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Spin polarization evolution in a boost-invariant hydrodynamical background
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Relativistic hydrodynamic equations for particles with spin 1
2 are used to determine the space-time evolution

of the spin polarization in a boost-invariant and transversely homogeneous background. The hydrodynamic
approach uses the forms of the energy-momentum and spin tensors based on the de Groot, van Leeuwen, and
van Weert formalism. Our calculations illustrate how the formalism of hydrodynamics with spin can be used
to determine physical observables related to the spin polarization and how the latter can be compared with the
experimental data.
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I. INTRODUCTION

The recent measurements of the spin polarization of �

hyperons in relativistic heavy-ion collisions [1,2] suggest
that the space-time evolution of spin polarization should be
included in the hydrodynamic description of such processes.
Since the hydrodynamic models can be regarded nowadays
as a basic tool used for understanding of the space-time
evolution of matter created in heavy-ion collisions [3,4], the
incorporation of spin dynamics into such models seems to be
a natural extension of the standard hydrodynamic approach.
Such an extension would offer a new possibility for making
comparisons between theory predictions and experimental
data.

First steps toward including the spin dynamics in the
formalism of relativistic hydrodynamics have been made in
Refs. [5–8]; see also the follow-up papers, Refs. [9–13], and
a review, Ref. [14]. In this case, the spin dynamics follows
solely from the conservation of the angular momentum and
other conservation laws; hence, the hydrodynamic equations
with spin proposed in Ref. [5] can be regarded as a simple
extension of the perfect-fluid dynamics.

Other works have dealt so far mainly with the spin po-
larization of particles at freeze-out [15–19]. In this kind of
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approach, the basic hydrodynamic quantity giving rise to spin
polarization is the thermal vorticity, defined by the expression
�μν = − 1

2 (∂μβν − ∂νβμ), where βμ is the ratio of the fluid
flow vector Uμ and the local temperature T , namely, βμ =
Uμ/T . A strict relation between the thermal vorticity and the
spin polarization tensor ωμν (in fact, equality) can be derived
for matter in global equilibrium with a rigid rotation [20–22].
This reminds us of the physics situations known from the
Einstein–de Haas and Barnett effects [23,24]. In the case
of heavy-ion collisions we may deal with a similar case in
noncentral collisions, where a nonvanishing local vorticity
perpendicular to the reaction plane is formed [25–30].

In the framework put forward in Ref. [5] the spin po-
larization is described by the spin polarization tensor ωμν ,
which is independent of the thermal vorticity. The space-
time changes of ωμν follow from the conservation laws for
angular momentum. Dissipative effects that eventually may
bring ωμν closer to �μν are not included. In some sense,
the approaches in Refs. [5] and [20] can be regarded as two
extreme cases: in the first case ωμν lives its independent life
(restricted only by the conservation laws), while in the second
case ωμν is always constrained to be equal to �μν . One may
expect that in more realistic situations the polarization tensor
approaches the thermal vorticity on a characteristic relaxation
timescale [8]. Depending on the magnitude of this relaxation
time we may deal with the first case or the second case. In
the future, it would be interesting to explore in more detail
the relation of the framework given in Ref. [5] to anomalous
hydrodynamics [31,32] and the Lagrangian formulation of
hydrodynamics [33–35].

The hydrodynamic framework worked out in Refs. [5,6] is
based on the specific forms of the energy-momentum and spin
tensors. These forms have been chosen in such a way as to
obtain the simplest possible description that is self-consistent
from the thermodynamic and hydrodynamic points of view.
A more recent work has demonstrated, however, that other
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forms of the energy-momentum and/or spin tensors should be
used if we want to connect them with the underlying kinetic
theory [36] (see also Refs. [37,38]). As a matter of fact, these
forms agree with those introduced by de Groot, van Leeuwen,
and van Weert (GLW) in Ref. [39]. It has been also shown
in Ref. [36] that the GLW forms are connected with the
canonical expressions (given through the Noether theorem)
via the so-called pseudogauge transformation [8,14,40]. In
view of this fact, we have decided to consider here the case
where the hydrodynamics with spin is formulated with the
GLW forms of the energy-momentum and spin tensors.

Another important limitation of the formulation [5,6] is
that it does not allow for arbitrary large values of the po-
larization tensor [14]. Therefore, in the present approach
we restrict ourselves to the leading-order expressions in the
polarization tensor ωμν .1 We note that, a priori, we cannot
say if the hydrodynamic equations do not lead to instabilities
that make higher-order terms in ωμν important. This should be
individually checked for each form of the initial conditions.

The conclusion from the points discussed above is that
the most convincing framework for hydrodynamics with spin
is that based on the GLW forms of the energy-momentum
and spin tensors, combined with the linear expansion in ωμν .
Since at the moment no solutions of such a scheme are
known, the purpose of this paper is to explore the simplest,
boost-invariant expansion geometry known as the Bjorken
expansion [41] and to look for the consequences of the
hydrodynamic scheme introduced in this way. In addition,
we assume that the systems studied here are transversely
homogeneous.

An attractive feature of our scheme is that the terms linear
in ωμν appear only in the spin tensor. Hence, the conservation
of energy and linear momentum can be analyzed in exactly the
same way as in standard hydrodynamics and, subsequently,
the spin evolution in a given hydrodynamic background can
be determined.

The study presented in this work can be used as a practical
illustration as well as a check of the theoretical scheme
defined above. The latter consists of four distinct steps: (i)
solving the standard perfect-fluid hydrodynamic equations
without spin, (ii) determination of the spin evolution in the
hydrodynamic background, (iii) determination of the Pauli-
Lubański (PL) vector on the freeze-out hypersurface, and,
finally, (iv) calculation of the spin polarization of particles in
their rest frame. The spin polarization obtained in this way is a
function of the three-momenta of particles and can be directly
compared with the experiment.

In the context of the recent experiments, probably the most
interesting issue is the determination of the longitudinal (i.e.,
along the beam axis) polarization of � and �̄. This observable
was first discussed by Jacob and Rafelski [42,43]; however,
the first heavy-ion collision experiments in Dubna [44], at
CERN [45], and at BNL [46] reported negative results. A

1The spin polarization tensor ωμν is dimensionless; it can be
defined as the ratio of the spin chemical potential �μν and the
temperature T , ωμν = �μν/T .

breakthrough came when the �(�̄)-hyperon spin polarization
was measured very recently by the STAR Collaboration [1,2].

Interestingly, the STAR measurement also shows a
quadrupole dependence of the longitudinal polarization with
respect to the reaction plane [47]. It turns out that this behavior
cannot be reproduced by the current model calculations [19],
which assume that spin polarization tensor is equal to the
thermal vorticity, although the difference resides mainly in
the sign of the polarization. If this difference persists, it may
suggest that, indeed, the spin polarization evolves indepen-
dently from the thermal vorticity. Interestingly, very recent
simulations [48] based on the chiral kinetic theory have been
able to explain the longitudinal polarization in the scenario
where ωμν �= �μν .

Due to the simplified geometry, the hydrodynamical model
described herein cannot describe properly the longitudinal
polarization. Nevertheless, our calculations demonstrate how
the formalism of hydrodynamics with spin can be used to de-
termine spin observables and how they can be compared with
the experimental data. In this way, the calculations presented
herein set the stage for more realistic calculations.

Notation and conventions. The metric tensor is taken as
gμν = diag(+1,−1,−1,−1). The scalar product of two four-
vectors aμ and bμ reads a · b = aμbμ = gμνaμbν = a0b0 − a ·
b, where bold font is used to denote three-vectors. For the
Levi-Civita tensor εμνρσ the convention ε0123 = −ε0123 = +1
is used. The Lorentz-invariant measure in the momentum
space is represented by dP = d3 p

(2π )3Ep
, where Ep =

√
m2 + p2

and pμ = (Ep, p) are the on-mass-shell particle energy and the
particle four-momentum, respectively. The square brackets
are used to denote antisymmetrization with respect to a pair
of indices, say μ and ν, for example, A[μν] = (Aμν − Aνμ)/2.
Any dual tensor, obtained by contracting a rank-two antisym-
metric tensor with the Levi-Civita tensor and dividing by a
factor of 2 is represented by a tilde over it. For example, the
dual tensor to tμν is defined as

t̃μν = 1
2εμναβtαβ. (1)

The inverse transformation is

tμν = − 1
2εμναβ t̃αβ. (2)

Throughout the text, natural units, i.e., c = h̄ = kB = 1, are
used.

II. SPIN POLARIZATION TENSOR AND PERFECT FLUID
HYDRODYNAMICS FOR PARTICLES WITH SPIN 1

2

A. Spin polarization tensor

The spin polarization tensor ωμν is antisymmetric and can
be defined by the four-vectors κμ and ωμ [5],

ωμν = κμUν − κνUμ + εμναβU αωβ, (3)

where U μ is the flow four-vector. It is important to note that
any part of the four-vectors κμ and ωμ which is parallel to U μ

does not contribute to the right-hand side of Eq. (3). Hence,
we can assume that κμ and ωμ satisfy the orthogonality
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conditions:2

κ · U = 0, ω · U = 0. (4)

Using these constraints, we can express κμ and ωμ in terms of
ωμν , namely,

κμ = ωμαU α, ωμ = 1
2εμαβγ ωαβU γ . (5)

B. Perfect fluid hydrodynamics for particles with spin 1
2

In this section we define the hydrodynamic equations for
particles with spin 1

2 . Having in mind our earlier remarks
about the GLW formalism and expansion in ωμν , we ignore
spin degrees of freedom in the conservation laws for charge
and for energy and linear momentum. Consequently, the
polarization tensor is included only in the conservation of
angular momentum.

1. Conservation of charge

The conservation law of charge current3 is expressed by the
standard expression

∂αNα (x) = 0, (6)

where

Nα = nU α (7)

and [5]

n = 4 sinh(ξ ) n(0)(T ). (8)

Here we assume the equation of state of an ideal relativistic
gas of classical massive particles (and antiparticles) with
spin 1

2 . The quantity n(0)(T ) defines the number density of
spinless and neutral massive Boltzmann particles,

n(0)(T ) = 〈p · U 〉0 , (9)

with 〈 · · · 〉0 denoting a thermal average,

〈 · · · 〉0 ≡
∫

dP (· · · ) e−β·p. (10)

The factor 4 sinh(ξ ) = 2(eξ − e−ξ ) in Eq. (8) accounts for
spin degeneracy and the presence of both particles and antipar-
ticles in the system. The variable ξ is the ratio of the chemical
potential μ and the temperature, ξ = μ/T .

Using Eq. (10) in Eq. (9) and carrying out the momen-
tum integrals one obtains the well-known result (see, e.g.,
Ref. [49])

n(0)(T ) = 1

2π2
T 3 m̂2K2(m̂), (11)

where T is the temperature, m̂ ≡ m/T is the ratio of the
particle mass and the temperature, and K2(m̂) denotes the
modified Bessel function of the second kind.

2Six independent components of κμ and ωμ define six independent
components of the antisymmetric tensor ωμν .

3The charge may represent here any of the conserved charges such
as the electric charge or the baryon number.

2. Conservation of energy and linear momentum

The conservation of energy and linear momentum is ex-
pressed by the equation

∂αT αβ

GLW(x) = 0, (12)

where the energy-momentum tensor T αβ

GLW has the perfect-
fluid form

T αβ

GLW = (ε + P)U αU β − Pgαβ, (13)

with the energy density and pressure given by

ε = 4 cosh(ξ ) ε(0)(T ) (14)

and

P = 4 cosh(ξ ) P(0)(T ), (15)

respectively. In analogy to the number density n(0)(T ),
the auxiliary quantities ε(0)(T ) and P(0)(T ) are defined
as ε(0)(T ) = 〈(p · U )2〉0 and P(0)(T ) = −(1/3)〈p · p − (p ·
U )2〉0. For an ideal relativistic gas of classical massive par-
ticles one finds [49]

ε(0)(T ) = 1

2π2
T 4 m̂2[3K2(m̂) + m̂K1(m̂)], (16)

P(0)(T ) = T n(0)(T ). (17)

At this point it is important to notice that Eqs. (6) and (12)
form a closed system of five equations for five unknown func-
tions: ξ , T , and three independent components of U μ. They
are nothing else but the perfect-fluid equations, which should
be solved in the first step in order to define a hydrodynamic
background for the spin dynamics.

3. Conservation of angular momentum

Since the energy-momentum tensor used in the GLW
framework is symmetric, the conservation of the angular
momentum implies the conservation of its spin part, i.e., of
the spin tensor. Thus, in the GLW formalism we use the
formula [36]

∂αSα,βγ

GLW (x) = 0, (18)

where the GLW spin tensor in the leading order of ωμν is given
by the expression [36]

Sα,βγ

GLW = C(
n(0)(T )U αωβγ + Sα,βγ

�GLW

)
, (19)

with C = cosh(ξ ). Here, the auxiliary tensor Sα,βγ

�GLW is defined
as [6]

Sα,βγ

�GLW = A(0) U αU δU [βω
γ ]
δ + B(0)

(
U [β�αδω

γ ]
δ

+U α�δ[βω
γ ]
δ + U δ�α[βω

γ ]
δ

)
, (20)

where

B(0) = − 2

m̂2

ε(0)(T ) + P(0)(T )

T
= − 2

m̂2
s(0)(T ), (21)

A(0) = 6

m̂2
s(0)(T ) + 2n(0)(T ) = −3B(0) + 2n(0)(T ), (22)
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and s0(T ) = ε(0) (T )+P(0) (T )
T is the entropy density. In the follow-

ing we use yet another decomposition of the spin tensor (19),
namely,

Sα,βγ

GLW = A1U
αωβγ + A2U

αU [βκγ ]

+A3(U [βωγ ]α + gα[βκγ ] ), (23)

where

A1 = C(n(0) − B(0) ), (24)

A2 = C(A(0) − 3B(0) ), (25)

A3 = C B(0). (26)

III. BOOST-INVARIANT FLOW AND SPIN POLARIZATION
TENSOR

A. Implementation of boost invariance

For systems which are boost invariant and transversely
homogeneous, it is useful to introduce a local basis consisting
of the following four-vectors:

U α = 1

τ
(t, 0, 0, z) = [cosh(η), 0, 0, sinh(η)],

X α = (0, 1, 0, 0),
(27)

Y α = (0, 0, 1, 0),

Zα = 1

τ
(z, 0, 0, t ) = [sinh(η), 0, 0, cosh(η)].

Here τ = √
t2 − z2 is the longitudinal proper time, while

η = ln[(t + z)/(t − z)]/2 is the space-time rapidity. The four-
vectors (27) are boost invariant, which means that after per-
forming a Lorentz boost Lμ

ν along the z axis, their new
components V ′μ at the new space-time points x′ agree with
the original components V μ at x′, V ′μ(x′) = Lμ

νV ν (x) =
V μ(x′) [49]. For scalar functions of space and time coordi-
nates, such as T (x) or ξ (x), the boost invariance implies that
they may depend only on the variable τ ; hence, T = T (τ ) and
ξ = ξ (τ ).

The four-vector U α is timelike and normalized to unity,
while the four-vectors X α , Y α , and Zα are spacelike and
orthogonal to U α as well as to each other:

U · U = 1 (28)

X · X = Y · Y = Z · Z = −1, (29)

X · U = Y · U = Z · U = 0, (30)

X · Y = Y · Z = Z · X = 0. (31)

As we have mentioned above, we identify U α with the flow
vector of matter. The local rest frame (of the fluid element) is
defined as the frame where U α = (1, 0, 0, 0).

In the following, we use also derivatives with respect to
τ and η. They are connected with the standard derivatives
through the expression

⎡
⎢⎣

∂t

∂x

∂y

∂z

⎤
⎥⎦ =

⎡
⎢⎣

cosh(η) 0 0 − sinh(η)
0 1 0 0
0 0 1 0

− sinh(η) 0 0 cosh(η)

⎤
⎥⎦

⎡
⎢⎢⎣

∂τ

∂x

∂y
1
τ
∂η

⎤
⎥⎥⎦.

Using this transformation one can find useful relations:

∂ · U = 1

τ
, U · ∂ = ∂τ ≡ ˙( ), (32)

∂ · X = 0, X · ∂ = ∂x, (33)

∂ · Y = 0, Y · ∂ = ∂y, (34)

∂ · Z = 0, Z · ∂ = 1

τ
∂η. (35)

Using the basis (27), one can introduce the following repre-
sentations of the vectors κμ and ωμ defined by Eq. (5):

κα = CκX X α + CκY Y α + CκZ Zα, (36)

ωα = CωX X α + CωY Y α + CωZZα. (37)

Here, the scalar coefficients CκX , CκY , CκZ , CωX , CωY , and CωZ

(below we generically refer to them as to the C coefficients)
are functions of the proper time τ only. It is important to note
that due to the orthogonality conditions (4), there are no terms
proportional to U α in Eqs. (36) and (37).

Substituting Eqs. (36) and (37) into Eq. (3) we obtain
a boost-invariant expression for the spin polarization tensor
ωμν ,

ωμν = CκZ (ZμUν − ZνUμ) + CκX (XμUν − XνUμ)

+CκY (YμUν − YνUμ)

+ εμναβU α (CωZZβ + CωX X β + CωY Y β ). (38)

In the plane z = 0 we find

ωμν =

⎡
⎢⎣

0 CκX CκY CκZ

−CκX 0 −CωZ CωY

−CκY CωZ 0 −CωX

−CκZ −CωY CωX 0

⎤
⎥⎦. (39)

Finally, using Eq. (38) we obtain a boost-invariant expression
for the spin tensor Sα,βγ

GLW .

B. Spin and orbital angular momentum of
a boost-invariant fire cylinder

To get more insight into the physics interpretation of the
coefficients C, we consider now a boost-invariant fire cylinder
(FC) occupying the space-time region defined by the fol-
lowing conditions: τ = const, −ηFC/2 � η � +ηFC/2, and√

x2 + y2 � R (see Fig. 1). In this case, a small space-time
element of the fire cylinder, ��λ, can be defined by the
formula

��λ = Uλdxdyτdη. (40)

The spin part of the total angular momentum contained in
the fire cylinder is

Sμν
FC =

∫
��λSλ,μν

GLW =
∫

dxdy τdηUλSλ,μν
GLW

= πR2τ

∫ +ηFC/2

−ηFC/2
dηUλSλ,μν

GLW. (41)
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FIG. 1. The hypersurface of the boost-invariant fire cylinder.

Using Eqs. (23), (36), (37), and (40) in Eq. (41), one can
obtain the following expression for Sμν

FC,

Sμν
FC = πR2τ

∫ +ηFC/2

−ηFC/2
dη[Aκ [CκX (U νX μ − U μX ν )

+CκY (U νY μ − U μY ν ) + CκZ (U νZμ − U μZν )]

+A1ε
μνδχUδ (CωX Xχ + CωY Yχ + CωZZχ )], (42)

where Aκ ≡ A1 + (A2 + 2A3)/2. In the next step, using
Eq. (27) one can evaluate all the components of Sμν

FC, which
are given by the following antisymmetric matrix:

Sμν
FC = −Sνμ

FC =

⎡
⎢⎢⎢⎢⎢⎣

0 S01
FC S02

FC S03
FC

−S01
FC 0 S12

FC S13
FC

−S02
FC −S12

FC 0 S23
FC

−S03
FC −S13

FC −S23
FC 0

⎤
⎥⎥⎥⎥⎥⎦

, (43)

where (with contravariant indices replaced by the covariant
ones)

SFC
01 = 2πR2τ AκCκX sinh(ηFC/2),

SFC
02 = 2πR2τ AκCκY sinh(ηFC/2),

SFC
03 = πR2τ AκCκZ ηFC,

(44)
SFC

23 = −2πR2τ A1CωX sinh(ηFC/2),

SFC
13 = 2πR2τ A1CωY sinh(ηFC/2),

SFC
12 = −πR2τ A1CωZ ηFC.

We thus see that the coefficients C directly define different
components of the total spin angular momentum of the boost-
invariant fire cylinder.

At this place it is also interesting to discuss the orbital con-
tribution to the total angular momentum of the fire cylinder. It
is given by the expression

Lμν
FC =

∫
��λLλ,μν =

∫
��λ

(
xμT λν

GLW − xνT λμ
GLW

)
. (45)

Using Eqs. (13) and (40) in Eq. (45) we can write

Lμν
FC =

∫
dxdy τdη ε(xμU ν − xνU μ). (46)

Substituting U μ from Eq. (27) into this equation, one can
easily show that for our system

Lμν
FC = 0. (47)

Thus, the only finite contribution to the total angular momen-
tum comes from the spin part.

C. Boost-invariant forms of the conservation laws

Using Eq. (7) in Eq. (6), the conservation law for charge
can be written as

U α∂αn + n∂αU α = 0. (48)

Thus, for the Bjorken flow defined above we obtain

ṅ + n

τ
= 0. (49)

This equation has a simple scaling solution, n = n0τ0/τ ,
where n0 is the initial density (n at τ = τ0).

Contracting Eq. (12) with Uβ and �
μ

β = gμ

β − U μUβ , re-
spectively, and then using Eq. (13), we obtain the following
two equations:

U α∂αε + (ε + P)∂αU α = 0, (50)

(ε + P)U α∂αU μ − �μα∂αP = 0. (51)

Equation (50) is equivalent to the entropy conservation. We
note at this place that our approach is based on the expansion
of thermodynamic quantities in powers of the polarization
tensor ωμν . As we have shown in our previous paper [14],
in the GLW formulation adopted here, the energy density,
pressure, and entropy density gain corrections from ωμν which
start with quadratic terms. Hence, in the leading (i.e., linear)
order of ωμν the contribution of spin degrees of freedom to
thermodynamic quantities may be neglected. In this way, our
system can be treated as isentropic (but only in the approx-
imation, where we restrict ourselves to linear terms in ωμν).
The issues regarding entropy production in hydrodynamics
with spin have been recently studied in Ref. [50]. It would be
interesting to compare an extension of our present approach,
with the effects of entropy production included, with that
of Ref. [50]. We leave it as a topic for one of our future
investigations.

For Bjorken flow geometry, Eq. (50) can be written as

ε̇ + (ε + P)

τ
= 0. (52)

Equation (51) is a relativistic generalization of the Euler equa-
tion, which for Bjorken flow symmetry is satisfied trivially.

Using Eqs. (36) and (37) in Eq. (23) and subsequently in
Eq. (18), and contracting the resulting tensor equation with
UβXγ , UβYγ , UβZγ , YβZγ , XβZγ , and XβYγ , respectively, the
following set of the evolution equations for the coefficients C
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can be obtained:⎡
⎢⎢⎢⎢⎢⎣

L(τ ) 0 0 0 0 0
0 L(τ ) 0 0 0 0
0 0 L(τ ) 0 0 0
0 0 0 P (τ ) 0 0
0 0 0 0 P (τ ) 0
0 0 0 0 0 P (τ )

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ĊκX

ĊκY

ĊκZ

ĊωX

ĊωY

ĊωZ

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Q1(τ ) 0 0 0 0 0
0 Q1(τ ) 0 0 0 0
0 0 Q2(τ ) 0 0 0
0 0 0 R1(τ ) 0 0
0 0 0 0 R1(τ ) 0
0 0 0 0 0 R2(τ )

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

CκX

CκY

CκZ

CωX

CωY

CωZ

⎤
⎥⎥⎥⎥⎥⎦

,

(53)

where

L(τ ) = A1 − 1

2
A2 − A3,

P (τ ) = A1,

Q1(τ ) = −
[
L̇ + 1

τ

(
L + 1

2
A3

)]
,

(54)

Q2(τ ) = −
(
L̇ + L

τ

)
,

R1(τ ) = −
[
Ṗ + 1

τ

(
P − 1

2
A3

)]
,

R2(τ ) = −
(
Ṗ + P

τ

)
.

Interestingly, we find that all the coefficients C evolve inde-
pendently. We also find that the coefficients CκX and CκY (and
similarly CωX and CωY ) obey the same differential equations.
This is caused by the rotational invariance in the transverse
plane. Moreover, because Eqs. (53) are uniform, each of the
coefficients C remains equal to zero if its initial value is zero.

D. Numerical results

In this section we present numerical solutions of
Eqs. (49), (52), and (53). As stated above, we first solve
Eqs. (49) and (52). In this way we determine proper-time

FIG. 2. Proper-time dependence of T divided by its initial value
T0 (solid line) and the ratio of the baryon chemical potential μ and
the temperature T rescaled by the initial ratio μ0/T0 (dotted line) for
a boost-invariant one-dimensional expansion.

dependence of the temperature T and the chemical potential
μ (note that ξ = μ/T ). If the functions T (τ ) and μ(τ ) are
known, one can easily determine the functions L, P , Q, and R
appearing on the left- and right-hand sides of Eq. (53). Then, it
is also possible to find the time dependence of the coefficients
C that define the polarization tensor.

To address physical situations similar to those studied
experimentally, we consider a baryon-rich matter with the ini-
tial baryon chemical potential μ0 = 800 MeV and the initial
temperature T0 = 155 MeV. The particle mass is taken to be
equal to that of the � hyperon, m = 1116 MeV. The initial
proper time is τ0 = 1 fm, and we continue the hydrodynamic
evolution till the final time τ f = 10 fm.

In Fig. 2 we show the proper-time dependence of the
temperature and the baryon chemical potential obtained from
Eqs. (49) and (52). We reproduce well-established results
that the temperature decreases with τ , while the ratio of the
chemical potential and the temperature increases. We note that
in the case of massless particles the Bjorken scenario predicts
a constant μ/T ratio and T = T0(τ0/τ )1/3.

The functions T (τ ) and μ(τ ) shown in Fig. 2 define
the behavior of a hydrodynamic medium whose evolution
is decoupled from the spin evolution. The spin degrees of
freedom enter here only as trivial degeneracy factors present
in the equation of state.

A novel feature of our approach is the possibility to study
the evolution of the spin polarization tensor in a given hydro-
dynamic background. In Fig. 3 we show the time dependence

FIG. 3. Proper-time dependence of the coefficients CκX , CκZ ,
CωX , and CωZ . The coefficients CκY and CωY satisfy the same dif-
ferential equations as the coefficients CκX and CωX and are not shown
here.
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of the coefficients CκX , CκZ , CωX , and CωZ that define the
spin polarization (we have omitted CκY and CωY as they fulfill
the same equations as CκX and CωX ). To compare the relative
importance of the coefficients, their initial values have been
assumed to be the same. Figure 3 shows a rather weak time
dependence of CκX , CκZ , CωX , and CωZ . The strongest time
dependence has the coefficient CκZ —it increases by about 0.1
within 1 fm. We may conclude that the condition that the
inclusion of linear terms in ωμν is sufficient holds if the initial
values of the coefficients C are small and the evolution time is
shorter than 10 fm.

IV. SPIN POLARIZATION OF PARTICLES AT
FREEZE-OUT

Let us now demonstrate how our hydrodynamic model can
be used to obtain the information about the spin polarization
of particles at freeze-out. To achieve this goal we have to
define first the freeze-out hypersurface and, subsequently,
calculate the average Pauli-Lubański vector of particles with
the momentum p emitted from this surface. As in the case of
the boost-invariant fire cylinder discussed above, we assume
that the freeze-out takes place at a constant value of the
longitudinal proper time τ and assume the same formula for
an element of the freeze-out hypersurface ��μ.

By boosting the Pauli-Lubański vector to the rest frame
of the particles, we can determine their spin polarization,
which can be directly compared with the experimental data. In
particlular, we can obtain the longitudinal polarization (along
the z direction) of particles in their rest frame, which can be
studied as a function of transverse-momentum components px

and py.

A. Pauli-Lubański vector

The phase-space density of the Pauli-Lubański four-vector
�μ is given by the formula [6]

Ep
d��μ(x, p)

d3 p
= −1

2
εμναβ��λEp

dSλ,να
GLW(x, p)

d3 p

pβ

m
,

(55)

where pλ is the particle four-momentum. We introduce the
parametrization of the particle four-momentum pλ in terms of
the transverse mass mT and the rapidity yp:

pλ = [mT cosh(yp), px, py, mT sinh(yp)]. (56)

This gives

pλUλ = mT cosh(yp − η) (57)

and

��λ pλ = mT cosh(yp − η)dxdy τdη. (58)

The phase-space density of the GLW spin tensor can be
rewritten as [36]

Ep
dSλ,να

GLW

d3 p
= cosh(ξ )

(2π )3m2
e−β·p pλ

(
m2ωνα + 2pδ p[νωα]

δ

)
.

(59)

Consequently, using Eq. (59) in Eq. (55) we can define the
total (integrated over the freeze-out hypersurface) value of the
PL vector for particles with momentum p:

Ep
d�μ(p)

d3 p
= −cosh(ξ )

(2π )3m

∫
��λ pλ e−β·p ω̃μβ pβ. (60)

The contraction of the dual polarization tensor and four-momentum, appearing at the end of the right-hand side of Eq. (60), gives
a covariant four-vector with the components

ω̃μβ pβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(CκX py − CκY px ) sinh(η) + (CωX px + CωY py) cosh(η) + CωZ mT sinh(yp)

CκZ py − CωX mT cosh(yp − η) − CκY mT sinh(yp − η)

−CκZ px − CωY mT cosh(yp − η) + CκX mT sinh(yp − η)

−(CκX py − CκY px ) cosh(η) − (CωX px + CωY py) sinh(η) − CωZ mT cosh(yp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

The structure of the last two equations indicates that the total PL vector can be expressed by a combination of the modified
Bessel functions. Indeed, straightforward but rather lengthy calculations lead to the expression

Ep
d�μ(p)

d3 p
= C1K1(m̂T )

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−χ [(CκX py − CκY px ) sinh(yp) + (CωX px + CωY py) cosh(yp)] − 2CωZmT sinh(yp)

−(2CκZ py − χCωX mT )

2CκZ px + χCωY mT

χ [(CκX py − CκY px ) cosh(yp) + (CωX px + CωY py) sinh(yp)] + 2CωZ mT cosh(yp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (62)
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where χ (m̂T ) = [K0(m̂T ) + K2(m̂T )]/K1(m̂T ), m̂T = mT /T ,
and the coefficient C1 is given by the formula

C1 = πR2 cosh(ξ )τmT

(2π )3m
, (63)

with R being the radius of our system at the freeze-out.

B. Polarization per particle

In the next step we have to calculate the average PL vector,
i.e., the ratio of the total PL vector defined by Eq. (62) and
the momentum density of all particles (i.e., particles and
antiparticles). The latter is defined by the formula

Ep
dN (p)

d3 p
= 4 cosh(ξ )

(2π )3

∫
��λ pλ e−β·p . (64)

The integration over space-time rapidity and transverse space
coordinates yields

Ep
dN
d3 p

= 8mC1K1(m̂T ). (65)

The average spin polarization per particle 〈πμ(p)〉 is obtained
by the expression [36]

〈πμ〉 =
Ep

d�μ(p)
d3 p

Ep
dN (p)

d3 p

. (66)

One can notice that the coefficient C1 cancels out in this ratio;
hence 〈πμ〉 does not depend explicitly on the chemical po-
tential of the system (which is a consequence of the classical
statistics used in this work).

C. Boost to the particle rest frame (PRF)

In the local rest frame of the particle, the polariza-
tion vector 〈π�

μ〉 can be obtained by using the canonical
boost [51]. Using the parametrizations Ep = mT cosh(yp) and
pz = mT sinh(yp) and applying the appropriate Lorentz trans-
formation one finds

〈π�
μ〉 = − 1

8m

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(
sinh(yp)px

mT cosh(yp)+m

)
[χ (CκX py − CκY px ) + 2CωZ mT ] + χ px cosh(yp)(CωX px+CωY py )

mT cosh(yp)+m +2CκZ py−χCωX mT(
sinh(yp)py

mT cosh(yp)+m

)
[χ (CκX py − CκY px ) + 2CωZ mT ] + χ py cosh(yp)(CωX px+CωY py )

mT cosh(yp)+m −2CκZ px −χCωY mT

−
(

m cosh(yp)+mT

mT cosh(yp)+m

)
[χ (CκX py − CκY px ) + 2CωZmT ] − χ m sinh(yp)(CωX px+CωY py )

mT cosh(yp)+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (67)

As expected, the time component of the four-vector 〈π�
μ〉

vanishes, because we should have 〈π�
μ〉pμ

� = 〈π�
0 〉m = 0 (in

the particle rest frame). We also note that 〈πμ〉〈πμ〉 is a
Lorentz-invariant quantity. It can be shown that 〈πμ〉〈πμ〉 =
〈πμ

� 〉〈π�
μ〉.

D. Approximate expressions

Since most of the measurements of the spin polarization
are done at midrapidity, it is useful to consider particles with
yp = 0. Moreover, because the mass of the � hyperon is much
larger than the values of temperature considered by us m̂T �
1, we may use the approximation χ (m̂T ) ≈ 2. Consequently,
in this case we obtain a compact expression:

〈π�
μ〉 = − 1

4m

⎡
⎢⎢⎢⎢⎢⎢⎣

0
px (CωX px+CωY py )

mT +m + CκZ py − CωX mT

py (CωX px+CωY py )
mT +m − CκZ px − CωY mT

−(CκX py − CκY px ) − CωZmT

⎤
⎥⎥⎥⎥⎥⎥⎦

. (68)

Introducing the three-vector notation for the polarization
vector 〈π∗〉 = (〈π�1〉, 〈π�2〉, 〈π�3〉) ≡ (〈π�

x 〉, 〈π�
y 〉, 〈π�

z 〉), and
for the coefficient functions C, namely,

Cκ = (CκX ,CκY ,CκZ ), (69)

Cω = (CωX ,CωY ,CωZ ), (70)

we can rewrite the spatial part of Eq. (68) as

〈π∗〉 = − 1

4m

[
EpCω − p × Cκ − p · Cω

Ep + m
p
]
, (71)

where we should use p = (px, py, 0). We thus see that for
particles with small transverse momenta the polarization is
directly determined by the coefficients Cω. Moreover, because
the coefficient functions Cω and Cκ depend on the freeze-out
time in different way (see Fig. 3), both the length and the
direction of the mean polarization three-vector 〈π∗〉 depend
on the evolution time. This result may be interpreted also as a
change of the polarization during the system expansion.

V. MOMENTUM DEPENDENCE OF POLARIZATION

Equation (67) allows us to calculate different components
of the polarization three-vector as functions of the particle
three-momentum. To perform such calculations we have to
use the values of the thermodynamic parameters and the
coefficients C at freeze-out. They can be obtained from the
hydrodynamic calculations described in the previous sections.

One usually argues that the total angular momentum during
the original collision process has only an orbital part which is
perpendicular to the reaction plane and negative (the direction
of the angular momentum three-vector is opposite to the
direction of the y axis). After the collision, some part of the
the initial orbital angular momentum can be transferred to
the spin part [52]. Having this physics picture in mind, we
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FIG. 4. Components of the PRF mean polarization three-vector of �’s. The results obtained with the initial conditions μ0 = 800 MeV,
T0 = 155 MeV, Cκ,0 = (0, 0, 0), and Cω,0 = (0, 0.1, 0) for yp = 0.

assume that the initial spin angular momentum considered in
our calculations has the same direction as the original angular
momentum. This is achieved by assuming that CωY (τ = τ0) >

0 and other C coefficients are all equal to zero.
The numerical results for this case are shown in Fig. 4

where we used the initial conditions μ0 = 800 MeV, T0 =
155 MeV, Cκ,0 = (0, 0, 0), and Cω,0 = (0, 0.1, 0). Having in
mind the measurements done at midrapidity, the results are
obtained for yp = 0 (pz = 0). Figures 4(a)–4(c) show the three
components of the polarization three-vector (〈π�

x 〉, 〈π�
y 〉, and

〈π�
z 〉) as functions of the transverse momentum components

px and py.
As expected, the 〈π�

y 〉 component [see Fig. 4(b)] is nega-
tive, which reflects the initial spin content of the system. Be-
cause of the assumption yp = 0, the longitudinal component
is zero [see Fig. 4(c)]. Finally, the component 〈π�

x 〉 shows a
quadrupole structure [see Fig. 4(a)], where the sign changes
sequentially throughout the quadrants.

Our results presented in Fig. 4 (and other results obtained
with different initial conditions, not shown in this work) can-
not reproduce an experimentally observed quadrupole struc-
ture of the longitudinal polarization. This is a consequence of
the symmetries assumed in our simple hydrodynamic model.
We note that the hydrodynamic models that use a direct
connection between spin polarization and thermal vorticity
lead to a quadrupole structure, however, with the opposite sign
of the effect as compared to the experimental data [18]. The
quadrupole structure of 〈π�

z 〉 appears in connection with the
elliptic deformation of the system in the transverse plane and
the formation of the elliptic flow [53]. Because our approach
assumes homogeneity in the transverse plane, we are not able
to reproduce this feature. Our model calculations shown in
Fig. 4 yield a quadrupole structure of the 〈π�

x 〉 component,
however, with the sign different from that obtained in other
hydrodynamic calculations [18].

Clearly, the incorporation of the spin dynamics in fully
(3+1)-dimensional hydrodynamic models constructed along
the lines presented in this work is necessary to ad-
dress the problems of spin polarization. The presently ob-
served discrepancies between the data and the hydrodynamic

calculations using the concept of thermal vorticity alone may
indicate that there is a place for effects studied in this work.

VI. RELAXATION TOWARD THERMAL VORTICITY

In the hydrodynamic framework defined in this work, it
is straightforward to incorporate the effects of dissipative
phenomena that can bring the spin polarization tensor ωμν

to the thermal vorticity �μν . Using the same decomposition
for �μν as we used for ωμν [see Eq. (38)], we can introduce
the coefficients Ceq. The approach of C’s toward Ceq’s can be
described by the relaxation-type equations. For example, in
the case of the component CωY we can use the equation

dCωY

dτ
= R1

P CωY + Ceq
ωY − CωY

τeq
. (72)

Here, the relaxation time τeq is a free parameter (it can be also
a function of the proper time).

For the boost-invariant, one-dimensional expansion, the
thermal vorticity vanishes; hence, all the coefficients Ceq are
equal to zero. In this case Eq. (72) is reduced to the form

dCωY

dτ
= R1

P CωY − CωY

τeq
. (73)

The numerical results showing the solution of Eq. (73) with
τeq = 5 fm and the solutions of similar equations obeyed by
the coefficients CκX , CκZ , and CωZ are shown in Fig. 5. We see
that for the evolution times exceeding τeq all the coefficients’
functions approach zero.

VII. SUMMARY AND CONCLUSIONS

In this work we have presented the first numerical results
describing the space-time evolution of the spin polarization
tensor in a hydrodynamic boost-invariant background. Our
formalism was based on the expressions for the energy-
momentum and spin tensors introduced by de Groot, van
Leeuwen, and van Weert [39], and we considered linear
terms in the spin polarization tensor. This procedure allowed
us to solve first the standard perfect-fluid equations and
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FIG. 5. Proper-time dependence of the coefficients CκX , CκZ ,
CωX , and CωZ in the case where ωμν is forced to approach the thermal
vorticity �μν = 0 with the relaxation time τeq = 5 fm.

subsequently to consider the spin evolution in a well-defined
hydrodynamic background.

Our results demonstrate that six scalar functions, which
uniquely define a boost-invariant spin polarization tensor,
evolve independently. Their proper-time dependence is rather
weak, which allows for a consistent treatment of the linear
terms. The results of the hydrodynamic calculations can be
further used to determine the spin polarization of the particles
on the freeze-out hypersurface.

We have studied in more detail the case where the initial
spin angular momentum of the system is described by a vector
perpendicular to the reaction plane (identified herein with the
y axis). We have demonstrated that the initial direction of
polarization is directly reflected in the spin polarization of the
particles formed at freeze-out.
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