: 981–988.

50. Martin C, Uhlig S, Ullrich V (1996) Videomicroscopy of methacholine-induced

contraction of individual airways in precision-cut lung slices. European
Respiratory Journal 9: 2479–2487.

51. Sturton RG, Trifilieff A, Nicholson AG, Barnes PJ (2008) Pharmacological

characterization of indacaterol, a novel once daily inhaled beta(2) adrenoceptor
agonist, on small airways in human and rat precision-cut lung slices. Journal of

Pharmacology and Experimental Therapeutics 324: 270–275.

52. Ressmeyer AR, Larsson AK, Vollmer E, Dahlen SE, Uhlig S, et al. (2006)

Characterisation of guinea pig precision-cut lung slices: comparison with human
tissues. European Respiratory Journal 28: 603–611.

53. Patra AL (1986) Comparative anatomy of mammalian respiratory tracts: the

nasopharyngeal region and the tracheobronchial region. J Toxicol Environ
Health 17: 163–174.

54. Lauzon A, Martin J (2008) Airway smooth muscle in experimental models. In:

Chung KF, Airway Smooth Muscle in Asthma and COPD: Biology and

Pharmacology: John Wiley & Sons 160–179.

55. Lai YL, Hildebrandt J (1978) Respiratory mechanics in the anesthetized rat.
J Appl Physiol 45: 255–260.

56. Takezawa J, Miller FJ, Oneil JJ (1978) Lung-Volumes and Single Breath

Diffusing-Capacity for Carbon-Monoxide Measured in Small Laboratory
Mammals. American Review of Respiratory Disease 117: 405–405.

Hyperpolarized 129Xe MRI of Ex Vivo Rodent Lungs

PLOS ONE | www.plosone.org 12 August 2013 | Volume 8 | Issue 8 | e73468



57. Kleinman LI, Siebens AA, Poulos DA (1964) Minimal Air in Dogs. Journal of

Applied Physiology 19: 204–&.
58. Horie T, Ardila R, Hildebra J (1974) Static and Dynamic Properties of Excised

Cat Lung in Relation to Temperature. Journal of Applied Physiology 36: 317–

322.
59. Hughes JMB, Rosenzweig DY (1970) Factors Affecting Trapped Gas Volume in

Perfused Dog Lungs. Journal of Applied Physiology 29: 332–&.
60. Frazer DG, Stengel PW, Weber KC (1979) Effect of Pulmonary-Edema on Gas

Trapping in Excised Rat Lungs. Respiration Physiology 38: 325–333.

61. Milic-Emili J, Henderson J, Dolovich MB, Trop D, Kaneko K (1966) Regional
Distribution of Inspired Gas in Lung. Journal of Applied Physiology 21: 749–

759.
62. Michels DB, Friedman PJ, West JB (1979) Radiographic Comparison of

Human-Lung Shape during Normal Gravity and Weightlessness. Journal of
Applied Physiology 47: 851–857.

63. Ball WC, Newsham LGS, Stewart PB, Bates DV (1962) Regional Pulmonary

Function Studied with Xenon133. Journal of Clinical Investigation 41: 519–&.
64. Lam WW, Holdsworth DW, Du LY, Drangova M, McCormack DG, et al.

(2007) Micro-CT imaging of rat lung ventilation using continuous image
acquisition during xenon gas contrast enhancement. Journal of Applied

Physiology 103: 1848–1856.

65. Marcucci C, Nyhan D, Simon BA (2001) Distribution of pulmonary ventilation

using Xe-enhanced computed tomography in prone and supine dogs. Journal of
Applied Physiology 90: 421–430.

66. Mansson S, Deninger AJ, Magnusson P, Pettersson G, Olsson LE, et al. (2005)

He-3 MRI-based assessment of posture-dependent regional ventilation gradients
in rats. Journal of Applied Physiology 98: 2259–2267.

67. Couch MJ, Ouriadov A, Santyr GE (2012) Regional ventilation mapping of the
rat lung using hyperpolarized (129) Xe magnetic resonance imaging. Magn

Reson Med.

68. Kyriazis A, Rodriguez I, Nin N, Izquierdo-Garcia JL, Lorente JA, et al. (2012)
Dynamic Ventilation He-3 MRI for the Quantification of Disease in the Rat

Lung. Ieee Transactions on Biomedical Engineering 59: 777–786.
69. Eidelman DH, Dimaria GU, Bellofiore S, Wang NS, Guttmann RD, et al.

(1991) Strain-Related Differences in Airway Smooth-Muscle and Airway
Responsiveness in the Rat. American Review of Respiratory Disease 144:

792–796.

70. Wang CG, Almirall JJ, Dolman CS, Dandurand RJ, Eidelman DH (1997) In
vitro bronchial responsiveness in two highly inbred rat strains. Journal of

Applied Physiology 82: 1445–1452.
71. Kirsch RA (1971) Computer Determination of Constituent Structure of

Biological Images. Computers and Biomedical Research 4: 315–&.

Hyperpolarized 129Xe MRI of Ex Vivo Rodent Lungs

PLOS ONE | www.plosone.org 13 August 2013 | Volume 8 | Issue 8 | e73468


