
G.J.B.A.H.S.,Vol.2(3):178-184 (July – September, 2013)                      ISSN: 2319 – 5584   

   178 

 

THE SPLICEOSOMAL PROTEIN SnRNP F BINDS TO BOTH U3 AND U14 CLASS 
OF snoRNA IN Giardia lamblia 

Arjun Ghosh#, Sumallya Karmakar#, Avik K. Mukherjee#, Dibyendu Raj#, Koushik Das#, Srimanti Sarkar^, 

T. Nozaki^^, & Sandipan Ganguly# 

# Division of Parasitology, National Institute of Cholera & Enteric Diseases, Kolkata, India 

^ Department of Biochemistry, Bose Institute, Kolkata, India. 

^^ Department of Parasitology, National Institute of Infectious Diseases, Japan and Graduate School of Life 

 and Environmental Sciences, University of Tsukuba, Japan. 

 

Abstract 
Small nuclear Ribonucleo Protein F (snRNP F) is a spliceosomal protein that binds with U1, U2, U4/U6 and U5 

small nuclear RNA (snRNA) to form spliceosomal complexes responsible for pre mRNA processing. This study reports 

the unusual interaction of giardial snRNP F with small nucleolar RNAs (snoRNA) that are responsible for pre rRNA 

processing. Electrophoretic Mobility Shift Assay was used to demonstrate the interaction of this protein with U3 and U14 

class snoRNA of the early branching eukaryote Giardia lamblia. It was also evident from our study that snRNP F in 

Giardia is evolutionary distinct from its other eukaryotic orthologues. 
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1. Introduction 
snRNP F belongs to a large family of Sm and Sm-like (LSm) proteins that have the conserved Sm motif (Hermann 

et al, 1995; Seraphin 1995). In eukaryotes the splicing of pre mRNA is carried out by the small nuclear Ribonucleo 

protein (snRNP) complexes U1, U2, U4/U6 and U5 (Burge et al, 1999; Yu et al, 1999). Each spliceosomal snRNPs 

consists of one snRNA (U1, U2, U4/U6 and U5) and proteins that are classified in two groups: the specific proteins that 

associate only with certain snRNP particle and seven Sm proteins (B/B’, D1, D2, D3, E, F and G) that are common to 

each particle (Hermann et al, 1995). snRNP F along with six other Sm proteins assemble in a stepwise manner onto the 

single stranded Sm site element of the U1,U2, U4/U6 and U5 spliceosomal snRNAs, resulting in a doughnut shaped core 

RNP structure (Raker et al, 1999). 

snoRNAs are a group of small non-coding RNAs (sncRNAs) that are known to be involved in the processing of pre 

rRNA or any other aspect of ribosome biogenesis (Maxwell et al, 1995; Gerbi 1995; Sollner-Webb et al, 1995). The 

snoRNAs are broadly categorised into two classes, C/D and H/ACA, based on the presence of conserved domains and 

their functional differences (Bachellerie et al, 1995; Cavallie et al, 1996; Kiss-Laszlo et al, 1996; Ganot et al 1997; Ni et 

al, 1997). U3 class of snoRNAs are characterized by the presence of two conserved C’ & D boxes (Speckmann et al, 

1999) and are involved in site-specific cleavage of pre rRNA (Clery et al, 2007). U14 class of snoRNAs has A and B 

conserved domains, along with the C and D conserved sequences (Jarmolowski et al, 1990; Huang et al, 1992) and are 

reported to function in the early cleavage of eukaryotic pre rRNA. It has been shown that in S.cereisiae inactivation of 

U14 snoRNA disrupts cleavage, leading to the formation of a 20S precursor RNA, instead of 18S RNA (Zagorski et al, 

1988; Li et al, 1990). In Giardia lamblia U3 and U14 class of snoRNAs are represented by RNA H and RNA J 

respectively (Niu et al, 1994).  

A 107 amino acid long putative orthologue of snRNP F protein has already been reported in Giardia 

(GL50803_4954). Our study shows that snRNP F (which normally associates with spliceosomal snRNAs in eukaryotes) 

of Giardia is evolutionary distinct from its other eukaryotic orthologues and binds with both RNA H and RNA J of the 

organism. Till date binding of snRNP F with any snoRNAs of eukaryotes is unreported. 

 

2. Materials and Methods 
According to previous reports, the Sm proteins are known to be evolutionary conserved throughout a diverse group 

of organism (Hermann et al, 1995). Sets of amino acid sequences of snRNP F from both distant and closely related 

organism of Giardia lamblia was obtained from NCBI database and aligned using MEGA4 software (Tamura et al, 

2007) by CLUSTAL W method to examine the evolutionary position of this giardial protein. Phylogenetic tree was 

constructed separately using the alignment with two different methods (PhyML/Blosum62 model/aLRT validation & 

BioNJ/Poisson distribution model/ Bootstrap with 1000 replicates) using SeaView Graphical Representation Ver. 4 

software.  

To study the interaction of this evolutionary distinct snRNP F of Giardia with its snoRNAs, RNA J and RNA H, the 

genes were cloned in pET 33b and pGEM 4z vectors (see supplementary file for the details of plasmid construction and 

expression of snRNP F in E.coli).  For expression of snRNP F, the transformed E.coli Bl21 cells were induced with 1mM 

IPTG at 25
o
C for 5 hrs when most of the protein was found in the soluble fraction. The expressed protein was purified by 

Ni-NTA Superflo. 
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Interaction of the protein snRNPF with the snoRNAs was studied in vitro, by Electrophoretic Mobility Shift Assay 

(EMSA). Fluorescein labled, in vitro transcribed RNA J and RNA H were prepared by using T7 Maxiscript kit (Ambion) 

following the manufacturer’s protocol. They were separately incubated for 30 mins at 0
o
C with 2 µg of recombinant 

giardial snRNP F protein in a 20 µl binding reaction that contained binding buffer (10 mM Hepes-KOH, pH 8.0, 10% 

glycerol, 0.05% NP40, 1 mM EDTA, pH 8.0, 0.5 mM DTT, 10 mM KCl nad 5mM MgCl2). After incubation, samples 

were electrophoresed on a 5% native PAGE (Acrylamide: Bis acrylamide, 29:1) in TAE buffer at 100 Volts at a 

temperature of 4
o
C.  

 

3. Results and Discussion 
In the phylogenetic analysis, every tree showed similar Clustal distribution. Data obtained from each tree were 

combined manually to create a single tree where both the bootstrap values are placed beside the clusters (Figure 1). All 

the closely related organisms are distinctly placed within single clusters, whereas Giardia remained separated even from 

close organisms such as Toxoplasma, Entamoeba, Trypanosoma etc, thus confirming its evolutionary distance from other 

organism depending on this particular protein. It may be a reason for its functional dissimilarity towards binding with 

both the U3 and U14 class snoRNAs. 

The E.coli BL21 cells containing the recombinant pET 33b plasmid with the snRNP F gene insert was induced with 

1 mM IPTG at 25
o
C for 5 hrs when the maximum protein was obtained in the soluble fraction. The crude soluble fraction 

of the protein was loaded into Ni
2+

 binding resin column. After unbound proteins were washed away, the target protein 

was recovered by eluting it with elution buffer containing 200 mM imidazole.  

In the EMSA study, shift in bands corresponding to RNA J and RNA H bound snRNP F in the native PAGE clearly 

suggests the interaction of this protein with U3 and U14 class snoRNAs (Figure 2) which are involved in the processing 

of pre rRNA. 

 

 
Figure 1. Phylogenetic tree showing clustal distribution using the alignment with two different methods 

(PhyML/Blosum62 model/aLRT validation & BioNJ/Poisson distribution model/ Bootstrap with 1000 replicates) using 

SeaView Graphical Representation Ver. 4 software and were manually merged to get this tree. Both the aLRT and 

Boostrap validation are given on the either side of the branch. The branch lengths are arbitrary and do not represents any 

evolutionary distances. 
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Figure 2. Electrophoteric Mobility Shift Assay (EMSA) to show snRNP F of Giardia lamblia binds with U3 and U14 

class snoRNA. Lane 1: RNA J (U14); Lane 2: RNA J+snRNP F; Lane 3: RNA J+Fibrillarin (positive control, as 

fibrillarin is reported to bind with this RNA); Lane 4: RNA H (U3); Lane 5: RNA H+snRNP F; Lane 6: RNA 

H+Fibrillarin (positive control, as fibrillarin is reported to bind with this RNA); Lane 7: RNA J+BSA (negative control 

as BSA is not reported to bind with this RNA); Lane 8: RNA H+BSA (negative control as BSA is not reported to bind 

with this RNA). There is shift in bands in the lanes 2, 3, 5 and lane 6 from that in lanes 1 and 4 suggesting that snRNP F 

and fibrillarin (positive control protein) of Giardia lamblia binds with both the RNAs in vitro. 

 

4. Conclusion 

snRNP F usually binds with U1, U2, U4/U6 and U5 snRNA in eukaryotes to form the spliceosomal complex 

involved in pre-mRNA processing. In this study we have shown that the protein in Giardia is evolutionary distinct from 

its other eukaryotic orthologues and binds with both U3 and U14 class of snoRNAs that are involved in pre rRNA 

processing.  
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