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19 Abstract: Neurofilaments (NFs) are structural proteins of neurons 

20 that are released in significant quantities in the cerebrospinal fluid 

21 and blood as a result of neuronal degeneration or axonal damage. 

22 Therefore, NFs have potential as biomarkers for neurologic 

23 disorders. Neural degeneration increases with age and has the 

24 potential to confound the utility of NFs as biomarkers in the 

25 diagnosis of neurologic disorders. We investigated this relationship 

26 in horses with and without neurological diagnosis. While controlling 

27 for horse type (draft, pleasure, and racing), we evaluated the 

28 relationship between serum heavy-chain phosphorylated 

29 neurofilaments (pNF-H) and age, sex, and serum vitamin E 

30 concentrations. Serum pNF-H concentrations increased by 0.002 

31 ng/mL for each year increase in age. There were significant 

32 differences in the serum pNF-H concentration among the type of 

33 activity performed by the horse. The highest serum pNF-H 

34 concentration was found in horses performing heavy work activity 

35 (racehorse) and with lower serum pNF-H concentration found 

36 among light (pleasure riding) and moderate (draft) activity. There 

37 was no significant association between the pNF-H concentration and 

38 sex or vitamin E concentration. Serum pNF-H concentration was 

39 elevated among horses afflicted with EMND and EPM when 

40 compared with control horses without evidence of neurologic 

41 disorders. Accordingly, serum pNF-H concentration can serve as a 
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42 useful biomarker to complement the existing diagnostic work-up of 

43 horses suspected of having EPM or EMND.

44

45 Key words: Biomarker; equine motor neuron disease; equine 

46 protozoal myeloencephalitis; neurofilaments.
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66 1. Introduction

67 Current diagnostic methods used to diagnose equine 

68 neurologic disorders such as equine protozoal myeloencephalitis 

69 (EPM) and equine motor neuron disease (EMND) are based heavily 

70 on clinical examinations and invasive laboratory tests, i.e., tissue 

71 biopsies and cerebrospinal centesis, and definitive diagnosis can 

72 only be determined by autopsy (Dubey et al., 2001; Reed et al., 

73 2013). 

74 Neurofilaments (NFs) are structural proteins of neurons that 

75 are densely located in axons of the neurons (Boylan et al., 2009; 

76 Gresle et al., 2014) and mainly consist of 3 subclasses: light (NF-L), 

77 medium (NF-M), and heavy (NF-H) (Gresle et al. 2014).  These 

78 proteins are released into the cerebrospinal fluid (CSF) and blood as 

79 a result of neuronal degeneration or axonal damage (Inoue et al., 

80 2017; Petzold, 2005). Neurofilaments have been demonstrated to be 

81 stable in blood, serum, or CSF over time, and no effect has been 

82 detected in pNF-H concentrations when freezing CSF or serum 

83 (Gendron et al., 2017; Hamishehkar et al., 2016). The fact that NFs 

84 have a relatively long half-life makes the concentration of NFs in 

85 serum a possible biomarker for neurologic diseases or neuronal 

86 disintegration (Millecamps et al., 2007; Yuan et al., 2009). 

87 Our studies and those of others have confirmed elevated 

88 concentrations of neurofilaments in animals affected with several 
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89 pathologic conditions or trauma (Intan-Shameha et al., 2017; 

90 Nishida et al., 2014). Little is known about the changes in the 

91 concentrations of NFs during the normal aging process. Our 

92 suspicion is that the concentrations of the phosphorylated NFheavy 

93 (pNF-H) in the serum increases with age as a result of progressive 

94 neuronal loss and axonal disintegration. The literature on the 

95 relationship between age and neuronal degeneration is conflicting. 

96 Although one study in humans reported that the serum concentration 

97 of phosphorylated NF-light (pNF-L) increases with age (Burianová 

98 et al., 2015); studies on the relationship between the serum 

99 concentration of NFs and age are lacking in horses. A study in rats 

100 demonstrated non-significant changes in the number of neurons with 

101 age Vågberg et al., 2015). If the serum concentration of NFs 

102 increases significantly with age in the horse, this finding has the 

103 potential to confound the utility of NFs as a test for equine 

104 neurologic disorders. Furthermore, in a previous study we reported 

105 that horses afflicted with EPM had significantly increased 

106 concentrations of pNF-H compared to healthy horses. Since we did 

107 not account for the age of the animals in that report (Intan-Shameha 

108 et al. 2017), we conducted this study to determine if there was a 

109 relationship between pNF-H concentrations and age. 

110 Another factor that has the potential to influence the 

111 concentrations of NFs in animals is treatment with vitamin E. 
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112 Vitamin E is commonly administered to animals and humans for 

113 disease prevention or treatment of neurodegenerative diseases, 

114 including EMND and motor neuron diseases in other species 

115 (Brown et al., 2017; Finno et al., 2017; Mohammed Dr. et al., 2012; 

116 Ng et al., 2017). The impact of serum concentrations of vitamin E 

117 on the concentration of NFs is not clear and has a potential to 

118 confound the utility of this biomarker as a diagnostic parameter for 

119 neurologic disorders. 

120 In this study we aim to investigate the association between 

121 pNF-H and the age of the horse, while controlling for other possible 

122 confounding factors, (effect of serum levels of vitamin E, level of 

123 activity of the horse, and sex) in order to evaluate the potential use 

124 of these proteins as biomarkers for 2 common neurologic disorders 

125 of the horse: EMND and EPM. 

126 2. Materials and methods

127 2.1. Study design, target and study population

128 This cross-sectional study included horses residing in New 

129 York State. The study population included healthy horses and horses 

130 with a confirmed neurologic diagnosis of EMND or EPM. The case 

131 horses were either admitted to the Cornell University Hospital for 

132 Animals (CUHA) or had blood samples submitted to the Animal 

133 Health Diagnostic Center (AHDC). Control horses included horses 

134 admitted to CUHA for evaluation and treatment of non-neurologic 
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135 conditions or horses without reported neurologic clinical signs 

136 whose blood was submitted to the AHDC for determination of 

137 Vitamin E levels.  Horses with or without neurologic disorders were 

138 categorized into 3 activity categories: light (pleasure or trail riding 

139 horses), moderate (working draft horses or low-level event horses) 

140 and heavy (Thoroughbred race horses).

141 2.2 Inclusion criteria 

142 The inclusion criteria for enrollment of case horses with 

143 neurological diseases was a definitive diagnosis of EMND or EPM 

144 (based on necropsy findings that included histopathological 

145 examination of the brain and spinal cord and vitamin E values in 

146 their medical record. All horses without a neurologic disorder (lack 

147 of reporting of neurologic signs) were included as healthy horses. 

148 2.3 Determination of serum pNF-H concentration  

149 The pNF-H assay was conducted using the pNF-H sandwich 

150 enzyme-linked immunosorbent assay (ELISA) kit (ELISA, EMD 

151 Millipore, Billerica, MA). The protocol used chicken polyclonal 

152 antibodies generated against pNF-H, which were pre-coated onto a 

153 96–well plate, later rabbit polyclonal antibodies and a goat anti-

154 rabbit alkaline phosphatase conjugate were used to detect the 

155 captured pNF-H from the samples.

156 The pNF-H ELISA kit uses antibodies specific for pNF-H 

157 from mammalian species, additional ELISA protocol details are 

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392



158 described previously (Anderson et al., 2008; Intan-Shameha et al., 

159 2017). Frozen serum samples from each horse were thawed prior to 

160 assay. All samples were tested in duplicate and the assay was 

161 performed according to the manufacturer’s protocol. The person 

162 who performed the assays was completely blinded to the clinical 

163 information. The mean absorbance of the pNF-H standard, 

164 measured as optical density (OD), was plotted on a logarithmic 

165 scale. As a result, a standard curve was created and was used to 

166 calculate the pNF-H concentration of each sample (range of 

167 detection was 0.0293 ng/mL to 15 ng/mL), since duplicates were 

168 used for every sample, an average value of each sample was 

169 calculated. 

170 2.4 Determination of vitamin E concentration

171 Serum was harvested from the horse whole blood samples, 

172 and 1 mL of serum was added into a sterile polypropylene 

173 microtubes containing an antioxidant mixture, consisting of 100 mL 

174 of an ethanol mixture of propyl gallate and EDTA. The samples 

175 were then frozen at –75°C until testing. Serum concentrations of α-

176 tocopherol were measured at the AHDC at Cornell University by 

177 means of high-performance liquid-liquid partition chromatography. 

178 Analytes of interest were detected by spectrophotometry (molecular 

179 fluorescence emission at 330 nm for 7.05 minutes) with a tandem 

180 arrangement of a variable-wavelength UV detector and a 
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181 spectrofluorometric detector. The concentration of vitamin E was 

182 reported as µg/ml. Further details on method are delineated 

183 previously (Mohammed et al., 2007).  

184 2.5 Data collection and analysis

185 Data on the age, sex and type of activity (draft, pleasure, or 

186 racing; which recoded into light, moderate, or heavy) of the horse 

187 was acquired from the CUHA horses’ medical records or collected 

188 by personal interviews with the horse’s owner/trainer. 

189 The data was initially reported using frequency distribution 

190 and graphics, and the measure of central tendency (mean or median) 

191 and dispersion (standard deviation and range) were calculated. The 

192 bivariate relationship between each of the factors/variables (age, 

193 vitamin E concentrations and type of horse activity) and the 

194 concentration of pNF-H was assessed using regression analysis or 

195 analysis of variance for categorical variables. In the final analysis, 

196 factors that were significantly associated with the concentrations of 

197 pNF-H in the bivariate analysis were evaluated jointly using the 

198 general linear model to assess the significance of association of each 

199 factor while simultaneously controlling for other factors. The 

200 probability of neurologic diseases (EMND or EPM) was calculated 

201 from the logistic regression analysis equation and the dependent 

202 variable was whether the horse had neurologic disorder or not. Only 

203 horses with vitamin E values were included in this analysis.  All 
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204 statistical analyses were performed using the SPSS v.24 (IBM SPSS 

205 Statistical Software, White Plain, NY) and statistical significance 

206 differences were considered a type I error (p-value) of 0.05. 

207 3.  Results

208 3.1 pNF-H as a function of age, sex and activity

209 A total of 169 horses without clinical signs of neurologic 

210 disease met the inclusion criteria and were enrolled for this part of 

211 the study. Table 1 shows the distribution of the pNF-H horse serum 

212 concentrations by the type of activity, sex and age of the horse. 

213 There was significant variation in the serum neurofilament 

214 concentrations among horses with different levels of work activity 

215 (light, moderate, and heavy).Those horses with heavy activity  

216 (Thoroughbred race horses), had significantly higher serum levels 

217 of neurofilaments compared to either horses with moderate work 

218 activity (working draft horses or low-level event horses) or light 

219 work activity (pleasure horses or trail horses)  (Table 1). There was 

220 no significant difference in the serum concentration of 

221 neurofilaments among horses in our study population based upon 

222 the sex of the horse. 

223 The average age of the healthy horses in our study was 11.65 

224 years (SD = 6.8 years) (Table 1). There was a tendency for the 

225 concentrations of pNF-H to increase with the age of the horse 

226 (Figure 1). The initial correlation (bivariate) between age and the 
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227 level of neurofilaments was evaluated using a regression analysis 

228 with different transformation (linear and second order) to ensure 

229 capturing any variability in age. Although there was significant 

230 positive linear relationship between the age of the horses in this 

231 study and the concentrations of the pNF-H; the concentrations of 

232 pNF-H increased by only 0.002 ng/ml for each year of increase in 

233 age.  

234 3.2 pNF-H concentration and vitamin E concentration 

235 Serum vitamin E concentrations were obtained from 93 

236 healthy horses.  The average serum vitamin E concentration in 

237 healthy horses was 2.56 µg/ml (Table 1). There was no significant 

238 correlation between the concentration of vitamin E and the 

239 concentration of pNF-H in our study (Figure 2) and in the bivariate 

240 analysis.  

241 3.3 Multivariate Analysis 

242 Table 2 shows the results of the multivariate analysis for the 

243 relationship between the age of the horses and the serum 

244 concentrations of pNF-H when controlled for the activity of the 

245 horses. The concentrations of neurofilaments increased by 0.002 

246 ng/ml for each year of increase in age of the horse (regression 

247 coefficient). That means for each year increase in age of the horse 

248 the concentration of pNF-H increases by 0.002 What that means
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249 There was a significant association between the type of 

250 activity of the horse and the concentrations of pNF-H. The adjusted 

251 mean pNF-H values for the reference category of the activity was 0 

252 ng/ml, horses with heavy activity was 0.359 ng/ml which was 

253 significantly higher than that for moderate (0.225 ng/mL) or light 

254 (0.0246 ng/mL) activity horses (Table 2). 

255 3.4 pNF-H and neurologic disorders

256 We investigated the association between serum pNF-H 

257 concentration and the likelihood of neurologic disorders using a 

258 logistic regression analysis. A total of 61 horses with confirmed 

259 diagnosis of EMND (23 horses) or EPM (38 horses) were identified. 

260 The probability of neurologic disorder given the concentrations of 

261 neurofilaments was calculated using the logistic regression analysis 

262 as follows: .  Where P 𝑃(𝑁𝑒𝑢𝑟𝑜𝑙𝑜𝑔 𝑖𝑐) =  
1

1 +  (exp ‒ (𝛼 + 𝛽(𝑝𝑁𝐹𝐻)))

263 (Neurologic) is the probability of neurologic disorders (EMND or 

264 EPM), α is the constant of the logistic regression, and β is the 

265 regression coefficient for the changes in the probability of pNF-H 

266 per unit change in the pNF-H concentrations. In the analysis the 

267 constant value was -3.786 and the regression coefficient was 2.977. 

268 Figure 3 shows the relationship between the probability of 

269 neurologic disorder and the pNF-H serum values. The probability of 

270 a neurologic disorder reaches 0.9 as the concentrations of pNF-H 

271 reaches 2.0 ng/ml (Figure 3).
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272 4. Discussion

273 The long-term objective of our research is to investigate the 

274 usefulness of pNF-H as a diagnostic parameter for the presence and 

275 severity of neurologic disorders in the horse. The use of pNF-H as a 

276 diagnostic marker for neurologic disorders, i.e., amyotrophic lateral 

277 sclerosis (ALS), or brain injuries in humans, has proven to be useful 

278 (Chen et al., 2016; Gaiani et al., 2017; Gendron et al., 2017; Poesen 

279 et al., 2017; Shibahashi et al., 2016). Studies have linked the 

280 concentrations of these proteins to certain neurologic conditions in 

281 humans and in horses (Idland et al., 2017, Takei, 1992). Most of the 

282 aforementioned neurologic conditions, in humans or animals, are 

283 age related and it is not clear whether the observed association with 

284 pNF-H was confounded by the age of the study units—either 

285 humans or animals. Hence, it is imperative to investigate whether an 

286 association between serum concentrations of pNF-H and the 

287 likelihood of neurologic disorders in horses is likely to be 

288 confounded by the age of the horse.

289  The potential confounding effect of age is plausible. It is 

290 common knowledge that the neurons degenerate and die with age, 

291 so as a consequence it is reasonable to expect a proportionate 

292 increase of the concentration of NFs with age. Neurofilaments are 

293 found in both the central and peripheral nervous system (Petzold, 

294 2015). As a consequence of neuronal or axonal damage associated 
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295 with the aging process or trauma, NFs are believed to be released 

296 into the extracellular space increasing the concentration of pNF-H 

297 in the CSF and serum (Petzold, 2015; Steinacker et al., 2016b, 

298 2016a). Several studies have used this finding to develop biomarkers 

299 for neurodegenerative diseases and traumatic conditions in humans 

300 and experimental animals (Intan-Shameha et al., 2017; Kirkcaldie 

301 and Collins, 2016; Yilmaz et al., 2017).

302  This study showed that although there was a positive change 

303 in the relationship between age and serum pNF-H with age, the 

304 degree of change was not  high. Reports in humans have 

305 demonstrated similar association based upon examination of CSF 

306 (Bjerke et al., 2014; Steinacker et al., 2016b, 2016a). The difference 

307 between our study and the aforementioned studies is that in the 

308 human studies the concentrations of pNF-H were measured in the 

309 CSF and not serum. 

310 To the authors’ knowledge, this is the first study to 

311 investigate the association between serum concentration of NFs and 

312 age in the horse.  Since CSF and serum pNF-H concentrations have 

313 a direct proportional relationship, we looked at previous studies that 

314 evaluated the association between serum pNF-H concentrations and 

315 age in human patients. Although several studies demonstrated that 

316 the concentration of pNF-H in the CSF was associated with age-

317 related neurodegeneration in cognitively healthy adults, other 
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318 studies were not able to make similar conclusions (Idland et al., 

319 2017; Vågberg et al., 2015). Most of these human studies examined 

320 the relationship between age and the CSF-NFs concentrations by 

321 assessing the deterioration in the whole-brain (Bjerke et al., 2014; 

322 Steinacker et al., 2016b, 2016a; Vågberg et al., 2015; Zetterberg, 

323 2017). The consensus among those studies was that there are age-

324 related changes in the human brain tissue that reflect the ageing 

325 process and that concentration of the NFs measured in the CSF 

326 demonstrated high correlation between the NF-L and NF-H. 

327 Whereas in two studies the age was biased towards elderly 

328 individuals, other studies patients’ age range was skewed (Idland et 

329 al., 2017; Steinacker et al., 2016a, Takasaki et al., 2002). 

330 Interestingly, the human study populations included only mature 

331 subjects ranging from 20 to 70 years of age (Vågberg et al., 2015; 

332 Zetterberg, 2017). In our study, horse age ranged from 0.58 to 31 

333 years of age (11.65 mean) and included juvenile individuals.

334 The vitamin E concentrations in serum are known to be 

335 associated with aging in several neurologic disorders in animals and 

336 humans (Divers et al., 2006; Hamishehkar et al., 2016). The criteria 

337 for including horses in the normal category included a cutoff point 

338 for vitamin E of concentrations > 1.5 ug/mL. This cut-off point was 

339 based both upon our clinical experience and experimental findings 

340 (Divers et al., 2006). In the final analysis for assessing the 
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341 association between age and concentrations of vitamin E, only 

342 horses with vitamin E values recorded in the medical record were 

343 included in the study. Since there is an association between the NF 

344 concentrations and age, it is not unreasonable to hypothesize that the 

345 NF serum concentrations might be associated with serum vitamin E 

346 concentration. However, in our study population there was no 

347 significant association between serum concentrations of NF and 

348 serum vitamin E among the healthy horses. To the authors’ 

349 knowledge there is no previous study that examined this association 

350 in blood samples from human or animals. The only study that 

351 indirectly investigated the relationship between vitamin E and pNF-

352 H, did so by examining histopathological changes and concluded 

353 that there was no significant association (Takei, 1992). That 

354 observation is consistent with the findings of this study.

355 Our study demonstrated significant differences in the 

356 concentration of pNF-H among horses performing different levels 

357 of activity. Horses undergoing heavy exercise (Thoroughbred racing 

358 horses) had higher serum pNF-H concentration than horses 

359 undergoing light or moderate (draft, pleasure riding, event horses). 

360 Although there are no previous studies in animals that demonstrated 

361 an association between serum pNF-H concentrations and levels of 

362 activity, several studies in human subjects showed that the serum 

363 pNF-H concentrations are increased among competitive athletes 
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364 (Oliver et al., 2016; Shahim et al., 2017). These studies attributed 

365 the increase of pNF-H concentrations among performing athletes to 

366 increased likelihood of trauma, concussion, or injury. Given the 

367 relatively high level of training activity experienced by 

368 Thoroughbred racehorses, it is reasonable to suggest that the 

369 significantly higher serum levels of pNF-H found in Thoroughbred 

370 racehorses in this study may reflect an increased exposure to 

371 exercise-related trauma in comparison to pleasure or draft horses. 

372 Recent studies have promoted the use of NFs as a diagnostic 

373 biomarker for neurologic conditions in animals and humans 

374 (Disanto et al., 2017; Intan-Shameha et al., 2017; Nishida et al., 

375 2014; Steinacker et al., 2016b, 2016a; Toedebusch et al., 2017). In 

376 our study we explored the potential use of serum pNF-H 

377 concentrations to complement clinical observations and 

378 conventional diagnostic tests in the diagnosis of EMND and EPM 

379 in the horse. A definitive diagnosis for horses afflicted with these 

380 conditions requires histopathological examination of the spinal cord 

381 to detect pathognomonic lesions (Divers, T.J.; Mohammed, H.O.; 

382 Cummings, J.F.; Valentine, B.A.; De Lahunta, A.; Jackson, C.A.; 

383 Summers, 1994; Reed et al., 2016). Both conditions affect the 

384 neurons in the CNS and associated axons leading to the release of 

385 neurofilaments in the serum. This study demonstrated the value of 

386 using elevated concentrations of serum pNF-H as a biomarker to 
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387 predict the probability of the diagnosis of EMND and EPM in 

388 neurologic horses. 

389 Previous studies of the prognostic value of the neurofilament 

390 concentrations had proposed positive cut-off points for the diagnosis 

391 of the respective neurologic condition (Nishida et al., 2014; 

392 Steinacker et al., 2016b, 2016a). Unlike the previous studies, the 

393 authors propose the use of a probability approach for the 

394 interpretation of neurofilaments concentrations in the diagnosis of 

395 EMND or EPM. This approach is based upon two premises: First, 

396 both of these neurologic conditions are progressive in nature and 

397 may have subclinical and clinical phases in which the serum 

398 concentrations of neurofilaments would likely differ. The 

399 probability of the disease would be associated with the specific level 

400 of the serum pNF-H value for a particular patient. Second, it is 

401 envisaged that serum concentrations of neurofilaments would be 

402 only one of the parameters a clinician would use in the diagnostic 

403 work-up, including medical history and clinical examination to 

404 make a specific diagnosis of EMND or EPM.

405  Finally, it can be difficult for equine practitioners to make a 

406 differential diagnosis between hind leg lameness and neurologic 

407 disease, i.e., EPM. The inclusion of serum neurofilament 

408 concentrations in the diagnostic work-up of hind leg lameness of 

409 performance horses has the potential to aid the clinician in making 
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410 an accurate differential diagnosis between EPM and a hindlimb 

411 orthopedic lameness, thus enabling evidence-based treatment of the 

412 condition. 

413 In conclusion, our results showed that although serum 

414 concentrations of pNF-H increased slightly with the age of the 

415 horse, the degree of this increase was not statistically significant. 

416 Serum pNF-H concentrations were not affected by the concentration 

417 of vitamin E in the serum, nor did they vary with the sex of the horse.  

418 Finally, the serum pNF-H concentration did vary with the activity 

419 of the horse, with horses undergoing heavy activities had 

420 significantly higher pNF-H values in comparison to light and 

421 moderate activities. 
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