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Fetal growth restriction followed by accelerated postnatal growth contributes to impaired met-
abolic function in adulthood. The extent to which these outcomes may be mediated centrally
within the hypothalamus, as opposed to in the periphery within the digestive tract, remains un-
known. In a sheep model, we achieved intrauterine growth restriction experimentally by maternal
nutrient restriction (R) that involved a 40% reduction in food intake through late gestation. R
offspring were then either reared singly to accelerate postnatal growth (RA) or as twins and
compared with controls also reared singly. From weaning, all offspring were maintained indoors
until adulthood. A reduced litter size accelerated postnatal growth for only the first month of
lactation. Independently from postnatal weight gain and later fat mass, R animals developed
insulin resistance as adults. However, restricted accelerated offspring compared with both the
control accelerated and restricted restricted offspring ate less and had higher fasting plasma leptin
as adults, an adaptation which was accompanied by changes in energy sensing and cell prolifer-
ation within the abomasum. Additionally, although fetal restriction down-regulated gene expres-
sion of mammalian target of rapamycin and carnitine palmitoyltransferase 1-dependent pathways
in the abomasum, RA offspring compensated for this by exhibiting greater activity of AMP-acti-
vated kinase-dependent pathways. This study demonstrates a role for perinatal nutrition in the
peripheral control of food intake and in energy sensing in the gastric mucosal and emphasizes the
importance of diet in early life in regulating energy metabolism during adulthood. (Endocrinology
152: 2816–2826, 2011)

The low birth weight newborn, especially when expe-
riencing rapid postnatal growth, can be at greater risk

of developing the metabolic syndrome later in life (1, 2).
This relationship can reflect long-term fetal and postnatal
adaptations to the nutritional environment (3), although
the consequences for the regulation of energy homeostasis

have yet to be established. Fetal growth is greatest over the
final quarter of gestation, which is the time when endo-
crine functions linked to maturation of the hypothalamus
are established (3, 4). It is also the period during which
changes in maternal diet can have the greatest effect on
birth weight in both sheep (5) and humans (6).
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Nutritionally programmed changes in the control of
appetite due to interactions between trophic, energetic,
hormonal, and epigenetic factors (7) have been described
in both rodents (8, 9) and sheep (10), and these may ul-
timately determine the long-term regulation of energy bal-
ance. They involve changes in leptin sensitivity (11) and
expression of a range of hypothalamic neuromediators,
including proopiomelanocortin, neuropeptide Y (NPY),
and the melanocortin 4 receptor (MC4R) (12). To date,
these observations in sheep have been established after
nutritional challenges specifically targeted during organo-
genesis of the fetal hypothalamus (i.e. early- to midgesta-
tion). Such early interventions do not, however, affect
birth weight or postnatal growth (10). The influences of
maternal nutrient restriction (R) during late gestation on
the long-term control of food intake and metabolic health,
therefore, remain to be fully established.

Currently, little is known about the potential program-
ming outcomes in peripheral organs that also control ap-
petite and regulate whole body energy homeostasis. This
is surprising, considering the critical influence the perina-
tal period can have on the development of the gastro-
intestinal tract, a major complex organ actively involved
in the control of energy balance (13). Indeed, the devel-
opment of the stomach in utero is partly dependent upon
fetal swallowing of amniotic fluid (14), which is regulated
centrally and is confined to periods of fetal breathing
that are, in turn, influenced by maternal energy intake
(15) and neuroendocrine factors such as NPY (14). Im-
mediately after birth, the gastrointestinal tract under-
goes a pronounced transformation exhibiting rapid
growth and a marked increase in acid production (16),
at a time when milk intake and composition can both
determine gastric barrier function (17). However, the
extent to which changes in maternal food intake can
contribute to long-term changes in gut function remains
to be fully established.

Critically, both centrally, i.e. in the hypothalamus and
in peripheral tissues, the control of food intake is regulated
through common energy-sensing pathways that integrate
cellular energy concentration (i.e. AMP:ATP ratio) and
endocrine signals. For example, the leptinaemic signal to
reduce food intake only occurs at high cellular concentra-
tions of ATP (18, 19). Conversely, in the gastric mucosa,
the hunger hormone ghrelin is only synthesized when ATP
concentrations are depleted (20). This endocrine energy-
sensing cross talk is governed by two proteins, AMP-ac-
tivated kinase (AMPK) and the mammalian target of rapa-
mycin (mTOR), which are also closely linked in the
regulation of oxidative and inflammatory processes (19,
21, 22). The activity and intensity of AMPK and mTOR
responses are dependent on mitochondrial activity that

involves the transcription factors carnitine palmitoyl-
transferase protein (CPT1) (23) and peroxysome prolif-
erator-activated receptor (PPAR)� that favor fatty acid
transport and �-oxidation into the mitochondria. In ad-
dition, the contents of mitochondria are regulated, in part,
by the mitochondrial biogenitor PPAR� coactivator 1
(PGC1)� (24). Furthermore, although it has been estab-
lished that ghrelin production in the stomach is regulated
by mTOR-dependent pathways (20, 22), whether this can
be set in early life is unknown. The extent to which expo-
sure to a chronic low caloric nutritional environment dur-
ing late gestation, a critical period in the acquisition of
fetal endocrine functions (3, 25), can program tissue en-
ergy sensitivity was a further focus of the present study.

Materials and Methods

Animals and experimental design
All animal procedures were performed in accordance with the

United Kingdom Animals (Scientific Procedures) Act, 1986 with
approval from the Local Ethics Committee of the University of
Nottingham (Nottingham, UK).

Experimental design
A summary of the animal protocol is illustrated in Supple-

mental Fig. 1, published on The Endocrine Society’s Journals
Online web site at http://endo.endojournals.org.

Dietary intervention in pregnancy
At 100 d of gestation (dGA), 26 Bluefaced Leicester cross

Swaledale twin bearing sheep were individually housed, and on
dGA 110, they were randomly allocated to one of two nutrition
groups until normal delivery at term (�145 � 2 d). Thus, a
control (C) group of nine pregnant sheep was fed to completely
meet their metabolisable energy (ME) requirements (i.e. from
0.46 MJ/kg � body weight0.75 at dGA 110 increasing to 0.72
MJ/kg � body weight0.75 at dGA 130) (26), whereas the remain-
ing 17 pregnant sheep were all R and fed a diet 60% of this
amount. Each pregnant sheep was weighed on a weekly basis
before feeding, after which their total food requirements were
adjusted as necessary. The diet compromised a mix of 40% con-
centrated pellets and 60% straw nuts (Manor Farm Feeds,
Oakham, UK) that had an estimated ME content of 12.6 MJ/kg
and a crude protein content (nitrogen � 6.25) of 162 g/kg and 8.6
MJ/kg and a crude protein content of 69 g/kg dry matter, re-
spectively. In addition, all pregnant sheep had free access to a
mineral block to ensure adequate micronutrient supply.

Lactation
All mothers were fed to fully meet their ME requirements

throughout lactation. Within 12 h of birth, each pair of twins was
either separated, with only one twin being reared by its mother
to accelerate postnatal growth, or reared together by their
mother as twins (R). All nine animals successfully completed the
study in each of the control accelerated (CA) and restricted ac-
celerated (RA) groups (CA: four females, five males; RA: seven
females, two males). Both offspring born to restricted restricted
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(RR) mothers were kept together with their mothers through to
weaning, but only one twin from each mother was subsequently
placed in an obesogenic environment (see below, six females and
two males). Offspring were weighed twice a week during the first
month of postnatal life and once a week thereafter until weaning.
For ethical considerations intended to reduce the number of an-
imal used in such studies, the remaining twin of the R pair was
not used in this experiment but allocated to an independent study
(see Supplemental Fig. 1).

Postweaning
All offspring were weaned at 3 months of age. All were raised

in the same restricted indoor environment thereafter to promote
obesity (27) and weighed monthly.

Fractional growth rate (FGR) from birth to 40 d of age and
from 3 to 7 months of age was determined in each animal using
the following formula:

FGR 1–40 d � (weight at 40 d � weight at birth)/weight at
birth

FGR 3–7 months � (weight at 7 months � weight at 3
months)/weight at 3 months

Blood samples (5 ml) were collected in the morning before
feeding at 3, 7, and 16 months of age from each animal, collected
from the jugular vein into heparinized and K�EDTA-coated
tubes. The plasma was immediately separated by centrifugation
(2500 g � 10 min at 4 C) and stored at �80 C until analysis.
Additional blood sampling over a 24-h period, at 2, 4, 8, and 24 h
after feeding, was undertaken at 16 months of age. In addition,
glucose tolerance tests were undertaken on all offspring at 8 and
17 months of age after on overnight fast and the area under the
curve (AUC) calculated (10).

Measurement of food intake
At 16 months of age, for 2 wk before the end of the study, all

offspring were housed individually indoors in United Kingdom
Home Office designated floor pens (3 m2) to monitor food intake
and appetite. For each animal, daily energy intake was assessed
through weighed intake and food refusal when offered sufficient
energy for the 24-h period based on a mix of low (straw nuts, 8.9
MJ/kg) and 800 g of high (concentrate pellets, 12.6 MJ/kg) en-
ergy-dense food.

Physical activity
The level of spontaneous physical activity at adulthood was

determined using uniaxial accelerometers (Actiwatch; Linton In-
strumentation, Diss, UK) (10). A ratio between physical activity
and food intake was calculated at 16 months of age as previously
described (10).

Body composition
Total body fat, fat free mass, and bone mineral density was

determined at 8 and 16 months of age when the animal was
sedated (im injection of 1.5 mg � kg�1 ketamine with 0.1
mg � kg�1 xylazine) and scanned in a transverse position using a
Lunar DPX-L (fast-detail whole body smartscan).

Postmortem analysis
At 17 months of age, the animals were humanely euthanized

by electrical stunning and exsanguination after an overnight fast.
All the major organs were weighed and representative samples

snap frozen in liquid nitrogen and stored at �80 C as was the
entire hypothalamus of each animal (10).

Laboratory analysis

Plasma metabolite and hormones
Glucose, nonesterified fatty acid and triacylglycerol concen-

trations were determined by colorimetric assays (Randox,
Crumlin, UK). Insulin was assayed using an ovine-specific ELISA
(Mercodia; Diagenics Ltd., Milton Keynes, UK), and leptin was
determined by a radio-immunoassay (10) as was cortisol (Diagnos-
tic Products Corporation coat-a-count; Siemens, Camberley, UK).

Gene expression
This was determined by real-time RT-PCR. Total RNA was

extracted from entire hypothalami, abomasum, omental, and sc
adipose tissue using the Chomczynski and Sacchi method (28,
29) with deoxyribonuclease treatment (Rneasy Plus mini kit;
QIAGEN, Crawley, UK). It was then reverse transcribed (Su-
perscript II reverse transcriptase; Invitrogen Ltd., Pasley, UK)
and cDNA amplified on a real-time thermocycler (Quantica;
Techne, Inc., Barloword Scientific Ltd., Stone, UK) using SYBR
green based Taq polymerase reaction mix (ABsolute blue QPCR
SYBR green; Thermo Scientific, Epsom, UK). Product specificity
for every pair of primers was confirmed by sequencing and the
efficiency of the primer sets, within the range of requested DNA
amplification, assessed and optimal efficiency established (2.00 �
5%). Hypothalami were analyzed for insulin receptor, leptin re-
ceptor (ObR), tyrosine-protein phosphatase nonreceptor (PTP1B),
adiponectin receptors (AdnR) (AdnR1 and AdnR2), suppressor
of cytokine signaling, ghrelin receptor, melanocortin receptors
(MC4R and MC3R), agouti-related peptide, NPY, fat mass and
obesity-associated protein (FTO), AMPK�, and mTOR. Abo-
masal samples were analyzed for ghrelin, leptin, AMPK�2,
acetyl coenzyme A carboxylase (ACC�), dinucleotide methyl
transferase type I , FTO, mTOR, CPT1, ObR, insulin receptor,
uncoupling protein 2 (UCP2), PPAR�, PGC1�, and sirtuin
(SIRT1). Omental and sc adipose tissues were analyzed for lep-
tin, adiponectin, IL-6, IL-18, TNF�, toll-like receptor 4, glucose-
related peptide 78, FTO, and macrophage chemoattractant pro-
tein 1. Ribosomal 18S RNA and ribosomal protein large P0 were
used as housekeeping genes. Gene expression was determined by
using the 2���CT calculation.

Protein abundance
AMPK� and phospho-AMPK� were analyzed by immuno-

blotting. Total proteins were extracted from abomasal samples
(30) using ice-cold lysis buffers (Sigma, Hertfordshire, UK) and
protease inhibitors. After reduction and denaturation with
sodium dodecyl sulfate at 100 C, 10 �g of protein extracts
were separated by vertical, polyacrylamide-based electropho-
resis. After migration and electrical protein transfer, nitrocel-
lulose membranes were blocked overnight and blotted with
antibodies for either AMPK�, phospho-AMPK� (catalog no.
23A3 and Thr172, respectively; Cell Signaling, Hitchin, UK), or
�-actin (Abcam, Cambridge, UK). Relative protein abundance
was then determined using chemiluminescence (Immobilon
Western Chemiluminescence; Millipore, Watford, UK) and the
image analyzed (Aida Image Analyzer; Raytek Scientific Ltd.,
Sheffield, UK).
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Immunohistochemistry

Tissue fixation
Snap-frozen abomasal samples that had been stored at �80

C were fixed. Before fixation, each sample was gradually
thawed by first placing it at �20 C for 24 h and then for 12 h
at4C.Theywere fixedwith10%saline formaldehyde solutionand
embedded in paraffin wax with 5-�m microtome sections used for

subsequent analysis. Hematoxylin and eosin staining was per-
formed to confirm that tissue integrity was maintained.

Cell proliferation
These sections were also immunostained to determine the rel-

ative expression of the proliferating cell nuclear antigen
(PCNA) (Abcam) (27). Staining was carried out on the Bond-
max histology system using Bond Polymer Refine Detection Sys-
tem (DS9800; Vision Biosystems, Mount Waverley, Australia)
and Bond software version 3.4A. Briefly, slides are heated and
stained as follows: 5 min on a peroxide block, 15 min with pri-
mary antibody, 8 min with secondary antibody, 10 min with
3,3-diaminobenzidine, and 5-min counterstaining with hema-
toxylin and eosin. Negative slides were run in parallel, with the
exclusion of the primary antibody. Slides were imaged using a
Nikon Eclipse 90i microscope (Nikon, Surrey, UK) with charge-
coupled device high-speed color camera (Micropublisher
3.3RTV; Qimaging, Surrey, British Columbia, Canada) and an-
alyzed using Volocity 4 (version 4.2.1; Improvision, Coventry,
UK) quantification software. To ensure uniformity of staining
using the automated protocol, all animals were analyzed at the
same time with the investigator blinded to nutritional group.

Detection of apoptosis
Terminal transferase-mediated 2�-deoxyuridine, 5�-triphos-

phate nick end labeling (TUNEL) was determined using a flu-
orescence Nikon Eclipse 90i microscope using a similar pro-

tocol to that described above.

Statistical analysis
Statistical analysis of the data were per-

formed using PASW statistics software (ver-
sion 17.02; IBM, Chicago, IL). Kolmogorov-
Smirnoff tests were realized on every
parameter analyzed to determine the Gauss-
ian distributions of the variables. The influ-
ence of maternal nutrition (R vs. C) or early
postnatal growth (RA vs. RR) was deter-
mined, according to parametric distribution,
using unpaired Student’s t or Mann-Whitney
U tests. Data are expressed as mean values
with their SE. To address the limitations of
multiple testing, statistical trend was accepted
with a 95% interval of confidence (P 	 0.05),
and significance was accepted with a confi-
dence interval of 99% (P 	 0.01). Each vari-
able was tested for gender. Only body weight
and fat mass after birth differed between
males and females, and no other factors were
found to be affected. Moreover, comparison
for each variable between groups for females
only demonstrated similar outcomes.

Results

Birth weight and postnatal
growth

A 40% caloric restriction in late ges-
tation had no effect on length of gestation
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FIG. 1. Maternal R in late gestation induced IUGR. Influence of a 40%
R on birth weight of (A) siblings and (B) standardized Z score for birth
weight. Values are mean � SEM and significant differences between
groups, ***, P 	 0.001.
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FIG. 2. Postnatal growth of offspring born to C-fed sheep or those R from dGA 110 up
to term and then reared as a singleton [CA (closed circles), RA (open squares)] or as twins
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months of age. FGR during (B) lactation and (D) weaning are also illustrated. Values are
mean � SEM and significant differences between groups, CA and RA: *, P 	 0.05;
**, P 	 0.01; ***, P 	 0.001; RA and RR; a vs. b, P 	 0.05; a vs. c, P 	 0.01.

Endocrinology, July 2011, 152(7):2816–2826 endo.endojournals.org 2819

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 20 March 2014. at 07:49 For personal use only. No other uses without permission. . All rights reserved.



(C, 145 � 0.5 d; R, 145 � 1.1 d). The siblings in each set of
twins were of similar body weight, and offspring of R moth-
erswere lighterwithanegativemeanZscore forbirthweight
(Fig. 1). From birth to weaning, R offspring remained lighter
than C and as expected reduced litter size promoted early
growth(Fig.2A).RAoffspringgrewfaster thanbothRRand
CA groups over first month of postnatal life, with very sim-
ilar growth rates in these two groups (Fig. 2B).

After weaning at 3 months of age, all offspring born to R
mothers showed accelerated weight gain, which approached
that of CA animals by 7 months of age (Fig. 2, C and D). RR
offspring exhibited the fastest rate of postweaning growth
(Fig.2D).Nevertheless, nooffspringborn toRmothersgrew
faster than the C, so that, at 17 months of age, mean body
weight was similar between groups.

Body composition and metabolic parameters
Offspring born to C and R mothers exhibited similar

total body composition as determined by dual-energy x-

ray absorptiometry scanning at 8 and 16 months, and
there was no difference between groups in the weight of
visceral fat depots (i.e. omental, perirenal, and pericardial)
at postmortem (Table 1). At 8 months of age, RA offspring
exhibited signs of insulin resistance with an enhanced in-
sulin, but not glucose, AUC, which was maintained up to
16monthsof agewhenboth theRAandRRoffspringwere
insulin resistant compared with C. Fasting blood samples
were analyzed to assess whether the circulating metabolic
profile was programmed by prenatal diet, and R animals
exhibited raised plasma insulin, but reduced triacylglyc-
erol, only as adults (Table 2).

Characteristics of energy homeostasis in the adult
offspring

With increased age and fat mass, plasma leptin rose in
all groups. However, in the adults, fasting plasma leptin
further increased in RA offspring (Table 2), a difference
that persisted over the 24-h sampling period (Fig. 3A).

TABLE 1. Influence of fetal growth restriction and accelerated post natal growth on insulin sensitivity and fat mass

Age (months) CA RA RR IUGR Postnatal growth

AUC insulin (a.u.) 8 38.3 � 10 64.0 � 11 32.6 � 6.9 	0.05 	0.05
16 53.1 � 15 107 � 37 91.1 � 47 	0.05 —

AUC glucose (a.u.) 8 1118 � 121 1015 � 189 1233 � 227 — —
16 602 � 322 831 � 345 803 � 461 — —

Total fat mass (%) 8 11.7 � 7.2 15.3 � 3.2 15.1 � 3.2 — —
16 18.2 � 7.3 21.8 � 7.0 20.0 � 3.3 — —

Postmortem analysis
Total perirenal fat (g) 17 960 � 162 1069 � 240 939 � 113 — —
Total omental fat (g) 1353 � 182 1563 � 381 1509 � 195 — —

Values are means � SEM. a.u., Arbitrary units. Full details of pre- and postnatal nutritional interventions are included in Materials and Methods.

TABLE 2. Plasma concentrations of metabolites and hormones as measured at immediately prior to daily feeding at
0900 h in the growing offspring at 3, 8, and 16 months of age

Age (months) CA RA RR IUGR Postnatal growth

Glucose (mM) 3 3.0 � 0.17 2.8 � 0.10 2.6 � 0.10 — —
8 3.4 � 0.34 4.0 � 0.18 3.0 � 0.42 — —

16 2.9 � 0.25 2.8 � 0.34 3.1 � 0.09 — —
NEFA (nM) 3 0.76 � 0.44 0.76 � 0.31 0.78 � 0.44 — —

8 1.34 � 0.07 1.01 � 0.11 1.27 � 0.08 — —
16 0.67 � 0.05 0.48 � 0.07 0.48 � 0.08 — —

Triacylglycerol (mM) 3 0.46 � 0.06 0.38 � 0.04 0.36 � 0.09 — —
8 0.18 � 0.01 0.17 � 0.01 0.18 � 0.04 — —

16 0.19 � 0.02 0.09 � 0.01 0.12 � 0.02 	0.01 —
Cortisol (nM) 3 34.1 � 3.4 48.6 � 13.8 49.2 � 10.3 — —

8 66.8 � 18.0 62.1 � 12.6 59.5 � 10.3 — —
16 38.8 � 8.4 55.5 � 13.9 45.0 � 10.0 — —

Leptin (ng/ml) 3 0.7 � 0.11 0.5 � 0.10 0.7 � 0.10 — —
8 1.8 � 0.22 2.4 � 0.45 2.1 � 0.40 — —

16 3.8 � 0.60 6.2 � 0.94 3.7 � 0.47 	0.05 	0.05
Insulin (pM) 3 12.0 � 1.7 12.0 � 2.0 13.7 � 1.7 — —

8 25.8 � 2.1 29.2 � 2.0 27.5 � 2.4 — —
16 17.2 � 2.1 25.8 � 1.9 25.8 � 6.8 	0.05 —

Values are means � SEM. Full details of pre- and postnatal nutritional interventions are included in Materials and Methods. NEFA, Nonesterified
fatty acid.

2820 Sebert et al. Early Growth Programming of Energy Metabolism Endocrinology, July 2011, 152(7):2816–2826

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 20 March 2014. at 07:49 For personal use only. No other uses without permission. . All rights reserved.



In addition, a significant positive correlation between
plasma leptin with early growth was observed (CA: R2 	

0.01, P � 0.9; RA: R2 � 0.77, P � 0.001; RR: R2 	 0.01,
P � 0.7). In contrast, gastric ghrelin and leptin mRNA
expression were not affected by either maternal diet or
early postnatal growth (Fig. 3B and Table 3). Measure-
ment of daily food intake and 24-h activity profiles dem-
onstrated that the RA group consumed less food at 16
months of age (Fig. 3C), which is likely to be mediated by
the raised plasma leptin in these animals compared with
CA and RR groups (Fig. 3A). There were no differences in
physical activity or the ratio of physical activity to food
intake (Fig. 3D). Although in rodent models of diet-in-
duced obesity reduced insulin sensitivity frequently arises
from a chronic proinflammation that originates from hy-
perplasic adipose tissue (31), gene expression analysis in
both the sc and omental fat depots in the present study was
similar between groups as was adipocyte size, and there
are no obvious signs of exaggerated crown-like structures
in any samples (data not shown).

Differential central
(hypothalamus) and peripheral
(gastric) programming

To assess the influence of the early
nutritional environment on the hypo-
thalamus and stomach, gene expression
profiles were determined at 17 months
of age using quantitative RT-PCR. In
the hypothalamus, maternal R resulted
in raised gene expression for the MC3R,
AMPK�, mTOR, PTP1B, AdnR2, and
the FTO gene (Table 3 and Fig. 4A) with
no effect of postnatal growth. In the abo-
masum, maternal R resulted in reduced
gene expression of mTOR, CPT1, SIRT1,
and UCP2, whereas the RR offspring
in whom postnatal growth was reduced
exhibited a pronounced increase in
mRNA abundance for PGC1�, PPAR�,
AMPK�, ACC�, glucose transporter 1,
DMNT1, ObR, and FTO (Table 3 and
Fig. 4B). No difference, however, was seen
in the protein abundance of AMPK�

or in the relative abundance of active
phosphorylated-AMPK� (data not
shown). Finally, histological exami-
nation of the abomasum (Fig. 5) re-
vealed a marked reduction in PCNA
with enhanced postnatal growth after
maternal nutrition, without altera-
tion in TUNEL staining.

Discussion

The present study demonstrates that, in a large animal
model known to share important similarities with humans
in the outcomes of fetal programming, growth rate im-
mediately after birth was an important determinant of
adult energy homeostasis. Growth-restricted fetuses born
to R mothers were, therefore, insulin resistant and exhib-
ited specific impairments in the regulation of food intake
that were accompanied with long-term changes in the ac-
tivity of the abomasum.

The animal model
The strength of sheep as a model for the human lies

in the fact that time courses of fetal and perinatal devel-
opment are comparable, particularly in the establishment
of hypothalamic neural networks and the rapid growth of
adipose tissue during late gestation (32). It must, however,
be noted that ruminant sheep differ from monogastric om-
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nivorous humans in their short-term control of feeding.
Nevertheless, the fourth stomach chamber in sheep, the
abomasum, acts as does the stomach of monogastric mam-
mals and is the main site for ghrelin production (33), al-
though there is limited information in sheep. The similar-
ities between humans and sheep in the nutritional control
of abomasal ghrelin synthesis clearly suggest a role in the
control of food intake (34). Critically, during the early
postnatal period when young sheep only feed on milk, an
esophageal groove exists, and they only use their true
stomach (i.e. the abomasum) to digest milk making them
comparable with human infants. Both pregnant women
and sheep are prone to maternal catabolism in the last
third of gestation (5, 35), and this may act to maintain fetal
growth and invoke common pathways by which reduced
birth weight results in long-term adverse consequences.

As previously observed in sheep (36), and supported by
retrospective analysis in the Dutch famine birth cohort,
late gestational R results in low birth weight and adult
insulin resistance (6). The risk of developing the metabolic
syndrome in small birth weight offspring can be amplified
in those individuals exhibiting rapid postnatal growth
(37). However, the results from our study do not readily
support such a relationship, because when all offspring
were raised in an obesogenic environment, they became
equally obese. Although preterm infants develop greater
relative fat mass probably as a consequence of increased
postnatal nutrition (38), the relationships between specific

changes in fat mass and insulin sensitivity and postnatal
growth in the term growth restricted newborn are less
clear. The results of the present study suggest that intra-
uterine growth restriction (IUGR) and rapid postnatal
growth may not represent separate risk factors for insulin
resistance later in life.

Despite having a modest effect on the onset of insulin
resistance, weight gain in the first month of life specifically
influenced the regulation of energy balance. Adult off-
spring born to R mothers ate less than C, an outcome that
was abolished in the RR offspring, i.e. those in which early
postnatal growth was reduced. In addition, RA offspring
exhibited higher plasma leptin, which could partially ex-
plain their lower food intake. Future studies will now be
needed to determine whether these adaptations are medi-
ated by changes in leptin production from adipose tissue
and/or the development of leptin resistance. We found no
influence of perinatal weight gain on either total or vis-
ceral fat mass, adipocyte morphology or gene expression
that would support a programmed response in white ad-
ipose tissue. No change in hypothalamic expression of the
ObR or any other neurotransmitters was observed to in-
dicate the development of central leptin resistance. More-
over, despite exhibiting enhanced gene expression for
AMPK, mTOR, PTP1B, MC3R, and FTO in relation to
IUGR, the activity of the hypothalamus remained surpris-
ingly unaffected by postnatal growth. The hypothalamic
changes we observed may, in fact, be secondary to those in

TABLE 3. Fold changes in mRNA abundance in the hypothalamus and gastric mucosa sampled from adult offspring
as measured at 17 months of age

CA RA RR IUGR Postnatal growth

Hypothalamus
IR 1.0 � 0.24 1.2 � 0.17 1.5 � 0.30 — —
PTP1B 1.0 � 0.13 1.5 � 0.12 1.5 � 0.20 	0.05 —
AdnR1 1.0 � 0.08 1.3 � 0.14 1.1 � 0.10 — —
AdnR2 1.0 � 0.13 1.5 � 0.13 1.4 � 0.18 	0.05 —
ObR 1.0 � 0.19 0.9 � 0.09 0.8 � 0.15 — —
SOCS3 1.0 � 0.18 1.4 � 0.22 1.6 � 0.32 — —
GHSR 1.0 � 0.13 1.1 � 0.13 0.8 � 0.08 — —
AgRP 1.0 � 0.10 1.5 � 0.13 1.2 � 0.24 — —
MC4R 1.0 � 0.15 1.1 � 0.09 1.2 � 0.14 — —
NPY 1.0 � 0.24 1.2 � 0.24 0.7 � 0.11 — —
FTO 1.0 � 0.24 1.4 � 0.12 1.4 � 0.10 	0.05 —

Stomach
IR 1.0 � 0.11 0.7 � 0.20 0.8 � 0.16 — —
GLUT1 1.0 � 0.15 1.0 � 0.45 3.2 � 0.42 — 	0.01
ObR 1.0 � 0.61 0.5 � 0.22 3.4 � 1.00 — 	0.001
Leptin 1.0 � 0.34 2.8 � 1.08 2.5 � 1.10 — —
Ghrelin 1.0 � 0.32 1.7 � 0.39 1.6 � 0.52 — —
ACC� 1.0 � 0.14 0.9 � 0.31 3.7 � 0.87 — 	0.05
SIRT1 1.0 � 0.09 0.7 � 0.08 0.7 � 0.10 	0.05 —
DNMT1 1.0 � 0.08 0.8 � 0.21 3.3 � 0.70 — 	0.01
FTO 1.0 � 0.25 1.1 � 0.35 5.2 � 1.06 — 	0.001

Values are means � SEM. AgRP, Agouti-related peptide; DNMT1, dinucleotide methyl transferase 1; GHSR, ghrelin receptor; GLUT1, glucose
transporter 1; IR, insulin receptor; SOCS3, suppressor of cytokine signalling. Full details of pre- and postnatal nutritional interventions are included
in Materials and Methods.

2822 Sebert et al. Early Growth Programming of Energy Metabolism Endocrinology, July 2011, 152(7):2816–2826

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 20 March 2014. at 07:49 For personal use only. No other uses without permission. . All rights reserved.



plasma leptin and insulin and thus be indicative of an
indirect metabolic effect. This lack of long-term effect
within the hypothalamus may be important for improving
our understanding of organ plasticity and critical win-
dows of susceptibility. We have previously observed that
a similar nutritional challenge imposed earlier in gestation
induced long-term programming effects on hypothalamic
gene expression (10). The only difference between these
experiments was the timing of the nutritional challenge,
i.e. either during the early period of hypothalamic organo-
genesis or later when it was much more developed and
perhaps less plastic (39). This raises the question as to
whether the fully mature hypothalamus has lost its capac-
ity to be epigenetically programmed in late gestation. We

must, however, acknowledge that in
both these experiments, the entire hy-
pothalamus was used. This has been ad-
opted by several other groups (40, 41),
and future analysis may need to focus
on specific regions within the different
regulatory nuclei.

IUGR reduces gastric energy
sensitivity

We have demonstrated the influence
of the early life nutritional environment
on programming of the gastrointestinal
tract as gene expression of constitutive
mTOR, plus SIRT1, CPT1, and UCP2
were all halved in offspring born to R
mothers, irrespective of postnatal growth
rate. These adaptations are likely to be
critical as mTOR signaling integrates
cellular pathways regulating gastric
ghrelin synthesis and proinflammatory
processes (42–44). When energy pro-
duction increases within the gut, a par-
allel rise in mTOR, by inhibiting ghrelin
synthesis, reduces food intake (20). Our
findings, therefore, suggest that chronic
energy restriction during late gestation
reduces mTOR action in the stomach
with the potential to either increase en-
ergy intake or enhance the rate of nu-
trient exchange across the gut.

Fetal growth restriction was also ac-
companied by a reduction in SIRT1,
UCP2, and CPT1 gene expression, to-
gether with histological evidence of
impaired gastric mucosal integrity.
Taken together, these adaptations are
indicative of a prooxidative status
with SIRT1, UCP2, and CPT1 acting

to reduce intracytoplasmic reactive oxygen species con-
centration (45), although the precise mechanisms in-
volved remain an area of intense debate (46, 47).
Importantly, our study provides novel mechanistic in-
sights into how epidemiological findings of a link be-
tween low birth weight, gastroesophageal reflux, or car-
cinoma (48 –50) may occur.

Protective effect of postnatal growth restriction
on later gastric function

One further outcome in our study was that, despite gene
expression of mTOR, SIRT1, UCP2, and CPT1 being
down-regulated in all offspring born to R mothers, the
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adverse histological outcomes in terms of PCNA staining
were not found in those animals, which did not increase
their growth during early lactation. We propose that this
apparent protective effect was related to adaptations in
gene expression regulating gastric energy metabolism as
indicated by overexpression of those involved in AMPK/
ACC-related pathways. As a consequence, these offspring
would be able to stimulate mitochondrial biogenesis after
increased PGC1� and cellular energy intake and oxida-
tion due to raised glucose transporter 1 and PPAR�. At the
same time, enhanced leptin sensitivity induced by a higher

ObR abundance would ultimately reduce prooxidative
pathways and favor gastric integrity (44, 51). The mech-
anistic basis for differential epigenetic resetting as sug-
gested by constitutive changes in gene expression remains
largely unexplained, and control mechanisms appear to
differ greatly between genes in the same tissue (52). In-
triguingly, we found these transcriptional changes to be
associated with dinucleotide methyl transferase type I and
FTO, two factors that can regulate DNA methylation (53,
54). Furthermore, FTO has been established to encode a
2-oxoglutarate DNA demethylase and provides a link be-
tween energy-sensing pathways (55–57) that could in-
clude be further modulated by changes in short-chain fatty
acid production (58), which are the main products of
rumination.

In conclusion, restricted maternal food intake during
late gestation, which is sufficient to induce IUGR, resulted
in a long-term resetting of energy homeostasis. Small birth
weight offspring were predisposed to insulin resistance, a
response which was not amplified with rapid postnatal
growth but was accompanied with long-term changes in
the control of food intake. This was linked to a pro-
grammed adaptation in the abomasum but not in the hy-
pothalamus. Critically, both fetal growth restriction and
the timing of postnatal growth promotion in the IUGR
offspring had a large impact upon mTOR and AMPK-
dependent energy-sensing pathways, which could influ-
ence cell proliferation in the abomasum. These observa-
tions could be clinically relevant and suggest that very
early nutrition should have a major long-term effect in the
gastrointestinal organs involved in the control of food
intake.
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