
Towards the Control of Cell States in Gene

Regulatory Networks by Evolving Boolean

Networks

Nadia Solime Taou

submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

School of Mathematical and Computer Sciences

July 2018

The copyright in this thesis is owned by the author. Any quotation from the thesis or use

of any of the information contained in it must acknowledge this thesis as the source of the

quotation or information.



Abstract

Biological cell behaviours emerge from complex patterns of interactions between genes
and their products, known as gene regulatory networks (GRNs). More specifically,
GRNs are complex dynamical structures that orchestrate the activities of biological
cells by governing the expression of mRNA and proteins. Many computational models
of these networks have been shown to be able to carry out complex computation in
an efficient and robust manner, particularly in the domains of control and signal
processing. GRNs play a central role within living organisms and efficient strategies
for controlling their dynamics need to be developed. For instance, the ability to
push a cell towards or away from certain behaviours, is an important aim in fields
such as medicine and synthetic biology. This could, for example, help to find novel
approaches in the design of therapeutic drugs. However, current approaches to
controlling these networks exhibit poor scalability and limited generality. This
thesis proposes a new approach and an alternative method for performing state
space targeting in GRNs, by coupling an artificial GRN to an existing GRN. This
idea is tested in simulation by coupling together Boolean networks that represent
controlled and controller systems. Evolutionary algorithms are used to evolve the
controller Boolean networks. Controller Boolean networks are applied to a range of
controlled Boolean networks including Boolean models of actual biological circuits,
each with different dynamics. The results show that controller Boolean networks can
be optimised to control trajectories in the target networks. Also, the approach scales
well as the target network size increases. The use of Boolean modelling is potentially
advantageous from an implementation perspective, since synthetic biology techniques
can be used to refine an optimised controller Boolean network into an in vivo form,
which could then control a genetic network directly from within a cell.

i



Acknowledgements

I would like to express my gratitude to my supervisors Dr. Michael Lones and
Prof. David Corne, particularly to Dr. Michael Lones for all his advice and guidance
throughout the years of my study. Thanks to Dr. Marta Vallejo for her friendship,
support and advice, I cannot thank you enough for all you have done for me, since
my first day in this lab. Thanks to my friends for all their encouragement.

Finally, I am specially very grateful and thankful to my parents, my siblings and
to Heiko for their enduring love, support and encouragement. You never give up on
me, I could not have made it this far without you.

ii



Declaration

Some of the research within this thesis has previously been published by the
author Taou et al. (2016a), Taou et al. (2016b), Taou et al. (2018) and Taou and
Lones (2018). All work reported in this thesis as original is so to the best knowledge
of the author. All research or work from other researchers which have contributed to
this thesis have been referenced and acknowledged as appropriate.

iii



Table of Contents

Abstract i

Acknowledgements ii

Declaration iii

1 Introduction 2

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Artificial Gene Regulatory Networks . . . . . . . . . . . . . . . . . 3

1.3 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Evolvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Boolean Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 List Of Publications from this Work . . . . . . . . . . . . . . . . . . 6

2 Structures And Functions Of Biological Systems 8

2.1 Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Biological Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Gene Regulation . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Biochemical Networks . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Gene Regulatory Networks . . . . . . . . . . . . . . . . . . . 12

2.4.2 Metabolic Networks . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Cell Signalling Networks . . . . . . . . . . . . . . . . . . . . 15

iv



2.5 Biological System Properties . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Evolvability . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.4 Emergence of complex behaviours . . . . . . . . . . . . . . . 19

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Computational Models of Gene Regulatory Networks 21

3.1 Boolean Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Random Boolean Networks . . . . . . . . . . . . . . . . . . . 23

3.1.2 Scale Free Boolean Networks . . . . . . . . . . . . . . . . . . 25

3.2 Probabilistic Boolean Networks . . . . . . . . . . . . . . . . . . . . 26

3.3 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Boolean Modelling of Biological Networks . . . . . . . . . . 28

3.3.2 Controlling Boolean Networks . . . . . . . . . . . . . . . . . 29

3.3.3 Evolving Boolean Networks . . . . . . . . . . . . . . . . . . 33

3.3.4 Implementing Boolean Networks in Cells . . . . . . . . . . . 34

3.3.5 Using Artificial Gene Regulatory Networks as Controllers . . 35

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Evolutionary Algorithms 39

4.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Evolutionary Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Evolutionary Programming . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Multi-Objective Evolutionary Algorithms . . . . . . . . . . . . . . . 45

4.5.1 Multi-Objective Optimisation . . . . . . . . . . . . . . . . . 46

4.5.2 Non-Dominated Sorting Genetic Algorithms II . . . . . . . . 47

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Controlling Boolean Networks using Boolean Networks 50

5.1 Evolving Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



5.1.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Genetic Algorithms and Parameters . . . . . . . . . . . . . . 52

5.2 Control tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Controlling RBNs . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Controlling SFBNs . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.3 Varing the controller Type . . . . . . . . . . . . . . . . . . . 65

5.3.4 Variable-Size Controllers . . . . . . . . . . . . . . . . . . . . 67

5.3.5 Exploring Multiobjective Trade-Offs . . . . . . . . . . . . . 68

5.3.6 Analysis of Evolved Controllers . . . . . . . . . . . . . . . . 69

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Controlling Boolean Models of Biological Networks 76

6.1 Boolean Models of Biological Networks . . . . . . . . . . . . . . . . 76

6.1.1 T cell receptor signalling pathway . . . . . . . . . . . . . . . 77

6.1.2 T helper cell differentiation network . . . . . . . . . . . . . . 78

6.1.3 Flower morphogenesis in Arabidopsis thaliana . . . . . . . . 79

6.1.4 Fission yeast cell cycle regulation . . . . . . . . . . . . . . . 80

6.1.5 Budding yeast cell cycle regulation . . . . . . . . . . . . . . 81

6.2 Experimental Methods and Evolutionary Parameters . . . . . . . . 82

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.1 Controlling Trajectories form Random Initial States . . . . . 82

6.3.2 Controlling Trajectories Between Attractors . . . . . . . . . 91

6.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Summary and Conclusions 100

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Limitations of This Research . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



A Acronyms 107

B Mathematical Symbols 109

C Controlling Boolean Models of Biological Networks Plots 112

References 133

vii



List of Tables

3.1 Summary of some selected work on controlling Boolean networks (BNs) 33

3.2 Summary of some selected work on controlling dynamical systems

using artificial gene regulatory networks (GRNs) . . . . . . . . . . . 38

4.1 A summary of the evolutionary algorithms described in this chapter.

This table is adapted from (Knowles and Corne, 2000). . . . . . . . 48

6.1 Fitness distributions for T cell receptor signaling pathway control,

showing the normalised distances from the target for each of the

system’s stable states both with and without control. These results

are obtained using deterministic BN controllers. . . . . . . . . . . . 85

6.2 Fitness distributions for T-helper cell differentiation control. . . . . 85

6.3 Fitness distributions for flower morphogenesis in Arabidopsis thaliana

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Fitness distributions for fission yeast cell cycle control. . . . . . . . 87

6.5 Fitness distributions for budding yeast cell cycle control problem. . 87

6.6 Fitness distributions for T cell receptor signaling pathway control,

showing the normalised distances from the target for each of the

system’s stable states both with and without control. These results

are obtained using non-deterministic BN controllers. . . . . . . . . . 88

6.7 Fitness distributions for T-helper cell differentiation control. . . . . 88

6.8 Fitness distributions for flower morphogenesis in Arabidopsis thaliana

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.9 Fitness distributions for fission yeast cell cycle control. . . . . . . . 90

viii



6.10 Fitness distributions for budding yeast cell cycle control problem. . 90

6.11 Summary of the results, showing the mean fitness and number of

attractors reached for each target network both when under the

control of evolved deterministic BN controllers and when following its

natural dynamics (no control) from a random initial state. . . . . . 91

6.12 Summary of the results, showing the mean fitness and number of

attractors reached for each target network both when under the control

of evolved non-deterministic BN controllers and when following its

natural dynamics (no control) from a random initial state. . . . . . 91

6.13 Fitness distributions for fission yeast cell cycle control, showing the

normalised distances from one stable state (or attractors = At) to

another using deterministic BN controllers. A fitness of 1 is optimal. 93

6.14 Fitness distributions for flower morphogenesis in Arabidopsis thaliana

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.15 Fitness distributions for T cell receptor signalling pathway control. . 93

6.16 Fitness distributions for budding yeast cell cycle control. . . . . . . 93

6.17 Fitness distributions for T helper cell differentiation control. . . . . 94

6.18 Fitness distributions for fission yeast cell cycle control, showing the

normalised distances from one stable state (or attractors = At) to

another using non-deterministic BN controllers. A fitness of 1 is

optimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.19 Fitness distributions for flower morphogenesis in Arabidopsis thaliana

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.20 Fitness distributions for T cell receptor signalling pathway control. . 94

6.21 Fitness distributions for budding yeast cell cycle control. . . . . . . 95

6.22 Fitness distributions for T helper cell differentiom control. . . . . . 95

6.23 Binary representation of the controlled network (attractor 1 (a1)) state

changes during the control process shown in Figure 6.6. . . . . . . . 98

ix



List of Figures

2.1 Difference and similarities of prokaryotes and eukaryotes. Adapted

from (Mattick, 2001). . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Interaction between biochemical networks, adapted from (Lones et al.,

2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Simplified representation of the yeast regulatory network. Two types

of interactions are observed, being activated (green) or repressed (red),

and the dynamical components representing the gene states are taken

to be binary with values 0 and 1. Adapted from (Maslov et al., 2003). 13

2.4 Vertical gene transfer from parents to an offspring, or child. This child

is generated after sexual reproduction or recombination and mutation

processes and has both parents’ genetic traits. . . . . . . . . . . . . 17

2.5 Horizontal gene transfer. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 State transition graph corresponding to the Boolean network shown

in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 An example of a Boolean network with three nodes. . . . . . . . . . 23

3.3 Functions and truth table used by the Boolean network shown in

Figure. 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 A scale free Boolean network, showing three hubs in grey. . . . . . . 26

3.5 Power Law Distribution (k = [1− 10], γ1 = 2.0 γ2 = 2.25, γ1 = 2.5).

The plot shows the distribution of connectivities in scale free networks

for three different values of γ. A large number of nodes have only a

few connections, and a small number of nodes (hubs) have a large

number of connections. . . . . . . . . . . . . . . . . . . . . . . . . . 27

x



3.6 A building block of a probabilistic Boolean network adapted from

(Shmulevich et al., 2002). On this figure the wiring of the inputs to

each Boolean function appear to be general, however, in reality, each

Boolean function has only a few input variables. . . . . . . . . . . . 28

4.1 An example of n-point crossover, where n = 2 showing how children

are generated using crossover. . . . . . . . . . . . . . . . . . . . . . 40

4.2 Evolutionary algorithm general framework . . . . . . . . . . . . . . 42

4.3 An example of a tree in genetic programming. This tree represents

the equation (3 + x
2
)− y. A set of inputs can be provided and iterated

several time through the program to find the fitness of this program. 43

4.4 An example of the crossover operation with genetic programming trees.

Two sub-trees are selected and swapped between the parents to create

the children. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 An illustration of non-dominated Pareto front and non-dominated

solutions, where objective f1 is minimised and f2 is maximised. . . . 48

5.1 Coupled random Boolean networks. . . . . . . . . . . . . . . . . . . 56

5.2 Boolean network coupled to a scale free Boolean network, also showing

the linear encoding used by the evolutionary algorithm. Grey dashed

arrows indicate coupling between controller network and controlled

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Example of a Boolean network’s genetic representation (genotype).

The timing and coupling terms indicate that this network is iterated

twice each time it is executed, it is executed after every step of the

controlled network, its control outputs (interventions) are copied to

nodes 2 and 8 of the controlled network, and its feedback (in) inputs

from the controlled network are copied from nodes 5 and 6. Ed and

Er are respectively controlled and controller networks. . . . . . . . 57

xi



5.4 Fitness distributions of non-deterministic (RBNnd) following their

natural dynamics (a,c) and under control (b,d), with probability

p = 0.3 and p = 0.7. High fitness values are better. Notched box

plots show summary statistics over 20 evolutionary runs. Overlapping

notches indicate when median values (thick horizontal bars) are not

significantly different at the 95% confidence level. . . . . . . . . . . 63

5.5 Fitness distributions for RBNs following their natural dynamics and

under control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Fitness distribution of SFBNs (a) following their natural dynamics,

and (b–d) controlled with evolved RBNs, γ1 = 2.0, γ2 = 2.25 and

γ3 = 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Fitness distributions for SFBNs evolved to control RBNs and SFBNs. 66

5.8 Fitness distributions for non-deterministic RBNnd optimised to control

deterministic RBNs. The probability used is 0.7. . . . . . . . . . . . 67

5.9 Fitness distributions for deterministic RBNs and non-deterministic

RBNnd following their natural dynamics and under control when the

controller RBN and RBNnd size was able to vary during evolution. . 68

5.10 Pareto fronts, showing the trade-off between control efficacy and the

number of interventions, γ = 2.25, k = 2. The different coloured

lines (some coloured lines are duplicated) indicate the non-dominated

solutions from 20 different runs, each with a different controlled SFBN. 70

5.11 An illustration of the control process of a controlled SFBN using

a controller RBN. Dashed arrows represent the controller network

interventions and the dark grey node the final state of the controlled

network. The initial state of the controlled RBN is all zero and the

target state is all ones. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.12 List of binary state shown in Figure 5.11 . . . . . . . . . . . . . . . 72

5.13 An illustration of the control process for three deterministic controlled

RBNs using deterministic RBN controllers. The controlled RBNs have

sizes [20-40] nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



5.14 Binary representation of the controlled network (N = 20) state changes

during the control process. (See Figure 5.13c) . . . . . . . . . . . . 74

6.1 The T cell receptor signalling pathways regulatory network, showing

the interactions between nodes. See (Klamt et al., 2006) for details of

Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 The T helper cell differentiation regulatory network, showing the

interactions between nodes. See (Mendoza and Xenarios, 2006) for

details of Boolean functions. . . . . . . . . . . . . . . . . . . . . . . 79

6.3 The flower morphogenesis in Arabidopsis thaliana regulatory network,

showing the interactions between nodes. See (Mendoza et al., 1999),

(Alvarez-Buylla et al., 2008) for details of Boolean functions. . . . . 80

6.4 The fission yeast cell cycle regulation, showing the interactions between

nodes. See (Davidich and Bornholdt, 2008) for details of Boolean

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 The budding yeast cell cycle regulation, showing the interactions

between nodes. See (Li et al., 2004) for details of Boolean functions. 81

6.6 An evolved controller controlling a trajectory from a random initial

state to an attractor in the T-helper cell differentiation network. . . 96

6.7 An evolved controller of controlling a trajectory from a attractor 2 as

the initial state to control attractor 3 in the T-helper cell differentiation

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C.1 Fitness distributions for the T cell receptor signalling pathway control

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.2 Fitness distributions for the T helper cell differentiation control prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.3 Fitness distributions for the flower morphogenesis control problem. . 114

C.4 Fitness distributions for the fission yeast cell yeast control. . . . . . 115

C.5 Fitness distributions for the budding yeast cell cycle control. . . . . 116

C.6 Fitness distributions for the T cell receptor signalling pathway control

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xiii



C.7 Fitness distributions for the T helper cell differentiation control prob-

lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.9 Fitness distributions for the fission yeast cell yeast control. . . . . . 118

C.10 Fitness distributions for the budding yeast cell cycle control. . . . . 119

C.11 Fitness distributions for the T cell receptor signalling pathway control

problem. Moving for attractor to other attractors . . . . . . . . . . 120

C.12 Fitness distributions for the T cell receptor signalling pathway control

problem. Moving for attractor 2 to other attractors . . . . . . . . . 121

C.13 Fitness distributions for the T cell receptor signalling pathway control

problem. Moving for attractor 2 to other attractors . . . . . . . . . 122

C.14 Fitness distributions for the fission yeast cell yeast control. Moving

for attractor 1 to other attractors . . . . . . . . . . . . . . . . . . . 123

C.15 Fitness distributions for the fission yeast cell yeast control. Moving

for attractor 2 to other attractors . . . . . . . . . . . . . . . . . . . 124

C.16 Fitness distributions for the fission yeast cell yeast control. Moving

for attractor 3 to other attractors . . . . . . . . . . . . . . . . . . . 125

C.17 Fitness distributions for the budding yeast cell yeast control. Moving

for attractor 1 to other attractors . . . . . . . . . . . . . . . . . . . 126

C.18 Fitness distributions for the budding yeast cell yeast control. Moving

for attractor 2 to other attractors . . . . . . . . . . . . . . . . . . . 127

C.19 Fitness distributions for the budding yeast cell yeast control. Moving

for attractor 3 to other attractors . . . . . . . . . . . . . . . . . . . 128

C.20 Fitness distributions for the flower morphogenesis in Arabidobis

thaliana control. Moving for attractor 1 to other attractors . . . . . 129

C.21 Fitness distributions for the flower morphogenesis in Arabidobis

thaliana control. Moving for attractor 2 to other attractors . . . . . 130

C.22 Fitness distributions for the flower morphogenesis in Arabidobis

thaliana control. Moving for attractor 1 to other attractors . . . . . 131

C.23 Fitness distributions for the T-helper cell differentiation control. Mov-

ing for attractor 1 to other attractors . . . . . . . . . . . . . . . . . 131

xiv



C.24 Fitness distributions for the T-helper cell differentiation control. Mov-

ing for attractor 2 to other attractors . . . . . . . . . . . . . . . . . 132

C.25 Fitness distributions for the T-helper cell differentiation control. Mov-

ing for attractor 3 to other attractors . . . . . . . . . . . . . . . . . 132

xv



Hypothesis

This research takes inspiration from the idea that artificial gene regulatory networks

can exhibit a wide range of useful properties and behaviours found in biological sys-

tems, and that their dynamical behaviours can be controlled by designing appropriate

control strategies. More specifically, it is asserted that:

• Gene regulatory networks are biological processes that govern (i.e. control) the

activities of biological cells in living organisms based on internal and external

environmental factors.

• Gene regulatory networks’ properties, functions and behaviours are the result

of an evolutionary process.

• Artificial gene regulatory networks can be designed and optimised using evolu-

tionary algorithms.

• A number of computational approaches, such as artificial immune systems and

artificial biochemical networks, have been developed by taking inspiration from

natural networks. These computational models can capture useful biological

properties, for instance robustness, adaptability and self organisation, when

they are evolved to carry out control tasks in complex systems.

Following these assertions, it is hypothesised that artificial gene regulatory net-

works can be optimised to perform efficient control in computational models of gene

regulatory networks.

1



Chapter 1

Introduction

1.1 Overview

Biological cells are the fundamental structural and functional units of all living

organisms. They interact with each other and with their environnent. In general

these interactions are governed by biological networks, for instance protein-protein

interaction networks and protein-mediated networks of biological reactions, which

regulate the behaviours of biological cells. Biological networks, because of their

ubiquity, their profound effects upon human lives and livelihood, and their ability

to control and respond to complex non-linear dynamics, have been widely studied.

There has been an increasing interest in recent years in controlling the dynamical

behaviour of biological networks (Gates and Rocha, 2016). However, complex

biological networks have a range of emergent properties, such as fault tolerance,

adaptability and robustness, which make them intrinsically difficult to control (Motter,

2015).

Much of the existing research in controlling computational models of biochemical

networks has focused on analytical methods, typically making use of conventional

control theoretic approaches. This has resulted in control methods that can be

applied to certain types of complex biochemical networks, for instance those with

particular relationships between their structure and dynamics (Gates and Rocha,

2016), and those with restricted topologies (Cheng and Qi, 2009). The existing

2



Chapter 1: Introduction

control methods are computationally expensive, require certain knowledge (which is

not always available) about the target networks and cannot efficiently control large

set of nodes because of their complexity (complex mathematical equations). With

these disadvantages there is a need to develop more general and efficient control

strategies for controlling biological networks.

This thesis aims to explore how computational models of biochemical networks

can be used to design more biologically realistic controllers which can efficiently

control gene regulatory networks.

1.2 Artificial Gene Regulatory Networks

Artificial gene regulatory networks (AGRNs) are computational models which mimic

genetic interactions occurring within biological cells. They can be classified into two

different categories. The objective for the first is to model gene regulation processes

to better understand their functionality. The second aims to develop abstract models

which are able to capture biological behaviours and properties of gene regulation,

and apply these for use within artificial systems (or in silico).

AGRNs comprise a set of interconnected nodes. These model genes as abstract

computational components (or units) which are able to take inputs, process them and

generate an output. These networks are capable of capturing particular properties

of the biological systems from which they are inspired, for instance adaptability,

robustness and self-organisation. Because of their functionality, AGRNs are becoming

popular models within various areas such as optimisation and the control of systems

which can express complex non-linear dynamics (Lones et al., 2010), (Lones et al.,

2014).

1.3 Evolutionary Algorithms

Evolutionary algorithms are biologically-motivated computational techniques which

are used to optimise data structures for solving a wide range of computational

problems. In this thesis evolutionary algorithms, especially genetic algorithms, are
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used to evolve solutions to the problem of biological control. Genetic algorithms

are adaptive metaheuristic search algorithms based on the evolutionary principles of

natural selection and genetics, which are used to artificially evolve possible solutions

towards a particular target. Specifically, genetic algorithms are used to optimise

artificial gene regulatory networks, in the form of Boolean networks, within this

thesis.

1.4 Evolvability

Evolvability is the relative ability of a system to exhibit appropriate change. In

biological organisms, evolvability is defined as the relative probability that arbitrary

genetic change can lead to an improvement in the organism’s behaviour during

adaptive evolution. This is due to a continual evolutionary process where genetic

variations integrate new functions and increase their adaptability to their environment

(Marijuán et al., 2013). Evolvability can be seen in different areas, for example,

biological organisms are designed in a compartmental style, which enable individual

compartments to be evolved separately reducing the propagation of genetic errors

within the entire organism (Conrad, 1990). The work reported in this thesis is widely

inspired by the control structures of biological cells. But also, by their evolvability.

1.5 Boolean Networks

A Boolean network is a type of artificial gene regulatory network. Different variants of

Boolean networks such as random Boolean networks and scale free Boolean networks

have been used in this thesis. It is a generic analogue of gene regulatory networks

which can reproduce their properties and functionalities. The advantages of using

Boolean networks in this work are their relative ease to be refined into synthetic

biology circuits, and their speed of execution (in the context of fitness evaluation).
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1.6 Contributions

This work makes the following principle contributions to knowledge:

• The development and understanding of a new computational control method

for controlling artificial gene regulatory networks using evolutionary algorithms.

• The demonstration that artificial gene regulatory networks can be used to solve

complex control problems.

• The demonstration that random Boolean networks can be optimised to control

a number of Boolean network variants.

• The demonstration that the proposed control method can be used to control

steady states (or attractors) in Boolean models of real biological networks.

• The usage of multi-objective evolutionary algorithms to minimise the number

of interventions required to exert control.

• The realisation that the control approach has the advantage to scale well as

the controlled network’s size increases.

1.7 Thesis Structure

This thesis is organised into three main sections. Chapter 2 introduces the biological

background on which this thesis is based. Chapters 3-4 describe the field of artificial

gene regulatory networks and the evolutionary algorithms used to evolve the controller

networks to carry out control tasks. Chapters 5-7 present the main contributions

of this thesis. They describe the application of controller Boolean networks to a

range of control tasks, and the conclusions that can be drawn from this work. More

precisely:

Chapter 1 is the introduction of this thesis.

Chapter 2 describes the fundamental biological structures and their functions.

5
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Chapter 3 reviews the different kinds of evolutionary algorithm.

Chapter 4 reviews artificial gene regulatory network models, their abilities to

capture biology and their computational properties. It also contains a review of

other related work.

Chapter 5 Presents methodology, experimental results and analysis of the con-

trol of the dynamics of Boolean networks using Boolean networks.

Chapter 6 Presents experimental results and analysis of application of the

controller Boolean networks to the control of dynamics within Boolean models of

actual biological networks.

Chapter 7 Summarises the work conducted in this thesis, drawing conclusions,

discussion and proposing future ideas for research.
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Chapter 2

Structures And Functions Of

Biological Systems

This thesis presents a method of controlling artificial gene regulatory networks

(AGRNs). A gene regulatory network (GRN) is a group of genes and their products

that interact with each other and with other components of biological cells. GRNs

play a crucial role within living organisms. Designing control strategies for the control

of trajectories in GRNs requires to understand the underlying biological processes,

functionalities and structures. A biological system’s activities can be observed and

described at different levels in the organism, from the interactions between chemical

components known as biochemicals (lower levels) up to interactions at high levels of

complex structures such as cells, biochemical networks, and interactions with all the

non-living factors and processes in the ecosystem known as the abiotic environment.

Abiotic factors such as pollution can affect biological systems and cause diseases.

The aim of this chapter is to show how highly complex biological behaviours emerge

from interactions between small fundamental elements. The chapter is divided into

two. The first part describes fundamental biological elements and processes which

are related to gene regulation. The second part presents a general overview of the

structures, properties and behaviours of GRNs.
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2.1 Genes

Mendel (1865) defined a gene as a physical and functional unit of hereditary in-

formation in every living organism. A gene is an extension of a polypeptide chain

encoding at least one protein, a portion of DNA that can be transcribed by RNA. In

human beings, gene size varies from a hundred DNA bases to more than 2 million

bases (Sarkar and Plutynski, 2010). Each organism is made of genes held in its

genetic structure. The Human Genome Project has estimated that humans have

between 20,000 and 25,000 genes. In all organisms genes are very similar in their

structure. This enable genes which are not generated naturally within the organism

to be artificially introduced and they will still work perfectly (Lai et al., 2002).

Gene genetic structure differs notably between prokaryotes and eukaryotes, even

though they are structured similarly, especially a portion of DNA indicating a

sequence of amino acids. The major difference between these two categories of

organisms is that prokaryotes which are single cells (unicellular) do not contain any

internal membrane structures (or organelles) such as nucleus but rather contain

nucleoid (a cell that has double stranded DNA) and one single chromosome (see figure

2.1). While eukaryotes are multi-cellular organisms which contain membrane-bound

organelles, such as the nucleus and chromatin which is used to wrap up DNA into

the nucleus of a cellular organism. The absence of nucleus reduces the complexity in

prokaryotes. DNA in prokaryotes are arranged in a structure of operons, in which a

group of genes are all transcribed together in a single regulatory prompter (Dworkin,

2006), (Fletcher and Hickey, 2012), (Miller, 1980), is showing an example of the lac

operon (Purdom and Anderson, 2008).

Also, in prokaryotes, a single mRNA can encode various proteins, which can be

produced independently by a ribosome. Operons have many advantages and one of

them is their ability to achieve regulatory circuits through single DNA transcription.

But, under the influence of environmental perturbations, the transcription of all

the genes together by operons might not be optimal. Eukaryotes structure and

functionalities are different than prokaryotes genetic operation because, their genome
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contains a large number of non-proteins coding DNA. Also, eukaryotes ribosomes

are only synthesised at the beginning of the mRNA strand, implying that eukaryotes

mRNA can only be transcribed from a single gene. The relation between the number

of non-proteins coding DNA and protein coding within the genome in prokaryotes

is linear (Ahnert et al., 2008), while in eukaryotic cells this is not the case because

gene regulation is very complex.

Prokaryotes Eukaryotes

Cells
Cell membrane

Ribosomes
DNA
RNA

Nucleoid

Circular DNA

Nucleus
Organelles

Linear DNA

Figure 2.1: Difference and similarities of prokaryotes and eukaryotes. Adapted from
(Mattick, 2001).

2.2 Cells

Cells are the fundamental biological unit of almost all living organisms. They are

formed of cytoplasm, a fluid enclosed inside a cell membrane, which contains a

large number of biological molecules such as nucleic acids and proteins (Alberts

et al., 2002). A cell is the smallest unit of biological organisms 1 to 100 micrometres

(Alberts et al., 2002) that can replicate autonomously. In humans, the number of

cell is more than 10 trillion (1012) (Alberts et al., 2002). The combination of cells

metabolism which is the sum of all chemical reactions occurring in the cell and cell

communication which is the information transmission between cells lead to emergent

behaviour of an organism. Cells are biological components which are used to build

organism. Cells can be classified into two main classes: prokaryotic and eukaryotic

(Lodish et al., 2008).
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2.3 Biological Activities

2.3.1 Gene Regulation

Gene regulation is the process through which biological organisms control (increase or

decrease) the rates of gene expression in order to maintain an optimum state. Gene

regulation networks vary in complexity and size and have a wide range of different

levels of abstraction. Nowadays, most of the smallest gene regulatory circuits have

been wholly mapped and well studied, a well known example is the lac operon

(Jacob and Monod, 1961), found in the bacteria Escherichia coli. The lac operon

is created to metabolise lactose dynamically, according to the quantity of lactose

in the environment. In this process, the control mechanism is done in two ways,

the first in response to lactose and the second in response to glucose. These two

control strategies enable the Escherichia coli to control with extreme accuracy, the

expression of certain genes in accordance with the environment.

Gene regulation is made of a wide range of interconnected biological structures and

mechanisms. This process can be affected by biological structures such as repressors,

RNA editing, RNA interference and transcription factors. These biological structures

and processes are highly connected with complex epigenetic structures for example

chromatin modifications, which have a important effect on gene regulation. The

emergent properties of gene regulation is due to the joint work between all the

biological structures at different degrees of complexity. The genome regulatory

information process is hard to compile because of the wide range of other factors

involved in gene regulation mechanisms such as cell signalling, metabolism and

environmental changes.

2.4 Biochemical Networks

Biochemical networks arise from protein-protein and protein-mediated molecular

interactions occurring within cells. They interact to form high level structures

which can exhibit complex dynamical behaviours. Biochemical networks underlie
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the structural and functional complexity existing within biological living organisms

(Lones et al., 2010). These networks are omnipresent throughout biological processes,

operating on small to large scales, through communication between elements of

the same species. Research such as (Bhalla and Iyengar, 1999), have made the

assumption that emergent complex properties of biochemical networks occur entirely

due to the emergent property of the underpinning elements. They are also thought

to be used as computational components in living cells (Bray, 1995).

In general, three kinds of biochemical network can be observed within a living

organism, metabolic networks, gene regulatory networks and signalling networks.

Even though they are isolated networks, they are coupled and constantly interact

with each other (see Figure 2.2). The gene regulatory network changes the behaviour

of metabolic and signalling networks by regulating protein production. Signalling

networks deliver chemical signals to various cellular locations; this regulates the

behaviours of both metabolic and genetic networks. Within a cell’s components, these

interactions enable the cell’s metabolism to be reconfigured for various environments.

Environment

Metabolic Network
Self-organising

Genetic Network
Self-modifying

Signalling Network
Self-reshaping

Figure 2.2: Interaction between biochemical networks, adapted from (Lones et al.,
2010).

2.4.1 Gene Regulatory Networks

Gene regulatory networks are discrete dynamical networks which are the result

of gene interactions within them and with their environment. The regulation of

these interactions involved in protein synthesis and protein function determine gene

expression levels within a cell. It is not easy to capture the regulatory nature of the
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cell due to the very large number of possible steps. A protein can bind to another

protein, excite or inhibit DNA exposure, it can bind to a protein’s allosteric site

(which allow molecules to either activate or inhibit, or turn off, enzyme activity),

it can modify structure and change the environment. All these activities going on

constantly, makes it hard to model. Gene regulatory networks size vary enormously

(see Figure 2.3).

Gene regulatory networks exist over many abstract levels making their mod-

elling difficult. Simple systems can be entirely understood, but when they interact

with other simple systems to generate behaviours that interact with large systems,

the networks become very complex and abstract, therefore difficult to model and

control. However, all gene regulatory networks have specific properties such as self-

organisation, self-adaptivity, dynamical behaviours, robustness and evolution over

time, which arise from underlying components like genes. This evolution is described

in (Shimeld, 1999) as gene duplication events and in (Bornholdt and Sneppen, 1998),

(Bornholdt and Rohlf, 2000) artificial evolution is used to evolve connectivity in

dynamical networks (for instance Boolean networks). Having all this information,

scientists have attempted to model genetic networks using automata and to analyse

them by simulation. Random Boolean networks were proposed by Stuart Kauffman

as a model of gene regulatory networks (Kauffman, 1969).

Figure 2.3: Simplified representation of the yeast regulatory network. Two types
of interactions are observed, being activated (green) or repressed (red), and the
dynamical components representing the gene states are taken to be binary with
values 0 and 1. Adapted from (Maslov et al., 2003).
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2.4.2 Metabolic Networks

Metabolic networks emerge from complex interactions between biochemicals. Their

role is to facilitate the production of chemical products through a number of in-

terdependent pathways. A metabolic pathway is formed of two intertwined flows:

reaction pathways and control feedbacks. Reaction pathways consist of a group of

enzymes with firmly linked specificities for one another’s products and substrates. A

control feedback can be internal to the pathway, positive or negative, due to external

metabolic or signalling pathways. Metabolic networks contribute to the synthesis of

products which cannot be found in the environment but are essential to every living

organism.

A good example of this is the citrate cycle, a fundamental process of the

metabolism of eukaryotes and prokaryotes, though both of them are not always used

in the same way (Forst and Schulten, 1999). The citrate cycle, also know as Krebs

cycle, is part of the respiratory chain which is an extensive structure, a series of

reactions which transform food into energy. Also, it generates intermediates required

in the amino acid synthesis. Usually most of the pathways are not separate entities

since they share reactions and control between them. But, there are some pathways or

parts of pathways which are independent of others, known as genetically independent

pathways (which means the enzymes in this pathway define an independent genotype)

(Schilling et al., 1999).

A good understanding of metabolic networks has impact in various fields. For

instance, in bio-medical (or other heath-related areas) this knowledge contributes

towards the design of novel therapeutic drug interventions for treating diseases, and

in bio-process engineering, by creating new metabolic pathways which can be used in

chemical plants (Karp and Mavrovouniotis, 1994). In addition, research in different

fields such as biochemistry, molecular evolution and biophysics have shown that

a better understanding of how the metabolism is evolved will help to understand

metabolic networks (Kurganov et al., 1997), (Ashbrook, 1993), (Igamberdiev et al.,

1999), (Forst and Schulten, 1999).
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2.4.3 Cell Signalling Networks

Cell signalling networks are two-directional communication processes between cells

and their environment. They drive the basic activities of cells and coordinate cell

actions. For example, they take an internal signal and spread the signal outside

the cell wall. Kholodenko (2006) has shown that cell signalling networks take an

external signal from the environment and sense that signal by using plasma membrane

receptors and receptor tyrosine kinases. These external signals are taken from the

environment, into the cells, processed and then moved to gene regulatory networks in

which gene expression values can adapt to ensure the cell’s activity is well suited to

its environment. Very often this process involves metabolic networks. Cell signalling

networks are encoders, information processors and integrators rather than just a

transmit and receive model. According to some research (Hoffmann et al., 2002),

(Kholodenko, 2006), different spacial temporal activations of the same repertoire of

signalling leads to distinct protein pathways being activated.

2.5 Biological System Properties

Biological systems are complex networks formed by groups of organs which work

together to perform biological activities in living organisms. The aim of this section

is to highlight and describe the underling principles and properties of these complex

biological systems. Understanding biological system principles helps to build more

realistic computational models of biological systems.

2.5.1 Evolution

Evolution is the process that generate changes over consecutive generations. In the

biosphere, many structures such as glaciers, oceans and rocks (granite) change over

time through evolutionary processes. These structures’ current state is considered to

have evolved. In this chapter, the focus is on the biological evolution of populations

the theory of which was introduced by Darwin (1859). The theory of biological

evolution explains changes that occur in traits of an individual or a species over
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time, creating the current diversification of species in the world. It also describes the

evolution (or progression) of positive traits in a population from one generation to

another.

Usually, during the evolution process most of the positive characteristics are

conserved within a population (Dawkins, 1976). This gives a strong foundation to

the theory of natural selection, which is the process through which organisms well

adapted to their environment try to survive and produce more offspring. The ability

to reproduce depends on how good organisms are at surviving, living and passing on

their genetic constitution (especially DNA) contained in their genetic structure. An

organism’s genetic structure is a biological encoding of its phenotype, and the best

surviving phenotypes will pass on their DNA to their offspring.

For a system to be biologically evolved, three elements are usually required: the

organism, its genetic representation and the processes through which changes or

modifications can occur. Changes in an organism can happen in many different

ways, such as mutation and genetic recombination, but the most ubiquitous in all

organisms is mutation. Mutation is a change in the genetic representation of an

organism (mainly in its DNA sequence), due to either errors when the DNA is

copied, interactions with viruses, or physical damage in the DNA structure. Also,

environmental effects such as air pollution can induce mutation.

Mutation is a mechanism that produces in the next population new phenotypes

and genetic data. In (Wilson et al., 2011), (Lenski, 2010), the authors have shown

that this mutation process is used by bacteria to create resistance to antibiotics in

a short time. Another way to produce changes is genetic recombination, occurring

generally in two principal types: vertical and horizontal gene transfer.

Vertical gene transfer or inheritance (see figure 2.4) is the process of transferring

genetic material from parents to offspring, through sexual or asexual reproduction.

In general vertical transfer is linked to eukaryotes and is a way of creating viable

phenotypes with some genetic material from both parents. The aim of this mechanism

is to produce offspring which have a high probability to survive as they have almost

the same traits as their parents; however, they are not identical. The result advantage
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of vertical gene transfer is that over successive generations, the latest generation will

be fitter than the previous. This can be explained by the fact that individuals tend

to adapt continually, becoming better optimised within their environment.

Parent 1 Parent 2

Recombination

Mutatuon

Offspring

Figure 2.4: Vertical gene transfer from parents to an offspring, or child. This child is
generated after sexual reproduction or recombination and mutation processes and
has both parents’ genetic traits.

Horizontal gene transfer (or transposition) is the process of exchanging genetic

material between different organisms (see figure 2.5). It occurs mainly in prokaryotes,

but can also occur in multicellular eukaryotic organisms (Ros and Hurst, 2009). This

process can occur through three main mechanisms: transformation, transduction

and conjugation. Transformation is a modification of a cell’s genetic material due to

the uptake and incorporation of small DNA fragments by bacteria. Transduction is

the insertion of foreign DNA from one bacterium into another (the host bacterium)

via a bacteriophage.

Finally, conjugation is the transfer of genetic data between two bacteria in direct

contact. This is done through sexual reproduction, therefore it requires cell to cell

contact. Conjugation is especially used by bacteria to transfer DNA with another

organism. However, bacteria can integrate DNA directly from the environment.

Horizontal gene transfer happens on a smaller time scale compared to vertical gene

transfer. Multiple DNA exchange can be observed in bacteria using horizontal gene

transfer over one cell division (or one generation). Research such as (Blount et al.,

2008), (Cooper et al., 2003), have shown that horizontal gene transfer is an efficient

technique to optimise small and less complex organisms.
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Donor

+

Recipient Transgenic

Figure 2.5: Horizontal gene transfer.

2.5.2 Evolvability

Evolvability is an organism’s capacity to evolve through natural selection towards

future environments (Kirschner and Gerhart, 1998). It is also the ability of an

evolutionary system to create adaptive genetic variation (Conrad, 1979), (Colegrave

and Collins, 2008). In general systems which are considered to be evolvable are

capable of managing change without any major failures. Furthermore, these evolvable

systems are able to preserve the existing genetic information (or traits). This shows

the ability of evolvability to transfer modification and pass on genetic material from

one generation to another. Evolvability can be considered to be an evolved property,

since evolvable organisms can easily adapt to new environments and integrate changes

in order to survive compared to non-evolvable entities.

2.5.3 Robustness

Robustness is the characteristic that enables a system to preserve its functions and

resist internal and external perturbations (Kitano, 2004), (Stelling et al., 2004),

(Félix and Wagner, 2008). Like evolvability, robustness is a biological property and

both are highly linked to one another (Kitano, 2007). Robustness emerges from

complex interactions between networks, organisms, systems and behaviours occurring

in real life. This can be seen in a large number of systems and at different degrees of

abstraction. In this thesis biologically inspired computational networks, for instance

Boolean models of gene regulatory networks, will be created and they have to be

both evolvable and robust like real biological networks. Also, in these models a

particular effort is made to stay faithful to their biological underpinning. Many
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different researchers (Lones, 2004), (Kitano, 2004), (Gershenson et al., 2005) have

demonstrated that computational models can be developed to be evolvable and

robust.

A number of biological system properties such as decoupling, modularity and

redundancy are thought in be fundamental participants to robustness (Lones, 2004),

(Kitano, 2004), (Gershenson et al., 2005), (Kitano, 2007). Modularity (formed by

modules) is the process used to minimise the effect of perturbations on the entire

system (Kitano, 2004). It can often be seen in biological networks such as genetic,

metabolic, neural and signalling networks (Newman, 2006). Modules are functioning

elements which are detachable from other components. They can be identified by

observing functional, topological and evolutionary criteria (Hintze and Adami, 2008).

Although modules are important in modularity mechanisms, the failure of modules

does not imply a failure of the system. This enables therefore modularity, to be a

positive evolutionary property.

Redundancy is the mechanism in which perturbation can affect the organism

without units of its functionality. It enables the evolution of a system without any

major failure, by allowing redundant components to replace failed ones. However,

this does have the disadvantage of extra resource requirements (Kitano, 2007). In

biology, decoupling is the mechanism whereby the phenotype of an organism is the

result of an indirect representation of that organism. It divides biological activities

into two parts: low level variations and high level functionalities (Kitano, 2004). A

well known example of this process is the decoupling of phenotype and genotype

(Lones, 2004), (Kitano, 2004), (Kitano, 2007). Decoupling helps to allow modification

without affecting the system.

2.5.4 Emergence of complex behaviours

Complex biological system behaviours such as evolvability, robustness, complexity

and self-organisation are very difficult to implement in silico, because they are

abstract behaviours. The origin of these abstract behaviours is still not well known

and their implementation or transfer into computational models remains a challenging
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problem. A number of researchers in complex systems have noted the existence of

an emergent property from their constituent elements and the interactions between

these elements (Banzhaf, 2004), (Bull, 2012), (Reil, 1999).

This suggests that it is possible to produce desired behaviours without directly

coding for them, assuming that they come about through emergence. Gene regula-

tion networks have other properties such, as time and variation in interconnected

elements over time which are hard to implement in computational models. This

challenging issue can be explained by the fact that biological connections between

components of a systems are either connected for a certain time or are not connected

at others (?), (Holme and Saramäki, 2012). This is an important issue since it

brings many restrictions to what can be modelled and at which level of abstraction.

Current computational models are not a perfect replication (or copy) of real-life gene

regulation.

2.6 Summary

This chapter provides details about biological systems and their functions. It first

presents a description of the low level biological components which are the basis

of every biological organism, and looks at key biological structures and their sub-

circuits. Secondly, it highlights biological component functions and their interactions,

particularly the fact that the interactions between biological circuits generate higher

order functional structures.

Also, the chapter describes different kinds of biological mechanisms and processes

such as gene regulation that occur in living organisms. Then, shows connections

between the biology and the computational models discussed in this thesis, by

presenting abstract concepts such as emergence of biological properties, evolvability

and robustness. These abstract concepts provide a fundamental framework in which

computational models used in this thesis are built in order to accurately capture

highly complex behaviours within computational simulations.

In the next chapter, artificial gene regulatory networks are discussed, and their

architectures and biological inspiration are highlighted.
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Computational Models of Gene

Regulatory Networks

The aim of this chapter is to describe techniques used to design computational

models of gene regulatory networks. Its also highlights the properties these models

have and the advantages and the disadvantages of using them. This will provide a

fundamental basis on which to build upon these models in the next chapters.

Gene regulatory networks (GRNs) are complex dynamical structures that orches-

trate the activities of biological cells. They play a crucial role in different processes

through which biological systems control their dynamics behaviours, their growth,

their interactions within the organism and with their environment. Computer scien-

tists inspired by biological complexity were able to design computational models of

gene regulatory networks, also known as artificial gene regulatory networks (AGRNs),

which can mimic gene’s interactions in a cell. A large number of them were built

with different degrees of complexity. They are mainly developed to model gene

interactions in biological systems in order to better understand them (Karlebach and

Shamir, 2008), (Ribeiro et al., 2006). These network models are relatively specific,

with many details to make them as similar as possible to their real world analogues.

Other AGRNs are designed to be abstract models, which aim to display important

biological properties, without any exact modelling details (Aldana et al., 2007),

(Kuyucu, 2010), (Lones et al., 2010), (Lones et al., 2011), (Lones, 2016). These
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AGRN models are mostly used for modelling the steady state behaviours of biological

systems (to study them) or to look at general biological system properties.

This chapter is divided into two sections. In the first section, different types of

Boolean networks will be described. These networks were chosen because they are a

fair representative of most of the existing AGRNs and also because of their ability

to represent each region of the time and space map. The time and space map are

a representation of the type of data AGRNs use and how they process these data

in terms of time. Time and space can be either continuous or discrete variables

in the course of a simulation. Depending on the type of variables a given model

uses, the properties of the network can vary. The second section reviews previous

research on modelling, controlling and evolving Boolean networks. It also presents

some work on implementing Boolean networks in cells and how AGRNs have been

used as controllers to solve problems.

3.1 Boolean Networks

Boolean networks (BNs) were originally introduced by Kauffman (1969) as a very

simple binary-state computational model of gene regulatory networks. They also

have a simple mapping to the kind of digital or numerical circuit models that are

often used in synthetic biology. They were inspired by self organisation and stability

properties found in randomly generated networks and from Von Neumann’s work on

cellular automata (Von Neumann et al., 1966), (Burks, 1969). A BN is a discrete-time

non-linear dynamical system represented as a directed graph G(N,E) composed of

nodes, or vertices, N and edges E (Kauffman, 1969), (Kauffman, 1993). They exist

in the discrete time and space domains. Because of their simplicity, BNs have been

occasionally criticised (Harvey and Bossomaier, 1997), especially regarding their

ability to accurately capture the quantitative dynamics of regulatory circuits.

Despite this criticism, BNs remain very popular, for example they have been

used successfully to capture the structure and dynamics of real biochemical networks

(Kauffman et al., 2003), (Albert and Othmer, 2003), (Saez-Rodriguez et al., 2007),

(Davidich and Bornholdt, 2008), (Veliz-Cuba and Stigler, 2011), (Dallidis and Karafyl-

22



Chapter 3: Computational Models of Gene Regulatory Networks

111 110 100 000 001

011 101 010

Figure 3.2: State transition graph corresponding to the Boolean network shown in
Figure 3.1.

lidis, 2014), (Kaushik and Sahi, 2015), (Saadatpour and Albert, 2013), (Fumiã and

Martins, 2013), (Poret and Boissel, 2014). In addition, BNs have been considered as

a more general model of complex networks, and studies of their dynamical behaviour

have brought significant insight into the properties of real world networks (Aldana,

2003). Three forms of BN are considered in this work: deterministic random Boolean

networks, scale-free boolean networks and asynchronous random Boolean networks.

Random Boolean networks nodes have uniform connectivity, while scale-free Boolean

networks capture the power law distribution of connectivity within biological GRNs.

3.1.1 Random Boolean Networks

b

a

c

Figure 3.1: An example of a Boolean network with three nodes.

A random Boolean Network (RBN) is a Boolean network which is randomly sampled

from a set of possible Boolean networks. This means that, in the network, node

inter-connections and Boolean functions associated with each node are randomly

generated (Gershenson, 2004), (Drossel, 2008) (see Figures 3.1–3.3). An RBN is

formed by a set of N nodes (or genes) called Boolean states which represent the

activity level of a gene. Genes can be either active (one) or inactive (zero). The

connectivity K in RBN indicates the number of inputs from other genes that are

needed by a gene to update its own activity level. From this, a state transition table
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abc (t) abc (t+1)
000 001
001 001
010 101
011 101
100 000
101 010
110 100
111 110

(a) Truth table

a(t+1) = bt

b(t+1) = at ∧ ct
c(t+1) = ¬at

(b) Boolean functions

Figure 3.3: Functions and truth table used by the Boolean network shown in Figure.
3.1.

is generated (see Table 3.3a), showing all the potential combinations for a gene’s

next state according to its inputs.

The time evolution of a RBN is expressed by a set of Boolean functions fi,

i = 1, 2, 3, .... Each RBN node has a binary state s which is updated synchronously

according to its Boolean function and the states of the k input nodes that are

connected to it. Formally, s(t + 1) = fi(s(t)), where s is a set of network states

s ∈ {0, 1}N , t = 0, 1, 2, 3, 4, ... is the discrete time, fi : {0, 1}N → {0, 1}. Since a

RBN is deterministic s(t+ 1) is only determined by s(t). The possible number of

Boolean functions is 22k , and the state space is finite and equal to 2N in size. Each

node has N !
(N−K)!

possible ordered options for K different connections and the number

of possible networks (Harvey and Bossomaier, 1997) is shown in equation 3.1.

(
22kN !

(N −K)!

)N

(3.1)

Since the state space is finite, states must eventually be repeated, leading to

temporal structures called attractors. An attractor formed by one state is called a

point attractor, and when it is formed by at least two states it is known as a cyclic

attractor.

During execution, three complex dynamics regimes can be observed in RBNs:

ordered, chaotic and critical (Stepney, 2009). Ordered RBNs have attractors with

a relatively short period, repeating the same series of states over and over again.

Chaotic RBNs have attractors with long periods, they appear random, even though
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they are deterministic. Critical RBNs also have attractors with long periods, but they

appear to have a complex internal order which has been associated with computation.

In general, the number of attractors grows with the number of nodes (Kauffman,

1969), (Kauffman, 1993), (Bilke and Sjunnesson, 2001). RBNs with K < 2 tend to

be ordered; those with K > 2 tend to be chaotic; critical dynamics tend to be found

when K = 2 (Gershenson, 2004).

In addition, RBNs exhibit high levels of robustness to a number of perturbations

such as gene deletion and gene insertion (Aldana et al., 2007). These properties

show that robust and complex systems can be developed based on randomly ordered

networks. This concept can be seen throughout the study of biochemical networks

and in connectionism which is a way to model emergent processes from the activity of

interconnected networks of simple, and non-linear components (Lones et al., 2013c).

3.1.2 Scale Free Boolean Networks

RBNs typically have a fixed connectivity k. Real world complex networks, by

comparison, tend to have a scale-free distribution of connectivities. A scale free

Boolean network (SFBNs) is a Boolean network with a scale-free distribution, or

more precisely a connected graph composed of a set of N nodes {N1, N2, ..., NN}

and connectivities (k), or degree, which exhibits a power law distribution P (k) ∼ kγ

(Aldana, 2003), (Barabási and Bonabeau, 2003), (Clauset et al., 2009), (Cohen et al.,

2003), (Serra et al., 2003) (see Figure. 3.4). P (k) is the probability distribution

that an arbitrary node of the network is connected to n other nodes, and γ is the

scale free exponent, or scaling parameter. Scale free exponents often lie in the range

2 < γ < 3; however, there are some exceptions.

SFBNs can be constructed by adding nodes incrementally to an existing network

(growth mechanism) and by creating new connections to existing nodes with a

preferential attachment mechanism i.e. new nodes will prefer to connect to more

connected nodes. The probability p that a new node will be connected to a given

node Ni depends on the number of existing connections, ki, that node Ni has. The

mathematical expression of this probability is: p ∼ ki∑
d kd

, where ki is the connectivity
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Figure 3.4: A scale free Boolean network, showing three hubs in grey.

of node Ni and d is the index denoting the sum over all network nodes. These two

mechanisms explain the existence of hubs, which are nodes having connections with

many other nodes in the network.

Each node, Ni, has a binary state, either 0 or 1, and is connected to ki other nodes

of the network {Ni1, Ni2, ..., Niki}, where ki is randomly chosen from a probability

distribution pinp(k). pinp(k) is defined as follow: pinp(k) = [(
∑∞

n=1 k
−γ)nγ]−1, γ > 1.

At each time step a Boolean function Fi(Ni1, Ni2, ..., Niki) taken from a set of Boolean

functions
∮
{F1, F2, ..., FN} is assigned to Ni, such that for each state of ki other

nodes, Fi = 1 with probability p and Fi = 0 with probability 1− p. Each node of the

network is updated synchronously as follows: Ni(t+1) = Fi(Ni1(t), Ni2(t), ..., Niki(t))

and the entire network χ(t) is updated at time t with this dynamical equation:

χ(t + 1) =
∮

(χ(t)), where χ(t) = {N1(t), N2(t), ..., N(t)}. SFBNs are more robust

to external perturbations than Boolean networks (Aldana, 2003). Aldana (2003)

showed that for most real scale free networks γ ∈ [2, 2.5].

3.2 Probabilistic Boolean Networks

A probabilistic Boolean network (PBN) is a variant (a stochastic version) of BNs

(see figure 3.6). It is a stochastic model, which has more than one possible Boolean

function for every node (Shmulevich et al., 2002). It is a dynamical system represented

as a directed graph composed by a set ofN nodes, N = {g1, g2, · · · , gn}, a connectivity
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Figure 3.5: Power Law Distribution (k = [1 − 10], γ1 = 2.0 γ2 = 2.25, γ1 = 2.5).
The plot shows the distribution of connectivities in scale free networks for three
different values of γ. A large number of nodes have only a few connections, and a
small number of nodes (hubs) have a large number of connections.

k (or number of inputs), and a set of
∮
i

Boolean functions (or predictor functions)∮
i

= {ϕ(i)
j } = {ϕ(i)

1 , ϕ
(i)
2 , · · · , ϕ

(i)
h(i)}; where n is the number of genes, j = 1, 2, · · · , h(i),

h(i) is the number of possible Boolean functions corresponding to every node gi and

ϕ : {0, 1}n → {0, 1}. Each node gi is assigned a set of Boolean functions
∮
i
. The

probability of selecting ϕ
(i)
j as a Boolean function is d

(i)
j , 0 ≤ d

(i)
j ≤ 1,

∑h(i)
j=1 d

(i)
j = 1

with i = 1, 2, · · · , n. The realisation of PBN at a given time t is determined by a

vector of Boolean functions. The number of vector Boolean functions is equal to the

number of possible realisations.

Let γj be a set of jth possible realisation and M the number of possible realisations.

γj = (γ
(1)
j(1), γ

(2)
j(2), · · · , γ

(n)
j(n)), 1 ≤ r ≤ M , 1 ≤ r(i) ≤ h(i) and where γ

(i)
j(i) ∈

∮
i
,

γj : {0, 1}n → {0, 1}n, i = 1, 2, · · · , n. Each possible realization maps at least

one of the ϕj Boolean functions. If the selection of the Boolean function for each

node is independent the PBN is said to be an independent PBN, the probability

of choosing jth BN Pj is given by Pj =
∏n

i=1 dj(i)i
, i = 1, 2, · · · , n. There are at

most M =
∏n

i=1 h(i) different possible realizations of BNs. If h(i) = 1, for all

i = 1, 2, · · · , n, then M = 1 and the PBN is reduced to a classical Boolean network.
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The given probability values used in this work are p1 = 0.3 and p2 = 0.7. These

values were chosen in order to observe the effect of the control method on PBN

dynamics when a small and a large number of nodes are updated at a given time

step.

g1

g3

gn

g2

g1

ϕ
(i)
2

ϕ
(i)
1

ϕ
(i)
j(i)

d
(i)
2

d
(i)
1

d
(i)
j(i)

Figure 3.6: A building block of a probabilistic Boolean network adapted from
(Shmulevich et al., 2002). On this figure the wiring of the inputs to each Boolean
function appear to be general, however, in reality, each Boolean function has only a
few input variables.

3.3 Related Literature

3.3.1 Boolean Modelling of Biological Networks

Modelling biological processes using quantitative and continuous mathematical

models such as differential equations has brought important insights to systems

biology (Le Novère, 2015), (Akutsu). However, these models are often inefficient

when simulating larger biological networks. This has promoted interest in discrete-

valued models such as BNs. The use of binary states and Boolean functions makes

BNs especially cheap to simulate on a computer. Numerous studies have demonstrated

that, despite their apparent simplicity and high level of biological abstraction, these

models are often able to capture the qualitative dynamics of biological processes. For

example, Kauffman et al. (2003) developed a BN model of the yeast transcription

network, Albert and Othmer (2003) used BNs to successfully model the GRN
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underlying pattern formation in drosophila, Dallidis and Karafyllidis (2014) have

modelled the quorum sensing circuits of Pseudomonas aeruginosa and Kaushik and

Sahi (2015) developed a BN model of the GPR142 biological pathway in type 2

diabetes.

A number of studies have applied Boolean models to cancer analysis, both

by considering specific pathways (Saadatpour and Albert, 2013), (Davidich and

Bornholdt, 2008), (Fumiã and Martins, 2013) and through more abstract systems-

level studies (Huang et al., 2005), (Huang et al., 2009). Many of these studies have

carried out an attractor analysis of the resulting models in order to gain insights into

the biological system’s stable states (Albert and Othmer, 2003), (Huang et al., 2005),

(Davidich and Bornholdt, 2008), typically associating these with phenotypes. In

(Poret and Boissel, 2014), the authors went a step further and identified nodes whose

state would effect the accessible attractors; this can help in identifying potential drug

targets for preventing the expression of pathological phenotypes. Discrete models

such as BNs have been shown to be equivalent to continuous models when only the

steady states of the system are considered (Veliz-Cuba et al., 2012); however, it

should be borne in mind that BNs are not appropriate when a detailed quantitative

understanding of a process is required. For a review of Boolean modelling in biology,

see (Saadatpour and Albert, 2013).

3.3.2 Controlling Boolean Networks

The development of control interventions for complex dynamical systems is an

important topic, with potential applications in diverse areas such as sociology,

economics, drug discovery and treatment of diseases of the immune system (Kitano,

2002), (Kitano, 2004). Many results have been obtained for the control of linear

systems, while for nonlinear systems control a fewer number of practical results

have been obtained (Azuma and Imura, 2006). This indicates that useful and

efficient control strategies need to be developed for complex biological systems such

as GRNs. A significant focus of the recent research in the field of control systems

is the development of executable computational models whose behaviours can be
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controlled and analysed in order to understand the complex dynamics of their real

world analogues, which are generally non-linear systems. Several mathematical and

computational models have been designed for modelling complex and non-linear

biological systems.

BNs have been used to model many real biological networks, for example the

regulatory networks in the mammalian cortical area (Giacomantonio and Goodhill,

2010), the mammalian cell cycle (Fauré et al., 2006), and T-cell large granular

lymphocyte leukemia (Saadatpour et al., 2011), (Chaos et al., 2006), (Mendoza and

Xenarios, 2006), (Klamt et al., 2006), (Davidich and Bornholdt, 2008), (Li et al.,

2004). It is clear that BNs cannot model all details of biological networks because

of their simplicity, however they do give a good and reliable approximations of the

non-linear biological functions (Amaral et al., 2004). Also, BNs have been used to

explain how perturbations can affect biological system’s natural behaviours and their

consequences (Albert and Thakar, 2014).

Finding strategies to control BNs is therefore an important and challenging

problem. The control problem is typically defined in terms of leading a BN’s

trajectory towards a particular point in its state space, ideally by manipulating the

state of a minimum group of nodes and with the aim of reaching the target state in a

minimal period of time. Like with the complex networks that they model, BNs have

a number of characteristics that make them hard to control, including non-linear

dissipative dynamics, multiple stable states and high dimensionality (Motter, 2015).

A number of previous works on the control of BNs have been conducted (Akutsu

et al., 2007), (Cheng and Qi, 2009), (Shi-Jian and Yi-Guang, 2011), (Kobayashi

and Hiraishi, 2012a), (Kim et al., 2013), (Motter, 2015), (Gates and Rocha, 2016),

(Veliz-Cuba et al., 2014), (Zhang et al., 2007), (Garg et al., 2007), (Albert and

Barabási, 2000), (Drossel et al., 2005), (Kauffman, 1993), (Samuelsson and Troein,

2003), (Aldana, 2003), (Amaral et al., 2004), (Abul et al., 2004), (Kobayashi and

Hiraishi, 2011), (Kobayashi and Hiraishi, 2012b), (Kyozuka et al., 1997).

Many of these use control theoretic approaches. For instance, pinning control

methods have been used to stabilise the dynamics of BNs, allowing particular
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phenotypic states to be maintained (Li, 2016). In (Cheng and Qi, 2009), (Cheng

et al., 2010), (Cheng and Zhao, 2011) Cheng et al. suggested the semi-tensor product

of matrices approach for controlling BNs. Fornasini and Valcher (2014), based

on the concept of infinite horizon, proposed a method for the optimal control of

BNs. Laschov and Margaliot (2011) and Chen et al. (2015) considered Mayer-type

optimal control techniques to control BNs. Also, in (Li and Sun, 2011), (Li and Sun,

2012), the authors used semi-tensor of matrices to control BNs with time-variant

and time-invariant delays in states.

However, in general the control of BNs is known to be NP-complete (Akutsu et al.,

2007), meaning that optimal control techniques can only be applied to networks

of limited size, though polynomial-time algorithms have been developed for BNs

with constrained topologies such as tree structures (Akutsu et al., 2007). In order

to express the non-deterministic dynamics of BNs, Kobayashi and Hiraishi (2012a),

suggested a novel mathematical method for controlling BNs using inputs, based on

the Petri net framework. They have reduced the control problem of Petri nets to an

integer programming problem. Based on the discrete-time dynamics Cheng and Qi

(2009) were able to control BNs by using two types of inputs: free Boolean sequence

and input Boolean network. They have also solved the problem of observability for

free Boolean sequences by choosing necessary and sufficient conditions. In (Shi-Jian

and Yi-Guang, 2011), the authors presented a method to control random BNs, which

used periodic functions and the average sensitivity of Boolean functions of the nodes.

This method periodically freezes a fraction of the network based on average sensitivity

of Boolean functions of the nodes and the probability. Then numerical analysis was

used to estimate the performance of the proposed control method and simulation

was used to illustrate the effectiveness of this method.

To an extent, the control problem can be made easier by identifying nodes that

have dominant roles within the network (such as hubs in scale-free networks) and

focusing control interventions on these nodes (Liu et al., 2011), (Kim et al., 2013).

This works well for certain kinds of networks, but in general it has been shown that

dynamics can not be determined by structure alone, and therefore that methods
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based on structural analysis will not always be effective (Gates and Rocha, 2016). In

the same way Clark et al. (2017) attempted to solve the problem of computing a

minimum-size subset of control nodes which can be used to force a given biological

network towards a desired attractor in BNs. They found that the network topology

and its nodes, threshold dynamics are central in solving the input selection problem.

For example, in the case of a cactus topology, they solved the input selection

problem in polynomial time. Networks with nested canalyzing dynamics could also

be addressed using polynomial time algorithms. The control process of BNs can

be affected by the size of the network. When the size of the network increases, the

control problem becomes more difficult to solve. To tackle this issue, a number of

studies were done using BNs with different sizes. Hou et al. (2016) used integer

linear programming (ILP) to choose the minimum number of driver nodes to carry

out theoretical analyses on the average size of the minimum set of driver nodes, both

in six different BNs models of real gene regulatory networks.

Liu and Barabási (2016) were able to control a regulatory network model of the

mammalian circadian rhythms in mice using the feedback vertex set. This network

is made of 21 nodes (see (Mirsky et al., 2009) for more details). Gao et al. (2013)

have used algebraic approach and matrix semi-tensor product theory to control two

types of GRNs: the protein-nucleic acid interactions network with size 6 and the

cAMP receptor of Dictyostelium discoideum network formed of 8 nodes. Using a

modified configuration model, authors in (Darabos et al., 2007) attempted to control

four SFBNs with connectivity k = 4 and size [50, 100, 150, 200]. In (Murrugarra

et al., 2016), using an algebraic approach, the authors controlled an algebraic BN

representation of the p53−mdm2 network and blood T cell lymphocyte granular

leukemia survival signalling network which have respectively 16 and 60 nodes. To

perform the control task, they have used computational algebra techniques such as

Gröbner basis to find controllers. Kim et al. (2013) achieved to control a certain

number of computational models of biological networks, by finding a minimal set

of nodes as the control kernel that can perform the control task. They have also

developed a general algorithm for identifying this control kernel. Table 3.1 represents

32



Chapter 3: Computational Models of Gene Regulatory Networks

a summary of previous work on controlling BNs.

Table 3.1: Summary of some selected work on controlling Boolean networks (BNs)

First author, year Approach

Cheng and Qi (2009) Semi-tensor product of matrices

Cheng et al. (2010) Discret-time dynamics techniques

Cheng et al. (2010) Semi-tensor product of matrices

Cheng and Zhao (2011) Semi-tensor product of matrices

Laschov and Margaliot

(2011)

Mayer-type techniques

Shi-Jian and Yi-Guang

(2011)

Periodic function and average sensitiv-

ity of Boolean functions

Zhao et al. (2011) Concept of infinite horizon

Li and Sun (2011) Semi-tensor matrices

Li and Sun (2012) Semi-tensor matrices

Kobayashi and Hiraishi

(2012a)

Petri net framework

Kim et al. (2013) minimum-size subset (control kernel)

Fornasini and Valcher (2014) Concept of infinite horizon

Chen et al. (2015) Mayer-type techniques

Li (2016) Pinning control

Murrugarra et al. (2016) Algebraic approach (Gröbner basis)

Clark et al. (2017) Combinatorial algorithms

3.3.3 Evolving Boolean Networks

In addition to modelling biological GRNs, a number of studies have shown that GRN

models can be used to carry out complex computational and control behaviours that

are to some degree analogous to their biological activities (Lones, 2016). Typically

this is done by optimising the model using an evolutionary algorithm, and includes

a number of approaches that have used BNs (Dubrova et al., 2008), (Roli et al.),
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(Goudarzi et al., 2012), (Zanin and Pisarchik, 2011). For example, Bull and Preen

evolved BNs to solve digital design problems such as multiplexing in synchronous

and asynchronous systems (Bull and Preen, 2009).

Another notable work is that of Roli et al., who evolved BNs to control robotic

behaviours. Mesot and Teuscher (2005) demonstrated that BNs can achieve better

performance than CAs on tasks that measure the capacity of distributed models to

perform global density classification. In (Goudarzi et al., 2012), the authors showed

that BNs can be used to solve information processing problems, showing that network

learning and generalisation can be optimised according to the complexity of the task

and the quantity of information provided.

3.3.4 Implementing Boolean Networks in Cells

Part of the justification for using BNs in this study is the potential for implementing

them as optimised control systems within biological cells. One benefit of BNs, in this

respect, is that they are relatively amenable for implementation in biological cells

using existing synthetic biology approaches. A key focus of synthetic biology has

been on implementing digital circuits within cells, the idea being that this will allow

more conventional computing approaches to be readily refined into biological systems.

However, these approaches also have direct relevance to BNs, since both digital circuits

and BNs are comprised of Boolean logic functions that can be implemented as logic

gates. Synthetic biology has demonstrated that logic gates can be implemented

in various biochemical forms, including proteins, RNA and DNA (Purcell and Lu,

2014), (Singh, 2014), (Shi et al., 2014). It is also possible to assemble these logic

gates into circuits, though it remains challenging to implement large circuits due to

crosstalk between logic gates (Purcell and Lu, 2014). Other authors have considered

the potential for using synthetic biology to implement control systems: in (Cury

and Baldissera, 2013), for example, the authors discuss how conventional control

approaches may be refined into biological forms and used to control a cell’s GRN.

Another benefit of using BNs is that, because they are relatively abstract, they are

less likely to be susceptible to the “reality gap” that is often found in computational
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modelling. This gap occurs when a model is optimised under simulation, but then

does not function correctly when used in a real world setting. This is caused either

by over-fitting to the simulation, or by noise in the real world system. Since BNs

have few parameters, they are less likely to over-fit than continuous-valued models

of GRNs. Since relatively large signal differences are required to cause binary state

changes, they are also likely to be less affected by noise. In this respect, the value of

a Boolean approach has previously been demonstrated in the field of robotics, where

Boolean network controllers were found not to be susceptible to the reality gap (Roli

et al.).

3.3.5 Using Artificial Gene Regulatory Networks as

Controllers

There have been a number of studies which used artificial gene regulatory networks

to control other systems such as robots (Cussat-Blanc and Pollack, 2012), (Bentley,

2003), (Zahadat et al., 2010), (Cussat-Blanc et al., 2012), (Bentley, 2004), (Lones

et al., 2013b). An early example of this is the work of Quick et al. (2003), who

used AGRNs controllers to control robots behaviours, by continually coupling the

controllers to the environment in which the robots are embodied. Bentley (2004),

used fractal gene regulatory networks to train a robot to avoid a series of obstacles

in its environment. Taylor (2004) developed AGRN controllers for the control of a

group of underwater robots. These AGRN controllers were evolved using genetic

algorithms and the results showed that they were able to successfully carry out

control in a simple clustering task.

Kumar (2005) used a model of GRNs in combination with a spatially distributed

evolutionary algorithm to evolve simulated robot controllers for solving obstacle

avoidance problems. Using the idea of optimising fractal GRNs, Zahadat et al. (2010)

were capable of controlling modular robots in a distributed way. Results from their

proposed control method are better than the results from previous learning methods

Trefzer et al. (2010) explored in two different case studies; simulated and real robots,

the ability of an AGRN controller to control the robot behaviours in order to avoid
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obstacles in its environment.

Another notable use of artificial gene regulatory networks is the work of Cussat-

Blanc and Pollack (2012), who designed a developmental model in which prototype

robotic blocks are controlled by an AGRN. By evolving in parallel the AGRN and

a hormonal system, they were able to produce different virtual robots with target

properties, for instance symmetry and regularity. Cussat-Blanc et al. (2012) designed

a AGRN-based controller for robots present in video games, showing that GRN-

based controllers can be optimised to teach a robot how to handle and manage

simultaneously four conflicting and cooperative continuous actions. AGRNs are used

to control robot swarm behaviours in a dynamic environment in Yao et al. (2014).

AGRNs are not only used in robotics. For instance, Turner et al. (2013) have used

AGRNs inspired by biological epigenetics to control a system of coupled inverted

pendulums. In (Lones et al., 2013b), the authors used artificial biochemical networks

(ABNs), which include AGRNs, to diagnose Parkinson’s disease, using the ABNs

to perform classification of time series data. AGRN characteristics such as self-

organization and cell differentiation, made them also suitable to designing digital

circuits in (Zhan et al., 2009). Table 3.2 summarises the previous work described in

this section (Section 3.3.5).

3.4 Summary

This chapter presents some of the many different models which have been developed

by taking inspiration from gene regulatory processes. The main objective of designing

these kind of models is to attempt to model biological gene regulatory networks and

also capture the emergent properties of biological gene regulation. There has been a

large amount of research conducted in modelling gene regulation and previous work

on capturing emergent biological properties has shown interesting and promising

results. All models described in this chapter capture important emergent dynamics

which are not clearly coded within the models. This means that these models capture

the principle of emergence. The models detailed in this chapter can be used to

do both biological modelling and carry out computational tasks, such as control.
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In addition, this chapter reports previous work done on controlling, evolving and

implementing Boolean networks, the computational model of gene regulatory network

used in the following chapters.

The following chapter, describes the methods for artificially evolving the compu-

tational networks.
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Table 3.2: Summary of some selected work on controlling dynamical systems using
artificial gene regulatory networks (GRNs)

First author, year Approach Problem
Quick et al. (2003) Artificial GRN, continuous

valued
Simulated robot
control and temper-
ature regulation

Bentley (2004) Fractal GRN Control of simu-
lated hexopod robot
behaviours to avoid
obstacles

Taylor (2004) Artificial GRN Control of underwa-
ter robotic swarm

Bentley (2005) Fractal GRN Software fault-
tolerance

Kumar (2005) Artificial GRN, continuous
valued

Control of simu-
lated and real robot
behaviour to avoid
obstacle

Zhan et al. (2009) Artificial GRN, discrete val-
ued

Electronic circuit
design

Joachimczak and
Wróbel (2010)

Artificial GRN, operons Control of real time
foraging behaviour

Krohn and Gorse
(2010)

Fractal GRN Control of single
and joint inverted
pendulum

Nicolau et al.
(2010)

Artificial GRN, based on
Banzhaf (2003) with small
changes

Control of an in-
verted pendulum

Trefzer et al. (2010) Artificial GRN, discrete val-
ued

Control of simu-
lated and real robot
behaviour to avoid
obstacle

Zahadat et al.
(2010)

Fractal GRN Control of a modu-
lar robot

Cussat-Blanc et al.
(2012)

Artificial GRN, based on
Nicolau et al. (2010)

Control of intelli-
gent agents in video
games

Cussat-Blanc et al.
(2012)

Artificial GRN Control of coupled
inverted pendulums

Lones et al. (2013b) Artificial GRN and artificial
metabolic networks

Diagnosis of Parkin-
son’s disease

Yao et al. (2014) Artificial GRN Control of robot
swarm in dynamic
environment
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Chapter 4

Evolutionary Algorithms

This chapter is focused on evolutionary algorithms (EAs) (Eiben and Smith, 2008),

(Bäck, 1996), (Bäck et al., 1997) a form of evolutionary computation that mimic

the natural process of Darwinian evolution in order to solve complex non-linear

computational problems.

In an EA, a population of candidate solutions is generated and iteratively evolved

to search over the solution space of a problem (see figure 4.2). Each time a new

solution is generated, it is evaluated using a fitness function that measures its

objective value (or fitness). This value is then used to select between solutions in

the population, using the solutions with the best fitnesses to generate new solutions,

whilst removing solutions with poor fitness from the population. New solutions are

generated using mutation and recombination operators; mutation operators make

small changes to existing solutions, recombination operators join parts of existing

solutions to make new solutions. EAs are global optimisers (meaning they are

relatively insensitive to local optima) and have much in common with other global

optimisers, such as particle swarm optimisation (Lones, 2014), (Poli et al., 2007).

There are various types of EAs. This chapter describes some of the most used

and well known evolutionary algorithms, underlines their biological inspiration and

their evolvability. EAs are a core aspect of the work in this thesis, as they will be

the main tools used to evolve artificial gene regulatory networks models and are

therefore essential to capture complex emerging properties.
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4.1 Genetic Algorithms

Genetic algorithms (GAs) are one of the most widely used EAs. They were introduced

by Holland (1975) as a form of evolutionary computation. Originality GAs were

suggested to assess and observe evolvability and emergence, then later became an

optimisation tool. At first GAs were used to optimise binary strings, but since then

have been used on other data structures. Often, GAs have a distinct genotype and

phenotype. The genotype represents the data structure which will be evolved and the

phenotype is its computational behaviour. Each individual is evaluated with respect

to its phenotype, and genetic operators such as crossover, mutation and selection are

applied to its genotype.

In general, GAs use crossover, mutation and selection operators as genetic

operators. Crossover, also known as the recombination operator, is a computational

model of vertical gene transfer. There are some GAs which use crossover based on

horizontal gene transfer (Harvey, 2009). Two types of crossover are commonly used

in GAs, n−point crossover and uniform crossover. With n−point crossover children

are created using specified portions from each parent and, in uniform crossover,

crossover points are generated with a certain probability of passing information on

to a child (see figure 4.1). In this thesis, uniform crossover is used.

1 2 3 4 5 6

a b c d e f

a b 3 4 e f

Parent 1

Parent 2

Child

Figure 4.1: An example of n-point crossover, where n = 2 showing how children are
generated using crossover.

Usually, GAs use three selection strategies: fitness proportional, ranking selection

and tournament selection. Rank selection scores all individuals according to their

fitness in the population, removing the absolute difference between each individual’s
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fitness. This means that the difference between many extremely close fitness scores

can be multiple ranks and an individual with a fitness higher than the rest of the

population fitness will always be one rank higher than the next best solution. This

can potentially be a disadvantage for this solution (Bäck et al., 2000). Fitness

proportional selection, also called roulette wheel selection is used in GAs to select the

best solutions, by mapping the fitness of each individual using a scaling function. The

probability pi for an individual i to be selected is defined as pi = fi∑η
j=1 fj

, where fi is

the fitness of individual i and η the population size. Individuals with high fitness are

more likely to be selected (Goldberg and Deb, 1991). Tournament selection selects

randomly a number of individuals which compete in a tournament and the winner is

chosen to be a parent. The evolutionary pressure can be modified by changing the

size of the tournament. When the size of tournaments is large, it is very hard for

weaker individuals to be selected since it increases the selection pressure; whereby

for small size of tournaments make it easier by decreasing the selection pressure

(Goldberg and Deb, 1991).

Mutation is used in GAs to promote genetic diversity from one generation of

the population to the next. It depends on the representation of the genomes and

its corresponding data structures (genotype). A genome can be represented by

either binary numbers or real numbers. When the genome uses binary numbers, the

mutation operator will flip each of the bits with a certain probability based on the

mutation rate. For a genome using real numbers, a new number can be chosen either

randomly among a set range, or from a distribution centred around the original

number. Mutation is commonly applied to all individuals, except when the selection

strategy uses elitism, in this case elite individuals will be copied verbatim to the

next generation (Bäck et al., 2000).

A GA’s execution starts with a randomly generated initial population of size η;

this step is called initialisation. Then a fitness is assigned to individuals within the

population. Fitness is a term used to measure how well a task has been achieved.

Then, the parents are chosen based on a selection strategy, and the children are

generated using crossover. These steps are repeated until there is a new population
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of size η. The new population is subjected to the mutation operator, and after, the

new population becomes the current population and all the steps after initialisation

are repeated for a certain number of generations, or until the stopping criteria are

met; see figure 4.2.

GAs have various important characteristics which enable them to evolve GRNs.

For instance, a GA does not have any requirements about the individuals which

will be evolved, all it needs is the data structures of the individuals and the fitness

evaluation method. Also crossover and mutation used to create individuals at each

generation are comparable to real life biology.

Solution (End)

Yes

Stopping criteria? No

Initialisation Evaluation Selection

CrossoverMutation

Figure 4.2: Evolutionary algorithm general framework

4.2 Genetic Programming

Genetic programming (GP) is an evolutionary algorithm used to create a program

(Akutsu et al., 2007). In standard GP, a program is represented as a tree structure

(see figure 4.3). In general, GP requires a set of symbols, known as the terminal and

non-terminal sets, which are used to create the tree, but also a fitness function to find

the fitness of the program. An initial population is randomly generated by putting

together elements of the terminal and non-terminal sets into tree structures. GP

genetic operators are similar in function to GA ones. Crossover (or recombination)

is done by exchanging sub-trees between parents to generate two children (see figure

4.3). Mutation replaces a sub-tree with a randomly created sub-tree.

There are different types of GP such as linear genetic programming (LGP)

and Cartesian genetic programming (CGP) which do not represent their programs
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using tree structures. Cartesian GP was proposed by Miller and Thomson (2000)

to represent electronic circuits; but later it has been used to represent general

programmable structures. It represents a program as a graph structure encoded as a

set of integers. Brameier and Banzhaf (2007) introduced linear GP, which uses a list

of instructions to describe a program.

GP has been successfully used to solve a large number of problems including

controlling robotic behaviours (Lazarus and Hu, 2001). However, GP has some

weaknesses in terms of evolvability. For instance, sub-tree crossover often does not

perform effective recombination (Lones, 2004). This is due to the loss of content

when sub-tree are exchanged between programs. It is also due to the inherit lack of

evolvability in program encodings developed by humans, which do not react well to

the application of material evolving computation, a trend which has grown in recent

years within the GP community (Lones, 2016).

Root node

Terminal node

Non-terminal node

−

+ y

3 /

x 2

Figure 4.3: An example of a tree in genetic programming. This tree represents the
equation (3 + x

2
) − y. A set of inputs can be provided and iterated several time

through the program to find the fitness of this program.
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3 + 5 ∗ (c+ 2)− y a ∗ (1− b) + x
2

2

(c) Children obtained after swapping φ and χ.

Figure 4.4: An example of the crossover operation with genetic programming trees.
Two sub-trees are selected and swapped between the parents to create the children.

4.3 Evolutionary Strategies

Evolutionary strategies (ESs) was introduced by Ingo Rechenberg, Hans-Paul Schwefel

and Peter Bienert (Bäck et al., 2000). At the beginning, ESs had a single parent

and performed mutation to generate a child. If the child has a better fitness than its

parent then it becomes the parent and the old parent is removed. This process is

similar to a hill climbing algorithm. Since their introduction in 1960, many ESs have

been developed (Beyer and Schwefel, 2002). The first selection strategy generates

more than one child for a given parent, and all the worst individuals are destroyed

in other to keep the population constant. The second selection strategy discards

parents with respect of their fitness. In addition, to these two selection strategies, a

crossover operator was added in many models adding the ability to generate children

with more than one parent (Bäck et al., 2000).
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4.4 Evolutionary Programming

Evolutionary programming (EP) is a population based algorithm for optimisation

which takes inspiration from a restricted view of evolution (Fogel et al., 1964).

Individuals in the population are finite state machines with fixed structures. In EP,

a recombination operator is not used, because each individual is treated as a key

element whose structure is not divided into sub-units. The fitness for an individual is

measured by putting this individual in an environment and giving a group of symbols

as input, the output is compared to the next input symbol. Through this process

error can occur and is accumulative over all input symbols. The best individuals

are chosen and are mutated to generate children, once all the population has been

assigned a fitness value. Then the best parents and children are selected to become

the next generation.

The absence of a crossover operator does not allow individuals to take elements

and behaviours from other individuals of the population. Moreover, EP requires

individuals to be finite state machines which can be very restrictive for phenotypes.

It have been criticised for its slow convergence time. However, since its first use there

have been various improvements especially in mutation strategies which have been

proved by Yao and Liu (1997) to increase the convergence.

4.5 Multi-Objective Evolutionary Algorithms

Most real-world optimisation problems have multiple objectives, usually in conflict

with each other, making these problems hard to solve. Often multi-objective op-

timisation problems are considered as single objective problems and the rest of

the objectives are taken as constraints (Deb, 2001). Multi-objective evolutionary

algorithms (MOEAs) were developed to be suitable tools for solving multi-objective

problems, since EAs have particular properties that are useful for this kind of opti-

misation. MOEAs handle mutli-objective optimisation tasks, by trading-off between

these conflicting objectives. Over the past decades, several MOEAs were designed

such as Non-Dominated Sorting Genetic Algorithms II (NSGA II) (Deb et al., 2000),
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(Deb et al., 2002), (Coello et al., 2007), Multi Objective Genetic Algorithms (MOGA)

(Murata and Ishibuchi, 1995), Vector Evaluated Genetic Algorithms (VEGA) (Schaf-

fer, 1985), Pareto Archived Evolution Strategy (PAES) (Knowles and Corne, 1999)

and Strength Pareto Evolutionary Approach algorithms (SPEA, SPEA-2) (Zitzler

et al., 2001), (Zitzler and Thiele, 1999).

4.5.1 Multi-Objective Optimisation

Real-world optimisation problems usually involve multiple conflicting objectives

and highly complex search spaces, which prevents simultaneous optimisation of

each objective. To address this, multi-objective optimisation techniques are needed.

Evolutionary algorithms have various characteristics that make them useful for

exploring multiple solutions at once, and consequently multi-objective evolutionary

algorithms (MOEAs) are often used for such problems. Multi-objective optimisation

problems (MOOPs) have solutions which explore trade-offs in different ways. These

are called Pareto optimal solutions (or non-dominated solutions), where none of

the objectives in the search space can be improved without decreasing in value

one or more other objectives. In general MOOP comprises a set of n parameters

known as decision variables, a set of b objective functions, and finally a set of m

constraint functions. The set of feasible decision vectors is defined by the objective

and constraint functions. MOOPs can be formulated in mathematical terms as

follows:

maximise h = f(z) = (f1(z), f2(z), · · · , fb(z))

subject to c(z) = (c1(z), c2(z), · · · , cm(z)) ≤ 0

where z = (z1, z2, · · · , zn) ∈ Z

h = (h1, h2, · · · , hb) ∈ H

z is the decision vector, h is the objective vector, Z and H are called respectively

the decision space and the objective space. The main objective of a multi-objective
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optimisation algorithm is to find solutions in the Pareto optimal set and this requires

to investigate solutions at the extreme ends of the objective function space (?). In

this thesis NSGA II was used and is described in the following section.

4.5.2 Non-Dominated Sorting Genetic Algorithms II

Non-Dominated Sorting Genetic Algorithms II (NSGA II) is one of the most known

multi-objective genetic algorithms (MOGA) (Deb et al., 2000), (Deb et al., 2002),

(Coello et al., 2007). NSGA II sorts and ranks each individual of the population

according to dominance criteria. An individual is considered to dominate others if it

is better in at least one objective, and not worse in the remaining objectives. Every

individual of the population achieving this performance will become part of the first

non-dominated front, also know as the Pareto front, see figure 4.5. This process is

repeated and the previous non-dominated front is excluded, to generate a second

non-dominated front and so on.

Another important operator used in NSGA II in addition to non-domination rank

is the crowding distance. Crowding distance is a measure of density of individuals

(which means how close an individual is to its neighbours) within a non-dominated

front. Crowding distance is created to provide a uniform distribution of individuals

through a non-dominated front. Each individual in the population will have a

non-domination rank and crowding distance. The process, known as partial order

in NSGA II, is when an individual a is greater than individual b if it has a better

or equal rank, or has a better crowding distance (Deb et al., 2000), (Deb et al.,

2002), (Coello et al., 2007) see figure 4.5. NSGA-II gives a more realistic view of

evolution, as individuals are better in achieving some tasks than others and NSGA

II describes this well. Nevertheless, from a real world biological point of view, it uses

a forced elitism, assuring that the fittest individuals are copied onward to the next

generations. By doing so, NSGA-II decreases diversity of the population.
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Figure 4.5: An illustration of non-dominated Pareto front and non-dominated
solutions, where objective f1 is minimised and f2 is maximised.

Evolutionary

algorithms

Representation Genetic opera-

tors

Elitism

selection

Determinism

selection

Genetic Al-

gorithms

Binary values,

real values

Crossover,

mutation

Optional No

Genetic Pro-

gramming

Real values,

integers, (tree

structures)

Crossover,

mutation

Optional No

Evolutionary

Strategies

real values,

strategy

parameters

Crossover,

mutation

Yes No

Evolutionary

Program-

ming

Real values, fi-

nite state ma-

chine

Crossover,

mutation

Yes Yes

Table 4.1: A summary of the evolutionary algorithms described in this chapter. This
table is adapted from (Knowles and Corne, 2000).
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4.6 Summary

This chapter presents four main categories of evolutionary algorithms, which are

each inspired by biological evolution. Table 3.1 shows a summary of these algorithms.

Evolutionary strategies have no requirement in terms of phenotypes, and usually

do not take a large perspective of population dynamical behaviours. Often they

use a single individual to do several clones within a population. Classical genetic

programming and evolutionary programming algorithms require fixed representations,

respectively tree structures and finite state machines. Genetic algorithms do not

require a fixed representation for genotypes (i.e. data) and phenotypes (i.e. function).

Also, they have a more biologically-faithful population-based architecture.
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Controlling Boolean Networks

using Boolean Networks

Complex networks, such as societies, economies and ecosystems, are omnipresent

in the real world and have important effects upon people’s lives. Therefore, the

control of their complex dynamical processes is a growing interesting and challenging

problem for scientists (Gates and Rocha, 2016). The difficulties faced in controlling

these complex networks are due to a large number of properties that make them

particularly hard to control (Motter, 2015). The complex networks chosen to be

studied and controlled in this thesis are GRNs. They are biochemical networks

that involve genes and their protein products, especially the transcription factors

that allow a gene to regulate another gene’s expression. GRNs are fundamental to

the behaviour of biological organisms, and control both the internal functions of

individual biological cells and the overall development of multicellular organisms.

In recent years, there has been a concerted effort to characterise and map GRNs of

various organisms. However, there has been relatively little work and advancement

in the control of GRNs.

The work within this chapter describes how BNs (Kauffman, 1969) can be evolved

using EAs to control computational models of GRNs. In particular, EAs are used to

discover BNs that can control the dynamics of other BNs. A number of parameters

and conditions have been considered: the ability of EAs to optimise BNs, the general
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ability of BNs to control other BNs, and the effect that topology has on both the

difficulty of the control problem and the ability of the controllers. In addition,

multiobjective evolutionary algorithms (MOEAs) are used to explore trade-offs

between the effectiveness of control and its ease of realisation, focusing on minimising

the number of interventions required to apply control. MOEAs have also been used

to observe the trade-offs between four parameters: control efficacy, the number of

interventions, the number of controller and controlled time steps. Several kinds

of network are considered: deterministic and non-deterministic random Boolean

networks and scale free Boolean networks (SFBNs). The chapter is divided into

two main sections: the first describes the methods used to run experiments and the

second presents results.

5.1 Evolving Controllers

The control method developed in this thesis is used to manipulate trajectories around

the state space in order to control the dynamics of a given system. The approach

does not require explicit knowledge of the underlying dynamics of the systems, that

are controlled. It has been shown in previous work (Lones et al., 2010), (Lones et al.,

2014) that artificial biochemical networks, for instance artificial gene regulatory

networks, have the ability to control the dynamics of a system without having

concrete information about the structure of the state space. The following sections

describe the use of different variants of Boolean networks to control trajectories in

other randomly generated Boolean networks about which little information is known.

5.1.1 Design of Experiments

In this work, different types of artificial gene regulatory networks are evolved using

techniques of artificial evolution to perform control tasks. These evolutionary methods

need to be flexible in order to manage various representations of executable structures.

Therefore, genetic algorithms will be used when networks are evolved. This choice

was made because genetic algorithms and implementations such as NSGA-II for multi-

objective problems have been successfully applied to a wide range of computational
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problems (Sivanandam and Deepa, 2007), (Mitchell, 1998). In addition, they have

been used in recent years to evolve artificial biochemical networks (Lones et al.,

2014), (Lones et al., 2010).

Using artificial biochemical networks to control complex systems is a challenging

problem for them to solve, however, previous work, (Lones et al., 2010), (Lones et al.,

2013a), (Lones et al., 2014) demonstrated that it is achievable. In this work, Boolean

networks, a type of artificial gene regulatory networks are applied to control a range

of other Boolean networks. Many BNs have ordered dynamics and some such as

scale free Boolean networks and RBN with k > 3 tend to be chaotic. The fact that

most of the Boolean networks do not express chaotic dynamics does not make them

necessarily easier to control than chaotic Boolean networks.

Algorithm 1 explains the process of applying a controller network to a given

control task. This technique uses a closed loop controller and can be applied when

tasks are dynamical and are updated in discrete time (meaning that at each discrete

time step the task will update as the same time step as the controller network).

Algorithm 1 Execution of the network during a control task

1: Initialise control task

2: for a predefined number of iterations do

3: Map task variables onto input genes . interventions

4: Execute network

5: Map network output back to the task . feedback

6: Update the task

7: end for

5.1.2 Genetic Algorithms and Parameters

Throughout this thesis, two types of genetic algorithms will be used to evolve BNs:

the classical genetic algorithm, and the multi-objective genetic algorithm NSGA II.

This work does not aim to develop improved optimisation algorithms, and so both

algorithms use standard formulations that have been widely studied and applied

(Bäck et al., 2000), (Goldberg and Deb, 1991), (Deb et al., 2002), (Coello et al.,

52



Chapter 5: Controlling Boolean Networks using Boolean Networks

2007). Both algorithms have similar general characteristics and depending on the

kind of task, either single or multi-objective, the corresponding algorithm is chosen.

In NSGA-II, a selection strategy, which is rank based, will be used, rather than

tournament selection and elitism. The genetic operators which will be used are

recombination (or crossover) and mutation. The crossover operators is n−point

crossover. The mutation operator changes a given value within the network to a

random value within the possible range for the variable.

All controller networks, deterministic and non-deterministic RBNs and SFBNs,

are represented as an array of nodes, each comprising a Boolean function number

(between 0 and 22k for RBNs), an initial state, and a set of input nodes, where

each input is indicated by its position within the node array. It has been shown in

(Gershenson, 2004) that a RBN’s capacity for computation is maximal when it is

in the critical regime; therefore, a value of k = 2 is used for RBNs, meaning that

each node has precisely two inputs. The connectivity of each node in an SFBN is

determined by sampling the power law distribution; for controllers, the number of

connections for a particular node can change via mutation, so long as the power law

distribution is maintained.

The coupling terms indicate the nodes in the controlled network (deterministic

and non-deterministic RBN and SFBN) whose state will be changed by the controller

network (i). These are the control interventions (CI) and the nodes in the controlled

network whose state will be copied back to the controller network, the feedback

connections (CF ); see Figures 5.1, 5.2 and 5.3. Inputs to the controller networks

which are fed back from the controlled network are always delivered by over-writing

the states of nodes at the beginning of its node array. Control outputs are always

read from the state of nodes at the end of the array. The number of coupling terms

is uniformly sampled from and bounded to the range [1, 5]. The mutation operator

can add, remove or modify coupling terms.

For all the experiments, the population size is 500 and run over 100 generations.

The size of the tournament in tournament selection is 3 and the elitism size is 1.

The crossover rate is 0.15 and the mutation rate is 0.06. Crossover points always
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fall between node boundaries. These values were used in previous work on evolving

artificial GRN models (Fuente et al., 2013), (Lones et al., 2014), and were found

to be suitable choice in early experiments when a parameter sweep was carried out.

Regardless to the kind of controller network used to carry out a control task, the

controller network size is fixed and set to be 15. The controller network size was

chosen after running several experiments using different sizes of controller networks

in the range [5− 30].

The controller network fitness is a measure of the Hamming distance between the

controlled network final state and the target state, after a control period of 50 time

steps of the controlled network. In the process of control, two timing parameters

are used. The first timing parameter determines how many steps (tr) the controller

network will execute for each step (td) of the controlled network, with values above 1

allowing the controller network to execute faster than the controlled network. The

second parameter determines how often the controller network is executed, in terms

of the number of steps of the controlled network.

Both timing parameters are uniformly sampled from and bounded to the range

[1, 50]. Figure 5.3 shows an example of how a controller network is linearly encoded.

The efficacy (or effectiveness) of a controller’s interventions are measured using a

fitness function that return the Hamming distance between the target state and the

actual state that is reached by the end of a control period of 100 times steps of the

controlled networks. This is linearly scaled to the interval [0, 1], where a fitness of 1.0

indicates that the target state was reached (see equation 5.1). Let dt be the distance

from the target network’s state at the end of evaluation to its target state, NetSize

be the target network size and fit be the fitness value. If target state is met, dt = 0

therefore, fit = 1.

fit = 1− dt
NetSize

(5.1)
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Algorithm 2 Genetic Algorithm General Procedure

1: Initialise population Pinit

2: Evaluate population Pinit

3: while stopping criterion not met do

4: Select the best parents to produce children

5: for (parent1, parent2 ∈ Pinit) do

6: Crossover parents from Pinit and put in Pchildren

7: Mutate parents from Pinit and put in Pchildren

8: end for

9: Evaluate children Pchildren (new population)

10: Pinit ← Pchidren

11: end while

12: Replace the previous population with the new population
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Algorithm 3 Training BN with GA

1: P ← {}

2: for popsize times do . initialize population

3: P ← P ∪ {new random BN}

4: end for

5: for each pi ∈ P do . evaluate population

6: evaluate(pi)

7: end for

8: for maxgen times do

9: P ′ ← {}

10: while |P ′| < |P | do . create child solutions

11: parent1, parent2 ← tournamentselect(pi)

12: child1, child2 ← recombine(parent1, parent2)

13: P ′ ← P ′∪ mutate(child1) ∪ mutate(child2)

14: end while

15: for each pi ∈ P ′ do . evaluate child population

16: evaluate(pi)

17: end for

18: P ← P ′ . replace population with child population

19: end for

20: return P member with highest fitness

y

x

z

a

b

c
RBN

RBN

Figure 5.1: Coupled random Boolean networks.
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SFBN
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(a) Coupled Boolean network and scale free Boolean network.
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Controlled Network

Controller Network

Coupling

(b) Linear encoding used by the evolutionary algorithm.

Figure 5.2: Boolean network coupled to a scale free Boolean network, also showing
the linear encoding used by the evolutionary algorithm. Grey dashed arrows indicate
coupling between controller network and controlled network.
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Figure 5.3: Example of a Boolean network’s genetic representation (genotype). The
timing and coupling terms indicate that this network is iterated twice each time
it is executed, it is executed after every step of the controlled network, its control
outputs (interventions) are copied to nodes 2 and 8 of the controlled network, and
its feedback (in) inputs from the controlled network are copied from nodes 5 and 6.
Ed and Er are respectively controlled and controller networks.
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5.2 Control tasks

A genetic algorithm is used to generate and optimise BNs. The fitness function

(see algorithm 4) measures how well a controller RBN controls other variants of

BNs. In this control process, the focus is on the task of state space targeting,

which means learning a control intervention that pushes a controlled BN (BNd) to a

particular point in its state space. This problem is similar to the biological problem

of controlling a GRN so that it moves to and remains within a particular region of

its phenotype space. All nodes in the controlled network have their expression state

(Sd) set to 0 at the start of the control task, to maximise the initial distance from

the target.

For simplicity and clarity, the target state is all-ones, meaning that every node in

the controlled network achieves a Boolean state of 1. However, this state is no easier

or harder to reach than any other arbitrary state for a particular sample of controlled

BNs, and is not similar to the max-ones problem in the genetic algorithms literature.

It is probable that, in practice, some controlled networks will be uncontrollable. Also

it is plausible that the solution space will be hard to traverse for most controlled BNs.

For example, a solution which leads the controlled network to a state of all-but-one

nodes turned on is unlikely to be proximal to a solution which leads the controlled

network to the optimal state.

In order to avoid bias, the controlled BNs are randomly sampled. This means

that, for many of the randomly sampled networks, it will not be possible to reach

the optimum. Instead, it is intended that the fitness distribution over a number of

runs will give a general insight into the ability of evolved BN controllers (BNr) to

influence the dynamics of the controlled networks, and a measure of the degree to

which they are able to achieve this. This gives a more general insight than looking at

their ability to control particular BNs derived from the biological literature, whose

topologies and dynamics may not be representative of the wider class of GRNs. Both

RBNs and SFBNs are considered, for controller and controlled BNs. All nodes in

the controller network have their initial expression state (Sr) randomly generated.
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For completeness, each pairwise combination has been studied and analysed, i.e.

deterministic RBN controllers controlling deterministic RBNs, deterministic RBN

controllers controlling SFBNs, controller SFBNs controlling deterministic RBNs,

deterministic RBN controllers controlling non-deterministic RBNs, non-deterministic

RBN controllers controlling deterministic RBNs and controller SFBNs controlling

SFBNs. Different sizes of the controlled network are considered in the range [20, 50],

were chosen to match the size of biological networks models used in Chapter 6.

This is also done for testing proposes. For each combination of controller BN type,

controlled BN type and controlled network size, 20 consecutive runs of the EA are

performed, each with a (very likely unique) randomly generated controlled network.

For controlled SFBNs, scale free exponents in the range α ∈ [2, 2.5] are used.

To limit the combinatorial space of experiments, the controller network size is

fixed at 15 nodes (see Section 5.3.4). In early experiments, the optimisation process

was found to be relatively insensitive to controller size beyond a certain threshold

(Taou et al., 2016a). This may reflect a trade-off between the greater computational

resources available to larger controllers and the increased size of the search space that

needs to be traversed in order to optimise them. However, it is also an indication

that even relatively small BNs are expressive, and are capable of generating the

dynamics necessary to solve the control task. This is fortunate, since large Boolean

circuits remain challenging to implement using synthetic biology principles.
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Algorithm 4 Evaluating a BN on a control task

1: BNd ← new random BN . controlled BN

2: Sd ← (0, 0, 0, . . .), St ← (1, 1, 1, . . .) . initial and target states

3: t← 0

4: while t within control period do

5: i← 0

6: for each c ∈ Cf do . feedback from controlled BN to controller BN

7: sri ← sdc , i← i+ 1

8: end for

9: for tr times do . execute controller BN

10: update(BNr) . apply each node’s update function

11: end for

12: i← |BNr|

13: for each c ∈ CI times do . apply control interventions

14: sdc ← sri , i← i− 1

15: end for

16: for td times do . execute controlled BN

17: update(BNd)

18: t← t+ 1

19: end for

20: end while

21: correct← 0

22: for each sdi ∈ Sd, sti ∈ St do . compute distance from target state

23: if sdi = sti then

24: correct← correct+ 1

25: end if

26: end for

27: fitness← correct
|Sd|
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Algorithm 5 Training BNs with NSGA II

1: P ← {}

2: for popsize times do . initialise population

3: P ← P∪ {new random BN}

4: end for

5: for each pi ∈ P do . evaluate population

6: evaluate(pi)

7: compute fitness(pi) for each pi ∈ P

8: end for

9: for maxgen times do

10: P ′ ← {}

11: P ← rank(P ) . NSGA-II style ranking

12: {p0, . . . , ppopsize/2} . remove lower ranks

13: P ′ ← P

14: repeat . breed child population

15: parents← select parents(pi)

16: P ← P ′ . replace with children population

17: children← {}

18: for (p1, p2 ∈ parents) do

19: (child1, child2)← recombine(p1, p2)

20: children← mutate(child1)

21: children← children ∪ mutate(child2)

22: end for

23: evaluate(children)

24: P ′ ← P ′ ∪ children . get best children population

25: until |P ′| = popsize

26: P ← P ′ . replace with children population

27: end for

28: return P ′ member with highest fitness
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5.3 Results

5.3.1 Controlling RBNs

To provide a benchmark for optimisation, the natural dynamics of randomly sampled

non-deterministic RBNs (RBNnd) (with probability p = 0.7 and p = 0.3) and

deterministic RBNs were measured using the same fitness function used to evaluate

controller networks. Figures 5.4a, 5.4c and 5.5a show the fitness distributions in

this case. This indicates the level of fitness (i.e. distance to the target state) that

can be achieved when no control is exerted over the target network, and gives a

clear indication of how well the proposed control method works when applied to

various target networks. It can be seen from these figures that without carrying

out any control on them, randomly sampled networks tend towards a final state

containing approximately equal numbers of 0s and 1s, indicated by fitness around

0.5 on average.

Figures 5.4b, 5.4d and 5.5b show the fitness distributions achieved when controller

networks were evolved to perform state space targeting in randomly sampled deter-

ministic and non-deterministic RBNs. From these plots, it is obvious that fitness

values are much higher on average when a controller network is used, indicating that

both controller RBN types can be evolved to guide other RBNs towards particular

parts of their state space. Unsurprisingly and as expected, most runs do not find

optimal controller networks for the randomly sampled target networks.

After observing and analysing Figures 5.4 and 5.5, it seems that, on average,

there is little difference in the difficulty of the control problem regardless of whether

the controlled networks are deterministic or non-deterministic RBNs. However, it

is relevant to notice that the fitness distributions for deterministic RBN targets

are generally wider, indicating that there may be more instances that are hard to

control. It is also notable that for the deterministic RBN, the fitness distribution

remains similar regardless of the size of the controlled network. This is not the

case for non-deterministic RBNs, when smaller network appear significantly easier

to control. This presumably reflects differences in the dynamical behaviours when
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non-deterministic updates are used, for instance the loss of stable attractors.

(a) RBNnd natural dynamics, p = 0.7 (b) RBN controlling RBNnd, p = 0.7

(c) RBNnd natural dynamics, p = 0.3 (d) RBN controlling RBNnd, p = 0.3

Figure 5.4: Fitness distributions of non-deterministic (RBNnd) following their natural
dynamics (a,c) and under control (b,d), with probability p = 0.3 and p = 0.7.
High fitness values are better. Notched box plots show summary statistics over
20 evolutionary runs. Overlapping notches indicate when median values (thick
horizontal bars) are not significantly different at the 95% confidence level.
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(a) RBN natural dynamics (b) RBN controlling RBN

Figure 5.5: Fitness distributions for RBNs following their natural dynamics and
under control.

5.3.2 Controlling SFBNs

Figure 5.6a shows the fitness distributions for SFBNs in the absence of control, i.e.

whilst following their natural dynamics. This shows that, without control, SFBNs

also tend towards a final state containing approximately equal numbers of 0s and

1s, indicated by fitness around 0.5 on average. By comparison, Figures 5.6b–5.6d

show the fitness distributions of controller networks evolved to carry out state space

targeting in randomly sampled SFBNs. It is again clear that fitness values are

much higher when a controller network is applied, showing that deterministic RBN

controllers can also be evolved to push SFBNs towards a particular state in their

state space.

The distribution look very similar to the deterministic RBN, which suggests that

the topology does not have a significant impact on controllability. Figure 5.6 also

indicates that the choice of scale free exponent values had a relatively small impact

on the difficulty of control, at least within the range used in these experiments.
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(a) No control, γ1 = 2.0 (b) Control, γ1 = 2.0

(c) Control, γ2 = 2.25 (d) Control, γ3 = 2.5

Figure 5.6: Fitness distribution of SFBNs (a) following their natural dynamics, and
(b–d) controlled with evolved RBNs, γ1 = 2.0, γ2 = 2.25 and γ3 = 2.5.

5.3.3 Varing the controller Type

For completeness and to assess the ability of other variants of BNs to carry out

control tasks, experiments were also run using SFBNs and non-deterministic RBNs

as the evolved controller network to control deterministic RBNs and SFBNs. Figure

5.7 and 5.8 summarises these experiments. The result show that non-deterministic

RBNs can be optimised to control the dynamics of RBNs. Unlike deterministic

and non-deterministic RBN controllers, SFBN controllers surprisingly appear to be

significantly more difficult to evolve to carry out control, regardless of whether the
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target networks are RBNs or SFBNs. This is in contradiction with the previous

assumptions that SFBNs are more evolvable than networks with uniform connec-

tivity (Aldana, 2003). Nevertheless, it does suggest that topology is an important

consideration when optimising BNs to carry out control.

(a) RBN natural dynamics (b) SFBN controlling RBN

(c) SFBN natural dynamics, γ2 = 2.25 (d) SFBN controlling SFBN, γ2 = 2.25

Figure 5.7: Fitness distributions for SFBNs evolved to control RBNs and SFBNs.
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(a) RBN natural dynamics (b) RBNnd controlling RBN

Figure 5.8: Fitness distributions for non-deterministic RBNnd optimised to control
deterministic RBNs. The probability used is 0.7.

5.3.4 Variable-Size Controllers

To analyse the effect of the controller network size on the control process, additional

experiments were performed using a controller network whose size can change during

the course of evolution. Figures 5.9 gives an indication of how the control process

can be influenced when the controller network size is not fixed for each of the 20

evolutionary runs, i.e. nodes can be added and removed by the mutation operator.

In this experiment the size of the controller network is in the range [10, 25]. At

the end of several executions, it was found that the controller network size varied

between 11 and 17. A comparison between Figure 5.8 and 5.9 shows that the fitness

distributions are very similar, showing that controller network size variation within

a certain range does not have a significant effect on the control process. It also,

validates the choice of the controller network size of 15 in the earlier experiments.
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(a) RBNnd natural dynamics (b) RBN controlling RBNnd

(c) RBN natural dynamics (d) RBNnd controlling RBN

Figure 5.9: Fitness distributions for deterministic RBNs and non-deterministic
RBNnd following their natural dynamics and under control when the controller RBN
and RBNnd size was able to vary during evolution.

5.3.5 Exploring Multiobjective Trade-Offs

This section presents the results of experiments done using MOEAs (in particular

NSGA-II) to observe and analyse the trade-off between two objectives: the efficacy

(or fitness value) and efficiency (or number of interventions) of the control and

between four objectives: efficacy, efficiency, number of controller network time steps

and how frequently it runs. It is important to note that this analysis is only applied

to controlled SFBNs, because they appear to be more realistic modelsrbnNoControl

of biological circuits. The controller type evolved to control the SFBN is the

deterministic RBN. NSGA-II (Deb, 2001), a well known and widely used MOEA
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described in section 4.5.2 is used to explore trade-offs between control efficacy and

efficiency.

This approach uses two objectives: the first is the distance from the target (or

fitness); the second is the number of output couplings (or number of interventions)

used to control the SFBN. This process is repeated using four objectives: efficacy (or

fitness), efficiency (or number of interventions), controller time steps and controlled

time steps in order to explore trade-offs between them. Effectiveness and the number

of controlled time steps are maximized and interventions and the number of controller

time steps are minimised. All the other parameters remain the same as for the

standard evolutionary algorithm (see algorithm 5).

Figure 5.10 presents Pareto fronts for 20 evolutionary runs of NSGA-II for different

SFBN sizes [20− 50], illustrating the trade-off between the effectiveness of control

and the number of interventions (i.e. output couplings) used to implement control.

It can be seen that there is a trade-off, with larger numbers of interventions generally

leading to more effective control. These results suggest that, if these networks were

to be implemented in real life (in vivo), there will likely be a trade-off between

the difficulty of implementation, since more interventions are likely to be harder to

implement, and the effectiveness of control. However, the extent of this trade-off will

depend on the network being controlled. For the majority of the SFBN instances,

there does not appear to be an advantage to having more than 2 or 3 interventions,

and in many cases reasonable control can be enacted using only a single output

coupling. This may reflect the topology of scale-free networks in particular, since

interventions applied to hubs will have large effects on the dynamics.

5.3.6 Analysis of Evolved Controllers

Figures 5.11–5.13 depict the control process carried out by a selection of evolved

controllers. Figure 5.11 shows a deterministic RBN controlling a deterministic SFBN,

showing that the controller intervenes 6 times in order to push the dynamics towards

the target region of the state space. These interventions occur both whilst the

controlled network is in a transient (e.g. between states 9 and 10) and when it has
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(a) SFBN size = 20 (b) SFBN size = 25

(c) SFBN size = 30 (d) SFBN size = 35

(e) SFBN size = 40 (f) SFBN size = 45

(g) SFBN size = 50

Figure 5.10: Pareto fronts, showing the trade-off between control efficacy and the
number of interventions, γ = 2.25, k = 2. The different coloured lines (some coloured
lines are duplicated) indicate the non-dominated solutions from 20 different runs,
each with a different controlled SFBN.
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reached an attractor (e.g. state 11 and 24). In the latter cases, the controller acts to

push the controlled network out of a basin of attraction to a trajectory that takes it

closer towards the target state. This is a fairly typical behaviour for many of the

deterministic controllers we observed.

Figure 5.13 shows control traces for three non-deterministic controlled networks.

It can be seen that the controlled system does not enter an attractor and that all

interventions occur during its on-going transient behaviour. This is akin to chaos

control problems, where the controllers must react to unpredictable behaviours.

Figure 5.11: An illustration of the control process of a controlled SFBN using a
controller RBN. Dashed arrows represent the controller network interventions and
the dark grey node the final state of the controlled network. The initial state of the
controlled RBN is all zero and the target state is all ones.
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Figure 5.12: List of binary state shown in Figure 5.11

Network State Binary representation

1 00000000000000000000

2 00110101110010101101

3 01110111100111001000

4 01110011000100011110

5 01110110000010101111

6 01110010110110111101

7 01110011010010011010

8 01110110100010101101

9 01110111110110011000

10 01110110000110011110

11 01110110010110111111

12 01110011010110111111

13 01110110000010101111

14 01110010110110111101

15 01110011010010011010

16 01110110100010101101

17 01110111110110011000

18 01110011000110011110

19 01110110000010101111

20 01110010110110111101

21 01110110010010011010

22 01110110110110111101

23 01110011010110011010

24 01110110000010111111

25 01110111110110011000

26 01110011000110011110

27 01110110000010101111

28 01110010110110111101

29 01110011010010011010

30 01110110000110011110

Final state 01110110010110111111

72



Chapter 5: Controlling Boolean Networks using Boolean Networks

(c) Controlled network N = 20

(d) Controlled network N = 35

(e) Controlled network N = 40

Figure 5.13: An illustration of the control process for three deterministic controlled
RBNs using deterministic RBN controllers. The controlled RBNs have sizes [20-40]
nodes.
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Figure 5.14: Binary representation of the controlled network (N = 20) state changes
during the control process. (See Figure 5.13c)

Network state Binary representation

1 00000000000000000000

2 10010001001000001110

3 11000010001001011010

4 10101110001000001010

5 11000010001001001110

6 10101110001010011010

7 01000010001001001110

8 01000010001011011110

9 00101110001110011110

10 00101010001110011110

11 00101010001110011110

12 01000010001000001110

13 11000010001010011110

14 01000010001010011010

15 01000010001000001110

16 11000010001010011110

17 01000010001010011010

18 01000010001000001110

19 11000010001010011110

20 01000010001010011010

21 01000110001010011000

22 01000011011001001110

23 10101110001111011110

24 00100110001011111110

25 00101110001111111110

26 00100110001111111010

27 00101110001101101110

28 10100110001111111010

29 00101110001001101010

30 10100110001101101010

31 10101110001001101010

32 10101010001001101010

33 10100110001000001110

34 11000010001011011010

35 00101110001000001010

36 11000010001001001010

37 10101110001000001010

38 11000010001001001110

39 10101110001010011010

40 01000010001001001110

41 10101110001110011110

42 01000010001011011110

43 01000010001011011110

44 00101110001110011110

45 01000010001011011010

46 00101110001100001110

47 11000010001011011010

48 00101110001000001010

49 11000010001001001010

50 10101110001000001010

51 11000010001001001110

52 01000110001001001100

Final state 10101111011111111110
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5.4 Summary

Suitable and efficient control of GRNs is required in order to change the behaviour

of biological cells. Nevertheless, previous work in this field indicates that this control

problem is very hard, and can only be solved analytically when network topologies

have a number of restrictions. In this chapter it has been demonstrated that BNs, a

type of computational model of GRNs, can be optimised to control the trajectories

of other BNs using evolutionary algorithms. Results shown here are obtained by

using randomly sampled BNs with uniform (deterministic and non deterministic)

and scale-free topologies.

Multiobjective evolutionary algorithms were used to explore the trade-off between

maximising control efficacy and minimising the number of control interventions,

observing that many SFBNs could be controlled with relatively few interventions,

and often with only one intervention. The trade-off between maximising control

efficacy and number of controlled time steps and minimising the number of control

interventions and number of controller network time steps, also showed that controller

timing parameters do not in general have a significant impact on the ability of the

EA to fins effective controllers.

In the following chapter the methods developed in this chapter are applied to

control executable Boolean models of real biological networks, in order to test whether

the results obtained using the randomly sampled BNs and SFBNs apply to realistic

biological systems.
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Controlling Boolean Models of

Biological Networks

In the previous chapter Boolean networks (BNs) were applied to the problem of

controlling trajectories in other variants of BNs: deterministic and non deterministic

random Boolean networks (RBNs) and scale free Boolean networks (SFBNs). In this

chapter, to give an indication of how well our control method works when applied to

more realistic control problems, it is applied to specific Boolean models of biological

networks such as the T cell receptor signalling pathway (Klamt et al., 2006), flower

morphogenesis in Arabidopsis thaliana (Alvarez-Buylla et al., 2008) and budding

yeast cell cycle regulation (Davidich and Bornholdt, 2008). As before, deterministic

and non-deterministic BN controllers were evolved using evolutionary algorithms to

carry out control. Controller networks’ performances are observed and analysed to

understand how these networks control the dynamics of these Boolean models of

biological networks.

6.1 Boolean Models of Biological Networks

To investigate the ability of the proposed control method in real biological control

problems, five Boolean models of biological networks were selected from the litera-

ture. These model well-known genetic regulatory systems (Mendoza and Xenarios,
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2006),(Klamt et al., 2006), (Davidich and Bornholdt, 2008), (Alvarez-Buylla et al.,

2008). A number of factors motivated this choice. The first objective was to look

at the effect of the controlled network’s size, which vary from 10 nodes to 40 nodes,

on the ability to find controllers. The second is to show that the proposed control

method works on networks with different state space structures. To address this,

Boolean models with different numbers of stable states were chosen, since this gives

some indication of the complexity of the dynamics: the selected Boolean models have

between 3 and 13 stable states. Finally, the chosen Boolean models are biologically

diverse, capturing a range of biological processes: morphogenesis, signalling and cell

cycle regulation, that occur in a number of different species (single-celled organisms,

plants, and animals). Each of these Boolean models is briefly described in this

section.

6.1.1 T cell receptor signalling pathway

T cells are a subgroup of white blood cells that play a crucial role in the adaptive

immune response, helping to protect the host against different pathogens such as

virus and bacteria. The inappropriate activation of a T cell can lead to various

autoimmune diseases. T cell receptor (TCR) is a membrane protein found on the

surface of T cells which contributes to their activation by recognising antigen. A BN

of the TCR signalling pathway is described in (Klamt et al., 2006) and is depicted in

Fig. 6.1. It comprises 40 genes and has 8 point attractors, corresponding to different

activation and proliferation cell states.
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Figure 6.1: The T cell receptor signalling pathways regulatory network, showing the
interactions between nodes. See (Klamt et al., 2006) for details of Boolean functions

6.1.2 T helper cell differentiation network

T helper cells, commonly called Th cells, are a type of T cell that plays a critical

and key role in the adaptive immune system, where they help the immune activities

of other immune cells such as B cell antibodies, plasma cells and cytotoxic T cells.

T helper cells differentiate into one of the largest subcategories of cells, for example

TFH, Th1, Th2, Th3, Th9 and Th17, which produce and release several types of T

cell cytokines to regulate immune responses. A BN model of Th cell differentiation

was developed in (Mendoza and Xenarios, 2006). This model, depicted in Fig. 6.2,

captures the activities of 23 genes and has three point attractors, corresponding to

different Th cell types.
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Figure 6.2: The T helper cell differentiation regulatory network, showing the inter-
actions between nodes. See (Mendoza and Xenarios, 2006) for details of Boolean
functions.

6.1.3 Flower morphogenesis in Arabidopsis thaliana

Morphogenesis, the development of an organism’s form through the process of cell

differentiation, is an important component of multicellular organisms, and often plays

a role in disease development. The most widely studied models of morphogenesis

concern flower development in plants, and particularly within the model species

Arabidopsis thaliana, a small flowering plant. Flower morphogenesis occurs during

the entire life cycle from groups of undifferentiated cells known as meristems. These

develop into various different cell types in order to form the organs of a flower, for

example sepals, petals, stamens and carpels. A BN model of flower morphogenesis

in Arabidobis thaliana is described in (Alvarez-Buylla et al., 2008). It comprises 15

genes and has 10 point attractors, each corresponding to a different cell type. See

Fig. 6.3.
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Figure 6.3: The flower morphogenesis in Arabidopsis thaliana regulatory network,
showing the interactions between nodes. See (Mendoza et al., 1999), (Alvarez-Buylla
et al., 2008) for details of Boolean functions.

6.1.4 Fission yeast cell cycle regulation

Fission yeast is the common name of schizosaccharomyces pombe, a unicellular

eukaryote whose cells are rod-shaped and divide by medial fission. It is a well known

system used to study cell growth and division, mainly because of their simple shape

and their place within the eukaryotic lineage. The fission yeast cell cycle is the

sequence of events that occur in a cell leading to duplication of all its components

and its division into two almost identical daughter cells. A BN model of fission yeast

cell cycle regulation is given in (Davidich and Bornholdt, 2008). It is formed by 10

genes and has 13 point attractors, corresponding to different stable cell states within

the cell cycle. See Fig. 6.4.
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Figure 6.4: The fission yeast cell cycle regulation, showing the interactions between
nodes. See (Davidich and Bornholdt, 2008) for details of Boolean functions.

6.1.5 Budding yeast cell cycle regulation

Budding yeast is another species of yeast that has been widely used to study the

eukaryotic cell life cycle. As the name implies, new cells form as a bud that grows

from an existing cell, rather than undergoing fission. A BN model of budding yeast

cell cycle regulation is described in (Davidich and Bornholdt, 2008). It has 12 genes

and 7 point attractors. See Fig. 6.5.

Figure 6.5: The budding yeast cell cycle regulation, showing the interactions between
nodes. See (Li et al., 2004) for details of Boolean functions.
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6.2 Experimental Methods and Evolutionary

Parameters

The control method used in this chapter is similar to the methodology described in

Chapter 5, Section 5.1.2. The evolutionary parameters, the number of generations

per experiment and the controller genotype encoding (see Figure 5.3) and the formula

to compute the fitness value remain the same as in Section 5.1.2, only the target state

is different. Two different variants of BNs, deterministic and non-deterministic RBNs,

are optimised and applied to the task of controlling Boolean models of real biological

networks. The controller networks are evolved and optimised using genetic algorithms.

The main idea is to apply control interventions (i.e. a series of perturbations) that

guides a trajectory of a controlled network from an initial state to a particular stable

state or attractor in its state space. As before, the efficacy (or effectiveness) of

a controller’s interventions are measured using a fitness function that returns the

Euclidean distance between the target state and the actual state that is reached by

the end of a control period of 50 time steps of the controlled networks.

6.3 Results

6.3.1 Controlling Trajectories form Random Initial States

In this sub-section, the control method is used to guide a trajectory beginning from

a randomly sampled initial state to reach each stable state or attractor in all the

Boolean models of biological networks described in section 6.1. The idea behind

starting the control process from a random initial state to reach a target state is to

give an indication of the general ability of the deterministic and non-deterministic

controller BNs to control each network in this way. It also makes the problem more

difficult to solve since the initial state is not predefined. All the experiments were

run repeatedly with and without control for each target network with both controller

networks.
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The results from these experiments can be seen in Tables 6.1–6.5 and 6.6–6.10

(fitness distribution plots can be found in Appendix C). The Tables 6.1–6.5 and

6.6–6.10 show summary statistics for the fitness distributions of both the natural

dynamics (which represent how close it gets to the target state in the absence of

control) and controlled dynamics of each target biological network for each target

stable state. Deterministic (Tables 6.1–6.5) and non-deterministic (Tables 6.6–6.10)

controller BNs are respectively evolved to carry out the control task. All the P-values

shown in the Tables were obtained using the Mann Whitney Wilcoxon test since

the data did not fit a normal distribution. The results shown in Tables 6.1–6.5 and

6.6–6.10 are summarised in Tables 6.11 and 6.12, showing the mean fitness achieved

and the number of target states reached in both cases with and without control,

within each biological network.

For deterministic BN controllers, without control, only a small number of these

attractors were reached (4/32) while, for non-deterministic BN controllers, without

control, a larger number of attractors were reached (23/40). However, when attractors

were reached, the standard deviations in fitness (the distance from the target) were

generally large in comparison to the standard deviations in fitness with control.

Examples of this are attractor 7 of the budding yeast cell cycle network, attractor 1

of the fission yeast cell cycle and attractor 1 of the flower morphogenesis in Arabidopsis

thaliana network when standard deviations without control are respectively (0.479),

(0.285) and (0.137) and with control (0) in each case. Given the difficulty of reaching

the target without control, when deterministic dynamics are used this shows that,

for a specific evolutionary run, the majority of the randomly sampled initial states

will not be within the basin of attraction of the target attractor, making the control

problems difficult to solve (i.e. they are non-trivial problems).

Tables 6.1–6.5 and 6.6–6.10 show that with control the target attractors are

reached considerably more often than without control. Also, when the results from

deterministic BN controllers are compared to non-deterministic BN controllers, it is

apparent that the non-deterministic BN controllers perform better than deterministic

BN controllers (see Tables 6.1–6.5 and 6.6–6.10). These performance differences
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are statistically significant (see Tables 6.1–6.5 and 6.6–6.10). Non-deterministic BN

controllers outperform the deterministic BN controllers in terms of the number of

attractors reached, the median results and the standard deviation. This suggests

that the stochastic property and the asynchronous updates increase performance.

However, this is most likely because non-deterministic BNs are easier to control,

since basins of attraction, are more permeable, not because non-deterministic BNs

are better controllers.

In all the case study networks, the EA was able to find controllers that can target

the majority of the steady states from a random initial state. Each time the target

state was reached, the standard deviation between evolutionary runs tended to be

very low (Std.Dev < 0.04). This means that most runs are able to find controller

networks with optimal, or at least near-optimal, control strategies: the maximum

likelihood estimation is 1.0 when BN controllers are successfully found and between

(0.946− 0.997) otherwise.

The results shown in Tables 6.1–6.5 demonstrate that the deterministic BN

controller search space has many local optima and also in the state space most of the

random states probably fall far from the basin of attraction of a particular stable

state, making the problem particularly hard when an arbitrary initial state is chosen.

In this case, deterministic BN controllers can easily get stack in a local optima in the

controller search space, where they will spend the last generations of the evolution

run. In addition, it is possible that in the state space there is a presence of deceptive

(or misleading) local optima. For example, in a number of cases there will not be

valid transitions from states which differ by a single bit from the target. Where this

is the case, there may be a possibility for using diversity preservation techniques,

for instance crowding and fitness sharing, to navigate around local optima during

optimisation.
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Table 6.1: Fitness distributions for T cell receptor signaling pathway control, showing
the normalised distances from the target for each of the system’s stable states
both with and without control. These results are obtained using deterministic BN
controllers.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 0.996 0.009 1 0.851 0.060 0.950 1.278× 10−08

2 0.975 0.026 1 0.850 0.034 0.900 1.596× 10−08

3 0.996 0.009 1 0.843 0.075 0.975 2.745× 10−08

4 0.975 0 0.975 0.869 0.066 0.950 3.664× 10−09

5 0.996 0.009 1 0.861 0.066 0.950 9.115× 10−09

6 0.969 0.010 0.975 0.917 0.055 0.975 1.49× 10−05

7 0.975 0 0.975 0.868 0.048 0.950 5.66× 10−09

8 1 0 1 0.844 0.051 0.95 3.073× 10−09

General Mean 0.985 0.008 0.990 0.863 0.057 0.950 1.872× 10−06

Table 6.2: Fitness distributions for T-helper cell differentiation control.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 0.972 0.065 1 0.553 0.067 0.652 1.094× 10−08

2 1 0 1 0.601 0.179 0.826 3.823× 10−09

3 0.867 0.045 0.913 0.510 0.161 0.826 5.285× 10−08

General Mean 0.946 0.036 0.971 0.554 0.135 0.768 2.253× 10−08
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Table 6.3: Fitness distributions for flower morphogenesis in Arabidopsis thaliana
control.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.863 0.137 1 1.094× 10−08

2 0.926 0.030 0.933 0.561 0.124 0.800 2.75× 10−09

3 0.989 0.033 1 0.635 0.100 0.733 5.693× 10−09

4 0.933 0 0.933 0.800 0.049 0.866 2.726× 10−09

5 1 0 1 0.835 0.144 0.933 2.549× 10−09

6 0.933 0 0.933 0.217 0.150 0.800 3.027× 10−09

7 1 0 1 0.919 0.042 1 3.3× 10−08

8 1 0 1 0.624 0.074 0.733 3.062× 10−09

9 1 0 1 0.382 0.184 0.933 4.479× 10−09

10 0.996 0.015 1 0.256 0.059 0.333 4.45× 10−09

General Mean 0.977 0.008 0.979 0.609 0.110 0.831 7.263× 10−09
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Table 6.4: Fitness distributions for fission yeast cell cycle control.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.442 0.285 1 3.916× 10−08

2 1 0 1 0.321 0.171 0.900 2.25× 10−09

3 0.921 0.042 1 0.594 0.102 0.700 6.823× 10−09

4 0.994 0.022 1 0.447 0.219 0.900 4.107× 10−09

5 0.994 0.023 1 0.505 0.246 0.900 5.482× 10−09

6 1 0 1 0.573 0.133 0.900 1.921× 10−09

7 1 0 1 0.484 0.121 0.800 2.377× 10−09

8 0.900 0 0.900 0.763 0.095 0.900 2.088× 10−09

9 1 0 1 0.600 0.124 0.800 12.483× 10−06

10 0.984 0.037 1 0.405 0.154 0.900 2.457× 10−09

11 0.921 0.041 1 0.552 0.134 0.800 1.274× 10−08

12 1 0 1 0.382 0.184 0.933 8.583× 10−09

13 0.994 0.022 1 0.536 0.134 0.800 3.873× 10−09

General Mean 0.997 0.014 0.992 0.508 0.161 0.864 1.980× 10−07

Table 6.5: Fitness distributions for budding yeast cell cycle control problem.

Control No Control

At Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.543 0.165 0.666 2.788× 10−09

2 1 0 1 0.627 0.321 0.916 2.088× 10−09

3 1 0 1 0.442 0.416 0.916 2.25× 10−09

4 1 0 1 0.500 0.328 0.833 2.544× 10−09

5 1 0 1 0.605 0.393 0.916 2.859× 10−09

6 0.916 0 0.916 0.521 0.249 0.750 2.335× 10−09

7 1 0 1 0.434 0.479 1 1.036× 10−05

General Mean 0.988 0 0.988 0.524 0.335 0.855 1.482× 10−06
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Table 6.6: Fitness distributions for T cell receptor signaling pathway control, showing
the normalised distances from the target for each of the system’s stable states both
with and without control. These results are obtained using non-deterministic BN
controllers.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.872 0.058 0.975 7.438× 10−09

2 0.995 0.013 1 0.885 0.057 0.975 4.387× 10−08

3 1 0 1 0.892 0.062 1 2.855× 10−08

4 0.993 0.011 1 0.900 0.030 0.950 2.411× 10−08

5 1 0 1 0.928 0.034 0.970 6.828× 10−09

6 0.997 0.007 1 0.911 0.030 0.950 1.287× 10−08

7 0.995 0.010 1 0.905 0.036 0.950 2.146× 10−08

8 1 0 1 0.910 0.040 0.975 7.452× 10−08

General Mean 0.997 0.005 1 0.900 0.043 0.968 2.745× 10−08

Table 6.7: Fitness distributions for T-helper cell differentiation control.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 0.980 0.041 1 0.569 0.111 0.782 2.268× 10−08

2 0.989 0.034 1 0.560 0.261 0.956 4.274× 10−08

3 0.873 0.027 0.913 0.528 0.152 0.782 4.18× 10−08

General Mean 0.947 0.034 0.697 0.552 0.174 0.840 2.893× 10−08
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Table 6.8: Fitness distributions for flower morphogenesis in Arabidopsis thaliana
control.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.870 0.150 1 7.845× 10−08

2 0.996 0.014 1 0.676 0.099 0.933 8.914× 10−09

3 1 0 1 0.733 0.086 1 2.079× 10−08

4 1 0 1 0.823 0.169 0.933 4.59× 10−09

5 1 0 1 0.873 0.175 1 8.939× 10−06

6 0.983 0.036 1 0.62 0.308 0.933 1.043× 10−07

7 1 0 1 0.896 0.170 1 2.71× 10−06

8 1 0 1 0.706 0.130 1 2.17× 10−07

9 1 0 1 0.752 0.265 1 2.549× 10−08

10 1 0 1 0.693 0.328 1 2.971× 10−07

General Mean 0.977 0.005 1 0.764 0.188 0.979 1.240× 10−06
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Table 6.9: Fitness distributions for fission yeast cell cycle control.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.570 0.384 1 2.194× 10−04

2 1 0 1 0.494 0.379 1 1.048× 10−05

3 1 0 1 0.655 0.170 0.900 5.686× 10−09

4 1 0 1 0.620 0.345 1 5.458× 10−05

5 1 0 1 0.435 0.256 1 1.055× 10−08

6 1 0 1 0.655 0.243 1 5.589× 10−07

7 1 0 1 0.695 0.264 1 8.585× 10−06

8 1 0 1 0.515 0.318 1 9.589× 10−07

9 0.900 0 0.900 0.790 0.096 0.900 5.451× 10−05

10 1 0 1 0.635 0.181 1 2.329× 10−07

11 1 0 1 0.620 0.270 0.900 5.773× 10−09

12 1 0 1 0.595 0.203 0.900 6.123× 10−09

13 1 0 1 0.570 0.243 1 2.194× 10−07

General Mean 0.992 0 0.992 0.603 0.257 0.969 2.688× 10−05

Table 6.10: Fitness distributions for budding yeast cell cycle control problem.

Control No Control

Attractors Mean Std. Dev Max Mean Std. Dev Max p-value

1 1 0 1 0.650 0.276 1 2.436× 10−05

2 1 0 1 0.604 0.330 1 3.033× 10−07

3 1 0 1 0.570 0.397 1 4.783× 10−06

4 1 0 1 0.650 0.353 1 0.0001515

5 1 0 1 0.612 0.375 1 0.0001377

6 0.954 0.042 1 0.558 0.277 0.916 3.698× 10−06

7 1 0 1 0.587 0.442 1 0.0003859

General Mean 0.993 0.006 1 0.604 0.362 0.988 0.000101
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Table 6.11: Summary of the results, showing the mean fitness and number of
attractors reached for each target network both when under the control of evolved
deterministic BN controllers and when following its natural dynamics (no control)
from a random initial state.

Mean Fitness Attractors Reached

Network name Size Control No Con-

trol

Total Control No con-

trol

Fission yeast cell cycle 10 0.997 0.508 13 12 1

Budding yeast cell cycle 12 0.988 0.524 7 6 1

Arabidopsis thaliana 15 0.977 0.609 10 7 2

T helper cell differentiation 23 0.946 0.554 3 2 0

T cell receptor signalling 40 0.985 0.863 8 5 0

Table 6.12: Summary of the results, showing the mean fitness and number of
attractors reached for each target network both when under the control of evolved
non-deterministic BN controllers and when following its natural dynamics (no control)
from a random initial state.

Mean Fitness Attractors Reached

Network name Size Control No Con-

trol

Total Control No con-

trol

Fission yeast cell cycle 10 0.992 0.603 13 12 9

Budding yeast cell cycle 12 0.993 0.604 7 7 6

Arabidopsis thaliana 15 0.997 0.764 10 10 7

T helper cell differentiation 23 0.947 0.552 3 2 0

T cell receptor signalling 40 0.997 0.900 8 7 1

6.3.2 Controlling Trajectories Between Attractors

In the previous section, the initial states for the control problem were randomly

selected. This gives a good indication of the difficulty of carrying out control in

general within these systems. However, in practice we can expect a cell’s dynamics

to remain close to an attractor for most of the time (Huang et al., 2009), (Huang

and Kauffman, 2013), so a more realistic control problem (i.e. the kind the might
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expect an in vivo controller to solve) is to control a trajectory from an attractor to

another attractor.

Tables 6.13–6.17 and 6.18–6.22 show the results of using the proposed control

method to move from one attractor to other attractors in each Boolean model of the

case study biological networks with respectively deterministic and non-deterministic

BN controllers. Each table shows the combinations between each of the first three

attractors with the remaining attractors.

In general most of the target attractors were reached; only a few target attractors:

in fission yeast cell network (3), T cell receptor signalling pathway (4) and budding

yeast cell cycle (3) using deterministic BN controllers and in fission yeast cell network

(3), T cell receptor signalling pathway (1) and budding yeast cell cycle (3) using

non-deterministic BN controllers were not able to be reached in each set of 20

evolutionary runs. However, in the cases where the evolutionary algorithm was

not able to successively find controller networks, they were at least near-optimal

(0.895− 0.974). Optimal controller networks for all attractor combinations across

all runs were successfully found in flower morphogenesis Arabidopsis thaliana and T

helper cell differentiation for both controller networks.

Each gray cell in Tables 6.13, 6.15, 6.16 and 6.18 indicates when respectively the

deterministic and non-deterministic BN controllers were not able to reach the target

attractor in all of the 20 evolutionary runs, suggesting that they are particularly hard

problems. A value below 1.0 in the Tables shows that not all 20 evolutionary runs led

to an optimal controller. For example in Table 6.13, when the control method is used

to move from attractor 1 (initial state) to reach attractor 12 (target state) in the

fission yeast cell cycle network, out of the 20 evolutionary runs 11 reached the target

state (fit = 0.953). In general, the control problem appears to be significantly easier

to solve when starting at an attractor rather then a random initial state. Also, results

using non-deterministic BN controllers are better than deterministic BN controllers

results.
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Table 6.13: Fitness distributions for fission yeast cell cycle control, showing the
normalised distances from one stable state (or attractors = At) to another using
deterministic BN controllers. A fitness of 1 is optimal.

At 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1.0 1.0 0.923 1.0 1.0 1.0 1.0 1.0 0.895 1.0 1.0 0.953 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.14: Fitness distributions for flower morphogenesis in Arabidopsis thaliana
control.

At 1 2 3 4 5 6 7 8 9 10

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.15: Fitness distributions for T cell receptor signalling pathway control.

At 1 2 3 4 5 6 7 8

1 1.0 0.975 1.0 0.970 1.0 0.974 0.971 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 0.917 1.0 1.0

Table 6.16: Fitness distributions for budding yeast cell cycle control.

At 1 2 3 4 5 6 7

1 1.0 1.0 1.0 1.0 1.0 0.946 1.0

2 1.0 1.0 1.0 1.0 1.0 0.950 1.0

3 1.0 1.0 1.0 1.0 1.0 0.917 1.0
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Table 6.17: Fitness distributions for T helper cell differentiation control.

At 1 2 3

1 1.0 1.0 1.0

2 1.0 1.0 1.0

3 1.0 1.0 1.0

Table 6.18: Fitness distributions for fission yeast cell cycle control, showing the
normalised distances from one stable state (or attractors = At) to another using
non-deterministic BN controllers. A fitness of 1 is optimal.

At 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1.0 1.0 1 1.0 1.0 1.0 1.0 1.0 0.895 1.0 1.0 1 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.895 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.895 1.0 1.0 1.0 1.0

Table 6.19: Fitness distributions for flower morphogenesis in Arabidopsis thaliana
control.

At 1 2 3 4 5 6 7 8 9 10

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.20: Fitness distributions for T cell receptor signalling pathway control.

At 1 2 3 4 5 6 7 8

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

3 1.0 0.982 1.0 1.0 1.0 1.0 1.0 1.0
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Table 6.21: Fitness distributions for budding yeast cell cycle control.

At 1 2 3 4 5 6 7

1 1.0 1.0 1.0 1.0 1.0 0.933 1.0

2 1.0 1.0 1.0 1.0 1.0 0.946 1.0

3 1.0 1.0 1.0 1.0 1.0 0.937 1.0

Table 6.22: Fitness distributions for T helper cell differentiom control.

At 1 2 3

1 1.0 1.0 1.0

2 1.0 1.0 1.0

3 1.0 1.0 1.0

6.3.3 Analysis

The evolved deterministic and non-deterministic controller networks were of 15 genes

in size and were not able to reach all target states of the studied controlled networks.

Some target networks appear to be more difficult to control than others. For example,

when deterministic BN controllers are used, the flower morphogenesis in Arabidopsis

thaliana and the T cell receptor signalling both have three steady states which were

not reachable; however, in both cases, the systems could be controlled to states

not far from the target state (respectively Max = 0.975 and Max = 0.933). Also,

the EA successfully has found non-deterministic controller RBNs that can control

dynamics of all the attractors in the following networks: T cell receptor signalling

pathway, flower morphogenesis and budding yeast cell cycle.

With the two type of controller networks, T-helper cell differentiation and fission

yeast cell cycle both have one steady state which was not reachable (Max = 0.913

and Max = 0.9). With these results it is not evident to find a simple relationship

between the difficulty to the control task and the number of attractors: For instance,

using the deterministic BN controllers, the fission yeast cell cycle network, which

has the largest number of attractors (13), was the easiest to control. Also, with the

T helper cell differentiation which has the smallest number of attractors (3), all the
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attractors were not reachable (2/3) with both deterministic and non-deterministic

BN controllers.

Nevertheless, for the results obtained using deterministic BN controllers there is

a mild negative correlation (−0.23) between network size and control fitness, and

indeed the largest network (T cell receptor signalling) was one of the hardest to

control (see Tables 6.6–6.10). In contrast, the results from using non-deterministic

BN controllers show that the network size does not have a significant effect on the

control task because of the very small negative correlation (−0.064) between network

size and control fitness (see Tables 6.6–6.10). This may suggest that the structure of

the state space has more of an impact on the control process.

Figures 6.7 and 6.6 illustrate examples of evolved control processes for T-helper

cell differentiation. These show the interactions between the controller network and

the controlled network. The dashed arrows show the controller network interventions.

They also give an indication about the number of time the controller network

intervenes in the control process. For example from Figure 6.6 it can be seen that to

reach the attractor 1 (a1) the controller network intervenes 6 times.

Figure 6.6: An evolved controller controlling a trajectory from a random initial state
to an attractor in the T-helper cell differentiation network.
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Figure 6.7: An evolved controller of controlling a trajectory from a attractor 2 as
the initial state to control attractor 3 in the T-helper cell differentiation network.
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Table 6.23: Binary representation of the controlled network (attractor 1 (a1)) state
changes during the control process shown in Figure 6.6.

Network State Binary representation

1 01110001011001011101001

2 00110001000000010011100

3 00110001000000000001110

4 00110001000000000001110

5 00110000000000001001111

6 00110000000000001101111

7 00110000000000001111111

8 00110000000000001110111

9 00110000000000000111011

10 00110000000000001011101

11 00110000000000001101110

12 00010000000000001100110

13 00000000000000000110011

14 00000000000000000011001

15 00000000000000001001100

16 00100000000000001000100

17 00110000000000000100010

18 00110000000000000010001

19 00110000000000000001000

20 00110000000000000000000

21 00010000000000000000000

a1 00000000000000000000000

98



Chapter 6: Controlling Boolean Models of Biological Networks

6.4 Summary

In this chapter, both deterministic and non-deterministic controller BNs were applied

to the task of controlling Boolean models of different biological networks. The results

have shown that most of the control tasks were successfully solved in all the runs and

in the few cases where optimal controllers were not found, the fitness value was close

to optimal. For instance, BN controllers were not able to control all attractors in

the T helper differentiation and fission yeast cell cycle networks. This demonstrates

that the BN controllers have limits in terms of their behaviours during the control

process. However, it is important to notice that BN controllers are evolved using

evolutionary algorithms, with a set population, mutation and crossover parameters

and changing these can modify current results and generate different results. Also,

the use of diversity preservation techniques such as fitness sharing could help to move

around local optima during the control process, and therefore obtain better results.

A comparison of the two BN controller types show that the non-deterministic BN

controllers perform better than the deterministic BN controllers when applied to T

cell receptor signalling pathway, T helper cell differentiation, flower morphogenesis,

budding yeast cell cycle and fission yeast cell cycle control tasks, with the non-

deterministic BN controllers being able to control all attractor trajectories in 3 of

the 5 controlled networks by guiding each attractor from a randomly sampled initial

state to a biologically-meaningful state, and the deterministic BN controllers were

able to control most of the attractors in these networks. The overall results are

promising and demonstrate that even standard evolutionary algorithms can solve

state space targeting problems, and can do so in a way that does not require a priori

knowledge and understanding of the target networks’ dynamics and does not require

a restricted topology.
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Summary and Conclusions

This chapter summarises the work reported in this thesis and presents the conclusions.

It also validates the initial hypothesis, discusses the limitations of the experimental

method, and finally provides suggestions for future work.

7.1 Summary

The work reported in this thesis started with the hypothesis that artificial gene

regulatory networks can be used as bio-inspired control architectures to perform

state space targeting in other artificial gene regulatory networks and models of actual

biological circuits. Biological systems complex behaviours have constantly been a

source of inspiration to many science fields such as bioinformatics, mathematics and

computer science. This is more notable in computer science with the development

of modern areas of research such as artificial intelligence (for example artificial

neural networks, artificial immune systems and robotics) in which both methods and

objectives are to imitate and reproduce biological system behaviours. These fields

are constantly evolving.

Artificial gene regulatory network are a type of artificial biochemical network

which take inspiration from the regulatory interactions between genes and with other

substances in biological cells. They capture how genes regulate each other’s protein

expression level constantly by producing transcription factors. Genes are one of
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the most omnipresent biological components, a fundamental physical and functional

unit of hereditary information which usually indicates the elementary structure of

a protein. Although genes play an important role in gene regulation, it has been

shown that gene regulatory networks are not exclusively made of genes, but a mix of

genetic and epigenetic (such as chromatin) structures.

In this thesis Boolean networks, the simplest and perhaps best known, computa-

tional model of gene regulatory networks are used to carry out state space targeting

in artificial gene regulatory networks. Three variants of Boolean networks have

been used as controller and controlled networks: deterministic and non-deterministic

Boolean networks and scale free Boolean networks. This thesis has also explored

the ability of deterministic and non-deterministic Boolean network controllers to

control the dynamics of Boolean models of actual biological circuits: the T cell

receptor signalling pathway, flower morphogenesis in Arabidopsis thaliana, T-helper

cell differentiation, fission yeast cell cycle regulation and budding yeast cell cycle

regulation, were used as controlled networks.

Deterministic Boolean network controllers have been optimised using evolutionary

algorithms to perform state space targeting in other deterministic Boolean networks,

in non-deterministic Boolean networks and scale free Boolean networks. In all these

three control tasks, the objective was to guide each of these controlled networks

from an initial state (set to be all zeroes) to reach the target state which is all ones.

As expected, most runs did not find optimal solutions (or controller networks) for

each of the randomly sampled target networks. However the fitness values are much

higher on average when the control is applied than without control. It appears that

there is no difference in the difficulty of the control problem regardless of the type of

the controlled network, but the fitness values from deterministic Boolean networks

are slightly higher than the fitness values from scale free Boolean networks.

Non-deterministic and scale free Boolean networks have been evolved to carry

out state space targeting in randomly sampled deterministic Boolean networks. The

results have shown that unlike non-deterministic Boolean network controllers, scale

free Boolean network controllers are harder to evolve to carry out control either
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in deterministic Boolean networks or in scale free Boolean networks. This is in

contradiction with previous assumptions that scale free Boolean networks are more

evolvable than deterministic and non-deterministic Boolean networks (i.e. networks

with uniform connectivity). Also, within the range considered in this study, the size

of the controlled and controller networks and the scale free exponent value had a

relatively small effect on the difficulty of control. Furthermore, it has been observed

that the proposed control method is relatively scalable as the size of the controlled

network increases.

Multi-objective evolutionary algorithms (NSGA-II) were used to observe the

trade-off between two objectives (number of interventions and effectiveness of the

control) and later between four objectives (number of control interventions, efficacy,

number of controller and controlled networks time steps). Scale free Boolean networks

were chosen to do these experiments, because they are a more realistic model of gene

regulatory networks. The analysis of the Pareto fronts have shown that control can

often be performed using only a single coupling term. In addition, Pareto fronts for

four objectives have shown that the number of controller network time steps and the

frequency at which its runs do not have an impact on the control process.

Finally, deterministic and non-deterministic Boolean network controllers have

been used to influence the dynamics of Boolean models of real biological circuits, by

controlling their trajectory towards a particular target state. This has been done in

two ways: controlling trajectories from a random initial state to reach each attractor

(or steady state) and controlling trajectories between attractors. While for the former

the control problems were randomly chosen, the latter is a more realistic control

problem (i.e. it can be observed in real life). The results show that the EA is able to

find controller BNs that can solve most of the control problems looked at. It has to

be noted that the size of the controlled networks and the number of attractors seem

to have a relatively small effect on controllability. Again the size of the controller

network does not have a notable impact, as in previous experiments in this thesis.
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7.2 Conclusions

The objective of this research was to find efficient control strategies that can be used

to control the dynamics and genetic states of artificial gene regulatory networks.

Throughout this thesis BNs were evolved using EAs to control a number of BNs and

a range of Boolean models of biological networks. The analysis of the performance

and behaviours of the EA and the controller and controlled networks have led to the

following conclusions.

Boolean networks can control other Boolean

networks

Throughout experimentation Boolean networks have been optimised to carry out state

space targeting, targeting both attractors and arbitrary states in different networks.

In all cases, it was shown that BNs can be optimised to govern the dynamics of

the controlled networks. When using models of actual biological networks as the

controlled system, most control task could be solved optimally.

Boolean network controller can be designed and

optimised using evolutionary algorithms

In all the Boolean models of real biological regulatory networks studied, the evolu-

tionary algorithm was able to find optimal controller networks that can target the

majority of the attractors from random initial state and moving from attractor to

attractor. In the case where evolutionary algorithms did not find optimal controller

networks, they get close with a high fitness value. Evolutionary algorithms do not

require knowledge of the controlled system’s state space or dynamical regimes in

order to solve these control problems. This is an advantage over other approaches

such as semi-tensor product of matrices and algebraic approaches.

This approach also works on networks with both uniform and scale free topolo-
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gies: deterministic and non-deterministic Boolean networks and scale free Boolean

networks, the latter being more typical of real biological systems. The results also

show that non-deterministic Boolean networks are easier to control, probably because

they do not get trapped in basins of attraction like deterministic Boolean networks.

The scalability of the approach

Another interesting finding is the scalability of this approach. The fitness distributions

with the controlled networks size suggest that the scalability of the approach is

relatively good. In all the runs meaningful control still occurs for the largest

controlled networks regardless of whether the target network is a deterministic or

non-deterministic Boolean network, or a scale free Boolean network or a Boolean

model of a real regulatory network. This is an advantage over control processes that

use theoretic approaches.

Reducing the number of interventions

The use of multi-objective evolutionary algorithms has shown that there is a trade-off

between the number of coupling terms and the control efficacy (or fitness). However,

from the Pareto fronts it can be seen that a single intervention can be used to

carry out control tasks in many cases. It is important to be able to use only a few

interventions, especially if the controllers will ultimately be used within cells. This

is because each coupling term represents a physical connection to the native GRNs.

The greater the number of coupling terms, the harder the implementation becomes.

Controller Architectures

Different controller networks: deterministic and non-deterministic Boolean networks

and scale free Boolean networks were evolved in this work to perform control in

different target networks. Results from the experiments have shown that deterministic

and non-deterministic Boolean network controllers perform much better than the
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scale free Boolean network controllers. This is a slightly surprising result since scale

free Boolean network controllers are generally believed to be more evolvable than

Boolean networks. However, this might indicate that scale free networks are less

able to implement computation, at least of the kind required for these control tasks.

7.3 Limitations of This Research

Although significant work has been done to check and validate the conclusions

reported throughout this work, using theoretical understanding and experiments,

there are a number of limitations of the experimental techniques which might restrict

their generalisation. These limitations will constitute the main focus of future work.

The performance of the control method has not been rigorously observed and

analysed upon large size models of actual biological networks. This is mostly due to

the lack of availability of such models. Also, there have been very few comparisons

between the performance of the control strategy used in this work and other existing

control methods such as algebraic approaches (Murrugarra et al., 2016), (Hou et al.,

2016). This can be explained by the absence of existing results applying control

approaches to perform state space targeting in an entire Boolean network, rather

these approaches target specific genes in the network which will be controlled (Kim

et al., 2013).

However, comparison between network natural dynamics and dynamics after

control give a clear indication about how well the proposed control method works

when applied to certain problems. Also, more work is required to understand why

SFBNs are hard to evolve to perform control in any Boolean networks. Looking in

more detail into this might give interesting insights the nature and implementation

of computation within biological networks.

There is also a need for more consideration of the practicality of evolving con-

trollers in simulation and then refining them into synthetic biology implementation.

Refining evolved BNs into actual synthetic biology realisations would involve a num-

ber of extra challenges. For instance, in this work timing parameters were evolved to

allow the controller and controlled systems to operate over different timescales. This
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may also be possible to do within synthetic biology implementations, e.g. using RNA

interference rather than transcription factors to speed up the controller’s logic, but

it would not be trivial. Another issue might be limitations placed on the controller’s

size or topology due to the difficulty of avoiding cross-talk within synthetic biology

circuits. This is still an early work, and there remains significant work to be done to

show that this is a viable approach to designing synthetic GRNs.

7.4 Future Work

There are a number of issues raised by this research which need to be addressed in

future work and experimentation as follow:

• Investigate the use of different type of networks for both controller and con-

trolled networks, for instance dealing with stochasticity, different time scales.

• Apply the optimised controller networks to a wider range of real biological

networks models, and use this knowledge to improve understanding of how to

control complex dynamical systems.

• Explore the possibility of using other models for the controller and controlled

systems, for example continuous-state models for the controller network, and

agent-based models for the controlled network. For instance, there has recently

been a lot of work on designing robust executable models of biological systems

(Greaves et al., 2013), (Albergante et al., 2013). By using these kind of models

as controlled systems, there is a potential to generate useful new biological

knowledge.

• Analyse controller networks dynamics.
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Acronyms

ABN – Artificial Biochemical Network

AGRN – Artificial Gene Regulatory Network

BN – Boolean Network

DNA – Deoxyribonucleic Acid

EA – Evolutionary Algorithm

GA – Genetic Algorithm

GP – Genetic Programming

GRN – Gene Regulatory Network

MOEA – Multi-objective Evolutionary Algorithm

MOOP – Multi-objective Optimisation Problem
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mRNA – Messenger Ribonucleic Acid

NSGA II – Non-dominated Sorting Genetic Algorithm II

OGY – Ott, Grebogi and Yorke

PBN – Probabilistic Boolean Network

RBN – Random Boolean Network (deterministic)

RBNnd – Random Boolean Network (non-deterministic)

RNA – Ribonucleic Acid

SFBN – Scale Free Boolean Network

tRNA – Transfer Ribonucleic Acid
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Mathematical Symbols

BNd – controlled Boolean network

BNr – controller Boolean network

CF – feedback connections

CI – control interventions

child1, child2 – Children

dt – the distance from the last step of an evolutionary run to the target state

F, f – Boolean functions

fit – fitness value

in – input

k – connectivity
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maxgen – maximum number of generations

N – number of nodes

NEd – controlled network size

Nones – number ones in controlled network state at the end of an evolutionary run

NetSize – target network size

out – output

P – Initial population

P ′ – New population

Pinit – Initial population

Pchildren – Population of children (new population)

pi – Individual form populations (P , P ′)

p1, p2 – Parents

popsize – Population size

p – probability

pinp – probability distribution
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s – network states

Sd – controlled state

Sr – controller state

t – time

td – controlled time step

tr – controlled time step

α, γ – scale free exponent

c, d, i, n – variables

χ – represents the entire network during update
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Appendix C

Controlling Boolean Models of

Biological Networks Plots

The following plots show the fitness distributions for all the Boolean models of

biological networks (T cell receptor signalling pathway, T helper cell differentiation,

flower morphogenesis in arabidopsis thaliana, fission yeast cell cycle and budding yeast

cell cycle) controlled in this thesis. These plots are showing the normalised distances

from the target for each of the system’s stable states both with and without control

when starting at randomly sampled initial states. These results are obtained using

deterministic and non-deterministic controller RBNs. Non-deterministic controller

RBNs perform better than deterministic controller RBNs, see for example Figures

C.1b, C.1d, C.1f and C.6b, C.1d, C.6f.

In addition to the control of the stable states of the Boolean models of biological

networks from a random initial state, the proposed control method is used to move

between attractors. The results of these experiments are shown in the following

plots.
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Figure C.1: Fitness distributions for the T cell receptor signalling pathway control
problem.
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Figure C.2: Fitness distributions for the T helper cell differentiation control problem.
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Figure C.3: Fitness distributions for the flower morphogenesis control problem.
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Figure C.4: Fitness distributions for the fission yeast cell yeast control.
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Figure C.5: Fitness distributions for the budding yeast cell cycle control.
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Figure C.6: Fitness distributions for the T cell receptor signalling pathway control
problem.
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Figure C.7: Fitness distributions for the T helper cell differentiation control problem.
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Figure C.9: Fitness distributions for the fission yeast cell yeast control.
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Figure C.10: Fitness distributions for the budding yeast cell cycle control.
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Figure C.11: Fitness distributions for the T cell receptor signalling pathway control
problem. Moving for attractor to other attractors

(a) Stable state 2 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

(g) Stable state 8
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Figure C.12: Fitness distributions for the T cell receptor signalling pathway control
problem. Moving for attractor 2 to other attractors

(a) Stable state 1 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

(g) Stable state 8
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Figure C.13: Fitness distributions for the T cell receptor signalling pathway control
problem. Moving for attractor 2 to other attractors

(a) Stable state 1 (b) Stable state 2 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

(g) Stable state 8
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Figure C.14: Fitness distributions for the fission yeast cell yeast control. Moving for
attractor 1 to other attractors

(a) Stable state 2 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

(g) Stable state 8 (h) Stable state 9 (i) Stable state 10

(j) Stable state 11 (k) Stable state 12 (l) Stable state 13
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Figure C.15: Fitness distributions for the fission yeast cell yeast control. Moving for
attractor 2 to other attractors

(a) Stable state 1 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

(g) Stable state 8 (h) Stable state 9 (i) Stable state 10

(j) Stable state 11 (k) Stable state 12 (l) Stable state 13
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Figure C.16: Fitness distributions for the fission yeast cell yeast control. Moving for
attractor 3 to other attractors

(a) Stable state 1 (b) Stable state 2 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

(g) Stable state 8 (h) Stable state 9 (i) Stable state 10

(j) Stable state 11 (k) Stable state 12 (l) Stable state 13
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Figure C.17: Fitness distributions for the budding yeast cell yeast control. Moving
for attractor 1 to other attractors

(a) Stable state 2 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7
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Figure C.18: Fitness distributions for the budding yeast cell yeast control. Moving
for attractor 2 to other attractors

(a) Stable state 1 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7
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Appendix C. Controlling Boolean Models of Biological Networks Plots

Figure C.19: Fitness distributions for the budding yeast cell yeast control. Moving
for attractor 3 to other attractors

(a) Stable state 1 (b) Stable state 2 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7
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Appendix C. Controlling Boolean Models of Biological Networks Plots

Figure C.20: Fitness distributions for the flower morphogenesis in Arabidobis thaliana
control. Moving for attractor 1 to other attractors

(a) Stable state 2 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7
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Appendix C. Controlling Boolean Models of Biological Networks Plots

Figure C.21: Fitness distributions for the flower morphogenesis in Arabidobis thaliana
control. Moving for attractor 2 to other attractors

(a) Stable state 1 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7
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Appendix C. Controlling Boolean Models of Biological Networks Plots

Figure C.22: Fitness distributions for the flower morphogenesis in Arabidobis thaliana
control. Moving for attractor 1 to other attractors

(a) Stable state 2 (b) Stable state 3 (c) Stable state 4

(d) Stable state 5 (e) Stable state 6 (f) Stable state 7

Figure C.23: Fitness distributions for the T-helper cell differentiation control. Moving
for attractor 1 to other attractors

(a) Stable state 2 (b) Stable state 3

131



Appendix C. Controlling Boolean Models of Biological Networks Plots

Figure C.24: Fitness distributions for the T-helper cell differentiation control. Moving
for attractor 2 to other attractors

(a) Stable state 1 (b) Stable state 3

Figure C.25: Fitness distributions for the T-helper cell differentiation control. Moving
for attractor 3 to other attractors

(a) Stable state 1 (b) Stable state 2
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Dignum and A. Sima Etaner-Uyar, Lecture Notes in Computer Science, 6021,

pages 159–170. 2010.

Lones, Michael A; Tyrrell, Andy M; Stepney, Susan, and Caves, LSD. Controlling

legged robots with coupled artificial biochemical networks. Advances in Artificial

Life, ECAL, pages 465–472, 2011.

Lones, Michael A; Smith, Stephen L; Tyrrell, Andy M; Alty, Jane E, and Jamieson,

DR Stuart. Characterising neurological time series data using biologically motivated

networks of coupled discrete maps. BioSystems, 112(2):94–101, 2013b.

Lones, Michael A; Turner, Alexander P; Fuente, Luis A; Stepney, Susan; Caves,

146



REFERENCES

Leo SD, and Tyrrell, Andy M. Biochemical connectionism. Natural Computing,

12(4):453–472, 2013c.

Lones, Michael A; Fuente, Luis A; Turner, Alexander P; Caves, Leo SD; Stepney,

Susan; Smith, Stephen L, and Tyrrell, Andy M. Artificial biochemical networks:

evolving dynamical systems to control dynamical systems. IEEE Trans. Evol.

Comput, 18(2):145–166, 2014.

Marijuán, Pedro C; del Moral, Raquel, and Navarro, Jorge. On eukaryotic intelli-

gence: signaling system’s guidance in the evolution of multicellular organization.

Biosystems, 114(1):8–24, 2013.

Maslov, Sergei; Sneppen, Kim, and Alon, Uri. Correlation profiles and motifs in

complex networks. Handbook of Graphs and Networks, pages 168–198, 2003.

Mattick, John S. Non-coding RNAs: the architects of eukaryotic complexity. EMBO

Reports, 2(11):986–991, 2001.

Mendel, Gregor. Versuche uber pflanzenhybriden. Verh. natf. ver. Brunn. abh., 3:

S–3, 1865.

Mendoza, Luis and Xenarios, Ioannis. A method for the generation of standardized

qualitative dynamical systems of regulatory networks. Theoretical Biology and

Medical Modelling, 3(1):13, 2006.

Mendoza, Luis; Thieffry, Denis, and Alvarez-Buylla, Elena R. Genetic control of

flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics

(Oxford, England), 15(7):593–606, 1999.

Mesot, Bertrand and Teuscher, Christof. Deducing local rules for solving global tasks

with random Boolean networks. Physica D: Nonlinear Phenomena, 211(1):88–106,

2005.

Miller, Jeffrey H. The Operon, volume 7. Cold Spring Harbor Laboratory Pr, 1980.

Miller, Julian F and Thomson, Peter. Cartesian genetic programming. In European

Conference on Genetic Programming, pages 121–132. Springer, 2000.

147



REFERENCES

Mirsky, Henry P; Liu, Andrew C; Welsh, David K; Kay, Steve A, and Doyle, Francis J.

A model of the cell-autonomous mammalian circadian clock. PNAS, 106(27):11107–

11112, 2009.

Mitchell, Melanie. An Introduction to Genetic Algorithms. MIT Press, 1998.

Motter, Adilson E. Networkcontrology. Chaos, 25(9):097621, 2015.

Murata, Tadahiko and Ishibuchi, Hisao. MOGA: Multi-objective genetic algorithms.

In Evolutionary Computation, 1995., IEEE International Conference on, volume 1,

page 289. IEEE, 1995.

Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris, and Laubenbacher, Rein-

hard. Identification of control targets in Boolean molecular network models via

computational algebra. BMC Systems Biology, 10(1):94, 2016.

Newman, Mark EJ. Modularity and community structure in networks. PNAS, 103

(23):8577–8582, 2006.

Nicolau, Miguel; Schoenauer, Marc, and Banzhaf, Wolfgang. Evolving genes to

balance a pole. In European Conference on Genetic Programming, pages 196–207,

2010.

Poli, Riccardo; Kennedy, James, and Blackwell, Tim. Particle swarm optimization.

Swarm Intelligence, 1(1):33–57, 2007.

Poret, Arnaud and Boissel, Jean-Pierre. An in silico target identification using

boolean network attractors: avoiding pathological phenotypes. Comptes Rendus

Biologies, 337(12):661–678, 2014.

Purcell, Oliver and Lu, Timothy K. Synthetic analog and digital circuits for cellular

computation and memory. Current opinion in biotechnology, 29:146–155, 2014.

Purdom, G and Anderson, K. Analysis of Barry Hall’s research of the E. coli

ebg operon: Understanding the implications for bacterial adaptation to adverse

environments. In Proceedings of the Sixth International Conference on Creationism,

pages 149–163. Springer, 2008.

148



REFERENCES

Quick, Tom; Nehaniv, Chrystopher L; Dautenhahn, Kerstin, and Roberts, Graham.

Evolving embodied genetic regulatory network-driven control systems. In European

Conference on Artificial Life, pages 266–277. Springer, 2003.

Reil, Torsten. Dynamics of gene expression in an artificial genome—implications for

biological and artificial ontogeny. In European Conference on Artificial Life, pages

457–466. Springer, 1999.

Ribeiro, Andre; Zhu, Rui, and Kauffman, Stuart A. A general modeling strategy

for gene regulatory networks with stochastic dynamics. J. Comput. Biol., 13(9):

1630–1639, 2006.

Roli, Andrea; Manfroni, Mattia; Pinciroli, Carlo, and Birattari, Mauro. On the

design of Boolean network robots.

Ros, Vera ID and Hurst, Gregory DD. Lateral gene transfer between prokaryotes and

multicellular eukaryotes: ongoing and significant? BMC biology, 7(1):20, 2009.
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