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ABSTRACT 

Gas hydrates are a major flow assurance issue that can cause serious operational and 

safety problems in the oil and gas industry. In the past decade, low dosage hydrate 

inhibitors (LDHIs) – including kinetic hydrate inhibitors (KHIs) and anti-agglomerants 

(AAs), have increasingly been used to prevent hydrate formation/blockage. LDHIs offer 

significant advantages over thermodynamic hydrate inhibitors (THIs); while LDHIs are 

used typically dosed at <2.5 wt% in produced water, THIs are used at much higher 

concentrations, e.g. up to 50 wt%. While KHIs are generally known as hydrate nucleation 

inhibitors, more recent work (Crystal Growth Inhibition (CGI) method) shows they are 

powerful crystal growth inhibitors for KHIs which can completely inhibit hydrates 

indefinitely even in the presence of hydrates. Concerns about their biodegradability have 

hindered their more widespread usage (in Norwegian waters they cannot be used at all), 

especially when the produced water containing KHIs is potentially released into the sea, 

sparking a growing interest in the use of green biodegradable chemicals. While only a 

limited number of potential green KHI candidates have currently been found, the 

performance of these KHIs is not well known, and they are not yet used for real 

applications.  

The main objective of this thesis is to investigate Bio KHIs and their potential 

combination with THIs for prevention and remediation of gas hydrates. Initial findings of 

experimental studies using CGI method aimed at investigating three green KHIs which 

have been reported / are produced (Luvicap Bio, ECO-530, and pectin) show Luvicap Bio 

has better KHIs properties and was selected for further investigation in this thesis.  

The performance of Luvicap Bio alone including structure effects and hydrate fraction 

tolerance was investigated and compared with PVCap. It was concluded that Luvicap Bio 

is a better inhibitor for s-I methane than for s-II methane, i.e., hydrate growth pattern and 

structure change studies support the theory of multi-structure hydrate formation in natural 

gas and s-I and s-II in the methane or ethane system.  

In addition, inhibition of hydrates using a combination of Luvicap Bio and THIs (MEG, 

methanol, and ethanol) was investigated  to see whether Luvicap Bio could be used to 

reduce the required THIs dosage for hydrate inhibition. The results showed that 
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Luvicap Bio combines well with MEG and it could reduce the methanol requirement, i.e., 

methanol is toxic, so green KHI replacing is an application with respect to the 

environment. 

Furthermore, work was carried out to investigate hydrate dissociation/remediation using 

either THIs or KHIs. Hydrate blockage removal in the vertical pipe was investigated using 

MEG, methanol, and their combination. The results showed that the density of THI mix 

is a key factor for hydrate plug removal. The initial findings of experimental studies aimed 

at investigating hydrate dissociation using KHIs demonstrate that, in addition to inhibiting 

hydrate growth/nucleation, KHI polymers can induce partial or complete hydrate 

dissociation. It is speculated that it is related to hydrate structure/morphology change. In 

addition to improving confidence in KHI field use, findings potentially have novel 

applications with respect to the use of combined THI + KHI (or KHI alone) for hydrate 

plug remediation and gas production from naturally occurring hydrates in 

oceanic/permafrost sediments. 
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1.1 Background on Gas Hydrate 

Gas Hydrates are ice-like crystalline compounds which were discovered in 1810 by 

Sir Humphery Davy [1.1] when he found chlorine hydrate. The composition of chlorine 

hydrate was characterized by Faraday [1.2]. Nevertheless, it took a century to discover 

that natural gas hydrates could cause blockage in pipelines. In mid-1930’s, 

Hammerschmidt reported that blockage in the gas pipeline above the ice point was due to 

natural gas hydrates [1.3]. This discovery of natural gas hydrate was a starting point of 

research activities on gas hydrates in the oil and gas industries, especially on flow 

assurance issues.  

Gas hydrates or crystalline hydrates are crystalline solids which consist of guest/former 

molecules (generally gas) and water molecules (host), i.e., the guest molecules are trapped 

in cages with the different structure formed from hydrogen-bonded water molecules. Gas 

hydrates are formed as a result of physical combination of gas and water molecules 

depending on pressure and temperature. Generally, the presence of water/ice, suitable 

sized gas/liquid molecules, and suitable pressure/temperature condition are the three 

necessary conditions for gas hydrate formation.   

Different hydrate structures can form mainly depending on the hydrate guest size and 

cage occupancy. However, the stability of cavities and structures can change at high 

pressure resulting in changing hydrate structure e.g. in methane system [1.4][1.5].  

As shown in Figure 1-1, the hydrate cages consists of five polyhedral cavities/cages which 

are described by general nomenclature (𝑛𝑖
𝑚𝑖) where 𝑛𝑖 is the number of edges in face type 

‘’i’’ and 𝑚𝑖 is the number of faces with 𝑛𝑖 edges [1.6]. The description and properties of 

these cavities are tabulated in Table 1-1.   

Most common clathrate hydrate structures are cubic structure I (s-I), cubic structure II 

(s­II), and hexagonal structure H (s-H). In addition to these structures, some hydrate 

structures have been discovered which are not common and exist in the natural gas 

systems e.g. Jeffrey’s structures III to VII [1.6].  
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Figure 1-1. (a) pentagonal dodecahedron (512), (b) tetrakaidecahedron (51262),                                                         

(c) hexakaidecahedron (51264), (d) irregular dodecahedron (435663), and (e) icosahedron (51268) [1.6]. 

 

 

 

 

 

Table 1-1. Geometry of Cages and crystal properties of different hydrate crystal structures [1.6] 

Hydrate crystal 

structure 
I II H 

Cavity Small Large Small Large Small Medium Large 

Description 512 51262 512 51264 512 435663 51268 

Number of 

cavities/unit cell 
2 6 16 8 3 2 1 

Average cavity 

radius a (Å) 
3.95 4.33 3.91 4.73 3.94 4.04 5.79 

Variation in 

Radius b (%) 
3.4 14.4 5.5 1.73 4.0 8.5 15.1 

No. of water 

molecules/cavity d 
20 24 20 28 20 20 36 

a The average cavity radius will vary with temperature, pressure, and guest composition. 

b Variation in the distance of oxygen atoms from the centre of a cage. A smaller variation 

in radius reflects a more symmetric cage. 
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Small molecules/guests (0.4-0.55 nm molecular diameter) e.g. C1, C2, and CO2, form 

structure I hydrate which is the main structure in natural hydrates in the Earth’s natural 

environment  [1.7]. McMullan and Jeffrey (1965) characterised the structure-I using 

X­ray diffraction method [1.8]. They found that there are 46 water molecules in the cubic 

unit cell of structure I with a dimension of 12 Å (side) which consists of two type of cages, 

2 small cages (512) and 6 large cages (51262). The framework of gas hydrate structure I is 

illustrated in Figure 1-2.  

 

 

 

Figure 1-2. The polyhedral oxygen framework of gas hydrate structure I [1.8].  
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The structure II of gas hydrate was also characterised using the same technique (X-ray 

diffraction) by Mak and McMullan (1965) [1.9]. They found that cubic structure-II of 

hydrate with a unit cell dimension of 17.3 Å consists of 136 water molecules. A cubic unit 

cell of structure-II hydrate consists of 16 small cages (512) and 8 large cages (51264). The 

framework of gas hydrate structure II is illustrated in Figure 1-3. The cubic structure II 

generally forms with larger guests (guest diameters: 0.6-07 nm) e.g. propane and 

iso­butane [1.7]. However, the smallest guest molecules with diameters less than 0.4 nm 

do form structure II; e.g. Argon, Krypton, Oxygen, and Nitrogen [1.7]. Although some 

single guest molecules like methane and ethane do form structure-I, they form stable 

structure II in the binary guest mixture [1.10][1.11][1.12]. However, CO2 (as an 

intermediate-sized s­I former) does not form structure II in a system with another s-I 

former [1.12]. 

 

 

Figure 1-3. The polyhedral oxygen framework of gas hydrate structure II [1.9]. 
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Both structure I and II are the simple hydrates which can be stabilised by a single guest 

molecule. Unlike structure I and II hydrates, structure-H hydrates, which was discovered 

using NMR spectroscopy with X-ray and power diffraction in 1987 by Ripmeester et al., 

require both a small guest molecule and a large guest molecule to form a stable 

structure H hydrates [1.13]. For example, methane + cycloheptane form structure-H 

[1.14]. A unit cell structure-H consists of 34 water molecules. Structure-H consists of 

three small cavities with 12 pentagonal faces (512), two medium cavities with 3 square 

faces, 6 pentagonal faces, and 3 hexagonal faces (435663), and one large cavity with 12 

pentagonal faces and 8 hexagonal faces (51268) [1.6]. The framework of gas hydrate 

structure-H is illustrated in Figure 1-4. 

 

 

 

Figure 1-4. Schematic diagram showing structure H is built up of layers of 512 (D) cavities and 

layers of 51268 (E) and 435663 (D’) cavities [1.6]. 
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1.2 Hydrate Nucleation and Formation/Growth 

Hydrate nucleation is the first step for hydrate formation which is difficult to observe 

experimentally. The hydrate nucleation is a stochastic phenomenon, so hydrate formation 

point is not repeatable and depends on many factors including mixing efficiency, cooling 

rate, the presence of foreign materials, and fluid composition.  

There are two types of nucleation theory for crystallization: homogeneous nucleation and 

heterogeneous nucleation. Homogeneous nucleation would occur in the system without 

any impurities and foreign materials. According to the theory of nucleation, a critical 

cluster size/radius is necessary to be reached for nuclei/clusters growth 

spontaneously [1.6]. In addition, there is a free energy barrier to overcome to form a 

critical cluster. As subcooling temperature/supersaturation increases, the free energy 

barrier decreases and then nucleation becomes spontaneous. Practically, homogeneous 

nucleation does not occur in real systems as they have foreign materials and surface (e.g. 

fluid interface). Therefore, hydrate nucleation is stochastic and heterogeneous. 

Nucleation, free energy barrier, and critical cluster radius have been studied by other 

researchers [1.15][1.16][1.17][1.18].   

Hydrate nucleation/initiation usually occurs at the vapour-liquid interface, because not 

only the Gibbs free energy at the interface is low but also the concentrations of both host 

and guest molecules are very high at the interface [1.17][1.19]. Generally, there are three 

postulated mechanisms for hydrate nucleation at the molecular level; labile cluster 

nucleation hypothesis, nucleation at the interface hypothesis, and local structuring 

nucleation hypothesis. 

In labile cluster nucleation hypothesis, hydrate nucleation occurs inside the aqueous 

phase. In fact, water molecules spontaneously form labile clusters around the dissolved 

gas. These labile clusters join together stochastically to create hydrate nucleus and unit 

cells. The hydrate nucleation does not form until both types of cavities for either s-I or   

s-II are created (512 and 51262 for s-I and 512 and 51264 for s-II). Christiansen and Sloan 

(1994) developed and hypothesized this model [1.20]. Figure 1-5 and Figure 1-6 show 

the different steps of hydrate nucleation according to labile cluster nucleation hypothesis. 
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Figure 1-5. Schematic model of labile cluster growth [1.6].  

 

 

 

Figure 1-6. Hydrate labile cluster growth mechanism imposed on a pressure–temperature trace [1.6]. 
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Long (1994) and Kvamme (1994) proposed another mechanism for hydrate nucleation. 

They suggested that labile hydrate cavities occur on the vapour side of interface 

[1.21][1.22]. Based on this hypothesis, gas molecules are adsorbed and transported to the 

interface. These gas molecules move to the right position and then adsorb through the 

surface. At this position, water molecules form some part of cages and then complete 

these partially open cages. These labile clusters join together and grow on the vapour side 

to reach the critical size of hydrate nucleus. The schematic of this theory is shown in 

Figure 1-7.  

Molecular dynamic simulation supports the local structuring nucleation hypothesis 

[1.19][1.23]. The local order model of nucleation proposed that guest molecules are 

positioned like what it is in clathrate hydrate phase. This arrangement of guest molecules 

increases to exceed the critical nucleus. Therefore, the increase of guest-guest and host-

host cluster order result in critical nucleus formation. Figure 1-8 shows the snapshot of 

water clathrate ordering at different time using a molecular dynamic simulation by Moon 

et al. (2003) [1.19].  

 

 

Figure 1-7. Adsorption of gas molecules onto labile hydrate cavities at gas–water interface [1.21]. 
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Figure 1-8. Snapshots of clathrate clusters at given times (ns). Only hydrate like waters are shown; 

lines indicate the hydrogen bond network [1.19]. 

 

After hydrate nucleation, hydrate growth would be considered. The hydrate growth rate 

depends on three factors: (1) the kinetic of crystal growth at the hydrate surface, (2) mass 

transfer, and (3) heat transfer [1.6]. However, hydrate crystal can grow in different ways 

including (1) single crystal growth, (2) hydrate film growth at the water-hydrocarbon 

interface, (3) multiple crystal growths in an agitated system, and (4) growth of metastable 

hydrate phases [1.6].  

Similar to hydrate nucleation, the hydrate crystal growth is stochastic. Although the 

hydrate growth kinetic is unpredictable [1.6], the pattern of hydrate growth rate can be 

repeatable at different driving force/subcooling temperatures (see Chapter 3).  

Although hydrate formation can cause serious problems and its growth rate and 

agglomeration tendency need to be considered, increasing of hydrate formation rate is 

interested in many positive applications of gas hydrates [1.24] including transportation 

and storage of natural gas [1.25], CO2 sequestration [1.26], and refrigeration [1.27]. Many 

techniques have been used to stimulate hydrate formation such as increasing the 

mass/heat transfer using the higher stirring rate and adding the chemicals e.g. surfactant 

[1.28] and zeolite [1.29] to the system.  
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1.3 Gas Hydrates and Flow assurance: Problem  

Gas hydrate formation and blockage in the pipelines are still a major flow assurance 

challenge. There are several options to avoid hydrate formation including: 1. Remove the 

free water and reduce the water content of the system using different methods such as 

separator and dehydration using glycol or molecular sieve. 2. Maintain the system at high 

temperature or low pressure to prevent hydrate formation. 3. Injection of inhibitors such 

as THIs and LDHIs (See Section 1.4.1 and 1.4.2).  

Nevertheless, in some cases, hydrate blockage can form as a result of different scenarios 

such as restart following an unplanned shut-in, failure of inhibitor delivery pumps, or 

increased water content. There have been a lot of investigations in association with gas 

hydrate blockage and different hydrate blockage removal strategies in the literature along 

with case studies [1.30][1.31]. 

There are several remediation options for gas hydrate dissociation and hydrate blockage 

removal such as depressurizing, chemical injection, mechanical methods, and thermal 

methods. For example, depressurizing method was used to remove hydrate blockage in a 

>20 miles subsea tieback in the Gulf of Mexico [1.32], gas injector flowline in Gulf of 

Guinea [1.33], export gas pipeline in the Gulf of Mexico [1.34], and the main gas export 

pipeline from Pompano platform [1.31]. In addition,  BP used a drilling rig for removing 

fluid from the pipeline and then depressurized it to remove hydrate blockage from a 

16 inch jumper connecting the Atlantis gas export line to the Mardi Gras gas transport 

system in the Gulf of Mexico [1.31]. However, depressurization may result in movement 

of blockage and its associated consequences. Depressurization may lead to environmental 

and financial concerns due to gas flaring. In addition, in long vertical lines e.g. riser, 

depressurization may not be possible due to hydrostatic head associated with the column 

of liquid, mainly hydrocarbon, on top of the blockage. 

In order to dissociate and remove hydrate blockage efficiently, more than one methods is 

used in many cases. For example, depressurizing and applying electrical heating directly 

to the pipeline were used by Chevron to remove hydrate blockage [1.35]. In another case, 

hot glycol circulated using coiled tubing in the gas condensate well in offshore South 

America was used to remove hydrate blockage [1.36]. In this case, glycol and heated mud 

and sea water were used first, but these attempts were unsuccessful and did not remove 
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the blockage. Coiled tubing was deployed to remove hydrate blockage in a Statoil 

offshore gas field in the Barents Sea as well [1.37]. 

1.4 Gas Hydrate Inhibtion 

One of the most common used methods for hydrate inhibition is the chemical inhibitors 

which are divided into two main categories, thermodynamic hydrate inhibitors (THIs), 

and low dosage hydrate inhibitors (LDHIs). In the following, these two main categories 

of hydrate inhibition are described.  

1.4.1 THI Inhibition  

THIs, e.g. methanol, ethanol, and mono-ethylene glycol (MEG), shift hydrate phase 

boundary to the lower temperature at a particular pressure or to the higher pressure at a 

particular temperature. Basically, the main mechanism of thermodynamic inhibitor is 

changing intermolecular interaction, i.e., the strong attractive forces between the inhibitor 

oxygen atoms and water hydrogen atoms which cause hydrogen bond between inhibitor 

and water molecules [1.6]. One of the problems associated with the use of THIs is that 

large quantities of inhibitor, e.g. 20-50 mass%, may be required to prevent hydrate 

formation, which can cause both cost and logistical issues. Figure 1-9 shows the hydrate 

phase boundary for methane, methane + 20 mass% MEG, and methane + 20 mass% 

methanol. 

1.4.2 KHI Inhibition 

In contrast to THIs, LDHIs can inhibit hydrate formation at low dosage e.g. 0.5-2.5 

mass%. LDHIs are divided into two groups; anti agglomerants (AAs) and kinetic hydrate 

inhibitors (KHIs). Both AAs and KHIs were first discovered in the early 1990s [1.38]. 

While KHIs are known to prevent hydrate nucleation and growth, AAs allow hydrates to 

form but prevent hydrate agglomeration.  
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Figure 1-9. Hydrate phase boundary for methane, methane + 20 mass% MEG, and methane + 

20 mass% MeOH. The thermodynamic hydrate phase boundaries for these systems were predicted 

using HydraFLASH®, a thermodynamic model developed by Hydrafact Ltd and Heriot-Watt 

University. 

 

AAs are surface active agents, usually surfactants, and there are two mechanisms which 

enable to have AAs effect. One type of AAs produces a water-in-oil emulsion that allows 

hydrates to form inside the water droplet, enabling slurry of hydrate particles in a 

hydrocarbon phase [1.38]. Diethanolamides, dioctylsulfosuccinates, sorbitans, 

ethoxylated polyols, ethoxylated fatty acids, and ethoxylated amines are some examples 

of this type of AAs [1.38]. The second type of AAs has a hydrate-philic (hydrate seeking) 

head group and a hydrophobic tail. The hydrate-philic head groups which are quaternary 

ammonium with n-butyl, n-pentyl, or isopentyl groups (Figure 1-10), adhere to hydrate 

particles and even can embed in the hydrate surface if hydrates grow around the 

hydrate­philic head. Meanwhile, hydrophobic tail prevents hydrate formation; making 

more attractive the hydrate particles to the hydrocarbon phase [1.38].   

KHIs are typically low molecular weight polymer or copolymer which were discovered 

in the 1990s [1.38]. Although KHIs are generally known as anti-nucleators, they can 

prevent hydrate growth or delay hydrate formation depending on subcooling temperature. 

poly(vinylpyrrolidone) (PVP) [1.39]  and polyvinylcaprolactam (PVCap) [1.40][1.41] are 

the first groups of polymers known as KHIs. The structure of poly(vinylpyrrolidone) and 

polyvinylcaprolactam are shown in Figure 1-11 and Figure 1-12 respectively.  
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Figure 1-10. Structure of good quaternary ammonium or phosphonium hydrate growth inhibitors, 

where M=N or P and at least two of the R groups are n-butyl, n-pentyl, or isopentyl [1.38]. 

 

 

 

 

 

 

 

 

 

Figure 1-11. Structure of poly(vinylpyrrolidone) [1.38]. 

 

 

 

 

 

 

 

 

 

Figure 1-12. Structure of polyvinylcaprolactam [1.38]. 
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1.4.3 Bio KHI 

KHIs could offer significant CAPEX and OPEX advantages over other traditional 

inhibition methods e.g. thermodynamic inhibition using glycols/methanol, insulation, 

heating, and/or maintaining the system at high temperature or low pressure.  Despite this, 

there are environmental issues in terms of KHIs use and this would be important when 

the produced water is released to the sea. The common KHIs e.g. PVCap and PVP, are 

not toxic, but they are poorly biodegradable in terms of structure of active polymer. The 

large molecule sizes of these KHIs restrict to the breakdown by microorganism and low 

reactivity of these polymers and therefore result in poor polymer biodegradability of 

KHIs. 

In addition, there has been a trend towards tightening the rules in terms of chemicals use. 

The chemicals should meet the stringent biodegradability requirement. For example, the 

KLIF (Norwegian Environmental Agency) puts chemicals with <20% biodegradation and 

log Pow≥5 (Log Pow: A product's ability to bioaccumulate) to the black list [1.42]. 

Therefore, there is a tight restriction towards KHIs, and traditional KHIs cannot be used 

in the Norwegian water due to its poorly biodegradable.  

In the light of above, it raises the potential demand to use green KHIs in the oil and gas 

industry. However, it is difficult to produce a chemical which has good biodegradability 

with good KHI properties at the same time. Therefore, there has been effort to balance 

good biodegradability and good KHI properties. Nevertheless, a new hybrid polymer with 

good KHI properties together with improved biodegradability has been reported [1.43].   

Basically, a common approach to produce green KHIs is bond substitution in backbone 

chains of conventional KHI polymers e.g. partial substitution of C-C bonds with more 

reactive/easily broken linkages. Pyroglutamate KHI polymer is an example of 

green/biodegradable KHI. Figure 1-13 illustrates the structure of one class of 

pyroglutamate polyester kinetic hydrate inhibitors showing that its pendant groups look 

like to those found in PVP molecular structure, but the polymer backbone is different 

[1.42].  
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Figure 1-13. One class of pyroglutamate polyester kinetic hydrate inhibitors [1.42]. 

 

 

 

1.4.4 KHI Evaluation  

1.4.4.1 Induction Time  

Induction time has been used for a long time to evaluate KHIs, i.e., induction time refers 

to the period of time between once the system enters the hydrate stability zone and once 

hydrates are nucleated and formed [1.6][1.38][1.44]. Hydrate crystal nucleation is not 

detectable with classical macroscopic probe such as pressure transducer. Therefore, 

induction time refers to time until a detectable volume of hydrates formed. Although 

induction time is dominated by nucleation period, it consists of the detectable time for 

hydrate growth.  Figure 1-14 shows an example induction time method. As shown in 

Figure 1-14, although the condition of the system (pressure and temperature) is inside the 

hydrate stability regions, hydrate nucleation and growth do not occur because of 

metastability.  

As noted, hydrate nucleation is a stochastic phenomenon. Therefore, the results of 

induction time are not repeatable for evaluation of KHIs, i.e., the induction time is 

dominated by hydrate nucleation period. 
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Figure 1-14. An example of induction time method.  Part A shows the PT plot for cooling the system 

to the specific subcooling temperature. Part B shows the same pressure data from part A, but this 

time as a function of time, showing a clear change in pressure due to hydrate formation at Ti 

(induction time). 

 

 

1.4.4.2 Crystal Growth Inhibition (CGI) Method 

Recently, the gas hydrate research centre at Heriot-Watt University has developed a 

method to evaluate KHIs which is highly repeatable [1.45][1.46][1.47][1.48]. In this 

method which is known as crystal growth inhibition (CGI), the effect of hydrate 

nucleation is removed from the results. The CGI method determines different regions as 

a function of subcooling. Complete inhibition region (CIR) (infinite induction time)/green 

zone, partial inhibition region /amber zone, and rapid failure region/red zone are three 

main regions which are highly repeatable.  
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The crystal growth inhibition (CGI) technique was used in this work to evaluate KHI 

performance. An example CGI method cooling curves for 0.5 mass% PVCap aqueous 

with decane and natural gas is shown in Figure 1-15 to determine the CGI regions which 

are described in Table 1-2. The following steps were carried out to determine these 

regions. 

1. After loading the materials, the system was cooled down rapidly to form hydrates. 

2. After initial hydrate formation, the system was warmed up to dissociate most of 

the hydrate crystals. The step heating of the system continued until a few percent 

of hydrates (roughly 0.5% of water converted to hydrates) remained. As a result, 

the effect of hydrate nucleation on hydrate formation is removed and the results 

are repeatable. 

3. The system was cooled again with a constant cooling rate, 1 °C/hr. This constant 

cooling rate allows the system to form hydrates with different growth rate as a 

function of subcooling temperature and therefore the CGI regions can be defined. 

4. Steps 2 and 3 were repeated several times to check repeatability of the results.  

5. Finally, the system was step-cooled, 1 °C/24hrs, to determine complete inhibition 

and very slow growth regions. 

Table 1-2. KHI Induced CGI Region Nomenclature and Typical Hydrate Growth Rates [1.45] 

Region Growth rate description 
typical growth rates order of 

magnitude (% water / hr) 

CIR complete inhibition region 0.00 

SGR (VS) slow growth rate (very slow) 0.01 (<0.05%/h) 

SGR (S) slow growth rate (slow) 0.1 (0.05 ≤ growth rate <0.5%/h) 

SGR (M) slow growth rate (medium) 1 (0.5 ≤ growth rate <5%/h) 

RGR rapid growth region 10 (≥5%/h) 

SDR slow dissociation region 
dissociation rate 1 order of 

magnitude less than for no KHI 
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Figure 1-15. Example CGI method cooling curves for 0.5 mass% PVCap aqueous with decane and 

natural gas (hydrocarbon to water volumetric ration is 1:4) showing CGI regions determined from 

changes in relative hydrate growth rates. The composition of natural gas is given in Table 2-1. 

1.5 Gas Hydrate dissociation  

1.5.1 Hydrate Dissociation using THIs 

Thermodynamic hydrate inhibitors (THIs) injection as a chemical remediation method is 

used in some cases to remove hydrate blockage and inhibit further hydrate formation. 

Methanol (MeOH) and mono-ethylene glycol (MEG) are the two most commonly used 

THI. Basically, THIs shift the hydrate equilibrium conditions to lower temperature at a 

particular pressure or higher pressure at a particular temperature [1.31]. Methanol 

injection in association with pressure reduction is a common method to dissociate 

hydrate [1.49]. Hydrate properties, inhibitors properties, solid/gel precipitation, and the 

turbulence of the liquid system affect the hydrate dissociation by THIs [1.50]. 

The effectiveness of different THIs such as MEG, DEG, TEG, and methanol have been 

studied [1.50][1.51]. Li et al. (2000) showed experimentally that methanol seems to be 

the most efficient inhibitor in hydrate plug melting for permeable/porous hydrate plugs. 

Furthermore, they showed that while MEG can penetrate into a compact plug, it may 

freeze out, resulting in reduced hydrate melting efficiency [1.50]. They pointed out that 

TEG is not efficient in hydrate plug removal and should not be used for hydrate plug 

melting. In addition, Austvik et al. (2000) investigated the efficiency of thermodynamic 
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hydrate inhibitors in hydrate plug removal [1.51]. They reported that while methanol had 

no effect in some cases, it could remove the plug in three to four days for several other 

occasions.  

Lysne and Larsen (1995) described the gas hydrate dissociation process using THIs 

injection [1.49]. Based on this description, hydrate is assumed at thermal equilibrium (no 

temperature gradients), mechanical equilibrium (no pressure gradients) and 

thermodynamic equilibrium (no chemical potential gradients) at Point A in Figure 1-16. 

If the pressure is kept constant, a process A-B will happen. In this process, if THI is 

injected continuously, the local concentration of THI remains constant, so the temperature 

at the interface of hydrate and inhibited phase decreases to TB. At this condition, as the 

new equilibrium temperature is lower than the ambient temperature, further hydrate 

dissociation is controlled by heat transfer. In contrast to the continuous THI injection, if 

a single batch of THI injection is used and pressure is kept constant, the temperature of 

the hydrate near the interface is initially decreased to TB. Meanwhile, the fresh water 

which is produced due to hydrate dissociation, will dilute the THI. Therefore, the effect 

of THI will diminish gradually and in the case of huge quantities of hydrates, the two 

curves may merge together into Point A and hydrate dissociation will be stopped (if we 

ignore the effect of changes in the gas composition). 

In contrast to the constant pressure process, the process may follow the A-C path if the 

system pressure is allowed to increase due to hydrate dissociation. In this process, the 

temperature at the interface of hydrate and inhibited aqueous phase decreases to TB due 

to endothermic nature of hydrate dissociation, but can stabilise at TA. According to the 

earlier description, if the pressure is kept constant, the inhibited hydrate equilibrium curve 

may converge to original curve (if the composition changes are ignored) and if the 

pressure is allowed to increase due to hydrate dissociation, hydrate phase meets the new 

inhibited curve along curve A-C (at thermodynamic equilibrium). In the latter case, 

because the temperature is below the ambient temperature, more hydrates should 

dissociate to reach thermal and thermodynamic equilibrium at Point C.    
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Figure 1-16. Hydrate dissociation process by THIs injection. TA is ambient temperature. 

1.5.2 Hydrate Dissociation using KHIs 

While KHI growth inhibition is increasingly well understood, there is much more limited 

data on the effect of KHIs on gas hydrate dissociation. Recently, it has been reported that 

PVCap increases the thermodynamic stability of hydrates which causes very slow hydrate 

dissociation rate outside the hydrate stability zone [1.52]. It is indicated that not only does 

PVCap increase apparent hydrate dissociation temperatures, but it also caused reduced 

cage filling typified by a lower large-to-small cage occupancy in hydrates formed from 

PVCap systems. 

In addition, as mentioned in Section 1.4.4.2, during the CGI method development, it was 

noticed that KHIs reduce the dissociation rate. Therefore, slow dissociation region (SDR) 

is introduced for the system with KHI. The dissociation rate in this region is one order of 

magnitude less than for no KHI system[1.45][1.46][1.47][1.48].  

Although there are now a number of studies which show that KHIs can affect the hydrate 

dissociation rate outside the hydrate stability zone, there is very little literature data on 

the effect of KHIs on hydrate dissociation inside the hydrate region. As discussed, KHIs 

are known as hydrate nucleation/growth inhibition, so they are not considered as having 

a thermodynamic THI-type effect. Therefore, dissociation of hydrates using KHIs inside 

the hydrate stability zone would not be expected. Nevertheless, Anderson et al. reported 

that PVCap can induce hydrate dissociation inside the thermodynamic hydrate stability 

region [1.46]. However, the process has mechanisms giving rise to it that have not been 

investigated in depth (assessing this process and its origins together with the mechanisms 

have been discussed in Chapter 6).     
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1.6 Thesis Outline  

 

The main objective of this work is to study Bio KHIs alone and in conjunction with THIs 

for hydrate prevention / removal (induced dissociation). Furthermore, hydrate fraction 

tolerance, gas hydrate growth regions, formation of various hydrate structures, and gas 

hydrate blockage removal are the other topics of this thesis.  

In Chapter 2, work has been undertaken to select the Bio KHI for the further studies in 

this thesis. CGI method was used to evaluate different Bio KHIs, and Luvicap Bio was 

selected as it has better performance in terms of hydrate inhibition. 

Chapter 3 presents results of work undertaken on the topic of KHIs (PVCap and 

Luvicap Bio), in terms of their general performance and in relation to the issues of 

structural effects and threshold inhibition. The effect of the fraction of water converted to 

hydrate on both PVCap and Luvicap Bio performance in the methane system is 

investigated. Furthermore, studies have focused on Luvicap Bio + PVCap combination 

with methane and natural gas to see whether better inhibition can be achieved rather than 

using Luvicap Bio or PVCap alone. In addition, hydrate structure effect on inhibition for 

Luvicap Bio and PVCap have been studied to support the theory that Luvicap Bio is a 

better inhibitor for s-I and PVCap is a stronger inhibitor for s-II. The aim is to see whether 

PVCap and Luvicap Bio show synergism effect, i.e., Luvicap Bio and PVCap are a strong 

inhibitor for s-I and s-II respectively, so their combination would result in better 

performance in a multi-structure hydrate system. Moreover, the hydrate growth pattern 

and hydrate structure change were studied to support the theory of multi-structure hydrate 

formation in the natural gas system and formation of s-I and s-II in the simple methane 

or ethane system. 

Chapter 4 is focused on the investigation of thermodynamic hydrate inhibitors effect on 

kinetic hydrate inhibitor. The effectiveness of Luvicap Bio in the presence of MEG, 

methanol, and ethanol was investigated using the CGI method. The primary aim of this 

chapter is to assess whether MEG, methanol, or ethanol is a full ‘top-up’ inhibitor or 

‘top­up’ inhibitor for Luvicap Bio in the natural gas systems. For example, whether 

Luvicap Bio can be used to reduce THI requirements in terms of hydrate inhibition. 

Therefore, the CGI method was carried out to measure CGI regions for 0.5 mass% 

Luvicap Bio with different THIs concentrations (5, 10, 20, 30, and 50 mass% of MEG, 
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MeOH, or EtOH). The CGI regions were determined for a range of pressure from 30 bara 

to 180 bara. Further works in this area to measure the CGI regions with a higher 

concentration of Luvicap Bio (e.g. 1.0 mass%) with methanol and MEG in the natural gas 

systems have also been undertaken over the range of pressure from 30 bara to 160 bara. 

The reason for these measurements is to see if higher methanol/MEG reductions can be 

achieved by increasing the KHI dosage.  

As discussed, one of the aims of this thesis is to investigate the induced hydrate 

dissociation either using THIs or KHIs especially Luvicap Bio. Therefore, in Chapter 5, 

the hydrate blockage removal in the vertical pipes using THIs was investigated. One of 

the problems with natural gas production is gas hydrate formation which can cause 

blockage. Although there are a number of options to inhibit hydrate formation (e.g. 

thermodynamic hydrate inhibitors and kinetic hydrates inhibitors), hydrate blockage can 

occur for some reasons, e.g. underestimation of water cut production, unplanned shut-in, 

inappropriate inhibitor injection method or failure of inhibitor delivery. There are a 

number of remediation methods for hydrate blockage removal such as depressurization, 

chemical injection e.g. methanol and MEG, mechanical, and thermal methods. In the case 

of chemical usage in vertical pipes, density plays an important role and needs to be 

considered. Therefore in Chapter 5, the effect of chemical density on removing hydrate 

blockage in the vertical pipes was assessed using a long window rig. The effectiveness of 

three chemical mixtures (MEG, MeOH, and MEG/MeOH mixture with a density of 

1 g/cc) on hydrate blockage removal in vertical pipes was investigated. The results 

indicate that a mixture of methanol/MEG with a density of 1 g/cc could remove hydrate 

blockage more successfully and efficiently than other two mixtures (MEG or MeOH 

alone). Furthermore, in this chapter, the possibility of ice formation during hydrate 

dissociation (due to its endothermic nature) and movement of hydrate blockage location 

during thermodynamic hydrate inhibitor injection were investigated.  

In addition, there is a concern about the performance of KHIs in a system with pre-formed 

hydrates and induced hydrate dissociation using KHIs which are the main objectives 

of Chapter 6. KHIs are usually used for inhibition of hydrate nucleation and hydrate 

growth. Therefore, in most of the scenarios, KHI is injected into produced water streams 

which are hydrates­free. While this is a representative scenario for a perfect situation, 

there are a number of situations where hydrates could form from produced waters which 

are KHI­free. The question then may arise as what the influence of KHI is in preformed 
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hydrates systems. Chapter 6 investigates the performance of Luvicap-EG (PVCap) in the 

pre-formed hydrate systems (PVCap was used as a well-known reference to compare the 

performance of Bio KHIs). Furthermore, in Chapter 6, the initial findings of experimental 

studies aimed at investigating the anomalous hydrate dissociation inside the hydrate 

stability regions in the presence of Luvicap EG and Luvicap Bio are reported. Results 

demonstrate that, in addition to inhibiting hydrate growth/nucleation, KHI polymers can 

induce partial or complete hydrate dissociation inside the hydrate region. 
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Chapter 2 – Bio KHI Selection  
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2.1 Introduction 

This chapter presents the results of work undertaken on the topic of Bio KHIs selection. 

The CGI method (see Section 1.4.4.2) has been undertaken to assess different Bio KHIs.   

Luvicap Bio from BASF and ECO-530 as a Bio KHI from ECO Inhibitors (CGI regions 

for ECO-530 is taken from 6th report of 2012-2015 JIP phase project [2.1]) were selected 

to assess which one has a better performance in terms of hydrate inhibition both in simple 

gas or natural gas systems. 

In addition, it is reported that pectin could inhibit the hydrate formation as a KHI [2.2].  

Xu et al. (2016) reported that both CGI-type method and induction time method strongly 

suggest that biodegradable fruit pectin has powerful KHI properties [2.2]. They claimed 

that pectin could inhibit methane hydrate formation at subcoolings up to 12.5 °C, at doses 

of 0.25 to 0.50 mass% aqueous phase. If it is true, pectin can be used as an excellent 

Bio KHI, i.e., having excellent biodegradation properties together with powerful KHI 

properties. Therefore, it was decided to quickly assess pectin’s potential in methane and 

natural gas systems.  

The chemical structure of pectin is illustrated in Figure 2-1 [2.3]. Pectin is a mixture of 

polysaccharides which found in cell wall dry substance of higher plants. The repeating 

sections of pectin molecule consist of carboxyl, ester, and amide; the strong polarity of 

carboxyl and hydroxyl groups contributing to its affinity for water and gelling properties 

at modest aqueous concentrations.   

Initial findings of experimental studies using CGI method aimed at investigating three 

potential green KHIs which have been reported / are produced (Luvicap Bio, ECO-530, 

and pectin) are reported in this chapter. The results of this chapter were used to select the 

best biochemical in terms of hydrate inhibition in both single gas and multicomponent 

natural gas for further investigation in the rest of this thesis. 
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Figure 2-1. (a) A repeating segment of pectin molecule and functional groups: (b) carboxyl; (c) 

ester; (d) amide in pectin chain [2.3].  

 

2.2 Experimental Equipment & Materials 

Studies were carried out using in-house standard high-pressure, ~300 ml volume, stirred 

autoclaves (Figure 2-2). Autoclave mixing rates were typically ~500 rpm (as normally 

used for KHI evaluation studies). Some autoclaves were equipped with motor power 

(amps), voltage and rpm recording, possibly allowing assessment of transportability of 

fluids (e.g. from power required in an attempt to maintain rpm) and onset of blockage 

(rpm reduced to zero).  

The temperature probe was calibrated with a measurement accuracy of 0.1 °C. Cell 

pressure was measured by a Druck strain gauge (±0.07 bar), calibrated using a Budenberg 

dead weight tester. Both thermometer and pressure transducer are connected to a data 

acquisition unit and a computer with the ability to continuously record the temperature 

and the cell pressure. 

Methane was 99.99% pure. The multi-component natural gas was supplied by BOC, the 

composition is given in Table 2-1. Deionised water was used in all tests. 

The Luvicap Bio base polymer used was supplied by BASF in a water + MEG solvent 

mix at ~30 mass% active polymer. However, Bio KHI from Eco Inhibitors (ECO-530) 

was supplied at a concentration of 40 mass% active polymer in ethylene glycol. The 
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Bio KHI concentrations in the aqueous phase in all tests are based on the dose of active 

polymer, i.e., to have 0.5 mass% dose of active polymer of Luvicap Bio in the aqueous 

phase. Pectin was standard food grade fruit extract apple pectin.  

2.3 Predicting Hydrate Phase Boundary and Hydrate Calculation  

In this thesis, the thermodynamic hydrate phase boundary was predicted using 

HydraFLASH®, a thermodynamic model by Hydrafact Ltd and Heriot-Watt University. 

The sCPA (Simplified Cubic Plus Association) was used as the equation of state to predict 

phase equilibria and hydrate phase boundary. The estimated percentage of water 

converted to hydrate (WCH %) was calculated based on the calculation presented in 

Appendix B.   

 

 

Figure 2-2. Schematic illustration of standard autoclaves used in experimental studies.  

 

 
Table 2-1. Composition of the natural gases used in experiments. 

Component Mole% 

Methane 87.9 

Ethane 6.0 

Propane  2.0 

i-Butane 0.2 

n-Butane 0.3 

CO2 2.0 

Nitrogen 1.5 
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2.4 Results and Discussion  

As discussed, the main objective of this chapter was to choose the best Bio KHI in terms 

of hydrate inhibition among main available Bio KHIs. Based on this, two main sets of 

experiments using standard CGI method were carried out in methane and natural gas 

systems and their measured subcooling extents of CGI regions were compared at ~70 bar. 

In the methane system, CGI cooling/heating were carried out in 0.5% Luvicap Bio, 

0.5% pectin, 0.25% Luvicap Bio, and 0.25% Luvicap Bio + 0.25% pectin (a mixture of 

polymers was used to see if the best option was a mixture rather than a single polymer). 

In the natural gas system, CGI cooling/heating runs were carried out in 0.5% Luvicap Bio, 

0.5% Pectin, and 0.25% Luvicap Bio + 0.25% pectin. In addition, the subcooling extents 

of CGI regions for ECO-530 is taken from 6th report of 2012-2015 JIP phase project [2.1]. 

Figure 2-3 and Figure 2-4 are examples of heating/cooling curves (CGI method) for 

0.5 mass% aqueous Luvicap Bio and pectin with natural gas respectively. Points are every 

five minutes. Figure 2-5 and Figure 2-6 show a comparison of subcooling extents of 

measured CGI regions for Luvicap Bio, pectin, Luvicap Bio-pectin, and ECO-530 

combinations for various aqueous polymer concentrations at ~70 bar pressure with 

methane and natural gas respectively.  

As can be seen, Luvicap Bio has more powerful KHI properties compared to pectin and 

ECO-530, i.e., the largest CIR region (green zone: complete hydrate inhibition) is 

achieved by Luvicap Bio both in methane and natural gas system. The CIR extents for 

0.5 mass% Luvicap Bio for methane from s-I phase boundary and natural gas from s-II 

phase boundary are 3 °C and 10.5 °C respectively.  

The subcooling extents of CGI regions for ECO-530 in methane and natural gas suggest 

that ECO-530 does not have KHI properties like Luvicap Bio. As can be seen in 

Figure 2-6, no obvious CIR extent is seen for 0.5 mass% ECO-530 in the natural gas 

system, with only limited SGR(S) largely observed.  

In addition, as can be seen, results strongly suggest that pectin does not have notable KHI 

properties, at least in the case of the sample tested in methane and natural gas. As shown 

in Figure 2-4, no obvious CIR extent is seen for pectin alone in the natural gas system, 

with only limited SGR(S) largely observed for both methane and natural gas. 
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However, studies in this area have focussed on 0.25% Luvicap Bio + 0.25% pectin 

mixtures with methane and natural gas to see if pectin might still offer useful KHI 

properties (to assess potential synergism) if used in combination with another, effective 

Bio KHI. As shown in Figure 2-5 and Figure 2-6, in combination with Luvicap Bio, pectin 

likewise shows no measurable inhibition effect; CGI behavior appears essentially 

identical to pectin-free cases / Luvicap Bio alone. 

Therefore, it is concluded that the findings of Xu et al. (2016) are in error, and pectin does 

not have significant potential as a bio KHI, at least in terms of crystal growth inhibition. 

The probable explanation for reported literature findings is that pectin does seem to have 

some history elimination effects. This probably suggests that in those systems where 

pectin was the only polymer, the hydrate history could be disappeared during heating 

cycle even if the temperature was kept close to the phase boundary. Consequently, on the 

next cooling, it appeared some inhibition region due to lack of hydrate nucleation/history 

in the system, so Xu et al. (2016) suggest the pectin as a Bio KHI which is wrong.   

However, as shown in Figure 2-4, in the 0.5% pectin + NG system with hydrates (where 

a clear ∆P was evident), slow to medium growth rate patterns were observed at low 

subcoolings in re-cooling immediately after heating. As a result, the long induction time 

due to pectin which was observed by Xu et al. (2016) could be explained by the role of 

hydrate history in KHI evaluation. Therefore, it is crucially important that the CGI studies 

always should run with hydrate / hydrate history (obvious ∆P due to hydrate during re-

cooling) 
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Figure 2-3. Example cooling curves (CGI method) for 0.5 mass% Luvicap Bio with natural gas. 

Points are every five minutes. 

 

 

 

Figure 2-4. Example cooling/Heating curves (CGI method) for 0.5 mass% pectin with natural gas. 

Points are every five minutes. 
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Figure 2-5. Comparison of subcooling extents of CGI regions from the s-I phase boundary for 

0.5 mass% Luvicap Bio, 0.5 mass% ECO-530, 0.5 mass% pectin, 0.25 mass% Luvicap Bio, and 

0.25 mass% Luvicap Bio + 0.25 mass% pectin, all in methane system. The subcooling extents of CGI 

regions for ECO-530 is taken from 6th report of 2012-2015 JIP phase project [2.1]. 

 

 

 

 

 

 
Figure 2-6. Comparison of subcooling extents of CGI regions from the s-II phase boundary for 

0.5 mass% Luvicap Bio, 0.5 mass% ECO-530, 0.5 mass% pectin, and 0.25 mass% Luvicap Bio + 

0.25 mass% pectin, all in the natural gas system. The subcooling extents of CGI regions for ECO-530 

is taken from 6th report of 2012-2015 JIP phase project [2.1]. 
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2.5 Summary 

From preliminary CGI studies of Luvicap Bio, ECO-530, and pectin in methane and 

natural gas system, it is concluded that: 

 Luvicap Bio could be used as a strong Bio KHI, i.e., the large CIR extent was 

observed in the system with Luvicap Bio, e.g. the CIR extents for 0.5 mass% 

Luvicap Bio for methane from s-I phase boundary and natural gas from s-II phase 

boundary are 3 °C and 10.5 °C respectively 

 Pectin does not seem to be a strong KHI, at least in the case of the sample tested 

here (apple pectin), i.e. no obvious CIR extent was observed, with only limited 

SGR(S) largely observed in both methane and natural gas system 

 Pectin does not seem to be behaving like synergise materials, at least in the case 

of 0.25 mass% Luvicap Bio + 0.25 mass% Pectin with methane 

 It seems that pectin removes the hydrate history from the system and which could 

result in observing some CGI behavior 

 This finding from pectin strongly suggests that it is crucial to have hydrate 

memory or clear presence of hydrate (clear pressure drop ∆P) in the system for 

cooling runs in CGI method  

Therefore, Luvicap Bio was selected for further investigation in this thesis to study of 

hydrate inhibition using a combination of THIs and Luvicap Bio, hydrate fraction 

tolerance, and induced hydrate dissociation using Luvicap Bio. 
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Chapter 3– Luvicap Bio: Structure Effects Inhibition, Hydrate 

Fraction Tolerance  
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3.1 Introduction 

This chapter reports the results of KHI hydrate fraction tolerance and structure effect 

inhibition studies. As discussed in Section 1.4.2, KHIs polymers are known as nucleation 

inhibitors and most of the KHIs are designed for nucleation inhibition. Although most of 

the KHIs are successful in induction time test in terms of hydrate inhibition, some of them 

fail at high hydrate fraction or even at low aqueous fractions of hydrate (only a few % of 

water converted to hydrate). Generally, a KHI that can inhibit per unit dosage at a higher 

fraction of hydrate is better in terms of hydrate blockage prevention.  

In this chapter, the CGI method (see Section 1.4.4.2) was carried out to evaluate the 

performance of Luvicap Bio and PVCap polymers in terms of hydrate inhibition at 

various hydrate fractions in the methane system, i.e., PVCap which is well studied / 

known was used through the thesis as a comparison with Luvicap Bio, so makes a good 

reference. The results potentially suggest that Luvicap Bio is a better inhibitor for s-I 

methane than for s-II methane hydrates and PVCap is better for s-II hydrates; the 

formation of both s-I and s-II methane hydrate is speculated. In addition, as Luvicap Bio 

is better for s-I and PVCap is better for s-II, it was speculated that the combination of 

Luvicap Bio and PVCap can inhibit further in terms of subcooling temperature, i.e., one 

inhibits s-II and the other inhibits s-I, resulting in improved CGI regions. Therefore, the 

CGI method was carried out to evaluate the performance of Luvicap Bio/PVCap 

combination in terms of hydrate inhibition in both methane and natural gas systems.  

As discussed later in this chapter, the initial findings of experimental studies of hydrate 

fraction tolerance suggest potentially formation of s-I and s-II methane and multi-

structure formation in the natural gas system. In addition, it is speculated that the common 

CGI regions observed for the KHI system are not as a result of KHI polymers directly 

and there is an interaction between KHIs and hydrate structures and morphology. In other 

words, 3 °C subcooling temperature observed as a CIR for Luvicap Bio in the methane 

(see Section 2.4) could be as a result of a change in hydrate growth rate or hydrate 

structures, not as a direct result of KHI polymers. Accordingly, it was speculated that 

there are different hydrate growth/structure regions in those systems that can potentially 

form more than one structures. Therefore, these different hydrate growth/structure regions 

can induce the behaviour seen for Luvicap Bio/PVCap and also the common CGI regions. 

Therefore, the hydrate growth rates and various potential hydrate structure formation 

were studied in methane, ethane, propane, C1 + C3, and C1 + C2 + C3 systems. 



 

41 

3.2 Experimental Equipment, and materials 

All experiments were carried out using high pressure stirred autoclaves (see Section 2.2 

for a more detailed description of equipment). Distilled water was used in all tests. 

Luvicap Bio base polymer was supplied in water by BASF. The PVCap used was standard 

Luvicap-EG base polymer (average MW = ~7000) supplied by BASF, with an ethylene 

glycol solvent removed by vacuum oven drying. Methane, propane, and ethane were 

99.99% pure. The multi-component natural gas was supplied by BOC, the composition is 

given in Table 3-1. 

3.3 Experimental Principles and Methodologies 

The CGI method (see Section 1.4.4.2) was carried out to study the structure effects 

inhibition and hydrate fraction tolerance for Luvicap Bio / PVCap and the performance 

of Luvicap Bio/PVCap combination in terms of hydrate inhibition.  

In addition, a number of experimental methods have been applied in high pressure stirred 

autoclaves to study and investigate the hydrate growth rate/patterns and formation of 

various hydrate structures in different gas systems including methane, ethane, propane, 

C1+C3, and C1+C2+C3. These methods including equilibrium step heating/cooling 

measurements and shut-in restart (SIR) runs are described in the Sections 3.3.1 and 3.3.2. 

Furthermore, the method for predicting hydrate stability regions for different gas hydrate 

structures and their phase boundaries is described in Section 3.3.3. 

 

 

 

 

 

 

 

Table 3-1. Composition of natural gas used  

Component Mole% 

Methane 87.93 

Ethane 6.00 

Propane 2.04 

i-Butane 0.20 

n-Butane 0.30 

CO2 2.03 

Nitrogen 1.50 
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3.3.1 Equilibrium Step-Heating & Cooling Measurements 

For step-heating measurements, the system was cooled down into the hydrate phase 

region and allowed to form hydrate as much as possible. Following hydrate growth, the 

system was heated up in steps; the system temperature was raised ~1 °C/step. A long time 

was given to the system to achieve the equilibrium point for each step; the time required 

to achieve the equilibrium point may be weeks or months. This step heating was continued 

until all hydrate dissociated; the system pressure moves back to the initial system pressure 

without hydrates.  

Almost the same procedure was applied for equilibrium step-cooling measurement. The 

system was cooled immediately into the hydrate region to form hydrates and heated up 

close to phase boundary to dissociate most of the hydrate crystals (with hydrates or 

history/nuclei), allowing to have a ‘seeded’ system. Following this, the seeded system 

was cooled down in steps (~1 °C/step) and the sufficient time was given to each step to 

achieve the equilibrium points.  

In the equilibrium step heating/cooling measurements, the equilibrium points were 

confirmed when a stabilised pressure at constant temperature was recorded for a long 

time. Although the system was mixed during measurements to achieve the equilibrium, 

more time (weeks or months) was given to the system in the case of blockages where 

mass transfer is limited.  

3.3.2 Shut-in Restart (SIR) 

The shut-in restart run is similar to the step-cooling measurements, but the system 

initiated to form hydrates at a set subcooling temperature. The seeded system was cooled 

down to a set subcooling temperature while the stirrer was shut off; the lack of mixing in 

the system prevents any measurable hydrate formation in the system. Following this, 

mixing was restarted allowing the system to form hydrates. The purpose of this type test 

is to study hydrate growth rate patterns and structure effects on growth rate during the 

SIR runs at various subcooling temperatures. However, the system temperature may 

increase and deviate from the set subcooling temperature due to the exothermic nature of 

hydrate formation. As discussed later in this chapter, this thermal aspect of detection 

could be also used to study for various hydrate structures formation. This method was 

developed through the JIP project (2015-2018) at Heriot-Watt University [3.3]. 
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3.3.3 Predicting Hydrate Stability Regions for Different Structures 

The thermodynamic hydrate phase boundary for gas was predicted using HydraFLASH®; 

a thermodynamic model developed by Hydrafact Ltd and Heriot-Watt University. The 

sCPA (Simplified Cubic Plus Association) was used as the equation of state to predict 

phase equilibria and hydrate phase boundary.  

As discussed later in this chapter (see section 3.4.5), more than one hydrate structure can 

be formed in the natural gas system or even in a simple methane/ethane system, i.e., 

instead of forming single s-II natural gas hydrate, various hydrate structures e.g. 

C3/C4 s­II, C2 s-II, C2 s-I, C1 s-I, and C1 s-II are formed in order.  

Propane and butane (particularly iso-butane) can only enter and stabilise the large cavity 

of s-II (51264) and they are the most stable hydrates in natural gas system [3.1]. Therefore, 

in step cooling measurements, the first hydrate structures formed in the natural gas 

systems are C3/C4 s-II hydrates. As subcooling temperature increases, the less stable 

hydrate structure s-II/s-I ethane hydrate can be formed. Ethane can enter the large cavity 

of s-I (51262) and the large cavity of s-II (51264) to form both stable s-I and s-II hydrates 

respectively. Finally, methane dominates both small and large cavities of s-I. However, 

as discussed in Section 3.4.5.3, s-II methane may be formed in a simple methane system 

even it might be metastable. Therefore, the most thermodynamically stable hydrate 

formers are C3/C4, C2, C1, CO2, and N2 in order (decreasing in stability) [3.2]. 

Based on the above, for step cooling measurement, various hydrate structures would be 

expected to form and become thermodynamically stable in order as subcooling 

temperature increases. This is the same for step heating measurements; various hydrate 

structures would be expected to disappear/dissociate in order as system temperature rises.  

As can be seen in Figure 3-1, step-heating equilibrium run for 85% C1 + 12% C2 + 3% C3 

shows a clear change pattern/transition, indicating dissociation of different hydrate 

structures formed in the systems (see Section 3.4.5.5). To predict the phase boundary for 

this transition, simple removal component method was used; each phase boundary is 

related to formation or dissociation of different hydrate structures. This method was 

developed through the JIP project (2015-2018) at Heriot-Watt University [3.3]. 
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Based on this method, to predict the phase boundary of ethane hydrates for C1 + C2 + C3 

system shown in Figure 3-1, the fraction of those components which are more stable than 

ethane (e.g. C3 and C4 fraction) should be removed. Therefore, propane fraction is 

removed from the composition and the model is run for a new normalised composition to 

predict both s-I and s-II ethane phase boundary.  

A similar procedure is used to predict the phase boundary of methane, so the fraction of 

those components which are more stable than methane is removed from the composition 

(e.g. C2, C3, and C4 fraction). For the system used in Figure 3-1, only methane remained, 

so the methane phase boundary for this system is as same as for simple methane system.     

 

 

 

Figure 3-1. Plot of measured equilibrium (step-heating) dissociation behaviour for 

85% C1 + 12% C2 + 3% C3 (80% cell volume as aqueous phase) compared to model predictions for 

the NG (s-II), ethane (large cage) dominated s-II then s-I, then finally methane (large cage) dominated 

s-I. As can be seen, predictions commonly are a reasonable match for observed structural transitions.  
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3.4 Results and Discussion  

3.4.1 Luvicap Bio Hydrate Fraction Tolerance in Methane System 

To study the hydrate fraction tolerance, work on the Luvicap Bio has been done. The 

main objectives of this test were to assess the performance of Luvicap Bio as a function 

of increasing hydrate fraction and to assess any potential polymer-hydrate stoichiometry. 

A specific hydrate fraction will use a specific fraction of KHIs polymer which depends 

on whether these polymer-hydrate complexes have any polymer-water stoichiometry.  

 

Figure 3-2 shows a plot of CGI method heating and cooling curves for 0.5% Luvicap Bio 

with methane for increasing fractions of water converted to hydrate with interpretation 

for the CIR region. The method for calculation of fractions of water converted to hydrate 

is described in Appendix B. The initial pressure of this experiment was 150 bar at 20 °C 

with 70:30 water/gas volume ratio. Figure 3-3 shows calculated %water converted to 

hydrate as a function of subcooling temperature for the same data plotted in Figure 3-2. 

As can be seen, as a fraction of water converted to hydrate increases, the performance of 

Luvicap Bio reduces in terms of inhibition. For example, the CIR is ~3.8 °C subcooling 

at a low fraction hydrate, and it reduced to 1 °C subcooling as the hydrate fraction 

approaches 30%. As shown in Figure 3-3, the SGR (S-M) type conditions have been seen 

beyond this CIR condition at higher subcooling temperature up to ~5.2 °C subcooling.  

 

 

Figure 3-2. Plot of CGI method heating and cooling curves for 0.5% Luvicap Bio with methane for 

increasing fractions of water converted to hydrate with interpretation for the CIR region. Initial 

pressure of ~150 bar, with water 70% of cell volume. 
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Figure 3-3. Plot of CGI method heating and cooling curves for 0.5% Luvicap Bio with methane 

hydrate threshold test plotted as %water converted to hydrate versus subcooling. After growth 

commences within the SGR(S-M), results then show it largely halts ~ 5.2 °C subcooling, at least up 

to ~25% water converted to hydrate. 

As would be expected, the hydrate growth rate and the fraction of water converted to 

hydrate increases with increasing subcooling temperature beyond the CIR. In contrast to 

what would be expected, in this case with Luvicap Bio in methane system, beyond the 

narrow region of SGR (S-M) conditions, the hydrate growth rate decreased significantly. 

As shown in Figure 3-2 and Figure 3-3, the fraction of water converted to hydrate remains 

constant (hydrate growth was observed to apparently stop) at higher subcooling 

temperature beyond the 5.2 °C subcooling.   

Several cooling runs with a different fraction of water converted to hydrate were carried 

out to assess the repeatability of this patterns. As shown in Figure 3-3, this pattern was 

observed up to the 25% water converted to hydrate. Furthermore, in all cases, this pattern 

was observed consistently beyond the ~5.2 °C subcooling temperature. This subcooling 

temperature (5.2 °C) is associated with CGI boundaries, i.e., for example, the CIR for 

0.5 mass% PVCap in methane system is 5.2 °C where hydrates start to grow, as reported 

in the Section 3.4.2.   
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As shown in Figure 3-3, Luvicap Bio in the methane system shows an initial strong 

inhibition region (CIR region), following by weak inhibition region (SGR), then strong 

inhibition region (Semi CIR). Figure 3-4 shows CGI regions for Luvicap Bio in the 

methane system with different hydrate fraction showing CIR, SGR (S-M), and 

‘Semi’ CIR (beyond the 5.2 °C subcooling temperature) up to 25% water converted to 

hydrates.  

This growth pattern, inhibition of hydrate growth (‘Semi’ CIR) following by weak 

inhibition region (SGR), is unusual if one type of hydrate structure formed in the system 

e.g. s-I methane hydrate. As discussed in Section 3.4.5.3, the evidence and results for 

methane system strongly suggest and support the formation of both s-I and s-II hydrates 

in the methane system at different conditions. Therefore, if it is true, Luvicap Bio is a 

strong inhibitor for s-I methane and poor inhibitor for s-II methane, i.e., as shown in 

Figure 3-4, Luvicap Bio could inhibit the hydrate growth in CIR region (s-I methane 

hydrate formed), then allowed hydrate growth in SGR (s-II methane hydrate formed), 

then prevented again hydrate growth in ‘Semi’ CIR beyond the 5.2 °C subcooling 

temperature (s-I methane hydrate formed again). In addition, as shown in Figure 3-4, the 

start of SGR (S-M) for the higher hydrate fraction coincides with the s-II methane phase 

boundary predicted by the model, i.e., at higher hydrate fraction, the free active polymer 

of Luvicap Bio for hydrate inhibition is lower. This interpretation for the ‘Semi’ CIR is a 

joint work product of M. Aminnaji and R. Anderson which is taken from JIP Project at 

Heriot-Watt University [3.3]).  

However, as evidence presented in Section 3.4.5.3, the 5.2 °C subcooling temperature 

phase boundary is believed a limit for formation of s-II methane beyond this phase 

boundary. As a result, s-I methane hydrate becomes more stable than s-II methane in 

‘Semi’ CIR region, so Luvicap Bio could inhibit hydrate formation again beyond 5.2 °C 

subcooling temperature. 

These results probably suggest the formation of both s-I and s-II methane hydrate at 

different conditions. However, it is proposed the formation of s-I methane hydrate in CIR 

and ‘Semi’ CIR regions which could be inhibited by Luvicap Bio, and formation of s-II 

methane hydrate in SGR (S-M) which could not be inhibited by Luvicap Bio. 

Consequently, it is proposed that Luvicap Bio is a strong inhibitor for s-I methane hydrate, 

but a poor inhibitor for s-II methane hydrate.  
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Figure 3-4. Plot of determined Luvicap Bio test CGI regions (from Figure 3-2) showing the apparent 

band of SGR(S-M) conditions between the CIR and the ‘semi CIR’ beyond 5.2 °C subcooling, where 

growth halted again for cooling runs with up to 25% water as hydrate. The position of the currently 

predicted s-II phase boundary is also shown for reference. 

3.4.2 PVCap Hydrate Fraction Tolerance in Methane System 

Following work on hydrate fraction tolerance tests on Luvicap Bio, tests were repeated 

with PVCap. PVCap which is well known was used as a comparison with Luvicap Bio, 

so makes a good reference. It is speculated that whether CGI regions can remain constant 

at higher PVCap concentration regardless of water fraction converted to hydrate, i.e., 

hydrate growth in the system with PVCap (with concentration more than stoichiometric 

composition) should not change the aqueous PVCap level. As discussed in previous 

section, Luvicap Bio was found to be a better inhibitor for s-I than s-II methane hydrate, 

so another aim of this section was to assess the PVCap in terms of structural effect on 

CGI regions.   

Figure 3-5 shows a plot of CGI heating and cooling curves for 1.4% PVCap aqueous with 

methane for increasing fractions of water converted to hydrate with interpretation for the 

CIR region. The initial pressure of this system was 150 bar at 20 °C with 70:30 water/gas 

volume ratio in the cell. In addition, Figure 3-6 shows calculated %water converted to 

hydrate as a function of subcooling temperature for the same data plotted in Figure 3-5. 

As can be seen, the CIR (5.2 °C) is preserved at increasing fraction of water converted to 

hydrate up to ~29%. In addition, the heating stepped curves even at higher hydrate 
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fraction in Figure 3-5 (red points at contestant temperature) confirms the induced gas 

hydrate dissociation inside the CIR region. In theory, this suggests that the PVCap 

concentration in the aqueous phase did not drop below the stoichiometric composition up 

to 29% water converted to hydrate.  

As shown in Figure 3-5, assessing PVCap at higher hydrate fraction (˃29%) may result 

in ice formation, i.e., it reaches below zero temperature. Therefore, to prevent ice 

formation in the system, more methane was added to the system (new initial pressure of 

~310 bar at 20 °C) and the same procedure was carried out to study hydrate fraction 

tolerance on PVCap. Figure 3-7 shows a plot of CGI heating and cooling curves for 1.4% 

PVCap aqueous with methane with a new initial pressure of ~310 bar for increasing 

fractions of water converted to hydrate with interpretation for the CIR region. In addition, 

Figure 3-8 shows calculated %water converted to hydrate as a function of subcooling 

temperature for the same data plotted in Figure 3-7. 

Figure 3-7 shows that the CIR of ~5.2 °C subcooling temperature is preserved up to ~30% 

water converted to hydrate. As can be seen, beyond this hydrate fraction, the CIR extend 

starts to reduce. For example, the CIR extend is only ~1 °C, at ~60% water converted to 

hydrate. Therefore, this reduction of CIR region may suggest that 1.4 mass% of PVCap 

is lower than the stoichiometric composition for the system with more than 30% hydrates.  

In contrast to the data for Luvicap Bio, the results for PVCap does not show any ‘Semi’ 

CIR region, suggesting PVCap is not a good inhibitor for s-I methane hydrate at least at 

higher subcooling temperature. In addition, the results suggest that PVCap is better 

inhibitor for s-II methane hydrate, because CIR extent (5.2 °C) was preserved over the 

range of hydrate fraction up to 30% hydrate for PVCap, but was not for Luvicap Bio. 

Formation of s-II methane hydrate in the region with a subcooling temperature between 

s-II phase boundary predicted by the model and 5.2 °C subcooling from s-I methane was 

investigated in JIP project at Heriot-Watt University [3.3]. To put this in perspective, as 

PVCap is a strong inhibitor for s-II methane, PVCap could inhibit the s-II methane 

hydrate formation in the region with a subcooling temperature between s-II phase 

boundary predicted by the model and 5.2 °C subcooling from s-I methane.  
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Figure 3-5. Plot of CGI heating and cooling curves for 1.4% PVCap aqueous with methane for 

increasing fractions of water converted to hydrate (calculated from pressure drop due to gas 

consumption) with interpretation for the extent of the CIR. Initial pressure was ~150 bar at 20 °C, 

with water 70% of cell volume. 

 

 

 

 

 

 

 

 

 

Figure 3-6. Plot of CGI method heating and cooling curves for 1.4% PVCap with methane hydrate 

threshold test (from Figure 3-5) plotted as %water converted to hydrate versus subcooling.  
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Figure 3-7. Plot of CGI method cooling curves for 1.4% PVCap aqueous with methane for increasing 

fractions of water converted to hydrate (calculated from pressure drop due to gas consumption) with 

interpretation for the extent of the CIR. Initial pressure was ~310 bar at 20 °C, with water 70% of 

cell volume. 

 

 

 

 

 

 

 

 

 

Figure 3-8. Plot of CGI method heating and cooling curves for 1.4% PVCap with methane hydrate 

threshold test (from Figure 3-7) plotted as %water converted to hydrate versus subcooling.  
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3.4.3 Combination of Luvicap Bio + PVCap in Methane System 

As noted, results strongly support the theory that Luvicap Bio is a better inhibitor for s-I 

methane than it is for s-II. In contrast to Luvicap Bio, PVCap is a better inhibitor for s-II 

methane than it is for s-I. Therefore, it is speculated that if these polymers target different 

hydrate structures in terms of growth inhibition, the combination of these polymers 

should perform better, i.e., evidence show formation of both s-I and s-II methane, so 

Luvicap Bio and PVCap can prevent the formation of s-I and s-II methane respectively. 

Therefore, work progressed onto the CGI regions measurement for 0.25% Luvicap Bio + 

0.25% PVCap in the methane system.  

Figure 3-9 shows example CGI method cooling curves with measured points on CGI 

region boundaries with interpolations for 0.25 mass% PVCap + 0.25 mass% Luvicap Bio 

with methane. Data are reported in Table 3-2. Figure 3-10 shows a comparison of 

subcooling extents of measured CGI regions for 0.25 mass% PVCap + 0.25 mass% 

Luvicap Bio, 0.5 mass% Luvicap Bio, and 0.5 mass% PVCap, all with methane at ~70 bar 

pressure. 

As can be seen, the combination of Luvicap Bio and PVCap improves the CGI regions in 

terms of hydrate inhibition performance compared to these polymers alone. For example, 

while the CIR extend for combination of Luvicap Bio and PVCap is ~5.8 °C at ~70 bar, 

the CIR extent for Luvicap Bio and PVCap alone are ~2.9 °C and ~5.2 °C subcoolings 

respectively. In addition, the results show an additional SGR (VS) region to ~7.2 °C 

subcooling temperature for the combination of these polymers compared to the PVCap 

alone. Moreover, as shown in Figure 3-10, the combination of these polymers is far 

superior and much better compared to Luvicap Bio alone in terms of hydrate inhibition. 

Therefore, these results do more additional support the formation of both s-I and s-II 

methane hydrates and to this theory that LuviCap Bio is better for s-I and PVCap is better 

for s-II.   

Finally, as shown in Figure 3-9, the inhibition of hydrate growth beyond ~7.2 °C 

subcooling from s-I phase boundary is very difficult, i.e., evidence shows the formation 

of s-I methane in this region. It may suggest that the lean s-I gases are the most difficult 

system for KHIs in terms of inhibition.  
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Table 3-2. Measured points on CGI region boundaries with interpolations for 0.25 mass% PVCap / 

0.25 mass% Luvicap Bio with methane. 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

CIR-SGR(VS) No growth 

2.5 60.1 -5.9 

7.0 95.6 -5.8 

10.4 138.5 -5.6 

SGR(VS-S) 
Very slow to 

 Slow 

1.0 59.2 -7.3 

5.5 94.1 -7.1 

9.1 138 -6.8 

SGR(S-M) 
Slow to 

Medium 

0.3 59.5 -8.0 

4.5 93.4 -8.1 

8.1 136 -7.8 

SGR(M-R) 
Medium to 

Rapid 

2.8 92 -9.6 

6.1 134.5 -9.6 

 

 

 

 

 

Figure 3-9. Plot of CGI method cooling curves and measured points on CGI region boundaries with 

interpolations for 0.25 mass% PVCap / 0.25 mass% Luvicap Bio with methane.  
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Figure 3-10. Comparison of subcooling extents of measured CGI regions at low hydrate fraction for 

0.25 mass% PVCap / 0.25 mass% Luvicap Bio, 0.5% Luvicap Bio, and 0.5% PVCap, all with 

methane at ~70 bar pressure. 

 

3.4.4 Combination of Luvicap Bio + PVCap in Natural Gas System 

In light of the above results to find more evidence and support the theory that Luvicap Bio 

is a better inhibitor for s-I than it is for s-II and the opposite for PVCap (it is a better 

inhibitor for s-II), work progressed onto the CGI regions measurement for the 

combination of Luvicap Bio and PVCap in the natural gas system (composition given in 

Table 3-1). The reason for this is that it is speculated a better performance of combination 

of these polymers compared to these polymers alone (at the same aqueous concentration); 

one inhibiting s-II, the other s-I. 

Figure 3-11 shows example CGI method cooling curves with measured points on CGI 

region boundaries with interpolations for 0.25 mass% PVCap + 0.25 mass% Luvicap Bio 

with natural gas. Data are reported in Table 3-3. Figure 3-12 and Figure 3-13 show a 

comparison of subcooling extents of measured CGI regions for 0.25 mass% PVCap 

+ 0.25 mass% Luvicap Bio, 0.5 mass% Luvicap Bio, and 0.5 mass% PVCap, all with 

natural gas. 
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As shown in Figure 3-12 and Figure 3-13, the combination of Luvicap Bio and PVCap 

shows a better performance compared to these polymers alone in terms of improving 

hydrate inhibition performance. For example, while the CIR extend for the combination 

of these polymers is 12.9 °C subcooling temperature at 70 bar, the CIR for Luvicap Bio 

and PVCap alone are 9.4 °C and 9.8 °C respectively. In addition, the results show an 

additional SGR (VS) region for the combination of these polymers compared to the 

PVCap or Luvicap Bio alone. Therefore, the results indicate the strong synergism in 

combination of these polymers in natural gas.  

Figure 3-12 and Figure 3-13 show that the synergism effect of PVCap/Luvicap Bio is 

most evident at lower pressure. Although this is not clear, this might be due to the changes 

in hydrate structures. If s-II methane hydrates form at lower presser where they are stable, 

the synergism effect of PVCap /Luvicap Bio would be more expected. In contrast, if one 

type of structure forms at higher pressure e.g. s-I, the combination of these polymers does 

not improve hydrate inhibition performance. Meanwhile, the evidence shows that 

different hydrate structures (C3/C4 s-II, C2 s-II, C2 s-I, C1 s-I, C1 s-II) could be formed in 

the natural gas system (see Section 3.4.5).  

 

 

 

Table 3-3. Measured points on CGI region boundaries with interpolations for 0.25 mass% PVCap / 

0.25 mass% Luvicap Bio with natural gas (composition given in Table 3-1). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

1.5 53.5 -8 -13.2 

3.8 72.2 -8.2 -12.9 

6 95.6 -8.2 -12.4 

9 138.4 -7.9 -11.3 

13.5 227 -6.7 -9.1 

SGR(S-M)-RGR Very slow 

0.3 53.5 -9.2 -14.4 

2.7 72.2 -9.3 -14 

4.8 94.7 -9.3 -13.5 

8 138.1 -8.9 -12.3 

11.6 223.3 -8.5 -11 
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Figure 3-11. Plot of CGI method cooling curves and measured points on CGI region boundaries with 

interpolations for 0.25 mass% PVCap / 0.25 mass% Luvicap Bio with natural gas (composition given 

in Table 3-1). 

 

 

 

 

 

 

 

 
Figure 3-12. Comparison of measured CIR boundaries for 0.25 mass% PVCap / 0.25 mass% 

Luvicap Bio, 0.5 mass% Luvicap Bio (PT plot showing measured experimental points is reported in 

A.6), and 0.5 mass% PVCap, all with natural gas. (CGI regions for 0.5 mass% PVCap with natural 

gas are taken from [3.4]) 
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Figure 3-13. Comparison of subcooling extents of measured CGI regions for 0.25 mass% PVCap / 

0.25 mass% Luvicap Bio, 0.5% Luvicap Bio, and 0.5% PVCap, all with JIP standard natural gas, 

for various pressure conditions. (CGI regions for 0.5% PVCap with natural gas are taken from [3.4]). 
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3.4.5.1 Crystal Growth regions in Propane Systems 

To study the crystal growth region in propane system, shut-in-restart run (SIR, see 

Section 3.3.2) has been carried out for the seeded (hydrate history present) propane-water 

system (water 70% of cell volume). Figure 3-14 shows PT data for multiple growth rate 

measurement runs (SIR runs) at different subcoolings for the simple propane-water 

system. Figure 3-15 shows the pressure drop as a function of time for four different 

subcoolings with the calculated hydrate growth rate (%hydrate/min) versus time data in 

Figure 3-16. In addition, hydrate growth rate following restart versus subcooling data at 

various initial subcoolings is shown in Figure 3-17. As shown in Figure 3-17, subcooling 

temperature of each SIR run reduced with hydrate formation, i.e., at 0 °C subcooling 

temperature, conditions have reached equilibrium on the propane hydrate phase 

boundary, so hydrate growth rate should be zero. 

As shown in Figure 3-14, hydrate growth rates are very slow at low subcoolings, points 

are every minute. Results show that, as would be expected, initial hydrate growth rate 

increases with increasing of subcooling temperature (driving force). In addition, as shown 

in Figure 3-14, hydrate growth rates were highest at the beginning of all SIR runs, and 

the growth rates reduced as the condition reached equilibrium (driving force / subcooling 

temperature decreased).  Figure 3-16 shows the reduction exponential pattern of the 

reaction process in the formation of propane hydrate at different initial subcoolings. 

Furthermore, Figure 3-17 clearly indicates the continuous reduction of growth rate as 

subcooling decreases. Therefore, this pattern of growth rate indicates the formation of a 

single phase, i.e., a typical exponential type decay is observed as conditions approach 

equilibrium which is quite similar to the single phase growth reaction pattern. In this 

system, this single phase should be structure-II propane hydrates, i.e., propane is too large 

to enter and stabilise the large cavity of s-I (51262), it can only enter the largest structure­II 

hydrate cavity (51264) [3.1]. 

Another point from these results is the possible formation of metastable propane hydrate 

(green points) below the ice point of water. As shown in Figure 3-15, those SIR runs 

which initiated at the subcooling below the ice line (red points) reached to the 

Hydrate + Liquid + Gas (Hm + L + G) line which is metastable. The reason for this is that 

ice did not nucleate at those SIR runs. 
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Figure 3-14. Example PT data for multiple growth rate measurement runs at different subcoolings 

for the simple propane-water system. Points are every minute. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-15. Plot of example pressure versus time following restart data for seeded propane-water 

systems at various initial subcoolings. 
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Figure 3-16. Plot of example hydrate growth rate (pressure drop rate) versus time following restart 

for seeded propane-water systems at various initial subcoolings. Lines are polynomial fits. A typical 

exponential type decay is observed as conditions approach equilibrium. 

 

 

 

 

 

 

 

 

 
Figure 3-17. Plot of example hydrate growth rate (pressure drop rate) following restart versus 

subcooling data for seeded propane-water systems at various initial subcoolings. At 0 °C subcooling, 

conditions have reached equilibrium on the propane hydrate phase boundary. 
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3.4.5.2 Crystal Growth regions in Ethane Systems 

Further investigation on crystal growth regions studies progressed to the ethane system. 

In theory, ethane can enter the large cavity of s-I (51262) and the large cavity of s-II (51264) 

to form both stable s-I and s-II hydrates respectively. Furthermore, it is reported the 

formation of both stable s-II and s-I of ethane in the presence of methane depending on 

the pressure/temperature conditions and ethane fraction [3.5][3.6]. Based on this, 

formation of metastable s-II (or even stable) in the ethane systems is speculated. 

Therefore, shut-in-restart run (SIR, see Section 3.3.2) has been carried out for the seeded 

(hydrate history present) ethane-water system (water 70% of cell volume). 

Figure 3-18 shows PT data for multiple growth rate measurement runs (SIR runs) at 

different subcoolings for the simple ethane-water system. Figure 3-19 and Figure 3-20 

show example pressure drop and normalised pressure drop (∆𝑃
∆𝑃𝑓

⁄ ) versus time 

following restart data for runs initiated at various initial subcoolings respectively. In 

addition, Figure 3-21 and Figure 3-22 show example hydrate growth rate versus time and 

subcooling temperature respectively for seeded ethane-water systems at various initial 

subcoolings.  

As shown in Figure 3-18, the pattern for ethane growth rate is different from the data for 

propane system (Figure 3-14), i.e., while growth rates increase with subcooling 

temperature in propane system, the growth rates are generally slower at higher 

subcoolings in the ethane system. As can be seen in Figure 3-18, for the data coloured 

blue, the same pattern for growth rates similar to propane system has been seen for ethane 

system. For example, as shown in Figure 3-19, for those SIR initiated at lower 

subcoolings e.g. -2.6 °C subcooling temperature, rates reduce in an exponential decay-

type manner as equilibrium is approached. This indicates a growth of single new hydrate 

phase, i.e., a typical exponential type decay is observed as conditions approach 

equilibrium. In addition, in this region (blue data in Figure 3-18), the growth rate increases 

with increasing subcooling temperature (point are every minute).  

As can be seen in Figure 3-18, at higher subcooling temperature (beyond the ~6 °C 

subcooling temperature), the pattern of growth rate (for the data coloured grey) starts to 

change. As can be seen, the hydrate growth rate starts to decrease at higher subcoolings 

after an initial high growth rate. As shown in Figure 3-19 and Figure 3-20, this hydrate 
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growth rate is almost constant up to ~2 °C subcooling temperature and then the hydrate 

growth rates increase at subcooling temperature between ~2 °C and ~1 °C before final 

equilibrium is achieved. This peak growth rate is clearly shown in Figure 3-21 and 

Figure 3-22. Therefore, two peaks for hydrate growth rate in the ethane system at higher 

subcooling temperature have been seen; the first one is at initial growth and the second is 

at subcoolings lower than ~2 °C before final equilibrium is achieved. This result suggests 

the formation of more than one hydrate phase, i.e., it is not like a typical exponential type 

decay which is seen in a single phase growth reaction pattern. 

As discussed, in theory, ethane can enter both cavity of s-I (51262) and the large cavity of 

s-II (51264), i.e., ethane can form stable s-II in the presence of methane as a help gas in 

the smaller cavities. Furthermore, the results of ethane suggest the formation of more than 

one hydrate phase in the simple ethane system, and these phases can be s-I and s-II ethane. 

However, this s-II ethane hydrate is probably a metastable phase and should change to 

s­I ethane hydrate at equilibrium, though this is speculative still. 

 

 

Figure 3-18. Example PT data for multiple growth rate measurement runs at different subcoolings 

for a simple ethane-water system. Points are every minute. Colours are based on different growth 

rate pattern. 
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Figure 3-19. Plot of example pressure versus time following restart data for seeded ethane-water 

systems at various initial subcoolings.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-20. Plot of example normalised pressure drop versus time following restart data for seeded 

ethane-water systems at various initial subcoolings.  
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Figure 3-21. Plot of example hydrate growth rate versus time following restart data for seeded 

ethane-water systems at various initial subcoolings. 

 

 

 

 

 

 

 

 

 

 

Figure 3-22. Plot of example hydrate growth rate following restart versus subcooling data for seeded 

ethane-water systems at various initial subcoolings. At 0 °C subcooling, conditions have reached 

equilibrium on the ethane hydrate phase boundary. 
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3.4.5.3 Crystal Growth regions in Methane Systems 

The shut-in-restart (SIR) tests were undertaken for a simple methane-water system to 

evaluate the hydrate growth rates/regions as a function of subcooling. To confirm the 

repeatability of the results, SIR runs were undertaken for three different methane systems; 

Test-A: methane-water system at ~100 bar with 80:20 water to gas volume ratio, cell 

position was horizontal; Test-B: methane-water system at ~100 bar with 80:20 water to 

gas volume ratio, cell position was vertical; Test-C: methane-water system at ~100 bar 

with 50:50 water to gas volume ratio, cell position was vertical.   

Figure 3-23 shows pressure/temperature data for multiple growth rate measurement runs 

(SIR runs) at different subcoolings for a simple methane-water system at 100 bar 

(Test- A). As can be seen, a clear change in hydrate growth rate as a function of 

subcooling temperature could be observed in Test-A. As it is expected, the hydrate growth 

rates are very slow at low subcoolings and the growth rates were observed to increase 

progressively as subcooling increases up to 3.8 °C (CIR for the 0.5% Luvicap Bio in the 

methane system). Beyond this subcooling temperature, the hydrate growth rates start to 

decrease; the region between 3.8 °C and 7.2 °C subcooling temperature as shown in 

Figure 3-23. As subcooling temperature increases, clear jumps in hydrate growth rates 

were observed beyond 7.2 °C; the hydrate growth rates start to increase suddenly beyond 

this subcooling temperature, then remain constant after it. This 7.2 °C subcooling 

temperature from s-I methane is a common CGI boundary seen for KHIs.  

In addition, SIR runs were carried out for another water-methane system (Test-B) at 

~100 bar with 80:20 water to gas volume ratio in an autoclave, but the experimental setup 

was positioned in vertical orientation. Figure 3-24 shows pressure/temperature data for 

multiple growth rate measurement runs (SIR runs) at different subcoolings for a simple 

methane-water system at 100 bar (Test-B). In contrast to Test-A, this system (Test-B) 

was allowed to form hydrates to reach the equilibrium, s-I methane hydrate phase 

boundary. As Test-A, a clear change in hydrate growth rate as a function of subcooling 

temperature could be observed in Test-B.  
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Figure 3-23. Example PT data for multiple growth rate measurement runs at different subcoolings 

for a simple methane-water system at ~100 bar (Test-A). Points are every minute. Test with 80% 

water cut was carried out in autoclave. Cell position was horizontal. 3.8 °C and 5.2 °C subcooling 

temperature are the CIR for 0.5% Luvicap Bio and 0.5% PVCap in the methane system respectively.  

 

 

 

 

 

Figure 3-24. PT data for multiple growth rate measurement runs at different subcoolings for the 

80:20 water to gas volume ratio, methane-water system (Test-B). Points are every minute. Colours 

are based on CGI region extents for 0.5% PVCap with methane. Cell position was vertical. 
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Figure 3-25 shows the time in minutes taken for 1% water conversion to hydrate upon 

restart as a function of subcooling for autoclave methane experiments with an initial 

starting pressure of ~100 bar (Test-B). As would be expected, the growth rate for the 

initial small fraction of hydrate (e.g. 1% water converted to hydrates) increases with 

subcooling temperature. As shown in Figure 3-24, if a larger pressure drop (higher 

hydrate fraction) is considered for initial growth rate, reduction of hydrate growth rate at 

higher subcooling temperature could be observed. As can be seen in red points in 

Figure 3-24, the growth rates were initially very high, then reduced significantly as 

hydrate fraction increased, and finally increased as the system reached to the s-I methane 

hydrate phase boundary. This behaviour was also observed in the simple ethane system, 

as shown in Figure 3-18.  

The question may then arise as whether this reduction of hydrate growth rate was because 

of the mixing problem or whether increasing of hydrate growth rate after the initial 

reduction in growth rate was due to mixing; as results show the hydrate growth rate was 

highest as the system moved back to the equilibrium which is not expected for a normal 

progress of chemical reaction (a typical exponential type decay is expected as conditions 

approach equilibrium). Therefore, to assess whether the mixing problem was the case, 

different parameters were checked. As discussed, the SIR runs were done for the methane-

water system in two different cell positions; horizontal (Test-A) and vertical (Test-B). 

Results for both cell positions showed a general same pattern for hydrate growth rate. In 

addition, it was not observed any blockage of stirrers during hydrate formation; the rpm 

remained constant through each SIR run. Furthermore, it was checked that if the impellers 

could shear the water/gas interface in both horizontal and vertical positions (this was the 

case for all systems); if impellers cannot shear the water/gas interface, there is a 

possibility of a layer of hydrate forming between gas and water, resulting in hydrate 

growth rate reduction. However, the maximum calculated water converted to hydrates at 

highest subcooling test (for Test-A, 80% water cut) is around 6% conversion which is 

relatively very low to reduce heat/mass transfer requirement. Nevertheless, the 

repeatability of the results in all systems, no blockage of stirrers (constant rpm) during 

hydrate formation, and ensuring the shearing of water/gas interface by impellers indicate 

that reduction of hydrate growth rate after initial high growth rate was not due to mixing 

problem. Therefore, the clear changes in hydrate growth rate should be possible due to 

phase changes, as was the case for ethane.  
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Figure 3-25. Time in minutes taken for 1% water conversion to hydrate upon restart as a function of 

subcooling for autoclave methane experiments with an initial starting pressure of ~100 bar (Test-B). 

Dashed lines are the subcoolings where KHI CGI region boundaries are commonly observed. Water 

cut was 80%. The cell position was vertical. 

 

 

Figure 3-26 and Figure 3-27 show example normalised pressure drop (∆𝑃
∆𝑃𝑓

⁄ ) versus 

time and subcooling temperature respectively, following restart data for runs initiated at 

various initial subcoolings for seeded methane-water system (Test-B). In addition, 

Figure 3-28 and Figure 3-29 show example hydrate growth rate versus time and 

subcooling temperature respectively for seeded methane-water system (Test-B) at various 

initial subcoolings. 

As shown in Figure 3-27, clear changes in hydrate growth rates are obvious at high 

subcooling temperatures. As can be seen in Figure 3-28, the hydrate growth rate pattern 

was not a typical exponential decline type reaction, and various peaks were observed. For 

example, for the SIR run initiated at 5.5 °C subcooling temperature, the highest growth 

rate was observed at the end of SIR run, before going back to the equilibrium (1.1 °C 

subcooling). For those SIR run initiated at higher subcoolings (>~5 °C initial subcooling), 

more than one peak was observed. These peaks probably suggest the formation of new 

hydrate phase. 
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Figure 3-26. Plot of example normalised pressure drop versus time following restart data for seeded 

methane-water system with an initial starting pressure of ~100 bar (Test-B) at various initial 

subcoolings. Water cut was 80%. The cell position was vertical. 

 

 

 

Figure 3-27. Plot of example normalised pressure drop versus subcooling temperature following 

restart data for seeded methane-water system with an initial starting pressure of ~100 bar (Test-B) 

at various initial subcoolings. Water cut was 80%. The cell position was vertical. 
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Figure 3-28. Plot of pressure drop rate (approximately corresponds to hydrate growth rate) versus 

time for example seeded methane-water system with an initial starting pressure of ~100 bar (Test-B) 

at various initial starting subcoolings (indicated). Water cut was 80%. The cell position was vertical. 

 

 

 

 

 

 

 

 

Figure 3-29. Plot of pressure drop rate (approximately corresponds to hydrate growth rate) versus 

subcooling temperature for example seeded methane-water system with an initial starting pressure 

of ~100 bar (Test-B) at various initial starting subcoolings (indicated). Water cut was 80%. The cell 

position was vertical. 
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Figure 3-30 shows the size of the measured exotherm (cell T minus set temperature T0) 

as a function of subcooling for various hydrate growth runs on the methane-water system 

(Test-B). As can be seen, two peaks for the measured exotherm were observed and the 

biggest peak occurred towards the end of the hydrate formation process (~1.8 °C 

subcooling temperature which is predicted by HydraFLASH as a phase boundary for s-II 

methane hydrate). Therefore, the thermal aspect of detection studies, as another evidence, 

support the potential formation of more than one hydrate phase e.g. two methane 

structures, i.e., once a new hydrate phase starts to grow, hydrate growth rate and heat 

released due to exothermic nature of hydrate formation start to change.  

 

 

 

 

 

 

 

 

 

 

Figure 3-30. Size of the measured exotherm (cell T minus set Temperature T0) as a function of 

subcooling for various hydrate growth runs on the methane-water system with an initial starting 

pressure of ~100 bar (Test-B). Dashed lines are for where changes in growth patterns are seen in this 

test and also historically in the presence of KHI polymers. Water cut was 80%. The cell position was 

vertical. 
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As discussed, the thermal aspect of detection in methane hydrate growth rate support the 

potential theory of formation of more than one hydrate phase in the methane systems, i.e., 

formation of two structures or solid-solid transition from one structure to another could 

be observed thermally. The water to gas volume ratio for the Test-A and Test-B was 80%; 

this high water to gas ratio reduces the potential thermal detection. Therefore, another test 

(Test-C) was carried out for a methane-water system at ~100 bar with 50:50 water to gas 

volume ratio, cell position was vertical. The aim was to allow the system to have higher 

hydrate fraction during SIR runs; the heat released during hydrate formation could affect 

the system temperature which is more quantifiable. In addition, the cell was equipped 

with motor current recording (amps to maintain set rpm) which could support more for 

formation of two phases/structures in the methane system, as discussed later.  

Figure 3-31 shows pressure/temperature data for multiple growth rate measurement runs 

(SIR runs) at different subcoolings for the simple methane-water system (Test-C). 

Figure 3-32 shows the size of the measured exotherm (cell T minus set temperature T0) 

as a function of subcooling for various hydrate growth runs on the methane-water system 

(Test-C). 

Similar to the previous results for methane hydrate growth rate experiments (Test-A and 

Test-B), Figure 3-31 shows that the initial hydrate growth rates (initial pressure drop) 

increased with subcooling for Test-C. In addition, for those subcoolings higher than 

5.2 °C, hydrate growth rate increased after an initial slower rate which is in contrast to 

exponential type decay rate. Furthermore, after this rate acceleration, hydrate growth rate 

decreased, then accelerated again close to around 1.8 °C subcooling temperature. These 

results are pretty similar to the results for Test-A and Test­B.  

Furthermore, exploring the exothermic behaviour of this experiment reveals more 

evidence of formation of more than one structure in the methane systems. As shown in 

Figure 3-32, for those SIR runs initiated at low subcoolings (green points), the system 

temperature did not change; hydrate growth rates were very slow and heat released was 

insufficient to increase the cell temperature. In contrast, while temperature increased for 

those SIR runs initiated at higher subcoolings (amber and red points), some peaks of 

exotherm were observed. Similar to Test-B, the peaks of all exotherms were observed at 

the end of hydrate formation, around 1.8 °C subcooling temperature which is the 

theoretical stability limit for s-II methane predicted by HydraFLASH.  
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Figure 3-31. PT data for multiple growth rate measurement runs at different subcoolings for the 

50:50 water to gas volume ratio, methane-water system (Test-C). Points are every minute. Colours 

are based on CGI region extents for 0.5% PVCap with methane. Cell position was vertical. 

 

 

 

 

 

 

 

 
Figure 3-32. Size of the measured exotherm (cell T minus set Temperature T0) as a function of 

subcooling for various hydrate growth runs on the methane-water system (Test-C). Dashed lines are 

for where changes in growth patterns are seen in this test and also historically in the presence of KHI 

polymers. Water cut was 50%. The cell position was vertical. 
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As shown in Figure 3-32, the measured exotherm at the subcooling temperature around 

2 °C is strongly sustained; suggesting although very little hydrates formed, some reaction 

occurred which could release too much heat and sustain the system temperature. This 

might be due to solid-solid transition (s-II to s-I transition). Further support from solid-

solid transition could be observed from the motor current data during SIR runs (This 

interpretation is a joint work product of R. Anderson and M. Aminnaji which is taken 

from JIP Project at Heriot-Watt University [3.3]). Figure 3-33 and Figure 3-34 show a 

plot of change in stirrer motor current as a function of subcooling temperature and time 

respectively for the methane hydrate growth rate tests (Test-C) for various initial 

subcoolings.  

As can be seen, for those SIR runs initiated at high subcooling temperature (red and amber 

points), the motor current starts to increase after the 5.2 to 4.0 °C subcooling range. From 

the previous results, it was suggested that a new phase of hydrates (it might be s-II 

methane) formed in the 5.2 to 4.0 °C subcooling range. The motor current continued to 

rise up to 1.8 to 1.1 °C subcooling range, then reduced as the system moved back to 

equilibrium. The motor current at the equilibrium conditions was as same as the system 

with a subcooling temperature beyond the 5.2 °C. While the fraction of hydrate increased, 

these peaks at the lowest subcooling around 1.8 °C (predicted as the limit of s-II methane 

hydrate stability) suggesting solid-solid transition which coincides with the other results 

e.g. the peaks for growth rate and exothermic s-II to s-I transition. However, this solid-

solid transition needs dissociation and regrowth of hydrate phase which could be 

exothermic.   
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Figure 3-33. Plot of change in stirrer motor current (amps divided by initial amps, A/A0) as a function 

of subcooling for various hydrate growth runs on the methane-water system (Test-C). Water cut was 

50%. The cell position was vertical. 

 

 

 

 

 

 

 

 

 
Figure 3-34. Plot of change in stirrer motor current (amps divided by initial amps, A/A0) as a function 

of time for various hydrate growth runs on the methane-water system (Test-C). Water cut was 50%. 

The cell position was vertical. 
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As methane hydrate is generally known to form s-I hydrates, these results are not as would 

be expected. As discussed, while a typical growth rate for reaction process is the 

exponential type decay, more than one reaction rate peaks were observed in the simple 

methane hydrate formation systems. These peaks strongly suggest the formation of more 

than one phase in the system; as discussed, mixing problem and mass/heat transfer 

limitation were not the case for the methane systems tested. Therefore, it is speculated 

that the second phase could be s-II methane hydrate, although it might be metastable.  

Although in theory, methane can enter the 512 and 51264 cavities for s-II, it is too small to 

stabilise the large cavity of structure-II. Therefore, methane can better stabilise the large 

cavity of s-I than s-II. However, this is not meaning that s-II methane hydrate cannot 

form; it means that s-I methane is more stable than s-II methane, depending on PT 

conditions. Some limited studies confirm the formation of s-II methane as a stable phase 

at lower temperatures / higher pressures [3.7][3.8][3.9][3.10]. 

Schicks and Ripmeester (2004) reported the formation of both s-I and s-II methane 

hydrate at the conditions of 30 to 90 bar and 1.5 to 12 °C which are similar to the 

experiments studied here [3.11]. Although the authors showed the co-existence of the two 

structures of methane, they indicated that the s-II methane was a metastable phase and 

finally converted to s-I methane. Nevertheless, the formation of the two structures of 

methane at the conditions of the experiments studied here are possible and can describe 

the behaviour of methane growth rates seen here.  

Furthermore, as discussed, the pattern of simple propane hydrate growth rate which can 

form only s-II (exponential type decay as exactly would be expected for the growth of a 

single new phase) is another evidence to support the theory of formation of more than one 

structure in the methane systems, i.e., different growth rate changes and various growth 

rate peaks were observed in the methane systems.  

In addition, s-II methane hydrate phase boundary predicted by HydraFLASH® (which is 

at around 2 °C subcooling temperature from s-I) is another evidence to support the theory 

of formation of s-II methane hydrates and its potential transient to s-I methane hydrates. 

As results show, a clear change/peak in hydrate growth rate was observed around 1.8 °C 

subcooling temperature for all SIR runs. 
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3.4.5.4 Crystal Growth regions in C1 + C3 

As discussed, the results indicate the formation of s-I and s-II in both simple methane and 

ethane. Further investigation on the formation of various hydrate structures progressed 

on the system with 98 mole% C1 + 2 mole% C3. In contrast to the previous procedure 

(SIR runs) for hydrate growth rate studies, step heating and step cooling measurements 

(see Section 3.3.1) were carried out in this experiment, to investigate multiple hydrate 

structures in the natural gas system and possible hydrate equilibrium phase boundary 

associated with different hydrate structures. This is because that it is speculated the 

common CGI regions observed for the KHI system are not as a result of KHI polymers 

directly and there is an interaction between KHIs and hydrate structures. 

Figure 3-35 shows a plot of pressure / temperature data for constant cooling (1 °C / hour) 

then equilibrium step heating and step cooling measurements in the two components 

natural gas system (98 mole% C1 + 2 mole% C3). As can be seen, a clear change in the 

slope of the measured equilibrium step heating/cooling curve was observed. As shown in 

Figure 3-35, data points for both equilibrium step cooling and step heating runs indicate 

the sequential formation of multiple hydrate phases of different composition and 

structures during hydrate growth, as evidenced by changes the slope of the measured 

equilibrium step heating and step cooling curve. Moreover, constant cooling confirms this 

sequential formation of multiple hydrate phases of different compositions and structures. 

Propane can only enter and stabilise the large cavities of structure-II (51264) and methane 

can form both s-I and s-II. Based on model predictions and established thermodynamic 

stability, these hydrates formed in this system are understood to be C3 (in the large cage) 

dominated s-II and methane dominated s-I, as subcooling increases. At lower subcooling 

temperature (< 4 °C), the region between the black line and black dashed line predicted 

by HydraFLASH®, propane can only form as a stable phase. As subcooling increases, 

step cooling/heating curves followed the methane phase boundary (structure-I). 

Therefore, as shown in Figure 3-35, the results strongly suggest the order of hydrate 

formation. This order of hydrate formation is based on the order of stability, i.e., the most 

thermodynamically stable hydrate formers. This might suggest that the simple formation 

of s-II hydrate in the natural gas system is not true and various hydrate structures with a 

sequential formation can be formed in order of decreasing stability (C3/C4 → C2 → C1 / 

CO2 → N2). (This interpretation is a joint work product of R. Anderson and M. Aminnaji 

which is taken from JJI Project at Heriot-Watt University [3.1]). 
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Figure 3-35. Plot of PT data for constant cooling (1.0 °C / hour) then equilibrium step heating and 

step cooling measurements on the 98 mole% C1 + 2 mole% C3 system. Black line and dashed line 

are model predictions (adjusted slightly as required to match measurements) for the stability of 

different potential structures which can form. 

 

3.4.5.5 Crystal Growth regions C1 + C2 + C3 

Work progressed onto the more complex natural gas with three components to investigate 

the multiple hydrate structures formation in the natural gas systems. Therefore, step 

heating equilibrium measurement was carried out for the system with 

85 mole% C1 + 12 mole% C2 + 3 mole% C3. This is crucial to find out whether various 

hydrate structures could be formed in the natural gas system rather than the simple 

formation of s-II hydrate; because it is speculated that there is an interaction between 

KHIs and hydrate structures which may result in the common CGI regions observed for 

the KHI system. 

Figure 3-36 shows a plot of pressure / temperature data for seeded constant cooling 

(1 °C / hour) then equilibrium step heating measurements in the three components natural 

gas system (85% C1 + 12% C2 + 3% C3). As can be seen, clear transitions and changes in 

the slope of the measured equilibrium step heating curve were observed. As shown in 

Figure 3-36, these clear changes/transitions coincide with the model predictions for the 

stability of different structures which can be formed e.g. C3 s-II, C2 s-II, C2 s-I, and C1 s­I 

(Section 3.3.3).  
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As would be expected, the results of this experiment indicate the sequential dissociation 

of different hydrate phases with different compositions and structures. As shown in 

Figure 3-36, the first few step heating equilibrium points coincide with C1 s-I phase 

boundary predicted by the model, indicating the dissociation of s-I methane hydrates. As 

temperature raised, the slope of measured equilibrium step heating curve was changed in 

the region between C1 s-I and C2 s-I phase boundary, specifying dissociation of C2 s-I 

hydrates. In addition, measured equilibrium step heating curve for those points in the 

region between C2 s-I and C2 s-II phase boundary followed by different slope, indicating 

dissociation of C2 s-II hydrates. Finally, as would be expected, C3 s-II hydrate dissociated 

which is the most thermodynamically stable hydrate former in this system. A straight line 

was observed for the measured equilibrium step heating points in the region between 

C2 s­II and NG s-II phase boundary, i.e., NG s-II phase boundary refers to the hydrate 

phase boundary of the system with full composition (85% C1 + 12% C2 + 3% C3). 

Therefore, similar to the results for C1 + C3 mixture, the results of step heating equilibrium 

measurements for this system strongly suggest the order of hydrate formation/dissociation 

which is based on the order of stability.  

 

 

Figure 3-36. Plot of measured equilibrium (step-heating) dissociation behaviour for 

85% C1 + 12% C2 + 3% C3 (80% cell volume as aqueous phase). Black dashed lines are model 

predictions (adjusted slightly as required to match measurements) for the stability of different 

potential structures which can form. 
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3.5 Summary  

From hydrate fraction tolerance on Luvicap Bio and PVCap in the methane system and 

performance of combined Luvicap Bio + PVCap in both methane and natural gas system 

in terms of hydrate inhibition, the following conclusions could be drawn: 

 As the hydrate fraction increases, the CIR subcooling extent decreases for both 

Luvicap Bio and PVCap. 

 Results suggest that Luvicap Bio is a better inhibitor for s-I methane than for s-II 

methane hydrate. Luvicap Bio prevents successfully s-I hydrate formation at low 

subcooling temperature up to ~3 °C subcooling temperature, then struggles to 

inhibit the s-II methane hydrates up to 5.2 °C subcooling temperature; but shows 

a good inhibition for s-I hydrates beyond the 5.2 °C subcooling temperature. 

 In contrast to Luvicap Bio, PVCap is probably a better s-II hydrate inhibitor. 

PVCap prevents successfully s-I hydrate formation at low subcooling 

temperature, then inhibits the s-II methane hydrates up to 5.2 °C subcooling 

temperature; but struggles to inhibit s-I hydrates beyond the 5.2 °C subcooling 

temperature.  

 Furthermore, the CGI test on combined 0.25% Luvicap Bio + 0.25% PVCap with 

both methane and natural gas shows significantly improved hydrate inhibition 

region compared to these polymers alone.   

 The results for the combined Luvicap Bio + PVCap support the theory that 

Luvicap Bio is better for s-I and PVCap is better for s-II, i.e.,  the synergism effect 

could be achieved when these polymers combined; one inhibits s-II and the other 

inhibits s-I, resulting in improved CGI regions.  
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Furthermore, from the results for hydrate growth rate regions/patterns and the hydrate 

structure studies in methane, ethane, propane, C1 + C3, and C1 + C2 + C3, it is concluded 

that: 

 The SIR runs for simple methane and ethane systems reveal the clear and distinct 

changes in hydrate growth rates and exothermic heat release rates which 

correspond to the CGI-type regions observed in Luvicap Bio and PVCap systems 

(1.1-2, 5.2, 7.2 °C subcooling temperature) 

 The hydrate growth rate patterns and exothermic heat release rates in both simple 

ethane and methane systems support the possible theory of formation both s-I and 

s-II methane and ethane; but not propane which could form only s-II due to its 

large molecular diameter (a typical exponential type decay was observed for 

growth rate in simple propane system) 

 In addition, equilibrium step heating/cooling measurements in the 

multicomponent gas systems suggest the multiple hydrate structures formation. 
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Chapter 4 – Inhibition of Hydrates Using Combination of MeOH / 

MEG / EtOH and Luvicap Bio for Natural Gas Systems 
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4.1 Introduction 

The main objective of this chapter was to investigate whether Bio KHIs could be used to 

reduce or eliminate THIs, particularly more toxic MeOH. This chapter presents the results 

of application of the crystal growth inhibition (CGI) method to investigate the effect of 

MeOH, EtOH, and MEG on biodegradable polymers of KHIs like Luvicap Bio. Methanol 

(MeOH) and ethylene glycol (MEG) are the two most common thermodynamic hydrate 

inhibitors, and they are also being used either as solvents in LDHI formulations or as a 

‘top-up’ inhibitor to increase the subcooling temperature to which KHIs can be used. The 

term of ‘full top-up’ inhibitor refers to those THIs inhibitors that do not have negative 

effect on KHI performance, i.e., the CIR extent (complete inhibition region, green zone) 

is fully preserved when THIs is combined with KHIs. Similarly, KHIs can be used to 

reduce the amount of thermodynamic inhibitor required in terms of hydrate inhibition at 

high subcooling temperatures.  

There is limited data showing the effect of alcohols on KHIs. There are two conflicting 

studies about the effect of MeOH in mixtures with KHIs. Sloan et al. (1998) showed the 

negative effect of MeOH on PVCap [4.1] while there is one study showing the synergy 

effect of MeOH [4.2]. In addition to this, there are two theoretical and experimental 

studies concerning the effect of alcohol on anti-agglomeration [4.3][4.4]. In the 

theoretical study, very little effect of MeOH as a co-solvent on anti-agglomeration was 

proposed, yet in the experimental studies, a significant effect of small amounts of alcohol 

co-surfactant (MeOH) on hydrate anti-agglomeration was one of the main conclusions, 

and authors have shown that alcohol co-surfactants could be effective at low 

concentrations. 

In addition to the published data, a lot of researches have been done to evaluate the effect 

of alcohol on the KHIs within the various phases of Joint Industrial Project (JIP) at 

Heriot Watt University. The following paragraphs summarize the research on the effect 

of THIs on KHIs using CGI methods.   

Previous studies (induction time measurements carried out during the 2006-2009 project 

phase) have shown that methanol (MeOH) has a generally negative effect on PVCap 

performance [4.5]. Furthermore, CGI experiments on methanol-PVCap systems with 

methane carried out in another project phase (2009-2012) support these findings [4.6]; 
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methanol consistently reducing the extent of PVCap-induced CGI regions as the aqueous 

concentration is increased. 

To better understand the impact of alcohols on KHI performance, experiments on the 

effect of ethanol (EtOH), n-propanol (n-POH), i-propanol (i-POH) and n-butanol             

(n-BOH) on PVCap performance in methane systems were undertaken within another 

phase of the project [4.6]. Results showed that the above alcohols do not act as full top­up 

thermodynamic inhibitors and all have negative effect on the PVCap-induced complete 

inhibition region (CIR) with the exception of n-butanol. In addition, the results indicate 

that the molecular weight is not the only factor which controls this kind of negative 

behaviour effect, i.e., results showed that n-propanol is less negative than i-propanol. 

Moreover, results show that the higher subcooling temperature of CGI region extents 

(more preservation of the CIR) are achieved for those ones that have longer alkyl tail. 

Nevertheless, it was concluded that the combination of alcohol + PVCap does still offer 

better inhibition by mass of inhibitor than any of the alcohols alone even though they 

have some negative effect on PVCap performance. 

In contrast to data for PVCap + methanol + methane system which strongly suggests the 

negative effect of MeOH on PVCap performance, results for the natural gas systems 

showed the modestly positive effect of methanol (at 2.5 and 5.0 mass% concentrations) 

on PVCap performance, indicating a full ‘top-up’ thermodynamic inhibitor [4.7]. 

Conversely, at a higher concentration of methanol (25 mass%), crystal growth regions 

reduced compared to PVCap alone showing negative effect of MeOH on PVCap 

performance at higher concentration of methanol.  

The different effect of methanol on PVCap performance in s-I forming methane systems 

and s-II/s-I forming multicomponent gases probably suggests the methanol involvement 

in hydrate growth/nucleation, e.g. potentially though temporary cage occupation [4.7]. 

Certainly, methanol has a molecular diameter sufficiently small to enter hydrate cavities 

and is known to form hydrates at low temperatures [4.8][4.9].  
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However, the CGI studies on MEG + PVCap in the natural gas systems showed that MEG 

has positive effect on PVCap, i.e., evidenced by the increase in CGI region 

subcoolings [4.7]. The reason for this could be increase in the strength of polymer 

adsorption on hydrate crystal surfaces due to presence of MEG in the system. 

In addition to work on methanol and MEG, studies were undertaken on the systems with 

5.0 and 25.0 mass % ethanol, PVCap, and natural gas to investigate the effect of ethanol 

on PVCap in natural gas systems in terms of hydrate inhibition [4.7]. The results for both 

concentration of ethanol support the generally negative effect of ethanol on PVCap 

performance indicating ethanol does not act as a full top-up thermodynamic inhibitor for 

PVCap.  

In addition to the PVCap, some work has been undertaken on one commercial polymer 

(Nalco-Champion T1441), i.e., the effect of alcohols on Nalco-Champion T1441 in the 

natural gas systems has been studied [4.7]. The results showed that methanol has general 

negative effect on performance of Nalco-Champion T1441 in terms of hydrate inhibition, 

reducing the CGI extents regions [4.7].  

However, there is a question in terms of if the negative effect of ethanol on PVCap 

performance is due to ethanol enclathration, i.e., ethanol is known to form binary hydrates 

in both methane and ethane systems [4.10]. Therefore, the effect of ethanol on PVCap 

performance in methane and ethane systems was investigated and the results showed that 

although both systems are known as s-I hydrates formation, CGI inhibition being 

considerably greater in ethane than methane systems [4.7]. In addition, the CGI method 

was carried out for the 5.56 mole% ethanol + PVCap in an ethane system. The 

5.56 mole% ethanol is the stoichiometric ratio for ethanol entry into the hydrate lattice. 

The results also showed the strongly negative effect of ethanol on PVCap performance in 

terms of hydrate growth in ethane-ethanol systems. Therefore, it is concluded that the 

negative effect of ethanol is considerably less for ethane than it is for methane. 

Consequently, these findings strongly suggest the molecules occupancy of cages is the 

important/single biggest factor in KHIs performance in terms of the ability of KHIs 

polymers to inhibit crystal growth as a function of pressure and composition.  
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As discussed in Section 1.4.3, there is growing interest in ‘green’ KHIs and as noted 

in Chapter 2, results showed that Luvicap Bio has better performance in terms of hydrates 

inhibition and powerful KHIs properties. Therefore, following work on PVCap, the effect 

of methanol on Bio-KHI (Luvicap Bio Polymer) performance in a natural gas system was 

examined to assess whether the negative effect seen in PVCap systems also applies to 

Luvicap Bio polymer systems. In addition, the effect of ethanol and MEG on Luvicap Bio 

were examined.   

4.2 Experimental Methods and Materials 

The purity of the methanol, ethanol, and MEG used were 99.9%. Distilled water was used 

in all tests. Luvicap Bio base polymer was supplied in water by BASF. The composition 

of natural gas used in tests (including that used in previous tests for PVCap in JIP) is 

given in Table 4-1. The volume ratio of liquid/gas in the cell was 70/30.  

All experiments were carried out using high pressure stirred autoclaves (see Section 2.2 

for a more detailed description of equipment), using the new CGI method (see 

Section 1.4.4.2).  

The thermodynamic hydrate phase boundaries for systems were predicted using 

HydraFLASH®, a thermodynamic model developed by Hydrafact Ltd and Heriot-Watt 

University. 

 

 

Table 4-1. Composition of the standard North Sea natural gas used in CGI experiments  

Component Mole% 

Methane 87.93 

Ethane 6.00 

Propane 2.04 

i-Butane 0.20 

n-Butane 0.30 

CO2 2.03 

Nitrogen 1.50 
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4.3 Results and Discussion 

4.3.1 0.5 Mass% Luvicap Bio with Methanol in a Natural Gas System 

Figure 4-1 and Figure 4-2 show example CGI method cooling/heating curves for 

Luvicap Bio + natural gas systems with 5 and 50 mass% aqueous methanol (relative to 

water + Luvicap Bio) respectively. Complete measured CGI boundary data points with 

interpolations for all systems studied (5, 10, 20, 30 and 50 mass% MeOH) are reported in 

Table 4-2 to Table 4-6, and presented in Figure 4-3 to Figure 4-7. Pressure / temperature 

plots showing measured experimental points delineating the various crystal growth 

inhibition regions for these systems are reported in Appendix A.1.  Figure 4-8 shows 

average induced CGI regions for 0.5 mass% Luvicap Bio aqueous as a function of 

methanol mass% relative to the MeOH-inhibited s‐II boundary for the natural gas + 

methanol + water system. Figure 4-9 shows a comparison of subcooling extents of CGI 

regions from the s-II phase boundary for 0.5 mass% Luvicap Bio aqueous with natural 

gas and different methanol mass% over the range of pressures studied. Figure 4-10 shows 

average Luvicap Bio induced CIR region for 0.5 mass% Luvicap Bio aqueous as a 

function of methanol mass% + MeOH thermodynamic inhibition for the natural gas-water 

system, while Figure 4-11 shows calculated mass% methanol inhibition equivalent to 

methanol + 0.5 mass% Luvicap Bio as a function of methanol mass% + 0.5 mass% 

Luvicap Bio.  

As discussed, it was concluded from past studies that methanol has an overall negative 

effect on PVCap (and another non-bio polymer) performance in s-I forming methane 

hydrate systems. Likewise, while methanol had a moderate positive effect on PVCap 

performance in s-II forming natural gas at lower concentrations (2.5 and 5 mass% 

methanol), it had an increasingly negative effect at higher concentrations. However, the 

combination of methanol and PVCap still offered a greater degree of inhibition by mass 

of inhibitor than methanol alone, even though it was not a full ‘top-up’ inhibitor.  

In contrast to PVCap, results of tests on 0.5 mass% Luvicap Bio with methanol at 

concentrations up to 30% with natural gas show that while it has a moderately negative 

effect on the SGR region, the important complete inhibition region / CIR (considered safe 

for operating) remains largely preserved, making it generally a consistent top up inhibitor 

for Luvicap Bio for the conditions / concentrations tested. Only at the higher methanol 

concentration of 50 mass% does the methanol start to have a significant detrimental effect 
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on the KHI performance, reducing the CIR, although even then this is primarily confined 

to pressures below ~100 bar. Another significant point is that slow dissociation region 

decreases as methanol concentration increases. Results show that there is no significant 

SDR in those systems with methanol concentration higher than 30 mass%.  

Results do therefore suggest much greater potential for Luvicap Bio + methanol 

combinations for reducing methanol requirements than is the case for other polymers such 

as PVCap. For example, as shown in Figure 4-11, 0.5 mass% Luvicap Bio + 26 mass% 

MeOH offers the complete inhibition (MeOH + Bio CIR) equivalent of 40 mass% 

Methanol, which would constitute a 35% methanol reduction. At lower subcooling / 

methanol dose requirements, the percent reductions are even greater; 0.5 mass% Luvicap 

Bio could replace all methanol where it was currently being dosed at ~23 mass%. 

Certainly data suggest large cost savings could be made, with additional environmental 

benefits by replacing methanol with Luvicap Bio based KHIs. 

Finally, while this has not been examined in detail, it is notable that, in contrast to data 

for PVCap [4.7], CGI boundaries in Luvicap Bio + MeOH + natural gas systems seem 

primarily related to s-II (in terms of subcooling extents) instead of s-I. This potentially 

relates to the different abilities of these two polymers to inhibit different hydrate 

structures that can form in natural gas systems, as discussed in Chapter 3. It may also give 

clues to the role of methanol (and ethanol) in hydrate nucleation and growth. Methanol is 

known to enter hydrate cavities under certain conditions [4.11] (with ethanol a known     

s-II type hydrate former), and this may be a factor in the different behaviours seen for 

PVCap and Luvicap Bio with methanol if it is considered these polymers have different 

abilities to inhibit different types of structure. For example, if methanol encouraged the 

formation of e.g. s-I, then a KHI with less ability to inhibit s-I would be expected to be 

poorer in the presence of methanol, and vice versa for a KHI poor with s-II if MeOH 

encouraged that structure. Certainly, methanol (and ethanol) partial enclathration looks 

increasingly likely as the factor behind the contrasting top-up effects observed for 

different KHI polymers. 
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Table 4-2. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 5 mass% MeOH (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-2.7 24.6 -2.9 -9.3 

3.5 53.1 -3.8 -9.1 

5.5 71.3 -4.3 -9.1 

7.5 99.8 -4.9 -9.1 

9.7 132.2 -4.6 -8.3 

SGR(VS)-RGR Very slow 

2.2 53.1 -5.1 -10.4 

4.7 71.3 -5.1 -9.9 

6.7 99.7 -5.7 -9.9 

9.3 132.4 -5.0 -8.7 

SDR Slow dissociation 

10.8 27.0 - 3.5 

16.6 57.2 - 3.5 

18.6 77.5 - 3.5 

20.5 108.5 - 3.5 

22.1 146.4 - 3.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4-3. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 10 mass % methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-6.0 23.0 -3.4 -9.9 

0.4 53.1 -4.7 -10.0 

2.7 75.8 -5.3 -10.1 

4.2 95.2 -5.5 -9.9 

7.0 134.5 -5.1 -8.8 

SGR(VS)-RGR Very slow 

0.0 52.8 -5.0 -10.4 

2.3 78.5 -5.7 -10.7 

3.8 96.6 -6.0 -10.4 

6.2 133.4 -5.8 -9.5 

SDR Slow dissociation 

7.0 25.0 - 2.3 

13.3 57.7 - 2.3 

15.6 82.9 - 2.3 

16.9 106.2 - 2.3 

18.5 148.4 - 2.3 



 

91 

Table 4-4. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 20 mass % methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-9.3 23.6 -2.3 -8.7 

-3.2 52.7 -3.4 -8.8 

-1.1 72.8 -3.9 -8.8 

0.5 95.1 -4.2 -8.7 

3.3 125.5 -3.2 -7.2 

SGR(VS)-RGR Very slow 

-10.2 23.6 -3.2 -9.6 

-4.1 52.3 -4.2 -9.6 

-2.0 72.5 -4.7 -9.7 

-0.7 94.4 -5.4 -9.8 

1.7 123.3 -4.7 -8.7 

SDR Slow dissociation 

1.6 25.6 - 1.5 

7.6 57.2 - 1.5 

9.6 78.2 - 1.5 

11.1 102.9 - 1.5 

12.3 134.9 - 1.5 
 

 

 

 

Table 4-5. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 30 mass % methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-13.5 24.3 -1.6 -8.0 

-7.9 51.6 -2.5 -8.1 

-6.0 68.8 -2.8 -8.0 

-4.6 87.9 -3.2 -8.0 

-3.1 126.0 -3.9 -8.0 

-2.4 148.0 -4.1 -8.0 

0.0 209.3 -3.8 -7.0 

1.6 282.2 -4.0 -6.8 

SGR(VS)-RGR Very slow 

-15.8 24.5 -3.9 -10.3 

-8.6 51.8 -3.1 -8.7 

-6.7 68.5 -3.5 -8.7 

-5.5 86.9 -4.0 -8.8 

-3.8 125.8 -4.6 -8.7 

-3 146.6 -4.7 -8.5 

-0.7 205.3 -4.4 -7.6 

1.0 279.2 -4.5 -7.4 

SDR Slow dissociation 

-4.7 26.0 - 0.3 

1.3 58.5 - 0.3 

2.7 73.4 - 0.3 

4.0 94.7 - 0.3 

5.6 138.3 - 0.3 

6.2 162.7 - 0.3 

7.7 229.4 - 0.3 

9.2 307.9  - 0.3 
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Table 4-6. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 50 mass % methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-21.9 34.4 0.2 -5.7 

-18.8 61.2 -1.2 -6.6 

-16.8 76.9 -0.7 -5.9 

-16.5 93.4 -1.5 -6.5 

-16.3 122.6 -2.7 -7.3 

-13.5 194.5 -2.3 -6.2 

-10.4 317.6 -2.0 -5.5 

SGR(VS)-RGR Very slow 

-22.2 34.9 -0.2 -6.1 

-19.0 61.2 -1.4 -6.8 

-17.1 76.8 -1.0 -6.2 

-16.8 93.4 -1.8 -6.8 

-16.7 122.0 -3.1 -7.7 

-14.3 191.8 -3.0 -6.9 

-10.9 317.2 -2.5 -6.0 

SDR Slow dissociation No SDR 
 

 

 

 

Figure 4-1. Example CGI method cooling curves for 0.5 mass% Luvicap Bio / 5 mass % methanol 

aqueous with natural gas. 

 

10

30

50

70

90

110

130

150

-5 0 5 10 15 20 25

P
 /

 b
a

r

T / °C

Cooling, with hydrate
history, rapid
Heating, stepped

Cooling, with hydrate
history, 1.0 °C/hr
Cooling, with hydrate
history, stepped, 24 hr/step

Ice

s-I s-II

CIR

SGR

RGR

VS

SDR



 

93 

 
Figure 4-2. Example CGI method cooling curves for 0.5 mass% Luvicap Bio / 50 mass % methanol 

aqueous with natural gas. 

 

 

 

 

 

 

 

 

 

Figure 4-3. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 5.0 mass % methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 
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Figure 4-4. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 10 mass % methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 

 
Figure 4-5. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 20 mass % methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 
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Figure 4-6. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 30 mass % methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 

 
Figure 4-7. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 50 mass % methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 
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Figure 4-8. Average (25 to 130 bar) Luvicap Bio induced CGI regions for 0.5 mass% Luvicap Bio 

aqueous as a function of methanol mass% (relative to water + Luvicap Bio) relative to the MeOH-

inhibited s‐II boundary for the natural gas-methanol-water system. 
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Figure 4-9. Comparison of subcooling extents of CGI regions from the s-II phase boundary for 

0.5 mass% Luvicap Bio aqueous with natural gas and different methanol mass%. 
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Figure 4-10. Average (25 to 130 bar) Luvicap Bio induced CIR region for 0.5 mass% Luvicap Bio 

aqueous as a function of methanol mass% (relative to water + Luvicap Bio) + MeOH thermodynamic 

inhibition for the natural gas-water system. 

 

 

 

 

 

 

 

 

 

 
Figure 4-11. Calculated mass% methanol inhibition equivalent to methanol + 0.5 mass% Luvicap Bio 

(thermodynamic methanol inhibition + CIR) as a function of methanol mass% (+0.5 mass% 

Luvicap Bio). 40 mass% methanol can be replaced by 26 mass% MeOH + 0.5 mass% Luvicap Bio. 
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4.3.2 1.0 Mass% Luvicap Bio with Methanol in a Natural Gas System 

As discussed, methanol was found to generally act as a top-up inhibitor for 0.5 mass% 

Luvicap Bio with natural gas. It was decided to investigate the effect of a higher 

concentration of Luvicap Bio in natural gas systems with methanol. CGI studies have 

been carried out on 1.0 mass% Luvicap Bio aqueous (relative to water) with 5, 10, 20, 

and 30 mass% methanol (relative to water + Luvicap Bio) and natural gas. Measured CGI 

region boundary data for these systems are presented in Figure 4-12 to Figure 4-15 and 

reported in Table 4-7 to Table 4-10. Pressure / temperature plots showing measured 

experimental points delineating the various crystal growth inhibition regions for these 

systems are reported in Appendix A.2. 

Figure 4-16 shows average induced CGI regions for 1.0 mass% Luvicap Bio aqueous as 

a function of methanol mass% relative to the MeOH-inhibited s‐II boundary for the 

natural gas-methanol-water system. In addition, Figure 4-17 shows the average (25 to 

150 bar) Luvicap Bio induced CIR region for 1.0 mass% (and 0.5 mass%) Luvicap Bio 

aqueous as a function of methanol mass% (relative to water + Luvicap Bio) + MeOH 

thermodynamic inhibition for the natural gas-water system. Figure 4-18 shows a 

comparison of subcooling extents of CGI regions from the s-II phase boundary for 

1.0 mass% Luvicap Bio aqueous with natural gas and different methanol mass% over the 

range of pressures studied.  

As can be seen, results suggest methanol generally acts as good top-up inhibitor for 

1.0 mass% Luvicap Bio, although a complete top-up additive effect is restricted to 

5 mass% methanol; at higher concentrations, there is a modest negative effect of methanol 

on Luvicap Bio performance which increases with methanol concentration and pressure, 

as shown in Figure 4-18. 

Figure 4-19 to Figure 4-22 show the comparison of measured CIR boundaries for 0.5 and 

1.0 mass% Luvicap Bio, both with 5, 10, 20, and 30 mass% MeOH in the natural gas 

system respectively. As can be seen, the CIR relative to s-II phase boundary at 30 bar for 

1.0 mass% Luvicap Bio + 5 mass% methanol is ~10.8 °C. This is larger than the ~9.3 °C 

found for 0.5 mass% Luvicap Bio, indicating an apparent increase in Luvicap Bio CGI 

performance at this higher polymer concentration, with top-up effects retained. It clearly 

shows that Luvicap Bio performance is generally improved at the higher polymer 

concentration, i.e. as shown in Figure 4-19, the CIR increases ~1.7 °C for 1 mass% 
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Luvicap Bio compared to 0.5 mass%, both with 5.0 mass% methanol over the range of 

pressure tested. This increase in CIR is more obvious at higher pressure, e.g. ~2 °C at 

120 bar. 

In contrast to data for 5 mass% methanol, the CIR boundaries for 1.0 and 0.5 mass% 

Luvicap Bio, both with 10% MeOH, are very similar, as shown in Figure 4-20. In 

addition, as can be seen in Figure 4-21, for 20 mass% MeOH, the CIR increases ~1.0 °C 

at the higher polymer dose (1.0% compared to 0.5% in this case). However, as shown in 

Figure 4-22, the result for 30 mass% methanol shows that while CIR increases ~1.5 °C 

for 1 mass% Luvicap Bio compared to 0.5 mass% for low pressure, the CIR boundaries 

for these two systems are similar at high pressure. 

Figure 4-23 shows the CGI boundaries for 1.0 and 0.5 mass% Luvicap Bio alone in the 

natural gas system, indicating the CIR increases modestly at higher polymer dose, i.e. 

~1.0 °C for 1 mass% Luvicap Bio compared to 0.5 mass%. This, and data for 5 mass% 

methanol (Figure 4-19) suggests that the benefits of using a higher polymer dose is most 

evident at the lowest methanol concentrations (~2 °C for 1.0% Bio + 5% MeOH 

compared to 0.5% Bio + 5 % MeOH), although this is overall fairly marginal, and the net 

CGI gains of using 1.0% Bio compared to 0.5% are quite limited per unit dose, as can be 

seen in averaged data in Figure 4-17. Nevertheless, methanol does still act more as a full 

top-up inhibitor for 1.0 mass% Luvicap Bio compared to 0.5 mass%, and the negative 

effect of methanol on Luvicap Bio performance decreases at higher Luvicap Bio 

concentrations. 
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Table 4-7. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 5 mass% methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-2.8 29.4 -4.7 -10.8 

1.8 53.3 -5.5 -10.8 

4.3 74.4 -5.8 -10.6 

6.0 100.5 -6.4 -10.6 

7.4 126.6 -6.6 -10.4 

9.0 148.7 -6.1 -9.5 

SGR(VS)-RGR Very Slow 

1.2 53.0 -6.1 -11.4 

3.4 73.8 -6.7 -11.4 

5.2 99.7 -7.2 -11.4 

6.8 125.6 -7.2 -10.9 

7.8 147.7 -7.4 -10.7 

SDR Slow dissociation 

11.3 32.0 - 2.6 

15.8 58.1 - 2.6 

18.0 81.3 - 2.6 

19.8 111.5 - 2.6 

20.9 141.1 - 2.6 

21.7 166.9 - 2.6 

 

 

 

Table 4-8. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 10 mass% methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-4.5 29.1 -4.2 -10.3 

-0.1 51.2 -4.9 -10.3 

2.5 75.4 -5.5 -10.2 

3.9 93.8 -5.7 -10.1 

6.0 120.6 -5.4 -9.3 

7.9 153.3 -5.1 -8.5 

SGR(VS)-RGR Very Slow 

-5.0 29.1 -4.7 -10.8 

-0.6 51.2 -5.4 -10.8 

2.0 75.4 -6.0 -10.7 

3.4 93.8 -6.2 -10.6 

5.5 120.6 -5.9 -9.8 

7.4 153.3 -5.6 -9.0 

SDR Slow dissociation 

8.4 31.4 - 2.0 

12.8 55.8 - 2.0 

15.3 82.5 - 2.0 

17.8 134.0 - 2.0 

18.8 170.4 - 2.0 
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Table 4-9. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 20 mass% methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-9.9 25.6 -3.7 -10.0 

-3.5 58.3 -4.5 -9.8 

-2.0 74.0 -4.9 -9.8 

-0.1 96.1 -4.9 -9.4 

1.3 118.5 -4.9 -8.9 

3.5 161.5 -4.6 -8.0 

SGR(VS)-RGR Very Slow 

-11.0 25.4 -4.7 -11.0 

-3.9 58.2 -4.9 -10.2 

-2.4 73.8 -5.3 -10.2 

-0.9 95.4 -5.6 -10.1 

0.3 116.9 -5.8 -9.9 

2.5 160.1 -5.5 -9.0 

SDR Slow dissociation 

1.8 27.8  1.0 

7.8 63.1 - 1.0 

9.2 79.4 - 1.0 

10.6 103.9 - 1.0 

11.6 128.8 - 1.0 

12.9 176.6 - 1.0 

 

 

Table 4-10. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 30 mass% methanol (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-12.7 33.6 -3.7 -9.7 

-8.7 58.7 -4.3 -9.7 

-6.9 78.9 -4.7 -9.7 

-5.6 100.9 -5.0 -9.6 

-3.9 136.0 -5.2 -9.1 

-1.5 173.4 -4.2 -7.7 

0.2 229.2 -4.1 -7.2 

1.5 290.0 -4.3 -7.1 

SGR(VS)-RGR Very Slow 

-13.9 33.4 -4.8 -10.9 

-9.3 58.3 -4.9 -10.3 

-7.5 78.5 -5.3 -10.3 

-6.3 100.4 -5.7 -10.3 

-4.6 135.4 -5.8 -9.8 

-3.0 172 -5.6 -9.1 

-1.1 225.1 -5.3 -8.4 

0.3 285.8 -5.4 -8.2 

SDR Slow dissociation No SDR 
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Figure 4-12. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 5.0 mass% methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 

 

 

 

 

 

Figure 4-13. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 10 mass% methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 
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Figure 4-14. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 20 mass% methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 

 
Figure 4-15. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 30 mass% methanol (relative to water + Luvicap) showing CGI regions determined from 

changes in relative hydrate growth rates. 
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Figure 4-16. Average (25 to 150 bar) Luvicap Bio induced CGI regions for 1.0 mass% Luvicap Bio 

aqueous as a function of methanol mass% (relative to water + Luvicap Bio) relative to the MeOH-

inhibited s‐II boundary for the natural gas-methanol-water system. 

 

 

 

 

 

 

 

 

 

 
Figure 4-17. Average (25 to 150 bar) Luvicap Bio induced CIR region for 1.0 and 0.5 mass% Luvicap 

Bio aqueous as a function of methanol mass% (relative to water + Luvicap Bio) + MeOH 

thermodynamic inhibition for the natural gas-water system. 
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Figure 4-18. Comparison of subcooling extents of CGI regions from the s-II phase boundary for 

1.0 mass% Luvicap Bio aqueous with natural gas and different methanol mass%. 
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Figure 4-19. Comparison of measured CIR boundaries for 0.5 and 1.0 mass% Luvicap Bio, both with 

5 mass% MeOH and natural gas. 

 

 

 

 

 

 

 

Figure 4-20. Comparison of measured CIR boundaries for 0.5 mass% Luvicap Bio and 1.0 mass% 

Luvicap Bio with 10 mass% MeOH and natural gas. 
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Figure 4-21. Comparison of measured CIR boundaries for 0.5 mass% Luvicap Bio and 1.0 mass% 

Luvicap Bio with 20 mass% MeOH and natural gas. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-22. Comparison of measured CIR boundaries for 0.5 mass% Luvicap Bio and 1.0 mass% 

Luvicap Bio with 30 mass% MeOH and natural gas. 
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Figure 4-23. Comparison of measured CGI boundaries for 0.5 and 1.0 mass% Luvicap Bio (no 

methanol), both with natural gas. PT plot showing measured experimental points delineating the 

various crystal growth inhibition regions for these two system (0.5 and 1.0 mass% Luvicap) with 

natural gas are reported in Appendix A.6. 

4.3.3 0.5 Mass% Luvicap Bio with Ethanol in a Natural Gas system  

As noted, given that methanol seems to act as a top-up inhibitor for Luvicap Bio in 

contrast to behaviour for other polymers (e.g. PVCap), it was decided to see whether this 

was the case also for ethanol; a more environmentally friendly alternative which also 

shows poor top-up effects typically for KHIs [4.7]. Therefore, CGI tests were carried out 

for 5, 10, 20, and 30 mass% ethanol with 0.5 mass% Luvicap Bio in a natural gas system.  

Figure 4-24 shows example CGI method cooling/heating curves for 0.5 mass% 

Luvicap Bio with 5 mass% aqueous ethanol (relative to water + Luvicap Bio) in the 

natural gas system. CGI boundary data points for these systems tested so far are reported 

in Table 4-11 to Table 4-14, and presented in Figure 4-25 to Figure 4-28. Pressure / 

temperature plots showing measured experimental points delineating the various crystal 

growth inhibition regions for these systems are reported in Appendix A.3. As can be seen, 

for example, the CIR at 20 mass% ethanol ranges from ~9.1 °C at low pressures (25 bar) 

to ~4.9 °C at high pressures (300 bar), so could offer top-up potential.  

Figure 4-29 shows the average (25 to 150 bar) Luvicap Bio induced CGI regions for 

0.5 mass% Luvicap Bio aqueous as a function of EtOH mass% (relative to water + 

Luvicap Bio) relative to the EtOH-inhibited s‐II boundary for the natural gas-EtOH-water 
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system. As can be seen, while EtOH has an increasingly negative effect on Bio 

performance with increasing concentration, there is still a reasonable top-up effect, with 

a CIR of ~7 °C at 30 mass% EtOH.  

Figure 4-30 shows a comparison of the subcooling extents of CGI regions from the s-II 

phase boundary measured for 0.5 mass% Luvicap Bio aqueous with natural gas and 

different EtOH concentrations over the range of pressures studied. As can be seen, the 

CIR extent is completely preserved for 5 mass% ethanol up to 70 bar. Therefore, ethanol 

could act as a full-top up inhibitor for combination with Luvicap Bio at low pressure and 

low ethanol concentration. Figure 4-30 shows the CIR and RGR extent reduces with 

pressure measurably, indicating the negative effect of ethanol on Luvicap Bio at higher 

pressure. While the CIR extent reduces with pressure measurably, it is quite comparable 

to the same mass% methanol aqueous to around 70 bar, meaning ethanol could offer a 

more environmentally friendly top-up inhibitor for combination with Luvicap Bio, at least 

at low pressure and lower ethanol concentration, depending on operating conditions. But, 

generally, the CIR extent, in a natural gas system with 0.5 mass% Luvicap Bio, is more 

preserved in the presence of methanol rather than ethanol. 

Figure 4-31 shows the average (25 to 150 bar) Luvicap Bio induced CIR region for 

0.5 mass% Luvicap Bio aqueous as a function of EtOH mass% (relative to water + 

Luvicap Bio) + EtOH thermodynamic inhibition for the natural gas-water system. 

Figure 4-32 shows calculated mass% EtOH inhibition equivalent to EtOH + 0.5 mass% 

Luvicap Bio (thermodynamic ethanol inhibition + CIR) as a function of EtOH mass% 

(+0.5 mass% Luvicap Bio). For example, as shown in Figure 4-32, 16 mass% EtOH + 

0.5 mass% Luvicap Bio offers the complete inhibition equivalent of 40 mass% ethanol. 

This would constitute a 60% ethanol reduction. The same value for 0.5 mass% Luvicap 

Bio + methanol + natural gas, as reported before, is a 35% methanol reduction. It suggests 

that Luvicap Bio could reduce ethanol more than methanol, although methanol acts as a 

more top-up inhibitor than ethanol in 0.5 mass% Luvicap Bio, i.e., the CIR extent is more 

preserved in methanol + Luvicap Bio rather than ethanol + Luvicap Bio in the natural gas 

system. This could be due to the fact that, in terms of mole%, methanol is stronger than 

ethanol in shifting hydrate phase boundary to lower temperature and higher pressure, i.e., 

methanol is more polar than ethanol. However, if mass% is used, methanol is much 

stronger than ethanol, because methanol has lower molecular weight, so more moles in 

the same mass%. 
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Table 4-11. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 5 mass% EtOH (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(S) No growth 

-1.7 28.9 -4.1 -10.2 

3.0 52.5 -4.8 -10.2 

5.7 77.4 -5.4 -10.2 

8.3 101.8 -4.9 -9.2 

10.8 137.7 -4.5 -8.2 

12.1 160.9 -4.3 -7.5 

SGR(S)-RGR Slow 

2.0 52.2 -5.8 -11.2 

4.9 76.7 -6.1 -10.9 

7.4 101.4 -5.8 -10.0 

9.7 135.6 -5.5 -9.2 

11.1 160.4 -5.2 -8.5 

SDR Slow dissociation 

11.0 31.5 - 1.7 

15.5 56.8 - 1.7 

18.1 83.9 - 1.7 

19.6 111.1 - 1.7 

21.1 149.5 - 1.7 

21.7 176.2 - 1.7 

 

 

Table 4-12. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 10 mass% EtOH (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(S) No growth 

-2.0 29.6 -3.2 -9.4 

2.6 52.7 -3.8 -9.3 

5.3 77.2 -4.3 -9.2 

7.1 98.3 -4.3 -8.8 

9.2 127.9 -4.1 -8.0 

11.5 168.6 -3.6 -7.0 

SGR(S)-RGR Slow 

-3.0 29.6 -4.2 -10.4 

1.5 52.6 -4.9 -10.4 

4.3 77.0 -5.2 -10.2 

6.0 97.2 -5.3 -9.8 

7.9 126 -5.2 -9.2 

10.1 166.7 -4.9 -8.4 

SDR Slow dissociation 

9.3 32.0 - 1.2 

13.5 56.0 - 1.2 

16.1 83.2 - 1.2 

17.4 105.4 - 1.2 

18.8 138.7 - 1.2 

20.1 181.9 - 1.2 
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Table 4-13. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 20 mass% EtOH (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(S) No growth 

-6.5 24.3 -2.5 -9.1 

-0.4 49.7 -2.9 -8.7 

3.4 75.6 -2.6 -7.7 

5.2 97.0 -2.6 -7.3 

7.9 138 -2.4 -6.3 

11.0 220.8 -2.4 -5.4 

13.3 307.1 -2.3 -4.9 

SGR(S)-RGR Slow 

-7.5 24.5 -3.6 -10.2 

-2.1 48.5 -4.4 -10.2 

1.1 74.0 -4.7 -9.9 

3.8 97.0 -4.1 -8.7 

6.2 136.4 -4.0 -7.9 

10.4 220.8 -3.0 -6.0 

12.6 306.4 -3.0 -5.6 

SDR Slow dissociation No SDR 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-14. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 30 mass% EtOH (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(S) No growth 

-7.2 28.7 -1.4 -7.9 

-2.2 50.7 -1.5 -7.3 

0.0 71.8 -2.1 -7.2 

2.0 96.0 -2.3 -7.0 

4.0 126.3 -2.1 -6.2 

5.3 160.0 -2.3 -5.9 

SGR(S)-RGR Slow 

-9.5 28.2 -3.6 -10.1 

-4.1 50.3 -3.3 -9.1 

-1.5 71.1 -3.5 -8.7 

0.5 95.0 -3.7 -8.4 

2.5 125.0 -3.5 -7.7 

4.2 158.0 -3.3 -6.9 

SDR Slow dissociation No SDR 
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Figure 4-24. Example CGI method cooling curves for 0.5 mass% Luvicap Bio / 5 mass % EtOH 

aqueous with natural gas. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-25. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 5.0 mass % EtOH (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 
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Figure 4-26. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 10 mass % EtOH (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 

 

Figure 4-27. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 20 mass % EtOH (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 
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Figure 4-28. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 30 mass % EtOH (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 

Figure 4-29. Average (25 to 150 bar) Luvicap Bio induced CGI regions for 0.5 mass% Luvicap Bio 

aqueous as a function of EtOH mass% (relative to water + Luvicap Bio) relative to the EtOH-

inhibited s‐II boundary for the natural gas-EtOH-water system. 
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Figure 4-30. Comparison of subcooling extents of CGI regions from the s-II phase boundary for 0.5 

mass% Luvicap Bio aqueous with natural gas and different EtOH mass%. 
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Figure 4-31. Average (25 to 150 bar) Luvicap Bio induced CIR region for 0.5 mass% Luvicap Bio 

aqueous as a function of EtOH mass% (relative to water + Luvicap Bio) + EtOH thermodynamic 

inhibition for the natural gas-water system. 

 

 

 

 

 

 

 

 

 
Figure 4-32. Calculated mass% EtOH inhibition equivalent to EtOH + 0.5 mass% Luvicap Bio 

(thermodynamic ethanol inhibition + CIR) as a function of EtOH mass% (+0.5 mass% Luvicap Bio). 

40 mass% EtOH can be replaced by 16 mass% EtOH + 0.5 mass% Luvicap Bio. 
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4.3.4 0.5 Mass% Luvicap Bio with MEG in a Natural Gas system 

As noted, measurements on combined MEG-PVCap inhibition showed that MEG has a 

generally positive effect, and is normally a full top-up inhibitor for PVCap in both 

methane and natural gas systems, at least up to the concentration of 50 mass% tested       

[4-7]. In contrast, while methanol has a negative effect on PVCap, CGI measurements 

showed that methanol is normally a full top-up inhibitor for Luvicap Bio in a natural gas 

system, at least up to 20 mass% methanol. Therefore, to complete the performance 

evaluation of Luvicap Bio for different thermodynamic inhibitors, CGI measurements 

were carried out on combined MEG-Luvicap Bio systems. 

Figure 4-33 shows example CGI method cooling/heating curves for Luvicap Bio + natural 

gas system with 5 mass% MEG aqueous. Measured CGI boundary data points with 

interpolations for 0.5 mass% Luvicap Bio with 5, 10, 20 and 30 mass% MEG and natural 

gas are plotted in Figure 4-34 to Figure 4-37, with completed data sets reported in 

Table 4-15 to Table 4-18. Pressure / temperature plots showing measured experimental 

points delineating the various crystal growth inhibition regions for these systems are 

reported in Appendix A.4. The average Luvicap Bio induced CGI regions for 0.5 mass% 

Luvicap Bio as a function of MEG mass% relative to the MEG-inhibited s‐II boundary 

for the natural gas-MEG-water system is plotted in Figure 4-38. Figure 4-39 shows a 

comparison of the subcooling extents of CGI regions from the s-II phase boundary 

measured for 0.5 mass% Luvicap Bio aqueous with natural gas and different MEG 

concentrations over the range of pressures studied. 

As can be seen, results suggest that MEG generally acts as a top-up inhibitor in terms of 

the most important CIR is preserved. Figure 4-39 indicates that MEG could act as a full 

top-up inhibitor for the range of MEG concentration tested (except for 5 mass% MEG), 

up to 150 bar.  

While the top-up effect is fairly consistent with pressure in the case of  >10 mass% MEG, 

at 5 mass% MEG, there is a more marked reduction in the extent of the CIR at higher 

pressure conditions. Therefore, except at 5 mass% MEG and higher pressure, MEG is 

normally a full top-up inhibitor for 0.5 mass% Luvicap Bio in natural gas systems. 
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As is the case for methanol with Luvicap Bio, CGI extents with MEG also seem to be 

related primarily to the s-II phase boundary, supporting the theory that Luvicap Bio is a 

stronger inhibitor for s-I, with s-II formation leading to ‘failure’.  

Figure 4-40 shows the average (25 to 150 bar) Luvicap Bio induced CIR region for 

0.5 mass% Luvicap Bio aqueous as a function of MEG mass% (relative to water + 

Luvicap Bio) + MEG thermodynamic inhibition for the natural gas-water system. It 

clearly shows that the CIR extent is preserved for the MEG concentration up to 30 mass%, 

except with the exception of 5 mass%, indicating the full top-up inhibitor effect of MEG. 

The general top-up effect means that MEG could be used to extend the subcooling range 

of Luvicap Bio, or Luvicap Bio be used to reduce MEG dosage requirements. Figure 4-41 

shows calculated mass% MEG inhibition equivalent to MEG + 0.5 mass% Luvicap Bio 

(thermodynamic MEG inhibition + CIR) as a function of MEG mass% (+ 0.5 mass% 

Luvicap Bio). For example, as shown in Figure 4-41, 14 mass% MEG with 0.5 mass% 

Luvicap Bio could offer a full inhibition equivalent to 40 mass% MEG in the natural gas 

systems. This could reduce MEG consumption by 65%.  

In contrast to methanol, the CGI results for PVCap + MEG (JIP report, [4-7]) and Luvicap 

Bio + MEG (this work) show that MEG is generally a full top-up inhibitor for both PVCap 

and Luvicap Bio inhibitors, suggesting this positive top-up effect is largely generic.   
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Table 4-15. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 5 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

3.1 54.8 -5.4 -10.7 

6.3 78.1 -5.2 -9.8 

9.4 100.9 -4 -8.2 

11.1 124.7 -3.9 -7.6 

12.7 156.4 -3.8 -7.1 

SGR(S)-RGR Slow 

1.9 53.8 -6.5 -11.7 

4.9 76.7 -6.4 -11.1 

7.0 98.2 -6.2 -10.5 

8.7 120.5 -6.0 -9.8 

10.4 149.7 -5.8 -9.2 

SDR Slow dissociation 

12.0 27.3 - 3.7 

18.0 59.2 - 3.7 

20.4 85.6 - 3.7 

21.8 110.1 - 3.7 

22.9 136.7 - 3.7 

23.9 170.9 - 3.7 
 

 

 

 

 

 

 

 

 

 

Table 4-16. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 10 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-2.6 27.8 -3.7 -9.9 

2.2 52.9 -4.8 -10.1 

4.7 75.5 -5.2 -10.0 

6.7 109.4 -6.0 -10.1 

7.4 124 -6.2 -10.0 

8.8 150.7 -6.1 -9.5 

SGR(VS)-RGR Very Slow 

-3.5 27.5 -4.5 -10.7 

1.5 52.6 -5.4 -10.7 

4.1 75.2 -5.8 -10.5 

6.2 109 -6.5 -10.5 

7.3 124 -6.3 -10.1 

8.7 150.7 -6.2 -9.6 

SDR Slow dissociation 

11.6 30.2 - 3.6 

16.4 57.2 - 3.6 

18.8 82.4 - 3.6 

20.9 121.9 - 3.6 

21.5 139.2 - 3.6 

22.4 168.4 - 3.6 
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Table 4-17. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 20 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-7.3 24.5 -4.3 -10.6 

-1.1 53.9 -5.2 -10.5 

1.4 79.2 -5.8 -10.5 

2.5 95.4 -6.1 -10.5 

3.5 117.4 -6.5 -10.5 

5.0 147.1 -6.5 -10.0 

SGR(VS)-RGR Very Slow 

-7.9 24.2 -4.7 -11.1 

-1.6 54.3 -5.8 -11.1 

0.8 78.8 -6.4 -11.1 

1.9 95.0 -6.6 -11.1 

2.9 117.4 -7.1 -11.1 

4.5 146.5 -7.0 -10.5 

SDR Slow dissociation 

7.7 26.8 - 3.6 

13.7 59.7 - 3.6 

16.0 87.0 - 3.6 

17.1 106.5 - 3.6 

18.2 132.7 - 3.6 

19.2 167.2 - 3.6 
 

 

  

 

 

 

 

Table 4-18. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

(relative to water) with 30 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / °C 

(±0.5) 

ΔTs-II / °C 

(±0.5) 

CIR-SGR(VS) No growth 

-10 26.9 -4.1 -10.4 

-5.0 51.4 -4.8 -10.3 

-2.3 75.3 -5.2 -10.1 

-0.4 100.9 -5.3 -9.8 

0.4 117.4 -5.5 -9.7 

2.3 146.7 -5.0 -8.7 

SGR(VS)-RGR Very Slow 

-10.8 26.7 -4.8 -11.1 

-5.8 50.7 -5.5 -11.1 

-2.8 74.5 -5.7 -10.6 

-0.9 100.8 -5.8 -10.2 

0.1 117.4 -5.8 -10.0 

1.7 144.9 -5.6 -9.2 

SDR Slow dissociation 

4.7 29.3 -  3.6 

9.5 55.8 -  3.6 

12 83.2 -  3.6 

13.5 112.6  - 3.6 

14.1 131.6  - 3.6 

15.1 165.3  - 3.6 
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Figure 4-33. Example CGI method cooling curves for 0.5 mass% Luvicap Bio / 5 mass % MEG 

aqueous with natural gas. 

 

 

 

 

 

 

 

 

 

 
Figure 4-34. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 5.0 mass % MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 
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Figure 4-35. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 10 mass % MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 

 
Figure 4-36. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 20 mass % MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 
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Figure 4-37. Experimental natural gas hydrate CGI region data for 0.5 mass% Luvicap Bio aqueous 

with 30 mass % MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 
 

Figure 4-38. Average (25 to 150 bar) Luvicap Bio induced CGI regions for 0.5 mass% Luvicap Bio 

aqueous as a function of MEG mass% (relative to water + Luvicap Bio) relative to the MEG-inhibited 

s‐II boundary for the natural gas-MEG-water system. 
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Figure 4-39. Comparison of subcooling extents of CGI regions from the s-II phase boundary for 

0.5 mass% Luvicap Bio aqueous with natural gas and different MEG mass%. 
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Figure 4-40. Average (25 to 150 bar) Luvicap Bio induced CIR region for 0.5 mass% Luvicap Bio 

aqueous as a function of MEG mass% (relative to water + Luvicap Bio) + MEG thermodynamic 

inhibition for the natural gas-water system. 

 

 

 

 

 

 

 

 

 

 
Figure 4-41. Calculated mass% MEG inhibition equivalent to MEG + 0.5% Luvicap Bio 

(thermodynamic MEG inhibition + CIR) as a function of MEG mass% (+ 0.5 mass% Luvicap Bio). 

40 mass% MEG can be replaced by 14 mass% MEG + 0.5 mass% Luvicap Bio. 
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4.3.5 1.0 Mass% Luvicap Bio with MEG in a Natural Gas system 

As discussed, MEG was found to act as a top-up inhibitor for 0.5 mass% Luvicap Bio 

with natural gas. CGI tests were carried out on a higher concentration of Luvicap Bio 

(1.0 mass%) with 5, 10, 20 and 30 mass% MEG (relative to water + Luvicap Bio) and 

natural gas to see whether there is a benefit to using a higher polymer dose. Figure 4-42 

to Figure 4-45 show measured CGI boundaries for 1.0 mass% Luvicap Bio with 5, 10, 20 

and 30 mass% MEG with natural gas, with tabulated data for each system in Table 4-19 

to Table 4-22. Pressure / temperature plots showing measured experimental points 

delineating the various crystal growth inhibition regions for these systems are reported in 

Appendix A.5. 

Figure 4-46 shows average induced CGI regions for 1.0 mass% Luvicap Bio aqueous as 

a function of MEG mass% relative to the MEG-inhibited s‐II boundary for the natural 

gas-MEG-water system. Figure 4-47 shows average (25 to 150 bar) Luvicap Bio induced 

CIR region for 1.0 mass% (and 0.5 mass%) Luvicap Bio aqueous as a function of MEG 

mass% (relative to water + Luvicap Bio) + MEG thermodynamic inhibition for the natural 

gas-water system. Figure 4-48 shows a comparison of subcooling extents of CGI regions 

from the s-II phase boundary for 1.0 mass% Luvicap Bio aqueous with natural gas and 

different MEG mass% over the range of pressures studied.  

As can be seen, results show that not only is MEG is a full top-up inhibitor for Luvicap 

Bio, but it also has a positive, synergistic effect on the CGI boundaries of Luvicap Bio 

over the range of pressure and MEG concentrations tested so far. For example, there is a 

clear ~1.9 °C increase in the CIR at 20 mass% MEG compared to 1 mass% Luvicap Bio 

alone. Such synergism is common to MEG and KHIs. 

Figure 4-49 to Figure 4-52 show a comparison of measured CIR boundaries for 0.5 and 

1.0 mass% Luvicap Bio, both with 5, 10, 20, and 30 mass% MEG in the natural gas 

system respectively. As can be seen, the CIR boundary generally increases at the higher 

1.0% polymer dose. For example, the CIR boundary is ~2.3 °C higher at higher pressure 

for the 1.0% Bio + 5% MEG system compared to the 0.5% Bio + 5% MEG system. 

Results therefore show MEG to be a full top-up inhibitor for Luvicap Bio with a clear 

synergistic effect on it, particularly at 1.0 mass% polymer. 
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Table 4-19. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 5 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

3.2 58.7 -6.0 -11.1 

5.2 75.7 -6.0 -10.7 

7.1 99.2 -6.2 -10.4 

8.8 126.1 -6.2 -10.0 

10.5 158.7 -6.1 -9.3 

SGR(VS)-RGR Very Slow 

1.8 58.3 -7.3 -12.4 

3.9 75.3 -7.3 -12.0 

5.8 98.1 -7.4 -11.7 

7.8 126.2 -7.3 -11 

9.4 157.8 -7.2 -10.4 

SDR Slow dissociation 

13.1 30.1 - 4.0 

18.9 64.7 - 4.0 

20.6 83.6 - 4.0 

22.1 110.5 - 4.0 

23.3 142.4 - 4.0 

24.4 180.4 - 4.0 

 

 

 

 

 

 

Table 4-20. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 10 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-2.8 36.3 -6.4 -12.2 

1.0 60.4 -7.1 -12.2 

3.3 79.8 -7.1 -11.7 

4.9 98.3 -7.0 -11.3 

7.7 132.9 -6.4 -10.0 

9.1 162 -6.3 -9.5 

SGR(VS)-RGR Very Slow 

-3.1 36.1 -6.6 -12.5 

0.7 60.0 -6.9 -12.4 

2.9 80.3 -7.5 -12.1 

4.5 98.5 -7.5 -11.7 

7.6 132.9 -6.5 -10.1 

8.9 158 -6.3 -9.6 

SDR Slow dissociation 

13.7 40.1 - 3.5 

17.3 66.2 - 3.5 

19.2 89.8 - 3.5 

20.2 109.1 - 3.5 

21.8 150.2 - 3.5 

22.7 183.9 - 3.5 
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Table 4-21. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 20 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-6.5 33.6 -6.4 -12.4 

-2.4 58.7 -7.2 -12.4 

-0.2 83.5 -7.8 -12.4 

0.9 103 -8.2 -12.5 

3.0 132 -7.8 -11.5 

4.3 157.9 -7.6 -11.0 

SGR(VS)-RGR Very Slow 

-7.1 33.6 -7.0 -13.0 

-2.8 59.1 -7.7 -12.9 

-0.6 83.9 -8.3 -12.9 

0.5 102.5 -8.6 -12.9 

2.4 131.4 -8.4 -12.1 

3.8 157.7 -8.1 -11.5 

SDR Slow dissociation 

10.1 36.9 - 3.5 

14.3 65.8 - 3.5 

16.3 92.9 - 3.5 

17.4 115.9 - 3.5 

18.6 149 - 3.5 

19.4 180.9 - 3.5 
 

 

 

 

 

Table 4-22. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

(relative to water) with 30 mass% MEG (relative to water + Luvicap Bio). 

CGR boundary Growth rate 
T / °C 

(±0.5) 

P / bar 

(±0.2) 

ΔTs-I / 

°C 

(±0.5) 

ΔTs-II / 

°C 

(±0.5) 

CIR-SGR(VS) No growth 

-10.1 34 -6.4 -12.8 

-5.5 58.7 -6.4 -11.8 

-2.9 81.5 -6.4 -11.2 

-1.3 104.1 -6.4 -10.8 

0.4 128.8 -6.1 -10.0 

2.5 162.3 -5.5 -8.9 

SGR(VS)-RGR Very Slow 

-11.0 34 -7.3 -13.7 

-6.4 58.7 -7.3 -12.7 

-3.8 81.1 -7.2 -12.0 

-1.7 103.8 -6.8 -11.2 

0.0 128.4 -6.5 -10.4 

1.8 160.9 -6.1 -9.6 

SDR Slow dissociation 

6.6 37.7 - 3.5 

10.4 64.9 - 3.5 

12.3 90.7 - 3.5 

13.5 116.5 - 3.5 

14.5 145.5 - 3.5 

15.4 183.3 - 3.5 
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Figure 4-42. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 5.0 mass% MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 

 

 

 

 

 
Figure 4-43. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 10 mass% MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 
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Figure 4-44. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 20 mass% MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates. 

 

 

 

 

 

 

 

 

 
Figure 4-45. Experimental natural gas hydrate CGI region data for 1.0 mass% Luvicap Bio aqueous 

with 30 mass% MEG (relative to water + Luvicap) showing CGI regions determined from changes 

in relative hydrate growth rates.  
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Figure 4-46. Average (25 to 150 bar) Luvicap Bio induced CGI regions for 1.0 mass% Luvicap Bio 

aqueous as a function of MEG mass% (relative to water + Luvicap Bio) relative to the MEG-inhibited 

s‐II boundary for the natural gas-MEG-water system. 

 

 

 

 

 

 

 

 

 

 
Figure 4-47. Average (25 to 150 bar) Luvicap Bio induced CIR region for 1.0 and 0.5 mass% 

Luvicap Bio aqueous as a function of MEG mass% (relative to water + Luvicap Bio) + MEG 

thermodynamic inhibition for the natural gas-water system. 
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Figure 4-48. Comparison of subcooling extents of CGI regions from the s-II phase boundary for 

1.0 mass% Luvicap Bio aqueous with natural gas and different methanol mass%. 
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Figure 4-49. Comparison of measured CIR boundaries for 0.5 and 1.0 mass% Luvicap Bio, both with 

5 mass% MEG and natural gas. 

 

 

 

 

 

 

Figure 4-50. Comparison of measured CIR boundaries for 0.5 mass% Luvicap Bio and 1.0 mass% 

Luvicap Bio with 10 mass% MEG and natural gas. 
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Figure 4-51. Comparison of measured CIR boundaries for 0.5 mass% Luvicap Bio and 1.0 mass% 

Luvicap Bio with 20 mass% MEG and natural gas. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-52. Comparison of measured CIR boundaries for 0.5 mass% Luvicap Bio and 1.0 mass% 

Luvicap Bio with 30 mass% MEG and natural gas. 
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4.4 Summary 

From the results of CGI region studies on 0.5 mass% Luvicap Bio aqueous with 5-50 

mass% methanol (relative to Luvicap Bio and water) and natural gas, the following is 

concluded:  

 In contrast to results for PVCap (and other non-bio KHIs), methanol acts much 

more as a top-up inhibitor for Luvicap Bio, particularly up to 30 mass% MeOH  

 The most important CIR is largely retained for the concentrations and pressures 

tested  

 Only at higher methanol concentrations does the CIR begin to reduce, notably for 

50 mass%, but with significant reduction largely confined to lower pressures 

(below 100 bar) here  

 Results, therefore, show significant potential for using Luvicap Bio to reduce 

methanol requirements for hydrate inhibition; just 0.5% Bio can replace 

~23 mass% MeOH while at higher subcooling requirements, e.g. 0.5% Bio + 26% 

methanol offers the inhibition equivalent of 40 mass% methanol; a 35% MeOH 

reduction  

 Finally, while not explored in depth, contrasting results for Luvicap Bio (general 

top-up effect) and PVCap (increasingly negative) for methanol points increasingly 

towards MeOH (and ethanol) partial enclathration as the factor behind the 

contrasting top-up effects observed for different KHI polymers  

From the results of CGI studies on 1.0 mass% Luvicap Bio aqueous with 5, 10, 20, and 

30 mass% methanol in a natural gas system, the following is concluded: 

 At 1.0 mass% Luvicap Bio, as was the case for 0.5 mass%, methanol was found 

to generally act as a good top-up inhibitor for the MeOH concentrations tested, 

which is unusual for methanol and KHIs 
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 However, for both polymer doses, there was a modest but increasingly negative 

effect of MeOH at higher concentrations and pressures, making top-up not fully 

additive 

 While the higher 1.0% polymer concentration did offer better inhibition in terms 

of a larger CIR extent, this was overall fairly marginal, and the net CGI gains of 

using 1.0% Bio compared to 0.5% are quite limited per unit dose  

 Data suggest that the benefits of using a higher polymer concentration are most 

evident at the lowest methanol concentrations (e.g. ~2°C extra CIR for 1.0% Bio 

+ 5% MeOH compared to 0.5% Bio with 5 % MeOH) 

From the results of CGI region studies on 0.5 mass% Luvicap Bio aqueous with 5 to 30 

mass% ethanol in a natural gas system, the following is concluded: 

 Unlike PVCap, ethanol does act reasonably well as a top-up inhibitor for 

Luvicap Bio, although there is a degree of negative effect, making it not a full 

top­up 

 This negative effect increases with pressure and steadily with ethanol 

concentration 

 Overall, ethanol offers some promise for combination with Luvicap Bio as 

alternative to the more toxic methanol 

Finally, from the results of CGI region studies on 0.5 mass% Luvicap Bio aqueous with 

5 to 30 mass% MEG in a natural gas system, the following is concluded: 

 The important CIR is largely preserved, giving a general full top-up effect up to 

30 mass% MEG, at least at lower pressures 



 

138 

 At lower MEG concentrations, however, e.g. 5 mass%, the CIR is measurably 

reduced at higher pressures, in contrast to the behaviour seen for MEG + PVCap 

where there is essentially a full top-up effect 

 The apparent ‘generic’ top up effect of MEG, which contrasts that for methanol 

and ethanol (strongly negative for PVCap, but much less so for Luvicap Bio) is 

speculated as being related to the fact the latter two can enter hydrate cavities, 

while MEG cannot, although the exact mechanisms remain unknown 

From the results of CGI studies on 1.0 mass% Luvicap Bio aqueous with 5, 10, 20, and 

30 mass% MEG in a natural gas system, the following is concluded: 

 At 1.0 mass% Luvicap Bio, as was the case for 0.5 mass%, MEG not only acts as 

a full top-up inhibitor, but also it has a positive, synergistic effect, modestly 

extending CGI regions, including the CIR 

 The synergistic effect of MEG on Luvicap Bio performance is most evident at the 

1% polymer dose 

 For both Luvicap doses (0.5 and 1.0 mass%) tested, the best synergism (largest 

CIR) is observed at 20 mass% MEG 

Generally, from the results of CGI region studies on a combination of Luvicap Bio and 

THIs (MEG, methanol, and ethanol), it is concluded that Luvicap Bio could be used to 

reduce the required THIs dosage for hydrate inhibition. It is very important to industry 

and real application with respect to the environment that the green Bio KHI replacing 

could be used to reduce MEG and MeOH which are toxic.  
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Chapter 5 – Remediation of Hydrate Using MEG and MeOH 
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5.1 Introduction  

If KHIs are used for hydrate prevention, it may still need THIs for e.g. cold restart after 

shut-in. Although KHIs are able to dissociate hydrates (see Chapter 6), it may need THI 

for plug removal, i.e., as even with KHI it might have to resort to THI for hydrate removal. 

In addition, it is speculated that the density of THI play an important role in hydrate 

removal. Therefore, this chapter investigates hydrate plug removal using THIs in vertical 

pipes with a focus on the effect of density of THI on hydrate plug removal.  

Although there are options/strategies to inhibit hydrate formation (see Section 1.4), 

hydrate blockage can occur in some cases. Hydrate blockage is still a major flow 

assurance challenge and can form as a result of different scenarios such as restart 

following an unplanned shut-in, failure of inhibitor delivery pumps, or increased water 

cut. There have been a lot of investigations in association with hydrate blockage and its 

removal strategies in the literature along with case studies [5.1][5.2][5.3][5.4]. 

In Section 1.3, different remediation options and hydrate blockage removal strategies 

have been discussed including depressurization, chemical injection, thermal method, and 

mechanical method.  In many cases, more than one methods was used to dissociate and 

remove hydrate. As discussed in Section 1.5.1, in some cases, depressurization is not 

possible in the vertical pipes e.g. riser, i.e., depressurization is not possible due to 

hydrostatic pressure of liquid. Therefore, other methods e.g. chemical injection 

(thermodynamic inhibitors e.g. MEG and methanol) may be used to remove hydrate 

blockage in vertical pipes. The mechanism and process of hydrate dissociation using 

thermodynamic inhibitors have been discussed in Section 1.5.1.  

In the light of above, it raises the potential demand to investigate the ability of THIs (e.g. 

MEG and MeOH) in hydrate dissociation after hydrate blockage in vertical pipes e.g. 

risers. This chapter covers the results of three experiments including the use of MEG, 

MeOH, and combination of MEG/MeOH in removing gas hydrate blockage in vertical 

pipes. In all tests, during chemical injections and hydrate dissociation, the pressure was 

kept relatively constant using batch removal of gas from the top of the cell. The other 

results of this chapter include pressure response due to hydrate dissociation, the 

possibility of reformation of gas hydrates, and possibility of ice formation as a result of 

gas hydrate dissociation (due to endothermic nature of hydrate dissociation).     
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5.2 Experimental  

5.2.1 Materials 

The purity of MEG and Methanol used was 99.8 weight% and supplied by Fisher 

Scientific (catalogue numbers E177-20 and A452-1, respectively). Deionized water was 

used in all experiments. The composition of natural gas mixture used in the tests is given 

in Table 5-1.  

5.2.2 Equipment 

Evaluation and effectiveness of MEG and methanol in hydrate blockage dissociation and 

removal were examined using an in-house designed/ built long cylindrical and windowed 

experimental rig with full temperature gradient control along the 1.5 meters cylindrical 

body of the cell (75 mm internal diameter).   

The set-up consists of 12 soda-lime glass windows (6 pairs), enabling visual monitoring 

of the system. Images and videos can be recorded through the windows while the light is 

shining through the opposite side of windows. The total volume of the cell is 

approximately 6.8 litres with the ability to reduce the volume by a moving piston inside 

the cell. It is possible to change the orientation of set-up: horizontal, vertical, or any other 

position. The cell has a pressure rating of 300 bara and it is made of titanium; which 

allows working with some corrosive materials such as salts.  

The temperature along the rig is controlled using 6 separate jackets each connected to a 

programmable constant temperature bath. The temperature inside the cell is monitored by 

12 platinum resistance thermometers (PRT) with a measurement accuracy of 0.1 °C. 

These thermometers are placed through the cell and each section consists of two 

thermometers which are placed in opposite directions and against each other.  

Table 5-1. Composition of natural gases used in experiments. 

Component Mole% 

Methane 87.93 

Ethane 6.00 

Propane 2.04 

i-Butane 0.20 

n-Butane 0.30 

CO2 2.03 

Nitrogen 1.50 
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Cell pressure is measured by two Druck strain gauges (±0.07 bar), calibrated using a 

Budenberg dead weight tester. The pressure transducers are placed at each end of the rig. 

All thermometers and pressure transducers are connected to a data acquisition unit and a 

computer with the ability to continuously record the temperature of each section and the 

cell pressure.  

A stirrer with blades and a magnetic motor is mounted at the bottom of the cell for mixing 

the cell contents to reduce the time required for reaching thermodynamic and thermal 

equilibrium. Figure 5-1.a and Figure 5-1.b show a detailed schematic illustration of the 

cell and its picture, respectively.  

 

 

 

 

 

 

 
Figure 5-1. a) Illustration of the window positions and the coolant system of the long windowed rig. 

b) Picture of the long winnowed rig. 
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5.2.3 Procedure  

As mentioned, the orientation of the cell can be changed from completely horizontal to 

vertical to simulate various configurations, from horizontal pipelines to vertical 

wells/risers. To simulate hydrate formation, hydrate blockage, and hydrate dissociation 

by THI in vertical pipes, the experimental setup was positioned in vertical orientation. 

The system can be loaded with different water cuts and gas can be injected from both 

ends into the cell. To compare the results of experiments, the volume ratio of water/gas 

was approximately 0.44 in all tests in this chapter.  

However, in these series of experiments, the shut-in condition for hydrate 

formation/blockage was simulated. In order to simulate shut-in condition, the gas 

injection can be stopped and the temperature can be adjusted to seabed temperature or 

any other desired temperature. The system can be held at a specific P and T conditions 

for any time required to form enough hydrates and induce a blockage (which may take 

several days). 

The system was loaded with deionized water, and then vacuumed and pressurized with 

natural gas. The details of gas injection of each experiment are discussed in result and 

discussion section of this chapter. In order to initiate hydrates, the temperature was set to 

1-4 °C and the mixer was switched on. The logic behind setting the temperature at 1-4 °C 

is discussed later in each section. In order to block the system, it was allowed to form 

hydrates as much as possible.  

After hydrate blockage, MEG or methanol can be injected from both ends of the 

experimental setup to induce hydrate dissociation and finally remove the hydrate 

blockage. Hydrate dissociation and potential reformation can be investigated both 

qualitatively and quantitatively, i.e., visual observation and changes in the system 

pressure and temperature. The system pressure was kept constant and the gas released 

from hydrate dissociation was removed from the top of the cell and measured by a 

gasometer at ambient conditions. 
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5.3 Results and discussion  

 

5.3.1 Hydrate blockage removal using MEG in vertical pipes 

To investigate the effect of MEG on hydrate blockage removal in vertical pipes, the long 

windowed rig was located in the vertical position and loaded with 2064 g of deionized 

water. The system was vacuumed and then pressurized with 460 g≈25 moles of natural 

gas (it was measured using a balance) at 96.5 bara and 20 °C. The volume ratio of 

liquid/gas was approximately 0.44. In order to form hydrates, the system temperature was 

set to 1 °C and the mixer was turned on. The logic behind setting the temperature at 1 °C 

was to avoid ice formation during cooling/hydrate formation (as conversion ice to hydrate 

is expected to be a very slow process). Also at the same time providing a better 

opportunity for investigating the possibility of ice formation during endothermic hydrate 

dissociation due to inhibitor injection (from non-homogenous aqueous phase).  

In the initial cooling step, some 10 mass% of water was converted into hydrate (WCH %) 

over 3 days, which resulted in the mixer stoppage. At this point, the mixer was switched 

off and was not used in the rest of the experiment. Although the mixer stopped due to the 

presence of hydrates in the system, the system was not completely blocked as both 

pressure transducers at top and bottom of the cell showed the same pressure, indicating 

pressure communication through the system. In order to simulate constant pressure 

conditions and block the system completely, natural gas was injected multiple times from 

the bottom of the cell. The aim of this procedure was to encourage the system to form 

hydrates by mixing the system (by the bubbling gas, i.e., the injection of gas from the 

bottom of the cell, generated gas bubbles inside the aqueous phase) and increasing 

water/gas interface during gas injection. The system was allowed to form more hydrates 

for several days (listed in Table 5-2) after each gas injection. Details of each gas injection 

are reported in Table 5-2. Finally, after 51 days, 89 mass% water was converted to 

hydrates and the system became completely blocked. The pressures at top and bottom of 

the cell were 79 bara and 90 bara at 1 °C respectively, indicating complete hydrate 

blockage without any pressure communication in the system. The pressure data at top and 

bottom of the cell shows that it took a long time (51 days in this case) to get complete 

blockage and there was pressure communication through the hydrate body even at high 

80 WCH%. 
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The next step is to remove hydrate blockage using MEG and investigate its effectiveness 

in removing hydrate blockage. It was decided to use stepwise MEG injection at relative 

constant pressure (±5 bar). MEG was tested first due to its high density, assuming to be 

more effective than methanol in removing hydrate blockage in vertical pipes. 

Gas hydrate phase boundaries of the system with different amount of MEG are shown in 

Figure 5-2. Software calculation shows that 45 mass% MEG in the aqueous phase is 

enough to dissociate all hydrates in the system. Different batches of MEG were injected 

from the top of the cell as listed in Table 5-3. The main reason for the injection of batches 

of MEG was to examine if it is possible to remove the hydrate plug with a lower amount 

of MEG than thermodynamic requirements, i.e., it is not necessary to dissociate all 

hydrates to remove the blockage. 

Table 5-2. Details of gas injection including the amount of gas injected, calculated percent water 

converted to hydrate after the end of each gas injection period -MEG injection test.  

No. 

Amount of gas injected in 

each step 

Total water mole 

fraction WCH% 
No. of 

days 
g mole 

1 460 25 0.82 10 3 

2 100 5.4 0.79 26 7 

3 80 4.4 0.77 37 8 

4 74 4 0.75 82 37 

5 92 5 0.72 89 51 
 

 

 

 

 

 

Table 5-3. Details of MEG injection into the long windowed rig. 

No. of 

injection 
Type 

Mass 

/ g 

Volume / 

cc 

Total Mass 

% 

1 MEG 230 206 10 

2 MEG 230 206 19 

3 MEG 230 206 25 

4 MEG 220 197 30 

5 MEG 228 204 35 

6 MEG 400 358 42 

7 MEG 450 403 49 

8 Methanol 222 282 5 
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The temperature and pressure of the injected MEG were the lab temperature (around 

20 °C) and the cell pressure, respectively. As the pressure increased due to inhibitor 

injection and gas hydrate dissociation, gas was removed from the top of the cell to keep 

the pressure constant (depressurization was very slow to minimize temperature reduction 

due to Joule–Thomson effect). The volume of the gas removed from the system at 

different steps in hydrate blockage removal process was measured using a gasometer at 

ambient condition and it is shown in Figure 5-3.  

Figure 5-3 also shows the pressure at the top of the cell indicating the pressure response 

to MEG during gas hydrate dissociation. After each MEG injection, time was given to the 

system until the pressure became constant and it is possible to say that the system roughly 

reaches to a new equilibrium point. In fact, the system was not homogenous because of 

the absence of any active mixing in the system. Beside this, both pressures at the top and 

bottom of the long windowed rig were monitored simultaneously to see at what point 

pressure communication will be established.   

 

 

 

 

 

 

 
Figure 5-2. Hydrate phase boundary for natural gas system with different amount of MEG (and also 

49% MEG + 5% MeOH) and operating condition. 
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Figure 5-3. Volume of gas from hydrate dissociation at standard conditions, percentage of dissociated 

hydrate, and pressure response due to MEG injection and hydrate dissociation versus time. The 

pressure build-up due to MEG injection was calculated based on the volume of MEG injected 

considering the volume of gas released due to hydrate dissociation. Use the curve with the points for 

both hydrate gas dissociation and percentage of dissociation hydrate. 

 

Once MEG was added to the system, a layer of MEG was formed on the top of the 

hydrates body during MEG injection because the system was completely blocked. As the 

density of MEG is higher than hydrate and water, MEG gradually penetrated into to the 

body of hydrates. Consequently, some hydrates dissociated and the pressure in the top 

section of the cell increased.  

However, the system temperature is expected to decrease due to endothermic nature of 

hydrate dissociation and it is possible to form ice and block the system. This hypothesis 

was investigated by monitoring the cell temperature along its cell during MEG injection 

and hydrate dissociation. Some low temperatures, as low as -3 °C, were recorded in the 

hydrate zone during the hydrate dissociation process, indicating the possibility of ice 

formation during hydrate dissociation in the system. This low temperature was observed 

in window 3, i.e., fresh MEG came into contact with hydrates in window 3. The system 

temperature in each section of the setup during the MEG injection is shown in Figure 5-4.  

Temperature reduction from 1 °C to -3 °C shows how the endothermic nature of hydrate 

dissociation could reduce the system temperature. The sharp increase in temperature of 

the system after each THI injection is due to the fact that the injected MEG was at ambient 
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lab temperature, i.e., this temperature rise only occurred at contact surfaces of MEG and 

hydrate in the system. Although depressurization process was very slow, a small 

temperature reduction was observed only at the top of the cell (window 6) during 

depressurization, indicating observed sub-zero temperature was not due to pressure 

reduction. For example, as shown in Figure 5-3, a depressurization was conducted at 

~620 hours, and Figure 5-4 shows 0.4 °C reduction in the temperature which was only 

observed at the top of the cell (window 6). 

The hydrate dissociation rate after each MEG injection varies due to non-homogenous 

nature of the system e.g. the hydrate dissociation rate in the early time of injection in the 

second and third MEG injections were 2.4 and 0.3 
% hydrate dissociation

ℎ𝑜𝑢𝑟
⁄   

respectively. However, the data shown in Figure 5-3 demonstrates that hydrate 

dissociation gradually stopped and hence pressure stabilized after each MEG injection, 

indicating a gradual reduction of MEG effect in every single batch of MEG injection. In 

other words, in the first few hours of each MEG injection, because there was a high 

concentration of MEG in the system, some hydrates dissociated fast and the rate of 

hydrate dissociation gradually decreased and finally stopped. This behaviour happened in 

every single batch of MEG injection. It can possibly describe how the injection rate is 

important to remove the hydrate blockage in the system and explain advantages and 

disadvantages of continuous/stepwise MEG injection.  

The main reasons for this behaviour –reduction of MEG effect on hydrate dissociation in 

every single batch of MEG injection- can be listed as (assuming batch gas removal is 

efficient in maintaining the system pressure): 

1. Dilution of MEG. Hydrate dissociation results in fresh water which could dilute 

the injected MEG, hence reducing its effectiveness 

2. Non-homogeneous MEG distribution/concentration. In the absence of any active 

mixing, the MEG-water seems to remain non-homogeneous in the limited test 

time, i.e., high MEG concentration may not come into contact with hydrates 
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3. Localised low temperature.  Hydrate dissociation is endothermic which results in 

a reduction in local temperature, hence moving the system back to the hydrate 

stability zone. 

4. Localised compositional variations.  Again in the absence of active mixing, there 

is a good possibility of non-homogeneous hydrocarbon composition in the gas 

phase. 

Hydrate blockage was removed after injection of 49 mass% MEG into the system. The 

system remained blocked before this MEG injection, i.e., more than 45% of hydrates was 

dissociated before 7th batch of MEG injection. The data show that during this MEG 

injection, hydrate blockage was removed quickly as both pressure transducers showed the 

same pressure. It suggests that the amount of THI required for removing gas hydrate 

blockage in the system can be more than the amount calculated due to lack of active 

mixing in the system.  

Figure 5-5 shows that hydrate blockage shifted upward after MEG injection. There were 

no hydrates in window 3 and 4 before MEG injection, but after MEG injection these two 

windows became blocked. It is potentially due to the reformation of hydrates in upper 

section precisely because of produced fresh water from gas hydrate dissociation. In other 

words, hydrate dissociation produced fresh water which moves upward due to lower 

density and hence hydrates reformed again in the interface between the gas and aqueous 

phase. Consequently, if there is enough time between each MEG injection, hydrates can 

form and block the system again in the upper section. Another potential reason for this 

behaviour could be shifting the preformed hydrates upward. Nonetheless, no matter what 

the reason is, hydrate blockage can shift upward in vertical pipes after MEG injection and 

it needs to be considered.   

Some hydrates did not dissociate after the 7th MEG injection potentially due to non-

homogeneous MEG distribution and lack of mixing in the system as shown in Figure 5-5 

(see window 4). In order to dissociate the remaining hydrates, it was decided to inject 

methanol to see if it is possible to remove the remaining hydrates. After methanol 

injection, a layer of methanol was formed on the top of initial aqueous phase. As it was 

expected, methanol couldn’t penetrate into the aqueous phase due to lower density. 

https://www.powerthesaurus.org/nonetheless/synonyms
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Consequently, only some of those hydrates that came into contact with methanol at the 

top of the aqueous phase dissociated. Therefore, methanol was not able to dissociate most 

of the hydrate which remained in the initial aqueous phase. The system pressure did not 

increase any more after a few hours of methanol injection. This could be explained by the 

lack of methanol mixing with aqueous phase as Li, Gjertsen, and Austvik (2000) pointed 

out the problems associated with using methanol for hydrate dissociation in a system 

without good mixing [5.5].  

 

 

 
Figure 5-4. Temperature profile for the different sections of the rig during MEG injection. 
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Figure 5-5. Hydrate formation and dissociation, hence hydrate blockage removal during MEG 

injection at 1 °C and ~𝟖𝟎 bara. (a) first gas injection-no hydrate present, (b) last gas injection-

blocked with hydrates, (c) 10 mass% MEG, (d) 19 mass% MEG, (e) 25 mass% MEG, (f) 30 mass% 

MEG, (g) 35 mass% MEG, (h) 42 mass% MEG, (i) 49 mass% MEG, (j) 5 mass% methanol, in 

addition to the amount of injected MEG . 
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Figure 5.5. Continued. 
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5.3.2 Hydrate blockage removal using methanol in vertical pipes 

This section presents the results of experiments which have done to investigate hydrate 

blockage removal using methanol in vertical pipes. In order to compare the results of this 

section with hydrate blockage removal using MEG in vertical pipes, the same procedure 

which is mentioned in the previous section was followed.  

2066 g of deionized water was used in the long window rig which was positioned in 

vertical orientation. The vacuumed cell was pressurized with a single injection of 675 g 

of natural gas with a composition listed in Table 5-1. The volume ratio of liquid/gas in 

the cell was 0.44. In this case, the system temperature was set to 4.5 °C which is more 

realistic and close to seabed temperature.  

Calculation using the data pressure which was recorded during hydrate formation shows 

that 73 mass% of water was converted to hydrates over 30 days. The stirrer was also used, 

but it stopped after formation of roughly 12% hydrates. This suggests that it is possible 

to form huge quantities of hydrates in the absence of any active mixing, i.e., the stirrer 

stopped and there was nothing to encourage the system to form hydrates by mixing the 

system or increasing water/gas interface, e.g. bubbling gas (there was not multiple gas 

injection and gas was injected from the top of the cell in one step). The pressure 

transducers showed different values of pressures at top and bottom of the cell, indicating 

complete hydrate blockage in the system. Figure 5-10 shows that the first two windows 

were completely blocked with hydrates and most of water was converted to hydrates.  

To remove hydrate blockage, 18, 26, and 30 mass% methanol were injected at constant 

pressure as listed in  

Table 5-5. Similar to the previous test, in order to keep the pressure constant, gas was 

removed from the top of the system and measured by gasometer. Figure 5-6 shows that 

30 mass% methanol can dissociate all hydrates if there is a good mixing in the system. 

Table 5-4. Details of gas injection including amount of gas injected, calculated percent water 

converted to hydrate 30 days after the beginning of the experiment of the methanol injection test.  

Amount of gas Total water 

mole fraction 
WCH% 

No. of 

days g mole 

675 36.7 0.76 73 30 
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Table 5-5. Details of methanol injection into the long windowed rig 

No. of 

injection 
Type 

Mass 

/ g 

Volume / 

cc 

Total 

Mass % 

1 methanol 516 651 18 

2 methanol 203 256 26 

3 methanol 200 252 30 

 

Figure 5-10 clearly shows that once methanol injected into the system, methanol located 

in window 3 (on the top of the hydrates body). Due to the direct contact of methanol and 

hydrates at the interface of methanol/hydrates body, some of those hydrates started to 

dissociate. Figure 5-7 indicates that hydrate dissociation started immediately after 

methanol injection. As shown in Figure 5-7, the rate of hydrate dissociation in the first 

few hours of the first methanol injection was very high, but it gradually decreased. The 

main reason is that there was no mixing in the system. Another reason could be due to the 

fresh water which came from hydrate dissociation and diluted the methanol and reduced 

its effectiveness. 

Figure 5-10 shows that methanol could not penetrate into the hydrates body, i.e., dyed 

methanol was injected into the system and colour of hydrates in the first two windows did 

not change to red. Consequently, only those hydrates which have contacted to methanol 

at the top of the hydrates body dissociated. Recorded temperatures along the cell also 

confirm it. The temperature in the first two windows did not change, but data acquisition 

system recorded reduction of temperature in the hydrate-methanol contact zone during 

hydrate dissociation and recorded some temperature as low as -2 °C. This low 

temperature -similar to MEG injection test- confirms the possibility of ice formation 

during hydrate dissociation. The system temperature in each section of the rig during the 

methanol injection is shown in Figure 5-8. 

As mentioned, the effect of methanol gradually diminished after the first injection and 

then hydrate dissociation stopped, so it was decided to inject more methanol, 26 and 30 

mass% methanol. Figure 5-7 shows that the last two methanol injections could not 

dissociate the remaining hydrates. Although the total methanol concentration in the 

system after the last methanol injection was 30 mass% (software calculation shows that 

this system with 30 mass% methanol at this operating condition is out of hydrate stability 

zone, Figure 5-6), the system was still blocked. The main reason for this behaviour could 
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be due to the lower density of methanol compared to water and hydrate. Basically, the 

produced fresh water (as a result of hydrate dissociation) prevents methanol to penetrate 

into the hydrate plug due to its lower density.  

Dilution of methanol, non-homogeneous methanol distribution/concentration in the 

absence of any active mixing in the system, localized low temperature, and localized 

compositional variations could be the other reasons for the aforementioned behaviour of 

methanol in removing and dissociating of gas hydrates. 

 

 

 

 
Figure 5-6. Hydrate phase boundary for natural gas system with different amount of methanol and 

operating condition. 
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Figure 5-7. Volume of gas from hydrate dissociation at standard conditions, percentage of dissociated 

hydrate, and pressure response due to methanol injection versus time. The pressure build-up due to 

methanol injection was calculated based on the volume of methanol injected considering the volume 

of gas released due to hydrate dissociation. Use the curve with the points for both hydrate gas 

dissociation and percentage of dissociation hydrate. 

 

 

 

 

 

 

 

 

 

 
Figure 5-8. Temperature profile for the different sections of the rig during methanol injection. 
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As hydrate blockage was not removed from the system by methanol injection, it was 

decided to depressurize the system to investigate the possibility of hydrate dissociation 

and hydrate blockage removal using depressurization. Therefore, the gas was removed 

from the system in 3 steps to decrease the top pressure from 79 to 65, 59, and 34 bara 

respectively as shown in Figure 5-6.  

Figure 5-9 shows the pressures at above and below the hydrates body during the 

depressurizing. The main aim of this work was to promote hydrate dissociation by 

keeping the system farther away from the hydrate phase boundary. Another aim was to 

mix the system by releasing of dissolved gas which could happen during depressurization 

of the system, i.e., this could homogenize the system and distribute the methanol in the 

system.  

Figure 5-9 shows that hydrate did not dissociate in the first two steps of depressurization. 

It means that keeping the system farther away from the hydrate phase boundary using 

depressurizing could not dissociate the remaining hydrates for this system. It also 

indicates that mixing due to gas bubbling from the depressurization was not efficient to 

homogenize the system if there is large quantities of hydrates. Accordingly, as there was 

a small amount of liquid and large quantities of hydrates in the system, the bubbling 

dissolved gas using depressurization could not mix the system and hence hydrate 

blockage was not removed in the first two steps of depressurization.  

Finally, the last depressurization was done and the pressure above the hydrates body 

decreased to 34 bara. As there was no pressure communication through the hydrates body, 

the pressure difference between the ends of hydrates body increased to 47 bara (the 

bottom pressure was 81 bara). Due to this high pressure difference, hydrate blockage 

moved up and the system became turbulent and mixed intensely.  

Data shows that at this time the bottom pressure decreased immediately and after a few 

hours both top and bottom pressure transducers showed the same pressure. Although 

hydrate blockage was removed from the system, some hydrates remained in the system 

as Figure 5-9 shows increasing of the system pressure after hydrate blockage removal. 

Because of the efficient mixing due to hydrate plug movement, methanol was distributed 

in the system and contacted with the remaining hydrates. The pressure, therefore, 
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increased fast due to hydrate dissociation. As it is clear from Figure 5-10, all hydrates 

dissociated in the last step of depressurization and dyed methanol was distributed through 

the first three windows indicating the homogeneous system.  

 

 

 

 

 

 

 
Figure 5-9. Top and bottom pressures of the long windowed rig during depressurization-methanol 

injection test.  
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Figure 5-10. Hydrate formation and dissociation, hence hydrate blockage removal during gas 

methanol injection at 4.5 °C and ~𝟖𝟏 bara. (a) no hydrate present, (b) blocked windows with 

hydrates before methanol, (c) 18 mass% methanol, (d) 26 mass% methanol, (e) after depressurizing 

to 34 bara. 
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5.3.3 Hydrate blockage removal using a mixture of methanol/MEG in vertical 

Pipes 

Previous results (removing hydrate blockage using MEG and methanol in the vertical 

pipes) confirm that density of THI plays an important role in removing hydrate blockage 

in the vertical pipes. Therefore, the relative density of methanol and MEG needs to be 

considered in vertical pipes. In order to do more investigation of THI density role in 

hydrate blockage removal in vertical pipes, a mixture of methanol and MEG was used. 

The aim of this work was to adjust its density to 1 g/cc (equal to water density). This 

mixture could penetrate into the hydrate plug, i.e., the density of hydrates is lower than 

1 g/cc. However, the possibility of hydrate reformation due to produced fresh water from 

hydrate dissociation could be minimized by adjusting the chemical density to 1 g/cc. 

The same procedure for hydrate formation and blockage removal -similar to the previous 

tests- was carried out. The details of natural gas injection and the amount of hydrates 

formed in this test are listed in Table 5-6. The system temperature was set to 4.5 °C. 

65 mass% of the water was converted to hydrates over 30 days, and the system became 

completely blocked as indicated by a lack of pressure communication through the hydrate 

bulk. This amount of hydrates indicates that the system can be blocked completely with 

different amount of hydrates, i.e., in this test, the system became blocked after formation 

of 65% of hydrates which is lower than the amount of hydrates required to block the 

system in the previous tests (roughly 85 %). In reality, the amount of hydrates required 

to block the system completely, e.g. no pressure communication, is much more than the 

amount of hydrates required to prevent fluid movement in pipes. Roughly 12 mass% 

hydrates resulted in stirrer stoppage, potentially preventing fluid movement in pipes. 

There are many factors that could affect the pipeline blockage due to hydrate formation 

e.g. amount of hydrates, subcooling temperature, hydrate growth rate, gas composition, 

and pipe diameter. 

 

 

Table 5-6. Details of gas injection including amount of gas injected, calculated percent water 

converted to hydrate after 30 days from the beginning of the experiment-methanol/MEG injection 

test. 

Amount of gas Total water 

mole fraction 
WCH % 

No. of 

days g mole 

598 32.5 0.78 65 30 
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Software calculation (HydraFLASH®) shows that injection of 36 mass% of chemical 

which consists of methanol and MEG so that its total density is 1 g/cc, can dissociate and 

remove all hydrates if there is a good mixing in the system. Figure 5-11 shows the gas 

hydrate phase boundary of natural gas with different amounts of THIs (methanol/MEG). 

It was again decided to use stepwise chemical injection. The details of chemical injections 

are given in Table 5-7. Similar to the previous tests, the system pressure was kept constant 

during hydrate dissociation by removing the gas from the top of the cell.  

The measured gas volume produced from hydrate dissociation and pressure response due 

to chemical injection and hydrate dissociation are plotted in Figure 5-12. The system 

temperature for each chemical injection is shown in Figure 5-13. As it was expected, the 

hydrate dissociation rate in the early times of each chemical injection was very high and 

it gradually decreased. It is notable that the hydrate dissociation rate in this case 

(methanol/MEG) is much higher than MEG injection case. The main reason for this 

behaviour could be the presence of methanol and MEG simultaneously. In terms of 

mass%, methanol shifts the hydrate phase boundary to lower temperature and higher 

pressures compared to MEG. The primary reason for the difference by mass is that MEG 

has a much higher molecular mass, so less moles per gram. They should be much more 

comparable if mole% is used, i.e., in fact, a quick model freezing point check suggests 

MEG is more inhibiting per mole. That could be down to it having two OH groups per 

CH2 group, so more polar / more attractive to water in terms of hydrogen bonding. 

Certainly, the industry does injection based on volumes, and by volume, methanol is 

better than MEG (even though methanol density is lower) as there are still more moles 

per volume. Therefore, as these experiments were conducted based on mass%, the 

mixture of methanol/MEG could be more efficient. The temperature reduction of the 

system during hydrate dissociation in the case of MEG and methanol injection which 

were 4 °C (from 1 °C to -3 °C) and 6.5 °C (from 4.5 °C to -2°C) respectively, confirms 

this, i.e., temperature reduction for the methanol case was higher than MEG case. The 

temperature reduction for the methanol/MEG injection was 8.5 °C (from 4.5 °C to -4 °C). 

It is notable that, ice formation is possible in all cases during hydrate dissociation.   
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Table 5-7. Details of methanol/MEG injection into the long windowed rig. 

No. 
𝜌

𝑇𝐻𝐼
 

g/cc 

Type Mass    

/ g 

Total   

/ g 

Volume 

/ cc 

Mass 

% 

Total Mass% (relative 

to aqueous phase) 

1 1 
MeOH 56.4 

200 200 
2.5 

8.8 
MEG 143.6 6.3 

2 1 
MeOH 56.4 

200 200 
4.6 

16.3 
MEG 143.6 11.7 

3 1 
MeOH 56.4 

200 200 
6.9 

23.1 
MEG 143.6 16.2 

4 1 
MeOH 56.4 

200 200 
7.9 

27.9 
MEG 143.6 20.0 

5 1 
MeOH 56.4 

200 200 
9.2 

32.6 
MEG 143.6 23.4 

6 1 
MeOH 56.4 

200 200 
10.4 

36.8 
MEG 143.6 26.4 

7 0.9 
MeOH 41.4 

100 111 
11.3 

38.6 
MEG 58.6 27.3 

 

 

Although methanol is better than MEG for hydrate dissociation (if the same mass% of 

chemical is used), it does not have an ability to penetrate and remove hydrate blockage in 

vertical pipes due to its density. Therefore, using a mixture of MEG/methanol can 

increase the efficiency of hydrate blockage removal using chemical injection in the 

vertical pipes. Beside this, the mixture of methanol and MEG with a density of 1 g/cc can 

decrease the possibility of hydrate reformation, i.e., the density of methanol/MEG 

mixture and produced fresh water are the same, so the possibility of hydrate reformation 

in the upper section can be reduced.  In addition, the hydrostatic pressure of injected 

chemical in the vertical pipes can be reduced by injection of MEG/methanol rather than 

MEG alone, i.e., MEG/methanol is stronger than MEG for shifting the hydrate phase 

boundary to lower temperature and higher pressure (if a same mass% chemical is used), 

hence less MEG/methanol mixture is required to remove hydrate blockage from the 

system.   
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Figure 5-11. Hydrate phase boundary for natural gas system with different amount of THI, i.e., 

injected chemical consists of methanol and MEG so that its total density is 1, and operating condition. 

 

 

 

 

 

 

 

 

 
Figure 5-12. Volume of gas from hydrate dissociation at standard conditions, percentage of 

dissociated hydrate, and pressure response due to methanol/MEG injection versus time. The pressure 

build-up due to injection was calculated based on the volume of chemical injected considering the 

volume of gas released due to hydrate dissociation. Use the curve with the points for both hydrate 

gas dissociation and percentage of dissociation hydrate. 
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Figure 5-13. Temperature profile for the different sections of the rig during MEG/methanol injection. 

Finally, after injection of 6th chemical injection (36 mass% mixture of methanol/MEG 

with a density of 1 g/cc) both pressure transducers at top and bottom of the cell showed 

the same pressure, indicating hydrate blockage was removed. Figure 5-14 shows that in 

this stage the hydrate blockage was removed in windows 1 and 2.  

Although the most of the hydrates dissociated and hydrate blockage removed, there were 

still some hydrates at the top of the aqueous phase, window 3 in Figure 5-14. These 

hydrates could be from hydrate reformation or pre-formed hydrates. Pre-formed hydrates 

could detach from hydrates body during hydrate dissociation and then move up, at the top 

of the aqueous phase, due to being less dense. As the previous results show that methanol, 

MEG, and methanol/MEG with a density of 1 g/cc are not able to dissociate these 

hydrates, it was, therefore, decided to inject a mixture of methanol/MEG with a density 

of 0.9 g/cc, its details are listed in  

Table 5-7. The density of methane hydrate is roughly approximated 0.91-0.94 g/cc at 

273.15 K and 25.1 atmospheres [5.6]. This mixture of Methanol/MEG was injected with 

different colour, violet (the previous mixture of methanol/MEG was red). Figure 5-14 

shows that this mixture could dissociate all hydrates in window 3 which did not dissociate 

by injection of methanol/MEG mixture with a density of 1 g/cc. It indicates that density 

is the most important factor in selection of chemical (MEG, methanol, and 

methanol/MEG mixture) to remove hydrates in vertical pipes. 



 

166 

 
Figure 5-14. Hydrate formation and dissociation, hence hydrate blockage removal during 

MEG/methanol injection at 4.5 °C and ~𝟖𝟎 bara. (a) no hydrate present, (b) blocked windows with 

hydrates before methanol/MEG injection, (c) 8.8 mass% chemical*, (d) 16.2 mass% chemical*, (e) 23 

mass% chemical*, (f) 27.9 mass% chemical*, (g) 32.6 mass% chemical*, (h) 36.7 mass% chemical*, (i) 

3 mass% chemical†. 
* Injected chemical consists of methanol and MEG so that its total density is 1. 
† Injected chemical consists of methanol and MEG so that its total density is 0.9. 
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Figure 5-14. Continued.  
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5.4 Summary 

 

This chapter presents details of a novel 1.5 meters, windowed cylindrical (75 mm internal 

diameter) experimental setup that can be used for studying of the hydrate blockage 

formation and removal. In addition, the setup is equipped with separate temperature 

controlled jackets along its length for establishing a temperature gradient. 

In this chapter, the results of hydrate blockage formation from a North Sea natural gas 

with deionized water, and its subsequent removal using batch inhibitor injection (initially 

MEG followed by methanol, methanol, and methanol/MEG mixture) were presented. The 

following conclusions could be drawn: 

 Injected MEG dissociated some hydrates at the top and penetrate into the body of 

hydrates 

 Methanol injection can only dissociate those hydrates which contact with 

methanol at the top of the hydrates body, and can’t penetrate into the body of 

hydrates 

 The mixture of methanol/MEG with a density of 1 g/cc is a better option for 

dissociating and removing hydrates in the vertical pipelines, i.e., hydrate 

dissociation rate of this case is higher than the case of methanol or MEG injection 

alone   

 The amount of chemical required for injection in terms of mass% could be reduced 

by injection of methanol/MEG mixture. This also results in a reduction of 

hydrostatic pressure during chemical injection   

 Water generated as a result of hydrate dissociation moved upward and re-formed 

hydrates/blockage 
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 Hydrate reformation as a result of water generated due to hydrate dissociation 

could change the location of the blockage. In addition, those hydrates which are 

detached from the hydrate plug can move up and block the system  

 A mixture of methanol/MEG with a density of 0.9 g/cc can dissociate those 

hydrates which are at the top of the aqueous phase 

 The THI-water system seems to remain non-homogeneous, indicating that the 

mixing due to gas release/bubbling and diffusion is not very efficient in the limited 

test time 

 The endothermic nature of hydrate dissociation resulted in sub-zero temperatures, 

hence ice formation/blockage 

 Due to non-homogeneous nature of the system, the amount of THI required is 

more than what is calculated by thermodynamic modelling 

 Density of injected inhibitor plays an important role in effectiveness of hydrate 

blockage removal 
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Chapter 6– Bio KHI-Induced Dissociation of Gas Hydrate  
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6.1 Introduction  

Generally, Kinetic Hydrate Inhibitors (KHIs) which are water-soluble polymers, are 

known as an option for prevention/delay of hydrate nucleation or reduce hydrate growth 

rate by influencing hydrate surface properties at low concentrations. The industry opinion 

is that KHIs cannot be used for remediation, i.e., if THI is replaced with KHI, it still might 

need THI to remove plugs. As there is very little literature data on the effect of KHIs on 

hydrate dissociation inside the hydrate region (see Section 1.5.2), the question may then 

arise: could KHIs help to remove plugs by causing dissociation? The main objective of 

this chapter is to investigate very abnormal hydrate dissociation using Luvicap Bio inside 

the hydrate regions. In addition, PVCap was used as a well-known reference / benchmark 

to compare the performance of Bio KHIs. 

There has been a lot of experimental and theoretical work to find the mechanism of KHIs. 

Despite this, none of them explains completely all of the KHIs behaviours e.g. induction 

time, crystal growth inhibition (CGI) regions (see Section 1.4.4.2), hydrate nucleation, 

sudden hydrate growth, hydrate morphology, or structure change. As discussed in 

Section 1.5.2, although some limited evidence shows PVCap could induce hydrate 

dissociation inside the hydrate stability zone [6.1], the ability to influence hydrate 

dissociation has not been focused and investigated in detail.   

Anderson et al. (2005) showed two KHIs mechanisms using molecular dynamic by 

accepting local structure mechanism of hydrate nucleation [6.2]. They proposed that 

KHIs increase the energy barrier to nucleation by disruption of the organization of the 

water and guest molecules and once hydrate nuclei are created, the inhibitor molecules 

bind to the hydrate crystals and retard further hydrate growth. In addition, Yang and 

Tohidi (2011) showed experimentally two different KHIs mechanisms (nucleation 

inhibition and growth inhibition) [6.3]. Most of the studies which have been done suggest 

the influence of KHIs on hydrate crystal surface as a main mechanism of KHIs which can 

only inhibit hydrate formation, not dissociation [6.2-6.5].  

In addition, hydrate formation can form as a result of different scenarios e.g. failure of 

inhibitor delivery, increased water content / unpredicted free water appearance, 

unplanned shut-in, and poor KHI distribution. With respect to the field, the scenario of 

hydrate formation in the absence of KHIs (free-KHIs system) is realistic. Therefore, the 

question may then arise: could KHIs inhibit or even dissociate pre-formed hydrates (the 
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KHIs mechanisms only suggest hydrate nucleation/growth prevention). If KHIs cause 

dissociation, it raises the question of whether they can be used to remove plugs.  

The molecules of KHI inhibitors can bind to the hydrate crystals and retard further hydrate 

growth and some results showed the ability of KHIs in hydrate dissociation [6.1]. As a 

result, if KHIs are able to dissociate hydrates, the question may then arise as whether 

disruption/induced-dissociation of pre-formed hydrate crystals is another mechanism of 

KHIs in addition to aforementioned KHIs mechanisms e.g. disruption of the organization 

of the water and guest molecules during hydrate nucleation.  

Therefore, this chapter focuses on the abnormal hydrate dissociation in the presence of 

KHIs. Hence, experiments have been done to answer this question, i.e., whether KHIs 

(Luvicap-EG and Luvicap Bio in this study) can dissociate hydrates inside the hydrate 

stability zone and what is the reason behind this behaviour. In addition, the ability of 

KHIs in prevention of hydrates in pre-formed hydrate systems (hydrates formed in the 

absence of KHIs) was investigated.  

Furthermore, this chapter investigates if there is a difference between the hydrate crystal 

growth patterns (CGI regions) of the systems with hydrate formation in the presence and 

absence of KHIs. Experimental work was carried out to see whether KHIs can 

successfully inhibit those hydrates which formed in the free-KHIs systems. 

6.2 Experimental Methods and Materials 

Tests were undertaken on simple methane + PVCap (BASF Luvicap-EG), 

methane + Luvicap Bio, and natural gas + Luvicap Bio. Experiments were carried out 

using stirred autoclaves (see Section 2.2). The purity of methane gas used was 99.99%. 

The composition of natural gas used is given in Table 2-1. Distilled water was used in all 

tests. Standard commercial Luvicap-EG, supplied by BASF, was used; vacuum oven 

dried PVCap (from Luvicap-EG) has been used for PVCap studies, however, Luvicap­EG 

provides a liquid form that can be injected with the small fraction of MEG solvent having 

a negligible effect on CGI patterns.  
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Cells were filled 50% by volume with distilled water. The thermodynamic hydrate phase 

boundary was predicted using HydraFLASH®, a thermodynamic model by Hydrafact Ltd 

and Heriot-Watt University. The estimated percentage of water converted to hydrate 

(WCH %) was calculated based on the calculation presented in Appendix B. 

To investigate the ability of KHIs in inhibition of hydrate growth in pre-formed hydrate 

system, the CGI method (See Section 1.4.4.2) was used. Standard CGI method determines 

different regions as a function of subcoolings. These regions and their description are 

listed in Table 1-2. Complete inhibition region (infinite induction time)/green zone, 

partial inhibition region /amber zone, and rapid failure region/red zone are three main 

regions which are highly repeatable. In this technique usually, KHI is mixed with the 

aqueous phase before loading, and then the standard CGI procedure is applied, i.e., the 

system is cooled rapidly to form hydrates and then is heated to dissociate most of hydrates 

but leaving a small fraction of hydrates and re-cooled the system again. Therefore, the 

following procedure was used to simulate the pre-formed hydrate system. 

As discussed in the next section, to simulate the pre-formed hydrate systems, Luvicap­EG 

was injected (to a concentration of ~0.5% polymer aqueous) after hydrate formation. The 

Luvicap-EG injection was done using a piston vessel. The appropriate volume of 

Luvicap-EG was placed in one side of the piston vessel with a high pressure water behind 

the piston (this pressure was applied using hand pump). The Luvicap-EG side of the 

piston vessel was connected to the cell inlet/outlet valve. It is worth to mention that, as 

the necessary volume of Luvicap-EG to achieve a concentration of ~0.5% polymer 

aqueous is low, this injection did not increase the cell pressure significantly. As discussed 

later, two separate tests have been carried out for Luvicap-EG to investigate repeatability. 

In addition, the capability of Luvicap-EG in hydrate dissociation was investigated. 

Furthermore, shut-in/restart (SIR) tests (see Section 3.3.2) have been carried out for the 

methane-Luvicap Bio system to investigate whether Bio KHIs e.g. Luvicap Bio is able to 

dissociate hydrates. 
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6.3 Result and discussion  

As PVCap is the only polymer which has been reported for hydrate dissociation using 

KHI inside the hydrate phase boundary [6.1], abnormal hydrate dissociation was 

investigated first using PVCap for the reference / benchmark. Therefore, two tests (test­A 

and test-B) have been carried out for the methane + Luvicap-EG system at similar 

conditions (~100 bar at 20 °C) with the same procedure for injection of Luvicap-EG as 

discussed in the previous section. These tests have been carried out to confirm the ability 

of KHIs (e.g. PVCap) for hydrate dissociation inside the hydrate stability zone, including 

whether it occurs if KHI is injected after hydrate formation (in the pre-formed hydrate 

system). Therefore, this was to confirm the process with a KHI that should cause 

abnormal hydrate dissociation and to give the benchmark case.  

To show the ability of Luvicap Bio for hydrate dissociation, the test has been carried out 

for Luvicap Bio + natural gas system. In addition, to confirm this abnormal hydrate 

dissociation, SIR tests have been carried out for Luvicap Bio in methane system.  

The following sections describe the results of these experiments indicating the ability of 

KHIs in hydrate dissociation and inhibition of pre-formed hydrates growth.  

6.3.1 Luvicap-EG + Methane System 

6.3.1.1 Test-A: Inhibition / Dissociation of Pre-formed Hydrates 

Figure 6-1 shows pressure-temperature cycles for the methane + Luvicap-EG (PVCap) 

system inside the thermodynamically stable hydrate region. In this figure, the various CGI 

regions for the 0.5 mass% PVCap + methane system are also shown, i.e., the boundary 

lines of 5.2, 7.2, and 9.7 °C subcooling temperatures refer to CIR, SGR, and RGR 

respectively [6.1].  

Firstly, the ability of KHIs in inhibition of pre-formed hydrates systems is discussed. To 

simulate the pre-formed hydrate system, hydrate should form in the absence of KHIs. 

Therefore, as shown in Figure 6-1, the system which is free-KHI was cooled down to 

~4.5 °C (No. 1). The system was mixed during cooling and was allowed ~24 hrs to form 

hydrates as much as possible. As can be seen in Figure 6-1, this cooling pathway did not 

cross the s-II phase boundary of methane which is predicted by HydraFLASH (the 
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potential formation of s-II methane are discussed in Chapter 3). This strongly suggests 

that only s-I methane was formed during this cooling.  

In the next step (No. 2), the system was fast heated to 11.5 °C to dissociate most of the 

hydrates but retaining ~6% of water converted to hydrates. At this condition, the system 

was left for ~24 hrs to reach the equilibrium condition (s-I methane phase boundary).  

Following this, the system was cooled down to 9.5 °C (~2 °C subcooling temperature) 

inside the hydrate stability zone without mixing (the stirrer motor was shut off). This 

cooling without mixing prevents any hydrate formation inside the hydrate region. Then, 

the Luvicap-EG was injected into the system based on the procedure described in the 

previous section. At this point, the stirrer motor was started. As can be seen in Figure 6-1, 

not only hydrates did not form but also this 6% hydrates completely dissociated even 

though the dissociation process was very slow (over a 475 hrs period). This confirms that 

the CIR extent could be applied to the system even though KHI is injected into the system 

after hydrate formation (pre-formed hydrates in KHI-free system).  

Following this complete hydrate dissociation (No. 4), the system was cooled at the rate 

of 1.0 °C/hr to discover the CGI regions. As shown in Figure 6-1, the hydrates formed 

beyond the ~9.7 °C subcooling temperature which is the RGR extent for 0.5% PVCap in 

the methane systems without any hydrate history. This probably suggests that the PVCap 

not only could dissociate all hydrates inside the thermodynamic hydrate stability zone but 

also caused removing the hydrate nuclei (hydrate memory/history).  
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Figure 6-1. Plot of complete PT cycle for post-hydrate formation Luvicap-EG (PVCap) injection 

Test-A system. See text for description. Inj. = KHI injection condition. RS = Restart. The green line 

(5.2 °C subcooling) is the standard extent of the CIR for the concentration of KHI injected for 

methane-water [6.1]. 

Although hydrate dissociation inside the hydrate region using KHIs was observed before 

[6.1], the reason for this kind of hydrate dissociation in presence of PVCap in the CIR 

region (e.g. in step 4) was not fully explained. One of the potential reason could be the 

recrystallization of hydrate to achieve more stable crystals with a lower surface to volume 

ratio. For example, if hydrates are formed at a very low temperature (high subcooling) 

hence high growth rate, it results in creating hydrate crystals with high surface to volume 

ratio (e.g. dendrites, needles). These hydrates crystals may not be thermodynamically 

stable and need to recrystallize to the lower surface to volume ratio hydrates. However, 

the process of recrystallization needs dissociation and re-growth respectively. Therefore, 

KHIs allow dissociation but prevent formation. Consequently, net dissociation would 

result. This potential mechanism is shown in Figure 6-2. Nonetheless, this hypothesis can 

be argued as in this case, the system was left 48 hrs to equilibrate on the hydrate phase 

boundary before KHI-injection. One of the potential explanation for this argument could 

be that recrystallization process may be very slow in the absence of KHI and once KHIs 

are injected into the system, this process could be accelerated. The other potential reason 

could be disruption of pre-formed hydrates crystals in CIR by KHIs, i.e., KHI polymers 

bind to hydrate crystals and disrupt them. If it is true, disruption of hydrates crystals could 

be another mechanism of KHIs.    
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Figure 6-2. Recrystallization of hydrates in a system a) without KHIs, results in to form more stable 

crystals with a lower surface to volume ratio b) with KHIs, results in hydrate dissociation. Zigzag 

lines are KHI polymers 

 

Hydrate structure change at different subcooling could be another reason for this 

behaviour, i.e., different hydrate structures could be formed which are thermodynamically 

stable at different subcooling temperature as discussed in Chapter 3. Therefore, if one 

structure e.g. s-II methane is not stable and has to change to another stable structure e.g. 

s-I, it needs the process of recrystallization (dissociate and then regrowth). As a result, 

KHIs allow dissociation but prevent formation which leads to net dissociation. In theory, 

s-II of methane hydrates can be stable at lower temperatures/ higher pressures which other 

researchers observed [6.6 - 6.9].  

Figure 6-3 shows structural transition as one of the potential mechanism of hydrate 

dissociation. As shown in Figure 6-3, transition from metastable s-II to s-I needs 

dissociation of hydrate crystals and then reformation, and although dissociation occurs in 

both cases (a: without KHIs, b: with KHIs), reformation is prevented in the case with 

KHIs Polymers. 
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Figure 6-3. Structural transition mechanism of hydrate crystals (e.g. s-II to s-I), a) Without KHIs 

polymers: metastable s-II melt and 51262 and 512 cavities formed which result in formation of s-I. b) 

In the presence of KHI polymers: metastable s-II melt and s-I could not be formed due to KHI 

polymers. Red circles and zigzag lines are methane and KHI polymers respectively. 

 

6.3.1.2 Test-A: Extent of IDR 

Nevertheless, hydrate dissociation in the presence of KHIs could be due to any reasons, 

and it is important to find the regions where hydrate crystals could be dissociated by 

Luvicap-EG. Therefore, different cooling/heating steps were carried out for the test-A. 

Figure 6-4 to Figure 6-7 show all cooling, heating, and constant temperature curves for 

the test-A system to find the Inhibition-Dissociation Region (IDR). The results strongly 

suggest that subcooling temperature and amount of hydrates are two factors in 

determining IDR. For example, although hydrate dissociation stopped at 6.1 °C and 

53 bara in step 16 of Figure 6-5, hydrates dissociated at the same temperature but different 

amount of hydrates in step 18 in Figure 6-6. It indicates the effect of hydrates amount on 

IDR. However, steps 24 and 25 in Figure 6-7 indicate the effect of subcooling on IDR, 

i.e., hydrates formed in step 24 but hydrates dissociated in step 25 with the same amount 

of hydrates but lower subcooling.  

Figure 6-8 shows the IDR for the test-A system which is concluded from the different 

paths carried out for the test-A system. IDR suggests that if the system is anywhere inside 

this regions, hydrates could be possibly dissociated using KHIs e.g. step 4 in Figure 6-1. 

On the other hand, if the system is out of IDR, hydrates form with different growth rates, 

depending on subcooling temperature and pressure.  

Although hydrates could dissociate inside IDR, it is notable that, it does not guarantee 

that hydrate formation path cannot cross the green zone and go through IDR, e.g. hydrate 
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formation path of step 26 as shown in Figure 6-8. Actually, hydrate formation rate of 

step 26 was very high (points were recorded every 5 minutes), so hydrates formation 

continued even inside IDR. It may give a clue that if hydrate formation rate is high, KHI 

polymers do not have enough time to bind to the hydrate crystals to inhibit further hydrate 

formation. On the other hand, hydrates formation of step 27 in Figure 6-8 stopped near 

the boundary of IDR, i.e., hydrate formation rate of step 27 was very low, so KHI 

polymers could bind to the hydrate crystals, hence hydrate formation stopped after 24 

hours. Therefore, hydrate formation rate could affect the ability of KHIs in terms of 

inhibition, i.e., this would imply that the IDR is not fixed if it is affected by rate which is 

in turn affected by e.g. mixing. In addition, this IDR only applies to a fixed composition 

system. 

In addition to IDR region, there is another region with a phase boundary of 1.1 °C 

subcooling temperature from s-I methane phase boundary that hydrate crystals can 

dissociate very slow inside this region, as shown in Figure 6-8. 

 

 

 
Figure 6-4. Continuation plot of PT cycle for post-hydrate formation Luvicap-EG injection Test-A. 
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Figure 6-5. Continuation plot of PT cycle for post-hydrate formation Luvicap-EG injection Test-A. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-6. Continuation plot of PT cycle for post-hydrate formation Luvicap-EG injection Test-A. 
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Figure 6-7. Continuation plot of PT cycle for post-hydrate formation Luvicap-EG injection Test-A. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-8. Inhibition-Dissociation Region (IDR) for post-hydrate formation Luvicap-EG (PVCap) 

injection Test-A system. 
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6.3.1.3 Test-B 

Further investigation on this topic has been done in Test-B. The system for Test-B is as 

same as Test-A (same pressure / temperature condition and water cut) but in a different 

cell. The main purpose of Test-B is to confirm the repeatability of Test-A. Figure 6-9 

shows pressure-temperature plot for the methane system inside the thermodynamically 

hydrate stability region with identified various CGI regions for the 0.5 mass% PVCap + 

methane system.  

Similar to Test-A, the methane system without KHIs was cooled down to ~ 2.5 °C to form 

hydrate as much as possible. In the Test-B, as shown in Figure 6-9, the first cooling curve 

(light blue curve) crossed the hydrate phase boundary of s-II methane as predicted by 

HydraFLASH, suggesting the possibility of nucleation s-II methane hydrate. The system 

was left for ~65 hrs and then fast heated to 11.7 °C to dissociate most of the hydrates, but 

retaining ~6% of water converted to hydrates, similar to Test-A. The system was left at 

this condition for ~46 hrs (No. 2). The reason for leaving the Test-B system for a longer 

time at these two conditions (No. 1 and No. 2) compared to Test-A is to allow the system 

to generate hydrate recrystallization, as discussed in the previous section.  

 

Figure 6-9. Plot of complete PT cycle for the post-hydrate formation Luvicap-EG (PVCap) injection 

Test-B. See text for description. Inj. = KHI injection condition. RS = Restart. Green line (5.2 °C 

subcooling) is the standard extent of the CIR for the concentration of KHI injected for methane-

water [6.1]. 
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Similar to Test-A, the motor stirrer was shut off (No. 3) and the system was cooled down 

to 9.5 °C (~2 °C subcooling temperature) inside the hydrate stability zone and then the 

Luvicap-EG was injected with the similar procedure as discussed. At this point, the stirrer 

motor was started. 

As can be seen in Figure 6-9, the injected Luvicap-EG prevented the hydrate formation 

confirming CIR conditions. In contrast to Test-A, although the system was left for 

~ 140 hrs (No. 4), no hydrate dissociation was observed. As shown in Figure 6-9, the 

temperature was changed to 8 °C (No. 5) and then 10.5 °C (No. 6) and left for ~ 100 hrs 

and ~ 24 hrs respectively, to explore the possibility of hydrates formation / dissociation. 

Despite this, neither hydrate formation nor hydrate dissociation was observed and the 

fraction of hydrate remained constant. 

Similar to Test-A, the Test-B system was cooled at the standard cooling rate of 1.0 °C/hr 

to investigate the CGI regions (No. 7). The CIR, SGR (M) and RGR extents found for 

Test-B were exactly as expected for 0.5 % PVCap in methane system indicating the 

preserving CGI regions for KHIs systems even though KHIs are injected after hydrate 

formation (pre-formed hydrates system).  

Although the reasons for different behaviours seen between Test-A and Test-B in terms 

of hydrates dissociation inside the hydrate stability zone in the presence of KHIs are not 

very clear, there are two potential reasons for these different behaviours as discussed in 

the following. 

The first potential reason could be due to recrystallization. As discussed, if the 

recrystallization is needed to reduce the surface to volume ratio of hydrate crystals, the 

net dissociation of hydrates would be expected, i.e., recrystallization needs dissociation 

and then re-growth, meanwhile KHIs allow the dissociation but prevent the formation. 

As mentioned, Test-B was left for a longer time (over twice) compared to Test-A in steps 

No.1 and No.2. Therefore, if this abnormal hydrate dissociation is due to recrystallization, 

it suggests that the recrystallization process in Test-B was completed before Luvicap-EG 

injection (dissociation was not observed) but was not completed for Test-A (dissociation 

was observed).  
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The second potential reason is that more than one hydrate structure could be nucleated 

and formed in the system (in this case s-I and s-II methane) and these hydrate structures 

are stable at different conditions. If one structure is metastable at the conditions of KHI 

injection, this metastable structure should change to a stable structure. This structure 

change needs dissociation and re-growth. Meanwhile, the KHIs allow dissociation but 

prevent formation. As a result, the net dissociation of hydrates would be expected. 

However, if all hydrate structures are stable under the conditions of KHIs injection, the 

dissociation of hydrates would not be expected even though KHIs prevent growth. If the 

second reason was the case, it means that when Luvicap-EG was injected all hydrate 

structures in test-B were stable or could not convert to another structure (but it was not 

the case for Test-A).  

Although the first cooling step in Test-B crossed the s-II methane phase boundary (but 

did not cross in Test-A), both Test-A and Test-B equilibrated on the s-I phase boundary 

at the end of the first cooling step. This suggests any s-II methane hydrates initially 

formed should convert to s-I, i.e., evidence in the literature suggests the conversion of 

initial formed s-II methane to s-I when the condition is reached to s-I methane phase 

boundary [6.10] [6.11]. Therefore, it could be concluded that all hydrates in step No. 3 in 

both Test­A and test-B were s-I methane hydrates, so when Luvicap-EG was injected, all 

methane hydrates were s-I in both cases. As hydrate dissociation was observed in Test­A, 

s-II methane should have nucleated when Luvicap-EG was injected in Test-A. In contrast 

to Test-A, s-II methane should not have nucleated in Test-B. As a result, if s-II methane 

at Luvicap-EG injection condition is a stable phase, the net dissociation would be 

expected in Test-A (transition from s-I to s-II is required in Test-A, meanwhile PVCap 

allows dissociation of s-I but prevents formation of s-II). In contrast in Test-B, because 

the s-II was not nucleated, the s-I methane hydrate was the only stable phase, and so 

PVCap could prevent formation not dissociation. 

This theory requires that s-II methane hydrate should be a stable phase (not a metastable). 

However, this work in this section and some evidence as discussed in Chapter 3 show 

that s-II methane hydrate should be a stable phase at some pressure-temperature 

conditions.   
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6.3.2 Hydrate Dissociation Using Luvicap Bio 

6.3.2.1 In Natural Gas System 

To assess anomalous dissociation of hydrate in the presence of Luvicap Bio, work 

progressed onto the 0.25 mass% Luvicap Bio in the natural gas system. Figure 6-10 

shows experimental cooling / heating curve data for the 0.25 mass% Luvicap Bio aqueous 

in the natural gas system. To determine the CGI regions (see Section 1.4.4.2), the system 

was initially cooled down rapidly to form a large fraction of hydrates at high subcooling. 

Temperature was then increased to outside the hydrate region, allowing some dissociation 

at a constant temperature. System was subsequently cooled slowly again (1 °C/hour) into 

the hydrate stability zone, then stepped cooled (1 °C / 24 hours). As shown in Figure 6-10, 

the CIR extent for this system is 8.5 °C subcooling temperature form s-II phase boundary.  

The abnormal hydrate dissociation using Luvicap Bio was investigated at two 

subcoolings; 3.5 °C and 7 °C.  As shown in Figure 6-10, the green data points definitely 

confirm the ability of Luvicap Bio to induce hydrate dissociation in the CIR. In addition, 

the results show that hydrate dissociation rate using Luvicap Bio in the CIR decreases as 

subcooling temperature increases, i.e., while 30 psi (~ 2.1 bar) increased over 121 hours 

at 3.5 °C subcooling, it took 196 hours to increase 20 psi (~ 1.4 bar) at 7 °C subcooling.  

 

Figure 6-10. PT plot of cooling/heating curve data for the 0.25 mass% Luvicap Bio with natural gas 

system. The green line (8.5 °C subcooling) is the standard extent of CGI CIR.  
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6.3.2.2 In Methane system 

Another test with the different procedure (SIR run) was carried out in Luvicap Bio + 

methane system to clarify the behavior of KHIs in terms of hydrate dissociation inside 

the hydrate stability zone. A number of different tests were carried out to assess the 

performance of Luvicap Bio, including SIR type test (see Section 3.3.2). When doing SIR 

type tests for Luvicap Bio in the methane system, a very abnormal and new phenomenon 

was noticed which was 'Self Induced Dissociation’. This 'Self Induced Dissociation’ 

phenomenon for Luvicap Bio in the methane system is described here. 

In this test, 0.5 mass% Luvicap Bio in the aqueous phase was loaded to the methane 

system at ~100 bara and 20 °C. The system was cooled to a high subcooling temperature 

to form hydrates and heated up at or close to the phase boundary to dissociate most of the 

hydrates, but allowing to have a small %hydrate in the system (less than 1%) or have a 

hydrate memory (seeded system). Then, in contrast to previous tests, Shut-in / Restart 

(SIR) hydrate growth rate was carried out. Based on the SIR procedure, the stirrer motor 

was shut off and the seeded system was cooled at a set subcooling temperature; the lack 

of mixing preventing any measurable hydrate growth during cooling. The mixing was 

immediately restarted allowing hydrates to form. The SIR run, as shown in Figure 6-11, 

was carried out for Luvicap Bio + methane system at different temperatures, e.g. 7.5, 5, 

and 3 °C. 

 
Figure 6-11. PT data for multiple growth rate measurement runs at different subcoolings for the 

70:30 water to gas volume ratio, 0.5 mass% Luvicap Bio + methane system. Points are every 5 

minutes. 

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14

P
/ 

b
a

r

T / °C

dissociation stop
s-II s-I



 

188 

As it was expected, no hydrates formed in the complete inhibition region (CIR) as shown 

in Figure 6-11, i.e., the CIR extent is 3 °C subcooling temperature for 0.5 mass% 

Luvicap Bio + methane system. At those subcooling temperatures higher than the CIR 

extent, hydrate can form at different growth rates. As shown in Figure 6-11, at these three 

SIR runs, hydrate started to form after restarting the mixing and the system tried to reach 

the s-I methane phase boundary, i.e., there was no limitation for hydrate formation as 

there was enough water and no blockage was occurred in the system during the test. 

Despite this, after a long period of time, hydrate started to dissociate in all three SIR runs. 

For example, for SIR run at 7.5 °C, hydrate started to dissociate after ~100 hrs. This 

hydrate dissociation in the presence of Bio KHI inside the hydrate region after a long 

period of time is abnormal. 

In addition, results showed that this kind of hydrate dissociation took a long time 

indicating a very slow process of hydrate dissociation using Luvicap Bio. Figure 6-12 and 

Figure 6-13 show the plot of pressure and temperature as a function of time for SIR runs 

initiated at 7.5 and 3 °C respectively. As shown in Figure 6-12, hydrate formation stopped 

after 75 hours and stabilized for 25 hours, i.e., at this condition 9% water was converted 

to hydrates. It seems that during this 25 hours, Luvicap Bio managed to come close to 

hydrate/water interface or even to connect the hydrate cavities. After this period, hydrates 

suddenly started to dissociate which is very abnormal, i.e., this is very abnormal because 

while nothing has changed, hydrate grew and then dissociated itself. During 350 hours, 

4% hydrate dissociated which would constitute 45% hydrate reduction in the system. 

Finally, the system pressure was approximately constant with little a bit oscillation in 

pressure, showing a very little hydrate dissociation and reformation in the system.   

This hydrate dissociation and reformation in the presence of KHIs is more obvious at 

3 °C. As shown in Figure 6-13, increasing/decreasing of pressure at a constant 

temperature indicates hydrate formation/dissociation suggesting KHIs polymers 

sometimes could overcome to the hydrate cavities and dissociate them and sometimes fail 

to inhibit hydrate formation. Although this behaviour of KHIs is unclear and needs more 

investigation, some potential reasons and explanation can describe this abnormal hydrate 

dissociation and reformation. In the following, it is described the potential reasons for this 

behaviour.   
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Figure 6-12. Plot of pressure and temperature versus time for 0.5 mass Luvicap Bio + methane run 

initiated at 7.5 °C subcooling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-13. Plot of pressure and temperature versus time for 0.5 mass Luvicap Bio + methane run 

initiated at 3.0 °C subcooling. 
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As discussed, the formation of s-II methane can be a potential reason for hydrate 

dissociation using KHIs. In this experiment, if s-II methane hydrate was formed as a 

stable phase and became unstable at lower pressure (as pressure decreased due to hydrate 

formation), s-II methane hydrate should have dissociated and converted to s-I. KHI 

polymers allow dissociation of s-II methane but prevent formation of s-I methane and this 

would result in hydrate dissociation and pressure increase in the system. Therefore, 

different hydrate structures formation and their stability/instability at different 

pressure/temperature condition in the system with KHIs can result in hydrate dissociation 

inside hydrate stability region. 

The coexisting of s-I and s-II methane hydrates at conditions of 30 to 90 bar and 1.5 to 

12 °C is reported by Schicks and Ripmeester (2004) [6.10]. However, they emphasized 

that the s-II methane hydrates were metastable and finally converted to s-I (the condition 

for this transition is not mentioned in this work). Nevertheless, there was a potential for 

formation of s-II methane hydrate at the initial pressure drop of SIR run which could be 

even more stable than s-I. At the same time, the system could have s-I methane hydrates 

which formed initially and continued to grow. As pressure reduced due to hydrate 

formation, the system exited the s-II methane hydrate stable region. Therefore, although 

s-II hydrate formation stopped, s-I continued to grow and the system entered into the s-I 

stable region. Consequently, s-I became more stable than s-II and s-II tended to transition 

to s-I (needs dissociation and then re-growth). In addition, because the subcooling 

temperature reduced due to pressure drop, KHI could inhibit further hydrate formation. 

As a result, KHIs prevented s-I formation but allowed dissociation of s-II methane, 

resulted in net dissociation. This dissociation should have continued to reach to either 

phase boundary of the stable region of s-II or end of the CIR or IDR region as discussed 

before.  

Kvamme et al. showed using molecular dynamic simulations that kinetic hydrate 

inhibitors like PVCap could dissociate hydrates [6.12]. They indicated the hydrate 

dissociation and reformation in the presence of KHIs. They showed that the PVCap 

monomer could make a hydrogen bond with the hydrate at the water-hydrate interface 

and dissociate the hydrate in two steps; slow dissociation of half cages and then rapid 

dissolution of the other side of hydrate crystal. Therefore, the finding of molecular 

dynamic simulation and the results of this experimental work strongly suggest the ability 

of KHIs monomer in hydrate dissociation and destruction of hydrate cavities.   
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Another point is that, as more hydrate cavities are dissociated by KHIs, more gas is 

released which results in increasing methane content in the aqueous phase and eventually 

forming a methane bubble. This methane bubble is attractive for surfactant such as PVP 

[6.12]. This can result in withdrawal of KHIs polymer and reduce the free KHI monomer 

dosage. Consequently, this reduction of available KHI monomers can cause the system 

to fail in terms of hydrate formation inhibition. Therefore, as shown in Figure 6-13, 

reformation of hydrate at some conditions could be due to limited access to free KHI 

monomers.  
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6.4 Summary  

The results of this work, investigating the ability of KHIs (Luvicap-EG) to inhibit 

hydrates pre-formed in uninhibited systems and ability of KHIs (Luvicap-EG and 

Luvicap Bio) to dissociate hydrates, show that:  

 PVCap (Luvicap-EG) can apparently inhibit hydrates pre-formed in KHI-free 

systems, the CIR is preserved even though PVCap is injected into the system with 

pre-formed hydrates   

 The injection of PVCap (Luvicap-EG) caused either complete growth inhibition 

or hydrate dissociation in CIR region  

 Luvicap Bio caused hydrate dissociation or hydrate 'Self Induced Dissociation' in 

methane system during SIR runs 

 One of the reasons for the behavior seen for Luvicap-EG and Luvicap Bio in terms 

of hydrate dissociation can be speculated as formation of s-I and s-II hydrates, 

with one of these being metastable under some conditions. If the hydrate phase in 

the system is unstable in some conditions and have to transit to the more stable 

hydrate structure, it needs melting and then re-growth. Meanwhile, KHIs allow 

dissociation but prevent formation, results in net dissociation 

 The other potential reason for hydrate dissociation in the presence of KHI 

polymers is recrystallization to achieve more stable crystals with a lower surface 

to volume ratio 

 As discussed KHIs monomers can bind to hydrate crystals by hydrogen bonding 

and destruct the hydrates cavities. Nevertheless, the stability and meta-stability of 

hydrates structures (e.g. s-I and s-II of methane hydrates) can affect the ability of 

KHIs in destruction of hydrates cavities and hydrate dissociation  

 In addition, there is a region called Inhibition-Dissociation Region (IDR) which 

induced by KHIs. In this region, KHIs could prevent hydrate formation or even 

dissociate hydrates 
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 The subcooling temperature/pressure (may suggest which hydrate structure is 

stable) and amount of hydrates (may suggest the availability of free-KHI) are the 

factors which affect in locating the Inhibition-Dissociation Region (IDR) 

 Hydrate formation rate is another factor which affects the KHIs performance, i.e., 

if hydrate growth rate is high, then a KHI with less ability would be expected as 

it doesn’t have enough time to bind to hydrate crystals to inhibit further growth, 

and vice versa, a KHI with strong ability would be expected if hydrate growth rate 

is low 

For application in the field and in oil and gas production pipeline, the findings are very 

significant with respect to the traditional use of KHIs for hydrate prevention.  The results 

of this chapter imply that if hydrates are formed before KHIs injection (pre-formed 

hydrates), KHIs can be used in the pipeline. In addition, it offers novel possibilities for 

plug removal using KHIs. Similarly, biodegradable polymer injection might present a 

means to induce the dissociation of naturally occurring gas hydrate in sediments for the 

purposes of methane gas production. 
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Chapter 7– Conclusion and Recommendations 
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7.1 Conclusions  

The main objective of this thesis is to study inhibition and dissociation of gas hydrate 

using biodegradable kinetic hydrate inhibitors and their potential combination with 

thermodynamic hydrate inhibitors. In addition to this main objective, some works have 

been carried out including investigation of hydrate growth rate/structure pattern and its 

effect on inhibition/dissociation of gas hydrates.  

In Chapter 2, the performance of three green KHIs which have been reported / are 

produced (Luvicap Bio, ECO-530, and pectin) was evaluated experimentally using 

CGI method.  As a result, Luvicap Bio shows strong Bio KHI properties, so Luvicap Bio 

was selected for further investigation for KHI in this thesis. In addition, the well-known 

PVCap was also investigated as a reference / benchmark.  

In Chapter 3, the effect of hydrate fraction tolerance on Luvicap Bio and PVCap in the 

methane systems was investigated. In was concluded that as the hydrate fraction 

increases, inhibition performance reduces for both Luvicap Bio and PVCap, as typified 

by a reduction in the crucial CIR (complete inhibition region). In addition, it was observed 

a weak inhibition region (SGR) before the ‘Semi’ CIR at higher subcooling for 

Luvicap Bio + methane system; it is a very unusual phenomenon for KHIs. It can 

probably only be explained by structural changes. It was concluded that Luvicap Bio is a 

better inhibitor for s-I hydrate than for s-II. In contrast to Luvicap Bio, PVCap is a better 

s-II hydrate inhibitor. Furthermore, the CGI test on combined 0.25% Luvicap Bio + 

0.25% PVCap with both methane and natural gas shows significant improvement of 

hydrate inhibition region compared to these polymers alone, suggesting the synergism 

effect of Luvicap Bio and PVCap; Luvicap Bio is better for s-I and PVCap is better for 

s­II. Further work associated with structure effects inhibition studies have been carried 

out to investigate hydrate growth rate regions/patterns and hydrate structure in the simple 

gas and multicomponent gas systems. The results for simple methane and ethane systems 

show clear and distinct changes in hydrate growth rates which probably correspond to the 

new hydrate phase/structure, e.g. formation of s-II hydrate in the simple methane or 

ethane systems. Moreover, exothermic heat release rates in the methane system support 

the theory of formation both s-I and s-II methane hydrate. In contrast to the methane and 

ethane system, the clear change in hydrate growth rate or exothermic heat release rate 

was not observed in simple propane system which can form only s-II due to its large 

molecular diameter. In addition, equilibrium step heating/cooling measurements in the 
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multi-component gas systems (C1 + C3 and C1 + C2 + C3) suggest the formation of 

multiple hydrate structures e.g. C3 s-II, C2 s­II, C2 s-I, and C1 s­I. These various hydrate 

structures with a sequential formation can be formed in order of decreasing stability 

(C3 s­II → C2 s-II → C2 s-I → C1 s-I).  

In Chapter 4, to see if Luvicap Bio could be used to reduce or eliminate THIs (particularly 

methanol), the performance of combined Luvicap Bio / THIs was evaluated using the 

CGI method in terms of hydrate inhibition in the natural gas systems. Methanol, ethanol, 

and MEG which are most commonly THIs used for hydrate inhibition were used to 

evaluate whether these THIs are top-up inhibitors for Luvicap Bio. Results for 0.5 mass% 

Luvicap Bio with methanol show that methanol acts as a top-up inhibitor for Luvicap Bio 

which is in contrast to the PVCap and what is generally seen for KHIs, which is unusual 

and important. Only at higher methanol concentrations, notably for 50 mass%, a 

significant reduction in CIR extent was observed. At a higher Luvicap Bio concentration, 

1.0 mass%, results show better inhibition in the system with methanol compared to the 

0.5 mass% Luvicap Bio, although this was overall fairly marginal. Generally, for both 

polymer doses, there is an increasingly negative effect of methanol at higher 

concentrations and pressures, making top-up not fully additive. Results for 

ethanol + Luvicap Bio (0.5 mass%) in the natural gas system show that there is a degree 

of negative effect of ethanol on Luvicap Bio, but  it does act reasonably well as a top-up 

inhibitor for Luvicap Bio. Further investigation on 0.5 and 1.0 mass% Luvicap Bio with 

5 to 30 mass% MEG in the natural gas systems show that MEG not only does act as a full 

top­up inhibitor for Luvicap Bio but also has a positive, synergistic effect, modestly 

extending CGI regions, including the CIR, which is the same as for other KHIs in general. 

As an important conclusion, these results strongly suggest that Bio KHIs can be used to 

reduce or eliminate THI use in production operations, offering cost savings, logistical 

benefits, and environmental benefits.  

The industry opinion is that even if KHIs are used for prevention, they cannot be used for 

remediation for e.g. cold restart. To address this industry opinion, in Chapter 5, works 

were carried out to investigate hydrate blockage removal using MEG or methanol in the 

vertical pipes. The results show that density was the key factor in hydrate blockage 

removal, so further works have been carried out to assess the effect of THI density on 

hydrate blockage removal in the vertical pipes and whether methanol/MEG mixture has 

advantages over methanol or MEG alone. The results indicate the advantages of 
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methanol/MEG mixture with a density of 1 g/cc over methanol and MEG alone, i.e., 

hydrate dissociation rate of this case is higher than the case of methanol or MEG injection 

alone. In addition, results showed that chemical injection into the blocked vertical pipes 

could change the location of the hydrate blockage. This relocation of hydrate blockage 

could be due to the hydrate reformation as a result of water generated from hydrate 

dissociation. Another reason for this relocation of hydrate blockage could be due to those 

hydrates which were detached from the hydrate plug so that could move up and block the 

system. In addition, the endothermic nature of hydrate dissociation resulted in sub-zero 

temperatures. Finally, results point out that density of inhibitor plays an important role in 

the effectiveness of hydrate blockage removal and the amount of THI required for hydrate 

blockage removal is more than what is calculated by thermodynamic modeling due to 

non-homogeneous nature of the system. 

In Chapter 6, the novel possibility of using KHIs, including Bio KHIs, to dissociate 

hydrates inside the hydrate thermodynamically stability region was investigated; 

something which would never have been considered possible before. It was found that 

both PVCap (Luvicap EG, PVCap in mono-ethylene glycol) and Luvicap Bio not only 

can prevent hydrate nucleation/growth inside the hydrate stability zone in the methane 

system but also induce abnormal hydrate dissociation inside hydrate stability region in 

both methane and natural gas systems. Two recrystallization processes are suggested as 

being the potential reason of the hydrate dissociation inside hydrate stability region: 

(1) reformation/recrystallization to achieve more stable crystals with a lower surface to 

volume ratio, i.e., to reduce surface to volume ratios of needle-like / dendritic crystals 

formed initially and (2) the transition of metastable hydrate structures (e.g. s-II) to another 

stable hydrate structures (e.g. s­I). In both cases, KHIs allow dissociation but prevent 

formation, results in net dissociation. Results for Luvicap EG + methane indicate that 

there is a region called Inhibition-Dissociation Region (IDR) which induced by KHIs. In 

this region, KHIs could prevent hydrate formation or even dissociate hydrates. As 

discussed, while KHIs are usually used for inhibition of hydrate nucleation and hydrate 

growth, there are a number of situations where hydrates can form from produced waters 

which are KHI­free. The results for Luvicap EG showed that it can apparently inhibit 

hydrates pre-formed in KHI-free systems, the CIR is preserved even though 

Luvicap EG is injected into the system with pre­formed hydrates. 
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From the results of this thesis, it can be concluded that there is a quite good Bio KHI, 

Luvicap Bio, and it can be used to reduce or remove the need for THIs. In addition, while 

THIs are still the normal and most promising option for remediation, KHIs, Bio induced, 

could present a new and novel option for hydrate plug remediation or even for gas 

production from naturally occurring hydrates in oceanic/permafrost sediments here.  
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7.2 Recommendations and Future Works  

With respect to hydrate prevention, although Luvicap Bio does seem to offer top-up green 

inhibitor for THIs (methanol, MEG, and ethanol), some other topics could be investigated 

including effect of salt with/without THIs on Luvicap Bio performance, effect of 

condensate / liquid hydrocarbons on Luvicap Bio performance, and effect of acid gases 

e.g. H2S and CO2 on Luvicap Bio performance. In addition, the performance of 

Luvicap Bio in a richer natural gas (a richer s-II forming gas) can be investigated, i.e., in 

this work, Luvicap Bio is understood as a better inhibitor for s-I hydrates, so its 

performance could be restricted to the lean natural gas.  

As discussed, as the hydrate fraction increases, the CIR subcooling extent decreases for 

both Luvicap Bio and PVCap, so it is proposed to determine polymer-hydrate 

stoichiometry for these KHIs. In addition, although it is understood that Luvicap Bio is a 

better inhibitor for s-I than for s-II and PVCap is a better s-II hydrate inhibitor, it is 

recommended to do further detailed tests for clarifying the effectiveness of PVCap and 

Luvicap Bio in s-I vs s-II hydrates systems. In addition, the results and evidence suggest 

the multiple hydrate structures formation in the multi-component natural gas systems or 

even in the simple methane and ethane system. So, in order to confirm the formation of 

various hydrate structures, it is recommended to analyze the gas composition of the 

system in different steps of hydrate formation in SIR runs using a capillary sampler.   

In addition, with respect to plug remediation, works carried out for hydrate dissociation 

using THIs in the vertical pipes show that the density of THIs plays an important role in 

the effectiveness of hydrate blockage removal. With respect to future work, it is proposed 

to investigate and find an optimum density for THIs injection into the vertical pipe in 

order to hydrate blockage removal. Moreover, it is proposed to use and investigate the 

effectiveness of combined THIs and KHIs in removing/remediation of hydrate blockage.  

With respect to Bio KHI-induced dissociation of gas hydrate, the results show that KHIs 

can offer a novel possible method for plug removal, so it is proposed to do research and 

investigate about the effectiveness of KHIs (or combined KHIs + THIs) in hydrate plug 

removal. Likewise, biodegradable polymer injection (e.g. Luvicap Bio) might present a 

means to induce the dissociation of naturally occurring gas hydrate in sediments for the 

purposes of methane gas production. So, it is highly recommended to do experiments to 

induce hydrate dissociation using KHIs in sediments.  
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Appendix A: PT plot for measurement of CGI regions of Luvicap Bio + 

THI + NG systems  

Chapter 4, as discussed, reports the effect of methanol, ethanol, and MEG on Luvicap Bio 

(biodegradable polymer) in the natural gas system. To investigate this, the crystal growth 

inhibition method (CGI) (see Section 1.4.4.2) was used and then the experimental CGI 

region data points for various systems (as listed in table 1) are reported. These CGI region 

data point which reported in Chapter 5 are determined based on cooling curves with 

different cooling rate e.g. 1 °C / 1 hour or 1 °C / 24 hours.  

In this section, pressure / temperature plots showing measured experimental points 

delineating the various crystal growth inhibition regions for all systems are reported. The 

summary of these systems with the range of pressure tested for each system are listed in 

Table A-1. In the following all plots are reported. 

However, PT plot showing measured experimental points delineating the various crystal 

growth inhibition regions for 0.5 and 1.0 mass% Luvicap alone with natural gas are 

reported in Section A.6. 

 

Table A-1. Summary of all systems used to study the performance of Luvicap Bio in the presence of 

thermodynamic hydrate inhibitors in the natural gas system using the CGI method. For example, the 

green highlighted cell indicates the system which consists of 30 mass% methanol + 0.5 mass% 

Luvicap Bio + natural gas and the CGI regions were measured for this system up to 280 bara. The 

composition of natural gas system is given in Table 4-1. 

 

 

  THI 

     

                      KHI 

 Concentration  

     mass%        

  0.5 mass% 

   Luvicap Bio 

  1.0 mass%  

   Luvicap Bio 

MeOH 

5 < 135 bara < 150 bara 

10 < 135 bara < 150 bara 

20 < 125 bara < 150 bara 

30 < 280 bara < 290 bara 

50 < 320 bara - 

EtOH 

5 < 160 bara 

- 
10 < 170 bara 

20 < 310 bara 

30 < 160 bara 

MEG 

5 < 150 bara < 150 bara 

10 < 150 bara < 150 bara 

20 < 150 bara < 150 bara 

30 < 150 bara < 150 bara 
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A.1    0.5 Mass% Luvicap Bio with Methanol in a Natural Gas System 

 

 
Figure A-1. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 5 mass% methanol aqueous with natural gas.  

 

 

 

 

 

 

 

 

 
Figure A-2. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 10 mass% methanol aqueous with natural gas.  
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Figure A-3. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 20 mass% methanol aqueous with natural gas.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A-4. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 30 mass% methanol aqueous with natural gas.  
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Figure A-5. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 50 mass% methanol aqueous with natural gas.  
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A.2   1.0 Mass% Luvicap Bio with Methanol in a Natural Gas System 

 

 

 
Figure A-6. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1 mass% Luvicap Bio / 5 mass% methanol aqueous with natural gas.  

 

 

 

 

 

 

 

 
Figure A-7. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1 mass% Luvicap Bio / 10 mass% methanol aqueous with natural gas.  

20

40

60

80

100

120

140

160

180

-5 0 5 10 15 20 25

P
/ 

b
a

r

T / °C

Cooling, with hydrate
history, rapid

Heating, stepped

Cooling, with hydrate,
1.0 °C/hr

Cooling, with hydrate,
stepped, 24 hr/step

s-I s-II

CIR

SGR

RGR
SDR

VS

10

30

50

70

90

110

130

150

170

190

-10 -5 0 5 10 15 20

P
/ 

b
a

r

T / °C

Cooling, with hydrate history,
rapid
Heating, stepped

Cooling, with hydrate, 1.0 °C/hr

Cooling, with hydrate, stepped,
24 hr/step

s-I s-II

CIR

RGR

SDR



 

206 

 
Figure A-8. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1 mass% Luvicap Bio / 20 mass% methanol aqueous with natural gas.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A-9. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1 mass% Luvicap Bio / 30 mass% methanol aqueous with natural gas.  
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A.3   0.5 Mass% Luvicap Bio with Ethanol in a Natural Gas system 

 

 
Figure A-10. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 5 mass% ethanol aqueous with natural gas.  

 

 

 

 

 

 

 

 

 
Figure A-11. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 10 mass% ethanol aqueous with natural gas.  
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Figure A-12. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 20 mass% ethanol aqueous with natural gas.  

 

 

 

 

 

 

 

 

 

 

 
Figure A-13. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 30 mass% ethanol aqueous with natural gas.  
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A.4   0.5 Mass% Luvicap Bio with MEG in a Natural Gas system 

 

 
Figure A-14. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 5 mass% MEG aqueous with natural gas.  

 

 

 

 

 

 

 

 

 
Figure A-15. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 10 mass% MEG aqueous with natural gas.  
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Figure A-16. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 20 mass% MEG aqueous with natural gas.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A-17. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio / 30 mass% MEG aqueous with natural gas.  
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A.5   1.0 Mass% Luvicap Bio with MEG in a Natural Gas system 

 

 
Figure A-18. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1.0 mass% Luvicap Bio / 5 mass% MEG aqueous with natural gas.  

 

 

 

 

 

 

 

 

 
Figure A-19. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1.0 mass% Luvicap Bio / 10 mass% MEG aqueous with natural gas.  
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Figure A-20. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1.0 mass% Luvicap Bio / 20 mass% MEG aqueous with natural gas.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure A-21. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1.0 mass% Luvicap Bio / 30 mass% MEG aqueous with natural gas.  
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A.6   0.5 and 1.0 Mass% Luvicap Bio alone in a Natural Gas system 

 
Figure A-22. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 0.5 mass% Luvicap Bio with natural gas. 

 

 

 

 

 

 

 

 

 
 

Figure A-23. PT plot showing measured experimental points delineating the various crystal growth 

inhibition regions for 1.0 mass% Luvicap Bio with natural gas. 

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16 18 20 22

P
/ 

b
a

r

T / °C

Cooling, with hydrate
history, rapid
Heating, stepped

Cooling, with hydrate,
1.0 °C/hr
Cooling, with hydrate,
stepped, 24 hr/step

s-I s-II

CIR

SGR
(M)

RGR

SGR
(VS)

20

40

60

80

100

120

140

160

180

200

-2 0 2 4 6 8 10 12 14 16 18 20 22

P
/ 

b
a

r

T / °C

Cooling, with hydrate
history, rapid

Heating, stepped

Cooling, with hydrate,
1.0 °C/hr

Cooling, with hydrate,
stepped, 24 hr/step

s-I s-II

CIR

SGR

RGR

M

Ice



 

214 

Appendix B: Hydrate Calculation 

The estimated percentage of water converted to hydrate (WCH %, defined as Equation 1) 

could be calculated based on pressure drop in the system (∆𝑃) and the hydration number 

(𝐻𝑛), i.e., hydration number is defined as number of water molecules per gas molecule at 

a given P&T conditions, e.g. the hydration number is around 6 for methane hydrate s-I. 

The number of gas moles consumed due to hydrate formation, ∆𝑛𝑔𝑎𝑠, is calculated using 

Equation 2 which is derived based on the gas law at constant temperature and volume.  

WCH % =
∆𝑛𝑤𝑎𝑡𝑒𝑟

𝑛𝑤𝑎𝑡𝑒𝑟
                                                                                                                          (1) 

∆𝑛𝑔𝑎𝑠 =
∆𝑃

𝑃
𝑛𝑔𝑎𝑠                                                                                                                            (2) 

Here, 𝑛𝑔𝑎𝑠 is the number of gas moles in the gas phase before hydrate formation and 𝑃 is 

the pressure of the system without hydrates at the desired temperature. If 𝑓𝑤 is defined as 

water mole fraction, Equation 2 could be rewritten as Equation 4. As a result, the number 

of water moles used in hydrates (∆𝑛𝑤𝑎𝑡𝑒𝑟) is calculated using Equation 5. 

𝑓𝑤 =
𝑛𝑤𝑎𝑡𝑒𝑟

𝑛𝑔𝑎𝑠+𝑛𝑤𝑎𝑡𝑒𝑟
=

𝑛𝑤𝑎𝑡𝑒𝑟

𝑛𝑡𝑜𝑡
                                                                                                             (3) 

∆𝑛𝑔𝑎𝑠 =
∆𝑃

𝑃
(1 − 𝑓𝑤)𝑛𝑡𝑜𝑡                                                                                                               (4) 

∆𝑛𝑤𝑎𝑡𝑒𝑟 = 𝐻𝑛
∆𝑃

𝑃
(1 − 𝑓𝑤)𝑛𝑡𝑜𝑡                                                                                                      (5) 

Therefore, substitution of Equations (5) and (3) in Equation (1) results in Equation (5) 

which could be applied in calculation of WCH %.  

WCH % = 𝐻𝑛
∆𝑃

𝑃

1−𝑓𝑤

𝑓𝑤
                                                                                                                    (6) 

In this work, the hydration number is assumed constant and equal to 6 for simplicity. 
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