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Abstract Constant strain rate tests for a graded asphalt
mixture under three constant strain rates have been under-
taken in the laboratory. The Discrete Element Model has
been used to simulate the laboratory tests with a numeri-
cal sample preparation procedure being developed to repre-
sent the physical specimen. The Burger’s model has been
used to represent the time dependent behavior of the asphalt
mixture. The Burger’s model was implemented to give bend-
ing and torsional resistance as well as in direct tension and
compression. The stress-strain response for the laboratory
tests and the simulations under three loading speeds were
recorded. The results show reasonable agreement when the
bond strengths in the model are made to be a function of
strain rate. Both normal and Weibull distributions have been
used for the bond strengths between the aggregate particles.
The effects on the stress-strain response of bond strength vari-
ability and particle position are proved to be negligible. Bond
breakage was recorded during the simulations to explain the
internal damage within the sample. The modified Burger’s
model has proved to be a useful tool in modeling the bend-
ing and torsional resistance at particle contacts in an asphalt
mixture, in order to correctly predict observed behavior.
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1 Introduction

The traditional approach to model asphaltic materials is to
treat them at the macro-scale using continuum-based mod-
els which are implemented into a finite element program. In
this approach, the micromechanical behavior of the mixture
is not included. An alternative approach is to use the Dis-
crete Element Method (DEM), which has been widely used
to model the behavior of granular materials, in order to gain
micro-mechanical insight.

Cundall [1] introduced a simple computer program to
model the progressive failure of a system of discrete blocks.
In that paper, the basic theories of DEM were described.
Since then, DEM has been widely used to model the mechan-
ical behavior of soil and rock. However, to the knowledge of
the authors, it has not been applied to model the mechani-
cal behavior of asphalt mixture until 1992. Rothenburg et al.
[2] proved that it is possible to simulate the rutting problems
in the pavement by using a discrete element model. In their
model, the particles are treated as elastic elements and the
binder as a linearly visco-elastic material.

Later, Chang and Meegoda [3] developed the ASBAL pro-
gram by modifying the TRUBAL [4,5] DEM based program
which is limited to modelling dry contacts of particles. They
added combinations of springs and dashpots to simulate the
behavior of asphalt concrete. The program has been used to
simulate simple triaxial tests under simple loading [3] and
rutting under repeated loading [6]. They have shown that the
discrete element model is a useful tool to study the fundamen-
tal properties of asphalt concrete. They further used ASBAL
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to simulate triaxial tests on Hot Mix Asphalt under different
loading combinations where the Burger’s model was added
in the normal and tangential directions at the contact between
the particles [7].

Buttlar and You [8] introduced microfabric discrete ele-
ment modelling (MDEM) by using the commercial DEM
package PFC2D. In this model, various material phases
were modelled as clusters of very small discrete elements
and the microstructure was obtained by optically scanning
smoothly sawn test specimens. A high resolution scanner
was used to obtain gray-scale images of the sections. The
MDEM has all the benefits of traditional DEM and can
also model complex aggregate shapes and propagation of
cracks around or through aggregates during a test. They
used MDEM to predict the asphalt mixture complex mod-
ulus in extension/compression across a range of test temper-
atures and loading frequencies [9], the complex modulus of
asphalt aggregate hollow cylinders subjected to internal pres-
sure [10], the compressive dynamic moduli of asphalt mix-
tures [11] and the creep stiffness of asphalt mixtures [12].
The results proved to be reasonable and useful when com-
pared with laboratory results. Except, for some fine mixes,
the DEM approach provided a lower prediction of the mix-
ture moduli compared with experimental tests. This is due
to insufficient aggregate to aggregate contacts in the 2D
model.

You et al. [13] developed a three-dimensional microstruc-
ture based discrete element model of asphalt to study the
dynamic modulus from the stress-strain response under com-
pressive load. The 3D microstructure of the asphalt mixture
was obtained from a number of 2D images. They demon-
strated that the 3D discrete element models were able to
predict the mixture moduli across a range of temperatures
and loading frequencies. Liu and You [14] introduced a ran-
domly created polyhedron method where the aggregates are
simulated with randomly created polyhedral specimens com-
prising a large number of spherical particles. The sample
preparation method did not require 2D images from experi-
ments; however, it proved to be time consuming due to the
large number of particles involved.

Collop et al. [15] investigated the use of DEM to sim-
ulate the behavior of a highly idealized bituminous mixture
comprising single-sized sand particles in a uniaxial compres-
sive creep test. The effect of the bitumen was represented by
time-dependent shear and normal contact stiffnesses. They
used the model to predict the dilation in uniaxial compres-
sion tests for an axial stress of 400 kPa and triaxial tests
for deviator stresses of 400 and 600 kPa at stress ratios of
0.6 and 0.8 [16]. The numerical results were validated with
laboratory data. The comparison between the predicted and
measured results has shown that the model is able to pre-
dict the effect of stress ratio on dilation. Later, they used
the model to simulate the viscoelastic deformation behav-

ior of an idealized asphalt mixture [17]. An elastic contact
was used for the compressive normal contact stiffness and
a viscoelastic contact was used for shear and tensile normal
contact stiffness.

Carmona et al. [18] extended the two-dimensional discrete
element model to capture microscopic failure mechanisms
relevant for the process of fatigue of asphalt mixtures. They
used polygons and beams to represent aggregates and binder
respectively. The effect of healing has also been included.
Later, Kun et al. [19] used DEM and a fiber bundle model to
study the fatigue fracture of heterogeneous materials based
on Basquin’s law of fatigue.

Wu et al. [20] used DEM to simulate constant strain rate
compressive tests for an idealized asphalt mixture. In their
simulations, the bond strength was set as a power-law func-
tion of temperature compensated strain rate. It was proven
that by using the strain rate dependent bond strength in the
DEM simulations, a good agreement with the experimental
data in both the pre-peak and post-peak regions of behavior
was obtained.

Cai et al. [21] used PFC3D to model the asphalt mixtures
with graded aggregates. A parallel bond comprising a set
of elastic springs with constant normal and shear stiffnesses
distributed over a circular disk with pre-defined radius was
used to represent the elastic properties of asphalt mixtures. A
minimum of 6,000 particles was needed to obtain a reliable
Young’s modulus and Poisson’s ratio; a maximum of 0.02 m/s
loading speed could be used to avoid dynamic stress wave
propagation within the 6,000 graded particles sample. The
Poisson’s ratio was found to increase with the ratio of con-
tact normal to shear stiffnesses. The Young’s modulus was
found to depend on both normal and shear contact stiffnesses.
The Burger’s model comprising a spring and dashpot in par-
allel, connected in series with a spring and a dashpot, were
used to capture the time dependent properties of bitumen
(Fig. 1). In the viscoelastic simulation, the pre-peak slope
of the stress-strain curve in the uniaxial compression tests
at a constant strain rate of 0.005 s−1 was found to increase
as the Maxwell stiffness increases and was independent of
the Maxwell viscosity, Kelvin stiffness and Kelvin viscosity.
A wider post peak softening was predicted as the ratio of
normal to shear Burger’s model parameters increases while
peak stress increases as the inter-particle friction coefficient
increases and a bond strength distribution (uniform, normal
or Weibull) leads to a wider post peak softening behavior
while reducing the peak stress compared with a single value
of bond strength.

This paper provides a new contribution regarding the
use of DEM to simulate the micromechanical behavior of
a graded asphalt mixture based on the research mentioned
above. Constant strain rate tests were performed in the lab-
oratory and used to compare with the simulations obtained
from DEM.
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Fig. 1 Burger’s model in a normal and b shear directions

2 Numerical sample preparation procedure

The simulations were carried out by using Particle Flow Code
in Three Dimensions (PFC3D [22]). A numerical sample
preparation procedure has been developed to prepare cylin-
drical samples with graded particles. To prepare a sample
which is initially isotropic with low residual stress and den-
sity packing, the following procedure was adopted.

At first, the cylindrical boundaries (walls in PFC3D) were
generated according to the predefined volume. The wall in
PFC3D has arbitrarily defined contact properties and the con-
tact forces between the particle and wall are calculated by a
force displacement law.

The number of particles for each diameter was calculated
according to the grading curve and mixture design and given
by:

N = 3 × PV (pn+1 − pn)

4π(
rn+1+rn

2 )3
(1)

where range of particle radii is divided into n sub-ranges
with lower and upper limits of rn and rn+1 respectively; N
is the number of particles (with radius (rn+1 + rn) /2) to be
generated; P is the volume percentage of aggregate particles
in the asphalt mixture; V is the total volume of the asphalt
sample; pn+1 and pn are the percentage passing (by volume)
of aggregate through sieve size 2rn+1 and 2rn .

Particles are generated randomly to obtain an irregular
packing. Particles are first generated with a small radius such
that no particles overlap, then the radii are increased grad-
ually to the target values. During the process, particles are
allowed to re-arrange until the residual stress within the sam-
ple is approximately isotropic.

A sample prepared under the above conditions has a high
level of isotropic stress due to the large amount of overlap
at contact points between particles. ITASCA [22] suggested
that the initial isotropic stress should be less than one percent
of the uniaxial compressive strength (peak stress obtained

from experimental data). This can be achieved by slightly
reducing the radii for all the particles by 1–2 % of the radius
value until the isotropic stress is less than the pre-set value
which is determined from the experimental data (one percent
of the peak stress). By doing this, the magnitude of overlap
between particles decreases which leads to a reduction in
contact forces in the sample. The particles are also allowed
to re-arrange each time after decreasing the radii.

Typically, there are about 10–15 % particles with less than
four contacts in the sample at this stage. Contact bonds are
used to simulate the bonding effect of bitumen to the nearby
aggregate. Rothenburg et al. [2] suggested that the particle
assembly needs at least four contacts per particle on average
to carry the load. Collop et al. [15] also showed that a min-
imum of four contacts per particle on average is needed to
model the internal contact structure of a sand asphalt mix-
ture. This can be achieved by the following procedure: (i) Fix
the position of all the particles; (ii) Release the particles with
less than four contacts (one by one); each released particle
is taken in turn and expanded in increments of 0.1 % until
four contacts are obtained and then the next released parti-
cle follows the same procedure. During this procedure, these
particles are allowed to re-arrange to reach equilibrium.

The sample is then bonded by contact bonds. To simu-
late the uniaxial compression test, the lateral boundary is
removed while the top and bottom boundaries act as load-
ing platens. To reduce the unbalanced force due to particle
radius enlargement as well as the removal of the lateral wall,
the bonded sample is allowed to reach equilibrium.

Figure 2a shows a typical sample. The sample containing
6,000 particles is 120.3 mm in height and 30.1 mm in radius;
the numbers of particles for the different sizes are calculated
by Eq. (1) and shown in Table 1. The average number of
contacts per particle for the sample is 5.5 and particles occupy
70 % of the total volume. The bonded sample is shown in
Fig. 2b, used to simulate the uniaxial compression tests.

3 Laboratory work

Stone mastic asphalt (SMA) is a dense gap-graded asphaltic
mixture. It has been selected for this research because of
its high coarse aggregate content and low fines content.
The standard mean grading curve for 0–10 mm SMA [23]
is show in Fig. 3 as the solid line. The aggregate sizes
range from less than 0.063 to 14 mm. However, due to
the limitation of computer processing power and simula-
tion time, it is impossible to model all the fines in DEM.
Therefore, a modified SMA has been produced by taking
out particles which would pass a sieve size of 2 mm. The
grading curve of the aggregate for the new asphalt mix-
ture is shown by the dashed line in Fig. 3. Granite and
limestone were chosen as aggregate and filler; a 40/60
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Fig. 2 a Unbonded sample and
b bonded sample

penetration grade bitumen with a softening point of 51 ◦C
was used. Several Schellenberg tests [24] were undertaken
to obtain the required binder content for different combina-
tions of graded aggregate, bitumen and filler. The Schellen-
berg test describes a method for determining binder drainage
of bituminous mixtures. It is applicable to asphalt materi-
als that are not porous asphalt or for those porous asphalts
incorporating fibers. It can be used either for determining
the binder drainage for different binder contents, or with
a single binder content, eliminating successive repetitions.
It also enables the effects of varying fine aggregate types
or including any anti-draining additive to be quantified. A
suitable design for the new asphalt mixture was determined
(Table 2).

The mixing of the aggregate, bitumen and filler was
achieved by using the hot mix method [25]. The mixture was
then compacted into 305×305×85 mm slabs using the Not-
tingham roller compactor [26]. The specimens were made by
coring through the width of the slabs using a wet diamond-
tipped core. To avoid confinement effects in the specimen
due to the friction between the specimen and the loading
platens, the aspect ratio (ratio of height to diameter) of the

Table 1 Number of particles for a 6,000 particles numerical sample

Particle size (mm) Number of particles

10 19

8 144

6.3 250

5 380

4 602

2.8 1,629

2.0 2,976

specimen is usually chosen to be equal to 2 [27]. Cai et al.
[21] found that the minimum specimen dimensions to give
reasonably accurate estimates of bulk material properties in
computer modeling are 60.16 mm in diameter and 120.32 mm
in height (6,000 particles). Based on the above conditions and
the diameter of available coring drills in the laboratory, the
dimension of the test specimen in the laboratory was deter-
mined as 70 mm in diameter and 140 mm height.

An INSTRON device with a temperature controllable cab-
inet was used for the uniaxial tests undertaken in this project.
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Fig. 3 Grading curve for both numerical and laboratory samples, (par-
ticle sizes for the modified grading curve range from 2 to 14 mm)

Table 2 Mixture design for both numerical and laboratory samples

Constituent Percentage (Mass) Percentage (Volume)

Aggregate (mm)

10 5.5

8 18.6 70

6.3 15.8

5 12.1

4 9.3

2.8 11.2

2 7.5

Filler 14 12

Bitumen 6.0 13

Air voids 0 5

The equipment consists of a 100 kN servo hydraulic actuator
with ± 50 mm movement. The loading frame is operated by
a ‘Rubicon’ digital servo control system.

For a uniaxial constant strain rate test, a monotonic com-
pression displacement is applied to the specimen through the
hydraulic actuator. The axial and radial deformations were
measured at pre-set intervals during testing by axial and radial
Linear Variable Differential Transformers (LVDTs) mounted
on the specimen vertically and horizontally (at mid height of
the specimens). LVDTs have high resolution and can mea-
sure movements as small as a few millionths of a millimeter
up to a few centimeters by suitable conditioning hardware
and high resolution data acquisition. The constant strain rate
tests were undertaken at three different strain rates of 0.005,
0.0005 and 0.00005 s−1 at 20 ◦C.

A typical result from the constant strain rate of 0.005 s−1

and 20 ◦C is shown in Fig. 4; the axial stress is plotted against
the axial and radial strains. As can be seen for both curves,
the axial stress versus axial and radial strain relationships are
similar consisting of a hardening portion up to a peak stress
followed by a softening portion. The onset of dilation occurs
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Fig. 4 Constant strain rate laboratory test results at 0.005 s−1 and
20 ◦C

when the magnitude of the radial strain (expansion) reaches
half of the axial strain in compression.

Figure 5 show the axial stress against axial and radial strain
for the three strain rates tests at 20 ◦C. The following gen-
eral observation can be made: the peak stress increases when
strain rate increases and the axial strain level correspond-
ing to the peak stress decreases with increasing strain rate.
Figure 6 summaries the peak stress as a function of strain
rate on double logarithmic scales for these three tests. It can
be seen that the peak stress is approximately proportional to
strain rate when plotted on double logarithmic scales with a
gradient of approximately 0.325 (n). This can be expressed
by the power-law relation as(

σ

σ0

)
=

(
ε̇

ε̇0

)n

(2)

where σ0 is a reference stress (3.19 MPa at 20 ◦C) and ε̇0 is
a reference strain rate (0.0005 s−1 at 20 ◦C). The gradient
observed from Fig. 6 will be used in the further simulations
to scale the contact normal and shear bond strengths.

4 Simulation

The ratio of sample height to diameter was set to be 2:1 (as
for the laboratory specimen). The time dependent normal
contact stiffness of the Burger’s model (Fig. 1) is given by

K n =
[

1

Km
+ t

Cm
+ 1

Kk

(
1 − e−t/τ )]−1

(3)

where km is Maxwell normal stiffness; Cm is Maxwell normal
viscosity; kk is Kelvin normal stiffness; Ck is the Kelvin
normal viscosity; t is the loading time; τ = Ck/Kk is a
relaxation time. The contact stiffness reduces as a function
of loading time.
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Fig. 5 Axial stress against a axial strain and b radial strain at three
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Fig. 6 Peak stress as a function of strain rate at 20 ◦C

The default Burger’s model in PFC3D can transmit only
force via a contact bond which allows the particles to roll
over each other. However, in reality aggregate particles are
not allowed to roll over each other in bonded aggregates.
For this purpose, an alternative approach was developed.

The Burger’s model was activated as the stiffness of the con-
tact bond in tension and compression, and a “virtual” paral-
lel bond was introduced to give a Burger’s model in bending
resistance and torsional resistance at a contact. The term “vir-
tual” is used because the bond doesn’t sustain direct tension
or compression (this is given by the contact bond), nor can
the virtual bond break; the contact bond governs breakage. If
the current stiffness of the contact bond is kc, and the radius
of the virtual parallel bond is R, and distributed stiffness kp

per unit area, then the stiffness of the virtual parallel bond
was taken as kpπ R2 = kc through all simulations.

For the moment resistance, each subsequent relative rota-
tion increment at contacts will produce an increment of
moment and adds to the current value. This can be imagined
as a virtual circular disk (with no strength characteristics)
lying on the contact plane and centered at the contact point
which has bending and torsion Burger’s stiffness with a cho-
sen radius. The total moment at a contact can be resolved
into respective normal (torsion M̄n) and shear (“moment”
M̄s) components with respect to the contact plane as

M̄ = M̄nni + M̄s ti (4)

where ni is the unit normal to the contact plane and ti is a
unit vector in the contact plane.

The bending moment acts along the contact plane and
the torsion moment acts normal to the contact plane. The
increment of normal (torsion) and shear (bending) moments
are given by

�Mn = −(ks J�θn)ni (5)

�M̄s = −kn I�θ s (6)

where kn, ks are the Burger’s stiffnesses for bending and
torsion respectively; �θn,�θ s are rotation increments due
to the torque and moment, respectively; I and J , are the
moment of inertia and polar moment of inertia of the image
cross section, respectively, and are given by

I = 1

4
π R4 (7)

J = 1

2
π R4 (8)

R = λ ∗ min(R A, RB) (9)

where R is the radius of the imagined circular disk;λ is known
as the radius multiplier; R A and RB are the radii of particles
in contact. It should be noted that the relative angular velocity
which is used to calculate the rotation increment is stored as a
vector in global coordinates in PFC3D and must be updated to
account for the contact motion before the calculation. Finally
the calculated moment needs to be updated in terms of global
coordinates.

A typical three-dimensional microstructural based dis-
crete element viscoelastic modelling process is extremely
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Fig. 7 Bond strength normal distribution and Weibull distribution
(modulus is the shape factor relating to the coefficient of variation and
alpha is the scale factor (proportional to mean), see Eq. (10) for the
probability density function)

time-consuming. McDowell et al. [28] found a scaling
method by using dimensional analysis for viscosity and
velocity in discrete element modelling of strain-controlled
tests on asphalt. They have proved that the effect of scaling
applied velocity is the same as that of scaling both viscosities
by the same factor. This scaling method, which offers great
benefit in saving computer simulation time, has been used
for the strain-controlled simulations in this paper.

4.1 Comparison with experimental results

In the constant strain rate simulations, normal and Weibull
distributions have been used for the contact bond strengths.
The mean and standard deviation for the normal distribution
were set as 50 and 50 N, respectively. In PFC3D, when the
bond strength value is set to be less than zero, no contact
bond will be created; in this case the bond strength is not
in a normal distribution any more. After consideration of all
the bond strength values less than zero and replacing these
strengths with zero values, the mean and standard deviation
of this final bond strengths distribution are calculated as 54
and 44 N, respectively (Fig. 7). This distribution will still be
referred to as the normal distribution even through the non-
zero part has effectively been replaced by an impulse function
at zero strength.

The modulus (shape parameter) and alpha (scale parame-
ter) for the Weibull distribution were set as 1.1 and 60 N,
respectively (Fig. 7). The probability density function of a
Weibull distribution is given by [29]

f (x;α, m) = m

α

( x

α

)m−1
e−(x/α)m

x ≥ 0 (10)

where m > 0 is the shape factor and α > 0 is the scale factor.

Table 3 Properties for the constant strain rate simulations

Burger’s model parameters N/Sa λb fc

Kn
m (MN/m) Cn

m (MNs/m) Kn
k (MN/m) Cn

k (MNs/m)

11 680 0.8 170 11 0.25 0.7

a N/S-ratio of normal to shear contact properties
b λ-radius multiplier
c f-friction coefficient
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Fig. 8 Axial stress versus a axial strain and b radial strain curves

A factor of 100 was used to scale the loading speed and
both viscosities for simulations with a constant strain rate
of 0.005 s−1. The Burger’s model parameters are shown in
Table 3. These values were chosen by trial and error to pro-
duce reasonable numerical results similar to previously pre-
sented experimental data at a constant strain rate of 0.005 s−1

(Fig. 5). The Burger’s parameters could have been calibrated
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Fig. 9 Bond breakage for normal distribution of bond strengths at
a 0.005 s−1 b 0.0005 s−1 and c 0.00005 s−1

at a different strain rate, and then applied to the other two
strain rates; however it is reassuring that in this case the cho-
sen parameters have captured the essential features of the
behavior across the three strain rates, even though the simu-
lation do not exactly match the experimental data over a large
range of strain.

Asphalt is a viscoelastic material for which the deforma-
tion depends on loading speed. Previous laboratory constant
strain rate test results show that the peak stress is a function of
strain rate and can be expressed by a power-law equation. In
the constant strain rate test simulations, the previously justi-
fied power-law exponent (n) of 0.325 has been used in scaling
both normal and shear bond strengths in the modelling for
different strain rates. A numerical sample containing 6,000
particles was generated according to the sample preparation
procedure mentioned above. The stress-strain response for
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Fig. 10 Bond breakage for Weibull distribution of bond strengths at
a 0.005 s−1 b 0.0005 s−1 and c 0.00005 s−1

the simulations under three strain rates are shown in Fig. 8
with the laboratory results. In the simulations, for lower strain
rates (0.0005 and 0.00005 s−1), both viscosities have been
scaled instead of loading rate, as if both are scaled by the
same factor as the strain rate, then this is equivalent as shown
by dimensional analysis by McDowell et al. [28]. The results
show reasonable agreement between laboratory and simu-
lations with bond strengths having normal and Weibull dis-
tributions (Fig. 7). The quantitative differences between the
numerical samples and the experimental result for the soften-
ing behavior at a strain rate 0.005 s−1 may result from the fact
that in the numerical samples, when a bond breaks the visco-
elastic behavior at the contact vanishes and visco-elastic
behavior is only possible in compression and shear if the
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Fig. 11 A front view of bond breakage throughout the sample at dif-
ferent axial strain for a constant strain rate of 0.005 s−1 with a normal
distribution of bond strengths (grey: normal bonds breakage; black:
shear bonds breakage)

contact reforms; however, in the laboratory samples bitumen
is present after bond breakage and thus visco-elastic behav-
ior may still occur in compression, shear and torsion (not
tension) if the adjacent particles should come into contact.

The percentages of the normal, shear and total bond break-
age can be recorded during the simulations. Figures 9 and
10 show the bond breakage for normal and Weibull bond
strength distributions (Fig. 7) at three strain rates. As can
be seen, for all the strain rates, the bond breakage increases
as the axial strain increases and the maximum bond break-
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Fig. 12 Axial stress versus a axial strain and b radial strain for three
normal distributions of bond strengths and laboratory at 20 ◦C

age rate corresponds to the peak stress. At lower strain rates
(0.00005 s−1) fewer bond breakages are observed.

Figure 11 shows the damage modes and locations of bro-
ken bonds at different axial strain levels for a constant strain
rate of 0.005 s−1 with a normal distribution of bond strengths
(Fig. 7). A grey circle represents a bond breaking in the nor-
mal direction while a black circle represents a bond breaking
in the shear direction. The figure shows damage throughout
the sample. Individual bond breakage can be tracked and the
figure shows extensive internal damage.

As can be seen, the micro-cracks in both normal and
shear damage modes are approximately uniformly distrib-
uted throughout the sample. An increase in the number of
micro-cracks (individual bond breakages) can be observed
as the axial strain increases. Few micro-cracks are observed
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Fig. 13 Axial stress versus a axial strain and b radial strain for three
Weibull distributions of bond strengths and laboratory at 20 ◦C

at an axial strain of 0.5 % indicating that the damage to the
sample at this level of strain is largely internal. However, at
an axial strain of 1 % a dramatic increase in the number of
micro-cracks is observed indicating that macroscopic cracks
(a number of adjacent bond breakages) are forming in the
sample. This is associated with the onset of the post peak
softening region in Fig. 8.

4.1.1 Effect of random bond strength distribution

The bond strengths follow normal and Weibull distributions
(Fig. 7). During the simulations, values of bond strengths are
randomly chosen from the normal or Weibull distributions
using a random number seed. Therefore, even for the same
distribution, different bond strength values could be applied
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Fig. 14 Effect of position of particles at a strain rate of 0.005 s−1 for
a normal and b Weibull distributions of bond strengths

to the same contacts in different simulations with a different
seed. To understand the effect of the variability in the bond
strengths, two additional simulations with the same normal
and Weibull bond strength distributions (Fig. 7) but differ-
ent random values were modelled. The results are shown in
Figs. 12 and 13. As can be seen, the axial stress is approxi-
mately independent of the variability of the bond strengths.
The difference in behaviour appearing after the peak stress is
due to contact bonds breaking at different times and positions
due to the variability of the bond strengths.

4.1.2 Effect of particles position

The numerical sample preparation method randomly places
the particles in a pre-defined area using a random number
seed. Two separate constant strain rate simulations have been
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performed with 6,000 particles in different random positions
at a strain rate of 0.005 s−1 for both the normal and Weibull
distributions of bond strengths in Fig. 7. The sample Burger’s
model parameters were set to be the same as in the previous
sections (Table 3). The results of axial stress as a function
of axial strain are shown in Fig. 14. It can be seen that the
variability in the stress-strain behavior caused by the random
positions of the particles in constant strain rate simulations
is negligible.

5 Conclusions

This paper presents the use of a modified Burger’s model
with bending and torsional resistance to simulate constant
strain rate tests on graded asphalt mixtures. The standard
Burger’s model in direct tension and compression has also
been included at the contact bonds. Laboratory tests were
performed on the same asphalt mixture under the same load-
ing conditions as the simulations. Both normal and Weibull
distributions have been used for the bond strengths. In the
modelling, the bond strength has been made to be a power-
law function of strain rate. Reasonable agreement is observed
between simulation and laboratory results.

The constant strain rate tests results are approximately
independent of the variability of the bond strength and the
positions of the particles for each of the constant strain rate
tests. The simulations performed in this project show the
potential of DEM as a useful tool to study the fundamental
properties of asphalt mixtures.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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