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HIGHER ORDER MAASS FORMS

ROELOF BRUGGEMAN AND NIKOLAOS DIAMANTIS

AsstracT. The linear structure of the space of Maass forms of evenhweigd of arbitrary order is deter-
mined.

1. INTRODUCTION

In this work, the structure of the space of Maass forms of g@rader and integral weight as a linear
vector space is determined. It is proved that, under seitetshditions, this space is as large as one would
expect it to be.

There are mainly two objects and associated problems thgestithe study of specifically this type of
higher-order form. The first is Eisenstein series modifieithwiodular symbols defined by

(11) E@9 = ) (fyimpd,
¥l \I'o(N)

whereT, is the subgroup of translations of the congruence gmg(dl), f a weight 2 newform and
(f,y) := =2ni fozw f(w)dw. The study of this function has led to important results, saglthe proof that
the suitably normalised modular symbols follow the normiatribution ([19]). The functiorE*(-, s) is
not automorphic but transforms as a second-order autoricoiqim.

We recall that, for a group of motions on the upper half-plarsg a function is said to b&-invariant
of order ge N and weight 0, if it satisfies

(1.2) flya—-D02-1)---(yq—-1) = 0 forallyy,yz,...., el
Here, the actionof I" on functions ors) is given by

fv(@ = (2.
and it is extended linearly to an action of the group rijd].

Clearly, several types of conditions on holomorphicitypwth etc. can be imposed on functions of
general order. The functioR*(-, s) in particular, is an eigenfunction of the Laplacian and¢fere we
view it as a Maass form of order 2.

The second object leading to functions that Bsiavariant of second-order arises from considerations
related to values of derivatives bffunctions of cusp forms: Iri.[11] and][8] certain “periodegtals” are
associated to derivatives affunctions of weight 2 cusp forms in a way analogous to thk between
values ofL-functions and modular integrals$ ([17]). Specifically, febe a newform of weight 2 farp(N)
and letL¢(s) be itsL-function. If L¢(1) = O, then, for each prime, (p, N) = 1, L}(1) can be written as a
linear combination of integrals of the form
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(1.3) j: f(2 u(z2) dz, v € I'p(N)
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plus some “lower order terms”. Hetgz) := logn(2) + logn(N2), wheren, is the Dedekindy-function. The
differential f (2u(2) dzis notI'o(N)-invariant. It does satisfy a transformation law whichesminiscent of
(@2), but is not quitd’o(N)-invariant of order 2 in the narrow sense. If it were, theugabf the derivative
at 1 would be expressed as the value of the adttfainction of second-orddry(N) at 1. That could be
advantageous for the study bbf(1) in terms of the outstanding conjectures, especiallgesthere is now
evidence that a motivic structure underlies higher ordemo(seel[10] and [22]).

Here we show that it is indeed possible to obtain a seconerdig{N)-invariant function fromu(z)
provided we move to a fierent domain. This domain is the universal covering grouhvive will be
defining in detail ingG.1.

As will become apparent in the sequel, it is natural, in highrders, to unify the study of Maass forms
and that of forms on universal covering groups. The full défin of the higher-order Maass forms with
generalised weight on the universal covering graspliscussed irfld. Theoreni 6J4 then allows us to
translate results on the universal covering group to théogoas results on the upper-half plane.

A fundamental question is how “large” this space is. In theecaf holomorphichigher-order cusp
forms, the corresponding spaces are finite-dimensionalttEm@nswer can be given by computing the
dimensions ([[7] and]9]). In the present case, where theaatespace is not finite dimensional, &drent
characterisation of “size” is required. Such a charaaéda is proposed i§3.

Although our results imply that there are “many” higher ordiéaass forms, the proofs are highly
inductive and do not easily lead to explicit examples. $a3 and§6.4 we address this problem, by
illustrating various methods that lead to explicit examspté higher order Maass. Surprisingly, these
examples are derived very naturally from the theory whick developed in a completelyftérent context
in[2,[3].

Finally, a particular aspect of the proof that deserves tsifigled out because of its independent interest
is the definition of genuinely higher-order Fourier expansi Higher order automorphic forms need not
be invariant under the group fixing a cusp, so there is no aisvieourier expansion. To date, to address
this problem one had to partially revert to the classicairsgby imposing the somewhat unnatural extra
condition of invariance under the parabolic elements ofgtieeip. In§7, appropriate higher-order Fourier
terms are constructed, thus avoiding additional invagasanditions.

2. SIRUCTURE OF THE PAPER

In §3 we first discuss higher-order invariants for general gsoaipd modules. This allows a precise
definition of the concept of “as large as possiblaiakimally perturbable A first maximal perturbability
result for a general space of maps is also proved.

In §4, Maass forms o (both general and holomorphic) are defined and the first twio th@orems
of the paper(4]2 arld4.3) are stated. The section includestanded discussion of concrete examples of
low-order forms ors).

In the next section the universal covering grdbifs introduced and the basic facts abGuare given.

Maass forms on the universal covering group are definegffliand the counterparts of Theorems| 4.2
and4.3 for forms on the universal covering group are stafbd.section concludes with concrete examples
of low-order forms or(3.

SectiorlY is of independent interest. A theory of Fourieresgions for higher-order forms is developed.

The proof of Theoremis_4.2 and 4.3 is the contenf@f The proof involves the construction of two
spaces with support conditions. To deduce their maximaligeability we employ spectral techniques.
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3. HIGHER ORDER INVARIANTS

In this section, we discuss higher order invariants in garemnd then specialise their study to discrete
cofinite subgroup$ c PSLy(R). We introduce the concept of a “maximally perturbablefnodule to
make precise the statement that there are as many highelimraeants of a given type as one can expect.
A first maximal perturbability result in a general contexpisved.

3.1. Higher order invariants on general groups. The concept of higher order invariant functions on
the upper half plane is a special case of the concept “higidar onvariants” for any groufp and any
I'-moduleV. We work withright T-modules, an write the action as— vly. It should be clear from the
context when we refer to this general meaning ahd when to the more narrow meaning given in the

Introduction. We define thkigher order invariantanductively:
5.1 VL = VD = peV : VyeT, oy =},
' Vi = (heV @ VyeT, oy —1) e V).

We setv0 = {0}.
Let nowT be finitely generated and lebe the augmentation ideal in the group ridld’], generated by
v —1withy e I'. Afundamental role in the paper will be played by the map

mg : VI — homer (197119, VD).
To define it we first quote froni [5] (before Proposition 1.2):
(3.2) VR = homer (1\C[T, V).
Next, we note that9*1\19 is generated by
19+ (1= 1)+ (- 1),

withy; € I'. To each € VI'9*1 we associate the map ofi\19 sending this element t(y;—1) - - - (yq—1).
This map is well-defined becaugéy: —1)- - - (yq+1—1) = 0. In this way, we obtain a mapq from vrart
to

homcgry (17119, V) = homygry (14119, V1)
(since the action induced dfi'\19 by the operation of is trivial). It is easy to see that the kernelrof
is V9 and thus we obtain the exact sequence
(3.3) 0—s VET — VI ™ home (191019, V)

The mapmg may or may not be surjective and we will interpret the phraae large as possible” as
surjectivity ofmq for all g € N.

Definition 3.1. LetT be a finitely generated group. We will callamoduleV maximally perturbabléf
the linear mapng : VI — homeyry (1971\19, V) is surjective for allg > 1.

A reformulation of this definition which is occasionally @&asto use, uses the finite dimension
(3.4) n(T, g) := dimz(19°1\19).

V is maximally perturbable if and only W-a+1/vEa =~ (V)9 for all g € N.
In [9] higher order cusps forms of weigktfor a discrete group’ are considered in the space of holo-
morphic functions or$ with exponential decay at the cusps that moreover are anvawinder the parabolic
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transformations. The dimensions of these spaces are cethpatl generally turn out to be strictly smaller
thann(T, g). So the corresponding-module is not maximally perturbable.

A useful definition is based on the isomorphism k@il a1\ 19, vT) = Multd(r", V), the space of maps
'Y — VI inducing group homomorphisnis — C on each of their coordinates. For a finitely generated
groupT’, Multd(T", V') = Mult%(T", C) ®c VI where Mulf(T", C) is theg-th tensor power of the abelianised
groupI'® = /[T, T']. With this notation we define

Definition 3.2. Letq € N. For any groug” and anyi™-moduleV we call f € V&9 aperturbationof ¢ € VI
if there existsus € Mult(l', C) such that for allyy, - - - ,yq € I:

(3.5) flya—1)--0qg—-1) = w17 ¢
We call a perturbatiosommutativef u is invariant under all permutations of its arguments. If, nat
call it non-commutative.

3.2. Higher order invariants on subgroups of PSLy(R).

3.2.1. Canonical generatorsin this section we recall the “canonical generators” of dadidiscrete sub-
groups of PSE(R), and use them to show that certain modules are maximaltynbable.

LetT' c PSLy(R) be a cofinite discrete group of motions in the upper halfiplg. A system of
canonical generatorfor I" consists of

e Parabolic generatorBy, ..., P, each conjugate in PS(R) to + (éi) We shall assume that
has cuspsnpgr > 1.
e Elliptic generatorsEy, ..., En,, With ngy > 0. EachE; is conjugate tot(_cs?rfgjgj;;g%jg) in
PSLy(R) for somev; > 2.
e Hyperbolic generatorbly, ..., Ha,, with g > 0, each conjugate in PS(R) to the imagex (2 ),
t>1,t# 1, of a diagonal matrix
See.e.g, [15], Chap. VIl.4, p. 241, o [18]§3. The relations are given by the condition that eEé’fh: I
for j =1,...,ng and one large relation

(3.6) Py ProBE1- Eng [Hi, Ho] -+ - [Hoy-1Hz] = Id.

The choice of canonical generators is not unique, but thebeusm,,,, Ney andg, and the elliptic orders
V1, ..., Uny are uniquely determined Wy

Each group homomorphisin— C vanishes on th&;, and is determined by its values bR, .. ., Hp,
P1, ..., Prpa1s hence

(3.7) dimhom[,C) = npar—1+29.

We putt(l') = npar + 29, and denotéA; = Py,...,Aq -1 = Pno-1,An, = Hi, Aqi1 = Ho,ool
Ayr)-1 = Ha,. The groufd is generated b¥;, ..., En, andAq, ..., Aqr-1.

For the modular group we havey = 1, P; = i(éi) Neyi = 2, E1 = i(_ié), E, = +S := i(g_é),
g = 0, and hence homigeg C) = {0} andt(Iineg) = 1.

In the sequel, we will need a basis 18¢*\19. Arguing as in Lemma 2.1 in[5] we can deduce that the
elements

(3.8) b(i) = (Aiwy - 1)+ (Aig — 1),
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wherei runs over all {(I')-1)-tuples of elements @i, .. ., t(I')—1} form a basis of %*1\19. We do not give
a proof here, since it follows from the more general resuipBsition 5.3.

3.2.2. A first maximal perturbability resultWe view the space Map(C) of all maps fromI" to C as a
right T-module for the actiomby left translation.

Proposition 3.3. If I' is a discrete cofinite subgroup BSLy(R) with cusps, theap([’, C) is maximally
perturbable.

Proof. We construct functiong; € Map(l, C) for n-tuplesi from {1,...,t(I') — 1}. Firstly, letTy be the
free subgroup of which is generated by the elemeits 1 < j < t(I') - 1. Itis clear that there is a unique
system of function$g;} onT'y such that

g = 1,

adinl(Aj-1) = g,
gl(Aj-1) = 0 ifi(1)# ],
gi(l) = 0 iflii>1.

(3.9)

By |i| we denote the length of the tuple
We next setgi(y) = 0i(¢o(y)) for y € T, wheregg is the homomorphism defined ly(E;) = 1,
©o(A;j) = Aj. With the mapmg in (3.3) and for forii| = |j| we have on the basis elements[in [3.8),

(mqg@)(b()) = gl(A@w -1 (A —-1)
= S (AR — 1) (A - 1),
wherei’ is the tuple i((2), .. .,i(q)). Inductively we obtain

(3.10)

q
(3.11) qa)(b()) = 6ij = l_[5i(l),j(l)-

I=1
Hence theg; with |i| = g form a dual system for the generatd@). This implies that the imagleﬂqvnq+1
has maximal dimension(T’, g). ]

4. MAASS FORMS

We turn to spaces of functions on the upper half-plane thaiiago the classical holomorphic automor-
phic forms and the more general Maass forms. The first maurtsesf this paper are stated in Theo-
remd 4.2 and 413. 1§4.3 we give some explicit examples of higher order Maass $orm

4.1. General Maass forms. LetI" be a cofinite discrete subgrolipof the groupG = PSLy(R). For each
cuspk, we choosey, € PSLy(R) such that

1
(4.2) K = 00 andg,jll",(g,( = {i (0 :) ‘ne Z}

Here,I', is the set of elements &ffixing x. The elementg, are determined up to right multiplication by
elementst (§ 1) € G. We choose thg, for cusps in the samie-orbit so thatg,, € yg,Ie.

We further consider a generalisation of the actioconsidered in the last section. For a fixednd for
af:9— Cwe set

(4.2) f |k (‘Z‘g) @ = (cz+d)™* f((az+ b)/(cz+ d)).
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We finally set

(4.3) Ly = —y202 - yzaj + ikydy — kyd, + I%(l - g).
With this notation we have

Definition 4.1. Letk € 2Z andA € C.

i) Mk(T, 1) denotes the space of smooth functidns $ — C such thatLxf = Af and for which
there is somea € R such that

flge(x+iy)) = O@*) (y — o)
uniformly for x in compact sets iiR, for all cuspsc of I" .

i) &k(T, 2) denotes the space of smooth functidnsuch thatx f = Af and for which there is some
a € R such that

flge(x+iy)) = OEY) (y — )
uniformly for x in compact sets iiR, for all cusps« of I'.

(4.4)

(4.5)

iii) We denote the invariants in these spaces by
(4.6) Ex(T, 1) := (A andMy(T, 2) := My(T, ).

We call the elements dEy (T, 2) (resp. Mk(T", 1)) Maass forms of polynomial (resp. exponential)
growth of weight k and eigenvaluee C for T.

Remarks.

i) SinceLy is elliptic, all its eigenfunctions are automatically realalytic. (Seee.g, [14], §5 of
App. A4, and the references therein.) flis holomorphic, then it is an eigenfunction lof with
eigenvalues(1 - £).

i) The spaceM(T’, 1) is known to have finite dimension. The spdegT’, 1) has, for groupd™ with
cusps, infinite dimension. The subspaceER(T’, 1) corresponding to a fixed value afin the
bound O&¥) has finite dimension.

iii) In an alternative definition, suitable for functions tnwecessarily holomorphic, one replaces the
Maass formsf as defined above byz) = y¥/?f(2). Then invariance undef(4.2) becomes invari-
ance under the action

4.7) f |k (‘Z‘z)(z) = ekargCzd) £((az+ b)/(cz+ d))

and the eigenproperty in the terms of the Laplacian
(4.8) (—y°0% — y?05 + ikyd)h = ah,
The formulation of the growth conditions remains unchangdséalv antiholomorphic automorphic
formsa(z) of weightk give Maass form#(2) = y*/?a(z) of weight—k.
Our main result for general Maass forms 91

Theorem 4.2. LetT be a cofinite discrete group of motions$nwith cusps. Then thE-module&(T, 1)
is maximally perturbable for each&2Z and each € C.

In the course of the proof i§8 we will see that even if we start with Maass forms with polynal
growth the construction of higher order invariants willdass to functions that have exponential growth.
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4.2. Holomorphic automorphic forms. For evenk the spaceSy(I’, &), with A = (1 - ¥) contains
the subspac&/°(T", A) where the conditiorL,f = Af is replaced by the stronger condition tHats
holomorphic. In the alternative definition, conditidn_{$i8 replaced by the condition that— yf(2)
is holomorphic. The spacg]°(T’, A) is aT-submodule ofS(T, A). We also have th&-submodule
ML, A) = Mi(T, ) N ERUT, A) of Mi(T, k).

The spaceVl?(T, 4)" is the usual space of entire weighautomorphic forms foF, and&[°(T, A)"
is the space of meromorphic automorphic forms with singtigaronly at cusps. Sometimes, e.g. [ih [1],
the elements oﬁ{go'(r, )" are calledweakly holomorphic There the elements @& (T, A)" are called
harmonic weak Maass formgVe prefer to use the tertrarmonicfor Maass forms i€ (I", 0)' . (Note that
A #0fork+0,2.)

Our main result for holomorphic automorphic forms 9iis:

Theorem 4.3. LetT be a cofinite discrete group of motions $nwith cusps. The@[°(T', k/2 — k?/4) is
maximally perturbable for each & 2Z.

4.3. Examples of harmonic and holomorphic forms of order two and tree. According to Theorems
4.2 and4.B there are plenty of examples of higher order Miasss for cofinite groups with cusps for
which dimz hom(, C) > 1. Itis, however, not very easy to exhibit explicit examples

For the modular groufineg = PSLy(Z) the space honifif,og C) is zero. Hence it does not accept
higher order invariants. For the commutator subgrbig = [Imod Imod We will employ three diterent
approaches to exhibit full sets of perturbations of 1 (aseeffin Definitio3.2) of orders two and three.
A reader only interested in the existence of higher ordenfomay prefer to skip this subsection.

4.3.1. Holomorphic perturbation ofl. In [15], Chap. XI,§3E, p. 362, one finds various facts concern-

ing Teom- It is freely generated b = =(71) andC = =(_277). It has no elliptic elements, and one

cuspidal orbigom oo = Pé. The group [com) fiXing oo is generated by ((1) i’) We havet(Icom) = 3.

The space of holomorphic cusp forms of weight 2 has dimengienl. We use the basis elemeyft
(power of the Dedekind eta-function). The map

(4.9) H@Z) = —2xi f Z,,(T)4dT — _eer?/3 1 O(i3)

(o)

induces an embedding Bf,m\$ into an elliptic curve, which can be described@s\, with
(4.10) A = wZlp], @ = x/’1(1/6)/(6V3I(2/3)), p = €3,
(See computations i§15.2—-3 in[3].) The mapd maps$ ontoC \ A, and satisfies foy € T;om

')/DO
(4.11) HOD = HD +A0).  AG) = 2 f n(x)* dr,

whereA(C) = pw andA(D) = pw. So the latticeA is the image oft : Tcom — C, and homlgom, C) =
Mult}(Ieom, C) has, 1 as a basis. We note that the kernel Rgié a subgroup with infinite index in
Icom; it is in fact the commutator subgroup B The element: (éf) generating the subgroup &f,m
fixing o is in ker(1). Since kerg) has no elliptic elements, composition withgives a bijection from the
holomorphic functions o \ A to the holomorphic ken)-invariant functions or.

Clearly, H is a holomorphic second order perturbation of 1 with lineanfA. It is also aharmonic
perturbationof 1, i.e., a perturbation which is harmonic as a function. dpjugation we obtain the
antiholomorphic harmonic perturbation of 1 with linearrfon.
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According to Theoreri 413 there should also be a holomorpdtorsd order perturbation of 1 with a
linear form that is linearly independent &f Here we can use the Weierstrass zeta-function

4.12) LU A) = %+Z/(u_lw+%+%).
WEA

See,e.g, [13], Chap. 1,§6. It is holomorphic orC \ A and satisfieg(u + w; A) = £(u; A) + h(w) for all

w € A, whereh € hom(A, C) is linearly independent ab — w. (The classical notation fdr is . We
write h to avoid confusion with the Dedekind eta function.) Pulllmeck this zeta-function t§ we get a
second order holomorphic perturbation of 1

(4.13) W@ = ((H@):A)
with the linear formy — h(A(y)). The Laurent expansion of the Weierstrass zeta-functi@nssarts with
Z(u; A) = u™t + O(U). HenceW has a Fourier expansion &t starting with
-1 . .
(4.14) W(2) = - e ™23 L O(e?).

This shows thaWV has exponential growth at the cusps.
We may carry this out also for holomorphic forms of order & obtain the following commutative
perturbations of 1 of order 3:
f | H@®? H(2W(2) W(2)?
i 22024 | A@thod)+(hod)®1|2hod)®(hol)
We know that there also exist non-commutative holomorpaitysbations of order 3. To find an explicit
example, we have to work af, since the groug acting onC is abelian.
The closed holomorphic 1-forms
w=-2rnin(t)*dr and w;=-27iW(r)n()*dr
on $ transform as follows unddt;gn:

(4.15)

(4.16) wy = w, wly = w1+h(Ay)) w.
For an arbitrary base poigg € $ we put

V4
(4.17) K@) = f w1.

7y

This defines a holomorphic function gnthat satisfies foy € I'com:

Kily - )@ = f o

and hence foy, § € Tyom:

<o-16-00 = ([ [Mor = [oir- [T on

= h(A()) f w = h(a(y)) A(9).

Thus, we have a holomorphic third order non-commutativéupleationK of 1 with non-symmetric mul-
tilinear form (o 1) ® A. Since holomorphic forms are harmonic in weight zero thestpbations are also
harmonic perturbations of 1.
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4.3.2. lterated integrals. The construction of the third order forid in (4.17) is closely related to the
iterated integrals used in [10] to prove maximal perturligbof spaces of smooth functions.

The idea is that we have two closEginvariant diferential forms o, dH(2) = w = —27i n(2)* dz
and

wo = dW(2) = —p(H(2)d(H(2),

wherep(u; A) = —diug’(u; A) is the Weierstrasg-function. Ift — z(t), 0 <t < 1is a path inH from zy to
Z1, then

1 to 1
f f wolz(ty) w(zty)) = f (W(z(tz)) — W(z0)) dH(2(t2))
=0 Jt;=0 =0

1
= ft-o W) n(z(t))* Z (t) dt - W(zo)(H (z1) — H(z0))
= K(z) - W(z0)(H(z) — H(z0))

depends only orzg andz;, not on the actual path. For a fixed base painthe holomorphic function
7z — W(20)(H(z1) — H(20)) is invariant of order two. So up to lower order terms the iramtrK is given
by an iterated integral, as in (3) 6f[10]; see also [4].

4.3.3. Differentiation of families.We start by considering a general finitely generated gioapting on

a spaceX. We will use the notatiorf|y(x) = f(yx) for the action induced on functions defined XnWe

consider a family of characters bfof the formy,(y) = € "), wherer - a(y) = ria1(y) + - - + rnan(y),

a,...,an € hom(,R), r varying over an open skt in R". In this wayy, is a family of unitary characters.
We consider &> family r — f; on a neighborhootd c R" of 0 of functionsX — C that satisfy

(4.18) i) = xiM H(¥)  (yel).

We assume thaty is the trivial character and thdg is al'-invariant functionf.
We now seth(x) = dr fr(x)|r:O, for one of the coordinates @f The transformation behaviour gives
h(yx) = iaj(y) f(X) + h(x), or, rewritten,

hly —h = iaj(y) f.

The functionh is a second order perturbation 6f with ia; as the corresponding element of hdntt).
This can be generalised:

Proposition 4.4. For all multi-indices ac N" the derivative
f@(x) := 26 ()| _,
is a commutative perturbation of f with ordér+ |a.
We use the notation®® = df* - --df" andlal = a; + a + - - + an.

Proof. We use induction on the length of the multi-index. The casi = 1 has already been handled
above. Fotal > 1 we have

90% = 3 (o) (5] 199,

O<b<a
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whereb runs over the multi-indices with @ bj < aj, where(?) = [T, (gj) and wherer(y)® = [1; aj(»)°.
Hence
(4.19) Ol -1) = 3 GaG) (3] 1O

O<b<a

is a linear combination of higher order forni€ of orders 1...,|al. So f® is an invariant of order at
most 1+ |al. Furthermore

@200 -1 bra-1) = Y (o) 0(F) 10102 - ) O - .

O<b<a

By induction assumption, th&”|(y, — 1)- - - (yjq — 1) are multiples off (zero if|b| < a| - 1). Sof@ is a
perturbation off.
For the commutativity of the perturbation we note by indowetihat, for allys,...,9s€T

(91-Dig2-1)-- 1)—2( D7 (Gugi g - 1),

i1<ip<+<i

where thd run through the sdftl, ..., s}. Application of [4.19) leads to

@] - 1)-- (7|a4—1)—2( DS D a0 ) 10

i1<ip<-+-<i) O<b<|al

Sincec is @ homomorphism, the facta(yi, yi, - - - vi,) does not depend on the order of the Hence we
may rewrite the expression as follows.

laj-I
£@2 - 1)-- (7|a4—1)—2( V2SS Gl y.l))a‘()f(b)

i O<b<|al
wherei in the sum}}; runs over the subsets ¢f, .. ., |al} with | elements. This is an expression that is
invariant under permutations of thg, which shows that @ js a commutative perturbation. m|

Remark. Propositio 44 shows that commutative perturbations dae as infinitesimal perturbations of
a family of automorphic forms. That is our motivation to use wordperturbationin Definition[3.2.

Application to harmonic perturbations of 1. We use the method of flerentiation of families to produce
explicit harmonic higher order forms fokym of order 3. We employ families studied in [3].

SinceTeom is free on the generato® = +(_2 1) andD = = (1), the character group dtom is
isomorphic taC* x C*. We can parametrise the characters by

(4.21) Yow(y) = 0w

where ¢, w) runs throughC?, and wherel € hom(zom, C) is as defined in(4.11). We are interested only
in (v, w) in @ neighborhood of @ C2.

In [3], §15.5 it is shown that there is a meromorphic Eisenstein faijb, w, s) of automorphic forms
for Teom, With the characte,,, and eigenvalug — < for wg = —y? (8)2( + 83) (In [3] the discussion of
the family E is made in the context of families of automorphic forms ofyitag weight which are thus
defined on the covering grodpom. However, in§15.5 the weight is zero, and the automorphic forms are,
in effect, on the discrete grodpgm.) The restriction tes = % exists ([3],§15.6) and forms a meromorphic
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family (v, w) — f(v, w;2) onC? such thatf (v, w; y2) = xuw(y) f(v, w;2), andLof (v, w;2) = O for the dense
set of ¢, w) at which f is holomorphic. There is a meromorphic famity ) — h(v, w; -) on C, such that
f(v,w;2) = h(v,w; H(2)), satisfyingh(v,w;u + 1) = A hy, w;u) ([3], §15.1-6). Chapter 15 of [3]
gives a complicated but explicit construction (obtainethwvitie help of D.Zagier) of such a familywith
Jacobi theta-functions.

Specifically, in§15.6.11 the functiom is expressed as a sum

(422) h(Ua w; U) = G(v+w)w/2ﬂ(u, w) + G—(v+w)w/2ﬂ(_a —l)) s
where the functiorG,(u, w), for u ¢ Z and O< Imu < 3w V3 is given by

(o)

(4.23) Guuuw) = > 1

ou+mpgt-1

§y+m

with g = —e"”@, &= gZiv/@ andn = e @ V3 \We consider this fou, w, andu near zero, but not equal to
zero. Hencey ~ 1 butn # 1, and|g| < |¢| < 1. The latter inequalities imply absolute convergence ef th
series. We shall derive the Taylor expansioh@f w; u) := vw h(v, w; u) in terms of ¢, w) near zero up to
order two, from which we can obtain higher order forms by Psijon[4.4.

The term ofG,(u, w) with m= 0
1 &
un=1
has singularities gt = 0, and, due tonf—l, also atw = 0. This term has the following contribution to

h(v, w; u) in (@.22).
(4.25)

(4.24)

o eiu (v+w) o eiLT(v+w)
’(D’(U+w)e—ww\/§_1 - w(v+w) evw\/§_1

We write the corresponding contribution i, w; u) = vw h(v, w; U) as follows.

é vw (e—wm \/g(e(vﬂv)m V3 _ 1)
@ (e vz V3 _ 1) (@@ V3 - 1)

(eiu(v+w) _ 1)(evw\/§ _ 1) ~ (eiﬁ(v+w) _ l)(e—ww\/ﬁ _ l)
" v+ w v+ w )

The last three quotients are holomorphic as a functiom-ofv in a neighborhood of 0. We replace them

by their Taylor expansion up to the term« w)? and after that the Taylor expansion in botandw up to

order 2 is computed. This gives

v+w

) - 1 1
wz\/é(1+IUU+IUw— Euzv2 2U2w2
(4.26)
_ f’(__ — miwU + miwu + —(u + uz)) vw)
23 V3

In the terms withm # 0 in (@23) we write¢ = e2u/@ & = g2l , - guwoV3 ;) — goV3
q= —e7 V3, andu = (v + w)w/2x. We find the following contribution tb(v, w; u):
i( ow  EMHH L gm L gmn LW gmu )
Amt+pmg" -1 p-mmag™-1 m-pnpq"-1 -m-unpgm-1/
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This contribution is holomorphic near= w = 0. Its expansion starts with the term. So for third order
forms we need only the contribution kg0, O; u):

o 1l &m (@M & (g
(4.27) Zﬁ(qm—1+qm—1+qm—1+qm—1)'

m=1

Each of these terms gives a convergent series on the regidm < %w V3.
Commutative perturbationdn this expansion we find various higher order harmonic fotinaé we have

seen above. Denotinfj= w‘f’rs we find:
termof| onC| on$
1 f f (constant function
v | ifu |ifH®@
(4.28) w | ifu |ifHE
v? ‘Tf u? ‘Tf H(2)?
w | SR LAD

The codficient ofvw gives a third order form

. m (.U V3., u iv3,
(W) = (- ()
(4.29) +S(U) + S(@p - ) + S(-1) + S(wp + ),
) . b eerimu/m B 1 i
with  S(u) := n;m p = §+§\/§.

By B11(2 = b11(H(2)) we denote the corresponding harmonic third order pertimbatf 1 on$. The
way Bj 1 has been derived, together with the proof of Proposfiiohendures that it is a perturbation of 1
with a multilinear form that is a multiple of ® 1 + 1 ® A.
However,by 1(u) is represented by (4:29) only on the regiordmu < 3w V3. In [3], §15.3.5, the
image undeH of the fundamental domain
3
U (é :) Smod

n=-2
(where®mog is the standard fundamental domain of the modular groug)as/s to be the regular hexagon
with centre 0 and one cornerat%(e”‘/3 + 1)w. Only the upper half of this hexagon is in the region where
we have an expression fbf 1. We shall continue this function to the entite
We first note that the series in_(4129) defini®(u) converges absolutely for o> 0 yielding a holo-
morphic function in that region. To exter®{u) to other values we use the following identity, valid for
Imu> 3w V3:

© eerim(u/w+p) x© e2nimu/w

m=1 m=1

= S(u+ @p) + log(1 — /™).

Via this identity, we can defin&(u) in the region Inu > —3w V3. This extension 08 is multivalued,
since it depends on the way in which we extend the funatien log(1 — €¥7%/#), which is given by the
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second series i (4.80) only for lon> 0. However, the sum
(4.31) S(u) + S(-U) = S(u+ @p) + S(—T + wp) + 2log|l — e1/@|

is single-valued on Im > —3w V3, with logarithmic singularities at = @n, n € Z. Applying @31)
repeatedly, we can exter®{u) + S(-u) to all C to obtain a harmonic function with singularities at the
points inA = @ Z[p] which have non-positive imaginary part.

Via (4.29), we then obtain the continuation of the functign. It is harmonic orC\ A, with logarithmic
singularities at all points aA.

Let us explicitly check the transformation behaviour: ®ifcis periodic with periodw (and, equiva-
lently, S(u+ @wp) = S(u-w@p)),

bri(u+ @) —bya(u) = %((_ 1_£) _(__%%2
a V3., l‘/§2
+(5+1 ) —(_ )
- %(%+l—i\/§+g+l+l\/§) (U+U+@);
b11(u+ @p) — bra(u) = %((%Jr%)z (;_%5)2
(-

— 2log|1 - €/ | + S(-u) + S(U + @) — S(wp — U) — S(wp + 1)

w20 _1,2u )
= @(p(w )+ (—+p)
— 2log|1 - €™/7| + 2log|1 — e /7|
2n pu+ pu 2n L u u
= —1l+—)-2Zniu-w/w = —A+p " —+p—).
\V3 \V3 w w
Let us denote by, the translation byv € A, and use the notatiors o(u) = u, bo1(u) = u. With the
i = =2 Y S
notationsf = ==~ = =5 = —f@we have
(4.32) brol(To - 1) = w,  boal(Ty - 1) = w
b11l(T — 1) = a(byo+bos1 + @),
b11l(Tyw — 1) = a(obio +pbo1 + @),
bi1(Te — 1 = 2aw = -2f @,

a(pw +pw) = (o pow+w- pw),
2aw = -2f(pw)(pw@).

bl,ll(Tw - 1)(pr - 1)
bl,ll(pr - 1)2

Since A is commutative we need not considar (T, — 1)(T — 1). We conclude that the pull-back
—f71By1 = —f~tby 10H is a harmonic commutative perturbation of 1 for the muléitinformu determined
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by the following values at the generat@sandCD of I';om:

2% ifg=h=CorCD,
(4.33) pg.hy = 155 0T T o )
w ifg=C, h=CD, orifg=CD, h=C.

We have used the values #fgiven below [(4.1]1).) With these values at the generajorincides with
A® 1+ A® A as predicted above by the w8y 1 was constructed.

Non-commutative perturbation. Proposition 4.4 shows that fikrentiation of families produces only
commutative perturbations. However, by Theoien 4.2, theeenon-commutative third order harmonic
perturbations of 1. We can obtain such perturbations fBamupon decomposing it a8, 1 = A+ Bfor a
holomorphic functionA and an anti-holomorphic functioB.

Specifically, in view of [[4.29), for those € $ for which H(2) is in the upper half of the fundamental
hexagon forIC/A, we can set

o n (H@ V32
(4 34) A(Z) = 2—\/§ + %(? — T) + S(H(Z)) + S(TD’p - H(Z)) s
' o x (H@ iV3? o, —— _
B(Z) = 2—\/§ + %(? + T) + S(—H(Z)) + S(wp + H(Z)) .

As shown aboveB;1|(y - 1)(6 — 1) = —f 1® 1 - f 1® 4. Hence,
Ay-1)6E-1) = -Bl(y-1)©E-1)-fiel-fi®

gives an equality between a holomorphic and an antiholohiofpnction, and therefore, theresis I'? —
C such that

Ay-1)6-1) = v(3.6), Bly-1)@ -1) = -fA101—fA®1-v(y,6)

for all y, 5 € . This implies thatA andB are third order invariants, and that Mult?(T’, C).
To determine the bilinear form, we recall thati(C) = pw andA(D) = pw = (1 - p)w. We consider
the following four functions:

AC-1)+fpaH+Z), BI(C-1)+fpaH+Z),

(4.35) 2 — 2
AD-1)+flooH+%), B((D-1)+fooH+ %),

The functions on the left are holomorphic, and those on tijlet re antiholomorphic. We consider the
sum of the two functions on the first row, and denote H(z). With (4.32):

B11l(C - 1)@ + fpoH@ + fooH@ + fo?
b11/(Tow — 1)(U) + fa@(pu + pUl) + for?
—fw(pu+ pu + @) + fw(pu+ pu) + fw? = 0.
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Similarly the sum of the two functions on the second row gives
B11/(D - 1)@ + f(owH(2) + pwH(2) + @?)
= b11l(Tsw — 1)(U) + fw(ou + pu + w)
bL1l(Te — DT, = bral(Tpw — DT, + fw(ou + pli+ @)

(—fou+ U+ @) + fo(ou+ pu + @))T,L + fo(ou + pli+ m)

fo(-u+pw —U+pw — @+ p(U-pw) + p(U-pw) + @
+pu+pli+w) = 0.

The sums of the rows il (4.B5) are zero, so the individualtfons are constant. We do not try to determine
these constants.
For Awe have

A(C-1)(C-1) = —f(pwH|(C-1)+0) = —fpwA(C) = —fA(C) A(C),
A(C-1)(D-1) = —f(pwa(D)) = -fA(C) (D),

A(D-1)(C-1) = -fA(D) A(C),

A(D-1)D-1) = —fa(D) A(C).

We conclude that f~1 Ais a non-commutative holomorphic third order holomorphéctprbation of 1
with multilinear formA ® 4. Then the multilinear form of the anticommutative third ergerturbation
of 1 given by—f1B=—f1(By1-A)iS(A®1+101)-101=11 1.

5. UNIVERSAL COVERING GROUP

5.1. Universal covering group of SLo(R). To define the universal covering group of fR), which is
also the universal covering group &f = PSLy(R), we first note that, as an analytic variety, .8R) is
isomorphic to$ x (R/27Z), by the Iwasawa decomposition expressing each elementgR¥yLniquely

as a product
VY XAly\ [ cosd sind
0 14fy) \-sindcosd)’
with X + iy € $ andd € R/2xZ. Left multiplication by(2§) € SL(R) amounts to

az+b
(5.1) @9 + 217Z) (Cz+d

Here,j((23).2 := cz+ d. This describes an action of §) on $ x (R/2rZ).
We define for each? ) € SLo(R) the operator

9 - arg(j((ig),z)) +21Z).

52) (%) 20 o argi(25) 2

cz+

from $ x R to itself, where we choose the argument such thak arg(cz+ d) < n. We note that the map
g — g is injective.

Definition 5.1. The universal covering group of G is the group of operator$ x R — $ x R generated
by the operatorg in (5.2) for allg € SLy(R).
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A lengthy but routine calculation shows

Lemma 5.2. If the vertical maps in the diagram

HOXR —— HXR/Z —— SL(R)
d | d
HOXR —— HXR/Z —— SL(R)

are given by(.2), (5.1)and by left multiplication by respectively, then the diagram is commutative. (The
last horizontal maps are defined by the lwasawa decompnositio

Suppose now that g, - - - gn is the identity as an operator @xR. Thenz — g1g- - - - gnzis the identity
operator or$. S0gi1g2---gn € {l,—1} € SLy(R). By Lemmda’.2, it is impossible thatg, - - - gn = —|
while g1g2 - - - gn is the identity operator. Sgig,---gn = |. This implies that the map ¥~ g on the
generators extends to a group homomorphism

pr, : G — SLy(R).
The composition of prwith the natural projection SI(R) — PSLy(R) gives a map
pr:G — PSL(R).
We single out the following following families of elements®.
a) Forx e Rwe putn() = (3 1) in G. This induces an injective group homomorphismR — G.

b) Fory € R* we seta(y) = (”gz ,32)- This induces an injective group homomorphiam®; — G.
c) Ford € R, we set
zcos?d + sing

_ o oeer oy _ (i
(5.3) k() (z 1) = (—ZSinﬁ " COSﬁ’ﬁl + 9 — argEe” (-zsin¥ + cosy))).
This definesk(®) e G satisfying psk(®) = (_%% >%). For fixed ¢ #1) € $ x R, the quantity

k()(z 1) is real-analytic in?. If both ¢ and®’ have values near zero thk@ + ¢') = k(F)k(),
since ps is locally an isomorphism. By analyticity this relation entls to alk}, 9’ € R. So we
have a group homomorphist: R — G. The kernel of the composition po kis 21Z. For
eachn € Z the elemenk(nr) acts as%,1#,) — (z ¢, + 7n). This implies thak is an injective
group homomorphism. Although it satisfies) = (_S) 5t7) for all # € R, the relation

- - sing cosy¥

(oo md) = k() holds only ford € [, 7).
With these definitions and notations we deduce some bagicdaouiG.

Centre ofG: The element&(zn) with n € Z form the centr& of G.

Transitivity of action ofs on$ x R: This is implied byn(xX)a(y)k(®) (i, 0) = (x + iy, 9) for all x+ iy € §

andd € R.

Generators ofc: The elementsi(x), a(y) and k() generateG, and each element & can be written

uniquely amn(x)a(y)k(d). This is a consequence of the relations

(5.4) ayn(x) = n*¥aly)  and

(5.5) k@n(Xaly) = n(xs)alys)k( — arge? (-zsind + cosd)))

With 7= X + iy andx + iyy = 29SSy
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G = $ xR. Because of the last two facts, we can iden€@fyvith $ x R as analytic varieties. Furthermore,
the group operations are analytic with respect to the straaif$ x R as an analytic variety. S8 is a Lie
group. The maps pr and pare covering maps. One can show that any covering eff§lfactors through
G, henceG is the universal covering group of S(R).

Sectiong — ¢: This is a homeomorphism fer near the unit element of S[R), but it is discontinuous
at(gg) € SLo(R) with ¢ = 0 andd < 0. This section is not a group homomorphism but instead tiseaie
Z-valued 2-cocycley on SLy(R) such thayg: = ggik(2rw(g, g1)) for all g, g1 € SLy(R). See Theorem 16
on p. 115 of[[16] for an explicit description of this cocycleach element of has a unique decomposition
as gk(2rn) with g € SLp(R) andn € Z. In this paper we will not use this description of the group
structure ofG. We work with the interpretation as a group of operator$ R, and occasionally use the
“one-parameter subgroups; a andk.

The action of5 on $* := $ U {cusp$ is given byyz := pr(y) z

5.2. The Lie algebra of the universal covering group. The direction of the three one-parameter sub-
groupsn, a andk at the origin determines elements of the (real) Lie algefraf G. The groupsG,
SLy(R) and PSEk(R) have the same Lie algebra, since they are locally isomorphine Lie algebra ele-
ments corresponding tg a andk are, respectively,

_ (o1 1. (12 o0 (01
59 R L e )

The Lie algebra acts on the functions @Grby differentiation on the rightY F(g) = 8:F (g exptY ))k-o for
Y € gr. This action can be extended to the complexified Lie alggb#aC ®r ar, and to the universal
enveloping algebra of. All the resulting diferential operators commute with the action®y left
translation. With the identification & as$ x R we have in the coordinates given by iy, 9):

X = 0Ok, H = 2yo0,, W = 0y,

E* = H+i(2X - W) = é7(2iydx + 240, — idg),
(5.7) E- = H—i(2X - W) = e2%(=2iydy + 240, +idy),
1, . 1 i
w = -JE°E +ZW2¢§W = —y?0% — y*0% + Yy .

TheCasimir operatorw generates the centre of the enveloping algebra ®he corresponding fferential
operator commutes with left and right translation€sin

5.3. Cofinite discrete subgroups.To a cofinite discrete subgroup of PSLy(R) we associate its full
original T := pririn G. This gives a bijective correspondence between cofiniteretis subgroups of
PSLy(R) and cofinite discrete subgroups Gfthat contain the centrg = (), where? := k(r). The
projection pr induces an isomorphidre I'/Z.

As an example we consider theodular grouplineg = PSLy(Z), with corresponding groupimeg < G.
It is known that PS(Z) is presented by the generatds= +({7g) andT = +(g7) and relations

S2=(TS)?=1.
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Sets:= k(-7/2) = (?1’?(1:) andt := n(1) = (g1) with pr(s) = Sand pr) = T. Thens’ = k(-m) = { " €
Z, sosandt generatd moq. The relationS? = | is replaced by the centrality af. We have

ts(i,0) = t((l)_é)(i,O) = (éi)(i,—argi) (— -n/2—-arg) = ( )(I 0) = (i+1,-7/2).

Sots= (3 ‘(1)), and it corresponds td ¢ 1, —7/2) in $ x R = G. Hence

(ts)® = ts(i o) (i+1,-7/2) = ts(— —g—argd+1))
1-1 |+1 3r 1 3r
o [ LR R
= (i,-n) = ¢t = &.

The conclusion is thdt,,oqhas the presentation with generateendt and relations®t = ts? andtstst= s.
This implies that the linear space hdmq6g, C) has dimension 1, and is generatechoyt - §, @ : S+ .
For reasons that will become clear later, we take this bésisent, and not an integral-valued one.

5.4. Canonical generators. The canonical generators Bfinduce canonical generators laf
° EIemeNntgrl, ..+, Ty, Of the formz = g, n(l)é;j1 fixing a system of representatives . . ., kn,,,
of theT™-orbits of cusps.
o Elementsey, ..., en, conjugate inG to k(z/vj) with vj > 2.
e Elementsyy, ..., 72, cOnjugate inG to elements(t;) with tj > 1.
e The generatot = k(x) of the centreZ of I".
The relations are:
[ is central

(5.8) g =¢forl<j<ne,

Ty M1 Englnsm2l - - [m2g-1,112g] = ¢
The integer g — 2 + npar + Nyl is always positive. For these facts see [3,3.
If ney > 0 or if 2g — 2+ npgr = 1 @andng = 0, we do not need as a generator. e = 0 the groud’ is

free onmy, .. s a1 1115+ -5 12g» l.

Among the canonical generators we single out the followilegnents:a; = 71, ..., an,-1 = -1,
Unger = 1ML - - cxt(r) 1 = 12, ayr) = ¢. (We recall thatt(I') = npar + 29.) The a; together with theg;
generatd’, W|th g = / and the centrality of as the sole relations.

2g—2+NpartNell .

For the modular groupf“mod we havenpy = 1, Ngy = 2, g = 0, andt(Iimog) = 1. We may take
m=t=n(1),e =t"1s1 ande, = st = k(r/2) = p~k(n/3)p, with p = n(—-1/2)a( V3/2).

By | we now denote the augmentation ideal of the group (ﬁ[f@i In C[I'] we have the elements
(5.9) b(i) = (aiw-1) (@@ -1)  ie{l....(O)

We allow ourselves to use the same notation aE1d (3.8), sinoenow on we will usd’. The centrality
of £ allows us to move{ - 1) through the product. So it flices to consider only-tuplesi for which all
i(1) = t(I') occur at the end. Sudptuples we will calll"-g-tuples
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Proposition 5.3. A C-basis of f*1\19is induced by the elements
(5.10) b(i) = (ei) - 1) (@i — 1),
wherei runs over thd -g-tuples.

Proof. The ideall9 is generated by the products of the forp & 1)--- (yq — 1) with y1,...,7q € I.
(Lemma 1.1 in[[5].) With the relation

(yo-1)=@-1D0-)+(-1)+(-1),
we can take the; in a system of generators, for instangg. . ., ayr), €1, . . ., &n,,- FOr the elliptic elements

gjwe use/ — 1= Z’li":_ol 8‘;(8J‘ — 1) = vj(gj — 1) modI? to see that the/j suffice. (Note thab; is invertible
in C.) Sinceayr) = ¢ is central, we can move all occurrences’ef 1 to the right to see that thgi) in the
proposition generatet1\ 19,

To see that the(i) are linearly independent ov€rwe proceed in rewriting term&ai1)—1) - - - (@i —1)
by replacingé € R := C[I] by n+ n with n € C andy € I. In this way, we express each element bf
as aC-linear combination of products offactorsej — 1 plus a term i, with N > g. To eliminatel™
we consider thé-adic completiorR of C[I7], with closurei® of 19. Each element of > | is a countable
sum of products of a complex number and finitely many factgrs- 1. Sincel @1\ and 19*1\19 are
isomorphic, it stfices to prove that thie(i) are linearly independent as element§®#\ 9.

We suppose that there axee C for all g-tuplesi such that

(5.11) Z Xi(ai = 1) (aig = 1) € jo+t,

We can write this element ofi*1 asy) ¢ & with ¢ € C, andéj running over the countably many products
(@) = 1)- - (ajm) — 1) with m-tuples from{1, ..., t(I')} for all m > q.

We form the ringN = C(Z4, . .., Zyr)) of power series in the non-commuting, algebraically inaejeat
(overC) variables=y, .. ., &, and the two-sided ided in N generated by the commutators

Ej Eyn) — Eyr) Ej forl<j<t).

The quotient ringM := N/Z is non-commutative if(I') > 3. The relations between the generators
imply that there is a group homomorphigm I' — M* given bye(ej) =1+ Zjfor1 < j <t(I'), and

— Ui 1/U. —

1>0

This group homomorphism induces a ring homomorphjsnik— M, for which

$(&) = Plaiy - Ddlaip) — 1)+ - @laigy — 1) = E' = iy Zig) - - i -

Zmai _ @(Zm) = @(Zj:cjgj) - jZCjEj’

wherei runs overg-tuples, and runs over countably many tuples with length strictly lartfemqg. Hence
all x; (andg;) vanish. m|

Now we have
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So forI" with cusps the trivial-module1%+1\19 is always non-trivial. The dimension is equal to the
number of alll’-g-tuples. Thus we have

. 1 if t(T) = 1,
(5.12) dim(17 1% = o) = Y aM-1" = {q+1 if t(I) = 2,
m=0 WL ity > 3.

We obtain for eacli-moduleV an exact sequence

0—s Vf“,q N Vf",q+1 E} (Vf“)n(f",q)

with
(5.13) (mgf); = fl(ei)y— 1) (eig — 1)-

For the modular group, we havgs = 1, ngy = 2 andg = 0, hencel(Imed) = 1, andn(fmod, q) = 1 for
all g. So in contrast tdmeqg, for I'nog We may hope for non-trivial higher order automorphic forms.

6. MAASS FORMS WITH GENERALISED WEIGHT ON THE UNIVERSAL COVERING GROUP

6.1. The logarithm of the Dedekind eta function. In the introduction we mentioned that one of the
motivating objects for the study of higher order forms onuhesersal covering group is the logarithm of
the Dedekind eta function. Its branch is fixed by the seconttiefollowing expressions:

(6.1) 0gn(@ = T2+ Y log(L- &) = T2 N o e,
n=1 n=1

whereoy(n) = Zd|n d“. One can show that its behaviour undiggg is given by

6.2) logn(z+1) = logn(@ + ’lT—'Z logn(~1/2) = Iogn(z)+%logz—ﬂzl.
Except for the term} log z this looks like a second order holomorphic modular form ofgliezero. In
the next few sections we make this precise by generaliziagctincept “weight” of Maass forms, and
replacing the grouimeg by the discrete subgroupyeq of the universal covering group of $(R), using
the notation we introduced in the last section.

We first define the following function o$) x R:

(6.3) L(z ) %Iogy+ 2logn(2) +i¢.

With (6.2) we check easily that(y(z %)) L(z 9) + ia(y) for y = tandy = s, wherea : Iinog — YA
the group homomorphism at the end$®3. ThusL has the transformation behaviour of a second order
invariant in the functions ofs for the action by left translation.

Routine computations show thiatsatisfiesE"L = 0, WL =i andwL = 3.
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6.2. General Maass forms on the universal covering group.The considerations on the functihnon
G induced by the logarithm of the eta functions lead us to tHmitien of Maass forms of®.

We first establish appropriate notions of weight and holguhizity. We say that a functiofi on G has
(strict) weight re C if f(z 9) = € f(z 0). Such a function is completely determined by the function
f-(2) = f(z 0) onH and satisfieW f =irf.

The left translation of by §, with g = (2 7) € SLx(2), induces an actiohof G on the space of functions
of strict weight onG. On the other hand5 acts on the space of corresponding functifinsn $ via

)

The latter action corresponds fo (4.7) whrea Z. In general, this is an action &, not of SLy(R). The
map f — f, defined above on the space of functions of strict weight is trgpuivariant in terms of these
actions.

Many important functions o, such asL, are not eigenfunctions of the operatdt, but they are
annihilated by a power diV. This suggests the following definition.

az+b

g = e ook f(——

Definition 6.1. An f € C*(G) hasgeneralised weight € C if (W — ir)"f = 0 for somen € N.

Thus,L and all its powers have generalised weight 0.
Next, holomorphy of, = ;~"/f, corresponds to the propery f = 0.

Definition 6.2. We call any diferentiable functiorf onG holomorphic(resp.antiholomorphi¢ if E™f =
0, (resp.E*f = 0). We call any twice dferentiable functiorf onG harmonicif it satisfieswf = 0.

Note that, for functions of non-zero weight, this definitiohharmonicity does not correspond to the
use of the word harmonic in “harmonic weak Maass forms'eig, [1].
With these definitions we set

Definition 6.3. Letk, 1 € C. LetI be a discrete cofinite subgroup @f
i. The spac&y(T, 1) consists of the smooth functiors: $ x R — C that satisfy:
a) (Eigenfunction Casimir operator}uf = Af.
b) (Generalised weightYW — ik)" f = 0 for somen € .
¢) (Exponential growth) There exista € R such that for all compact se6and® c R and for all
cusps of I we have

(6.4) f(Gu(x+ 1y, 9)) = OY)

asy — oo uniformly in x e X andd € 0.

B, ) = &b 0
(Wherel acts by left translation). The elements Bf([, 1) are calledMaass forms ot of generalised
weight k and eigenvalugfor I'.

The spacé, (T, A) is infinite dimensional. Further, sinceandW commute with left translations i6,
the spac&y(T, 1) is invariant under left translation by elementsof

Whenk € 2Z, the spaceEx(T, 1) can be identified wittEy (I, 1). We prove the following slightly
stronger statement.
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Theorem 6.4. Let " be a cofinite discrete subgroup@f and let kA € C. If ék(f", /1)2 contains a non-zero
element f, then k 2Z anddy f(z 9) = ikf(z 9).
If k € 2Z, then the elements & Ex(T", 1) correspond bijectively to the Maass formsFEy (T, 1) by

f(z9) = ¥’ F(2) .

So the condition of-invariance implies that the weightis even, and that the weight #rict, i.e.,
condition b) holds witm = 1.

Proof of Theorer 614Any smooth functionf € C*($ x R) satisfying b) in Definitio 6.3 can be written
in the form f(z 9) = 215 ¢;(9) € 9, with ¢j € C*(8). o
If such a function is left-invariant undét, then the action dk(rxm) € Z c T', implies for eachm € Z:

gikm Z i@ (9 + mm)) = Z (29’ forallme Z.
j i

With induction this givesk € 2Z andy; = O for j > 1, hencef(z¥) = ©0o(2€<’. Moreover, the
stronger conditionf € Ey (I, 1) = &I, )" can be checked to be equivalent Bp € Ei(T, 1) for
Fi(@ =y 21 (2 0). O

We have the following generalisation of Theorem 4.2.

Theorem 6.5. Let I be a cofinite discrete subgroup &f with cusps. Then thE-moduleEy(T, ) is
maximally perturbable for each& 2Z and eacht € C.

In Sectior 8 we will prove this theorem. In this section wel wilow that it implies the corresponding
result forEx(I’, 2). We first give some facts that are of more general interest.
The map identifyingex(T", ) andEx(T", A1) can be extended to an isomorphism

11 (T, ) — E(T, 2.

Since the centr& of I" acts trivially onék(f, /1)2, it can be consjdered~a§amodule. With this interpre-
tatiop we obtain an identification of tHemodules&y(I', 1) andEx(T, A)%. Specifically, forF € &(T, 1),
g € E(I, )% we have

uhzd) = y?FRe,
L)@ = y?9(20),
u(Flky) = p(F)v(y) (yel),
1w gZo) = g HZS) B el),
wherey denotes the isomorphism identifyifigwith Z\T".

(6.5)

Proposition 6.6. LetI" be a cofinite discrete subgroup of G with cusps, and letpr T If thel-module
V is maximally perturbable, then the subspace tbnsidered as &-module, is maximally perturbable.

Proof. The projection pr :I' — T induces linear maps pr €[] — C[I'] between the group rings,
pr : Iz — I between the augmentation ideals, and @*?\Ilﬂ — 171\ for all g € N. Since, priy) = aj,
on the basis elements(i) in Propositioi 5.3 antr(i) in (3.8) we have fol -g-tuples:

br(i) ifi) <tM)forl=1,...,q,

(6.6) prop(i) = {o if i(q) = t(I).
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This means that we have the commutative diagram

0 Vi viat " hom( 314V 0

|

0— (VZ)F,q . (VZ)F,q+1 m—q> hOfT'(|19+1\|q, (VZ)F)

where the vertical arrow sends: 17\ 11 — (VAT = VI to f : Ilf_“l\llf_1 — VI such thatf(bz(i)) =
f(br@))ifi e {1,...,t() — 1}9, andf(bs:(i)) = O otherwise.
We want to write a giverf : I19+1\I19 — (VO asmquo with vy € (VZ)" 41, By assumption, there is an
element € V%1 such thamgu = f. If v|({ — 1) = 0, thenv € Vil nvZ = (V)L and we are done.
Suppose thab = v|(¢ — 1) # 0. Taker € [1, g] minimal such thaiv € VT, We will show that we can
replacev by another element € v + Vi with 0l -1) € vin andry < r. Repeating this process brings

us eventually taj|({ — 1) = 0. For thisv; we will havemquj = fandv,-|(§ — 1) = 0 which, according to
the remark of the last paragraphfisces to prove the proposition.

Fromul(y1 = 1)+ (yq1 ~ 1) = dl(y1 = 1)y~ DE - 1) = fya.-++ . 7q-1.2) = O we conclude
thatr < q- 1. Defineg'e hom(L\IL V1) by §(b:()) = wi(ejw — 1)+ (ejp-1) - 1) if the F-r-tuple
j satisfiesj(r) = t(I') and4(b;(j)) = O otherwise. There ig € VI"* ¢ VI with mu = 3. We take
v1 = v—Ue€ v+ V9 We check that for all-(r —1)-tuplesj

v1l(¢ = Dlejy — 1) (@jr-1— 1)
= wl(eja) - 1) - (@jp-1 — 1) — ul(@j) = 1)- - - (@jp-1) - 1) - 1)
= 0.
This shows that;|(¢ — 1) has order less than m|

Proof of Theoreri 4]2From Theoreny 6]5V = Sk(f“, Ax) is maximally perturbable. Therefore, by Propo-
sition[6.6, the spacék(f“, )% = E(T, A) is maximally perturbable too. O

This proof illustrates the fact that, for groups with cugpgre are really more higher order forms with
generalised weight than with strict weight: The basis inpesition[5.3 is for all such discrete groups
larger than the corresponding basigi$h2.1.

6.3. Holomorphic forms on the universal covering group.

Definition 6.7. Fork € 2Z we defineH,(I') as the space of elements®@F($ x R) that satisfy
(1) (Holomorphy) E~f = 0.
(2) (Generalised weightYW - ik)"f = 0 for somen € N.
(3) (Exponential growthjs described in condition c) in Definition 6.3.

This is al-module for the action by left translation. We denoteBJ(T’) (resp. HS()) the space of
f € H () satisfying f(Ge(x + iy, 9)) = O@C) for someC € R (resp. f(Gc(x + iy, ¥)) = O(€¥) for some
a < 0) instead of[(614).

We will prove:

Theorem 6.8. LetI” be a cofinite discrete subgroup@fwith cusps. Then tHemoduleH(I') is maximally
perturbable for each ke 2Z.
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Proof of Theorerfi413As in the case of general Maass forms, we can show thak, €2z, E[°(T", A) =
H (). Then, PropositioR 616 implies Theoréml4.3. O

Second order fo[ms and derivatives ol-functions. With this definition,L is a second order invariant
belonging t0Ho(Timod) ™22 (Incidentally, this example shows that, for generalisegight k, the space
Hi (') need not be contained &y(T", Ax).)

Based orlL we can construct a second-order form which is related toakeres of classical modular
forms. Specifically, for positive integeéM, denote byGy the group generated hy, g €< I'o(N), Wy >
whereWy, := ( Vﬁo‘mfé). Set

Li(z 9) = L(z 9) + L(Nz 9).
Using the transformation law farand the identitf 'y ) (2 q) = (23) (3 2). aroutine calculation implies
that, for somegs € Hom(Gy, ©),

Li(y(z9)) = La(z ) +iB(y), ~ forally € Gn.

Let now f be a newform in the spa& of cusp forms of weight 2 faFg(N) such that itd_-function L¢(s)
vanishes at 1. Therf(Wnyw)d(Wnw) = f(w)dw and, for all§ € R,

00 W o0 00
f £ (iy)La(iy. 9)dliy = - f £ (iy)La(iy. 9)dliy = - f f (Whiy) Ly (Wi, 9)d(Whiy)
(67) 0 Wi O 0

_ _fooo £ (i) La (Whiy, 9)diy.

Sinceli(z ¢ + X) = L1(z 9) + 2ix andL¢(1) = 27rfo°° f(iy)dy = O, our integral is independent &t It
further equals

68 - fo " H (i) Lo (WG O))dliy = fo " H(i)(Lai. 0) + B(i))diy = - fo " F(iy)La(iy, O)diy
Therefore, [ f(iy)L1(iy. 0)dy = — [° f(iy)La(iy. O)dy, i.e.

f f(iy)L1(iy,0)dy = 0 and hence
0

f f(iy)logy dy + Zf f(iy)u(iy)dy =0
0 0
whereu(2) := log(;(2)) + log(7(N2). From this we see that, sinck}(s) = 27rf0°° f(iy) log(y)dy, we can
retrieve, from a alternative perspective, the formula
i) = ~ax [ iy

first derived in[11].
Thus, Goldfeld's expression af, (1) is equivalent to the orthogonality bf € Hy(Gn)*V?to S, —

HS(GN)®N in terms of the pairing
() T HH(GN)®N x HE(GN)®N2 - C
defined by N
(0.0 = [ olin. 0N 0L
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6.4. Examples of higher order forms for the full modular group. Theorem$§ 65 arid 8.8 show that there
are perturbations of 1 for the full originBhoq 0f SL»>(Z) in the universal covering group. Sint{€mneg) = 1
all these perturbations are commutative (gee (5.12)).

1. The functionL can lead to second ordiearmonic perturbations df. Specifically, although ¢ 8~0(0)i2
(becausev L = %), the imaginary part Inh. : (z ) — 21Im logn(2) + ¢ is harmonic, has second order, and

corresponds to the linear forme Mult! ([0 C). It has generalised weight 0, and it is not holomorphic.
2. Sety; = €', r € C, wherea € hom((ineg C) is given bya(n(1)) = & anda(k(n/2)) = 5. The family

(6.9) [ L@ — yr/2 U(Z)Zr drd
consists of elements &, (I') that arelmo-invariant under the action given by

(fM@ = D ().
By Propositiori 4.4, fok > 1 the derivative
e | = Lz o)

is a holomorphic perturbation of 1 of orde# 1. The corresponding element of Mi(inog, C) is i* k! a®.

3. Itis possible to obtain a more or less explicit descriptida harmonic perturbation of 1 of order 3. We
sketch how this can be done with the meromorphic continoaticthe Eisenstein in weight and spectral
parameter jointly. This family is studied inl[2]. In that vikpautomorphic forms are described as functions
on $ transforming according to a multiplier system jfoq. These correspond to functions Ghthat
transform according to a characterigf,q. Carrying out the reformulation, we can rephrgel8 in [2]

as stating that there is a meromorphic family of Maass formsl o< C, whereU is some neighborhood
of (-12 12) inC. We retrieve the exact family studied in [2] by considering> E(r, s,z 0). For each
(r,s) € U xC at whichE is not singular it is an automorphic form of weighfor the charactey, = €' of
Tinog With eigenvaluels = %1 — . Itis a meromorphic family of automorphic forms Biog With character

xr With a Fourier expansion of the form

(6.10) E(LS) = ur(r/12.9 + Colr. 9pur(r/12-9 + ) Calf. Jwr(n+7/12.9).
n#0

where theC,(r, s) are meromorphic functions, and where we use the followntgtions.
6.10) wr(%S29) = W signRen)/2.s(47v Sign(Rev)y) €',

' (v s20) = &My F(L+ s— 51+ 25 4nvy) €7
This family and its Fourier cdgcientCy satisfy the following functional equations.

E(r,—-s) = Co(r,—9)E(r,9),

Further, the restriction of this family to the (complex)din= 0 exists, and gives a meromorphic family of
automorphic forms depending on one parameterhis is a family of weight zero, so it does not depend
on the parameteft on G. The resulting family or is the meromorphic continuation of the Eisenstein
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series foll o4 in weight 0, with Fourier expansion

VrT() £(29)

0.9 = 109+ 1T ves+ 1

MO(O’ - S)

(6.13) %3 oas(In))
D = wo(n,s).
F(s+ 2)4’(25+ 1) |n|S+z
where
#o(0.529) = y2*s,
wo(n, S28) = ™ Wos(drinly) = ™22 Kg(2rlnly).

At (0, -3) the family E is holomorphic in both variablesands, with a constant as its value at (03).
(This is a consequence of Proposition 6.5 ii)[in [2].) So im@ple, we obtain higher order harmonic
perturbations of 1 by dlierentiatingr — E(r, —%). Here we encounter the problem that we have an explicit
Fourier expansior_(6.13) only f&(0, s) and thus we cannot describe the derivatives in the directfo
directly. To overcome this problem we use the fact that foear O we have

E(r,—%;z,ﬁ) = H(z9) = gt@
(6.14) 2
E(r,-=—5—129) = H(-2-¥) = ey

The proof of the first equality is contained in 6.10[in [2]. T¢éecond one follows from the second func-
tional equation in[(6.12). Now we use the Taylor expansiok of degree 2 atr(s) = (O, —%):

1
E(r,s) = 1+rAp+(s+ E)Ao’l
(6.15) 1 1 11
— 2 — —_— —_— 2 Y
+ 2r Ao +r(s+ 2) Aig+ 2(s+ 2) Ao +

By Propositiori 4.4, the cdiécientsA; o andA, o are harmonic perturbations of 1 of order 2 and 3, respec-
tively. From [6.14) we obtain the following results:

A]_,o = iImL, AO,l

1 .
A2’0+ZAO’2 = Rel?, Agq = ilmLZ?.

2ReL,

(6.16)

This confirms that Ink is a second order harmonic perturbation of 1ff&ientiation in the direction of
preserved mocrinvariance. Seg1 = 2Rel andAg; arelmoginvariant. However these functions are not
in the kernel ofw.

Thanks to the identity\; + %Ao,z = Rel?, to determine the third order harmonic perturbatier it
sufices to explicitly computé\oz because RE? is known in a fairly explicit way. The functiorg > can
be obtained as the cfigient of 3 5(s+ 2)2 in the Taylor expansion d(0, s) ats = —3 1 Asa by product of
this computation we will also obtaln th&,ogrinvariant functionAg 1 as the coﬁiuent ofs+ 2 5 in the same
expansion. We shall examine each term of the expansionatepar

Seté = s+ 2 The first term of our expansion is

(6.17) Ho(0.520) = y** = 1+§|09y+§2%(|09y)2+
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For the next termA(AZ(% 1(0,-5,2,0) = Qg:gg (0, —s,2,0) with A(u) = 7~¥2T(¥) () = A(L - u),
we defineag andb; by

(6.18) Al+h) = hlyag+---, AQ@+h) = g+b1h+---.

We get

A(29)
A(2s+1)
For the other terms we use

2n
(6.19) 10(0,-s,20) = —gy§+(4b1— T% +g logy)y&?+--- .

3

_t
ez

Wooslt) = Wos = —7—— [ e0dts 1) ax,
F(§ + S) 0 t
t
ez _t
Wo/2(t) = T'l = e,

t
ez © X
—aswo,s(t)|s:_% 65W0,S(t)|$% = - (1) -1+e2 f e log(X(1+ 7)) dx
0

e—%(—r'(l) FT(1) + fo " e log(1+ %‘) dx)

0 dx < dx
f eX—— = e5f e X" =ez[(0,1),
0 X+t t X

with the incomplete gamma-functidr(a, t) = ftw e Xx@1dx With these ingredients:

oas(Inl) . _ 1 _27in|
— 2 _o(n,$520) = Y =(-2eZiw

A(2s+ 1)|n[s*3 vl ) Z d( ‘
(6.20) dn

Nl

(part. int.) e

2 .
+ (2e7T(0, 4nly) — 26721 |og % —dage iy g2 4 ) eminx

The results in[(6.17)[(6.19) and (6120) confirm that the tartderm equals 1, and that

~ logy - %y - L+ = 2ReClogy + Bz S " -
Pox(2.0)=logy ~ 3y =2, ) §(d'+ @) = 2Re(z logy + 2= ) ral) ) = 2Rel(20).

n>1 dn

with the notationg = €¥2. The term of order 2 leads to:

4 2n
Po2(2.0) = (logy)” + (80 - =2 + S logy)y

(6.21) o0 I n o —n 0 o=n log(d?/n)
+ (40 s + ) + 2010 (@ + G TO, 4y - 2" + ) Y, 2 ),

n=1 dn
which is a complicated, but explicit expression.

A remarkable aspect of this computation that we have usedglitie computation of the derivatives
of the Eisenstein series in weight zero to compute the sedengative in ther-direction of the more
complicated Eisenstein family in two variables. The badisesvation is[(6.14), which shows that the
Eisenstein family has easy derivatives in two directionke Taylor expansion dE at (0, —%) has three
monomials in order 2. So it fices to compute a second order derivative in one more diretbiget
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hold of all terms. Higher order terms in the Taylor expandiane too many monomials for this method
to work. We do not know how to compute all harmonic pertudoagiof 1 of higher order.

7. HIGHER ORDER FOURIER EXPANSIONS

This section is needed for the constructions on which thefprof TheoremE 615 and 6.8 are based, but
it is also of independent interest. It provides a highero@halogue of the classical Fourier expansions.

7.1. Fourier expansion of Maass forms.|f f is in E, (T, 1), then for each cusp of I there is a Fourier
expansion

1 .
(7.1) f@G9) = D Ffle),  Fufl) = fo e (Gn(¥)g) dx,

wherev runs through a class i modZ determined by and the cusp. The functionF, f satisfies
Fo, f(z9) = " F, f(iy,0)"” andwF,, f = 1 F, f.
For each giver, r andsset

(7.2) W(v,9) = {f :Go5C; wf = (% - D, f(z0) = & 4(iy, 0)).

Because of the second relation in the definitidhe W, (v, s) can be thought of as a function gf
Therefore the spac#/; (v, s) is isomorphic to the space ¢f: R — C satisfying

(7.3) - N (y) + (4n>2y? = 2nvry = £ + S)h(y) = 0.

It is convenient to writel = Ag = %1 — &2 with se C. We can choose a fixeswith Res > 0 corresponding
to the eigenvalu@ = As under consideration. The spac#s (v, s) are two-dimensional. We will use the
basis elements i§4.2 of [3].

e For Rev # 0 a basis ofW, (v, ) is formed by

wr(v,829) = e Wi sign(Rev)/2,s(4v Sign(Rev)y) e’ )
(v, 829) = e W_; sign(Rey)/2,s(—47mv Sign(Rev)y) e

HereW, s(t) is the Whittaker function that decreases exponentially-asco. We use the branch &, s(2)
that is holomorphic for-5 < argz < 3—2” The asymptotic behaviour gs— o, by §4.2.1in [21] is:

(75) wr(v, Sz 19) - (47TV8y)r8/2 e2ﬂv(ix—8y)+ir19’

(7.4)

(7.6) Lar(v, Sz ﬂ) - e—nirs/2 (47T81/y)_r8/2 eerv(ix+ey)+irﬂ ,
wheres denotes Sign(Re). The subspace of; (v, S) generated by (v, s) is denoted byW?(v, s).
e Fory = 0, a basis is given byyz*Sé'?, y2-5d'?} if s+ 0 and{yz€e'?, yz logye'?} if s= 0.
The following proposition characterises functions witperential growth in terms of Fourier series.

Proposition 7.1. Let k € 2Z, Res > 0. Suppose that the functiond C*(I"\G) satisfieswf = Asf and
W =ikf. Then it has at each cuspan absolutely converging Fourier expansion

(7.7) fG9) = ) Fen ()
nez

with Fen f € Wik(n, s). Moreover, fe Ex(T, A9) if and only if there exists N+ 0 such that all Fourier terms
Fen f withn| > N are inW(n, s) for all cuspsk.
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Proof. The existence of such a Fourier expansion is a standard.résdetailed proof in a more general
setting can be found in[3§4.1-3.

Fourier terms of automorphic forms inherit the growth bebiav of the automorphic form. So if is
in (T, 1), all Fourier terms satisf¥,, f(z 9) = O(e¥) asy — oo for somea depending orf. Each
Fourier term of non-zero order is a linear combinationuRfn, s) andwk(n, s). From [Z.6) we conclude
thatF, T is a multiple ofwg(n, s) for all but finitely manyn.

Conversely, suppose that for the cuswe haveF,,f = chwk(n, s) for all n with |n] > N. Then
(Z5) and the convergence of the Fourier expansiorz, &) (= (iyo,0) with yo > 0 implies thatc, =
O(yaks'g”(”)/zez’ﬂ”"’m). This in turn shows that the sum ovef > N gives a bounded contribution iR {7.7)
for all y large enough. The terms wiphi < N cannot give a growth at the cusparger than @y e (N-1¥)
for somea > 0. ]

Remark7.2 The[-invariance in PropositioR 7.1 is not necessary. Invagancder only the parabolic
elements of" suffices. If we work with functionsf on{(z ) : y > yo} for someyo > O that satisfy
wf = Asf, W = ikf and are left-invariant undén(l) : | € Z}, then there is an expansion like [n{]7.7)
on the sey > yp, and exponential growth of such a function is equivalenhtodtatement that all Fourier
terms of sificiently large order are irW(k’(n, 9).

7.2. Higher order Fourier terms. The higher order invariants &f(n, s) that we will define now are the
higher-order analogues of the classical Fourier terms.

Definition 7.3. Letk € 2Z, n € Z, ands € C. By ‘Vk(n, s) we denote the space of functiofon G that
satisfywf = Asf, have generalised weigkf and satisfy(dy — 27in)™f = 0 for somem € N (which may
depend ort).

Forn # 0 we denote byV(n, s) the subspace of € Vi(n, s) that satisfyf(z &) = Oy e >") as
y — oo for somea € R.

The free commutative grouip generated by = n(1) and/ = k() acts on these spaces by left transla-
tion.

Proposition 7.4. Letk n, s be as above. Thixmoduleska(n, S) and(V‘Ig(n, s) are maximally perturbable.
For each ge N the elements & V(n, 5)9 satisfy, for eacld > 0,

(7.8) f(z9) <s ein+oy (y — )

uniformly for x and in compact sets. If i 0 then for each ¢ N the elements & (Vg(n, s)&q satisfy,
for eachs > 0,

(7.9) fz9) <5 =2y (4 5 o)
uniformly for x and¢ in compact sets.

Proof. To prove thatVi(n, s) is maximally perturbable, we start with a characterisatas the space
Vi(n, 9. We first note thatWy(n,s) c Vi(n, 9*. Conversely, iff € Vi(n, 9, then the reason-
ing in the proof of Theorern 6.4 shows that the weightfdf strict, and also thalxf = 2xinf, hence
f(z ) = ™ f(iy,9). Sof € Wi(n, ). If, for n # 0, the functionf is also exponentially decreasing it
has to be a multiple aby(n, s). Therefore;V2(n, 9)* = W(n, s).

Let f be an arbitrary element df/(n, S). Since each of the basis elementsiék(n, s) is a specialisa-
tion of a holomorphic family of elements a#/; (v, s), there is a holomorphic family di(r,v) € W, (v, 9
such thah(k, n) = f. We haven(r, v; n(€)k(tr)(z 9)) = e h(r,v; 2 9) for £ e R and( € Z.
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Next consider the polynomial@y € Q[X] of degreeq defined by

(7.10) Qo = 1, Qui(X+1)-Qqg:1(X) = Qq(X)andQq(0) = Oforq=>1.
Then for eachm = (my, mp), m; > 0 set
(7.11) hf'(n,'S) = Qmy (&) Qm,(558,) h(r, V)|v=n,r=k'

Upon applying the dferential operatog%af;1 onh(r,v)|(r = 1) = (¥ — 1)h(r, v) we obtain

() S(a),, . pdh(r.v) a a
(7.12) (i) avav | (c-1) = ;)(b)(Zm)b avbv = (&6, + D* ~ (28,)7)h(r.»).

Therefore,

(7.13) Qu(ZA )T = 1) = (Qmy(zdy + 1) = Qmy(H))N(rY) = Qmp1(z)N(r, ).

Sincer, £ commute, this implies'(n, s)|(r — 1) = h(kml’mz‘l)(n, s). Likewise, we obtain the transformation
law h?(n, 9)I(¢ - 1) = hf(ml‘l’"b)(n, s). Therefore, folly + 1> = my + mp (I3, 1> > 0),

(7.14) ™™ (n, 91 = 1) (7 = 1) = Oy, m f »

thus obtaining the maximal perturbability &fx(n, s). For convenience, we shall call perturbations statis-
fying the transformation law (7.14erturbations of typen.

Based oﬁVE(n, 9" = (Wg(n, s), we deduce in an analogous way the maximal perturbabillity%{n, s).

To prove [7.8) and (719), we first note that the maximal pbeghility we have just shown implies that
the functionsh™ constructed fronf’s ranging over a basis oW(n, s) (resp.(WE(n, s)) induce a basis of

the quotientsyA41 /A4 Therefore, it sflices to show({7]8) an@(7.9) f&f" only. In the case # 0,

the family h may be taken to bey (v, s) or &(v, s) in (Z.4). For these functions the question reduces to
the asymptotic behaviour &d\ W, (t), since the factors”"* and€e"? produce polynomials ix and#,
which yield constants when they vary through compact sdts.ditferentiation of 4 Sign(Rev) v y yields
only a power ofy, which can be absorbed by the facet.

Differentiation ofW, s(t) with respect ta does not change the exponential part of the asymptotic be-
haviour, since derivatives &, s(t) are linear combinations &, s(t) andW,.1 s(t) with powers oft in the
factors. See (2.4.24) i [21]. So we have to look only &edentiation with respect ta

Forte Rwitht > 0,« - % -s# -1,-2,..., we shall use the integral representation (3.5.18) in [21]:

(7.15) Wedll) = —oI(c+ = — 9e 2 f e X(=X) 3 (1 + 2y dx
’ 2ri 2 (0+) t

where the contour comes from along a line slightly above the positive real axis, encsdewith radius
6 < 1 and then goes back to on a line slightly below the positive real axis. By a routirmrputation we
see that the part of the integral over the circular pa@(e'"). The integral over the remaining part of the
contour isO(t|*) (A € R). In all cases, the implied constants does not deperidifferentiation in terms
of k on W, «(t) leads to the appearance of additional factorsHogy@nd log(1+ x/t) in the integrand. The
arguments used in the last paragraph imply the same estiffatis we get the desired exponential decay
of the perturbations aby(n, ).

The representatiof (7.115) is valid as long-ds= e ™!t is outside the path of integration. If we tilt the
path of integration anti-clockwise by an angleve get a representation ¥, s(t) for e ™'t outside the

new path of integration, provided we keepe (-3, 7) to have convergence. Forf ¢ < 7 this gives
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a representation that can be used for(@rgt) = 0 with [t| > &, which leads to the desired growth of
perturbations ofuk(n, S).
If k- % -s=-1,-2... wetake O0< ¢ < § and transform the integral representation (7.15) into

e 3tix elnp(S—K+1/2) 00 ) ) 1
(7.16) W, () = e € ULs 3 (14 dPu/t)% 2 du,
' F(s+ —K) 0

Proceeding as before we obtained the same estimates.
All these estimates taken together prdvel(7[8)J(7.9) (wherD). They further show that the derivatives
of a family with exponential decay have exponential decaythus(vg(n, s) is also maximally perturbable.

In the casen = 0 we might use the same method. However, many families ofadeactions have to
be considered to cover all cases. Instead we argue diraetiyve can find functions? (0, s) in V(0, s) of

the form pm(X, y, ) y%ﬁ ek? wherepn, is a polynomial in three variables with degnee in ¢ and degree
my in x. If the codficient of 9™ x™ in this polynomial does not depend gnthis leads to a perturbation

of yz—se""’ of type m. Such functions satisfy the required estimates, W|th ampmtyial factory” instead
of &Y. The remaining task is to check that they can be chosen &fyséti — + f) h?'(0,s) = 0. We do
this by induction in the degrees ihandx. We check that

1 ; .
(w-— 2+ P)XMeyzEStagMgk? (g 4 2g)xMey2EStagMdk? | tarms of lower degree ir or 9.

With a = 0 this gives the top cdicient of p,,. Moreover, the terms of lower degree all are multiples of
XMy 3s+ag i ghd \yith Mj < m;, My < my or My < My, anda € Zo. Successively we can determine the
lower degree terms, and arrange thia(0, s) is an eigenfunction of the Casimir operatewith eigenvalue

1_g
3 :

This takes care of the case= 0, except ifs = 0. It that case we also have to perform a computation
involving y%”" log y, which we leave to the reader. m|

Holomorphic Fourier terms o6 are multiples of

(7.17) n(v;z9) = yPe e’

Thus we have the spectral parameter i%. For real values of andr we have
(4rv)™"72 wi (v, i%) if v>0,

(7.18) n(v) = {ur(0,5) if v=0,

e ir (47r|v|)_r/2 r (v, i%) if v<0,

with notations as i (7]4) an@{6J11). The functions

(7.19) A2 9) = Qmy(2229%) Qmy(2) ni(m; 2. 9)
satisfy
(7.20) Mngsmo Tl 2 (€ = 1) (1 = 1)/2 - Sy 1y oty 7(1)

for I3 + I, = my + mp, and ay — oo their growth is of order G€9-2™¥). For the commutative grouft
and for a fixedm they yield a basis of the space of forms of order+ n, + 1 modulo lower order forms.
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As an example we note that the Fourier expan (6.1) carritterwin the following way:

(7.21) L@®) = ming 20z 9) + T i 0z0) -2 ) o Oz 9).

n>1
8. PRoOFs oF THEOREMS [6.9 AND

The method of the proof is highly inductive. At each step we thee maximal perturbability of other
spaces which has been proved in a previous step. The stpdingfor this process is the space MBEp()
whose maximal perturbability is proved based on generahaitic principles in Propositidn 8.1. This
implies directly the maximal perturbability of tHemodule Map$ x R,C). We proceed by imposing
increasingly stringent regularity conditions on the fumes 9 xR — C. We consideC™(HxR) = C°°(G)
the subspacé:""(G) of functions inC=(G) with generalised weight and the subspaagy of C°°(G) of
functions that have compact support modildn §7 we have considered higher order invariant functions
for the groupA generated by(1) andk(r). These functions are related to the Fourier expansionsaatsyl
forms. After proving that some more auxiliary subspace€p{$ x R) are maximally perturbable, we
finally prove in§8.8 the maximal perturbability (I, 1) andH([).

8.1. Higher order invariants in maps on I". A generalisation of Propositidn 3.3 is the following:

Proposition 8.1. If I is a discrete cofinite subgroup 6f with cusps, then thE-moduleMap ([, C) (with
the action by left translation) is maximally perturbable.

Proof. We first define (similarly to Propositidn 3.8) on the free subgroupy of I' generated by, .. .,
ayr)-1 fori e {1,...,t(")—1}9 by the relations in[(3]19), witA; replaced byy;.

Letyo : [ — Fo be the surjective group homomorphism givendaye ) = oj for 1 < j < t(I')-1,
¢o(¢) = 1andgo(ej) = 1for 1< j < ngy. For 1< j < t(I') we definey; € hom(’, C) such thaty (o) =
dj,j- This determineg/j completely, since values on elliptic generators are givew jlésj) = %lﬁj(g). For
i =(@’,t(I),...,t(I) with mcoordinateg(I') at the end and € {1,...,t(I)-1}9"™, we put

(8.1) fiy) = gir(eo(y)) Qm¥ra) (7))
whereQ, are the polynomials defined in(7]110). Now we can check tHeviahg properties ofj;:
(8.2) fo = 1, (empty tupleg = 0);
(8.3) fi(l) = 0 iflij>1;
fi ifi = (", 1),
8.4 1
(84) fille=1) = {o if i does not end with §I) ;
fir ifi=(j,i") with j <t(),
8.5 fil(j
(8:5) (@ = {o if | <t(T), j#i(1).

Using this we can see that
(8.6) mqfi)(b()) = dij -
Now, the choice of the basixi) in (5.9) for[-g-tuplesi shows that to prove that Map(C) is maximally

perturbable it sflices to prove that for eadhand for each functiorf onI'\G a functionh; € Map(G, C)
such that for all™-g-tuplesj:

(8.7) hil(aja) = 1)~ (@j — 1) = 6ij - f.
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To construct such functions we choosstact fundamental domaig: c GforN\G, i.e, aset meeting
eachI-orbit exactly once. Such a fundamental domain can be amtstt from a strict fundamental
domaingsg for I'\ 9, by taking

S {(z9) 1 2e F,0< 9 <7/ny},
n, = minfne N : thereisy eI fixing zin $ conjugate td(rx/n)} .

Son, = 1 for all z € ¥, except for the elliptic fixed pointg, ..., z,, in 5. These are conjugate to a
fixed point ofej andng = vj.
A choice for the sought functiohy is then

(8.8) hi(yg) = fiy)f(g) rerl, ge ;.
With the characteristic functiog of ¥, we can write this as
(8.9) hig) = D> fi) fl)wirg).

yel'

O

8.2. Higher order invariants in smooth functions on G. We will use essentially the same construction
as in the last section to prove that

Proposition 8.2. Thel-module C°(G) is maximally perturbable.

Proof. In order to show~th§tt°°((§) is a maximally perturbabl&-module, we need to havie (8.7) withe
C*(G) for eachf € C*(I'\G). LemmdZA.1 in Appendix A shows that we can find functigns C*($xR)
such thaf, .- Yy Yz 9)) = Lforall (z 9) € H x R as a locally finite sum. If we definE(8.9) with such a

functiony and f € C°(I'\G), then the sum is locally finite, and theare smooth. O

8.3. Higher order invariants and generalised weight. Set
(8.10) CY(G) = {f e C*(G), of generalised weighk} .
Proposition 8.3. Let ke 2Z. Then thd-module CE"(C:) is maximally perturbable.

Proof. As with the previous proofs, our approach is to show that ferel-g-tuplei = (i’, t(I), . . ., t(I")
with exactlymoccurrences diI’) at the end and for everfye C*(I'\G) there existsy € C*(G) satisfying
equation [[817) for all-g-tuplesj. We note that, by Theorem 6.4, theinvariance off implies that its
weightk is strict, i.e., f(gk(®)) = f(g)dv’.

We will define the functiorh; by an analogue of {8l9). We first define for eaghe G the point
w(g) = pr(g)i € $ and the real numbeB(g) € R such thaty = (w(g), B(g)) € G = $xR. We also
recall thatl' = I'/Z. Since the group homomorphispg defined in the proof of Propositidn 8.1 is trivial
onZ = (&), it induces a homomorphism dh Now we takey(z 9) = wo(2), with ¥ as in Part ii) of
LemmaA.l. Sothe functiorz(#) - y(y~ Y(z %)) obtained by left translation depends only on the image
ofy e T'inT = [/Z. Let, as in the proof of Propositidn_8. Iy be the functionl — R such that
iy (ey) = dyr).j- For agiveny e T we haveyyn)({y) = vyn () + 1 andO((¢y)g) = ©(y1g) - 7. So
Yy (y) + O(y1g)/n is well-defined o = I'/Z. We can therefore set

(8.11) hig) = > grpo)) Qv () + O g)/x) F(g) w(y 9.

yel
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The support property of the partition of uniyensures convergence; it is even a locally finite sum with a
bounded number of non-zero terms. All factors depend srmhoothg. Soh; € C*(G).
We consider\V - ik)h;. SinceWy = 0, we need only consider

(05 — k) Qu(wrr) () + O gk(®)) /) f(gk(9))

Qu(vin) () + Oy gk(®)) /) (99 — ik) f (gk(9))
+ f(gk(®)) 95Qu(viny (v) + Oy ) /7 + /)

0+ Qi) (v) + O 2g) /7 + B/) T(gk(9)) .

(8.12)

Repeating this we obtain
(8.13) W — i)™ Qu(yn ) + O g)/7) F(g) = n ™ Q) - = 0,

since the degree @, is m. Soh; € C*(G). O

In a similar (but much simpler) way, one shows thafl" iicts onC*($) via (4.2) andf € C*(9)',
then the function iIrC=(9) hi(2) := ¥,r Gi(¢o(y)) (2 wo(y~t2) satisfies[(8]7) for allt(I') — 1)-tuples of
elements ofl,...,t(I') — 1}. This gives an alternative proof of

Proposition 8.4(Prop. 4.1,[[10]) Let ke 2Z. Then thd’-module C°($) is maximally perturbable.

In fact, sinceyq is bounded, iff has polynomial growth at all cusps, then so dbethus proving that
the submodule o€*(9) of functions with polynomial growth is also maximally perbable.

8.4. Higher order invariants with support conditions. We shall first discuss the motivation for the
introduction of the invariants we will be dealing with. If Beition of the spac&(T, 2) did not
include a growth condition at the cusps, we could consiiiéIr, 1) as the kernek in the exact sequence

0— %K — C2@G) L5 CR(6)

With exponential growth, one might want to try to repla’.&%(é) by its subspacé:l‘x’(f")eg of functions
with exponential growth at the cuspsIaf This would lead to an exact sequence

0 — &, 1) — C([)29 L5 Co ()=
for which we might try to show that for eache N
0 — &, )M — (€)™ 5 (o™

is exact. For this to be of use it seems that we need surjgotiihe mapw—A1 : (C;"(f“)eQ)F - (C;"(f“)eg)r,
which we did not succeed in proving, and which may not hold. tkis reason we will instead work with
other better behaved subspaces of the spaces appearirgeratt sequence. We will therefore define
subspace€y, Dy(1) C Cﬁ"(é) and&y (1) c &(T, A) related by an exact sequence

(8.14) 0— &)(1) — D) L5 C.
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8.4.1. The spacegy. For each cusp = g,o0, and eacta > 0 we call
(8.15) D@ = g{(z9) : Imz>a, ¥ € R}

ahorocyclic setThere is a numbeir such that for each > Ar the D,(a) are disjoint for diferent cusps.
The sets

(8.16) Ga=1{(z9) € $xR : Yk (z0) ¢ D(a)}
satisfnya = G,. This follows from the fact that the, have been chosen so that
(8.17) yfkék = éy/(l:oo

for all cuspsc and fory e I". Herel ', i=pril,={y el : yx = «}.

Definition 8.5. Letk € 2Z. The spac&y consists of thef € Cl‘:’(é) supported irG, for somea > Ar.
(Thea may depend orf).

SoCx consists of the smooth functions with generalised welgivhose supports project to compact
subsets of"\$. Clearly, the spac€y is I'-invariant. If we apply the construction ¢f in the proof of

Propositior 8.3 to function$ € C}. ¢ C*(I'\G) then the support of eadh is contained in the same 84
that contains Supj. This implies:

Proposition 8.6. Let ke 2Z. Then thd-moduleCy is maximally perturbable.

8.4.2. The space®x(1). The construction ofy(12) and the proof of its maximal perturbability is much
lengthier that those fa€x. We will defineDy (1) essentially as the space of functions that accept higher-
order analogues of Fourier expansions at the cusps. To rhakéotmal we study spaces of functions
defined on regions of the form

(8.18) S(yo) = {(x+iy.9) € HXR 1 y>yo},

with yg > 0.

Definition 8.7. Letk € 2Z, A € C, andyp > 0. We denote by(yo, 1) the space of € C*(S(yo)) that
satisfywf = Af, (W —ik)"f = 0 for somen € N, and have at most exponential growthyas oo, uniform

for x and in compact sets. We denote E;ZO'(yo) the space of holomorphic functions &fyo) with
generalised weight and at most exponential growth gs—» oo

Proposition 8.8. Let k € 2Z, s € C andyy > 0. The space€k(yo, 1s) and SEO'(yo) are maximally
perturbableA-modules. )
Let ge N. Each fe &(yo, 15)™9 has an absolutely convergent expansion

(8.19) f@zd) = ) f(z?)
nez
on Y(yo) with f, € Vk(n, 3)5’q foralln,and f, € (V(Ij(n, 3)5’q for almost all n.
Each fe SEO'(yo)A’q has an absolutely convergent expansion d@ip$of the form
(8.20) f@o) = > Doz
m,Mm+Mp<g n
where the inner sum ranges from some, possible negatiegeinto infinity.
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Proof. We start with the holomorphic case. Léte &°(yo)*. Then the functiorz — y*/2 f(z 0) is
holomorphic onfz €  : y > yo} with period 1. So it has a finite to the left expansion of therfor
> nan€”" converging absolutely om> yo. For eachy; > yo we havea, = O(e¥™™1) asn — co.
Hencef(z ¢) = >, amnk(n; z ) converges absolutely an> yo, and
(2 9) = ) awi(mzd)
n>-N
converges absolutely d(yo), and the convergence is uniform on anyget y; with y; > yo, with x and
9 in compact sets. These functions sati§®i(r — 1) = f(Mmm-1) M — 1) = f(Mm-1M) gnq {00 = f,
since alln’ have this property. Thug™, with m such thatm; + mp < g is a perturbation of typen and
we deduce that{°(yo) is maximally perturbable. An arbitrary elemént E°/(yo)*9 can be written as a
finite linear combination of such™, which all have expansions of the type given[in (8.20).

For f € Sk(yo,/ls)A we proceed similarly. By Theorem T.1 in combination with RekfiZ.2 and the
integrality ofk, there is an absolutely converging Fourier expansion

f@d) = ) fzd)
nezZ

on S(yo) with f, € Wi(n, s). By the exponential growthf,, € (Wg(n, s) for |n| > N, for someN € N.

For|n| > N we havef, = ahwk(n, 8), and from [Z.b) we conclude thag = O(e?""u1) as|n| — oo for
eachy; > yo. So by [Z.b) the series

> awng)
n,|n>N

converges absolutely dB(yo), uniformly on each sey > y1 with y1 > yo, and gives an exponentially
decreasing function ag— co. It is a As-eigenfunction ofv, since the decay allowsftierentiation inside
the sum. To produce a perturbatidf of f we pick f" € Vy(n, 9>M™+™*1 sych thatfM|(r — 1) =
fmume=D) gmr— 1) = £{M2M) and %9 = f, for the finitely manyn with |n| < N. The estimate{7]8)
shows that the growth of these terms is at most of the orde®@®{9) asy — o for eachs > 0. Thus
we get (non-uniquely) a perturbation of type

M= > s > awr(ns
n, In<N n, In>N

in Ek(yo, 1s). Thus we get(8.19) and the maximal perturbabilitycgfyo, 1s). i
We are now ready to defir®y(1) andDf°'.

Definition 8.9. Letk € 2Z, anda € C. We defineDy () as the space of functiorfse Cﬁ"(GN) (hence~ with
generalised weighk) for which there exisb > Ar, a € R, andq € N such that for each cuspof I' the
function @ ) — f(g.(z ) is an element o&(b, 2)*9, and satisfies a bound &) asy — co.

We defineDf® similarly, with (. 9) — f(G«(z 9)) in [°(b)*9, with bound O€¥).

Remark8.10 The numbers, b andqg may depend on the functioh

Remark8.11 Definition[8.7 of&x(b, 1) implies that elements dby(1) are A-eigenfunctions ofv on the
set| |, D(b). Similarly, elements o} are holomorphic functions o, D.(b). In both cases we have
exponential growth at each cusp. The definition requiresttf@order of this exponential growth stays
bounded when we vary the cusp.
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Remark8.12 In the definition we imposeé-invariance of bounded order near all cusps. This is a bit
artificial, but serves our purpose.

The spac& is contained inD(1) and iDL Indeed, for givenf € Cy we can takeb large so that
D.(b) is outside the support df.
Elementsf of 8k(F /l)F restricted toD,(b) induce elementsz(9) — f(g.(z ¥)) in Ek(b, /l)A for each
cuspk, and similarly in the holomorphic case. Hence

(8.21) @ ¢ DT, M@ < @0

Maximal perturbability ofDy(1) and DEO'. We first need a technical lemma in order to relate
invariants tol -invariants.

We first note that ifeo is a cusp off and if joo = 1, thenA = I'... In general the group, can be
conjugated t@ 1, = A in §:1Tj,. So we can assume here that . )

The abelian group is free on the generators= n(1) and¢ = k(x). The dimension of Mag, C)2-a+1
is (g + 1)(q + 2)/2 with an explicit basis described as follows. Define a seqei@i maps o by setting

"Mz -1) = -t

622 M -1) = gD
and
o0 = 1 M =0 for| or mnegative
ande™(1) = 0 forl,m>0,l +m> 0.
Then

(Mge"™) (" - )5 1)) = 61,0ms

for| + m=r + s= g, and therefore the™™ with I,m > 0,1 + m < qis a basis of Mag, C)a+1,
Let R be a system of representativesIgfi; soR c I'. Consider the systeff }jj—q C Map(l“ C)r G+l
in the proof of Proposition 8l1. If| = g, then, for everyy € I, § fj(yo) is a function om of order at

mostqg + 1. Hence there are functloma$m onRsuch that for alp € Rands € A

(8:23) o) = > &™),

I,m>0, l+m<q

Lemma 8.13. Let a{ - be as in@823) and suppose that we have functiaffs” € Map(a, C) satisfying

y©®0 = 0,
(8.24) ot =1) = g0 forl =1,
Yy -1 = v form>1.
Then
(8.25) fe) = >, A 0u"™E) (eR, sed)

I,m>0, [+m<qg

defines an element dap(, C).
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Proof. We proceed by induction ig = |j|. If g = 0, thenm = n = 0, sof(pd) = ajoo(p) Y00 = 0e
Map(T, €)' = (0}. . .

Itis clear that[(8.25) gives a well-defined maplarit suffices to prove that, for every generatgrof I,
fl(aj — 1) € Map(, )91, Suppose first thgt= (j,j’). For eaclhp € Rthere are uniqup; € Rands; € A
such thatrj p = p161. From [8.2B) it follows that

fil(aj) — 1)(09)
(8.26) = D A e)e"E-1E) + DL @) -d L 0) ")
I,m>0, l+m<q I,m>0, [+m<q

By (83), the left-hand side equal¥ m-o. 1+m<q- 1a1j' (0) "™ (5). The functiong"™|(5, — 1) is a linear
combination, depending gn of ¢@® with0 < a<1,0< b < manda+b < q- 1. Thus we get an
expression that expresses ﬁ%(p) in thea{ (o). The form of this expression depends on the relations

(8:22) but not on the specific value of the constant basis eepi®®. The relations of[{8.22) hold for
w™ too. Therefore, the right hand side Bf (8.26), upon replaarfe by v, equals

> AL eutME) (eR, seh),
I,m>0, l+m<g-1
which, by induction, is in Mafi(, C)ﬁq‘l. Since, from[(8.25), it follows that the right hand side [of2®)
with ¢ replaced byy equalsf|(e;j - 1) too, we deduce thétt(e; — 1) € Map(’, C)" 4.
In the same way, we deduce thae; — 1) € Map(, C)"42whenj = t(I) or j < t(I) andj #j(1). O

Proposition 8.14. Thel-modulesDy(1) and D are maximally perturbable for all k 2Z and € C.

Proof. It suffices to construct for a giveh e Dk(/l)f, a giveng € N and a giver -g-tuplei, an element
i € Dk(A) such thail(aiq) = 1)- - - (@i — 1) = 6 f for all I-g-tuples;.
We will write f = fepr + 2k f., with k running over a se€ of representatives of the-orbits of cusps,

wherefep € (Ck)F fe € Dk(/l)r and will produce perturbanns for each of these companent
We choose a strict fundamental domaipfor I'\G so that

i NDo(b) = {(Xx+iy,¥) : 0<x<1l,y>b, 0<¥ <n}.

Definition[8.9 provided > Ar andr € N such that,(z ) = f(g.(z ) is in E(b, A)A’r for each cusp.
Furthermorep can be chosen large enough for the sgts) D,(b) (x € C) to be pairwise disjoint. Since

f is [-invariant, we even have, € &(b, 1)2. We choose a functiog € C®(0, ») that is equal to 0 on
(O,b+ %] and equal to 1 ond + 1, o), and define fok € C

(2 9) € & — Di(b)
(Im(z2)) v(z2, 1) (2 9) = g(z1, 1) € T N Di(b)

Extend toG by I-linearity. Sof, = 0 outsidel'D,(b) and equal tof onT'D,(b+1). We check in Defini-
tion[8.9 thatf, € D,(1). The function
fopt = = > e

keC

8.27) (2 0) = {O
X

is T-invariant and vanishes db,(b+1) for all cusps, hencefep € CE.
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Proposition 8.6 implies that therefise Cy c Dy (1) satisfying the conditionk;|(ai1)—1)- - - (ai@g—-1) =
fept andhy (i) = 1)+ - - (@i —1) =0 forf“—q—tuplesi’ # 1. So we can restrict our attention to tle

Since the supports of thi with x € C are disjoint, we can consider each of theseparately. Without
loss of generality we can assume thais a cusp ofl” with §, = 1 and takex € C. Conjugation by the
original g, then gives the same result for a gengralC.

The functionv., used in[[8.27) is an element &k(b, 2)*. The proof of Propositioh 8.8 shows that for
eachm e N3 there is a perturbation]) € Ex(b, )™M+ of (2 9) > fo(z 9) of typem. We definey; by

ni = 0onGy, and on alllD,(b) for all x € C \ {eo}, and
(8.28) mlpx+ig, ) = > x0) & o) o (x+ iy, )

I,m>0, l+m<q

for y > b andp in a system of representativeof I'/A. The functlonsa1 are as in[(8.23). Since the sets
pD.(b) are disjoint, this defines a smooth function, which can keekéd to be an element @i ().

For each fixedy = (x + iy, 9) with y > b the functions — ol m)(ch) on A satisfies the same relations as
6 = oM (6) v (g) in B22). So, their dference, as a function of satisfies[(8.24).

Ignoring smoothness for a moment we hdvee Map(G, C)''. Equation[(8.B) gives a functidm on G
such thaty|(eir)—1) - - - (@ir(q — 1) = di f for all f—q—tuplesi’. With our choice of fundamental domain,
and using[(8.23), we find fgr € R, 6 € A andg = (X + iy, ¥) with y > b:

(8.29) hpog) = > ) "6 x(W) v (9).
I,m>0, l+m<q
Outsidel'D.,(b) the functionsf.,, h; are zero. With Leni_8.13 we conclude that the function indume
(8.30) -Mesg) = >, & nen@EE69) - M) vs(9))
I,m>0, l+m<q

is in Map@, C)"9. This implies that

mi € (h + Map(@, ©) %) N Dy(D) = D)™,
and behaves in the desired way undar{) — 1)- - - (aiq — 1) for all I-g-tuplesi’. Thus, we have proved
that Dy (1) is maximally perturbable.

Everywhere in this proof we can replagg(b, 1) by &M°(b), and D(1) by DJ°'. In that way we also
obtain the maximal perturbability (ﬂ)ho' thus completing the proof of Propositibn 8.14. O

8.4.3. Relations between the spaaggand D(1). By Remark 8.11L, for eachi € Dy(1) the support of
(w - A)f is contained in some s&, hence ¢ — A)f € Ck. So the diferential operatow — A mapsDy(1)
to Cy. Since the operatap commutes with the action df, we have ¢ — 2)Dy (1) ¢ Ci’q forallq > 1.
Similarly, E-(DM°)9 c ¢4 for all q > 1.

Proposition 8.15. Let 1 € C and ke 2Z. The following maps are surjective:

iLw—A4: Dk(/l)F - Cr and

i. E”: (Z)ho')F - C -

Proof. §8.4.2 anm. O

Corollary 8.16. For each q> 1 the mapsw — 1 : Dy(1e) 9 —s CE’q andE~ : (D{go')ﬁq - CE’q are
surjective.
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Proof. Propositio{ 8.15 gives the cage= 1. The rows in the following commutative diagram are exact
by Propositio 816 and 8.]14. Sée (5.13) fiay.

~ ~ m ~ ~
(8.31) 0 —— D ()9 —— D ()L % (Z)k(/l)r)n(F’Q) — -0
\Lw—/l \Lw—/l \Lw—/l
0 chd chart — = (chyfa —— ¢
0 coker — Q) 0

The third column is exact by Propositibn 8.15. With the emass of the first column as induction hypoth-

esis, we obtain the vanishing of coker{ 1) and thus the surjectivity ab — A : Dk(/l)f’q+1 — Cﬂ’q” by

the Snake Lemma. ) B
The case oE~ : (D)9 — ¢, %is similar. o

8.4.4. Proof of Propositior_8.115(i).We first note that the space&3,(1)" and C{ are invariant under.
Hence the weighk is strict and we are dealing with functions @n= PSL(R). (See the first statement in
Theoreni 6.4.) We use the spectral theory of automorphicgdmprove Proposition 8.15.

We work with the space of square integrable functiond 9@ = I'\G of strict weightk € 2Z, where
G = PSLy(R). We can view the elements of the Hilbert spate= L2(I"\G)x = LA('\G)k as functions
z — f(z 0) on 9, transforming according to weightas indicated in[{417). The inner product li is
given by

(1) = [ 10 RE0 .

Hered can be any fundamental domain 10y9. We take it so that for eadih> Ar it has a decomposition

(8.32) § = HU[ Vi Vi = fax+iy) 1 xe<x<x+1, y2b),
keC

with C a system of representatives of th@rbits of cusps, and, € R depending or¥ and on the earlier
choice of they,. The sety, has compact closure .

The diferential operatowy = —y?97 — y20% + ikydy in (@.8) determines a densely defined self-adjoint
operatorAy in Hx. The spectral theory of automorphic forms gives the decaitipa of this operatof in
terms of Maass forms. One may consult Chapters 4 and 7lin¢t2ié¢ight 0. For other weights the proofs
are almost completely similar. (S€e[20].) Thereisa sm:nsﬁaiscrwith an at most countable orthonormal
basis{;bﬁ} of Maass forms, indexed by some subs@oThewﬁ are square integrable elements of the space
of Maass form&E (", 1) with A¢ > '5(1 - 'g). We denote the eigenspace associated (iwhich is known
to be finite-dimensional) bifk(2). If k = 0 the eigenvalue 0 occurs with multiplicity one, correspogd
to constant functions, and all othaf, if any, are positive. Ik # 0, then Hgiscr may be zero. Ik > 2
and the spac&(I") of holomorphic cusp forms of weight is non-zero, then there am&i € Hgiscr of
the formy{(z 0) = y¥2h(2) with h € S(I"). The corresponding eigenvalues afe= §(1 - ), which
is negative ifk > 4. There may also be elements obtained Hiedentiation of holomorphic cusp forms
of weights between 2 arkl— 2. Similarly, for negativek there may be eigenfunctions corresponding to
antiholomorphic cusp forms.
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The orthogonal complemehtZ®™ of HISC" in Hy is isomorphic to a sum afy, copies ofl2((0, «0), dt),
whereny,, is the number of -orbits of cusps. The spectral decomposition givesRteseval formula

l 00
_ 08\ Al = ST
(8.33) UJﬁ—ZﬁNﬁMM+ZZR£%UM¢mﬁNL

with « running through a set of representatives of the cuspidat. ofor eachf € Hy we haveaf(’(f) =

(f, wk) If fis suficiently regular, then the functiorg(f; -) are obtained by integration against the Eisen-
stein senef“(lt) at the cusp.

The spaceej'r is contained irHy. For f € Cr the functlonse{;(f -) are given by
dx
&9 = [ 1OEEEI = [ 10Ey s T,

for all sat which the meromorphic continuation of the Eisensteireser

Ef(s?:= ). Im(g; 1,7) 2+ gikarglo;".2)
yel\l

is holomorphic. In particulagl(f; s) is holomorphic at points of the lin&.

On the square integrable Maass forms and on the Eisenstes Hee self-adjoint operat@ is given
by wy in (4.8). Forf € Hy in the domain ofAy, the self-adjointness @ together with the eigenproperty
of v, imply al(wif) = A%al(f) andel(wif;t) = (5 + t2) (f;t). This implies that the spectral data of
elementsf € Hy such thatAl f is well defined for alin € N, are quickly decreasing. The convergence in
L2-sense of the Parseval formula [N {8.33) is very fast for fions of this type, since the summands and
integrands in the expansion are thoseAgf( Al f1) divided by aH", respectively § +12)" for eachn € N.
(If there is a term witm’ = O we treat it separately; it does not influence the convemggnc

The central point of the proof of Propositibn 815 is that vemsform the equatiorA — 1) fy = f with
unknown f; € Hy for a givenf € C{ to the spectral decomposition. Application&f — Ato f € C{
amounts to muItipIyingaﬁ(f) by A‘ — 21 and multiplyinge((f;t) by % +t2 — 1. This suggests the following

Definition 8.17. Let A € C. We denote byy(T', 1) the space of e CE such that the following conditions
are satisfied.
i) aﬁ(f):Oif/lg=/l
ii) e(f;it,) =0forallk,if 1=3+t2(t, e R\ {0}),
iii) for all «, the mapt — €(f;it) has a double zero &t 0 if A = l.

Note that, for eacil, the conditions i), ii), iii) impose finitely many linear cditions, soCk(T', ) has
finite codimension m?r If 2is not in the spectrum o, thenCy(T', 1) is equal toCF

Case I:f € C(T, 2). In this case, if we have the spectral decomposition

(8.34) f = Zak(f)wk+zzﬂf e (f; i EL(it; ),
then a solution of & — 1) f; = f is given by

%) A (] —
(8.35) Z Zzﬂ i —%Hz_ﬁEk(n, )dt.
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If 1is not in the spectrum ofy, then the convergence of thig-expansion is better than that [0 (8.34),
sinceA’ — o and hence the denominators improve the convergencel. idfin the spectrum of,
condition i) ensures that thaf (f) with A = A vanish, and that, by the other conditions, the simple or

double zero ot — %1 +1t2 - 1att = t, is canceled by the zeros at= it; of the holomorphic functions
s &(f; s). The same reasoning shows that the obtaified in Hx and, in fact, in the domain d%. We
have @y — 1) f, = f. Therefore the relation(— 1) f; = f holds in distribution sense. Therelis= Ar such
that the support of is contained irG,. So on eactD,(b) we have ¢ — 1)f; = 0. Sincewy determines
an elliptic diferential operator o, elliptic regularity implies that¢) — 1) f; = 0 holds as a relation for
real-analytic functions on eadby(b). Further, the square integrability implies thfatmust have less than
exponential growth at the cusps and hence it is an elemehi@f)". We have shown:

Lemma 8.18. For eachAa € C, the space(T’, 1) is contained iw — 1) Z)k(/l)f.

Case ll:f € CE \ Ck(T, 2) for A in the spectrum oBy. The following result enables us to pick represen-

tativesh of CE/Ck(F, A) for which we can solved — 1) f1 = h directly. This procedure can be carried out
by singling out one cusp, which we fix for the proof of Case II.

Lemma 8.19. Let« be the cusp that we keep fixed. Suppose thsin the spectrum of A Then there is
a finite set Xc Z such that, for each g X, there exist he C{ of the form

™ vn(y) €’ on TD,(Ar)

(8.36) hn(y9.(2 9)) = {0 elsewhere

for someyy € C(Ar, ), such thathy + Cy(T', 2)}n spansCh /C(T, ).

If we can solve {¢ — 1) f; = hy in another way for alh € X, this lemma enables us to reduce the proof
of Propositiori 8.15(i) to Lemnia 8.118.
Proof of Lemma&_8.19We shall examine each of the three cases for the eigenvaluigsoo Hy separately:
o 1=3-5¢[3 00). Assumes > 0. There are finitely many indices, ..., £m such that,, = A.
The ://ij form a basis of kefAx — 1). Each of thesem linearly independent square integrable

automorphic forms is given by its Fourier expansion at thedixuspk. By Proposition 71,
the Fourier terms of non-zero order are multiplesw@fn, s). The Fourier term of order zero

is a multiple ofy3~5&k?. We choose a seX of m elements irZ such that them x m-matrix
whose columns are theth Fourier coéficients Of:,l/ij (1 < j < m)with n e Xis invertible. We
choose thgy, € CZ, n € X, in the statement of the lemma, so tlﬁj){n(y) wk(n, s)(iy, 0)% # 0,

respectivelyf/::)(n(y) y%‘s % # 0. Consider the linear form on the spaﬁﬁ/l) of square integrable
automorphic forms with eigenvaluegiven by

- - Tz oY
Y = y) = L hn(z 0)¥(z 0) 7
00 1/2 . _ __dde . 00 1/2 . —dde
= inx 1/2-s Y7 inx uxty
= j;r Il/zx\(n(y)ez” agy 2 +n;0amf°~r Il/z,\(n(y)ez’r wk(m, 9)(iy, 0) " )

This depends only on the Fourier ¢beient ofys of ordern in the expansion at. Therefore, the
m x m-matrix with the scalar produc(hn,;bij) at position {, n) is invertible. (Herej runs from 1
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to m, andn runs throughX.) Hence there are complex numbéxg, (with 1 < j < m, p € X)
such thaty,ex bjn (hn,gbij') = 6j,j. Setting, forf € C, cn(f) = rj‘“,‘:l(f,lﬁij') bj n, We obtain for
I<j<m
D ea(f) (') = (f.u).
neX
Sof - X, cn(f)hyis indeed inCy(T, 2).
e 1= %,r+t2, t € R\ {0}. A basis of keAx - ) in this case consists of Eisenstein sefgét, -) (v €
C) and possibly cusp form,fzij with 4,; = A. The proof of the previous case can be applied with
the obvious adjustments (e.g. replacing scalar produciatbgrals for the terms corresponding
to E}) to give the result. The only essential modification is thathave to use the spaég(1)
of automorphic forms with polynomial growth and eigenvaluén place ofAﬁ(/l) because the
Eisenstein series are not square integrable. This can leelmlrause (conjugates of) elements of
AL (1) appear only integrated against elementé'{bf/vhich have compact support moduio
e 1= %. Now we have the condition tha(f — >, hy;it) should have a double zerotat 0 or,
equivalently, that the first two terms of the Taylor expansabs = 0 should vanish. Since the first
two Taylor terms o (—; 2) are linearly independent from the other function#\ji1/4), a choice
of yn with the desired properties is again possible. m|

Now we turn to the task to solve(- As) f; = hy with f; € _Dk(/l)f for hy as in Lemm#&8.79. We aim at
f1 with support inlC D(Ar). Writing f1(«(z ) = €™ h(y) €, the diferential equationd — 2)f1 = hy,
becomes

PN () + PPy~ 2y — 5 + NG = o).

(Compare[(Z13).) This ordinary ftierential equation is regular an> Ar. It has a unique solution for the
initial conditionsh(Ar) = i (Ar) = 0. It is zero below the support gf,. Sincey,, has compact support,
the functionh thus obtained is a solution of the homogeneous equdtioh ¢n.&, o) for someb > Ar
depending on Suppf). Thus we see thatz(#) — fi1(g«(z ?)) is an element ofWy(n, s). Hence it may
have exponential growth of ordef?"+9v This is the point where the need to work with exponentially
growing functions arises.

We extendf; by T-invariance, and check that it is an elementZaf(1s). This completes the proof of
the first statement in Propositibn 8115.

8.4.5. Proof of Propositior 8.15 ii.For the surjectivity ofE~ : (Z)EO')f - CE_Z we first note that, on
an eigenfunction ot in weightk — 2 with eigenvaluel the operatolE, E; , acts as multiplication by
—4(1 - & 1+ ¥ seel(5T). We will usg;_, to “invert’ E; .

Let H? , denote the kernel oE]_, in HI‘("_S;r. It is finitely dimensional and it contains the constant
functions ifk = 2, and the functions corresponding to antiholomorphic dagps ifk < 0.

On the orthogonal complement B , in HE‘_SZ” the factor—4(a1 — ‘% + kzz) is negative and stays away
from O for all A in the spectrum ofy. Likewise, we denote byIL‘ the finite dimensional kernel d&,
in HISC!, |ts elements correspond to square integrable holomogaitmmorphic forms of weighk.

Let ((//i_z)[ be an orthonormal basis of the orthogonal complenhﬁj_‘ﬁzcre HZ , consisting of eigen-
functions ofwy_» with eigenvaluel’. The relation E v1,02) = —(v1, E;_,v2) for suitably diferentiable
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elements oH andH, (see Lemma 6.1.4 of [2]) implies thEf (HISe HY) c HIS'o H2 , and hence
(Wh)e with yf = WEQ_Z%_Z is an orthonormal system spannikigs" o H/.
For a givenf € C}_, orthogonal toH2 , we set

f, = _Z aﬁ—z(f) Eﬁ_zl/’i_z B Z i © g, (f;it) Eﬁ_zEﬁ_z(iti—) "
VAN - 2K+ R VA -2k ke 2 Jo A (k- 1P VAL - 2K+ K2

We havef; € Hce H andE~f; = f. A reasoning as in the previous case shows tb&t@ﬂo'(/l)f.
So we have solved the problem for a subspaoé{gg with finite codimension. A general element of
C}._,will not be orthogonal td4? ,. We proceed as in the first case in the proof of Lerhmal 8.18edisvf

wij we now use an orthogonal basistéf ,, and form functions, as in Lemma 8.18, corresponding to
a setX of Fourier term orders such that elementdHjf , are determined by the Fourier dbeients inX.
SolvingE, f; = hy, leads to the dierential equation

(—2iydx + 290, — K ™e(y) = x(¥), ¢yo) = ¢'(yo) =0,
with which we proceed as in the previous case.
This establishes the surjectivity Bf : (D) — CI _, in Propositior 8.15.

8.5. Higher order invariants and Maass forms. We now will derive the main results of this paper,
Theorem$§ 6J5 arld 8.8, from the following result:

Proposition 8.20. Thel-modules

(8.37) 5 (1) := ker(w — A : Dy(2) — Cy)
and
(8.38) Hy = ker(E™: D — Ci-2)

are maximally perturbable.
Proof. We have the following extension of the commutative diagr@mB1):

~ ~ ~ ~ m . . o~
(8.39) 0——= &) —— & (et 9 (S,k(/l)r)n(r,q)

! S

0 —= D" —= DY+ —= (D)) —0

l w2 l w2 i w-1

0 Cl':,q Cllz,q+1 mg ( CE)n(f“,q) -0
0 0 0

The exactness of the columns follows from the definitioné[g(f/l), (3.2), the left-exactness of the functor
homeyry (1\C[I'],-) and Corol.[8.T6. Propositions B.3 dnd 8.14 imply that #wosd and third row are
exact. The Snake Lemma then implies that the first row is exattthatmg : &/ ()74 — (& ()")""P
is surjective. .

Replacing in this diagram the spa&1) by H, and the mapv — A by E~, we obtain the maximal
perturbability ofH,. |
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Proof of TheoremS 6.5 arfid 6.8he I'-module&; () is contained irf(T", 1). See Definitior 6J3. It is a
smaller space thadi (T, 2) since elements aDy(1) have a special structure near the cusps. With {8.21),
&I, )" is a subspace @ (1)". ThereforeSy(I', )" = & (4)" and thus

0 . é;((ﬂ)f“,q . é;((/l)f",qﬂ - (é/k(/l)f")n(f“,n) .0

! ! H

0 ——= E([, )18 ——= E(, )l 0+ — (G ([, )"

with exact rows. Induction with respectgand the Snake Lemma show tia(T", /l)iq is equal toé’k(/l)iq

for all g. Hence the spac&(T’, 1) is maximally perturbable.
The proof of Theorerf 618 is completely similar. i

APPENDIX A. PARTITION OF UNITY
The following technical lemma gives partitions of unity tlaae adapted t6\G andI'\ $.

Lemma A.1. i) For a given cofinite discret& c G containingZ there arey € C*(G) such that

a) v is a bounded function. N B

b) There is Ne N such that for eacly € G the number of e T with y(y1g) # 0is bounded
by N.

C) X, vy lg) =1forallgeG.

i) For a given cofinite discret®& c PSLy(R) there areyq € C*(9H) such that

a) Yo is bounded.

b) There is Ne N such that for each 2 $ the number of € I" with yo(y~12) # 0is bounded
by N.

) Yyervoly 2 =1forallze $.

Proof. We fix a strict fundamental domaiky, for I\$ of the following form, based on the choice of a real
numbera > Ar, as in§8.4.1. The sef, is bounded by finitely many geodesic segments and half-lines
such that

§s = Cau| |Vi@,

lgc(X+1y) 1 y>a, X < X< X+ 1},

(1.1)
V(@)

whereC, is relatively compact ir), and is contained in the image 6%, under the projectios — $.
The disjoint union is over the s€ of cuspsk in the closurelg of Fg in H U 0H. We takeFg such that
C forms a system of representatives for fherbits of cusps. By taking the parametesuficiently large
we arrange that all orbits of elliptic fixed points inters@gf in C;. These points are necessarily on the
boundary of¥g.

We take a strict fundamental domain G of the form

F =1{z9) : ze Ty, ¥ €[0,7/v(2)},

whereu(2) € N is the order of the subgroup; fixing z or equivalentlyl’; is conjugate irG to the group
{k(n/v(2)) : neZ}. Sov(2) is in general equal to 1, and only largeriis an elliptic fixed point of".

i. We first define a function ofs satisfying a) and c), and a variant of b).
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Letw : G — {0,1} be the characteristic function &. It satisfies conditions a)—c) in part i) of the
lemma, but is not smooth. To make it smooth we convolve it witunctiony € C®(G) with ¢ > 0
such thatfG ¥(g)dg = 1 for a choicedg of a Haar measure o6 and such that Suppj is a compact
neighborhood of the unit element @

Sincew is measurable, the integral

eolg) = féw(gl)w(gzlg) dgy = fG g9 Wlgr) day

defines a smooth functiagy, on G with values in [01] and with support contained in the neighborhood
& - Supp@) (multiplication in G) of §. From the second form of the convolution integral we see that
Y, ¢oy tg) = 1for allg € G. This smooth functiony, satisfies conditions a) and c) in part i) of the
lemma. Condition b) is not satisfied, since although the srttpgf ¢g is contained in a neighborhood of
& of the form & Supp(), this neighborhood may meet near the cusps infinitely niatanslates ofy.
We will construct two functions, one “away from the cuspsti@mother “close to the cusps” satisfying all
conditions a), b), c) on overlapping regions. A suitable boration of these two functions will produce
the sought function ofs.

e The first function is simply the restriction @f to Gy, for anyb > a. We will show that this function
satisfies condition b) (and thus all conditions). First weerthat the projectionp; : G — $andp, : G —
R given bypi(z, ) = zandpx(z ¢) = ¢ are continuous. Next we note tt@Supp() N Gy, is contained in
a compact set, and hence has compact imageunderp;. So

p1(3 Supp@) N Gy) < | 655
ocE
for some finite subseg of T
Fix ag € Gp. We will show that there is a finite number (independeng)odf y € " with ¢o(y g) # O.
Indeed, for each such we haveyg € & Supp() N Gp, hencepi(yg) = pr(y) pi(g) € Llsce 0 . This
leaves finitely many possibilities for the imagegr(

pry) = 665* with 6 € E.

for somegp € I'. We conclude thay = (Sgilk(nm) with me Z.
On the other hand, the magp@(% Supp) N Gp) is contained in a compact set, hence it is contained in

aset B, B] ¢ R. For they = 65 1k(7rm) with ¢o(yg) # 0 we conclude from((5]3) thak (55, 1k(7rm)g)

p2(660 g) +mr. This leaves only finitely many possibilities for the intege This shows that condition b)
is satisfied by the restriction gf to Gy, (b > a).

¢ We now start the construction of another functipnwith the desired properties near the cusps. We
take a compactly supported smooth partitgaf unity for R/Z, i.e., 8 € CZ°(R) with values in [0 1] such
that 3.z B(x + k) = 1 for all x € R. (For instance take a smooth functiorin C*(R) with value 0 on a
neighborhood of 0 and value 1 on a neighborhooé.o‘fhen

0 if x<O0,
v(X) ifO<x<3
B(X) = {1 if $ <x<1,

1-v(x-1) ifl<x<3,

0 if x> 3.
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defines such a partition of unity.) We define a functigron G in the following way.

0192 9) = B(x=x)pW/r) ifxkeC y>a,
¢1 = 0 elsewhere

with x, as in [1.1).

The functiony; is smooth orG \ G, and bounded there. By the definition ahd (8.17), it is clear tie
only I-translates ofy intersecting the support ¢f, are thel',-translates. The definition @fthen implies
that at most fouf ,-translates can intersect Supp), implying (ii). Likewise, the definitions oy, 8 and

@17) imply thaty i ¢1(yg) = 1forg € G\ G.. ) o
We choose a (bounded) functigre C*(I"\G) equal to 0 or3, and equal to 1 o6 \ Ga,1. Put
y=x-¢e1+1-x) ¢o,
wheregy is as constructed above wittequal toa+ 1. Sincey vanishes 016, the produciy - ¢1 is smooth
onG. Similarly, (1— x) - ¢o is smooth. S@ € C*(G). Conditions a)—c) are easily checked to holdgor

i. We turn toT" = I'/Z and start withy as in part i). The sung1(z #) = Yz ¥(z ¢ — mn) is locally
finite and defines a smooth function with values inl[Xhat is invariant under left translation by elements
of Z. Soy1(y~1(z 9)) = v1(371(z 9)) is well defined fory € T, and

D nG@) = Y)Y wEkm) @) = 1

yel yell meZ

for all (z ). Since the support af meets only finitely many translates off c &y % [0, 7), the support
Supp() - Z of 1 meets only finitely many-translates ofys x R. Set

0@ = [z

It clearly satisfies (i). For condition ¢) we note that

Z Yoly 2 - Z f Y(yz 9) dod

yel yeF

1 r+arg(j(.2)
I f Y1(yz 9) dy by ther-periodicity ofy

T Yarg((r.2)
- 2> [ woema
yeF
=1
The support offg is contained in the imagp;(Supp{1)) c $. Since Suppfs) is contained in finitely
manyTI'-translates ofyg x R, we conclude that condition b) is satisfied as well. O

APPENDIX B. INDEX OF COMMONLY USED NOTATION

a(y) $I1 C2(@6) (6.10) E §3.2.1
a(f) (B33) C« Defn.[B5 Ex(I, 1) Defn.[41
@ §5.3 D.(a) @18) EX(r, 4 §4.2

54 D), O Defn.[B9 E* §5.2

aj
b(i) @3a), 59) & $£.4 e(f;it) 8.33)
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Ex(o. V). E;° (o) Defn.[BT n(n;z ) 17) P §3.21
&, ) Defn.[6:3 m(n) (Z18) pr, pr §5.1
E (T, x, ) Defn.[63 (N2 9) (719) n §5.4
Ex(T, ) Defn.[Z1 k(®) §5.1 On (Z10)
i @) «i §.4 s §5.3
e @1) Lk 4.3) S(yo) B.18)
G Defn.[51 L(z¥) 63) t §5.3
Ga (8.18) mq @E3) r) §8.2.1
hy B8), [B9) M. 1) Defn.[41 Vi(n,s), Vi(n, 9 Defn.[73
H; B231 M(T, ) Defn.[41 W;(v,9) (Z2)
H 52 MPT, ) §22 w §5.2
h™(n, 9) 1) p B3) X §5.2
Hi (D), HP([D), HIT) Defn.[63 Nells Mpar $821 ¢ $5.3
i g4 Nn(x) $£.1 w §5.2

n(l", a) B4) wr,ox ()
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