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Abstract 

Statistical optimization using industrial rice-straw hydrolysate (C6 stream) containing 5.0% 

total sugars was carried out for enhancing the rhamnolipid production from Achromobacter sp. 

(PS1) with subsequent adoption of a sequential fermentation approach with fill-and-draw 

operation for further increment. The interactive effects of six influential variables obtained from 

one-factor-at-a-time approach as sodium nitrate, yeast extract, ferrous sulphate, phosphate 

concentrations and agitation in presence of lignocellulosic hydrolyzed sugars as a basal medium 

using central composite design revealed the experimental rhamnolipid yield of 5.46 g/L at 

optimum conditions of total sugars 40 g/L (w/v), sodium nitrate 6.0 (g/L), yeast extract 2 (g/L), 

ferrous sulphate 0.2 (mg/L) and phosphate 1000mM at 100 rpm at 30°C in 8 days.  The 

sequential approach further resulted in an overall yield of 19.35 g/L of rhamnolpid in five 

sequential-cycles with an increase of 258% over the batch process on account of nutrients 

replenishment and dilution of toxic by-products. 
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1. Introduction  

Consumer’s general concern for the environmental impact has shown increased interests in 

green bio-based chemicals, resulting in the discovery of new and sustainable sources as global 

economy can no longer depend on fossil fuels (Ozdenkci et al., 2017; Amiri and Karimi., 2018). 

To bring about a transitional change from a fossil fuel-based economy to a more sustainable 

carbon-neutral bio-economy and to mitigate the climate changes, maximum efforts have to be 

carried out on the reduction of alarming levels of greenhouse gases (CHGs) - CO2, CO, CH4, 

N2O and harmful gases such as non-methane hydrocarbons (NMHC), NOx, SO2 etc generated 

due to fossil fuel or open field burning of agro-residues (Singh et al., 2016; Lohan et al., 2018). 

India being an agricultural country produces 611 million tons (mt) of crop residues annually, of 

which wheat and paddy residues constitutes 27–36 % and 51– 57 % respectively. Of this, 84% of 

crop residues from paddy-wheat system is alone burnt and the characterization analyses reveal 

that this burning contribute 20% organic carbon (OC) and elemental carbon (EC) into the 

atmosphere (Lohan et al., 2018; Singh and Basak., 2019) This practice of burning crop-residues 

can be prevented by their utilization as substrates for microbial growth after pretreatment as 

these prove to be an enormous source for monomeric sugars (C5 and C6) from its constituents 

cellulose (30-50%) and hemicellulose (20 - 40%) (De Bhowmick et al., 2018). Now-a-days, with 

several bio-refineries being established due to the mandate shift towards cleaner bio-energy 

systems, the utilization of lignocellulosic substrates has become the rationale design of each bio-

refinery concept providing a sustainable solution for agricultural waste management and the 

production of several value-added bio-products (Chandel et al., 2018). 

One such value-added bio-product is biosurfactant, the global market of which is projected to 

surpass $ 2.7 billion by 2024 growing at a CAGR of 5.5% from 2018- 2024 with consumption 
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expected to exceed over 540 kilo tons by 2024 (Global Market Insights, Inc). Biosurfactants have 

properties similar to  chemical surfactants but are far more superior to them owing to their 

unique properties like higher biodegradability, low toxicity, ecological acceptability, increased 

surface activities, higher foaming, low critical micelle concentrations (CMC), high selectivity 

and specificity at extreme temperatures, pH and salinity ranges, creating their basic essential 

requirement in various industrial applications  as in  petroleum, textile, cosmetic, agriculture, 

pharmaceutical, and food processing industries. 

To meet the requirement in all these industrial sectors, the large-scale production is desired 

which however is limited due to low product yields and higher production costs. Other important 

hindering factors include excessive foaming, comparatively expensive raw materials and 

downstream processing. Thus, the need of the hour is to adopt cultivation strategies   using low-

cost renewable feedstock like agricultural waste residues with media optimization, to improve 

industrial production of biosurfactant (Joy et al., 2019).  

Statistical optimization under response surface methodology (RSM) using industrial 

lignocellulosic hydrolysate can be a suitable technique for medium optimization and to 

understand the various interactions among different parameters (Sathendra et al., 2019). Further, 

adoption of a sequential approach with a fill-and-draw strategy using statistically optimized 

medium can result in the enhancement of the yield.  This sequential approach with a fill-and-

draw strategy is a method in which half of the cultured broth is withdrawn and the remaining 

broth which serves as the seed is replenished with equal volume of fresh medium in order to 

maintain the cells in logarithmic phase (He et al., 2017).  

Thus, the present study focusses on the use of central composite design (CCD) under 

response surface methodology (RSM) using lignocellulosic sugar hydrolysate generated from 
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rice-straw for the production of rhamnolipid (RL) biosurfactant from Achromobacter sp. (PS1). 

After understanding the interactions among different parameters and obtaining the optimum set 

of parametric conditions, the biosurfactant yield was further enhanced by adopting the sequential 

fill-and-draw strategy. 

2. Material and Methods 

2.1. Chemicals and lignocellulosic hydrolysate 

All chemicals, solvents and reagents used were of analytical grade. Rhamnolipid standard 

JBR 215 (15 % solution in water) was purchased from Jeneil biosurfactant Company (Saukville, 

WI, USA). Lignocellulosic rice-straw hydrolysate (RSH) used in this study was obtained from 

Indian glycols Limited (IGL, Kashipur, Uttarakhand, India). The individual sugar composition of 

the C5 and C6 lignocellulosic hydrolysate streams was analyzed by high performance liquid 

chromatography (HPLC) (Agilent 1260, Palo Alto, CA) using a Biorad Aminex HPX-87H 

column equipped with a refractive index (RI) detector.  

2.2. Microorganism  

The microorganism used in the present study possesses a great potential for producing 

glycolipid biosurfactant with concomitant hydrocarbon degrading ability. It was identified as 

Achromobacter sp. (PS1) (NCBI accession no. KT735240), petroleum sludge isolate from, 

BPCL refinery, Mumbai, India (Joy et al., 2017). The culture was routinely sub-cultured and 

maintained on nutrient agar plates. 

2.3. Biosurfactant production  

The biosurfactant production was carried out in 250 mL Erlenmeyer flasks containing 50 mL 

of the lignocellulosic hydrolysate medium with essential nutrients dissolved in industrial C5 and 

C6 streams (pH 7.0) separately. The essential nutrients were: NaNO3 (8.7g/L); KCl (1.1 g/L); 
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NaCl (1.1g/L); FeSO4.7H2O (0.00028g/L); K2HPO4 (4.4g/L); KH2PO4 (3.4g/L); MgSO4.7H2O 

(0.5g/L) and beef extract (0.16g/L) which were obtained from one-factor-at-a-time (OFAT) study  

during optimization in chemically defined minimal salt medium (MSM) (Joy et al., 2019). For 

cost-effective formulation of medium, beef extract was replaced by yeast extract which also 

resulted in almost similar yields. Inoculum was prepared from overnight grown cultures of 

Achromobacter sp. (PS1) in Luria broth (LB) (1 % v/v) at 30 ⁰C and 150 rpm. An inoculum with 

optical density of 1.0 at 600 nm was used to inoculate the flasks followed by incubation at 30⁰C, 

150 rpm for eight days. 

2.4. Experimental design and statistical analysis 

The individual C5 and C6 streams obtained from IGL industry after supplementing with 

nutrients were evaluated for rhamnolipid production potential.  The hydrolysate favoring 

rhamnolipid production was further optimized statistically under response surface methodology 

(RSM). Central composite design (CCD) comprising of six parameters  namely: (A) C6 sugar 

hydrolysate, (B) sodium nitrate (NaNO3), (C) yeast extract (D) ferrous sulphate (FeSO4), (E) 

phosphate concentrations and (F) agitation rate, all varied at five different levels (–α, –1, 0, +1, 

+α)  respectively was used (Table 1).  A total of 40 experimental runs was obtained using the 

statistical software package, Design Expert (v.11.0, Stat-Ease, Inc., Minnaepolis MN, USA).  

The responses i.e. rhamnolipid production (R1) and cell dry weight (R2) were determined by 

fitting the second order polynomial equation which displays the effect of variables in terms of 

linear, quadratic and cross product terms as 

Y = β0+ ƩβiXi + Ʃβii Xi
2 + Ʃβij Xi Xj  

where Y is the predicted response variable (rhamnolipid production / cell dry weight), β0 constant 

terms, βi linear terms coefficient, βii quadratic terms coefficient and βij interaction terms 
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coefficient, Xi and Xj symbolize the independent variable. To evaluate the statistical significance 

of the model, the regression and the graphical analysis of the experiments were generated and 

analysis of variance (ANOVA) was performed. The quality of fit of the model was expressed by 

the coefficient of determination (R2) and its statistical significance was checked by F Test. The 

three-dimensional curves of the response surfaces were generated to visualize individual effects 

and the interactions between significant parameters.

rhamnolipid

            

2.4.1.  Analytical methods 

The Rhamnolipid (RL) concentration was determined by the orcinol assay with slight 

modifications wherein approximately, 4 mL of the culture filtrate was acidified to pH 2.0 using 

6N HCl and kept overnight for precipitation (Rahman et al., 2010) The precipitate obtained after 

centrifugation was extracted four times with 1 mL of diethyl ether which was evaporated to 

dryness and the residue was dissolved in 0.5 mL of deionized water for orcinol-sulphuric acid 

assay. From the correlation equation of pure rhamnolipids / rhamnose [y = (0.0139 X - 0.0058) x 

0.68], the correction factor obtained ranges between 3.0 and 3.4. The value of correction factor is 

not exact, since the rhamnolipid biosurfactant is not composed of single molecule rather a family 

of congeners that have different molecular masses. Hence, in the current work an average 

correction factor of 3.2 was used for multiplication (George and Jayachandran., 2012; Joy et al., 

2019). Cell dry weight was determined by centrifuging 1 mL culture broth at 10,000 rpm for 10 

min. The cell pellet was then washed with 1 mL distilled water and dried at 90°C until a constant 

weight was recorded.   
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2.5.  Extraction of biosurfactant 

 The bacterial cells were removed from culture broth by centrifugation (10,000 rpm at 4°C 

for 10 min). The collected supernatant was acidified with 6N HCl to pH 2.0 and kept overnight 

for precipitation. The precipitate was separated after centrifugation and extracted twice with a 

mixture of chloroform: methanol (2:1 v/v). The extracts were pooled and were concentrated 

under vacuum using a rotary evaporator (Joy et al., 2017). 

2.6. Characterization of biosurfactant 

 The characterization of the biosurfactant was done by thin layer chromatography (TLC). A 

portion of the partially purified biosurfactant was solubilized in methanol and separated on a 

silica gel 60 F254 plates using a solvent system chloroform: methanol: acetic acid (65:15:2 v/v/v) 

and the separated spots were visualized with orcinol-sulphuric acid reagent (Joy  et al., 2017). 

2.7. Sequential rhamnolipid production based on a fill-and-draw strategy 

 Lower yields are generally a major hindrance for the production of rhamnolipid especially on 

a large scale. Hence, the sequential rhamnolipid production based on a fill-and-draw strategy was 

carried out for 9-18 days using the statistically optimized set of nutrients in industrial C6 

lignocellulosic sugar hydrolysate stream as basal medium with an aim to improve the 

rhamnolipid productivity and cost effectivity.  In this method, the medium was initially cultured 

and the production was continued till the sugar in the medium was not completely utilized. 

Thereafter, half of the cultured broth was withdrawn and the remaining was used as the seed and 

mixed with equal volume of fresh sterilized culture medium.  The withdrawn culture broth was 

analyzed for rhamnolipid yield. Thus, a similar feeding cycle was sequentially carried out at the 

onset of sugar depletion. The experiment involved three sets; Set A: initially containing C6 sugar 

hydrolysate with 4% (w/v) sugar and fed sequentially with 2% (w/v) C6 sugar hydrolysate; Set B: 
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containing initially 4% (w/v) sugar and fed sequentially with 4% (w/v) of sugars; Set C: 

containing initially 2% (w/v) sugar and sequentially fed with 2% (w/v) of sugars. Since set A and 

set B contained 4% (w/v) sugar, the flasks were initially cultured for 8 days followed by 

sequential feeding as per the sugar consumption while in set C since the initial concentration of 

sugar was 2% (w/v), the flasks were cultured for 3 days followed by sequential feeding at onset 

of sugar depletion. Conventional batch fermentation was also conducted in parallel for 

comparisons. 

3. Results and Discussion 

3.1. Optimization of rhamnolipid production using RSM 

The composition (w/v) of the industrial lignocellulosic hydrolysate streams analyzed using 

HPLC was C5:- glucose (0.83%), xylose (4.16 %) and C6:- glucose (4.93%), xylose (0.32%) 

respectively. The individual C5 and C6 streams upon supplementation with essential nutrients, 

(obtained using OFAT approach) revealed production of 1.09 ± 0.26 g/L and 3.3 ± 0.15 g/L 

rhamnolipid with 2.1 ± 0.38 g/L and 4.6 ± 0.24 g/L of cell dry weight respectively. A parallel 

experiment using synthetic sugars having same composition as industrial C5 & C6 streams was 

also performed which resulted in almost similar RL production of 1.30 ± 0.24 g/L and 3.64 ± 

0.25 g/L and cell dry weight of 2.4 ± 0.17 g/L and 4.8± 0.32 g/L respectively. Ramirez et al. 

(2016) reported a maximum rhamnolipid yield of 0.03 g/L from Pseudomonas aeruginosa using 

oil mill waste lignocellulosic hydrolysate containing 2.11 g/L of total sugars in comparison to 

0.04 g/L yield in medium containing similar concentration of synthetic glucose. Hence, for 

statistical optimization using CCD, industrial lignocellulosic C6 hydrolysate stream having total 

sugars of 50 g/L (w/v) was found a worth parameter to be used as basal medium in combination 

with other parameters as concentration of sodium nitrate, yeast extract, ferrous sulphate (FeSO4), 
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phosphate along with agitation rate. The experimental responses showed highest RL yield of 

4.68 g/L in run number 34 containing 40 g/L (w/v) total sugars, 8(g/L) sodium nitrate (NaNO3), 

1.6 (g/L) yeast extract, 0.2 (mg/L) ferrous sulphate (FeSO4) and 1500 mM phosphate at 150 rpm 

agitation rate producing 4.95 g/L cell dry weight. The lowest yield of 1.37 g/L was observed in 

run number 16 with 10 g/L (w/v) total sugars, 8(g/L) sodium nitrate, 1.2 (g/L) yeast extract, 0.4 

(mg/L) ferrous sulphate, and 2000 mM phosphate with agitation rate at 200 rpm resulting in 1.1 

g/L cell dry weight (Table 2). In 2015, Prabu et al. reported statistical optimization of 

rhamnolipid production with maximum yield of 9.38 g/L from P.aeruginosa NCIM 2036 with 

utilization of 52 % of total initial reducing  sugars (76 g/L) present in wheat  straw hydrolysate 

supplemented  with 8.7 g/L of sodium nitrate and 0.33 g/L of MgSO4,. However, they observed a 

decreased in production of 1.4 times when the sodium nitrate concentration was increased to 10 

g/L and MgSO4, concentration was decreased to 0.238 g/L keeping same initial sugar 

concentration. 

The regression analysis of the experimental data obtained after analysis of variance 

(ANOVA) resulted in second order polynomial equation in which the rhamnolipid yield (Y1) and 

cell dry weight (Y2) are represented by the equation (2) and (3)  

Y1 = 3.00 + 0.74A - 0.04B + 0.02C + 0.07D - 0.001E - 0.10F + 0.18AC - 0.13AF - 0.15BC + 

0.17BF + 0.18DE + 0.20EF -0.09F2                                                        (2)   

Y2 = 3.74 + 1.04A + 0.14B + 0.14C -0.03D - 0.03E - 0.17F - 0.04CF - 0.08A2 - 0.03 B2 -

0.15F2                                                                                                       (3) 

 

where A, B, C, D and E and F are concentrations (in terms of coded values) for total sugar, 

sodium nitrate, yeast extract, ferrous sulphate, phosphate and agitation rates respectively. 

Positive symbol mentioned in the above equations specify the synergistic effects and thus more 
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interaction towards response, whereas negative symbol indicates the antagonistic effects and thus 

less interaction towards the response (Behera et al. 2018; Anahas et al., 2019). 

The coefficients of the regression models presented in Eq. (2) & (3) and the significance of 

each coefficient, determined by p-values are listed in Table 3 & 4 for rhamnolipid yield and cell 

dry weight respectively. From Table 3, it is apparent that, the variables C6 sugar hydrolysate (A) 

and agitation (F) were found significant with p-values <0.05 for rhamnolipid production, while 

for cell dry weight, all variables were found significant. The coefficient estimates in Table 3, 

show positive effects of C6 sugar hydrolysate (A), yeast extract (C) and FeSO4 (D) on 

rhamnolipid yields while other variables showed negative effects. For cell dry weight, C6 sugar 

hydrolysate (A), sodium nitrate (NaNO3) (B) and yeast extract (C) showed positive effects.  

The analysis of variance (ANOVA) of the reduced regression model for rhamnolipid yield 

and cell dry weight showed the F-values of 35.08 and 493.16 respectively (Table 3 & 4); 

implying that the models are significant. High degree of correlation between the experimental 

and predicted values was presented by determination coefficients (R2) which revealed R-sq and 

(Adj) R-sq as high as 98.47 % and 96.94% respectively for rhamnolipid production. Similarly, 

R-sq and (Adj) R-sq value for cell dry weight had values of 99% each, explaining almost all the 

variability in the responses. The “Lack of fit F value” of 2.79 and 0.71 for rhamnolipid 

production and cell dry weight respectively implies that the lack of fit is not significant relative 

to the pure error. 

The graphical representations of the regression equation (2) and (3) represented in the form 

of 3D response surface plots and 2D contour plots were constructed by plotting the relative effect 

of two experimental factors on the response while keeping the other factors constant. Circular 

contours indicate the negligible interactions while elliptical ones indicate interactions between 
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the variables (Hosseini et al., 2009). Figures 1a-d represents 3D response surface plots for the 

optimum conditions of rhamnolipid production and cell biomass respectively.  

Fig. 1(a) shows that the simultaneous increase in concentration of C6 sugar and yeast extract 

till 40 g/L and 2.0 g/L respectively enhanced the rhamnolipid production (experimental 4.68 g/L; 

predicted 4.81 g/L) indicating  a vital role of carbon, as major portion of carbon is paved towards 

product synthesis (Mukherjee et al., 2008). Beyond, 40g/L, a slight lowering in RL production 

was observed (experimental value - 3.92 g/L; predicted 4.05 g/L). This might be due to catabolite 

repression imposed by sugar. Chen et al. (2007) also reported that the excessive feeding of 

glucose can result in the formation of acidic metabolites causing catabolic repression thereby 

limiting the rhamnolipid synthesis. With respect to the interactive effect of the organic and 

inorganic nitrogen source, the rhamnolipid yield was found to increase with increase in organic 

yeast extract than inorganic sodium nitrate (Fig. 1b). Qazi et al. (2013) also reported maximum 

biosurfactant production from Pseudomonas putida SOL-10 using yeast extract (1.5% w/v) along 

with urea and L-leucin (0.1% w/v) as compared to inorganic nitrogen sources such as sodium 

nitrate, ammonium nitrate and potassium nitrate.  This trend can be explained on the basis of the 

amino acids present in the yeast extract which might be supportive for various enzyme synthesis 

responsible for rhamnolipid production (Banihashemi et al., 2016). This observation can be 

supported by the results of Nurfarahin et al. (2018) who reported yeast extract to be a source of 

carbon supporting both cell growth and rhamnolipid production.  Fig. 1c explains the interactive 

effect of agitation and C6 sugar on rhamnolipid production while Fig.1d the interactive effect of 

agitation and yeast extract on cell dry weight. The interactive effect observed in both Fig. 1c & 

1d, showed that low agitation rates supported both RL production and cell biomass.  In 

rhamnolipid production increasing agitation results in the shear effect on cells and leads to 
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foaming due to the presence of surface active rhamnolipid molecules. The resulting foam inhibit 

cell growth and result in lower yields by reducing the bioavailability of substrates as well as the 

mass transfer efficiency of oxygen (Fontes et al. 2010; Long et al., 2016).  

After understanding the interactions, the validation of the experimental model was performed 

by carrying out a batch run under optimal operating conditions of 40 g/L (w/v) total sugars, 6.0 

(g/L) sodium nitrate, 2.0 (g/L) yeast extract, 0.2 (mg/L) ferrous sulphate, and 1000 mM 

phosphate at 100 rpm resulting in a experimental value of 5.46 g/L for rhamnolipid production 

which was close to the predicted value of 5.88g/L, thereby validating the model.  

3.2. Sequential rhamnolipid production based on a fill-and-draw strategy 

As is evident from Table 5, the total rhamnolipid yield, cell growth and YRL/S (rhamnolipid 

yield per gram of sugar consumed) were higher in Set A in which the fermentation was carried 

out with initial 4% sugar   followed by  sequential feeding of 2% sugars after its depletion in 

48hrs in comparison to Set B and Set C. In Set A, a maximum of 19.35 g/L of overall 

rhamnolipid was obtained in 5-cycles of sequential feed with a total utilization of 140 g/L of 

sugar after an incubation period of 18 days, resulting in YRL/S of 0.138g/g. However, in set B, a 

maximum of only 11.86 g/L of rhamnolipid was achieved after 18 days of incubation period with 

a total utilization of 120 g/L of sugar with Y RL/S of 0.098 g/g. In Set C, the overall rhamnolipid 

yield was low (4.54 g/L) with Y RL/S of 0.056 g/g at end of 3rd feeding cycle. The higher yield 

observed in Set A may be due to the presence of well-maintained cells in the log phase. Also, 

sequential addition of substrate prevents catabolite repression or substrate inhibition due to 

replenishment of exhausted nutrients and the timely removal of the accumulated toxic by-

products (Zhu et al., 2012; Bustos et al. 2018). Chong and Li (2017) reported that the sequential 

addition of nutrients is a key to control the substrate concentrations at minimal levels which 
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allows optimal microbial growth without catabolite repression or substrate inhibition, thereby 

diverting most of substrates for rhamnolipid formation.  

 Thus, using sequential feed strategy, an increase of 258 % in the overall rhamnolipid 

production was achieved in five cycles using 140 g/L total sugar in comparison to the 

conventional batch fermentation where a maximum of 5.4g/L rhamnolipid yield was obtained in 

8 days using 40 g/L which remained constant thereafter. He at al. (2017) also reported 163 % 

increase in rhamnolipid production from Pseudomonas aeruginosa using sequential feeding 

method in comparison to conventional batch method. It has also been observed in sequential fed 

method, that an indefinite rhamnolipid productivity could not be achieved, rather, a drop in the 

rhamnolipid yield was observed beyond a particular generation cycle, here 5th cycle which may 

be due to the strain degeneration (Fig.2). Thus, the overall rhamnolipid yield of 19.35 g/L 

obtained in our study is comparatively better and easy in approach compared to Bustos et al. 

(2018) wherein, a slight different strategy was followed using recycled biomass after various 

fermentation and extraction cycles resulting in only 2.7g/L of biosurfactant from Lactobacillus 

pentosus indicating the adoption of this strategy as remarkable for the enhancement of 

rhamnolipid yields as very limited reports have been focused on this approach.  

From the perspective of economic feasibility of the production process for microbial 

surfactants, it has been reported that the selection of raw material and scale of production 

influences the production cost with a slight increase of 20-30% for high volume low-cost 

biosurfactants in comparison to chemical surfactants (de Gusmaoet al., 2010). This has been well 

documented by Lang and Wullbrandt (1999) wherein the cost of producing rhamnolipid from 

Pseudomonas aeruginosa using soybean oil as substrate showed inverse pattern with respect to 

scale-up production with USD  20/kg in 20 m3 scale and USD 5/kg in 100m3. As per the IGL 



  

15 
 

information, the cost of C6 sugars from rice straw is rated at USD 0.26/Kg. In relation to this the 

rough estimate of 19.35g of rhamnolipid obtained from our Achromobacter sp. (PS1) isolate 

using lignocellulosic rice straw hydrolysate is valued to be USD 13 exclusive of all the 

consumables, utilities, labor and miscellaneous costs and calculated on basis of USD 0.7/g of 

Natsurfact rhamnolipid (Natsurfact., 2019). Thus, the production of biosurfactant using 

lignocellulosic sugars would serves to be a valuable bioproduct from an economical perspective 

of a biorefinery concept for the replacement of conventional synthetic surfactant. 

3.3. TLC characterization of the biosurfactant 

The TLC result of the extracted biosurfactant from Achromobacter sp. (PS1) produced in 

lignocellulosic hydrolysate showed a pattern similar to the standard rhamnolipid-Jeneil JBR 215 

and to that produced in chemically defined medium, with two prominent spots at Rf of 0.36 and 

0.74 on spraying with orcinol reagent (Fig. 3). The Rf values of 0.74 and 0.36 relate to 

monorhamnolipid and dirhamnolipid moieties respectively (Joy et al., 2017). Similar results were 

reported by Bhat et al. (2015) for Jeneil standard rhamnolipid. Monteiro et al. (2007) reported Rf 

0.35 and 0.73 values for rhamnolipid produced from Pseudomonas aeruginosa when cultivated 

in a medium containing glycerol. Marcelino et al. (2017) also reported glycolipid type of 

biosurfactant with Rf value of 0.76 using lignocellulosic sugarcane bagasse hydrolysate produced 

by Scheffersomyces stipites. 

4. Conclusion 

The statistical optimization of lignocellulosic rice-straw hydrolysate medium under CCD 

resulted in 5.46 g/L of rhamnolipid with a 1.65 fold increase in comparison to the initial un-

optimized conditions. Further, the rhamnolipid production using a sequential fill-and-draw 

approach enhanced the overall yield by 258%.  Thus, this production strategy provides a cost 
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effective and ecofriendly approach towards enhanced biosurfactant production and its 

commercialization.  
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Legends of Figures 

Fig. 1. Three-dimensional surface and contour plots of interactions between (a) C6 sugar 

hydrolysate and NaNO3, (b) NaNO3 and yeast extract, (c) C6 sugar hydrolysate and 

agitation on rhamnolipid yield (g/L) (d) effect of interaction of agitation and yeast extract 

on cell dry weight from Achromobacter sp. (PS1) 

Fig. 2. Comparison of rhamnolipid yield in batch and sequential (Set A) fermentation approach  

Fig. 3. TLC chromatograms: (a) Jeneil JBR-215 (rhamnolipid standard); (b) Rhamnolipid from 

Achromobacter sp. produced in chemically defined medium (PS1); (c) Rhamnolipid from 

Achromobacter sp. produced in lignocellulosic rice-straw hydrolysate 
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Table 1.  

 

 

 

 

 

 

 

Variables Units 
Range of levels 

-α -1 0 +1 +α 

C6 sugar hydrolysate g/L 10 20 30 40 50 

NaNO3 g/L 6 8 10 12 14 

Yeast Extract g/L 0.4 0.8 1.2 1.6 2.0 

FeSO4 mg/L 0.05 0.2 0.4 0.6 0.8 

Phosphate mM 1000 1500 2000 2500 3000 

Agitation rpm 100 150 200 250 300 
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Table 2. 

  
Factors 

 
Response 1 Response 2 

Std Run 

C6 sugar 

hydrolysate 

(A) 

(g/L) 

NaNO3 

(B) 

(g/L) 

Yeast 

extract 

(C) 

(g/L) 

FeSO4 

(D) 

(mg/L) 

Phosphate 

(E) 

(mM) 

Agitation 

(F) 

(rpm) 

Experimental 

Rhamnolipid 

yield 

(g/L) 

Predicted 

Rhamnolipid 

yield 

(g/L) 

Experimental 

Cell Dry wt. 

(g/L) 

Predicted 

Cell Dry wt. 

(g/L) 

27 1 30 10 0.4 0.4 2000 200 2.82 2.95 3.50 3.44 

34 2 30 10 1.2 0.4 2000 300 2.40 2.31 2.65 2.63 

8 3 20 12 0.8 0.6 2500 150 2.17 2.26 2.36 2.48 

12 4 40 12 0.8 0.6 2500 250 4.23 3.94 4.30 4.31 

1 5 20 8 1.6 0.6 1500 250 1.94 1.74 2.17 2.21 

29 6 30 10 1.2 0.05 2000 200 2.78 2.87 3.70 3.80 

32 7 30 10 1.2 0.4 3000 200 3.12 3.00 3.60 3.66 

39 8 30 10 1.2 0.4 2000 200 3.29 3.00 3.90 3.74 

38 9 30 10 1.2 0.4 2000 200 3.01 3.00 3.70 3.74 

24 10 50 10 1.2 0.4 2000 200 3.92 4.05 5.49 5.58 

17 11 20 12 1.6 0.2 1500 150 2.20 1.89 3.00 3.00 

20 12 20 12 1.6 0.6 2500 250 2.21 2.47 2.48 2.42 

14 13 40 12 1.6 0.2 1500 150 4.44 4.05 5.10 5.08 

15 14 20 8 1.6 0.6 2500 150 2.26 2.39 2.60 2.58 

10 15 40 8 1.6 0.6 2500 250 4.13 4.12 4.26 4.21 

23 16 10 10 1.2 0.4 2000 200 1.37 1.38 1.10 1.08 

35 17 30 10 1.2 0.4 2000 200 2.98 3.00 3.60 3.74 

6 18 40 12 1.6 0.2 1500 250 3.49 3.50 4.65 4.64 

19 19 20 8 0.8 0.6 1500 150 2.54 2.46 2.26 2.27 

13 20 20 12 0.8 0.2 2500 250 2.55 2.58 2.40 2.30 

21 21 40 12 1.6 0.2 2500 150 3.38 3.26 4.89 5.01 

11 22 40 8 0.8 0.6 2500 150 3.98 3.80 4.42 4.28 

26 23 30 14 1.2 0.4 2000 200 2.55 2.90 3.90 3.90 

7 24 40 8 0.8 0.6 1500 250 2.50 2.60 3.97 4.10 

36 25 30 10 1.2 0.4 2000 200 3.05 3.00 3.70 3.74 

4 26 40 12 1.6 0.6 1500 150 3.65 3.83 5.08 5.01 

33 27 30 10 1.2 0.4 2000 100 2.55 2.76 3.30 3.38 

30 28 30 10 1.2 0.8 2000 200 3.22 3.16 3.70 3.67 

37 29 30 10 1.2 0.4 2000 200 3.09 3.00 3.80 3.74 

25 30 30 6 1.2 0.4 2000 200 3.05 3.11 3.23 3.29 

40 31 30 10 1.2 0.4 2000 200 2.89 3.00 3.79 3.74 

18 32 20 8 0.8 0.2 1500 250 1.80 1.98 2.15 2.09 

28 33 30 10 2 0.4 2000 200 2.80 3.06 4.10 4.05 
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9 34 40 8 1.6 0.2 1500 150 4.68 4.81 4.95 4.80 

2 35 40 12 0.8 0.2 1500 150 3.84 3.92 4.79 4.70 

16 36 40 8 0.8 0.2 2500 250 2.65 2.86 4.08 4.09 

3 37 20 8 0.8 0.2 2500 150 2.04 1.89 2.30 2.27 

22 38 20 8 1.6 0.2 2500 250 2.11 2.00 2.15 2.21 

5 39 20 12 0.8 0.6 1500 250 2.48 2.32 2.3 2.30 

31 40 30 10 1.2 0.4 1000 200 2.98 3.01 3.70 3.82 
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Table 3.  
                           

Source Sum of 

Squares 

df Mean 

Square 

F-value p-value  Coefficient 

Estimate 
Model 20.23 13 1.56 35.08 < 0.0001 significant  

A- C6 sugar 

hydrolysate 

13.03 1 13.03 293.68 < 0.0001  
0.747 

B-NaNO3 0.0698 1 0.0698 1.57 0.2214  -0.049 

C-Yeast extract 0.0184 1 0.0184 0.4153 0.5252  0.025 

D-FeSO4 0.1471 1 0.1471 3.32 0.0806  0.076 

E-Phosphate 0.0001 1 0.0001 0.0021 0.9635  -0.001 

F-Agitation 0.3083 1 0.3083 6.95 0.0142  -0.103 

AC 0.6752 1 0.6752 15.22 0.0006  0.189 

AF 0.3699 1 0.3699 8.34 0.0079  -0.138 

BC 0.4442 1 0.4442 10.01 0.0041  -0.154 

BF 0.5972 1 0.5972 13.46 0.0012  0.177 

DE 0.6220 1 0.6220 14.02 0.0010  0.184 

EF 0.8287 1 0.8287 18.68 0.0002  0.207 

F² 0.4017 1 0.4017 9.05 0.0059  -0.099 

Residual 1.11 25 0.0444     
Lack of Fit 1.02 20 0.0509 2.79 0.1295 not 

significant 
 

Pure Error 0.0913 5 0.0183     
Cor Total 21.34 38      
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Table 4. 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value p-value  

Coefficient 

Estimate 
Model 40.50 10 4.05 493.16 < 0.0001 significant  

A- C6 sugar 

hydrolysate 
32.67 1 32.67 3978.17 < 0.0001  1.04 

B-NaNO3 0.6097 1 0.6097 74.24 < 0.0001  0.14 

C-Yeast extract 0.6195 1 0.6195 75.44 < 0.0001  0.14 

D-FeSO4 0.0342 1 0.0342 4.17 0.0503  -0.03 

E-Phosphate 0.0404 1 0.0404 4.92 0.0346  -0.03 

F-Agitation 0.9338 1 0.9338 113.70 < 0.0001  -0.17 

CF 0.0450 1 0.0450 5.48 0.0263  -0.04 

A² 0.3209 1 0.3209 39.07 < 0.0001  -0.08 

B² 0.0391 1 0.0391 4.76 0.0373  -0.03 

F² 1.01 1 1.01 122.59 < 0.0001  -0.15 

Residual 0.2382 29 0.0082     

Lack of Fit 0.1841 24 0.0077 0.7091 0.7438 
not 

significant 
 

Pure Error 0.0541 5 0.0108     
Cor Total 40.74 39      
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Table 5.   

 

Set A 

Incubation time 

(Days) 

Rhamnolipid 

RL 

(g/L) 

 

Cell 

dry weight 

CDW 

(g/L) 

Total analysis 

8th Day (1st Feed) 5.43 4.94 
 Total sugar  utilized :140 g 

 

 Total Rhamnolipid 

produced : 19.35g 

 

 YRL/S: 0.138 g/g 

 

10th Day (2nd  Feed) 3.41 2.64 

12th Day (3rd Feed) 3.07 2.21 

14th Day (4th Feed) 2.81 2.05 

16th Day (5th Feed) 2.52 1.94 

18th Day 2.11 1.89 

Set  B 

Days 

Rhamnolipid 

RL 

(g/L) 

Cell 

dry weight 

CDW 

(g/L) 

Total analysis 

8th Day (1st Feed) 5.37 5.1  

 Total sugar  utilized :120 g 

 

 Total Rhamnolipid 

produced : 11.86 g 

 

 YRL/S: 0.098 g/g 

13th Day (2nd  Feed) 3.53 3.05 

18th Day 2.96 1.82 

Set C 

Days 

Rhamnolipid 

RL 

(g/L) 

 

Cell 

dry weight 

(CDW) 

Total analysis 

3th Day (1st Feed) 1.02 1.48  

 Total sugar  utilized :80 g 

 

 Total Rhamnolipid 

produced : 4.54 g 

 

 YRL/S: 0.056 g/g 

5th Day (2nd  Feed) 1.36 2.13 

7th Day (3rd Feed) 1.29 1.82 

9th Day 0.87 1.64 
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 Cost effective rhamnolipid  production using lignocellulosic hydrolysate   

 Statistical optimization by response surface methodology 

 Approx.1.65 fold increase in rhamnolipid yield  

 Adoption of sequential fill-and-draw approach to further improve rhamnolipid yield 

 Achievement of overall 19.35 g/L rhamnolipid yield using sequential approach  

 

 

Lignocellulosic rice-straw 

hydrolysate

Sequential fill-and-draw approach Response surface methodology

Cost-effective Rhamnolipid Production Using Lignocellulosic Hydrolysate

Biosurfactant

extraction &

characterization 
Rice-straw 


