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Abstract—One of the challenges our society faces
is the ever increasing amount of data. Among exist-
ing platforms that address the system requirements,
Hadoop is a framework widely used to store and
analyze “big data”. On the human side, one of the aids
to finding the things people really want is recommen-
dation systems. This paper evaluates highly scalable
parallel algorithms for recommendation systems with
application to very large data sets. A particular goal
is to evaluate an open source Java message passing
library for parallel computing called MPJ Express,
which has been integrated with Hadoop. As a demon-
stration we use MPJ Express to implement collabora-
tive filtering on various data sets using the algorithm
ALSWR (Alternating-Least-Squares with Weighted-
λ-Regularization). We benchmark the performance
and demonstrate parallel speedup on Movielens and
Yahoo Music data sets, comparing our results with
two other frameworks: Mahout and Spark. Our
results indicate that MPJ Express implementation of
ALSWR has very competitive performance and scal-
ability in comparison with the two other frameworks.

Index Terms—HPC, MPJ Express, Hadoop,
MapReduce, YARN, Spark, Mahout

I. INTRODUCTION

Over the last decade Apache Hadoop has es-
tablished itself as a pillar in the ecosystem of
software frameworks for “big data” processing. As

an open source, mostly Java-based Apache project
with many industrial contributors, it retains a com-
manding position in its field.

When first released Hadoop was a platform
primarily supporting the MapReduce programming
model, and other projects built on top of MapRe-
duce. Around 2014 with the release of Hadoop
2.0 the platform was re-factored into a separate
YARN (Yet Another Resource Negotiator) resource
allocation manager, with MapReduce now just one
of multiple possible distributed computation frame-
works that could be supported on top of YARN.
Several other major big data projects rapidly mi-
grated to allow execution on the Hadoop YARN
platform (for example Apache Spark [24], Apache
Giraph [1], Apache Tez [15], and Microsoft Dryad
[9]). Around the same time the present authors
envisaged adding our existing MPJ Express frame-
work for MPI-like computation in Java to that
distinguished group, and developed a version of our
software that could also run under Hadoop YARN
[22].

MPJ Express is a relatively conservative port
of the standard MPI 1.2 parallel programming
interface to Java, and is provided with both “pure
Java” implementations (based on Java sockets and
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threads) and “native” implementations exploiting
specific interconnect interfaces, or implementations
on top of standard MPI. The vision was thus
to support MPJ as one computational framework
among many largely Java-based or JVM-based
frameworks that could be mixed and matched for
different stages of complex big data processing,
with Hadoop and HDFS (the Hadoop Distributed
File System) as the “glue” between stages.

The main goal of the present paper is to pro-
vide evidence that such a scenario can be realized
and that it may be advantageous. We concentrate
on one particular computationally intensive “big
data” problem - generating product recommenda-
tions through the collaborative filtering algorithm
ALSWR (Alternating Least Squares with Lambda
Regularization). A version of this algorithm was
developed and evaluated using MPJ running under
Hadoop. We then go on to compare our implemen-
tation with two existing implementations of AL-
SWR that can run under Hadoop—one taken from
the Apache Mahout project using MapReduce, and
one using Apache Spark. Results suggest the MPJ
approach can provide useful performance gains
over these other established Big Data frameworks
on suitable compute-intensive kernels.

The rest of the paper is organized as follows.
Section I-A reviews selected related work. Back-
ground materials in Section II review Hadoop,
YARN and HDFS; outline the architecture of MPJ
Express and its integration in YARN; and give an
overview of the collaborative filtering technique.
Section III describes how we implement the collab-
orative filtering with ALSWR in MPJ. The Section
IV evaluates and compares our results with Mahout
and Spark. Section V concludes the paper and
discusses future works.

A. Related Work
Recommender systems have been a subject of

tremendous interest lately. However, our interested
is limited to collaborative filtering applied to very
large datasets with millions of records, leading to
a need for parallel processing.

For the Netflix Prize [25] proposed an approach
called ALSWR. In order to implement their algo-
rithm in parallel authors used Matlab [7]. The result
of the experiments showed a better performance
of the ALSWR as the number of features and
iterations increased. The experiments were made on
the Netflix dataset consisting of 100 million ratings.

The current state-of-the-art dataset comprises of
billions of ratings [10] and processing this requires
scalable methods. The authors in [10] explained
how ALS and SGD algorithms are used with
Apache Giraph to process an average of 100 billion
ratings from Facebook. Yu, Hsieh, Si and Dhillon in
[21] compare ALS methods to Stochastic Gradient
Descent (SGD) methods and Coordinate Descent
methods. A comparison of SGD with various al-
gorithms was done in [13]. More studies have
been realized in [11] with a different approach
called Co-clustering Dataflow Bregman as well as
another interesting research geared towards very
large datasets in [16] that used ALS as algorithm
on Hadoop MapReduce and JBlas as framework.

In the context of MPJ Express, previous work
[22] focused on integrating the software with
YARN allowing end-users to execute Java MPI
programs on Hadoop clusters. As part of this effort,
a new YARN-based runtime system was added to
the MPJ Express library. The paper demonstrated
reasonable comparative performance of YARN-
based runtime against the existing runtime. This
study did not compare performance of YARN-
based MPJ Express library against some of the
newer technologies including Apache Spark.

II. BACKGROUND

A. Hadoop Overview

Hadoop is a framework that stores and processes
voluminous amount of data in a reliable, fault-
tolerant manner [19]. Since Hadoop 2, YARN (Yet
Another Resource Negotiator) has been integrated
in the infrastructure as the resource manager, en-
abling many other distributed frameworks besides
MapReduce to process their data on Hadoop clus-
ter. YARN depends on three main components to
complete a task: a Resource Manager (RM), Node
Managers (NMs), and an Application Master (AM).
The RM is responsible for managing and allocating
the resources across the cluster. NMs run on all
nodes available in a cluster and report all the tasks
to the RM such as the number of cores and memory
space. Each job that is started has an AM specific to
the processing framework that manages operation
within containers and ensures there are sufficient
containers for the task. The communication be-
tween the master nodes and slave nodes is achieved
through the Heart Beat Mechanism [6].



Fig. 1: MPJ Express Configuration

B. MPJ Express

MPJ Express [14] is an open source Java MPI-
like library that allows application developers to
write and execute parallel applications on multicore
processors and compute clusters. The MPJ Express
software can be configured in various ways as
depicted in Figure 1. Under the cluster configura-
tion, the MPJ Express software provides different
communication devices that are suitable for the
underlying interconnect. Currently, there are four
communication devices available:

1) niodev - uses Java New I/O (NIO) Sockets
2) mxdev - uses Myrinet eXpress (MX) library

for Myrinet networks
3) hybdev - for clusters of multicore processors
4) native - uses a native MPI library (like

MPICH, MVAPICH, OpenMPI)
Since 2015, the MPJ Express software provides
a YARN-based runtime that exploits the niodev
communication device to execute parallel Java code
on Hadoop clusters. Under this setting, HDFS is
used as the distributed file system where application
datasets, MPJ Express libraries, and application
programs are loaded to allow all processes to access
the material.

Figure 2 presents the implementation of the
MPJ Express library on YARN. In this setting, the
Hadoop cluster consists of a client node, where Re-
source Manager (RM) executes, and two compute
nodes, where a Node Manager (NM) executes. The
NM process operates on each compute node and
is responsible for executing assigned tasks. The
main phases of the implementation of YARN are
explained in [22].

C. Collaborative Filtering Techniques

Recommender systems are software tools and
techniques that provide suggestions to users to help
them find and evaluate items likely to match their

Fig. 2: MPJ Express Integrated in YARN- 1)
Submit YARN application- 2) Request container
allocation for AM- 3) AM generates a CLC and
allocates container to each node- 4) Each mpj-
yarn-wrapper send outputs and error streams of the
program to the MPJYarnClient

requirements. We use the term item to describe
a product or service recommended by a system.
Collaborative filtering systems are based on users’
purchases or decisions histories. Assuming two
individuals share the same opinion on an item,
they are also more likely to have similar taste on
another item. In our experiments we have opted
for a model based approach and we specifically
use Alternating-Least-Squares with Weighted-λ-
Regularization (ALSWR) algorithm.

In this section, following [25], we will often refer
to items as “movies”. Assume we have nu users
and nm movies, and R is the nu × nm matrix of
input ratings. Usually each user can rate only few
movies. Therefore the matrix R will initially have
many missing values or loosely speaking it will
be sparse. The problem is to predict the unknown
elements of R from the known elements.

We model the preferences of users by assuming
they have simple numeric level of preference for
each of a number nf of features to be found in
movies; thus the behaviour of user i is modelled
by a vector ui of length nf . Similarly each movie
is assumed to have each these features to a simple
numeric degree so each movie j is modelled by a
vector mj of the same size. The predicted prefer-
ence of user i for movie j is the dot product ui ·mj .
The vectors are conveniently collected together in



matrices U and M of size nu × nf and nm × nf
respectively.

To fit the model to the known elements of R
we use a least squares approach, adding a regu-
larization term parameter λ to the sum of square
deviations to prevent the model from overfitting
the data. The penalty function ALSWR strives to
minimize is:

f(U,M) =
∑
i,j

(rij − ui · mj)
2

+ λ

∑
i

nui
u2
i +

∑
j

nmj
m2

j

 (1)

where the first sum goes over i, j values where the
element rij of R is known in advance, nui is the
number of items rated by a user i, and nmj

is the
number of users who have rated a given movie j.

ALSWR is an iterative algorithm. It shifts be-
tween fixing two different matrices. While one is
fixed, the other one is updated hence solving a
matrix factorization problem. The same process
goes through a certain number of iterations until a
convergence is reached which implies that there is
little or no more change on either users and movies
matrices. The ALSWR algorithm as explained by
Zhou et al [25] is as follows:

• Step 1: Initialize matrix M in a pseudorandom
way.

• Step 2: Fix M , Solve U by minimizing the
objective function (the sum of squared errors);

• Step 3: Fix U , Solve M by minimizing the
objective function similarly;

Steps 2 and 3 are repeated until a stopping criterion
is satisfied. Step 2 is implemented by Equation 2
where MIi is the sub matrix of M , representing
the selection of any column j in the set of movies
rated by a user i, H is a unit matrix of rank equal
to nf and R(i, Ii) is the row vector where columns
j are chosen.

ui = (MIiM
T
Ii + λnuiH)−1MIiR

T (i, Ii) (2)

Step 3 is implemented by a similar formula ex-
changing the roles of U and M .

III. MPJ IMPLEMENTATION OF ALSWR

The basic strategy for distributing the ALSWR
algorithm to run in parallel was already described
by the original proposers in [25]. All nodes of
a cluster contain a certain subset of the large,

Fig. 3: Visualization of an iteration of distributed
ALSWR algorithm. “Processor space” runs across
the page, processes are labelled p0, p1, . . . and so
on. Time runs down the pages with distributed
computational steps labelled as on page 4. Between
computational stages there are collective synchro-
nizations in the form of “allgather” operations.

sparse, recommendations array, R. In particular
it is convenient for the R array to be stored in
two ways across the cluster as a whole—divided
across nodes by columns and also by rows. This
is illustrated in figure 3, where i is the subscript
identifying users and j is the subscript identifying
items, and the two different forms of decomposition
of R are used in the two different steps. Step 2,
as defined in equation 2, conveniently uses locally
held R decomposed by i to update locally owned
elements ui of the user model. B is a block size for
the locally held subset of elements, approximately
constant across the cluster for good load balancing.

Because update of ui potentially involves any
element of the item model m, to simplify this
step all elements of m should be stored locally,
in globally replicated fashion.

Step 3 has a complementary structure, but now
update of mj may require access to any element
of u. So between steps 1 and 2 all the locally
computed elements of u must be gathered together
and broadcast to processing nodes. Similarly be-
tween step 2 and step 3 in the next iteration of
the algorithm, the locally computed elements of m
must be gathered and broadcast.



Fig. 4: Sparse data structure to represent locally
held ratings. This whole structure is duplicated,
once for ratings distributed by user and once for
ratings distributed by items. In the “by user” case
the size of the base and num arrays is the total
number of locally held users, with num[i] being
the number of ratings by user i; targets elements
hold a global index of the rated item (index in the
gathered array of item models). In the “by item”
case the size of the top arrays is the number of
locally held items, with num holding the number
of ratings per item; a target element now holds
the global index of the user who made the rating.

A great benefit of the MPI style of programming
is the use of collective communication. This is
embodied here in the use of MPI Allgather, that
allows data to be gathered from each process then
to be distributed to all processes.

In our program the data that we used for the
implementation of the ALSWR code consists of a
sparse matrix of ratings, partitioned by user or by
item. Figure 4 illustrates the organization of the
data.

In order to solve the symmetric positive definite
matrix we use Cholesky decomposition from the
Intel Data Analytics Acceleration Library (DAAL)
[8].

The code assumes each node holds numLocal
elements of the distributed user model. Within
a node we run NUM_THREADS long lived
threads (they are started at the beginning
of the program), where the NUM_THREADS
parameter will be related to the number of
cores on the node. The variable me identifies
a thread within the local node (not to be
confused with the MPI rank which identifies a
node). Threads will be synchronized before MPI
collective operations using barriers implemented by
java.util.concurrent.CyclicBarrier.
The MPI operations themselves are only executed

by the me = 0 thread.
The ratings data for our MPJ code are read from

the same HDFS text files as used by the third
party implementations of ALS discussed below.
We use HDFS API to determine the blocks that
have replicas on nodes running MPJ processes. A
heuristic is used to choose a load balanced set of
local replicas to read. The locally read ratings are
then partitioned to destination nodes using a variant
of the CARI communication schedules introduced
in [18].

IV. PERFORMANCE EVALUATION AND
COMPARISON OF MPJ EXPRESS, MAHOUT, AND

SPARK

This section details our experiments focusing on
the comparative performance evaluation of MPJ
Express against well-known platforms including
Hadoop, Mahout and Spark. The performance eval-
uation compares their parallel speedup.

Apache Mahout is a distributed linear algebra
framework [2], widely used for its distributed im-
plementation on Apache Hadoop. This essentially
means that datasets are stored on the HDFS and
various machine learning algorithms such as col-
laborative filtering can be applied to the data.
The ALSWR implementation with Apache Mahout
is done through its machine learning library and
more specifically the map-reduce implementation
of ALS. This last consists of two stages: a parallel
matrix factorization phase followed up by some
recommendations. Both phases are detailed in [12].

Apache Spark is an open-source cluster-
computing framework suitable for large scale data
processing. Since Hadoop 2, Spark has been inte-
grated with Hadoop allowing its programs to run on
YARN. Spark can use memory and disk processing
through its Resilient Distributed Datasets (RDD).
As explained in [23], the default is to keep the
RDD in memory; when there is no more space in
the RAM, Spark stores the rest on disk. Shared
variables and parallel operations available in Spark
are detailed in [24] and [3]. We have implemented
ALS on Spark through its standard machine learn-
ing library (MLlib).

For the purpose of performance evaluation,
we acquired our datasets from public domains.
These consist of anonymous user ratings from two
different sources: MovieLens and Yahoo Music.
The dataset obtained from MovieLens contains



20, 000, 263 ratings for 27, 278 movies, created
by 138, 493 users [5]. The dataset from Yahoo
Music—that is much larger—contains over 717
millions ratings for 136 thousands songs rated by
1.8 million users [20]. The data from Yahoo has
been separated in training and test datasets. Our test
environment includes a Linux cluster composed of
2 nodes having 6 cores each and 2 other nodes
with 4 cores each; giving us in total 20 cores.
Nevertheless in the experiments we limit ourselves
to 16 cores in order to get the best results. Using
too many cores could lead to a degradation of the
performance. The software used for the tests consist
of:

• Java 1.7
• Apache ant 1.6.2
• Hadoop-2.7.3
• MPJ Express (version 0.44), Mahout (version

0.12.2), and Spark (version 2.2.0)
• Intel Data Analytics Acceleration Library

(DAAL) 2017

A. MovieLens 20M Ratings Experiments

Our ALSWR code is tested with 50 features,
10 iterations, 0.01 for the regularization parameter
lambda λ and 0.01 for the parameter epsilon ε that
is used in the initial guess for the item model.
Figure 5a compares the performances between MPJ
Express, Spark and Mahout on different number
of processes. MPJ Express and Spark have both
a good performance and parallel speed up: as the
number of cores increases the time decreases; Ma-
hout does not show much variances from four cores
and above. Figure 5b focus on MPJ and Spark.
MPJ Express has the best performance amongst
the 3 frameworks. It is, on average, 13.19 times
faster than Mahout and on average 1.4 faster than
Spark. Figure 6 represents the parallel speedup of
MPJ Express and Spark. With sixteen cores MPJ
Express is almost 10 times faster than when it is
run in sequence while Spark is just about 4.5 times
faster than its result with one process.

B. Yahoo Webscope 700M Ratings Experiments

Mahout was unable to cope with the large Yahoo
dataset. For this reason, we have evaluated only
MPJ Express and Spark versions of the code for this
dataset. Figure 7 shows a pattern quite similar to
figure 5b although this time our dataset is about 35
times bigger. Table I displays the time measurement
in minutes of the assessed frameworks. A closer

# of MPJ Express Spark
Procs

1 298 417
2 142 217
4 84.4 136
8 45.56 65
12 33.15 54
16 28.35 55

TABLE I: Performance MPJ Express vs Spark in
minutes

look at figure 8 demonstrates a significant parallel
speedup improvement of MPJ Express which now
runs more than 10.5 times faster on 16 cores
than its sequential time. The parallel speedup of
Spark has also improved. It implements the ALS
on Yahoo dataset 7.5 times faster with 16 cores
than when it is run in sequence. However from
12 cores onwards, the performance of the Spark
version starts decreasing.

C. Analysis of the results

The Mahout implementation of ALS—not neces-
sarily representative of the wider Mahout project—
is based on MapReduce. The performance limi-
tations of MapReduce on iterative algorithms are
well documented, see for example [4]. According
to pseudocode given in [24], the Spark implemen-
tation uses a combination of its parallelize and
collect operations to reproduce the communication
operation called MPI Allgather here. We assume
that the MPI collective algorithms can implement
this pattern more efficiently. There is a discussion
of efficient implementations of Allgather in [17] for
example. Additionally there may be some degrada-
tion of the performance of Spark when there is not
enough memory (RAM) as the storage has to be
on disk when the program is running out of space.

V. CONCLUSION

Various computational frameworks have been
adopted over the last few years for running
compute-intensive kernels of recommender algo-
rithms on Hadoop platforms. These include Apache
Mahout, Apache Spark and Apache Giraph. In this
paper we have added our MPJ Express framework
to this list, and provided evidence that it can outper-
form other implementations of the central optimiza-
tion algorithm. This additional performance cer-
tainly comes at some cost in terms of programming
complexity. For example the MPJ programmer has
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to spend more time orchestrating communication
between Hadoop nodes. Nevertheless we argue that
for some intensive and often used kernels, the
extra investment in programming may be justified
by the potential performance gains. We see MPI-
based processing stages as one more resource in the
armoury of big data frameworks that may be used
in processing pipelines run on Hadoop clusters. We
also suggest that in this setting MPJ Express may
be a natural choice of MPI-like platform, given that
many other such processing stages will be coded in
Java or JVM-based languages.
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On our future work we need to evaluate alter-
native parallel organizations of the recommender
code, like the rotational hybrid approach described
in [10]. Preliminary analysis suggests that imple-
mentation of similar schemes in MPI style may
benefit from extensions to the standard set of MPI
collectives, currently embodied in MPJ Express.
Again such an extended library could form part
of a future data centric version of MPJ Express
that builds on experiences of MPI processing in
the Hadoop environment.
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