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0 HIGHER ORDER MAASS FORMS

ROELOF BRUGGEMAN AND NIKOLAOS DIAMANTIS

Abstract. The linear structure of the space of Maass forms of even weight and of arbitrary order is deter-
mined.

1. Introduction

In this work, the structure of the space of Maass forms of general order and integral weight as a linear
vector space is determined. It is proved that, under suitable conditions, this space is as large as one would
expect it to be.

There are mainly two objects and associated problems that suggest the study of specifically this type of
higher-order form. The first is Eisenstein series modified with modular symbols defined by

(1.1) E∗(z, s) =
∑

γ∈Γ∞\Γ0(N)

〈 f , γ〉 Im(γz)s ,

whereΓ∞ is the subgroup of translations of the congruence groupΓ0(N), f a weight 2 newform and
〈 f , γ〉 := −2πi

∫ γ∞
∞ f (w)dw. The study of this function has led to important results, suchas the proof that

the suitably normalised modular symbols follow the normal distribution ([19]). The functionE∗(−, s) is
not automorphic but transforms as a second-order automorphic form.

We recall that, for a groupΓ of motions on the upper half-planeH, a function is said to beΓ-invariant
of order q∈ N and weight 0, if it satisfies

(1.2) f |(γ1 − 1)(γ2 − 1) · · · (γq − 1) = 0 for all γ1, γ2, . . . , γn ∈ Γ .
Here, the action| of Γ on functions onH is given by

f |γ(z) := f (γz) .

and it is extended linearly to an action of the group ringC[Γ].
Clearly, several types of conditions on holomorphicity, growth etc. can be imposed on functions of

general order. The functionE∗(−, s) in particular, is an eigenfunction of the Laplacian and therefore we
view it as a Maass form of order 2.

The second object leading to functions that areΓ-invariant of second-order arises from considerations
related to values of derivatives ofL-functions of cusp forms: In [11] and [8] certain “period integrals” are
associated to derivatives ofL-functions of weight 2 cusp forms in a way analogous to the link between
values ofL-functions and modular integrals ([17]). Specifically, letf be a newform of weight 2 forΓ0(N)
and letL f (s) be itsL-function. If L f (1) = 0, then, for each primep, (p,N) = 1, L′f (1) can be written as a
linear combination of integrals of the form

(1.3)
∫ γ(0)

0
f (z) u(z) dz, γ ∈ Γ0(N)
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plus some “lower order terms”. Hereu(z) := logη(z)+ logη(Nz), whereη is the Dedekindη-function. The
differential f (z)u(z) dz is notΓ0(N)-invariant. It does satisfy a transformation law which is reminiscent of
(1.2), but is not quiteΓ0(N)-invariant of order 2 in the narrow sense. If it were, the value of the derivative
at 1 would be expressed as the value of the actualL-function of second-orderΓ0(N) at 1. That could be
advantageous for the study ofL′f (1) in terms of the outstanding conjectures, especially since there is now
evidence that a motivic structure underlies higher order forms (see [10] and [22]).

Here we show that it is indeed possible to obtain a second-order Γ0(N)-invariant function fromu(z)
provided we move to a different domain. This domain is the universal covering group which we will be
defining in detail in§5.1.

As will become apparent in the sequel, it is natural, in higher orders, to unify the study of Maass forms
and that of forms on universal covering groups. The full definition of thehigher-order Maass forms with
generalised weight on the universal covering groupis discussed in§6. Theorem 6.4 then allows us to
translate results on the universal covering group to the analogous results on the upper-half plane.

A fundamental question is how “large” this space is. In the case of holomorphichigher-order cusp
forms, the corresponding spaces are finite-dimensional andthe answer can be given by computing the
dimensions ([7] and [9]). In the present case, where the relevant space is not finite dimensional, a different
characterisation of “size” is required. Such a characterisation is proposed in§3.

Although our results imply that there are “many” higher order Maass forms, the proofs are highly
inductive and do not easily lead to explicit examples. In§4.3 and§6.4 we address this problem, by
illustrating various methods that lead to explicit examples of higher order Maass. Surprisingly, these
examples are derived very naturally from the theory which was developed in a completely different context
in [2, 3].

Finally, a particular aspect of the proof that deserves to besingled out because of its independent interest
is the definition of genuinely higher-order Fourier expansions. Higher order automorphic forms need not
be invariant under the group fixing a cusp, so there is no obvious Fourier expansion. To date, to address
this problem one had to partially revert to the classical setting by imposing the somewhat unnatural extra
condition of invariance under the parabolic elements of thegroup. In§7, appropriate higher-order Fourier
terms are constructed, thus avoiding additional invariance conditions.

2. Structure of the paper

In §3 we first discuss higher-order invariants for general groups and modules. This allows a precise
definition of the concept of “as large as possible” (maximally perturbable). A first maximal perturbability
result for a general space of maps is also proved.

In §4, Maass forms onH (both general and holomorphic) are defined and the first two main theorems
of the paper (4.2 and 4.3) are stated. The section includes anextended discussion of concrete examples of
low-order forms onH.

In the next section the universal covering groupG̃ is introduced and the basic facts aboutG̃ are given.
Maass forms on the universal covering group are defined in§6 and the counterparts of Theorems 4.2

and 4.3 for forms on the universal covering group are stated.The section concludes with concrete examples
of low-order forms onG̃.

Section 7 is of independent interest. A theory of Fourier expansions for higher-order forms is developed.
The proof of Theorems 4.2 and 4.3 is the content of§8. The proof involves the construction of two

spaces with support conditions. To deduce their maximal perturbability we employ spectral techniques.
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3. Higher order invariants

In this section, we discuss higher order invariants in general and then specialise their study to discrete
cofinite subgroupsΓ ⊂ PSL2(R). We introduce the concept of a “maximally perturbable”Γ-module to
make precise the statement that there are as many higher order invariants of a given type as one can expect.
A first maximal perturbability result in a general context isproved.

3.1. Higher order invariants on general groups. The concept of higher order invariant functions on
the upper half plane is a special case of the concept “higher order invariants” for any groupΓ and any
Γ-moduleV. We work withright Γ-modules, an write the action asv 7→ v|γ. It should be clear from the
context when we refer to this general meaning of| and when to the more narrow meaning given in the
Introduction. We define thehigher order invariantsinductively:

(3.1)
VΓ,1 = VΓ =

{
v ∈ V : ∀γ ∈ Γ, v|γ = v} ,

VΓ,q+1
=

{
v ∈ V : ∀γ ∈ Γ, v|(γ − 1) ∈ VΓ,q

}
.

We setVΓ,0 = {0}.
Let nowΓ be finitely generated and letI be the augmentation ideal in the group ringC[Γ], generated by

γ − 1 with γ ∈ Γ. A fundamental role in the paper will be played by the map

mq : VΓ,q+1→ homC[Γ](I
q+1\Iq,VΓ).

To define it we first quote from [5] (before Proposition 1.2):

(3.2) VΓ,q � homC[Γ](I
q\C[Γ],V) .

Next, we note thatIq+1\Iq is generated by

Iq+1
+ (γ1 − 1) · · · (γq − 1) ,

with γi ∈ Γ. To eachv ∈ VΓ,q+1 we associate the map onIq+1\Iq sending this element tov|(γ1−1) · · · (γq−1).
This map is well-defined becausev|(γ1−1) · · · (γq+1−1) = 0. In this way, we obtain a mapmq from VΓ,q+1

to
homC[Γ](I

q+1\Iq,V) � homC[Γ](I
q+1\Iq,VΓ)

(since the action induced onIq+1\Iq by the operation ofΓ is trivial). It is easy to see that the kernel ofmq

is VΓ,q and thus we obtain the exact sequence

(3.3) 0−→ VΓ,q −→ VΓ,q+1 mq−→ homC[Γ](I
q+1\Iq,V)

The mapmq may or may not be surjective and we will interpret the phrase “as large as possible” as
surjectivity ofmq for all q ∈ N.

Definition 3.1. Let Γ be a finitely generated group. We will call aΓ-moduleV maximally perturbableif
the linear mapmq : VΓ,q+1→ homC[Γ](Iq+1\Iq,VΓ) is surjective for allq ≥ 1.

A reformulation of this definition which is occasionally easier to use, uses the finite dimension

(3.4) n(Γ, q) := dimC(Iq+1\Iq).

V is maximally perturbable if and only ifVΓ,q+1/VΓ,q � (VΓ)n(Γ,q) for all q ∈ N.
In [9] higher order cusps forms of weightk for a discrete groupΓ are considered in the space of holo-

morphic functions onHwith exponential decay at the cusps that moreover are invariant under the parabolic
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transformations. The dimensions of these spaces are computed and generally turn out to be strictly smaller
thann(Γ, q). So the correspondingΓ-module is not maximally perturbable.

A useful definition is based on the isomorphism homC[Γ](Iq+1\Iq,VΓ) � Multq(Γ,VΓ), the space of maps
Γ

q → VΓ inducing group homomorphismsΓ → C on each of their coordinates. For a finitely generated
groupΓ, Multq(Γ,VΓ) � Multq(Γ,C) ⊗C VΓ where Multq(Γ,C) is theq-th tensor power of the abelianised
groupΓab

= Γ/[Γ, Γ]. With this notation we define

Definition 3.2. Let q ∈ N. For any groupΓ and anyΓ-moduleV we call f ∈ VΓ,q aperturbationof ϕ ∈ VΓ

if there existsµ f ∈ Multq(Γ,C) such that for allγ1, · · · , γq ∈ Γ:
(3.5) f |(γ1 − 1) · · · (γq − 1) = µ f (γ1, . . . , γq)ϕ .

We call a perturbationcommutativeif µ f is invariant under all permutations of its arguments. If not, we
call it non-commutative.

3.2. Higher order invariants on subgroups of PSL2(R).

3.2.1. Canonical generators.In this section we recall the “canonical generators” of cofinite discrete sub-
groups of PSL2(R), and use them to show that certain modules are maximally perturbable.

Let Γ ⊂ PSL2(R) be a cofinite discrete group of motions in the upper half-plane H. A system of
canonical generatorsfor Γ consists of

• Parabolic generatorsP1, . . . ,Pnpar, each conjugate in PSL2(R) to ±
(

1
0

1
1

)
. We shall assume thatΓ

has cusps:npar ≥ 1.

• Elliptic generatorsE1, . . . ,Enell , with nell ≥ 0. EachE j is conjugate to±
(

cos(π/v j )
− sin(π/v j )

sin(π/v j )
cos(π/v j )

)
in

PSL2(R) for somev j ≥ 2.
• Hyperbolic generatorsH1, . . . ,H2g, with g ≥ 0, each conjugate in PSL2(R) to the image±

(
t
0

0
t−1

)
,

t > 1, t , 1, of a diagonal matrix

See,e.g., [15], Chap. VII.4, p. 241, or [18],§3. The relations are given by the condition that eachE
v j

j = I
for j = 1, . . . , nell, and one large relation

(3.6) P1 · · ·PnparE1 · · ·Enell [H1,H2] · · · [H2g−1H2g] = Id .

The choice of canonical generators is not unique, but the numbersnpar, nell andg, and the elliptic orders
v1, . . . , vnell are uniquely determined byΓ.

Each group homomorphismΓ→ C vanishes on theE j , and is determined by its values onH1, . . . ,H2g,
P1, . . . ,Pnpar−1, hence

(3.7) dim hom(Γ,C) = npar− 1+ 2g .

We put t(Γ) = npar + 2g, and denoteA1 = P1, . . . ,Anpar−1 = Pnpar−1,Anpar = H1,Anpar+1 = H2, . . . ,

At(Γ)−1 = H2g. The groupΓ is generated byE1, . . . ,Enell andA1, . . . ,At(Γ)−1.
For the modular group we havenpar = 1, P1 = ±

(
1
0

1
1

)
, nell = 2, E1 = ±

(
1
−1

1
0

)
, E2 = ±S := ±

(
0
1
−1

0

)
,

g = 0, and hence hom(Γmod,C) = {0} andt(Γmod) = 1.

In the sequel, we will need a basis forIq+1\Iq. Arguing as in Lemma 2.1 in [5] we can deduce that the
elements

(3.8) b(i) = (Ai(1) − 1) · · · (Ai(q) − 1) ,
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wherei runs over all (t(Γ)−1)-tuples of elements of{1, . . . , t(Γ)−1} form a basis ofIq+1\Iq. We do not give
a proof here, since it follows from the more general result Proposition 5.3.

3.2.2. A first maximal perturbability result.We view the space Map(Γ,C) of all maps fromΓ to C as a
right Γ-module for the action| by left translation.

Proposition 3.3. If Γ is a discrete cofinite subgroup ofPSL2(R) with cusps, thenMap(Γ,C) is maximally
perturbable.

Proof. We construct functionsgi ∈ Map(Γ,C) for n-tuplesi from {1, . . . , t(Γ) − 1}. Firstly, letΓ0 be the
free subgroup ofΓ which is generated by the elementsA j, 1 ≤ j ≤ t(Γ)−1. It is clear that there is a unique
system of functions{gi} onΓ0 such that

(3.9)

g() = 1 ,

g( j,i) |(A j − 1) = gi ,

gi |(A j − 1) = 0 if i(1) , j,

gi(1) = 0 if |i| ≥ 1 .

By |i| we denote the length of the tuplei.
We next setgi(γ) = gi

(
ϕ0(γ)

)
for γ ∈ Γ, whereϕ0 is the homomorphism defined byϕ0(E j) = I ,

ϕ0(A j) = A j . With the mapmq in (3.3) and for for|i| = |j | we have on the basis elements in (3.8),

(3.10)
(mqgi)

(
b(j )

)
= gi |(Aj (1) − 1) · · · (Aj (q) − 1)

= δi(1),j (1)gi′ |(Aj (2) − 1) · · · (Aj (q) − 1) ,

wherei′ is the tuple (i(2), . . . , i(q)). Inductively we obtain

(3.11) (mqgi)
(
b(j )

)
= δi,j :=

q∏

l=1

δi(l),j (l) .

Hence thegi with |i| = q form a dual system for the generatorsb(i). This implies that the imagemqVΓ,q+1

has maximal dimensionn(Γ, q). �

4. Maass forms

We turn to spaces of functions on the upper half-plane that contain the classical holomorphic automor-
phic forms and the more general Maass forms. The first main results of this paper are stated in Theo-
rems 4.2 and 4.3. In§4.3 we give some explicit examples of higher order Maass forms.

4.1. General Maass forms. Let Γ be a cofinite discrete subgroupΓ of the groupG = PSL2(R). For each
cuspκ, we choosegκ ∈ PSL2(R) such that

(4.1) κ = gκ∞ andg−1
κ Γκgκ =

{
±

(
1
0

n
1

)
: n ∈ Z

}

Here,Γκ is the set of elements ofΓ fixing κ. The elementsgκ are determined up to right multiplication by
elements±

(
a
0

b
a−1

)
∈ G. We choose thegκ for cusps in the sameΓ-orbit so thatgγκ ∈ γgκΓ∞.

We further consider a generalisation of the action| considered in the last section. For a fixedk and for
a f : H→ C we set

(4.2) f
∣∣∣∣
k

(
a
c

b
d

)
(z) = (cz+ d)−k f

(
(az+ b)/(cz+ d)

)
.
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We finally set

(4.3) Lk = −y2∂2
x − y2∂2

y + iky∂x − ky∂y +
k
2
(
1− k

2
)
.

With this notation we have

Definition 4.1. Let k ∈ 2Z andλ ∈ C.

i) Mk(Γ, λ) denotes the space of smooth functionsf : H → C such thatLk f = λ f and for which
there is somea ∈ R such that

(4.4)
f (gκ(x+ iy)) = O(ya) (y→ ∞)

uniformly for x in compact sets inR, for all cuspsκ of Γ .

ii) Ek(Γ, λ) denotes the space of smooth functionsf such thatLk f = λ f and for which there is some
a ∈ R such that

(4.5)
f (gκ(x+ iy)) = O(eay) (y→ ∞)

uniformly for x in compact sets inR, for all cuspsκ of Γ.

iii) We denote the invariants in these spaces by

(4.6) Ek(Γ, λ) := Ek(Γ, λ)Γ andMk(Γ, λ) := Mk(Γ, λ)Γ .

We call the elements ofEk(Γ, λ) (resp. Mk(Γ, λ)) Maass forms of polynomial (resp. exponential)
growth of weight k and eigenvalueλ ∈ C for Γ.

Remarks.

i) SinceLk is elliptic, all its eigenfunctions are automatically real-analytic. (See,e.g., [14], §5 of
App. A4, and the references therein.) Iff is holomorphic, then it is an eigenfunction ofLk with
eigenvaluek

2

(
1− k

2

)
.

ii) The spaceMk(Γ, λ) is known to have finite dimension. The spaceEk(Γ, λ) has, for groupsΓ with
cusps, infinite dimension. The subspace ofEk(Γ, λ) corresponding to a fixed value ofa in the
bound O(eay) has finite dimension.

iii) In an alternative definition, suitable for functions not necessarily holomorphic, one replaces the
Maass formsf as defined above byh(z) = yk/2 f (z). Then invariance under (4.2) becomes invari-
ance under the action

(4.7) f
∣∣∣∣
k

(
a
c

b
d

)
(z) = e−ik arg(cz+d) f

(
(az+ b)/(cz+ d)

)

and the eigenproperty in the terms of the Laplacian

(4.8)
(−y2∂2

x − y2∂2
y + iky∂x

)
h = λh.

The formulation of the growth conditions remains unchanged. Now antiholomorphic automorphic
formsa(z) of weightk give Maass formsh(z) = yk/2a(z) of weight−k.

Our main result for general Maass forms onH is

Theorem 4.2. Let Γ be a cofinite discrete group of motions inH with cusps. Then theΓ-moduleEk(Γ, λ)
is maximally perturbable for each k∈ 2Z and eachλ ∈ C.

In the course of the proof in§8 we will see that even if we start with Maass forms with polynomial
growth the construction of higher order invariants will lead us to functions that have exponential growth.
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4.2. Holomorphic automorphic forms. For evenk the spaceEk(Γ, λk), with λk =
k
2(1 − k

2) contains
the subspaceEhol

k (Γ, λk) where the conditionLk f = λk f is replaced by the stronger condition thatf is
holomorphic. In the alternative definition, condition (4.8) is replaced by the condition thatz 7→ y−k f (z)
is holomorphic. The spaceEhol

k (Γ, λk) is a Γ-submodule ofEk(Γ, λk). We also have theΓ-submodule
Mhol

k (Γ, λk) =Mk(Γ, λk) ∩ Ehol
k (Γ, λk) ofMk(Γ, λk).

The spaceMhol
k (Γ, λk)Γ is the usual space of entire weightk automorphic forms forΓ, andEhol

k (Γ, λk)Γ

is the space of meromorphic automorphic forms with singularities only at cusps. Sometimes, e.g. in [1],
the elements ofEhol

k (Γ, λk)Γ are calledweakly holomorphic. There the elements ofEk(Γ, λk)Γ are called
harmonic weak Maass forms. We prefer to use the termharmonicfor Maass forms inEk(Γ, 0)Γ. (Note that
λk , 0 for k , 0, 2.)

Our main result for holomorphic automorphic forms onH is:

Theorem 4.3. Let Γ be a cofinite discrete group of motions inH with cusps. ThenEhol
k (Γ, k/2 − k2/4) is

maximally perturbable for each k∈ 2Z.

4.3. Examples of harmonic and holomorphic forms of order two and three. According to Theorems
4.2 and 4.3 there are plenty of examples of higher order Maassforms for cofinite groups with cusps for
which dimC hom(Γ,C) ≥ 1. It is, however, not very easy to exhibit explicit examples.

For the modular groupΓmod = PSL2(Z) the space hom(Γmod,C) is zero. Hence it does not accept
higher order invariants. For the commutator subgroupΓcom = [Γmod, Γmod] we will employ three different
approaches to exhibit full sets of perturbations of 1 (as defined in Definition 3.2) of orders two and three.
A reader only interested in the existence of higher order forms may prefer to skip this subsection.

4.3.1. Holomorphic perturbation of1. In [15], Chap. XI,§3E, p. 362, one finds various facts concern-
ing Γcom. It is freely generated byD = ±

(
2
1

1
1

)
andC = ±

(
2
−1
−1

1

)
. It has no elliptic elements, and one

cuspidal orbitΓcom∞ = P1
Q

. The group (Γcom)∞ fixing ∞ is generated by±
(

1
0

6
1

)
. We havet(Γcom) = 3.

The space of holomorphic cusp forms of weight 2 has dimensiong = 1. We use the basis elementη4

(power of the Dedekind eta-function). The map

(4.9) H(z) = −2πi
∫ z

∞
η(τ)4 dτ = −6eπiz/3

+O
(
e7πiz/3)

induces an embedding ofΓcom\H into an elliptic curve, which can be described asC/Λ, with

(4.10) Λ = ̟Z[ρ] , ̟ = π1/2
Γ(1/6)/

(
6
√

3Γ(2/3)
)
, ρ = eπi/3 .

(See computations in§15.2–3 in [3].) The mapH mapsH ontoC r Λ, and satisfies forγ ∈ Γcom

(4.11) H(γz) = H(z) + λ(γ) , λ(γ) = −2πi
∫ γ∞

∞
η(τ)4 dτ ,

whereλ(C) = ρ̟ andλ(D) = ρ̟̄. So the latticeΛ is the image ofλ : Γcom → C, and hom(Γcom,C) =
Mult1(Γcom,C) hasλ, λ̄ as a basis. We note that the kernel ker(λ) is a subgroup with infinite index in
Γcom; it is in fact the commutator subgroup ofΓcom. The element±

(
1
0

6
1

)
generating the subgroup ofΓcom

fixing ∞ is in ker(λ). Since ker(λ) has no elliptic elements, composition withH gives a bijection from the
holomorphic functions onC r Λ to the holomorphic ker(λ)-invariant functions onH.

Clearly, H is a holomorphic second order perturbation of 1 with linear form λ. It is also aharmonic
perturbationof 1, i.e., a perturbation which is harmonic as a function. Byconjugation we obtain the
antiholomorphic harmonic perturbation of 1 with linear form λ̄.
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According to Theorem 4.3 there should also be a holomorphic second order perturbation of 1 with a
linear form that is linearly independent ofλ. Here we can use the Weierstrass zeta-function

(4.12) ζ(u;Λ) =
1
u
+

∑′

ω∈Λ

( 1
u− ω +

1
ω
+

u

ω2

)
.

See,e.g., [13], Chap. I,§6. It is holomorphic onC r Λ and satisfiesζ(u + ω;Λ) = ζ(u;Λ) + h(ω) for all
ω ∈ Λ, whereh ∈ hom(Λ,C) is linearly independent ofω 7→ ω. (The classical notation forh is η. We
write h to avoid confusion with the Dedekind eta function.) Pullingback this zeta-function toH we get a
second order holomorphic perturbation of 1

(4.13) W(z) = ζ
(
H(z);Λ

)

with the linear formγ 7→ h
(
λ(γ)

)
. The Laurent expansion of the Weierstrass zeta-function at0 starts with

ζ(u;Λ) = u−1
+O(u3). HenceW has a Fourier expansion at∞ starting with

(4.14) W(z) =
−1
6

e−πiz/3
+O

(
eπiz) .

This shows thatW has exponential growth at the cusps.
We may carry this out also for holomorphic forms of order three, to obtain the following commutative

perturbations of 1 of order 3:

(4.15)
f H(z)2 H(z) W(z) W(z)2

µ f 2λ ⊗ λ λ ⊗ (h ◦ λ) + (h ◦ λ) ⊗ λ 2(h ◦ λ) ⊗ (h ◦ λ)

We know that there also exist non-commutative holomorphic perturbations of order 3. To find an explicit
example, we have to work onH, since the groupΛ acting onC is abelian.

The closed holomorphic 1-forms

ω = −2πi η(τ)4 dτ and ω1 = −2πi W(τ) η(τ)4 dτ

onH transform as follows underΓcom:

(4.16) ω|γ = ω , ω1|γ = ω1 + h
(
λ(γ)

)
ω .

For an arbitrary base pointz0 ∈ H we put

(4.17) K(z) =
∫ z

z0

ω1 .

This defines a holomorphic function onH that satisfies forγ ∈ Γcom:

K|(γ − 1)(z) =
∫ γz

z
ω1 ,

and hence forγ, δ ∈ Γcom:

K|(γ − 1)(δ − 1)(z) =
(∫ γδz

γz
−

∫ δz

z

)
ω1 =

∫ δz

z
ω1|γ −

∫ δz

z
ω1

= h
(
λ(γ)

) ∫ δz

z
ω = h

(
λ(γ)

)
λ(δ) .

Thus, we have a holomorphic third order non-commutative perturbationK of 1 with non-symmetric mul-
tilinear form (h◦λ)⊗λ. Since holomorphic forms are harmonic in weight zero these perturbations are also
harmonic perturbations of 1.
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4.3.2. Iterated integrals.The construction of the third order formK in (4.17) is closely related to the
iterated integrals used in [10] to prove maximal perturbability of spaces of smooth functions.

The idea is that we have two closedΓcom-invariant differential forms onH, dH(z) = ω = −2πi η(z)4 dz,
and

ω0 = dW(z) = −℘(H(z)
)
d
(
H(z)

)
,

where℘(u;Λ) = − d
duζ(u;Λ) is the Weierstrass℘-function. If t 7→ z(t), 0 ≤ t ≤ 1 is a path inH from z0 to

z1, then
∫ 1

t2=0

∫ t2

t1=0
ω0

(
z(t1)

)
ω
(
z(t2)

)
=

∫ 1

t2=0

(
W

(
z(t2)

) −W(z0)
)
dH

(
z(t2)

)

= −2πi
∫ 1

t=0
W

(
z(t)

)
η
(
z(t)

)4 z′(t) dt −W(z0)
(
H(z1) − H(z0)

)

= K(z1) −W(z0)
(
H(z1) − H(z0)

)

depends only onz0 andz1, not on the actual path. For a fixed base pointz0 the holomorphic function
z1 7→ W(z0)

(
H(z1) − H(z0)

)
is invariant of order two. So up to lower order terms the invariant K is given

by an iterated integral, as in (3) of [10]; see also [4].

4.3.3. Differentiation of families.We start by considering a general finitely generated groupΓ acting on
a spaceX. We will use the notationf |γ(x) = f (γx) for the action induced on functions defined onX. We
consider a family of characters ofΓ of the formχr (γ) = eir ·α(γ), wherer · α(γ) = r1α1(γ) + · · · + rnαn(γ),
α1, . . . , αn ∈ hom(Γ,R), r varying over an open setU in Rn. In this wayχr is a family of unitary characters.

We consider aC∞ family r 7→ fr on a neighborhoodU ⊂ Rn of 0 of functionsX→ C that satisfy

(4.18) fr (γx) = χr (γ) fr (x) (γ ∈ Γ) .

We assume thatχ0 is the trivial character and thatf0 is aΓ-invariant functionf .
We now seth(x) = ∂r j fr (x)

∣∣∣
r=0, for one of the coordinates ofr. The transformation behaviour gives

h(γx) = iα j(γ) f (x) + h(x), or, rewritten,

h|γ − h = iα j(γ) f .

The functionh is a second order perturbation off , with iα j as the corresponding element of hom(Γ,C).
This can be generalised:

Proposition 4.4. For all multi-indices a∈ Nn the derivative

f (a)(x) := ∂a
r fr (x)

∣∣∣
r=0

is a commutative perturbation of f with order1+ |a|.

We use the notations∂a
r = ∂

a1
r1 · · · ∂

an
rn and|a| = a1 + a2 + · · · + an.

Proof. We use induction on the length|a| of the multi-index. The case|a| = 1 has already been handled
above. For|a| > 1 we have

f (a)(γx) =
∑

0≤b≤a

(iα(γ))a−b
(
a
b

)
f (b)(x) ,
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whereb runs over the multi-indices with 0≤ b j ≤ a j , where
(
b
a

)
=

∏
j

(
aj

bj

)
, and whereα(γ)c

=
∏

j α j(γ)cj .
Hence

(4.19) f (a)|(γ − 1) =
∑

0≤b<a

(iα(γ))a−b
(
a
b

)
f (b)

is a linear combination of higher order formsf (b) of orders 1, . . . , |a|. So f (a) is an invariant of order at
most 1+ |a|. Furthermore

(4.20) f (a)|(γ1 − 1) · · · (γ|a| − 1) =
∑

0≤b<a

(iα(γ1))a−b
(
a
b

)
f (b)|(γ2 − 1) · · · (γ|a| − 1) .

By induction assumption, thef (b)|(γ2 − 1) · · · (γ|a| − 1) are multiples off (zero if |b| < |a| − 1). So f (a) is a
perturbation off .

For the commutativity of the perturbation we note by induction that, for allg1, . . . , gs ∈ Γ

(g1 − 1)(g2 − 1) · · · (gs − 1) =
s∑

l=0

(−1)s−l
∑

i1<i2<···<il

(gi1gi2 · · · gil − 1) ,

where thei j run through the set{1, . . . , s}. Application of (4.19) leads to

f (a)
∣∣∣(γ1 − 1) · · · (γ|a| − 1) =

|a|∑

l=0

(−1)|a|−l
∑

i1<i2<···<il

∑

0≤b<|a|

(
iα(γi1γi2 · · · γil ))

a−b
(
a
b

)
f (b) .

Sinceα is a homomorphism, the factorα(γi1γi2 · · · γil ) does not depend on the order of theγi j . Hence we
may rewrite the expression as follows.

f (a)
∣∣∣(γ1 − 1) · · · (γ|a| − 1) =

|a|∑

l=0

(−1)|a|−l

l!

∑

i

∑

0≤b<|a|

(
iα(γi1γi2 · · · γil ))

a−b
(
a
b

)
f (b) ,

wherei in the sum
∑

i runs over the subsets of{1, . . . , |a|} with l elements. This is an expression that is
invariant under permutations of theγ j , which shows thatf (a) is a commutative perturbation. �

Remark. Proposition 4.4 shows that commutative perturbations can arise as infinitesimal perturbations of
a family of automorphic forms. That is our motivation to use the wordperturbationin Definition 3.2.

Application to harmonic perturbations of 1. We use the method of differentiation of families to produce
explicit harmonic higher order forms forΓcom of order 3. We employ families studied in [3].

SinceΓcom is free on the generatorsC = ±
(

2
−1
−1

1

)
and D = ±

(
2
1

1
1

)
, the character group ofΓcom is

isomorphic toC∗ × C∗. We can parametrise the characters by

(4.21) χv,w(γ) = eivλ(γ)+iwλ(γ) ,

where (v, w) runs throughC2, and whereλ ∈ hom(Γcom,C) is as defined in (4.11). We are interested only
in (v, w) in a neighborhood of 0∈ C2.

In [3], §15.5 it is shown that there is a meromorphic Eisenstein family E(v, w, s) of automorphic forms
for Γcom, with the characterχv,w and eigenvalue14 − s2 for ω0 = −y2

(
∂2

x + ∂
2
y

)
. (In [3] the discussion of

the family E is made in the context of families of automorphic forms of varying weight which are thus
defined on the covering group̃Γcom. However, in§15.5 the weight is zero, and the automorphic forms are,
in effect, on the discrete groupΓcom.) The restriction tos= 1

2 exists ([3],§15.6) and forms a meromorphic
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family (v, w) 7→ f (v, w; z) onC2 such thatf (v, w; γz) = χv,w(γ) f (v, w; z), andL0 f (v, w; z) = 0 for the dense
set of (v, w) at which f is holomorphic. There is a meromorphic family (v, w) 7→ h(v, w; ·) onC, such that
f (v, w; z) = h

(
v, w; H(z)

)
, satisfyingh(v, w; u + λ) = eivλ+iwλ̄ h(v, w; u) ([3], §15.1–6). Chapter 15 of [3]

gives a complicated but explicit construction (obtained with the help of D.Zagier) of such a familyh with
Jacobi theta-functions.

Specifically, in§15.6.11 the functionh is expressed as a sum

(4.22) h(v, w; u) = G(v+w)̟/2π(u, w) +G−(v+w)̟/2π(−ū,−v) ,
where the functionGµ(u, w), for µ < Z and 0< Im u < 1

2̟
√

3 is given by

(4.23) Gµ(u, w) =
∞∑

m=−∞

1
µ +m

ξµ+m

ηqm − 1
,

with q = −e−π
√

3, ξ = e2πiu/̟, andη = e−w̟
√

3 We consider this foru, w, andµ near zero, but not equal to
zero. Henceη ≈ 1 butη , 1, and|q| < |ξ| < 1. The latter inequalities imply absolute convergence of the
series. We shall derive the Taylor expansion ofh̃(v, w; u) := vwh(v, w; u) in terms of (v, w) near zero up to
order two, from which we can obtain higher order forms by Proposition 4.4.

The term ofGµ(u, w) with m= 0

(4.24)
1
µ

ξµ

η − 1
,

has singularities atµ = 0, and, due to 1
η−1, also atw = 0. This term has the following contribution to

h(v, w; u) in (4.22).

(4.25)
2π

̟(v + w)
eiu (v+w)

e−w̟
√

3 − 1
− 2π
̟(v + w)

eiū (v+w)

ev̟
√

3 − 1
We write the corresponding contribution toh̃(v, w; u) = vwh(v, w; u) as follows.

2π
̟

vw

(e−w̟
√

3 − 1)(ev̟
√

3 − 1)

(e−w̟
√

3(e(v+w)̟
√

3 − 1)
v + w

+
(eiu(v+w) − 1)(ev̟

√
3 − 1)

v + w
− (eiū(v+w) − 1)(e−w̟

√
3 − 1)

v + w

)
.

The last three quotients are holomorphic as a function ofv + w in a neighborhood of 0. We replace them
by their Taylor expansion up to the term (v + w)2 and after that the Taylor expansion in bothv andw up to
order 2 is computed. This gives

(4.26)

−2π

̟2
√

3

(
1+ iu v + iūw − 1

2
u2 v2 − 1

2
ū2w2

−
√

3
2π

(− π̟
2

2
√

3
− πi̟u+ πi̟ū+

π
√

3
(u2
+ ū2)

)
vw

)
+ · · · .

In the terms withm , 0 in (4.23) we writeξ = e2πiu/̟, ξ̃ = e−2πiū/̟, η1 = e−w̟
√

3, η2 = ev̟
√

3,
q = −e−π

√
3, andµ = (v + w)̟/2π. We find the following contribution tõh(v, w; u):
∞∑

m=1

(
vw

m+ µ
ξm+µ

η1qm − 1
+

vw

µ −m
ξµ−m

η1q−m − 1
+

vw

m− µ
ξ̃m−µ

η2qm − 1
+

vw

−m− µ
ξ̃−m−µ

η2q−m − 1

)
.
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This contribution is holomorphic nearv = w = 0. Its expansion starts with the termvw. So for third order
forms we need only the contribution toh(0, 0;u):

(4.27)
∞∑

m=1

1
m

(
ξm

qm − 1
+

(q/ξ)m

qm − 1
+

ξ̃m

qm − 1
+

(q/ξ̃)m

qm − 1

)
.

Each of these terms gives a convergent series on the region 0< Im u < 1
2̟
√

3.

Commutative perturbations.In this expansion we find various higher order harmonic formsthat we have
seen above. Denotingf = −2π

̟2
√

3
we find:

(4.28)

term of onC onH
1 f f (constant function)
v i f u i f H (z)
w i f ū i f H(z)
v2

− f
2 u2 − f

2 H(z)2

w2 − f
2 ū2 − f

2 H(z)
2

The coefficient ofvw gives a third order form

(4.29)

b1,1(u) :=
π
√

3

(( u
̟
− i
√

3
2

)2
+

( ū
̟
+

i
√

3
2

)2
+ 1

)

+ S(u) + S(̟ρ − u) + S(−ū) + S(̟ρ + ū) ,

with S(u) :=
∞∑

m=1

e2πimu/̟

m(qm − 1)
, ρ =

1
2
+

i
2

√
3 .

By B1,1(z) = b1,1
(
H(z)

)
we denote the corresponding harmonic third order perturbation of 1 onH. The

way B1,1 has been derived, together with the proof of Proposition 4.4, ensures that it is a perturbation of 1
with a multilinear form that is a multiple ofλ ⊗ λ̄ + λ̄ ⊗ λ.

However,b1,1(u) is represented by (4.29) only on the region 0< Im u < 1
2̟
√

3. In [3], §15.3.5, the
image underH of the fundamental domain

3⋃

n=−2

(
1
0

n
1

)
Fmod

(whereFmod is the standard fundamental domain of the modular group) is shown to be the regular hexagon
with centre 0 and one corner at−1

3(eπi/3
+ 1)̟ . Only the upper half of this hexagon is in the region where

we have an expression forb1,1. We shall continue this function to the entireC.
We first note that the series in (4.29) definingS(u) converges absolutely for Imu > 0 yielding a holo-

morphic function in that region. To extendS(u) to other values we use the following identity, valid for
Im u > 1

2̟
√

3:

(4.30) S(u) =
∞∑

m=1

e2πim(u/̟+ρ)

m(qm − 1)
−
∞∑

m=1

e2πimu/̟

m
= S(u+̟ρ) + log

(
1− e2πiu/̟)

.

Via this identity, we can defineS(u) in the region Imu > −1
2̟
√

3. This extension ofS is multivalued,
since it depends on the way in which we extend the functionu 7→ log

(
1− e2πiu/̟)

, which is given by the
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second series in (4.30) only for Imu > 0. However, the sum

(4.31) S(u) + S(−ū) = S(u+̟ρ) + S
(−u+̟ρ

)
+ 2 log |1− e2πiu/̟|

is single-valued on Imu > −1
2̟
√

3, with logarithmic singularities atu = ̟n, n ∈ Z. Applying (4.31)
repeatedly, we can extendS(u) + S(−ū) to all C to obtain a harmonic function with singularities at the
points inΛ = ̟Z[ρ] which have non-positive imaginary part.

Via (4.29), we then obtain the continuation of the functionb1,1. It is harmonic onCrΛ, with logarithmic
singularities at all points ofΛ.

Let us explicitly check the transformation behaviour: Since S is periodic with period̟ (and, equiva-
lently, S(u+̟ρ) = S(u−̟ρ̄) ),

b1,1(u+̟) − b1,1(u) =
π
√

3

(( u
̟
+ 1− i

√
3

2
)2 − ( u

̟
− i
√

3
2

)2

+
( ū
̟
+ 1+

i
√

3
2

)2 − ( ū
̟
+

i
√

3
2

)2)

=
π
√

3

(2u
̟
+ 1− i

√
3+

2ū
̟
+ 1+ i

√
3
)
=

2π

̟
√

3
(u+ ū+̟) ;

b1,1(u+̟ρ) − b1,1(u) =
π
√

3

(( u
̟
+

1
2
)2 − ( u

̟
− i
√

3
2

)2

+
( ū
̟
+

1
2
)2 − ( ū

̟
+

i
√

3
2

)2)

− 2 log
∣∣∣1− e2πiu/̟

∣∣∣ + S(−u) + S(ū+̟) − S(̟ρ − u) − S(̟ρ + ū)

=
π
√

3

(
ρ
(2u
̟
+ ρ−1)

+ ρ−1(2ū
̟
+ ρ

))

− 2 log
∣∣∣1− e2πiu/̟

∣∣∣ + 2 log
∣∣∣1− e−2πiu/̟

∣∣∣

=
2π
√

3

(
1+

ρu+ ρu
̟

) − 2πi(u− ū)/̟ =
2π
√

3

(
1+ ρ−1 u

̟
+ ρ

ū
̟

)
.

Let us denote byTω the translation byω ∈ Λ, and use the notationsb1,0(u) = u, b0,1(u) = ū. With the
notationsf = −2π

̟2
√

3
anda = 2π

̟
√

3
= − f̟ we have

b1,0|(T̟ − 1) = ω , b0,1|(Tω − 1) = ω̄ ,(4.32)

b1,1|(T̟ − 1) = a
(
b1,0 + b0,1 +̟) ,

b1,1|(Tρ̟ − 1) = a
(
ρ̄b1,0 + ρb0,1 +̟) ,

b1,1|(T̟ − 1)2 = 2a̟ = −2 f ̟2 ,

b1,1|(T̟ − 1)(Tρ̟ − 1) = a
(
ρ̟ + ρ̟̄

)
= − f

(
¯̟ · ρ̟ +̟ · ρ̟)

,

b1,1|(Tρ̟ − 1)2 = 2a̟ = −2 f (ρ̟)(ρ̟) .

SinceΛ is commutative we need not considerb1,1|(Tρ̟ − 1)(T̟ − 1). We conclude that the pull-back
− f −1B1,1 = − f −1b1,1◦H is a harmonic commutative perturbation of 1 for the multilinear formµ determined
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by the following values at the generatorsC andCD of Γcom:

(4.33) µ(g, h) =


2̟2 if g = h = C or CD ,

̟2 if g = C, h = CD , or if g = CD, h = C .

We have used the values ofλ given below (4.11).) With these values at the generators,µ coincides with
λ ⊗ λ̄ + λ̄ ⊗ λ as predicted above by the wayB1,1 was constructed.

Non-commutative perturbation. Proposition 4.4 shows that differentiation of families produces only
commutative perturbations. However, by Theorem 4.2, thereare non-commutative third order harmonic
perturbations of 1. We can obtain such perturbations fromB1,1 upon decomposing it asB1,1 = A+ B for a
holomorphic functionA and an anti-holomorphic functionB.

Specifically, in view of (4.29), for thosez ∈ H for which H(z) is in the upper half of the fundamental
hexagon forC/Λ, we can set

(4.34)

A(z) =
π

2
√

3
+

π
√

3

(H(z)
̟
− i
√

3
2

)2
+ S

(
H(z)

)
+ S

(
̟ρ − H(z)

)
,

B(z) =
π

2
√

3
+

π
√

3

(H(z)
̟
+

i
√

3
2

)2
+ S

(−H(z)
)
+ S

(
̟ρ + H(z)

)
.

As shown above,B1,1|(γ − 1)(δ − 1) = − f λ ⊗ λ̄ − f λ̄ ⊗ λ. Hence,

A|(γ − 1)(δ − 1) = −B|(γ − 1)(δ − 1)− f λ ⊗ λ̄ − f λ̄ ⊗ λ.

gives an equality between a holomorphic and an antiholomorphic function, and therefore, there isν : Γ2→
C such that

A|(γ − 1)(δ − 1) = ν(γ, δ) , B|(γ − 1)(δ − 1) = − f λ ⊗ λ̄ − f λ̄ ⊗ λ − ν(γ, δ)

for all γ, δ ∈ Γ. This implies thatA andB are third order invariants, and thatν ∈ Mult2(Γ,C).
To determine the bilinear formν, we recall thatλ(C) = ρ̟ andλ(D) = ρ̟̄ = (1 − ρ)̟. We consider

the following four functions:

(4.35)
A|(C − 1)+ f

(
ρ̟̄H + ̟2

2

)
, B|(C − 1)+ f

(
ρ̟ H̄ + ̟2

2

)
,

A|(D − 1)+ f
(
ρ̟H + ̟2

2

)
, B|(D − 1)+ f

(
ρ̟̄ H̄ + ̟2

2

)
,

The functions on the left are holomorphic, and those on the right are antiholomorphic. We consider the
sum of the two functions on the first row, and denoteu = H(z). With (4.32):

B1,1|(C − 1)(z) + f ρ̟̄H(z) + fρ̟H(z) + f̟2

= b1,1|(Tρ̟ − 1)(u) + f̟(ρ̄u+ ρū) + f̟2

= − f̟
(
ρ̄u+ ρū+̟

)
+ f̟(ρ̄u+ ρū) + f̟2

= 0 .
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Similarly the sum of the two functions on the second row gives

B1,1|(D − 1)(z) + f
(
ρ̟H(z) + ρ̟̄H(z) +̟2)

= b1,1|(Tρ̟̄ − 1)(u) + f̟(ρu+ ρu+̟)

= b1,1|(T̟ − 1)T−1
ρ̟ − b1,1|(Tρ̟ − 1)T−1

ρ̟ + f̟(ρu+ ρu+̟)

=
(− f̟(u+ ū+̟) + f̟(ρ̄u+ ρū+̟)

)|T−1
ρ̟ + f̟(ρu+ ρu+̟)

= f̟
(−u+ ρ̟ − ū+ ρ̟̄ −̟ + ρ̄(u− ρ̟) + ρ(ū− ρ̟̄) +̟

+ ρu+ ρu+̟
)
= 0 .

The sums of the rows in (4.35) are zero, so the individual functions are constant. We do not try to determine
these constants.

For A we have

A|(C − 1)(C − 1) = − f
(
ρ̟̄H|(C − 1)+ 0

)
= − f ρ̟̄λ(C) = − fλ(C) λ(C) ,

A|(C − 1)(D − 1) = − f
(
ρ̟̄λ(D)

)
= − fλ(C) λ(D) ,

A|(D − 1)(C − 1) = − fλ(D) λ(C) ,

A|(D − 1)(D − 1) = − fλ(D) λ(C) .

We conclude that− f −1 A is a non-commutative holomorphic third order holomorphic perturbation of 1
with multilinear form λ̄ ⊗ λ. Then the multilinear form of the anticommutative third order perturbation
of 1 given by− f −1 B = − f −1(B1,1 − A) is

(
λ ⊗ λ̄ + λ̄ ⊗ λ) − λ̄ ⊗ λ = λ ⊗ λ̄.

5. Universal covering group

5.1. Universal covering group of SL2(R). To define the universal covering group of SL2(R), which is
also the universal covering group ofG = PSL2(R), we first note that, as an analytic variety, SL2(R) is
isomorphic toH × (

R/2πZ
)
, by the Iwasawa decomposition expressing each element of SL2(R) uniquely

as a product ( √
y

0

x/
√
y

1/
√
y

) (
cosϑ
− sinϑ

sinϑ
cosϑ

)
,

with x+ iy ∈ H andϑ ∈ R/2πZ. Left multiplication by
(

a
c

b
d

)
∈ SL2(R) amounts to

(5.1) (z, ϑ + 2πZ) 7→
(az+ b
cz+ d

, ϑ − arg
(
j
((a

c
b
d

)
, z

))
+ 2πZ

)
.

Here, j
((a

c
b
d

)
, z

)
:= cz+ d. This describes an action of SL2(R) onH × (

R/2πZ
)
.

We define for each
(

a
c

b
d

)
∈ SL2(R) the operator

(5.2)
˜(a
c

b
d

)
: (z, ϑ) 7→ (az+ b

cz+ d
, ϑ − arg

(
j
((a

c
b
d

)
, z

)))

from H × R to itself, where we choose the argument such that−π < arg(cz+ d) ≤ π. We note that the map
g 7→ g̃ is injective.

Definition 5.1. The universal covering group̃G of G is the group of operatorsH × R → H × R generated
by the operators ˜g in (5.2) for allg ∈ SL2(R).
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A lengthy but routine calculation shows

Lemma 5.2. If the vertical maps in the diagram

H × R −−−−−→ H × R/Z SL2(R)

g̃

y
y g

y

H × R −−−−−→ H × R/Z SL2(R)

are given by(5.2), (5.1)and by left multiplication byg respectively, then the diagram is commutative. (The
last horizontal maps are defined by the Iwasawa decomposition.)

Suppose now that ˜g1g̃2 · · · g̃n is the identity as an operator onH×R. Thenz 7→ g1g2 · · · gnz is the identity
operator onH. Sog1g2 · · · gn ∈ {I ,−I } ⊂ SL2(R). By Lemma 5.2, it is impossible thatg1g2 · · · gn = −I
while g̃1g̃2 · · · g̃n is the identity operator. Sog1g2 · · · gn = I . This implies that the map ˜g 7→ g on the
generators extends to a group homomorphism

pr2 : G̃ −→ SL2(R) .

The composition of pr2 with the natural projection SL2(R)→ PSL2(R) gives a map

pr : G̃ −→ PSL2(R) .

We single out the following following families of elements of G̃.

a) Forx ∈ R we putn(x) =
(̃

1
0

x
1

)
in G̃. This induces an injective group homomorphismn : R→ G̃.

b) Fory ∈ R∗+ we seta(y) =
˜(

y1/2

0
0

y−1/2

)
. This induces an injective group homomorphisma : R∗+ → G̃.

c) Forϑ ∈ R, we set

(5.3) k(ϑ)(z, ϑ1) =
( zcosϑ + sinϑ
−zsinϑ + cosϑ

, ϑ1 + ϑ − arg(eiϑ(−zsinϑ + cosϑ))
)
.

This definesk(ϑ) ∈ G̃ satisfying pr2k(ϑ) =
(

cosϑ
− sinϑ

sinϑ
cosϑ

)
. For fixed (z, ϑ1) ∈ H × R, the quantity

k(ϑ)(z, ϑ1) is real-analytic inϑ. If bothϑ andϑ′ have values near zero thenk(ϑ + ϑ′) = k(ϑ)k(ϑ′),
since pr2 is locally an isomorphism. By analyticity this relation extends to allϑ, ϑ′ ∈ R. So we
have a group homomorphismk : R → G̃. The kernel of the composition pr2 ◦ k is 2πZ. For
eachn ∈ Z the elementk(nπ) acts as (z, ϑ1) 7→ (z, ϑ1 + πn). This implies thatk is an injective
group homomorphism. Although it satisfies pr2k(ϑ) =

(
cosϑ
− sinϑ

sinϑ
cosϑ

)
for all ϑ ∈ R, the relation

˜(
cosϑ
− sinϑ

sinϑ
cosϑ

)
= k(ϑ) holds only forϑ ∈ [−π, π).

With these definitions and notations we deduce some basic facts aboutG̃.

Centre ofG̃: The elementsk(πn) with n ∈ Z form the centrẽZ of G̃.

Transitivity of action ofG̃ onH × R: This is implied byn(x)a(y)k(ϑ) (i, 0) = (x+ iy, ϑ) for all x+ iy ∈ H
andϑ ∈ R.

Generators ofG̃: The elementsn(x), a(y) andk(ϑ) generateG̃, and each element of̃G can be written
uniquely asn(x)a(y)k(ϑ). This is a consequence of the relations

a(y)n(x) = n(y2x)a(y) and(5.4)

k(ϑ)n(x)a(y) = n(xϑ)a(yϑ)k
(
ϑ − arg

(
eiϑ(−zsinϑ + cosϑ)

) )
(5.5)

with z= x+ iy andxϑ + iyϑ = zcosϑ+sinϑ
−zsinϑ+cosϑ .
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G̃ � H×R. Because of the last two facts, we can identifyG̃ with H×R as analytic varieties. Furthermore,
the group operations are analytic with respect to the structure ofH×R as an analytic variety. SõG is a Lie
group. The maps pr and pr2 are covering maps. One can show that any covering of SL2(R) factors through
G̃, henceG̃ is the universal covering group of SL2(R).

Sectiong → g̃: This is a homeomorphism forg near the unit element of SL2(R), but it is discontinuous
at

(
a
c

b
d

)
∈ SL2(R) with c = 0 andd < 0. This section is not a group homomorphism but instead thereis a

Z-valued 2-cocyclew on SL2(R) such that ˜gg̃1 = g̃g1k
(
2πw(g, g1)

)
for all g, g1 ∈ SL2(R). See Theorem 16

on p. 115 of [16] for an explicit description of this cocycle.Each element of̃G has a unique decomposition
as g̃ k(2πn) with g ∈ SL2(R) and n ∈ Z. In this paper we will not use this description of the group
structure ofG̃. We work with the interpretation as a group of operators inH × R, and occasionally use the
“one-parameter subgroups”n, a andk.

The action ofG̃ onH∗ := H ∪ {cusps} is given byγz := pr(γ) z.

5.2. The Lie algebra of the universal covering group.The direction of the three one-parameter sub-
groupsn, a and k at the origin determines elements of the (real) Lie algebragR of G̃. The groupsG̃,
SL2(R) and PSL2(R) have the same Lie algebra, since they are locally isomorphic. The Lie algebra ele-
ments corresponding ton, a andk are, respectively,

(5.6) X =
(
0
0

1
0

)
,

1
2

H =

(
1/2

0
0

−1/2

)
, and W =

(
0
−1

1
0

)
.

The Lie algebra acts on the functions onG̃ by differentiation on the right:YF(g) = ∂tF(gexp(tY))|t=0 for
Y ∈ gR. This action can be extended to the complexified Lie algebrag = C ⊗R gR, and to the universal
enveloping algebra ofg. All the resulting differential operators commute with the action ofG̃ by left
translation. With the identification of̃G asH × R we have in the coordinates given by (x+ iy, ϑ):

(5.7)

X = ∂x , H = 2y∂y , W = ∂ϑ ,

E+ = H + i(2X −W) = e2iϑ(2iy∂x + 2y∂y − i∂ϑ) ,

E− = H − i(2X −W) = e−2iϑ(−2iy∂x + 2y∂y + i∂ϑ) ,

ω = −1
4

E±E∓ +
1
4

W2 ∓ i
2

W = −y2∂2
y − y2∂2

x + y∂x∂ϑ .

TheCasimir operatorω generates the centre of the enveloping algebra ofg. The corresponding differential
operator commutes with left and right translations inG̃.

5.3. Cofinite discrete subgroups.To a cofinite discrete subgroupΓ of PSL2(R) we associate its full
original Γ̃ := pr−1

Γ in G̃. This gives a bijective correspondence between cofinite discrete subgroups of
PSL2(R) and cofinite discrete subgroups ofG̃ that contain the centrẽZ = 〈ζ〉, whereζ := k(π). The
projection pr induces an isomorphismΓ � Γ̃/Z̃.

As an example we consider themodular groupΓmod = PSL2(Z), with corresponding group̃Γmod ⊂ G̃.
It is known that PSL2(Z) is presented by the generatorsS = ±

(
0
1
−1

0

)
and T = ±

(
1
0

1
1

)
and relations

S2
= (TS)2

= I .
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Sets := k(−π/2) =
(̃

0
1
−1

0

)
andt := n(1) =

(̃
1
0

1
1

)
with pr(s) = S and pr(t) = T. Thens2

= k(−π) = ζ−1 ∈
Z̃, sosandt generatẽΓmod. The relationS2

= I is replaced by the centrality ofs2. We have

ts(i, 0) = t
˜(0
1
−1

0

)
(i, 0) =

˜(1
0

1
1

) (
i,− argi) =

( i − 1
i
,−π/2− arg 1

)
=

˜(1
1
−1

0

)
(i, 0) = (i + 1,−π/2) .

Sots=
(̃

1
1
−1

0

)
, and it corresponds to (i + 1,−π/2) in H × R � G̃. Hence

(ts)3
= ts

˜(1
1
−1

0

)
(i + 1,−π/2) = ts

( i
i + 1

,−π
2
− arg(i + 1)

)

=

˜(1
1
−1

0

) ( i + 1
2

,−3π
4

)
=

( i − 1
i + 1

,−3π
4
− arg(i − 1)

)

=
(
i,−π) = ζ−1

= s2 .

The conclusion is that̃Γmodhas the presentation with generatorssandt and relationss2t = ts2 andtstst= s.
This implies that the linear space hom(Γ̃mod,C) has dimension 1, and is generated byα : t 7→ π

6, α : s 7→ −π
2 .

For reasons that will become clear later, we take this basis element, and not an integral-valued one.

5.4. Canonical generators. The canonical generators ofΓ induce canonical generators ofΓ̃:

• Elementsπ1, . . . , πnpar of the formπ j = g̃κ j n(1)g̃−1
κ j

fixing a system of representativesκ1, . . . , κnpar

of the Γ̃-orbits of cusps.
• Elementsε1, . . . , εnell conjugate inG̃ to k(π/v j) with v j ≥ 2.
• Elementsη1, . . . , η2g conjugate inG̃ to elementsa(t j) with t j > 1.
• The generatorζ = k(π) of the centreZ̃ of Γ̃.

The relations are:

(5.8)

ζ is central,

ε
v j

j = ζ for 1 ≤ j ≤ nell ,

π1 · · ·πnparε1 · · · εnell [η1, η2] · · · [η2g−1, η2g] = ζ2g−2+npar+nell .

The integer 2g − 2+ npar+ nell is always positive. For these facts see [3],§3.3.
If nell > 0 or if 2g − 2+ npar = 1 andnell = 0, we do not needζ as a generator. Ifnell = 0 the groupΓ̃ is

free onπ1, . . . , πnpar−1, η1, . . . , η2g, ζ.
Among the canonical generators we single out the following elements:α1 = π1, . . . , αnpar−1 = πnpar−1,

αnpar = η1, . . . , αt(Γ)−1 = η2g, αt(Γ) = ζ. (We recall thatt(Γ) = npar + 2g.) Theα j together with theε j

generatẽΓ, with ε
v j

j = ζ and the centrality ofζ as the sole relations.

For themodular groupΓ̃mod we havenpar = 1, nell = 2, g = 0, and t(Γmod) = 1. We may take
π1 = t = n(1), ε1 = t−1s−1, andε2 = s−1

= k(π/2) = p−1k(π/3)p, with p = n(−1/2)a(
√

3/2).

By I we now denote the augmentation ideal of the group ringC[Γ̃]. In C[Γ̃] we have the elements

(5.9) b(i) = (αi(1) − 1) · · · (αi(q) − 1) i ∈ {1, . . . , t(Γ)}q .
We allow ourselves to use the same notation as in (3.8), sincefrom now on we will usẽΓ. The centrality
of ζ allows us to move (ζ − 1) through the product. So it suffices to consider onlyq-tuplesi for which all
i(l) = t(Γ) occur at the end. Suchq-tuples we will callΓ̃-q-tuples.



HIGHER ORDER MAASS FORMS 19

Proposition 5.3. AC-basis of Iq+1\Iq is induced by the elements

(5.10) b(i) = (αi(1) − 1) · · · (αi(q) − 1) ,

wherei runs over thẽΓ-q-tuples.

Proof. The idealIq is generated by the products of the form (γ1 − 1) · · · (γq − 1) with γ1, . . . , γq ∈ Γ̃.
(Lemma 1.1 in [5].) With the relation

(γδ − 1) = (γ − 1)(δ − 1)+ (γ − 1)+ (δ − 1) ,

we can take theγ j in a system of generators, for instanceα1, . . . , αt(Γ), ε1, . . . , εnell . For the elliptic elements

ε j we useζ − 1 =
∑v j−1

k=0 εk
j (ε j − 1) ≡ v j(ε j − 1) modI2 to see that theα j suffice. (Note thatv j is invertible

in C.) Sinceαt(Γ) = ζ is central, we can move all occurrences ofζ − 1 to the right to see that theb(i) in the
proposition generateIq+1\Iq.

To see that theb(i) are linearly independent overCwe proceed in rewriting termsξ(αi(1)−1) · · · (αi(q)−1)
by replacingξ ∈ R := C[Γ̃] by n + η with n ∈ C andη ∈ I . In this way, we express each element ofIq

as aC-linear combination of products ofq factorsα j − 1 plus a term inI N, with N > q. To eliminateI N

we consider theI -adic completionR̂ of C[Γ̃], with closureÎq of Iq. Each element of̂I ⊃ I is a countable
sum of products of a complex number and finitely many factorsα j − 1. SinceÎq+1\Îq and Iq+1\Iq are
isomorphic, it suffices to prove that theb(i) are linearly independent as elements ofÎq+1\Îq.

We suppose that there arexi ∈ C for all q-tuplesi such that

(5.11)
∑

i

xi(αi(1) − 1) · · · (αi(q) − 1) ∈ Îq+1 .

We can write this element of̂Iq+1 as
∑

j cj ξj with cj ∈ C, andξj running over the countably many products
(αj (1) − 1) · · · (αj (m) − 1) with m-tuples from{1, . . . , t(Γ)} for all m> q.

We form the ringN = C〈Ξ1, . . . ,Ξt(Γ)〉 of power series in the non-commuting, algebraically independent
(overC) variablesΞ1, . . . ,Ξt, and the two-sided idealZ in N generated by the commutators

Ξ j Ξt(Γ) − Ξt(Γ) Ξ j for 1 ≤ j ≤ t(Γ) .

The quotient ringM := N/Z is non-commutative ift(Γ) ≥ 3. The relations between the generators
imply that there is a group homomorphismϕ : Γ̃→ M∗ given byϕ(α j) = 1+ Ξ j for 1 ≤ j ≤ t(Γ), and

ϕ(ε j) = (1+ Ξt(Γ))
1/v j =

∑

l≥0

(
1/v j

l

)
Ξ

l
t(Γ) .

This group homomorphism induces a ring homomorphism ˆϕ : R̂−→ M, for which

ϕ̂(ξi) = ϕ̂(αi(1) − 1) ϕ̂(αi(2) − 1) · · · ϕ̂(αi(|i|) − 1) = Ξi := Ξi(1)Ξi(2) · · ·Ξi(|i|) .

Now we have ∑

i

xiΞ
i
= ϕ̂

(∑

i

xi ξi

)
= ϕ̂

(∑

j

cj ξj

)
=

∑

j

cjΞ
j ,

wherei runs overq-tuples, andj runs over countably many tuples with length strictly largerthanq. Hence
all xi (andcj ) vanish. �
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So for Γ̃ with cusps the trivial̃Γ-moduleIq+1\Iq is always non-trivial. The dimension is equal to the
number of allΓ̃-q-tuples. Thus we have

(5.12) dimC(I
q+1\Iq) = n(Γ̃, q) =

q∑

m=0

(t(Γ)−1)m =



1 if t(Γ) = 1 ,

q+ 1 if t(Γ) = 2 ,
(t(Γ)−1)q+1−1

t(Γ)−2 if t(Γ) ≥ 3 .

We obtain for each̃Γ-moduleV an exact sequence

0 −→ VΓ̃,q −→ VΓ̃,q+1 mq−→ (
VΓ̃

)n(Γ̃,q)

with

(5.13)
(
mq f

)
i = f |(αi(1) − 1) · · · (αi(q) − 1) .

For the modular group, we havenpar = 1, nell = 2 andg = 0, hencet(Γmod) = 1, andn(Γ̃mod, q) = 1 for
all q. So in contrast toΓmod, for Γ̃mod we may hope for non-trivial higher order automorphic forms.

6. Maass forms with generalised weight on the universal covering group

6.1. The logarithm of the Dedekind eta function. In the introduction we mentioned that one of the
motivating objects for the study of higher order forms on theuniversal covering group is the logarithm of
the Dedekind eta function. Its branch is fixed by the second ofthe following expressions:

(6.1) logη(z) =
πiz
12
+

∞∑

n=1

log
(
1− e2πinz)

=
πiz
12
−
∞∑

n=1

σ−1(n) e2πinz .

whereσu(n) =
∑

d
∣∣∣n du. One can show that its behaviour underΓmod is given by

(6.2) logη(z+ 1) = logη(z) +
πi
12

, logη(−1/z) = logη(z) +
1
2

logz− πi
4
.

Except for the term1
2 logz this looks like a second order holomorphic modular form of weight zero. In

the next few sections we make this precise by generalizing the concept “weight” of Maass forms, and
replacing the groupΓmod by the discrete subgroup̃Γmod of the universal covering group of SL2(R), using
the notation we introduced in the last section.

We first define the following function onH × R:

(6.3) L(z, ϑ) =
1
2

logy + 2 logη(z) + iϑ .

With (6.2) we check easily thatL
(
γ(z, ϑ)) = L(z, ϑ) + iα(γ) for γ = t andγ = s, whereα : Γ̃mod→ π

6Z is
the group homomorphism at the end of§5.3. ThusL has the transformation behaviour of a second order
invariant in the functions oñG for the action by left translation.

Routine computations show thatL satisfiesE−L = 0, WL = i andωL = 1
2.
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6.2. General Maass forms on the universal covering group.The considerations on the functionL on
G̃ induced by the logarithm of the eta functions lead us to the definition of Maass forms oñG.

We first establish appropriate notions of weight and holomorphicity. We say that a functionf on G̃ has
(strict) weight r ∈ C if f (z, ϑ) = eirϑ f (z, 0). Such a function is completely determined by the function
fr(z) = f (z, 0) onH and satisfiesW f = ir f .

The left translation off by g̃, with g =
(

a
c

b
d

)
∈ SL2(Z), induces an action| of G̃ on the space of functions

of strict weight onG̃. On the other hand,̃G acts on the space of corresponding functionsfr onH via

fr |g̃(z) = e−ir arg(cz+d) fr
(az+ b
cz+ d

)
,

The latter action corresponds to (4.7) whenr ∈ Z. In general, this is an action of̃G, not of SL2(R). The
map f → fr defined above on the space of functions of strict weight is then equivariant in terms of these
actions.

Many important functions oñG, such asL, are not eigenfunctions of the operatorW, but they are
annihilated by a power ofW. This suggests the following definition.

Definition 6.1. An f ∈ C∞(G̃) hasgeneralised weight r∈ C if (W − ir )n f = 0 for somen ∈ N.

Thus,L and all its powers have generalised weight 0.
Next, holomorphy ofFr = y

−r/2 fr corresponds to the propertyE− f = 0.

Definition 6.2. We call any differentiable functionf onG̃ holomorphic(resp.antiholomorphic) if E− f =
0, (resp.E+ f = 0). We call any twice differentiable functionf onG̃ harmonicif it satisfiesω f = 0.

Note that, for functions of non-zero weight, this definitionof harmonicity does not correspond to the
use of the word harmonic in “harmonic weak Maass forms” in,e.g., [1].

With these definitions we set

Definition 6.3. Let k, λ ∈ C. Let Γ̃ be a discrete cofinite subgroup ofG̃.
i. The spaceẼk(Γ̃, λ) consists of the smooth functionsf : H × R→ C that satisfy:

a) (Eigenfunction Casimir operator)ω f = λ f .
b) (Generalised weight)

(
W − ik

)n f = 0 for somen ∈ N.
c) (Exponential growth)There existsa ∈ R such that for all compact setsX andΘ ⊂ R and for all

cuspsκ of Γ̃ we have

(6.4) f
(
g̃κ(x+ iy, ϑ)

)
= O(eay)

asy→ ∞ uniformly in x ∈ X andϑ ∈ Θ.

ii.

Ẽk(Γ̃, λ) := Ẽk(Γ̃, λ)Γ̃

(whereΓ̃ acts by left translation). The elements ofẼk(Γ̃, λ) are calledMaass forms onG̃ of generalised
weight k and eigenvalueλ for Γ̃.

The spaceẼr(Γ̃, λ) is infinite dimensional. Further, sinceω andW commute with left translations iñG,
the spacẽEk(Γ̃, λ) is invariant under left translation by elements ofΓ̃.

When k ∈ 2Z, the spaceEk(Γ, λ) can be identified withẼk(Γ̃, λ). We prove the following slightly
stronger statement.
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Theorem 6.4. Let Γ̃ be a cofinite discrete subgroup ofG̃, and let k, λ ∈ C. If Ẽk(Γ̃, λ)Z̃ contains a non-zero
element f , then k∈ 2Z and∂ϑ f

(
z, ϑ

)
= ik f

(
z, ϑ

)
.

If k ∈ 2Z, then the elements f∈ Ẽk(Γ̃, λ) correspond bijectively to the Maass forms F∈ Ek(Γ, λ) by

f
(
z, ϑ

)
= yk/2 F(z) eikϑ .

So the condition ofZ̃-invariance implies that the weightk is even, and that the weight isstrict, i.e.,
condition b) holds withn = 1.

Proof of Theorem 6.4.Any smooth functionf ∈ C∞(H × R) satisfying b) in Definition 6.3 can be written
in the form f

(
z, ϑ

)
=

∑n−1
j=0 ϕ j(z) eikϑ ϑ j , with ϕ j ∈ C∞(H).

If such a function is left-invariant under̃Z, then the action ofk(πm) ∈ Z̃ ⊂ Γ̃, implies for eachm ∈ Z:

eπikm
∑

j

ϕ j(z)e
ikϑ(ϑ + πm) j

=

∑

j

ϕ j(z)e
ikϑϑ j for all m ∈ Z .

With induction this givesk ∈ 2Z and ϕ j = 0 for j ≥ 1, hence f (z, ϑ) = ϕ0(z)eikϑ. Moreover, the
stronger conditionf ∈ Ẽk(Γ̃, λ) = Ẽk(Γ̃, λ)Γ̃ can be checked to be equivalent toFk ∈ Ek(Γ, λ) for
Fk(z) = y−k/2 f (z, 0). �

We have the following generalisation of Theorem 4.2.

Theorem 6.5. Let Γ̃ be a cofinite discrete subgroup of̃G with cusps. Then thẽΓ-moduleẼk(Γ̃, λ) is
maximally perturbable for each k∈ 2Z and eachλ ∈ C.

In Section 8 we will prove this theorem. In this section we will show that it implies the corresponding
result forEk(Γ, λ). We first give some facts that are of more general interest.

The map identifyingEk(Γ, λ) andẼk(Γ̃, λ) can be extended to an isomorphism

µ : Ek(Γ, λ) −→ Ẽk(Γ̃, λ)Z̃.

Since the centrẽZ of Γ̃ acts trivially onẼk(Γ̃, λ)Z̃, it can be considered as aΓ-module. With this interpre-
tation we obtain an identification of theΓ-modulesEk(Γ, λ) andẼk(Γ̃, λ)Z̃. Specifically, forF ∈ Ek(Γ, λ),
g ∈ Ẽk(Γ̃, λ)Z̃ we have

(6.5)

(µ f )(z, ϑ) = yk/2 F(z) eikϑ ,

(µ−1g)(z) = y−k/2 g(z, 0) ,

µ(F |kγ) = µ(F)|ν(γ) (γ ∈ Γ) ,
µ−1(g|Z̃δ) = µ−1(g)|kν−1(Z̃δ) (δ ∈ Γ̃) ,

whereν denotes the isomorphism identifyingΓ with Z̃\Γ̃.
Proposition 6.6. LetΓ be a cofinite discrete subgroup of G with cusps, and letΓ̃ = pr−1

Γ. If the Γ̃-module
V is maximally perturbable, then the subspace VZ̃, considered as aΓ-module, is maximally perturbable.

Proof. The projection pr :Γ̃ → Γ induces linear maps pr :C[Γ̃] → C[Γ] between the group rings,
pr : I

Γ̃
→ IΓ between the augmentation ideals, and pr :Iq+1

Γ̃
\Iq
Γ̃
→ Iq+1

Γ
\Iq
Γ

for all q ∈ N. Since, pr(Ai) = αi,

on the basis elementsb
Γ̃
(i) in Proposition 5.3 andbΓ(i) in (3.8) we have for̃Γ-q-tuples:

(6.6) prb
Γ̃
(i) =


bΓ(i) if i(l) < t(Γ) for l = 1, . . . , q ,

0 if i(q) = t(Γ) .
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This means that we have the commutative diagram

0 // VΓ̃,q // VΓ̃,q+1
mq // hom

(
Iq+1
Γ̃
\Iq
Γ̃
,VΓ̃

) // 0

0 // (VZ̃)Γ,q // (VZ̃)Γ,q+1
mq // hom

(
Iq+1
Γ
\Iq
Γ
, (VZ̃)Γ

)

OO

where the vertical arrow sendsf : Iq+1
Γ
\Iq
Γ
→ (VZ̃)Γ = VΓ̃ to f̃ : Iq+1

Γ̃
\Iq
Γ̃
→ VΓ̃ such that f̃

(
b
Γ̃
(i)

)
=

f
(
bΓ(i)

)
if i ∈ {1, . . . , t(Γ) − 1}q, and f̃

(
b
Γ̃
(i)

)
= 0 otherwise.

We want to write a givenf : Iq+1
Γ
\Iq
Γ
→ (VZ̃)Γ asmqv0 with v0 ∈ (VZ̃)Γ,q+1. By assumption, there is an

elementv ∈ VΓ̃,q+1 such thatmqv = f̃ . If v|(ζ − 1) = 0, thenv ∈ VΓ̃,q+1 ∩ VZ̃
= (VZ̃)Γ,q+1, and we are done.

Suppose thatw = v|(ζ − 1) , 0. Taker ∈ [1, q] minimal such thatw ∈ VΓ̃,r . We will show that we can
replacev by another elementv1 ∈ v +VΓ̃,q with v1|(ζ − 1) ∈ VΓ̃,r1 andr1 < r. Repeating this process brings
us eventually tov j |(ζ − 1) = 0. For thisv j we will havemqv j = f̃ andv j |(ζ − 1) = 0 which, according to
the remark of the last paragraph suffices to prove the proposition.

Fromw|(γ1 − 1) · · · (γq−1 − 1) = v|(γ1 − 1) · · · (γq−1 − 1)(ζ − 1) = f̃ (γ1, · · · , γq−1, ζ) = 0 we conclude
that r ≤ q − 1. Defineg̃ ∈ hom(I r+1

Γ̃
\I r
Γ̃
,VΓ̃) by g̃(b

Γ̃
(j )) = w|(αj (1) − 1) · · · (αj (r−1) − 1) if the Γ̃-r-tuple

j satisfiesj (r) = t(Γ) and g̃(b
Γ̃
(j )) = 0 otherwise. There isu ∈ VΓ̃,r+1 ⊂ VΓ̃,q with mru = g̃. We take

v1 = v − u ∈ v + VΓ̃,q. We check that for all̃Γ-(r−1)-tuplesj

v1|(ζ − 1)(αj (1) − 1) · · · (αj (r−1) − 1)

= w|(αj (1) − 1) · · · (αj (r−1) − 1)− u|(αj (1) − 1) · · · (αj (r−1) − 1)(ζ − 1)

= 0 .

This shows thatv1|(ζ − 1) has order less thanr. �

Proof of Theorem 4.2.From Theorem 6.5,V = Ẽk(Γ̃, λk) is maximally perturbable. Therefore, by Propo-
sition 6.6, the spacẽEk(Γ̃, λk)Z̃ � Ek(Γ, λk) is maximally perturbable too. �

This proof illustrates the fact that, for groups with cusps,there are really more higher order forms with
generalised weight than with strict weight: The basis in Proposition 5.3 is for all such discrete groups
larger than the corresponding basis in§3.2.1.

6.3. Holomorphic forms on the universal covering group.

Definition 6.7. Fork ∈ 2Z we defineHk(Γ̃) as the space of elements ofC∞(H × R) that satisfy

(1) (Holomorphy) E− f = 0.
(2) (Generalised weight)(W − ik)n f = 0 for somen ∈ N.
(3) (Exponential growth)as described in condition c) in Definition 6.3.

This is aΓ̃-module for the action by left translation. We denote byH p
k (Γ̃) (resp.Hc

k(Γ̃)) the space of
f ∈ Hk(Γ̃) satisfying f

(
g̃κ(x + iy, ϑ)

)
= O(yC) for someC ∈ R (resp. f

(
g̃κ(x + iy, ϑ)

)
= O(eay) for some

a < 0) instead of (6.4).
We will prove:

Theorem 6.8.LetΓ̃ be a cofinite discrete subgroup ofG̃ with cusps. Then thẽΓ-moduleHk(Γ̃) is maximally
perturbable for each k∈ 2Z.
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Proof of Theorem 4.3.As in the case of general Maass forms, we can show that, fork ∈ 2Z, Ehol
k (Γ, λk) �

Hk(Γ̃)Z̃. Then, Proposition 6.6 implies Theorem 4.3. �

Second order forms and derivatives ofL-functions. With this definition,L is a second order invariant
belonging toH0(Γ̃mod)Γ̃mod,2. (Incidentally, this example shows that, for generalised weight k, the space
Hk(Γ̃) need not be contained iñEk(Γ̃, λk).)

Based onL we can construct a second-order form which is related to derivatives of classical modular
forms. Specifically, for positive integerN, denote byGN the group generated by ˜g, g ∈< Γ0(N),WN >

whereWN :=
(

0√
N
−
√

N−1

0

)
. Set

L1(z, ϑ) = L(z, ϑ) + L(Nz, ϑ).

Using the transformation law forL and the identity
(

N
0

0
1

) (
a

Nc
b
d

)
=

(
a
c

Nb
d

) (
N
0

0
1

)
, a routine calculation implies

that, for someβ ∈ Hom(GN,C),

L1
(
γ(z, ϑ)) = L1(z, ϑ) + iβ(γ), for all γ ∈ GN.

Let now f be a newform in the spaceS2 of cusp forms of weight 2 forΓ0(N) such that itsL-functionL f (s)
vanishes at 1. Then,f (WNw)d(WNw) = f (w)dw and, for allϑ ∈ R,

(6.7)

∫ ∞

0
f (iy)L1(iy, ϑ)diy = −

∫ WN∞

WN0
f (iy)L1(iy, ϑ)diy = −

∫ ∞

0
f (WNiy)L1(WNiy, ϑ)d(WNiy)

= −
∫ ∞

0
f (iy)L1(WNiy, ϑ)diy.

SinceL1(z, ϑ + x) = L1(z, ϑ) + 2ix andL f (1) = 2π
∫ ∞
0

f (iy)dy = 0, our integral is independent ofϑ. It
further equals

(6.8) −
∫ ∞

0
f (iy)L1(W̃N(iy, 0))diy = −

∫ ∞

0
f (iy)(L1(iy, 0)+ iβ(W̃N))diy = −

∫ ∞

0
f (iy)L1(iy, 0)diy

Therefore,
∫ ∞
0

f (iy)L1(iy, 0)dy = −
∫ ∞
0

f (iy)L1(iy, 0)dy, i.e.
∫ ∞

0
f (iy)L1(iy, 0)dy = 0 and hence

∫ ∞

0
f (iy) logydy + 2

∫ ∞

0
f (iy)u(iy) dy = 0

whereu(z) := log(η(z)) + log(η(Nz)). From this we see that, since,L′f (s) = 2π
∫ ∞
0

f (iy) log(y)dy, we can
retrieve, from a alternative perspective, the formula

L′f (1) = −4π
∫ ∞

0
f (iy)u(iy)dy

first derived in [11].
Thus, Goldfeld’s expression ofL′f (1) is equivalent to the orthogonality ofL1 ∈ H p

0 (GN)GN ,2 to S2 ֒→
Hc

2(GN)GN in terms of the pairing

〈·, ·〉 : Hc
2(GN)GN ×H p

0 (GN)GN ,2→ C
defined by

〈g, h〉 =
∫ ∞

0
g(iy, 0)h(iy, 0)

dy
y
.
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6.4. Examples of higher order forms for the full modular group. Theorems 6.5 and 6.8 show that there
are perturbations of 1 for the full originalΓ̃mod of SL2(Z) in the universal covering group. Sincet(Γmod) = 1
all these perturbations are commutative (see (5.12)).

1. The functionL can lead to second orderharmonic perturbations of1. Specifically, althoughL < Ẽ0(0)Γ̃,2

(becauseω L = 1
2), the imaginary part ImL : (z, ϑ) 7→ 2 Im logη(z)+ϑ is harmonic, has second order, and

corresponds to the linear formα ∈ Mult1(Γ̃mod,C). It has generalised weight 0, and it is not holomorphic.

2. Setχr = eirα, r ∈ C, whereα ∈ hom(̃Γmod,C) is given byα
(
n(1)

)
=

π
6 andα

(
k(π/2)

)
=

π
2. The family

(6.9) r 7→ erL(z,ϑ)
= yr/2 η(z)2r eirϑ

consists of elements ofHr (Γ̃) that areΓ̃mod-invariant under the action given by

( f |γ)(z) = f (γz)χr (γ).

By Proposition 4.4, fork ≥ 1 the derivative

∂k
r e

rL(z,ϑ)
∣∣∣
r=0 = L(z, ϑ)k

is a holomorphic perturbation of 1 of orderk+1. The corresponding element of Multk(Γ̃mod,C) is ik k! α⊗k.

3. It is possible to obtain a more or less explicit description of a harmonic perturbation of 1 of order 3. We
sketch how this can be done with the meromorphic continuation of the Eisenstein in weight and spectral
parameter jointly. This family is studied in [2]. In that work, automorphic forms are described as functions
on H transforming according to a multiplier system ofΓmod. These correspond to functions oñG that
transform according to a character ofΓ̃mod. Carrying out the reformulation, we can rephrase§2.18 in [2]
as stating that there is a meromorphic family of Maass forms on U × C, whereU is some neighborhood
of (−12, 12) in C. We retrieve the exact family studied in [2] by consideringz 7→ E(r, s; z, 0). For each
(r, s) ∈ U ×C at whichE is not singular it is an automorphic form of weightr for the characterχr = eirα of
Γ̃mod with eigenvalueλs =

1
4 − s2. It is a meromorphic family of automorphic forms onΓ̃mod with character

χr with a Fourier expansion of the form

(6.10) E(r, s) = µr(r/12, s) +C0(r, s) µr (r/12,−s) +
∑

n,0

Cn(r, s)ωr (n+ r/12, s) ,

where theCn(r, s) are meromorphic functions, and where we use the following notations.

(6.11)
ωr(ν, s; z, ϑ) = e2πiνx Wr Sign(Reν)/2,s(4πνSign(Reν)y) eirϑ ,

µr(ν, s; z, ϑ) = e2πiνzy
1
2+s

1F1
(1

2 + s− r
2; 1+ 2s; 4πνy

)
eirϑ .

This family and its Fourier coefficientC0 satisfy the following functional equations.

(6.12)
E(r,−s) = C0(r,−s)E(r, s) ,

E
(
r, s;−x+ iy,−ϑ) = E

(−r, s; x+ iy, ϑ
)
.

Further, the restriction of this family to the (complex) line r = 0 exists, and gives a meromorphic family of
automorphic forms depending on one parameters. This is a family of weight zero, so it does not depend
on the parameterϑ on G̃. The resulting family onH is the meromorphic continuation of the Eisenstein
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series forΓmod in weight 0, with Fourier expansion

(6.13)

E(0, s) = µ0(0, s) +

√
πΓ(s) ζ(2s)

Γ(s+ 1
2) ζ(2s+ 1)

µ0(0,−s)

+
πs+ 1

2

Γ(s+ 1
2) ζ(2s+ 1)

∑

n,0

σ2s(|n|)
|n|s+ 1

2

ω0(n, s) .

where

µ0(0, s; z, ϑ) = y
1
2+s ,

ω0(n, s; z, ϑ) = e2πinx W0,s(4π|n|y) = e2πinx 2|n|1/2 Ks(2π|n|y) .

At (0,−1
2) the familyE is holomorphic in both variablesr ands, with a constant as its value at (0,−1

2).
(This is a consequence of Proposition 6.5 ii) in [2].) So in principle, we obtain higher order harmonic
perturbations of 1 by differentiatingr 7→ E(r,−1

2). Here we encounter the problem that we have an explicit
Fourier expansion (6.13) only forE(0, s) and thus we cannot describe the derivatives in the direction of r
directly. To overcome this problem we use the fact that forr near 0 we have

(6.14)
E
(
r,−1− r

2
; z, ϑ

)
= Hr(z, ϑ) = erL(z,ϑ) ,

E
(
r,−1+ r

2
; z, ϑ) = H−r(−z̄,−ϑ) = e−rL(z,ϑ) .

The proof of the first equality is contained in 6.10 in [2]. Thesecond one follows from the second func-
tional equation in (6.12). Now we use the Taylor expansion ofE of degree 2 at (r, s) = (0,−1

2):

(6.15)
E(r, s) = 1+ r A1,0 +

(
s+

1
2
)

A0,1

+
1
2

r2 A2,0 + r
(
s+

1
2
)

A1,1 +
1
2
(
s+

1
2
)2 A0,2 + · · ·

By Proposition 4.4, the coefficientsA1,0 andA2,0 are harmonic perturbations of 1 of order 2 and 3, respec-
tively. From (6.14) we obtain the following results:

(6.16)
A1,0 = i Im L , A0,1 = 2ReL ,

A2,0 +
1
4

A0,2 = ReL2 , A1,1 = i Im L2 .

This confirms that ImL is a second order harmonic perturbation of 1. Differentiation in the direction ofs
preserves̃Γmod-invariance. SoA0,1 = 2ReL andA0,2 areΓ̃mod-invariant. However these functions are not
in the kernel ofω.

Thanks to the identityA2,0 +
1
4A0,2 = ReL2, to determine the third order harmonic perturbationA2,0 it

suffices to explicitly computeA0,2 because ReL2 is known in a fairly explicit way. The functionA0,2 can
be obtained as the coefficient of 1

2(s+ 1
2)2 in the Taylor expansion ofE(0, s) at s= −1

2. As a by-product of
this computation we will also obtain thẽΓmod-invariant functionA0,1 as the coefficient ofs+ 1

2 in the same
expansion. We shall examine each term of the expansion separately.

Setξ := s+ 1
2. The first term of our expansion is

(6.17) µ0(0, s; z, 0) = y
1
2+s
= 1+ ξ logy + ξ21

2
(logy)2

+ · · ·



HIGHER ORDER MAASS FORMS 27

For the next term Λ(2s)
Λ(2s+1) µ(0,−s; z, 0) = Λ(2−2ξ)

Λ(1−2ξ) µ(0,−s; z, 0) with Λ(u) = π−u/2
Γ
(u

2

)
ζ(u) = Λ(1 − u),

we definea0 andb1 by

(6.18) Λ(1+ h) = h−1
+ a0 + · · · , Λ(2+ h) =

π

6
+ b1h+ · · · .

We get

(6.19)
Λ(2s)
Λ(2s+ 1)

µ0(0,−s; z, 0) = −π
3
y ξ +

(
4b1 −

2πa0

3
+
π

3
logy

)
y ξ2
+ · · · .

For the other terms we use

W0,−s(t) = W0,s =
e−

t
2

Γ(1
2 + s)

∫ ∞

0
e−x(x(1+

x
t
)
)s− 1

2 dx,

W0,1/2(t) =
e−

t
2

1
· 1 = e−

t
2 ,

−∂sW0,s(t)
∣∣∣
s=− 1

2
= ∂sW0,s(t)

∣∣∣
s= 1

2
= −e−

t
2

12
Γ
′(1) · 1+ e−

t
2

∫ ∞

0
e−x log

(
x(1+

x
t
)
)
dx

= e−
t
2

(
−Γ′(1)+ Γ′(1)+

∫ ∞

0
e−x log(1+

x
t
) dx

)

(part. int.) = e−
t
2

∫ ∞

0
e−x dx

x+ t
= e

t
2

∫ ∞

t
e−x dx

x
= e

t
2 Γ(0, t) ,

with the incomplete gamma-functionΓ(a, t) =
∫ ∞
t

e−x xa−1 dx. With these ingredients:

(6.20)

σ2s(|n|)
Λ(2s+ 1) |n|s+ 1

2

ω0(n, s; z, 0) =
∑

d
∣∣∣|n|

1
d

(
−2e−2π|n|y ξ

+
(
2e2π|n|y

Γ(0, 4π|n|y) − 2e−2π|n|y log
d2

|n| − 4a0 e−2π|n|y) ξ2
+ . . .

)
e2πinx .

The results in (6.17), (6.19) and (6.20) confirm that the constant term equals 1, and that

A0,1(z, 0) = logy − π
3
y − 2

∑

n≥1

∑

d|n

1
d
(
qn
+ q̄n)

= 2Re
(1
2

logy +
πi
6

z−
∞∑

n=1

σ−1(n) qn)
= 2ReL(z, 0) ,

with the notationq = e2πiz. The term of order 2 leads to:

(6.21)

A0,2(z, 0) = (logy)2
+

(
8b1 −

4π a0

3
+

2π
3

logy
)
y

+

∞∑

n=1

(
−4a0σ−1(n)(qn

+ q̄n) + 2σ−1(n) (q−n
+ q̄−n)Γ(0, 4πny) − 2(qn

+ q̄n)
∑

d|n

log(d2/n)
d

)
,

which is a complicated, but explicit expression.
A remarkable aspect of this computation that we have used an explicit computation of the derivatives

of the Eisenstein series in weight zero to compute the secondderivative in ther-direction of the more
complicated Eisenstein family in two variables. The basic observation is (6.14), which shows that the
Eisenstein family has easy derivatives in two directions. The Taylor expansion ofE at

(
0,−1

2

)
has three

monomials in order 2. So it suffices to compute a second order derivative in one more direction to get
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hold of all terms. Higher order terms in the Taylor expansionhave too many monomials for this method
to work. We do not know how to compute all harmonic perturbations of 1 of higher order.

7. Higher order Fourier expansions

This section is needed for the constructions on which the proofs of Theorems 6.5 and 6.8 are based, but
it is also of independent interest. It provides a higher-order analogue of the classical Fourier expansions.

7.1. Fourier expansion of Maass forms. If f is in Ẽr(Γ̃, λ), then for each cuspκ of Γ there is a Fourier
expansion

(7.1) f (g̃κg) =
∑

ν

Fκ,ν f (g) , Fκ,ν f (g) =
∫ 1

0
e−2πiνx f

(
g̃κn(x)g

)
dx,

whereν runs through a class inC modZ determined byχ and the cuspκ. The functionFν f satisfies
Fκ,ν f (z, ϑ) = e2πiνx Fκ,ν f (iy, 0)eirϑ andωFκ,ν f = λ Fκ,ν f .

For each givenν, r andsset

(7.2) Wr (ν, s) := { f : G̃→ C ; ω f = (
1
4
− s2) f , f (z, θ) = e2πiνx+ir θ f (iy, 0)}.

Because of the second relation in the definition,f ∈ Wr(ν, s) can be thought of as a function ofy.
Therefore the spaceWr(ν, s) is isomorphic to the space off : R→ C satisfying

(7.3) − y2h′′(y) +
(
4π2ν2y2 − 2πνr y − 1

4 + s2)h(y) = 0.

It is convenient to writeλ = λs =
1
4 − s2 with s∈ C. We can choose a fixedswith Res≥ 0 corresponding

to the eigenvalueλ = λs under consideration. The spacesWr (ν, s) are two-dimensional. We will use the
basis elements in§4.2 of [3].
• For Reν , 0 a basis ofWr (ν, s) is formed by

(7.4)
ωr

(
ν, s; z, ϑ

)
= e2πiνx Wr Sign(Reν)/2,s(4πνSign(Reν)y) eirϑ ,

ω̂r
(
ν, s; z, ϑ

)
= e2πiνx W−r Sign(Reν)/2,s(−4πνSign(Reν)y) eirϑ .

HereWµ,s(t) is the Whittaker function that decreases exponentially ast → ∞. We use the branch ofWκ,s(z)
that is holomorphic for−π2 < argz< 3π

2 . The asymptotic behaviour asy→ ∞, by §4.2.1 in [21] is:

(7.5) ωr(ν, s; z, ϑ) ∼ (4πνεy)rε/2 e2πν(ix−εy)+irϑ,

(7.6) ω̂r(ν, s; z, ϑ) ∼ e−πir ε/2 (4πενy)−rε/2 e2πν(ix+εy)+irϑ ,

whereε denotes Sign(Reν). The subspace ofWr(ν, s) generated byωr (ν, s) is denoted byW0
r (ν, s).

• Forν = 0, a basis is given by{y 1
2+seirϑ, y

1
2−seirϑ} if s, 0 and{y 1

2 eirϑ, y
1
2 logyeirϑ} if s= 0.

The following proposition characterises functions with exponential growth in terms of Fourier series.

Proposition 7.1. Let k ∈ 2Z, Res ≥ 0. Suppose that the function f∈ C∞(Γ̃\G̃) satisfiesω f = λs f and
W f = ik f . Then it has at each cuspκ an absolutely converging Fourier expansion

(7.7) f
(
g̃κg

)
=

∑

n∈Z
Fκ,n f (g)

with Fκ,n f ∈ Wk(n, s). Moreover, f∈ Ẽk(Γ̃, λs) if and only if there exists N> 0 such that all Fourier terms
Fκ,n f with |n| ≥ N are inW0

k(n, s) for all cuspsκ.
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Proof. The existence of such a Fourier expansion is a standard result. A detailed proof in a more general
setting can be found in [3],§4.1–3.

Fourier terms of automorphic forms inherit the growth behaviour of the automorphic form. So iff is
in Ek(Γ̃, λs), all Fourier terms satisfyFκ,ν f (z, ϑ) = O(eay) asy → ∞ for somea depending onf . Each
Fourier term of non-zero order is a linear combination ofωk(n, s) andω̂k(n, s). From (7.6) we conclude
thatFκ,n f is a multiple ofωk(n, s) for all but finitely manyn.

Conversely, suppose that for the cuspκ we haveFκ,n f = cnωk(n, s) for all n with |n| ≥ N. Then
(7.5) and the convergence of the Fourier expansion at (z, ϑ) = (iy0, 0) with y0 > 0 implies thatcn =

O
(
y
−kSign(n)/2
0 e2π|n|y0

)
. This in turn shows that the sum over|n| ≥ N gives a bounded contribution in (7.7)

for all y large enough. The terms with|n| < N cannot give a growth at the cuspκ larger than O
(
ya e2π(N−1)y)

for somea > 0. �

Remark7.2. The Γ̃-invariance in Proposition 7.1 is not necessary. Invariance under only the parabolic
elements of̃Γ suffices. If we work with functionsf on

{
(z, ϑ) : y ≥ y0

}
for somey0 > 0 that satisfy

ω f = λs f , W f = ik f and are left-invariant under
{
n(l) : l ∈ Z}, then there is an expansion like in (7.7)

on the sety ≥ y0, and exponential growth of such a function is equivalent to the statement that all Fourier
terms of sufficiently large order are inW0

k(n, s).

7.2. Higher order Fourier terms. The higher order invariants ofVk(n, s) that we will define now are the
higher-order analogues of the classical Fourier terms.

Definition 7.3. Let k ∈ 2Z, n ∈ Z, ands ∈ C. ByVk(n, s) we denote the space of functionsf on G̃ that
satisfyω f = λs f , have generalised weightk, and satisfy

(
∂x − 2πin

)m f = 0 for somem ∈ N (which may
depend onf ).

For n , 0 we denote byV0
k(n, s) the subspace off ∈ Vk(n, s) that satisfy f (z, ϑ) = O(ya e−2π|n|y) as

y→ ∞ for somea ∈ R.

The free commutative group̃∆ generated byτ = n(1) andζ = k(π) acts on these spaces by left transla-
tion.

Proposition 7.4. Let k, n, s be as above. Thẽ∆-modulesVk(n, s) andV0
k(n, s) are maximally perturbable.

For each q∈ N the elements f∈ Vk(n, s)∆̃,q satisfy, for eachδ > 0,

(7.8) f (z, ϑ) ≪δ e(2π|n|+δ)y (y→ ∞)

uniformly for x andϑ in compact sets. If n, 0 then for each q∈ N the elements f∈ V0
k(n, s)∆̃,q satisfy,

for eachδ > 0,

(7.9) f (z, ϑ) ≪δ e(δ−2π|n|)y (y→ ∞)

uniformly for x andϑ in compact sets.

Proof. To prove thatVk(n, s) is maximally perturbable, we start with a characterisation of the space
Vk(n, s)∆̃. We first note thatWk(n, s) ⊂ Vk(n, s)∆̃. Conversely, if f ∈ Vk(n, s)∆̃, then the reason-
ing in the proof of Theorem 6.4 shows that the weight off is strict, and also that∂x f = 2πin f , hence
f (z, ϑ) = e2πinx f (iy, ϑ). So f ∈ Wk(n, s). If, for n , 0, the functionf is also exponentially decreasing it
has to be a multiple ofωk(n, s). Therefore,V0

k(n, s)∆̃ =W0
k(n, s).

Let f be an arbitrary element ofWk(n, s). Since each of the basis elements ofWk(n, s) is a specialisa-
tion of a holomorphic family of elements ofWr (ν, s), there is a holomorphic family ofh(r, ν) ∈ Wr (ν, s)
such thath(k, n) = f . We haveh

(
r, ν; n(ξ)k(ℓπ)(z, ϑ)

)
= e2πiνξ+πir ℓ h(r, ν; z, ϑ) for ξ ∈ R andℓ ∈ Z.
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Next consider the polynomialsQq ∈ Q[X] of degreeq defined by

(7.10) Q0 = 1 , Qq+1(X + 1)− Qq+1(X) = Qq(X) andQq(0) = 0 for q ≥ 1 .

Then for eachm = (m1,m2), mj ≥ 0 set

(7.11) hm
k (n, s) = Qm1

( 1
πi∂r

)
Qm2

( 1
2πi ∂ν

)
h(r, ν)

∣∣∣
ν=n, r=k

.

Upon applying the differential operator1
2πi∂

a
ν onh(r, ν)|(τ − 1) =

(
e2πiν − 1

)
h(r, ν) we obtain

(7.12) (2πi)−a∂
ah(r, ν)
∂νa

∣∣∣ (τ − 1) =
a−1∑

b=0

(
a
b

)
(2πi)−b∂

bh(r, ν)

∂νb
=

(( 1
2πi∂ν + 1

)a − ( 1
2πi∂ν

)a)h(r, ν) .

Therefore,

(7.13) Qm2

(
1

2πi ∂ν
)
h(r, ν)|(τ − 1) =

(
Qm2

( 1
2πi ∂ν + 1

) − Qm2

( 1
2πi∂ν

))
h(r, ν) = Qm2−1

( 1
2πi∂ν

)
h(r, ν) .

Sinceτ, ζ commute, this implieshm
k (n, s)|(τ − 1) = h(m1,m2−1)

k (n, s). Likewise, we obtain the transformation

law hm
k (n, s)|(ζ − 1) = h(m1−1,m2)

k (n, s). Therefore, forl1 + l2 = m1 +m2 (l1, l2 ≥ 0),

(7.14) h(m1,m2)
k (n, s)|(ζ − 1)l1 (τ − 1)l2 = δm1,l1δm2,l2 f ,

thus obtaining the maximal perturbability ofVk(n, s). For convenience, we shall call perturbations statis-
fying the transformation law (7.14)perturbations of typem.

Based onV0
k(n, s)∆̃ =W0

k(n, s), we deduce in an analogous way the maximal perturbability of V0
k(n, s).

To prove (7.8) and (7.9), we first note that the maximal perturbability we have just shown implies that
the functionshm constructed fromf ’s ranging over a basis ofWk(n, s) (resp.W0

k(n, s)) induce a basis of

the quotientsV∆̃,q+1/V∆̃,q. Therefore, it suffices to show (7.8) and (7.9) forhm only. In the casen , 0,
the family h may be taken to beωr (ν, s) or ω̂r(ν, s) in (7.4). For these functions the question reduces to
the asymptotic behaviour of∂ j

t∂
l
κWκ,s(t), since the factorse2πiνx andeirϑ produce polynomials inx andϑ,

which yield constants when they vary through compact sets. The differentiation of 4πSign(Reν) ν y yields
only a power ofy, which can be absorbed by the factoreδy.

Differentiation ofWκ,s(t) with respect tot does not change the exponential part of the asymptotic be-
haviour, since derivatives ofWκ,s(t) are linear combinations ofWκ,s(t) andWκ+1,s(t) with powers oft in the
factors. See (2.4.24) in [21]. So we have to look only at differentiation with respect toκ.

For t ∈ R with t > 0, κ − 1
2 − s, −1,−2, . . . , we shall use the integral representation (3.5.18) in [21]:

(7.15) Wκ,s(t) =
−1
2πi
Γ(κ +

1
2
− s)e−t/2tκ

∫ ∞

(0+)
e−x(−x)s−κ− 1

2 (1+
x
t
)s+κ− 1

2 dx

where the contour comes from∞ along a line slightly above the positive real axis, encircles 0 with radius
δ < 1 and then goes back to∞ on a line slightly below the positive real axis. By a routine computation we
see that the part of the integral over the circular part isO(eδ|t|). The integral over the remaining part of the
contour isO(|t|A) (A ∈ R). In all cases, the implied constants does not depend ont. Differentiation in terms
of κ on Wκ,s(t) leads to the appearance of additional factors log(−x) and log(1+ x/t) in the integrand. The
arguments used in the last paragraph imply the same estimate. Thus we get the desired exponential decay
of the perturbations ofωk(n, s).

The representation (7.15) is valid as long as−t = e−πit t is outside the path of integration. If we tilt the
path of integration anti-clockwise by an angleφ we get a representation ofWκ,s(t) for e−πi t outside the
new path of integration, provided we keepϕ ∈ (−π2 ,

π
2) to have convergence. For 0< ϕ < π

2 this gives
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a representation that can be used for arg
(
e−πi t

)
= 0 with |t| > δ, which leads to the desired growth of

perturbations of ˆωk(n, s).
If κ − 1

2 − s= −1,−2, . . . we take 0< ϕ < π
2 and transform the integral representation (7.15) into

(7.16) Wκ,s(t) =
e−

1
2 t tκ eiϕ(s−κ+1/2)

Γ(s+ 1
2 − κ)

∫ ∞

0
e−eiϕu us−κ− 1

2
(
1+ eiϕu/t

)s+κ− 1
2 du,

Proceeding as before we obtained the same estimates.
All these estimates taken together prove (7.8), (7.9) (whenn , 0). They further show that the derivatives

of a family with exponential decay have exponential decay and thusV0
k(n, s) is also maximally perturbable.

In the casen = 0 we might use the same method. However, many families of special functions have to
be considered to cover all cases. Instead we argue directly that we can find functionshm

k (0, s) inVk(0, s) of

the formpm(x, y, ϑ) y
1
2±2 eikϑ wherepm is a polynomial in three variables with degreem1 in ϑ and degree

m2 in x. If the coefficient ofϑm1 xm2 in this polynomial does not depend ony, this leads to a perturbation
of y

1
2±seikϑ of typem. Such functions satisfy the required estimates, with a polynomial factoryA instead

of eδy. The remaining task is to check that they can be chosen to satisfy (ω − 1
4 + s2) hm

k (0, s) = 0. We do
this by induction in the degrees inϑ andx. We check that

(
ω − 1

4
+ s2)xm2y

1
2±s+aϑm1eikϑ

= −a(a± 2s)xm2y
1
2±s+aϑm1eikϑ

+ terms of lower degree inx or ϑ .

With a = 0 this gives the top coefficient of pm. Moreover, the terms of lower degree all are multiples of
xm̃2y

1
2±s+aϑm̃1eikϑ with m̃j ≤ mj, m̃1 < m1 or m̃2 < m2, anda ∈ Z≥0. Successively we can determine the

lower degree terms, and arrange thathm
k (0, s) is an eigenfunction of the Casimir operatorωwith eigenvalue

1
4 − s2.

This takes care of the casen = 0, except ifs = 0. It that case we also have to perform a computation
involving y

1
2+a logy, which we leave to the reader. �

Holomorphic Fourier terms oñG are multiples of

(7.17) ηr (ν; z, ϑ) = yr/2 e2πiνz eirϑ .

Thus we have the spectral parameters= ± r−1
2 . For real values ofν andr we have

(7.18) ηr (ν) =



(4πν)−r/2ωr
(
ν,± r−1

2

)
if ν > 0 ,

µr
(
0, r−1

2

)
if ν = 0 ,

e−πir (4π|ν|)−r/2 ω̂r
(
ν,± r−1

2

)
if ν < 0 ,

with notations as in (7.4) and (6.11). The functions

(7.19) ηm
k (n; z, ϑ) = Qm1

(2iϑ+logy
2πi

)
Qm2(z) ηk(n; z, ϑ)

satisfy

(7.20) mm1+m2η
m
k : (ζ − 1)l1 (τ − 1)l2 7→ δm1,l1δm2,l2 ηk(n)

for l1 + l2 = m1 +m2, and asy → ∞ their growth is of order O(e(δ−2πn)y). For the commutative group̃∆
and for a fixedm they yield a basis of the space of forms of orderm1 +m2 + 1 modulo lower order forms.
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As an example we note that the Fourier expansion (6.1) can be written in the following way:

(7.21) L(z, ϑ) = πi η(1,0)
0 (0;z, ϑ) +

πi
6
η

(0,1)
0 (0;z, ϑ) − 2

∑

n≥1

σ−1(n) η(0,0)
0 (n; z, ϑ) .

8. Proofs of Theorems 6.5and 6.8

The method of the proof is highly inductive. At each step we use the maximal perturbability of other
spaces which has been proved in a previous step. The startingpoint for this process is the space Map(Γ̃,C)
whose maximal perturbability is proved based on general algebraic principles in Proposition 8.1. This
implies directly the maximal perturbability of thẽΓ-module Map(H × R,C). We proceed by imposing
increasingly stringent regularity conditions on the functionsH×R → C. We considerC∞(H×R) = C∞(G̃),
the subspaceC∞k (G̃) of functions inC∞(G̃) with generalised weightk and the subspaceCk of C∞k (G̃) of
functions that have compact support moduloΓ̃. In §7 we have considered higher order invariant functions
for the group∆̃ generated byn(1) andk(π). These functions are related to the Fourier expansions of Maass
forms. After proving that some more auxiliary subspaces ofC∞k (H × R) are maximally perturbable, we
finally prove in§8.5 the maximal perturbability of̃Ek(Γ̃, λ) andHk(Γ̃).

8.1. Higher order invariants in maps on Γ̃. A generalisation of Proposition 3.3 is the following:

Proposition 8.1. If Γ̃ is a discrete cofinite subgroup of̃G with cusps, then thẽΓ-moduleMap(Γ̃,C) (with
the action by left translation) is maximally perturbable.

Proof. We first define (similarly to Proposition 3.3)gi on the free subgroup̃Γ0 of Γ̃ generated byα1, . . . ,

αt(Γ)−1 for i ∈ {1, . . . , t(Γ)−1}q by the relations in (3.9), withA j replaced byα j .
Let ϕ0 : Γ̃ → Γ̃0 be the surjective group homomorphism given byϕ0(α j) = α j for 1 ≤ j ≤ t(Γ)−1,

ϕ0(ζ) = 1 andϕ0(ε j) = 1 for 1 ≤ j ≤ nell. For 1≤ j ≤ t(Γ) we defineψ j ∈ hom(̃Γ,C) such thatψ j(α j′) =
δ j, j′ . This determinesψ j completely, since values on elliptic generators are given by ψ j(ε j) = 1

v j
ψ j(ζ). For

i = (i′, t(Γ), . . . , t(Γ)) with mcoordinatest(Γ) at the end andi′ ∈ {1, . . . , t(Γ)−1}q−m, we put

(8.1) f i(γ) = gi′
(
ϕ0(γ)

)
Qm

(
ψt(Γ)(γ)

)

whereQn are the polynomials defined in (7.10). Now we can check the following properties off i :

f() = 1 , (empty tuple,q = 0) ;(8.2)

f i(1) = 0 if |i| ≥ 1 ;(8.3)

f i |(ζ − 1) =


f i′ if i = (i′, t(Γ)) ,
0 if i does not end with at(Γ) ;

(8.4)

f i |(α j − 1) =


f i′ if i = ( j, i′) with j < t(Γ) ,

0 if j < t(Γ), j , i(1) .
(8.5)

Using this we can see that

(8.6) (mqf i)
(
b(j )

)
= δi,j .

Now, the choice of the basisb(i) in (5.9) forΓ̃-q-tuplesi shows that to prove that Map(Γ̃,C) is maximally
perturbable it suffices to prove that for eachi and for each functionf on Γ̃\G̃ a functionhi ∈ Map(G̃,C)
such that for all̃Γ-q-tuplesj :

(8.7) hi |(αj (1) − 1) · · · (αj (q) − 1) = δi,j · f .
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To construct such functions we choose astrict fundamental domainF
Γ̃
⊂ G̃ for Γ̃\G̃, i.e., a set meeting

eachΓ̃-orbit exactly once. Such a fundamental domain can be constructed from a strict fundamental
domainFH for Γ\H, by taking

F
Γ̃
=

{
(z, ϑ) : z∈ FH , 0 ≤ ϑ ≤ π/nz

}
,

nz = min
{
n ∈ N : there isγ ∈ Γ̃ fixing z in H conjugate tok(π/n)

}
.

Sonz = 1 for all z ∈ FH, except for the elliptic fixed pointsz1, . . . , znell in FH. These are conjugate to a
fixed point ofε j andnzj = v j.

A choice for the sought functionhi is then

(8.8) hi (γg) = f i(γ) f (g) γ ∈ Γ , g ∈ F
Γ̃
.

With the characteristic functionψ of F
Γ̃
, we can write this as

(8.9) hi(g) =
∑

γ∈Γ̃
f i(γ) f (g)ψ(γ−1g) .

�

8.2. Higher order invariants in smooth functions on G̃. We will use essentially the same construction
as in the last section to prove that

Proposition 8.2. TheΓ̃-module C∞(G̃) is maximally perturbable.

Proof. In order to show thatC∞(G̃) is a maximally perturbablẽΓ-module, we need to have (8.7) withhi ∈
C∞(G̃) for eachf ∈ C∞(Γ̃\G̃). Lemma A.1 in Appendix A shows that we can find functionsψ ∈ C∞(H×R)
such that

∑
γ∈Γ̃ ψ

(
γ−1(z, ϑ)

)
= 1 for all (z, ϑ) ∈ H × R as a locally finite sum. If we define (8.9) with such a

functionψ and f ∈ C∞(Γ̃\G̃), then the sum is locally finite, and thehi are smooth. �

8.3. Higher order invariants and generalised weight. Set

(8.10) C∞k (G̃) = { f ∈ C∞(G̃) , of generalised weightk} .

Proposition 8.3. Let k∈ 2Z. Then thẽΓ-module C∞k (G̃) is maximally perturbable.

Proof. As with the previous proofs, our approach is to show that for every Γ̃-q-tuple i = (i′, t(Γ), . . . , t(Γ))
with exactlymoccurrences oft(Γ) at the end and for everyf ∈ C∞k (Γ̃\G̃) there existshi ∈ C∞k (G̃) satisfying
equation (8.7) for all̃Γ-q-tuples j . We note that, by Theorem 6.4, theΓ̃-invariance of f implies that its
weightk is strict, i.e., f (gk(ϑ)) = f (g)eikϑ.

We will define the functionhi by an analogue of (8.9). We first define for eachg ∈ G̃ the point
w(g) = pr(g) i ∈ H and the real numberΘ(g) ∈ R such thatg =

(
w(g),Θ(g)

) ∈ G̃ = H × R. We also
recall thatΓ = Γ̃/Z̃. Since the group homomorphismφ0 defined in the proof of Proposition 8.1 is trivial
on Z̃ = 〈ζ〉, it induces a homomorphism onΓ. Now we takeψ(z, ϑ) = ψ0(z), with ψ0 as in Part ii) of
Lemma A.1. So the function (z, ϑ) 7→ ψ

(
γ−1(z, ϑ)

)
obtained by left translation depends only on the image

of γ ∈ Γ̃ in Γ � Γ̃/Z̃. Let, as in the proof of Proposition 8.1,ψt(Γ) be the functionΓ̃ → R such that
ψt(Γ)(α j′) = δt(Γ), j′ . For a givenγ ∈ Γ̃ we haveψt(Γ)(ζγ) = ψt(Γ)(γ) + 1 andΘ

(
(ζγ)−1g) = Θ(γ−1g) − π. So

ψt(Γ)(γ) + Θ(γ−1g)/π is well-defined onΓ = Γ̃/Z̃. We can therefore set

(8.11) hi(g) =
∑

γ∈Γ
gi′

(
ϕ0(γ)

)
Qm

(
ψt(Γ)(γ) + Θ(γ−1g)/π

)
f (g)ψ

(
γ−1g

)
.
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The support property of the partition of unityψ ensures convergence; it is even a locally finite sum with a
bounded number of non-zero terms. All factors depend smoothly on g. Sohi ∈ C∞(G̃).

We consider (W − ik)hi . SinceWψ = 0, we need only consider

(8.12)

(
∂ϑ − ik

)
Qm

(
ψt(Γ)(γ) + Θ(γ−1gk(ϑ))/π

)
f
(
gk(ϑ)

)

= Qm

(
ψt(Γ)(γ) + Θ(γ−1gk(ϑ))/π

) (
∂ϑ − ik

)
f
(
gk(ϑ)

)

+ f
(
gk(ϑ)

)
∂ϑQm

(
ψt(Γ)(γ) + Θ(γ−1g)/π + ϑ/π

)

= 0+ π−1Q′m
(
ψt(Γ)(γ) + Θ(γ−1g)/π + ϑ/π

)
f
(
gk(ϑ)

)
.

Repeating this we obtain

(8.13) (W − ik)m+1Qm

(
ψt(Γ)(γ) + Θ(γ−1g)/π

)
f (g) = π−m−1Q(m+1)

m
(· · · ) · · · = 0 ,

since the degree ofQm is m. Sohi ∈ C∞k (G̃). �

In a similar (but much simpler) way, one shows that, ifΓ acts onC∞(H) via (4.2) andf ∈ C∞(H)Γ,
then the function inC∞(H) hi(z) :=

∑
γ∈Γ gi

(
ϕ0(γ)

)
f (z)ψ0

(
γ−1z

)
satisfies (8.7) for all (t(Γ) − 1)-tuples of

elements of{1, . . . , t(Γ) − 1}. This gives an alternative proof of

Proposition 8.4(Prop. 4.1, [10]). Let k∈ 2Z. Then theΓ-module C∞(H) is maximally perturbable.

In fact, sinceψ0 is bounded, iff has polynomial growth at all cusps, then so doeshi thus proving that
the submodule ofC∞(H) of functions with polynomial growth is also maximally perturbable.

8.4. Higher order invariants with support conditions. We shall first discuss the motivation for the
introduction of the invariants we will be dealing with. If Definition 6.3 of the spacẽEk(Γ̃, λ) did not
include a growth condition at the cusps, we could considerẼk(Γ̃, λ) as the kernelK in the exact sequence

0 −→ K −→ C∞k (G̃)
ω−λ−→ C∞k (G̃)

With exponential growth, one might want to try to replaceC∞k (G̃) by its subspaceC∞l (Γ̃)eg of functions
with exponential growth at the cusps ofΓ̃. This would lead to an exact sequence

0 −→ Ẽk(Γ̃, λ) −→ C∞k (Γ̃)eg ω−λ−→ C∞k (Γ̃)eg

for which we might try to show that for eachq ∈ N

0 −→ Ẽk(Γ̃, λ)Γ̃,q −→ (
C∞k (Γ̃)eg)Γ̃,q ω−λ−→ (

C∞k (Γ̃)eg)Γ̃,q

is exact. For this to be of use it seems that we need surjectivity of the mapω−λ :
(
C∞k (Γ̃)eg)Γ̃ → (

C∞k (Γ̃)eg)Γ̃,
which we did not succeed in proving, and which may not hold. For this reason we will instead work with
other better behaved subspaces of the spaces appearing in the exact sequence. We will therefore define
subspacesCk,Dk(λ) ⊂ C∞k (G̃) andE′k(λ) ⊂ Ek(Γ̃, λ) related by an exact sequence

(8.14) 0−→ Ẽ′k(λ) −→ Dk(λ)
ω−λ−→ Ck.
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8.4.1. The spacesCk. For each cuspκ = g̃κ∞, and eacha > 0 we call

(8.15) Dκ(a) = g̃κ
{
(z, ϑ) : Im z≥ a, ϑ ∈ R}

ahorocyclic set. There is a numberAΓ such that for eacha ≥ AΓ theDκ(a) are disjoint for different cusps.
The sets

(8.16) G̃a =
{
(z, ϑ) ∈ H × R : ∀κ (z, ϑ) < Dκ(a)

}

satisfyΓ̃G̃a = G̃a. This follows from the fact that thegκ have been chosen so that

(8.17) γΓ̃κg̃κ = g̃γκΓ̃∞

for all cuspsκ and forγ ∈ Γ̃. HereΓ̃κ := pr−1
Γκ =

{
γ ∈ Γ̃ : γκ = κ

}
.

Definition 8.5. Let k ∈ 2Z. The spaceCk consists of thef ∈ C∞k (G̃) supported inG̃a for somea ≥ AΓ.
(Thea may depend onf ).

SoCk consists of the smooth functions with generalised weightk whose supports project to compact
subsets ofΓ\H. Clearly, the spaceCk is Γ̃-invariant. If we apply the construction ofhi in the proof of
Proposition 8.3 to functionsf ∈ CΓ̃k ⊂ C∞k (Γ̃\G̃) then the support of eachhi is contained in the same setG̃a

that contains Supp(f ). This implies:

Proposition 8.6. Let k∈ 2Z. Then thẽΓ-moduleCk is maximally perturbable.

8.4.2. The spacesDk(λ). The construction ofDk(λ) and the proof of its maximal perturbability is much
lengthier that those forCk. We will defineDk(λ) essentially as the space of functions that accept higher-
order analogues of Fourier expansions at the cusps. To make this formal we study spaces of functions
defined on regions of the form

(8.18) S(y0) =
{
(x+ iy, ϑ) ∈ H × R : y > y0

}
,

with y0 > 0.

Definition 8.7. Let k ∈ 2Z, λ ∈ C, andy0 > 0. We denote byEk(y0, λ) the space off ∈ C∞
(
S(y0)

)
that

satisfyω f = λ f , (W − ik)n f = 0 for somen ∈ N, and have at most exponential growth asy→ ∞, uniform
for x andϑ in compact sets. We denote byEhol

k (y0) the space of holomorphic functions onS(y0) with
generalised weightk and at most exponential growth asy→ ∞

Proposition 8.8. Let k ∈ 2Z, s ∈ C and y0 > 0. The spacesEk(y0, λs) and Ehol
k (y0) are maximally

perturbable∆̃-modules.
Let q∈ N. Each f ∈ Ek(y0, λs)∆̃,q has an absolutely convergent expansion

(8.19) f (z, ϑ) =
∑

n∈Z
fn(z, ϑ)

on S(y0) with fn ∈ Vk(n, s)∆̃,q for all n, and fn ∈ V0
k(n, s)∆̃,q for almost all n.

Each f ∈ Ehol
k (y0)∆̃,q has an absolutely convergent expansion on S(y0) of the form

(8.20) f (z, ϑ) =
∑

m,m1+m2<q

∑

n

cn
m ηm

k (n; z, ϑ)

where the inner sum ranges from some, possible negative, integer to infinity.
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Proof. We start with the holomorphic case. Letf ∈ Ehol
k (y0)∆̃. Then the functionz 7→ y−k/2 f (z, 0) is

holomorphic on{z ∈ H : y > y0} with period 1. So it has a finite to the left expansion of the form∑
n ane2πinz converging absolutely ony > y0. For eachy1 > y0 we havean = O

(
e2πny1

)
asn→ ∞.

Hencef (z, ϑ) =
∑

n anηk(n; z, ϑ) converges absolutely ony > y0, and

f m(z, ϑ) :=
∑

n≥−N

anη
m
k (n; z, ϑ)

converges absolutely onS(y0), and the convergence is uniform on any sety ≥ y1 with y1 > y0, with x and
ϑ in compact sets. These functions satisfyf m|(τ − 1) = f (m1,m2−1), f m|(ζ − 1) = f (m1−1,m2) and f (0,0)

= f ,
since allηm

k have this property. Thusf m, with m such thatm1 +m2 < q is a perturbation of typem and

we deduce thatEhol
k (y0) is maximally perturbable. An arbitrary elementh ∈ Ehol

k (y0)∆̃,q can be written as a
finite linear combination of suchf m, which all have expansions of the type given in (8.20).

For f ∈ Ek(y0, λs)∆̃ we proceed similarly. By Theorem 7.1 in combination with Remark 7.2 and the
integrality ofk, there is an absolutely converging Fourier expansion

f (z, ϑ) =
∑

n∈Z
fn(z, ϑ)

on S(y0) with fn ∈ Wk(n, s). By the exponential growth,fn ∈ W0
k(n, s) for |n| > N, for someN ∈ N.

For |n| > N we havefn = anωk(n, s), and from (7.5) we conclude thatan = O
(
e2π|n|y1) as |n| → ∞ for

eachy1 > y0. So by (7.5) the series ∑

n, |n|>N

anω
m
k (n, s)

converges absolutely onS(y0), uniformly on each sety ≥ y1 with y1 > y0, and gives an exponentially
decreasing function asy → ∞. It is aλs-eigenfunction ofω, since the decay allows differentiation inside
the sum. To produce a perturbationf m of f we pick f m

n ∈ Vk(n, s)∆̃,m1+m2+1 such that f m
n |(τ − 1) =

f (m1,m2−1)
n , f m

n |(ζ − 1) = f (m1−1,m2)
n and f (0,0)

n = fn for the finitely manyn with |n| ≤ N. The estimate (7.8)
shows that the growth of these terms is at most of the order O(e(2πN+δ)y) asy → ∞ for eachδ > 0. Thus
we get (non-uniquely) a perturbation of typem

f m
=

∑

n, |n|≤N

f m
n +

∑

n, |n|>N

anω
m
k (n, s)

in Ek(y0, λs). Thus we get (8.19) and the maximal perturbability ofEk(y0, λs). �

We are now ready to defineDk(λ) andDhol
k .

Definition 8.9. Let k ∈ 2Z, andλ ∈ C. We defineDk(λ) as the space of functionsf ∈ C∞k (G̃) (hence with
generalised weightk) for which there existb ≥ AΓ, a ∈ R, andq ∈ N such that for each cuspκ of Γ̃ the
function (z, ϑ) 7→ f

(
g̃κ(z, ϑ)

)
is an element ofEk(b, λ)∆̃,q, and satisfies a bound O(eay) asy→ ∞.

We defineDhol
k similarly, with (z, ϑ) 7→ f

(
g̃κ(z, ϑ)

)
in Ehol

k (b)∆̃,q, with bound O(eay).

Remark8.10. The numbersa, b andq may depend on the functionf .

Remark8.11. Definition 8.7 ofEk(b, λ) implies that elements ofDk(λ) areλ-eigenfunctions ofω on the
set

⊔
κ Dκ(b). Similarly, elements ofDhol

k are holomorphic functions on
⊔
κ Dκ(b). In both cases we have

exponential growth at each cusp. The definition requires that the order of this exponential growth stays
bounded when we vary the cusp.
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Remark8.12. In the definition we imposẽ∆-invariance of bounded order near all cusps. This is a bit
artificial, but serves our purpose.

The spaceCk is contained inDk(λ) and inDhol
k . Indeed, for givenf ∈ Ck we can takeb large so that⊔

κ Dκ(b) is outside the support off .
Elementsf of Ẽk(Γ̃, λ)Γ̃ restricted toDκ(b) induce elements (z, ϑ) 7→ f

(
g̃κ(z, ϑ)

)
in Ek(b, λ)∆̃ for each

cuspκ, and similarly in the holomorphic case. Hence

(8.21) Ẽk(Γ̃, λ)Γ̃ ⊂ Dk(λ)Γ̃ , Hk(Γ̃)
Γ̃ ⊂ (Dhol

k )Γ̃ .

Maximal perturbability ofDk(λ) andDhol
k . We first need a technical lemma in order to relate∆̃-

invariants toΓ̃-invariants.
We first note that if∞ is a cusp ofΓ̃ and if g̃∞ = 1, then∆̃ = Γ̃∞. In general the group̃Γκ can be

conjugated to ˜g−1
κ Γ̃κg̃κ = ∆̃ in g̃−1

κ Γ̃g̃κ. So we can assume here that∆̃ ⊂ Γ̃.
The abelian group̃∆ is free on the generatorsτ = n(1) andζ = k(π). The dimension of Map(̃∆,C)∆̃,q+1

is (q+ 1)(q+ 2)/2 with an explicit basis described as follows. Define a sequence of maps oñ∆ by setting

(8.22)
ϕ(l,m)|(ζ − 1) = ϕ(l−1,m)

ϕ(l,m)|(τ − 1) = ϕ(l,m−1)

and

ϕ(0,0)
= 1, ϕ(l,m)

= 0 for l or mnegative

andϕ(l,m)(1) = 0 for l,m≥ 0, l +m> 0.

Then

(mqϕ
(l,m))

(
(ζr − 1)(τs − 1)

)
= δl,rδm,s

for l +m= r + s= q, and therefore theϕ(l,m) with l,m≥ 0, l +m≤ q is a basis of Map(̃∆,C)∆̃,q+1.
Let R be a system of representatives ofΓ̃/∆̃; soR ⊂ Γ̃. Consider the system{f j }|j |=q ⊂ Map(Γ̃,C)Γ̃,q+1

in the proof of Proposition 8.1. If|j | = q, then, for everyγ ∈ Γ̃, δ 7→ f j (γδ) is a function on∆̃ of order at
mostq+ 1. Hence there are functionsaj

l,m on Rsuch that for allρ ∈ R andδ ∈ ∆̃

(8.23) f j (ρδ) =
∑

l,m≥0 , l+m≤q

aj
l,m(ρ)ϕ(l,m)(δ) .

Lemma 8.13. Let aj
l,m be as in(8.23), and suppose that we have functionsψ(l,m) ∈ Map(∆̃,C) satisfying

(8.24)

ψ(0,0)
= 0 ,

ψ(l,m)|(τ − 1) = ψ(l−1,m) for l ≥ 1 ,

ψ(l,m)|(ζ − 1) = ψ(l,m−1) for m≥ 1 .

Then

(8.25) f (ρδ) =
∑

l,m≥0 , l+m≤q

aj
l,m(ρ)ψ(l,m)(δ) (ρ ∈ R, δ ∈ ∆̃)

defines an element ofMap(Γ̃,C)Γ̃,q.
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Proof. We proceed by induction inq = |j |. If q = 0, thenm = n = 0, so f (ρδ) = aj
0,0(ρ) · ψ(0,0)

= 0 ∈
Map(Γ̃,C)Γ̃,0 = {0}.

It is clear that (8.25) gives a well-defined map onΓ̃. It suffices to prove that, for every generatorα j of Γ̃,
f |(α j − 1) ∈ Map(Γ̃,C)q−1. Suppose first thatj = ( j, j ′). For eachρ ∈ R there are uniqueρ1 ∈ Randδ1 ∈ ∆̃
such thatα j ρ = ρ1δ1. From (8.23) it follows that

(8.26)

f j |(αj (1) − 1)(ρδ)

=

∑

l,m≥0 , l+m≤q

aj
l,m(ρ1) ϕ(l,m)|(δ1 − 1)(δ) +

∑

l,m≥0 , l+m≤q

(
aj

l,m(ρ1) − aj
l,m(ρ)

)
ϕ(l,m)(δ) .

By (8.5), the left-hand side equals
∑

l,m≥0 , l+m≤q−1 aj ′

l,m(ρ)φ(l,m)(δ). The functionϕ(l,m)|(δ1 − 1) is a linear

combination, depending onρ, of ϕ(a,b) with 0 ≤ a ≤ l, 0 ≤ b ≤ m anda + b ≤ q − 1. Thus we get an
expression that expresses theaj ′

l,m(ρ) in theaj
l,m(ρ). The form of this expression depends on the relations

(8.22) but not on the specific value of the constant basis elementϕ(0,0). The relations of (8.22) hold for
ψ(l,m) too. Therefore, the right hand side of (8.26), upon replacement ofφ by ψ, equals

∑

l,m≥0 , l+m≤q−1

aj ′

l,m(ρ)ψ(l,m)(δ) (ρ ∈ R, δ ∈ ∆̃) ,

which, by induction, is in Map(̃Γ,C)Γ̃,q−1. Since, from (8.25), it follows that the right hand side of (8.26)
with ϕ replaced byψ equalsf |(α j − 1) too, we deduce thatf |(α j − 1) ∈ Map(Γ̃,C)Γ̃,q−1.

In the same way, we deduce thatf |(α j − 1) ∈ Map(Γ̃,C)Γ̃,q−1 when j = t(Γ) or j < t(Γ) and j , j (1). �

Proposition 8.14. TheΓ̃-modulesDk(λ) andDhol
k are maximally perturbable for all k∈ 2Z andλ ∈ C.

Proof. It suffices to construct for a givenf ∈ Dk(λ)Γ̃, a givenq ∈ N and a givenΓ̃-q-tuple i, an element
ηi ∈ Dk(λ) such thatηi |(αi′(1) − 1) · · · (αi′(q) − 1) = δi,i′ f for all Γ̃-q-tuplesj .

We will write f = fcpt +
∑
κ fκ, with κ running over a setC of representatives of thẽΓ-orbits of cusps,

where fcpt ∈ (Ck)Γ̃, fκ ∈ Dk(λ)Γ̃, and will produce perturbations for each of these components.
We choose a strict fundamental domainF

Γ̃
for Γ̃\G̃ so that

F
Γ̃
∩ D∞(b) =

{
(x+ iy, ϑ) : 0 ≤ x < 1 , y ≥ b , 0 ≤ ϑ < π} .

Definition 8.9 providesb ≥ AΓ andr ∈ N such thatvκ(z, ϑ) = f
(
g̃κ(z, ϑ)

)
is in Ek(b, λ)∆̃,r for each cuspκ.

Furthermore,b can be chosen large enough for the setsF
Γ̃
∩ Dκ(b) (κ ∈ C) to be pairwise disjoint. Since

f is Γ̃-invariant, we even havevκ ∈ Ek(b, λ)∆̃. We choose a functionχ ∈ C∞(0,∞) that is equal to 0 on
(0, b+ 1

2] and equal to 1 on [b+ 1,∞), and define forκ ∈ C

(8.27) fκ
(
z, ϑ

)
=


0 (z, ϑ) ∈ F

Γ̃
− Dκ(b)

χ(Im(z1)) vκ(z1, ϑ1) (z, ϑ) = g̃κ(z1, ϑ1) ∈ F
Γ̃
∩ Dκ(b)

Extend toG̃ by Γ̃-linearity. So fκ = 0 outsideΓ̃Dκ(b) and equal tof on Γ̃Dκ(b+1). We check in Defini-
tion 8.9 thatfκ ∈ Dκ(λ). The function

fcpt = f −
∑

κ∈C
fκ

is Γ̃-invariant and vanishes onDκ(b+1) for all cuspsκ, hencefcpt ∈ CΓ̃k .



HIGHER ORDER MAASS FORMS 39

Proposition 8.6 implies that there ishi ∈ Ck ⊂ Dk(λ) satisfying the conditionshi |(αi(1)−1) · · · (αi(q)−1) =
fcpt andhi′ |(αi′(1) − 1) · · · (αi′(q) − 1) = 0 for Γ̃-q-tuplesi′ , i. So we can restrict our attention to thefκ.

Since the supports of thefκ with κ ∈ C are disjoint, we can consider each of thefκ separately. Without
loss of generality we can assume that∞ is a cusp of̃Γ with g̃κ = 1 and take∞ ∈ C. Conjugation by the
original g̃κ then gives the same result for a generalκ ∈ C.

The functionv∞ used in (8.27) is an element ofEk(b, λ)∆̃. The proof of Proposition 8.8 shows that for
eachm ∈ N2

0 there is a perturbationvm∞ ∈ Ek(b, λ)∆̃,m1+m2+1 of (z, ϑ) 7→ f∞(z, ϑ) of typem. We defineηi by
ηi = 0 onG̃b and on allΓ̃Dκ(b) for all κ ∈ C r {∞}, and

(8.28) ηi
(
ρ(x+ iy, ϑ)

)
=

∑

l,m≥0 , l+m≤q

χ(y) ai
l,m(ρ) v(l,m)

∞ (x+ iy, ϑ)

for y ≥ b andρ in a system of representativesR of Γ̃/∆̃. The functionsai
l,m are as in (8.23). Since the sets

ρD∞(b) are disjoint, this defines a smooth function, which can be checked to be an element ofDk(λ).
For each fixedg = (x+ iy, ϑ) with y ≥ b the functionδ 7→ v

(l,m)
∞ (δg) on ∆̃ satisfies the same relations as

δ 7→ ϕ(l,m)(δ) v∞(g) in (8.22). So, their difference, as a function ofδ, satisfies (8.24).
Ignoring smoothness for a moment we havef∞ ∈ Map(G̃,C)Γ̃. Equation (8.8) gives a functionhi on G̃

such thathi |(αi′(1)−1) · · · (αi′(q)−1) = δi,i′ f∞ for all Γ̃-q-tuplesi′. With our choice of fundamental domain,
and using (8.23), we find forρ ∈ R, δ ∈ ∆̃ andg = (x+ iy, ϑ) with y ≥ b:

(8.29) hi (ρδg) =
∑

l,m≥0 , l+m≤q

ai
l,m(ρ)ϕ(l,m)(δ)χ(y) v∞(g) .

OutsideΓ̃D∞(b) the functionsf∞, hi are zero. With Lem. 8.13 we conclude that the function induced by

(8.30) (ηi − hi)(ρδg) =
∑

l,m≥0 , l+m≤q

ai
l,m(ρ)χ(y)

(
v
(l,m)
∞ (δg) − ϕ(l,m)(δ) v∞(g)

)

is in Map(G̃,C)Γ̃,q. This implies that

ηi ∈
(
hi +Map(G̃,C)Γ̃,q

) ∩Dk(λ) = Dk(λ)Γ̃,q+1 ,

and behaves in the desired way under (αi′(1) − 1) · · · (αi′(q) − 1) for all Γ̃-q-tuplesi′. Thus, we have proved
thatDk(λ) is maximally perturbable.

Everywhere in this proof we can replaceEk(b, λ) by Ehol
k (b), andDk(λ) byDhol

k . In that way we also
obtain the maximal perturbability ofDhol

k , thus completing the proof of Proposition 8.14. �

8.4.3. Relations between the spacesCk andDk(λ). By Remark 8.11, for eachf ∈ Dk(λ) the support of
(ω − λ) f is contained in some set̃Gb, hence (ω − λ) f ∈ Ck. So the differential operatorω − λ mapsDk(λ)

to Ck. Since the operatorω commutes with the action of̃Γ, we have (ω − λ)Dk(λ)Γ̃,q ⊂ CΓ̃,qk for all q ≥ 1.

Similarly, E−(Dhol
k )Γ̃,q ⊂ CΓ̃,qk−2 for all q ≥ 1.

Proposition 8.15. Letλ ∈ C and k∈ 2Z. The following maps are surjective:
i. ω − λ : Dk(λ)Γ̃ → CΓ̃k and

ii. E− : (Dhol
k )Γ̃ → CΓ̃k−2

Proof. §8.4.4 and§8.4.5. �

Corollary 8.16. For each q≥ 1 the mapsω − λ : Dk(λs)Γ̃,q −→ CΓ̃,qk and E− : (Dhol
k )Γ̃,q → CΓ̃,qk are

surjective.
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Proof. Proposition 8.15 gives the caseq = 1. The rows in the following commutative diagram are exact
by Proposition 8.6 and 8.14. See (5.13) formq.

(8.31) 0 // Dk(λ)Γ̃,q //

ω−λ��

Dk(λ)Γ̃,q+1
mq //

ω−λ��

(Dk(λ)Γ̃
)n(Γ̃,q) //

ω−λ��

0

0 // CΓ̃,qk
//

��

CΓ̃,q+1
k

mq //

��

(CΓ̃k
)n(Γ̃,q) //

��

0

0 coker(ω − λ) 0

The third column is exact by Proposition 8.15. With the exactness of the first column as induction hypoth-

esis, we obtain the vanishing of coker(ω − λ) and thus the surjectivity ofω − λ : Dk(λ)Γ̃,q+1 → CΓ̃,q+1
k by

the Snake Lemma.
The case ofE− : (Dhol

k )Γ̃,q→ CΓ̃,qk is similar. �

8.4.4. Proof of Proposition 8.15(i).We first note that the spacesDk(λ)Γ̃ andCΓ̃k are invariant under̃Z.
Hence the weightk is strict and we are dealing with functions onG = PSL2(R). (See the first statement in
Theorem 6.4.) We use the spectral theory of automorphic forms to prove Proposition 8.15.

We work with the space of square integrable functions onΓ̃\G̃ = Γ\G of strict weightk ∈ 2Z, where
G = PSL2(R). We can view the elements of the Hilbert spaceHk = L2(Γ̃\G̃)k = L2(Γ\G)k as functions
z 7→ f (z, 0) onH, transforming according to weightk as indicated in (4.7). The inner product inHk is
given by

( f , f1) =
∫

F

f (z, 0) f1(z, 0)
dx dy

y2
.

HereF can be any fundamental domain forΓ\H. We take it so that for eachb > AΓ it has a decomposition

(8.32) F = Fb ⊔
⊔

κ∈C
Vκ , Vκ =

{
gκ(x+ iy) : xκ ≤ x ≤ xκ + 1 , y ≥ b

}
,

with C a system of representatives of theΓ-orbits of cusps, andxκ ∈ R depending onF and on the earlier
choice of thegκ. The setFb has compact closure inH.

The differential operatorωk = −y2∂2
y − y2∂2

x + iky∂x in (4.8) determines a densely defined self-adjoint
operatorAk in Hk. The spectral theory of automorphic forms gives the decomposition of this operatorAk in
terms of Maass forms. One may consult Chapters 4 and 7 in [12] for weight 0. For other weights the proofs
are almost completely similar. (See [20].) There is a subspaceHdiscr

k with an at most countable orthonormal
basis{ψℓk} of Maass forms, indexed by some subset ofZ. Theψℓk are square integrable elements of the space
of Maass formsEk(Γ, λℓ) with λℓ ≥ k

2(1 − k
2). We denote the eigenspace associated toλ (which is known

to be finite-dimensional) byHk(λ). If k = 0 the eigenvalue 0 occurs with multiplicity one, corresponding
to constant functions, and all otherλℓ, if any, are positive. Ifk , 0, thenHdiscr

k may be zero. Ifk ≥ 2
and the spaceSk(Γ) of holomorphic cusp forms of weightk is non-zero, then there areψℓk ∈ Hdiscr

k of
the formψℓk(z, 0) = yk/2 h(z) with h ∈ Sk(Γ). The corresponding eigenvalues areλℓ = k

2

(
1 − k

2

)
, which

is negative ifk ≥ 4. There may also be elements obtained by differentiation of holomorphic cusp forms
of weights between 2 andk − 2. Similarly, for negativek there may be eigenfunctions corresponding to
antiholomorphic cusp forms.
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The orthogonal complementHcont
k of Hdiscr

k in Hk is isomorphic to a sum ofnpar copies ofL2((0,∞), dt
)
,

wherenpar is the number ofΓ-orbits of cusps. The spectral decomposition gives theParseval formula

(8.33)
(
f , f1) =

∑

ℓ

aℓk( f ) aℓk( f1) +
∑

κ

1
2π

∫ ∞

0
eκk( f ; it) eκk( f1; it) dt ,

with κ running through a set of representatives of the cuspidal orbit. For eachf ∈ Hk we haveaℓk( f ) =(
f , ψℓk

)
. If f is sufficiently regular, then the functionseκk( f ; ·) are obtained by integration against the Eisen-

stein seriesEκ
k(it) at the cuspκ.

The spaceCΓ̃k is contained inHk. For f ∈ CΓ̃k the functionseκk( f ; ·) are given by

eκk( f ; s) =
∫

F

f (z, 0)Eκ
k(−s̄; z)

dx dy

y2
=

∫

F

f (z, 0)Eκ
−k(−s; z)

dx dy

y2
,

for all sat which the meromorphic continuation of the Eisenstein series

Eκ
k(s; z) :=

∑

γ∈Γκ\Γ
Im (g−1

κ γz)
1
2+s e−ik arg(j(g−1

κ γ,z))

is holomorphic. In particular,eκk( f ; s) is holomorphic at points of the lineiR.
On the square integrable Maass forms and on the Eisenstein series the self-adjoint operatorAk is given

byωk in (4.8). For f ∈ Hk in the domain ofAk, the self-adjointness ofAk together with the eigenproperty
of ψl

k imply aℓk(ωk f ) = λℓaℓk( f ) andeκk(ωk f ; t) =
(1

4 + t2
)
eκk( f ; t). This implies that the spectral data of

elementsf ∈ Hk such thatAn
k f is well defined for alln ∈ N, are quickly decreasing. The convergence in

L2-sense of the Parseval formula in (8.33) is very fast for functions of this type, since the summands and
integrands in the expansion are those of (An

k f ,An
k f1) divided by (λℓ)n, respectively (14 + t2)n for eachn ∈ N.

(If there is a term withλℓ = 0 we treat it separately; it does not influence the convergence.)
The central point of the proof of Proposition 8.15 is that we transform the equation (Ak − λ) f1 = f with

unknown f1 ∈ Hk for a given f ∈ CΓ̃k to the spectral decomposition. Application ofAk − λ to f ∈ CΓ̃k
amounts to multiplyingaℓk( f ) by λℓ − λ and multiplyingeκk( f ; t) by 1

4 + t2 − λ. This suggests the following

Definition 8.17. Let λ ∈ C. We denote byCk(Γ, λ) the space off ∈ CΓ̃k such that the following conditions
are satisfied.

i) aℓk( f ) = 0 if λℓ = λ,
ii) eκk( f ; itλ) = 0 for all κ, if λ = 1

4 + t2
λ

(tλ ∈ R r {0}) ,
iii) for all κ, the mapt 7→ eκk( f ; it) has a double zero att = 0 if λ = 1

4.

Note that, for eachλ, the conditions i), ii), iii) impose finitely many linear conditions, soCk(Γ, λ) has
finite codimension inCΓ̃k . If λ is not in the spectrum ofAk, thenCk(Γ, λ) is equal toCΓ̃k .

Case I:f ∈ Ck(Γ̃, λ). In this case, if we have the spectral decomposition

(8.34) f =
∑

ℓ

aℓk( f )ψℓk +
∑

κ

1
2π

∫ ∞

0
eκk( f ; it)Eκ

k(it;−)dt,

then a solution of (Ak − λ) f1 = f is given by

(8.35) f1 :=
∑

ℓ

aℓk( f )

λℓ − λψ
ℓ
k +

∑

κ

1
2π

∫ ∞

0

eκk( f ; it)
1
4 + t2 − λ

Eκ
k(it;−)dt.
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If λ is not in the spectrum ofAk, then the convergence of thisL2-expansion is better than that in (8.34),
sinceλℓ → ∞ and hence the denominators improve the convergence. Ifλ is in the spectrum ofAk,
condition i) ensures that theaℓk( f ) with λℓ = λ vanish, and that, by the other conditions, the simple or
double zero oft 7→ 1

4 + t2 − λ at t = tλ is canceled by the zeros ats = itλ of the holomorphic functions
s 7→ eκκ( f ; s). The same reasoning shows that the obtainedf1 is in Hk and, in fact, in the domain ofAk. We
have (Ak−λ) f1 = f . Therefore the relation (ω−λ) f1 = f holds in distribution sense. There isb ≥ AΓ such
that the support off is contained inG̃b. So on eachDκ(b) we have (ω − λ) f1 = 0. Sinceωk determines
an elliptic differential operator onH, elliptic regularity implies that (ω − λ) f1 = 0 holds as a relation for
real-analytic functions on eachDκ(b). Further, the square integrability implies thatf1 must have less than
exponential growth at the cusps and hence it is an element ofDk(λ)Γ̃. We have shown:

Lemma 8.18. For eachλ ∈ C, the spaceCk(Γ, λ) is contained in(ω − λ)Dk(λ)Γ̃.

Case II: f ∈ CΓ̃k rCk(Γ, λ) for λ in the spectrum ofAk. The following result enables us to pick represen-

tativesh of CΓ̃k/Ck(Γ, λ) for which we can solve (ω − λ) f1 = h directly. This procedure can be carried out
by singling out one cuspκ, which we fix for the proof of Case II.

Lemma 8.19. Let κ be the cusp that we keep fixed. Suppose thatλ is in the spectrum of Ak. Then there is
a finite set X⊂ Z such that, for each n∈ X, there exist hn ∈ CΓ̃k of the form

(8.36) hn
(
γg̃κ(z, ϑ)

)
=


e2πinx χn(y) eikϑ on Γ̃Dκ(AΓ)

0 elsewhere

for someχn ∈ C∞c (AΓ,∞), such that{hn +Ck(Γ, λ)}n spansCΓ̃k/Ck(Γ, λ).

If we can solve (Ak − λ) f1 = hn in another way for alln ∈ X, this lemma enables us to reduce the proof
of Proposition 8.15(i) to Lemma 8.18.

Proof of Lemma 8.19.We shall examine each of the three cases for the eigenvalues of Ak onHk separately:

• λ = 1
4 − s2

<
[1

4,∞
)
. Assumes > 0. There are finitely many indicesℓ1, . . . , ℓm such thatλℓ j = λ.

The ψ
ℓ j

k form a basis of ker(Ak − λ). Each of thesem linearly independent square integrable
automorphic forms is given by its Fourier expansion at the fixed cuspκ. By Proposition 7.1,
the Fourier terms of non-zero order are multiples ofωk(n, s). The Fourier term of order zero
is a multiple ofy

1
2−s eikϑ. We choose a setX of m elements inZ such that them × m-matrix

whose columns are then-th Fourier coefficients ofψ
ℓ j

k (1 ≤ j ≤ m) with n ∈ X is invertible. We

choose theχn ∈ C∞c , n ∈ X, in the statement of the lemma, so that
∫ ∞

AΓ
χn(y)ωk(n, s)(iy, 0) dy

y2 , 0,

respectively
∫ ∞

AΓ
χn(y) y

1
2−s dy

y2 , 0. Consider the linear form on the spaceA2
k(λ) of square integrable

automorphic forms with eigenvalueλ given by

ψ 7→(
hn, ψ

)
=

∫

F

hn(z, 0)ψ(z, 0)
dxdy

y2

=

∫ ∞

AΓ

∫ 1/2

−1/2
χn(y)e2πinxā0y

1/2−s̄ dxdy

y2
+

∑

m,0

ām

∫ ∞

AΓ

∫ 1/2

−1/2
χn(y)e2πinxωk(m, s)(iy, 0)

dxdy

y2
.

This depends only on the Fourier coefficient ofψ of ordern in the expansion atκ. Therefore, the
m×m-matrix with the scalar product

(
hn, ψ

ℓ j

k

)
at position (j, n) is invertible. (Herej runs from 1



HIGHER ORDER MAASS FORMS 43

to m, andn runs throughX.) Hence there are complex numbersb j,p (with 1 ≤ j ≤ m, p ∈ X)

such that
∑

n∈X b j,n
(
hn, ψ

ℓ j′
k

)
= δ j, j′ . Setting, for f ∈ CΓ̃k , cn( f ) =

∑m
j′=1

(
f , ψ

ℓ j′
k

)
b j′,n, we obtain for

1 ≤ j ≤ m: ∑

n∈X
cn( f )

(
hn, ψ

ℓ j
)
=

(
f , ψ

ℓ j

k

)
.

So f −∑
n cn( f ) hn is indeed inCk(Γ, λ).

• λ = 1
4 + t2, t ∈ Rr {0}. A basis of ker(Ak − λ) in this case consists of Eisenstein seriesEν

k(it, ·) (ν ∈
C) and possibly cusp formsψ

ℓ j

k with λℓ j = λ. The proof of the previous case can be applied with
the obvious adjustments (e.g. replacing scalar products byintegrals for the terms corresponding
to Eν

k) to give the result. The only essential modification is that we have to use the spaceA∗k(λ)
of automorphic forms with polynomial growth and eigenvalueλ in place ofA2

k(λ) because the
Eisenstein series are not square integrable. This can be done because (conjugates of) elements of
A∗k(λ) appear only integrated against elements ofCΓ̃k which have compact support moduloΓ̃.
• λ = 1

4. Now we have the condition thateκk( f − ∑
n hn; it) should have a double zero att = 0 or,

equivalently, that the first two terms of the Taylor expansion ats= 0 should vanish. Since the first
two Taylor terms ofEκ

k(−; z) are linearly independent from the other functions inA∗k(1/4), a choice
of χn with the desired properties is again possible. �

Now we turn to the task to solve (ω − λs) f1 = hn with f1 ∈ Dk(λ)Γ̃ for hn as in Lemma 8.19. We aim at
f1 with support inΓ̃Dκ(AΓ). Writing f1

(
g̃κ(z, ϑ)

)
= e2πinx h(y) eikϑ, the differential equation (ω − λ) f1 = hn

becomes

−y2h′′(y) +
(
4π2n2y2 − 2πnky − 1

4
+ s2) h(y) = χn(y) .

(Compare (7.3).) This ordinary differential equation is regular ony ≥ AΓ. It has a unique solution for the
initial conditionsh(AΓ) = h′(AΓ) = 0. It is zero below the support ofχn. Sinceχn has compact support,
the functionh thus obtained is a solution of the homogeneous equation (7.3) on (b,∞) for someb > AΓ
depending on Supp(χn). Thus we see that (z, ϑ) 7→ f1

(
g̃κ(z, ϑ)

)
is an element ofWk(n, s). Hence it may

have exponential growth of ordere(2π|n|+δ)y. This is the point where the need to work with exponentially
growing functions arises.

We extendf1 by Γ̃-invariance, and check that it is an element ofDk(λs). This completes the proof of
the first statement in Proposition 8.15.

8.4.5. Proof of Proposition 8.15 ii.For the surjectivity ofE− : (Dhol
k )Γ̃ → CΓ̃k−2 we first note that, on

an eigenfunction ofω in weight k − 2 with eigenvalueλ the operatorE−k E+k−2 acts as multiplication by

−4
(
λ − k

2 +
k2

4

)
. See (5.7). We will useE+k−2 to “invert” E−k .

Let Ha
k−2 denote the kernel ofE+k−2 in Hdiscr

k−2 . It is finitely dimensional and it contains the constant
functions ifk = 2, and the functions corresponding to antiholomorphic cuspforms if k ≤ 0.

On the orthogonal complement ofHa
k−2 in Hdiscr

k−2 the factor−4
(
λ − k

2 +
k2

4

)
is negative and stays away

from 0 for all λ in the spectrum ofAk. Likewise, we denote byHh
k the finite dimensional kernel ofE−k

in Hdiscr
k . Its elements correspond to square integrable holomorphicautomorphic forms of weightk.

Let
(
ψℓk−2

)
ℓ be an orthonormal basis of the orthogonal complementHdiscr

k−2 ⊖ Ha
k−2 consisting of eigen-

functions ofωk−2 with eigenvalueλℓ. The relation (E−k v1, v2) = −(v1,E+k−2v2) for suitably differentiable
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elements ofHk andHk−2 (see Lemma 6.1.4 of [2]) implies thatE−k (Hdiscr
k ⊖Hh

k) ⊂ Hdiscr
k−2 ⊖Ha

k−2 and hence
(ψℓk)ℓ with ψℓk =

1√
4λℓ−2k+k2

E+k−2ψ
ℓ
k−2 is an orthonormal system spanningHdiscr

k ⊖ Hh
k .

For a givenf ∈ CΓ̃k−2 orthogonal toHa
k−2 we set

f1 := −
∑

ℓ

aℓk−2( f )
√

4λℓ − 2k+ k2

E+k−2ψ
ℓ
k−2√

4λℓ − 2k + k2
−

∑

κ

1
2π

∫ ∞

0

eκk−2( f ; it)
√

4t2 + (k − 1)2

E+k−2Eκ
k−2(it;−)

√
4λℓ − 2k + k2

dt .

We havef1 ∈ Hk ⊖ Hh
k andE− f1 = f . A reasoning as in the previous case shows thatf1 ∈ Dhol

k (λ)Γ̃.

So we have solved the problem for a subspace ofCΓ̃k−2 with finite codimension. A general element of

CΓ̃k−2will not be orthogonal toHa
k−2. We proceed as in the first case in the proof of Lemma 8.18. Instead of

ψ
ℓ j

k we now use an orthogonal basis ofHa
k−2, and form functionshn as in Lemma 8.18, corresponding to

a setX of Fourier term orders such that elements ofHa
k−2 are determined by the Fourier coefficients inX.

SolvingE−k f1 = hn leads to the differential equation

(−2iy∂x + 2y∂y − k)e2πinxϕ(y) = χ(y) , ϕ(y0) = ϕ′(y0) = 0 ,

with which we proceed as in the previous case.
This establishes the surjectivity ofE− : (Dhol

k )Γ̃ → CΓ̃k−2 in Proposition 8.15.

8.5. Higher order invariants and Maass forms. We now will derive the main results of this paper,
Theorems 6.5 and 6.8, from the following result:

Proposition 8.20. TheΓ̃-modules

(8.37) Ẽ′k(λ) := ker
(
ω − λ : Dk(λ) −→ Ck

)

and

(8.38) H ′k := ker
(
E− : Dhol

k −→ Ck−2
)

are maximally perturbable.

Proof. We have the following extension of the commutative diagram (8.31):

(8.39) 0 // Ẽ′k(λ)Γ̃,q //

��

Ẽ′k(λ)Γ̃,q+1
mq //

��

(Ẽ′k(λ)Γ̃
)n(Γ̃,q)

��

0 // Dk(λ)Γ̃,q //

ω−λ��

Dk(λ)Γ̃,q+1
mq //

ω−λ��

(Dk(λ)Γ̃
)n(Γ̃,q) //

ω−λ��

0

0 // CΓ̃,qk
//

��

CΓ̃,q+1
k

mq //

��

(CΓ̃k
)n(Γ̃,q) //

��

0

0 0 0

The exactness of the columns follows from the definition ofẼ′k(λ), (3.2), the left-exactness of the functor
homC[Γ](Iq\C[Γ], –) and Corol. 8.16. Propositions 8.3 and 8.14 imply that the second and third row are

exact. The Snake Lemma then implies that the first row is exactand thatmq : Ẽ′k(λ)Γ̃,q+1 → (Ẽ′k(λ)Γ̃
)n(Γ̃,q)

is surjective.
Replacing in this diagram the spaceẼ′l (λ) by H ′k and the mapω − λ by E−, we obtain the maximal

perturbability ofH ′k. �
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Proof of Theorems 6.5 and 6.8.The Γ̃-moduleẼ′k(λ) is contained inẼk(Γ̃, λ). See Definition 6.3. It is a
smaller space thañEk(Γ̃, λ) since elements ofDk(λ) have a special structure near the cusps. With (8.21),
Ẽk(Γ̃, λ)Γ̃ is a subspace of̃E′k(λ)Γ̃. ThereforeẼk(Γ̃, λ)Γ̃ = Ẽ′k(λ)Γ̃ and thus

0 // Ẽ′k(λ)Γ̃,q //

��

Ẽ′k(λ)Γ̃,q+1 //

��

(Ẽ′k(λ)Γ̃
)n(Γ̃,n) // 0

0 // Ẽk(Γ̃, λ)Γ̃,q // Ẽk(Γ̃, λ)Γ̃,q+1 // (Ẽk(Γ̃, λ)Γ̃
)n(Γ̃,q)

with exact rows. Induction with respect toq and the Snake Lemma show thatẼk(Γ̃, λ)Γ̃,q is equal toẼ′k(λ)Γ̃,q

for all q. Hence the spacẽEk(Γ̃, λ) is maximally perturbable.
The proof of Theorem 6.8 is completely similar. �

Appendix A. Partition of unity

The following technical lemma gives partitions of unity that are adapted tõΓ\G̃ andΓ\H.

Lemma A.1. i) For a given cofinite discretẽΓ ⊂ G̃ containingZ̃ there areψ ∈ C∞(G̃) such that
a) ψ is a bounded function.
b) There is N∈ N such that for eachg ∈ G̃ the number ofγ ∈ Γ̃ with ψ(γ−1g) , 0 is bounded

by N.
c)

∑
γ∈Γ̃ ψ(γ−1g) = 1 for all g ∈ G̃.

ii) For a given cofinite discreteΓ ⊂ PSL2(R) there areψ0 ∈ C∞(H) such that
a) ψ0 is bounded.
b) There is N∈ N such that for each z∈ H the number ofγ ∈ Γ with ψ0(γ−1z) , 0 is bounded

by N.
c)

∑
γ∈Γ ψ0(γ−1z) = 1 for all z ∈ H.

Proof. We fix a strict fundamental domainFH for Γ̃\H of the following form, based on the choice of a real
numbera > AΓ, as in§8.4.1. The setFH is bounded by finitely many geodesic segments and half-lines
such that

(1.1)
FH = Ca ⊔

⊔

κ

Vκ(a) ,

Vκ(a) =
{
gκ(x+ iy) : y ≥ a , xκ ≤ x < xκ + 1

}
,

whereCa is relatively compact inH, and is contained in the image ofG̃a under the projectionG̃ → H.
The disjoint union is over the setC of cuspsκ in the closureF̄H of FH in H ∪ ∂H. We takeFH such that
C forms a system of representatives for theΓ̃-orbits of cusps. By taking the parametera sufficiently large
we arrange that all orbits of elliptic fixed points intersectFH in Ca. These points are necessarily on the
boundary ofFH.

We take a strict fundamental domain forΓ̃\G̃ of the form

F =
{
(z, ϑ) : z∈ FH , ϑ ∈ [0, π/v(z))

}
,

wherev(z) ∈ N is the order of the subgroupΓz fixing z, or equivalentlyΓ̃z is conjugate inG̃ to the group
{k(nπ/v(z)) : n ∈ Z}. Sov(z) is in general equal to 1, and only larger ifz is an elliptic fixed point ofΓ.

i. We first define a function oñG satisfying a) and c), and a variant of b).
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Let ω : G̃ → {0, 1} be the characteristic function ofF. It satisfies conditions a)–c) in part i) of the
lemma, but is not smooth. To make it smooth we convolve it witha functionψ ∈ C∞c (G̃) with ψ ≥ 0
such that

∫
G̃
ψ(g) dg = 1 for a choicedg of a Haar measure oñG and such that Supp(ψ) is a compact

neighborhood of the unit element iñG.
Sinceω is measurable, the integral

ϕ0(g) =
∫

G̃
ω(g1)ψ(g−1

1 g) dg1 =

∫

G̃
ω(gg−1

1 )ψ(g1) dg1

defines a smooth functionϕ0 on G̃ with values in [0, 1] and with support contained in the neighborhood
F · Supp(ψ) (multiplication in G̃) of F. From the second form of the convolution integral we see that∑
γ∈Γ̃ ϕ0(γ−1g) = 1 for all g ∈ G̃. This smooth functionϕ0 satisfies conditions a) and c) in part i) of the

lemma. Condition b) is not satisfied, since although the support of ϕ0 is contained in a neighborhood of
F of the formFSupp(ψ), this neighborhood may meet near the cusps infinitely manyΓ̃-translates ofF.
We will construct two functions, one “away from the cusps” and another “close to the cusps” satisfying all
conditions a), b), c) on overlapping regions. A suitable combination of these two functions will produce
the sought function oñG.
• The first function is simply the restriction ofϕ0 to G̃b for anyb ≥ a. We will show that this function

satisfies condition b) (and thus all conditions). First we note that the projectionsp1 : G̃→ H andp2 : G̃→
R given byp1(z, ϑ) = zandp2(z, ϑ) = ϑ are continuous. Next we note thatFSupp(ψ)∩ G̃b is contained in
a compact set, and hence has compact image inH underp1. So

p1
(
FSupp(ψ) ∩ G̃b

) ⊂
⊔

δ∈E
δFH

for some finite subsetE of Γ.
Fix a g ∈ G̃b. We will show that there is a finite number (independent ofg) of γ ∈ Γ̃ with ϕ0(γ g) , 0.

Indeed, for each suchγ we haveγg ∈ FSupp(ψ) ∩ G̃b, hencep1(γg) = pr(γ) p1(g) ∈ ⊔
δ∈E δFH. This

leaves finitely many possibilities for the image pr(γ):

pr(γ) = δδ−1
0 with δ ∈ E .

for someδ0 ∈ Γ. We conclude thatγ = δ̃δ−1
0 k(πm) with m ∈ Z.

On the other hand, the imagep2
(
FSupp(ψ)∩ G̃b

)
is contained in a compact set, hence it is contained in

a set [−B, B] ⊂ R. For theγ = δ̃δ−1
0 k(πm) with ϕ0(γg) , 0 we conclude from (5.3) thatp2

(
δ̃δ−1

0 k(πm)g
)
=

p2
(
δ̃δ−1

0 g
)
+mπ. This leaves only finitely many possibilities for the integer m. This shows that condition b)

is satisfied by the restriction ofϕ0 to G̃b (b ≥ a).

• We now start the construction of another functionϕ1 with the desired properties near the cusps. We
take a compactly supported smooth partitionβ of unity for R/Z, i.e., β ∈ C∞c (R) with values in [0, 1] such
that

∑
k∈Z β(x + k) = 1 for all x ∈ R. (For instance take a smooth functionυ in C∞(R) with value 0 on a

neighborhood of 0 and value 1 on a neighborhood of1
2. Then

β(x) =



0 if x < 0 ,

υ(x) if 0 ≤ x < 1
2 ,

1 if 1
2 ≤ x < 1 ,

1− υ(x− 1) if 1 ≤ x < 3
2 ,

0 if x ≥ 3
2 .
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defines such a partition of unity.) We define a functionϕ1 on G̃ in the following way.

ϕ1
(
g̃κ(z, ϑ)

)
= β(x− xκ) β(ϑ/π) if κ ∈ C, y > a ,

ϕ1 = 0 elsewhere,

with xκ as in (1.1).
The functionϕ1 is smooth onG̃r G̃a and bounded there. By the definition and (8.17), it is clear that the

only Γ̃-translates ofF intersecting the support ofϕ1 are theΓ̃κ-translates. The definition ofβ then implies
that at most four̃Γκ-translates can intersect Supp(ϕ1), implying (ii). Likewise, the definitions ofϕ1, β and
(8.17) imply that

∑
γ∈Γ̃ ϕ1(γ−1g) = 1 for g ∈ G̃r G̃a.

We choose a (bounded) functionχ ∈ C∞(Γ̃\G̃) equal to 0 onG̃a and equal to 1 oñGr G̃a+1. Put

ψ = χ · ϕ1 + (1− χ) · ϕ0 ,

whereϕ0 is as constructed above withb equal toa+1. Sinceχ vanishes onG̃a the productχ ·ϕ1 is smooth
on G̃. Similarly, (1− χ) · ϕ0 is smooth. Soψ ∈ C∞(G̃). Conditions a)–c) are easily checked to hold forψ.

ii. We turn toΓ = Γ̃/Z̃ and start withψ as in part i). The sumψ1(z, ϑ) =
∑

m∈Z ψ(z, ϑ −mπ) is locally
finite and defines a smooth function with values in [0, 1] that is invariant under left translation by elements
of Z̃. Soψ1

(
γ−1(z, ϑ)

)
= ψ1

(
γ̃−1(z, ϑ)

)
is well defined forγ ∈ Γ, and

∑

γ∈Γ
ψ1

(
γ−1(z, ϑ)

)
=

∑

γ∈Γ

∑

m∈Z
ψ
(
(γ̃k(mπ))−1(z, ϑ)

)
= 1

for all (z, ϑ). Since the support ofψ meets only finitely manỹΓ translates ofF ⊂ FH × [0, π), the support
Supp(ψ) · Z̃ of ψ1 meets only finitely manỹΓ-translates ofFH × R. Set

ψ0(z) =
1
π

∫ π

0
ψ1(z, ϑ)dϑ.

It clearly satisfies (i). For condition c) we note that
∑

γ∈Γ
ψ0(γ z) =

1
π

∑

γ∈Γ

∫ π

0
ψ1

(
γz, ϑ

)
dϑ

=
1
π

∑

γ∈Γ

∫ π+arg(j(γ,z))

arg(j(γ,z))
ψ1

(
γz, ϑ

)
dϑ by theπ-periodicity ofψ1

=
1
π

∑

γ∈Γ

∫ π

0
ψ1

(
γ(z, ϑ)

)
dϑ

= 1

The support ofψ0 is contained in the imagep1
(
Supp(ψ1)

) ⊂ H. Since Supp(ψ1) is contained in finitely
manyΓ̃-translates ofFH × R, we conclude that condition b) is satisfied as well. �

Appendix B. Index of commonly used notation

a(y) §5.1
aℓk( f ) (8.33)
α §5.3
αi §5.4
b(i) (3.8), (5.9)

C∞k (G̃) (8.10)
Ck Defn. 8.5
Dκ(a) (8.15)
Dk(λ),Dhol

k Defn. 8.9
εi §5.4

Ei §3.2.1
Ek(Γ, λ) Defn. 4.1
Ehol

k (Γ, λk) §4.2
E± §5.2
eκk( f ; it) (8.33)
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Ek(y0, λ),Ehol
k (y0) Defn. 8.7

Ẽk(Γ̃, λ) Defn. 6.3
Ẽr (Γ̃, χ, λ) Defn. 6.3
Ek(Γ, λ) Defn. 4.1
f i (8.1)
gκ (4.1)
G̃ Defn. 5.1
G̃a (8.16)
hi (8.8), (8.9)
Hi §3.2.1
H §5.2
hm

k (n, s) (7.11)
Hk(Γ̃),H p

k (Γ̃),Hc
k(Γ̃) Defn. 6.3

ηi §5.4

ηr(n; z, ϑ) (7.17)
ηk(n) (7.18)
ηm

k (n; z, ϑ) (7.19)
k(ϑ) §5.1
κi §5.4
Lk (4.3)
L(z, ϑ) (6.3)
mq (3.3)
Mk(Γ, λ) Defn. 4.1
Mk(Γ, λ) Defn. 4.1
Mhol

k (Γ, λk) §4.2
µ f (3.5)
nell, npar §3.2.1
n(x) §5.1
n(Γ, q) (3.4)

Pi §3.2.1
pr, pr2 §5.1
πi §5.4
Qn (7.10)
s §5.3
S(y0) (8.18)
t §5.3
t(Γ) §3.2.1
Vk(n, s),V0

k(n, s) Defn. 7.3
Wr (ν, s) (7.2)
W §5.2
X §5.2
ζ §5.3
ω §5.2
ωr , ω̂r (7.4)
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