2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Downloaded from http://aac.asm.org/ on May 21, 2019 by guest

O
osted
ipt Pe
uscri
Man
tě
eb
8
\triangleleft

U

schedules of dihydroartemisinin-piperaquine preventive therapy during pregnancy in			
Uganda			
Erika Wallender ^a , Nan Zhang ^b , Melissa Conrad ^a , Abel Kakuru ^c , Mary Muhindo ^c , Patrick			
Tumwebaze ^c , Richard Kajubi ^c , Daniel Mota ^a , Jennifer Legac ^a , Prasanna Jagannathan ^d , Diane			
Havlir ^a , Moses Kamya ^{c,e} , Grant Dorsey ^a , Francesca Aweeka ^f , Philip J. Rosenthal ^a , Rada M. Savic ^{a,b#}			
^a Department of Medicine, University of California, San Francisco, San Francisco, CA, United States			
^b Department of Bioengineering and Therapeutic Sciences, University of California, San			
Francisco, CA, United States			
^c Infectious Disease Research Collaboration, Kampala, Uganda			
^d Department of Medicine, Stanford University, Palo Alto, CA, United States			
^e Makerere University School of Medicine, Kampala, Uganda			
^f Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States			
Running title: Drug resistance with DHA-PQ for malaria prevention			
#Address correspondence to Rada M. Savic, rada.savic@ucsf.edu			

Modeling prevention of malaria and selection of drug resistance with different dosing

- 20
- 21

Antimicrobial Agents and

Chemotherapy

22 Abstract

23 Dihydroartemisinin-piperaquine (DHA-PQ) is under study for intermittent preventive treatment during pregnancy (IPTp), but it may accelerate selection for drug resistance. 24 25 Understanding the relationships between piperaquine concentration, prevention of parasitemia, and selection for decreased drug sensitivity can inform control policies and optimization of 26 DHA-PQ dosing. Piperaquine concentrations, measures of parasitemia, and Plasmodium 27 falciparum genotypes associated with decreased aminoquinoline sensitivity in Africa (pfmdr1 28 29 86Y, pfcrt 76T) were obtained from pregnant Ugandan women randomized to IPTp with 30 sulfadoxine-pyrimethamine (SP) or DHA-PQ. Joint pharmacokinetic/pharmacodynamic models described relationships between piperaquine concentration and probability of genotypes of 31 32 interest using nonlinear mixed effects modeling. Increasing piperaquine plasma concentration was associated with a log-linear decrease in risk of parasitemia. Our models predicted that higher 33 median piperaquine concentrations would be required to provide 99% protection against mutant 34 35 compared to wild type infections (pfmdr1 N86: 9.6 ng/mL, 86Y: 19.6 ng/mL; pfcrt K76: 6.5 36 ng/mL, 76T: 19.6 ng/mL). Comparing monthly, weekly, and daily dosing, daily low dose DHA-37 PQ was predicted to result in the fewest infections and the fewest mutant infections per 1,000 pregnancies (predicted mutant infections for *pfmdr1* 86Y: SP monthly: 607, DHA-PQ monthly: 38 198, DHA-PQ daily: 1; for pfcrt 76T: SP monthly: 1564, DHA-PQ monthly: 283, DHA-PQ 39 daily: 1). Our models predict that higher piperaquine concentrations are needed to prevent 40 infections with *pfmdr1/pfcrt* mutant compared to wild type parasites and that, despite selection 41 42 for mutants by DHA-PQ, the overall burden of mutant infections is lower for IPTp with DHA-PQ than for IPTp with SP. 43

44

46 Introduction

47	Plasmodium falciparum infection during pregnancy, especially during a first pregnancy,
48	places infants at risk for the complications of placental malaria, including intrauterine growth
49	retardation, preterm birth, low birth weight, and death (1). The World Health Organization
50	recommends that pregnant women at risk for malaria in Africa use a long lasting insecticide
51	treated bed net and receive at least three doses of sulfadoxine-pyrimethamine (SP) as intermittent
52	preventive treatment during pregnancy (IPTp) (2). However, in much of Africa, including east
53	Africa, the protective efficacy of SP as chemoprevention for pregnant women and children is
54	inadequate (3-5). Compared to three doses of SP during pregnancy, a monthly course of
55	dihydroartemisinin-piperaquine (DHA-PQ), an artemisinin-based combination therapy
56	administered once daily for three days, dramatically reduced the prevalence of maternal
57	parasitemia and placental malaria in Uganda and Kenya (5, 6).
58	Pharmacokinetic/pharmacodynamic (PK/PD) modeling studies found that plasma piperaquine
59	(PQ) concentrations are excellent predictors of DHA-PQ protective efficacy, and that
60	maintaining higher PQ concentrations in the target population, such as with lower dose weekly
61	or daily DHA-PQ, predicts maximal protective efficacy (7-10).
62	The long half-life of PQ makes DHA-PQ an ideal choice for malaria chemoprevention,
63	but antimalarials with the longest half-lives may be at the greatest risk for resistance selection
64	(11). Although true resistance to DHA-PQ, as observed in southeast Asia (12, 13), has not been
65	confirmed in Africa (14-16), P. falciparum infections that emerge following DHA-PQ treatment
66	have had, compared to parasites not under drug selection, increased prevalence of mutant
67	genotypes in the putative drug transporters <i>pfmdr1</i> (86Y) and <i>pfcrt</i> (76T) (14, 16, 17). These
68	mutations are associated with decreased sensitivity to chloroquine and amodiaquine, two

Antimicrobial Agents and Chemotherapy

Antimicrobial Agents and Chemotherapy 69

70	PQ for chemoprevention may provide only a short-term benefit, with eventual loss of efficacy
71	due to accelerated development of resistance.
72	We are interested in optimizing DHA-PQ dosing during IPTp to maximize protective
73	efficacy, minimize toxicity, and limit selection for less drug sensitive parasites. In this analysis,
74	we used clinical, pharmacokinetic, and molecular data from a trial of pregnant women who were
75	randomized to receive DHA-PQ or SP as IPTp to develop PK/PD models which quantified
76	relationships between PQ exposure, parasitemia, and genetic markers associated with decreased
77	drug sensitivity. We then used the concentration-effect relationships to predict how
78	modifications to DHA-PQ dosing would impact the burden of P. falciparum infection, including
79	the risk of infection with parasites with decreased drug sensitivity.
80	Results
81	Study cohort and data collection
81 82	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were
81 82 83	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20,
81 82 83 84	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20, DHA-PQ every 8 weeks beginning gestational week 20, or DHA-PQ every 4 weeks beginning at
81 82 83 84 85	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20, DHA-PQ every 8 weeks beginning gestational week 20, or DHA-PQ every 4 weeks beginning at gestational at gestational weeks 16 or 20 as previously described (Figure 1, Table 1) (5). Clinical
81 82 83 84 85 86	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20, DHA-PQ every 8 weeks beginning gestational week 20, or DHA-PQ every 4 weeks beginning at gestational weeks 16 or 20 as previously described (Figure 1, Table 1) (5). Clinical characteristics were similar between the three study arms (Table 1). Participants returned
81 82 83 84 85 86 87	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20, DHA-PQ every 8 weeks beginning gestational week 20, or DHA-PQ every 4 weeks beginning at gestational weeks 16 or 20 as previously described (Figure 1, Table 1) (5). Clinical characteristics were similar between the three study arms (Table 1). Participants returned monthly for routine visits and for any acute illness. At routine visits or when malaria was
81 82 83 84 85 86 87 88	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20, DHA-PQ every 8 weeks beginning gestational week 20, or DHA-PQ every 4 weeks beginning at gestational weeks 16 or 20 as previously described (Figure 1, Table 1) (5). Clinical characteristics were similar between the three study arms (Table 1). Participants returned monthly for routine visits and for any acute illness. At routine visits or when malaria was suspected, evaluation included a capillary or venous blood draw for plasma PQ concentration
81 82 83 84 85 86 87 88 88	Study cohort and data collection Data were from a randomized controlled trial, in which 300 pregnant women were randomized to one of three IPTp regimens: SP every 8 weeks beginning at gestational week 20, DHA-PQ every 8 weeks beginning gestational week 20, or DHA-PQ every 4 weeks beginning at gestational weeks 16 or 20 as previously described (Figure 1, Table 1) (5). Clinical characteristics were similar between the three study arms (Table 1). Participants returned monthly for routine visits and for any acute illness. At routine visits or when malaria was suspected, evaluation included a capillary or venous blood draw for plasma PQ concentration and parasite detection. If the woman was parasitemic, the parasite was genotyped at <i>pfindr1</i> 86

aminoquinolines related to piperaquine (14), and these results raise the concern that using DHA-

venous and 558 capillary PQ concentrations were obtained (Table 1, Supplemental Figure 1).
Genotyping for the single nucleotide polymorphisms at *pfmdr1* N86Y and *pfcrt* K76T was
successful for >84% of episodes of parasitemia in the SP arm, and >93% in the DHA-PQ arms.
Prevalences of mutant genotypes were higher in the DHA-PQ arms compared to the SP arm
(*pfmdr1* 86Y: SP 27%, DHA-PQ 65%; *pfcrt* 76T: SP 82%, DHA-PQ 87%), as previously
reported (Table 1) (16).

97 PK/PD model building

Simultaneous continuous-categorical PK/PD models were developed using a mixedeffects logistic regression approach. Models were evaluated using objective function value (OFV), with a decrease in OFV (Δ OFV) of -3.84 considered a significant improvement if one parameter was added to the model, and by visual predictive check (Supplemental Figure 2). Two types of simultaneous PK/PD models were developed for the analysis. PK/PD-parasitemia models predicted the risk of parasitemia. PK/PD-resistance models predicted the risk of a mutant infection at *pfmdr1* 86 or *pfcrt* 76 when parasitemia was detected.

105 A two-compartment model for PQ was used to predicted plasma concentrations, as previously described (8). For the PK/PD-parasitemia model for women who received DHA-PQ, 106 107 a negative log-linear relationship provided an adequate fit for the association between plasma PQ 108 concentration and risk of parasitemia (ΔOFV -230, Supplemental Figure 2b). Being primigravida 109 was associated with a significant 26.6% increased risk of parasitemia prior to IPTp compared to being multigravida participants (ΔOFV -24). However, after initiation of DHA-PQ gravidity was 110 not a significant predictor of parasitemia in the model. Significant covariates after initiation of 111 IPTp included being in the second or third trimester, and household receipt of indoor residual 112 113 spraying of insecticide (IRS). Compared to the second trimester, the third trimester was

114 associated with a 19.0% reduction in risk of parasitemia while receiving IPTp (ΔOFV -41). 115 Finally, receipt of IRS, which in the clinical trial only occurred after the start of 116 chemoprevention, was associated with complete protection from parasitemia, eliminating the concentration effect of PO when present (ΔOFV -36) (Table 2). Additional covariates tested 117 included body mass index (BMI) at enrollment, change in BMI compared to enrollment, and 118 119 presence of dry season, and these were not significantly associated with the risk of parasitemia 120 for women who received DHA-PQ. Gravidity, trimester, and BMI were also tested as covariates on the relationship between PQ and risk of parasitemia; these did not significantly improve the 121 122 PK/PD-parasitemia model for DHA-PQ. The final model for the probability of parasitemia is 123 described in Equation 1, where P is the probability of parasitemia; B is the baseline risk of 124 parasitemia; sl is the slope of the concentration dependent change in probability; [PQ] is the PQ 125 concentration in ng/mL; θ represents covariates that were estimated in the model; and ε and η indicate residual error. 126

127
$$Logit(P) = B + sl^*[PQ] + \theta_{IRS} + \theta_{Trimester} + \varepsilon + \eta \qquad (Eq1)$$

For women who were not exposed to IRS, even low PQ concentrations were associated with a decreased risk of parasitemia as compared to baseline, and PQ was a predictor of parasitemia risk regardless of the trimester (Figure 2).

For SP, pharmacokinetic data were not available, and a PD model for parasitemia was developed. In a stepwise manner, binary covariates were added to the baseline probability of parasitemia for the SP PD-parasitemia model as seen in Equation 2, where P is the probability of parasitemia; B is the baseline risk of parasitemia; θ represents covariates that were estimated in the model; and ε and η indicate residual error.

$Logit(P) = B + \theta_{IRS} + \theta_{Season} + \varepsilon + \eta$	(<i>Eq2</i>)

137	Similar to DHA-PQ, being primigravid significantly increased the risk of parasitemia prior to
138	IPTp by 23.3% (Δ OFV -8.0). Receipt of IRS was associated with a reduced risk of parasitemia
139	(32.7%, Table 2, ΔOFV -27). In addition, for the SP arm the dry season was independently
140	associated with a decreased risk of parasitemia (24.4%, ΔOFV -17). After adjusting for
141	significant covariates, the model did not support the addition of an SP effect (added as time
142	varying, treatment arm effect, or binary covariate). In addition, enrollment BMI, change in BMI
143	and trimester were not associated with significant changes in risk of parasitemia.
144	PK/PD-resistance models were then developed to estimate the probability of a mutant
145	infection at pfmdr1 N86Y or pfcrt K76T. A log-linear relationship between PQ concentration and
146	probability of a mutant infection provided the best fit for both $pfmdr1$ 86Y (ΔOFV -11) and $pfcrt$
147	76T (Δ OFV -9.6) (Supplemental Figure 2c, 2d). Increasing PQ concentrations were associated
148	with an increased probability of a mutant infection at both loci (Figure 3). As expected, there was
149	no significant relationship between IPTp with SP and detection of a mutant pfmdr1 86Y or pfcrt
150	76T allele. Compared to the SP group, the odds of detecting pfmdr1 86Y increased with
151	increasing PQ concentration, with a maximum median odds of 4.3 occurring at 17.9 ng/mL PQ
152	(Figure 3c). In the setting of a high baseline risk of <i>pfcrt</i> 76T, PQ exposure was associated with a
153	slight increase in the odds of detecting a mutant compared to the SP arm, peaking at a maximum
154	median odds of 1.3 at 10.1 ng/mL PQ (Figure 3c).

Derivation of PQ concentration targets 155

- 156 The PQ concentrations required to prevent 99% of parasitemia episodes varied by
- trimester. Women in the second trimester were predicted to require 19.6 ng/mL PQ (95% CI 157

Antimicrobial Agents and Chemotherapy

AAC

158 13.2-31.6) to achieve 99% protection from parasitemia, while in the third trimester 12.8 ng/mL

159 (9.2-19.2) was required.

160 The PQ concentrations required to prevent 99% of parasitemia episodes stratified by wild 161 type and mutant genotypes were derived from a joint model of the final PK/PD models for 162 predicting parasitemia and genotype. Since women in the second trimester were predicted to require the highest PQ concentrations for protection (Supplemental Table 1), this population was 163 used to estimate the target protective concentrations, as shown in Figure 4. For *pfmdr1* 86, an 164 165 increased risk of mutant parasites was predicted compared to baseline at sub-protective plasma 166 concentrations of PQ, peaking at 3.3 ng/mL (Figure 2). PQ concentrations required to prevent 99% of parasitemia episodes were predicted to be higher for parasites with mutant pfmdr1 86Y 167 168 (19.6 ng/mL, [95% CI 12.9-32.2]) compared to wild type pfmdr1 N86 (9.6 ng/mL [7.0-12.4]) 169 and for mutant pfcrt 76T (19.6 ng/ml [13.1-32.2]) compared to wild type pfcrt K76 (6.5 ng/ml 170 [4.1-9.3]) (Figure 4).

171 Simulations to predict the optimal DHA-PQ dosing schedule

Simulations were conducted of 1,000 women who received SP every 8 weeks or DHA-172 173 PQ monthly, weekly, or daily using the joint PK/PD models to estimate the percentage of time 174 above protective concentrations during pregnancy and the predicted number of mutant pfmdr1 175 86Y and pfcrt 76T infections for each regimen (Table 3, Figure 5). All simulations assumed no 176 exposure to IRS or seasonal variation. Both the number of parasitemia episodes and the number 177 of mutant parasitemia episodes were predicted to be lower with any of the considered DHA-PQ regimens compared to SP. Low dose (320 mg PQ per day) daily DHA-PQ was predicted to result 178 179 in the lowest median number of infections and mutant infections, with an estimated reduction in 180 mutant infections >99%.

Antimicrobial Agents and Chemotherapy

181 Discussion

182	A monthly treatment course of DHA-PQ markedly reduced the burden of parasitemia
183	during pregnancy in Uganda and Kenya, but there is concern that IPTp with DHA-PQ will
184	accelerate selection for drug resistance. With simultaneous PK/PD modeling, we used PQ
185	concentrations and clinical covariates to predict the probability of detecting malaria parasitemia
186	and the probability of detecting parasites with relevant genotypes associated with drug resistance
187	in women receiving DHA-PQ or SP as IPTp in Uganda. Higher concentrations of PQ were
188	needed to reduce the probability of mutant, compared to wild type infections at <i>pfmdr1</i> 86 and
189	pfcrt 76, but these concentrations were achievable with practical DHA-PQ dosing regimens,
190	including a novel low dose daily regimen that should minimize toxicity concerns (8, 18). Despite
191	selection for mutants by DHA-PQ, the overall burden of mutant infections was predicted to be
192	lower for IPTp with DHA-PQ than with SP. Thus, a low daily dose of DHA-PQ for
193	chemoprevention during pregnancy is predicted to maximize protective efficacy, with limited
194	burden of mutant parasites with decreased aminoquinoline sensitivity, and decreased risk,
195	compared to monthly dosing, of cardiotoxicity (8, 18).
196	In our model, we were unable to predict a malaria protective benefit attributable to IPTp
197	with SP after controlling for covariates. P. falciparum polymorphisms associated with antifolate
198	resistance were at high prevalence at the study site (16), and there was a high burden of
199	parasitemia and malarial illness in the SP arm of the study (5). Considering protective efficacy,
200	monthly DHA-PQ was effective for adult males in Thailand (19), and was superior to SP for
201	pregnant women in Uganda and Kenya (5, 6), and for children in Uganda (20). But, as with SP,
202	might regular use of DHA-PQ for IPTp increase the burden of parasites that are no longer
203	inhibited by the regimen? Importantly, in this setting it does not appear to be the case, as the

Antimicrobial Agents and

Chemotherapy

204

205

overall reduction in episodes of parasitemia is predicted to lead to a lower burden of infections with mutant parasites with DHA-PQ as IPTp.

206 The risk of selecting for *P. falciparum* with decreased susceptibility to antimalarials will 207 be dependent on the prevalence of these mutants in the circulating parasite population, as 208 selection appears to be due primarily to amplification of existing clones, rather than de novo 209 selection of new mutants (11). Since our trial was conducted, there have been significant increases in the prevalence of wild type infections at *pfmdr1* 86 and *pfcrt* 76 in the region, likely 210 211 selected by use of artemether-lumefantrine (AL) to treat malaria in Uganda (14, 21). An 212 additional wild type polymorphism, *pfmdr1* D1246, also increased in prevalence with AL pressure (14, 21). A haplotype analysis found that mutant *pfmdr1* 1246Y may be required to 213 214 select for pfmdr1 86Y under PQ pressure, further reducing the risk of selecting for pfmdr1 86Y 215 under DHA-PQ pressure with current circulating parasites (22). In this setting, a recent Ugandan 216 treatment efficacy study found that, in contrast to results from earlier studies, DHA-PO did not 217 select for *pfmdr1* and *pfcrt* mutations in recurrent infections (23). Considering our modeling 218 results in this population, it is unlikely that IPTp with DHA-PQ will increase the burden of 219 mutant parasites with decreased sensitivity to the regimen in Uganda. However, risks of 220 resistance selection could change over time based on ACT usage or other factors. Longitudinal surveillance of drug resistance markers and re-evaluation of PK/PD models will remain 221 222 important as we consider using DHA-PQ for IPTp.

Our analysis identified important covariates which modified the risk of parasitemia among women receiving DHA-PQ chemoprevention, including gravidity in the pre-IPTp period, and trimester and IRS during IPTp. Remarkably, the combination of monthly DHA-PQ and receipt of IRS eliminated the risk of parasitemia. The benefits of IRS were not as large for the SP

228	Uganda found that receipt of IRS is associated with improvements in birth outcomes (24). Taken
229	together, available results suggest enormous potential for the joint use of highly effective
230	intermittent preventive treatment and IRS for the control and potential elimination of malaria.
231	Our study had some limitations. First, parasitemia was assessed at 28-day intervals. We
232	could not determine the exact time when an individual became parasitemic, and thus the exact
233	concentration required to prevent parasitemia. However, monthly PQ concentrations offered a
234	practical sampling strategy with good predictive power in our models. Second, PK data were not
235	available to assist in detecting a concentration-effect relationship between SP and prevention of
236	malaria. We found that, after controlling for covariates which are associated with reduced risk of
237	malaria infection, a model without an SP effect predicted the data adequately. The absence of a
238	protective benefit for SP was further supported by a placebo-controlled chemoprevention trial in
239	Uganda that did not demonstrate a significant protective effect of SP in children (4). Thirdly,
240	treatment failure due to DHA-PQ resistance and associated genetic markers have not been
241	identified in Africa and thus could not be used in this analysis. The markers associated with
242	DHA-PQ resistance in Southeast Asia (pfkelch, plasmepsin2 copy number, and exo-E415G (13,
243	25, 26)) were assessed for this population and were either not present or, in the case of
244	plasmepsin2 copy number, only present in a minority of isolates (16). Pfmdr1 86Y and pfcrt 76T
245	have been consistently associated with PQ exposure in Uganda (17, 27, 28), and have recently
246	been associated with a modest increase in ex vivo IC50 for PQ (14). As a result, these markers of
247	antimalarial sensitivity were the most relevant for this population.

arm, likely due to persistent parasitemia despite treatment with SP (3). Recent studies from

By taking a PK/PD modeling approach, we found that higher PQ concentrations are
needed to prevent mutant, compared to wild type malaria infections, but that safe and achievable

11

PQ concentrations can provide >99% protection from parasitemia. In addition, a low dose daily
DHA-PQ regimen was predicted to maximally reduce parasitemia. Our findings support the use
of DHA-PQ for chemoprevention and the optimization of DHA-PQ dosing to maximize
protective efficacy while minimizing toxicity and potential selection of drug resistance. Future
clinical trials of DHA-PQ as chemoprevention during pregnancy should consider alternative
dosing strategies, including low dose daily DHA-PQ.
Methods

257 **Study population**

Pregnant women were enrolled in the clinical trial that provided samples for our analyses
in Tororo, Uganda from June through October 2014 (5). Eligible women were ≥16 years of age,
HIV-uninfected, and pregnant at 12-20 weeks gestation. Written informed consent was obtained
from all study participants. The study protocol was approved by the Makerere University School
of Biomedical Sciences Research and Ethics Committee, the Uganda National Council for
Science and Technology, and the University of California, San Francisco Committee on Human
Research. The clinical trial registration number is NCT02282293.

265 Study design and randomization

After enrollment, women randomized to SP (1500 mg sulfadoxine/75 mg pyrimethamine) every 8 weeks or DHA-PQ (120 mg DHA/960 mg PQ daily for 3 days) every 8 weeks began chemoprevention at 20 weeks gestational age, and those randomized to DHA-PQ every 4 weeks began chemoprevention at either 16 or 20 weeks gestational age. Administration of the first dose of DHA-PQ was observed in the clinic, and the remaining two doses were taken at home. At enrollment, study participants received a long-lasting insecticide-treated bed net, underwent a

12

272 physical exam, had height and weight determination, and had blood collected. All women

attended routine visits at 4 week intervals and were asked to return to the clinic for all of their

274 medical needs. The date of IRS in the household was collected for each subject (24).

275 Pharmacokinetic sampling

276 Women randomized to receive DHA-PQ underwent sparse venous (gestational weeks: 277 20, 28, and 36) and capillary (gestational weeks: 24, 32, and 40) sampling to determine plasma 278 PO concentrations (8). Sparse PO concentrations were determined either 28 days after receiving 279 the drug in the 4 week DHA-PQ arm or every 28 days and every 56 days after receiving the drug 280 in the 8 week DHA-PQ arm (8). Venous or capillary specimens were also collected at the time of 281 any malaria diagnosis. A subset of individuals were enrolled in an intensive PK sub-study. For 282 this study, as previously reported (29), venous plasma samples were obtained pre-dose, and 0.5, 1, 2, 3, 4, 6, 8, and 24 hours post dose, and capillary plasma samples were collected at 24 hours 283 and 4, 7, 14 and 21 days post dose. PQ base concentrations were determined using high 284 285 performance liquid chromatography tandem mass spectrometry (HPLC-MS) (30). Modification and partial-validation of the original method for PQ quantitation was performed, to cover a 286 287 concentration range of 0.50-1,000 ng/mL, with a coefficient of variation <10% for quality 288 control samples (30).

Antimicrobial Agents and Chemotherapy

Antimicrobial Agents and

Chemotherapy

Accepted Manuscript Posted Online

289 *P. falciparum* detection and genotyping

A blood spot was collected and stored on filter paper at all routine visits and if malaria was diagnosed at an unscheduled visit. DNA was extracted from dried blood spots using Chelex-100 and tested for the presence of *P. falciparum* DNA by loop-mediated isothermal amplification (LAMP) for all microscopy negative samples, as previously described (5, 31). Genotyping for *pfmdr1* N86Y and *pfcrt* K76T was conducted using a ligase detection reaction–fluorescent
microsphere assay as previously described (28, 32). Isolates were classified as mutant for either
pure mutant or mixed mutant and wild type genotypes.

297 PK/PD models

To estimate the concentration effect relationship between PQ PK and probability of 298 299 parasitemia, and between PQ PK and the probability of detecting particular alleles at the loci of 300 interest, simultaneous PK/PD models were developed using nonlinear mixed effects modeling 301 and LAPLACE methods (33). All available PQ concentration data above the limit of quantitation 302 were used in the development of a two-compartment PQ PK model, as previously described (8). 303 The population PQ PK model was then used as part of a simultaneous continuous-categorical 304 PK/PD model with logit transformation to determine the probability of parasitemia or mutant 305 genotype. To avoid repeated sampling of persistent circulating parasites, testing for parasitemia 306 was censored after the first episode of parasitemia identified following each administration of 307 study drug. Model appropriateness was evaluated by likelihood ratio test, inspection of the diagnostic plots, and internal model validation techniques, including visual and numerical 308 309 predictive checks.

We first developed a simultaneous continuous-categorical PK/PD-parasitemia model to
predict the probability of parasitemia among women who received DHA-PQ. Dose response,
linear, and Emax models were tested for the relationship between PQ concentration and
probability of parasitemia. Gravidity, trimester (defined as <28 weeks for the second trimester
and ≥28 weeks for the third trimester), enrollment BMI, change in BMI compared to enrollment,
dry season (defined as December to February), and receipt of IRS were then tested as covariates
in the model. We then developed a PD model for the probability of parasitemia for women who

317 received SP. We estimated that SP had a 28 day effect based on prior modeling studies (34). The same covariates were tested for SP as for DHA-PQ. 318

PK/PD-resistance models were developed to estimate the relationship between PQ 319 320 concentration and parasite genotype at *pfmdr1* N86Y or *pfcrt* K76T, also using simultaneous 321 PK/PD modeling with logit transformation. All PQ PK data and available genotype data from 322 episodes of parasitemia were used to develop models to predict sequences at the *pmfdr1* N86Y and pfcrt K76T alleles when parasitemia was detected. Baseline, dose response, linear, and Emax 323 324 relationships between PQ concentration and genotype were tested for those who received DHA-325 PQ. Since PK data were not available for SP, a PD-resistance model was used to evaluate a study 326 arm effect of SP chemoprevention on selection for mutant infections compared to the pre-

327 chemoprevention baseline.

328 The final PK/PD-parasitemia models, with epidemiologic covariates, and PK/PD-

329 resistance models for PQ, were utilized sequentially, and concentrations of PQ needed to prevent 330 parasitemia with mutant or wild type infections at each locus were defined as the median value needed to provide 99% protection against parasitemia. One hundred simulations of 1,000 331 332 pregnancies were conducted using the final PK/PD models to determine the median number of parasitemia episodes and mutant parasitemia episodes with 95% confidence intervals for 1,000 333 334 pregnancies. Dosing strategies were selected to maximize protective efficacy. Simulated 335 regimens included monthly dosing (2,880 mg PQ and 360 mg DHA divided into three consecutive daily oral doses), once weekly dosing (960 mg PQ and 120 mg DHA), and two once 336 337 daily dosing options (160 mg PQ with 20 mg DHA and 320 mg PQ with 40 mg DHA). All

338 statistical analyses were conducted in R (version 3.3.2) and STATA (version 14.2).

Antimicrobial Agents and

Chemotherapy

340 staff, practitioners at the Tororo District Hospital, members of the Infectious Diseases Research 341 Collaboration, and members of the UCSF Drug Research Unit. This work was supported by the National Institutes of Health [R01 AI117001-02, R01 A10750-45, T32 GM007546-41, and P01 342 HD059454]. The funders had no role in the study design, data collection and interpretation, or 343 decision to submit this work for publication. 344 Potential conflicts of interest. The authors declare no conflicts of interest. 345 346 References 347 1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, Newman RD. 348 2007. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis 7:93-104. 349 350 2. World Health Organization. 2012. Updated WHO policy recommendation: intermittent 351 preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-352 SP). WHO, Geneva, Switzerland. 3. Desai M, Gutman J, Taylor SM, Wiegand RE, Khairallah C, Kayentao K, Ouma P, 353 354 Coulibaly SO, Kalilani L, Mace KE, Arinaitwe E, Mathanga DP, Doumbo O, Otieno K, Edgar D, Chaluluka E, Kamuliwo M, Ades V, Skarbinski J, Shi YP, Magnussen P, 355 Meshnick S, Ter Kuile FO. 2016. Impact of Sulfadoxine-Pyrimethamine Resistance on 356 357 Effectiveness of Intermittent Preventive Therapy for Malaria in Pregnancy at Clearing 358 Infections and Preventing Low Birth Weight. Clin Infect Dis 62:323-333. Bigira V, Kapisi J, Clark TD, Kinara S, Mwangwa F, Muhindo MK, Osterbauer B, 359 4. Aweeka FT, Huang L, Achan J, Havlir DV, Rosenthal PJ, Kamya MR, Dorsey G. 2014. 360

Acknowledgements. We thank the women who participated in the study, the dedicated study

361		Protective efficacy and safety of three antimalarial regimens for the prevention of malaria
362		in young Ugandan children: a randomized controlled trial. PLoS Med 11:e1001689.
363	5.	Kakuru A, Jagannathan P, Muhindo MK, Natureeba P, Awori P, Nakalembe M, Opira B,
364		Olwoch P, Ategeka J, Nayebare P, Clark TD, Feeney ME, Charlebois ED, Rizzuto G,
365		Muehlenbachs A, Havlir DV, Kamya MR, Dorsey G. 2016. Dihydroartemisinin-
366		Piperaquine for the Prevention of Malaria in Pregnancy. N Engl J Med 374:928-39.
367	6.	Desai M, Gutman J, L'Lanziva A, Otieno K, Juma E, Kariuki S, Ouma P, Were V,
368		Laserson K, Katana A, Williamson J, ter Kuile FO. 2015. Intermittent screening and
369		treatment or intermittent preventive treatment with dihydroartemisinin-piperaquine
370		versus intermittent preventive treatment with sulfadoxine-pyrimethamine for the control
371		of malaria during pregnancy in western Kenya: an open-label, three-group, randomised
372		controlled superiority trial. Lancet 386:2507-19.
373	7.	Permala J, Tarning J, Nosten F, White NJ, Karlsson MO, Bergstrand M. 2017. Prediction
374		of Improved Antimalarial Chemoprevention with Weekly Dosing of Dihydroartemisinin-
375		Piperaquine. Antimicrob Agents Chemother 61:e02491-16.
376	8.	Savic RM, Jagannathan P, Kajubi R, Huang L, Zhang N, Were M, Kakuru A, Muhindo
377		MK, Mwebaza N, Wallender E, Clark TD, Opira B, Kamya M, Havlir DV, Rosenthal PJ,
378		Dorsey G, Aweeka FT. 2018. Intermittent Preventive Treatment for Malaria in
379		Pregnancy: Optimization of Target Concentrations of Dihydroartemisinin-Piperaquine.
380		Clin Infect Dis doi:10.1093/cid/ciy218.
381	9.	Sambol NC, Tappero JW, Arinaitwe E, Parikh S. 2016. Rethinking Dosing Regimen
382		Selection of Piperaquine for Malaria Chemoprevention: A Simulation Study. PLoS One
383		11:e0154623.

384	10.	Bergstrand M, Nosten F, Lwin KM, Karlsson MO, White NJ, Tarning J. 2014.
385		Characterization of an in vivo concentration-effect relationship for piperaquine in malaria
386		chemoprevention. Sci Transl Med 6:260ra147.
387	11.	Stepniewska K, White NJ. 2008. Pharmacokinetic determinants of the window of
388		selection for antimalarial drug resistance. Antimicrob Agents Chemother 52:1589-96.
389	12.	Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, Sam B, Dek D, Try V, Amato
390		R, Blessborn D, Song L, Tullo GS, Fay MP, Anderson JM, Tarning J, Fairhurst RM.
391		2016. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in
392		Cambodia: a multisite prospective cohort study. Lancet Infect Dis 16:357-65.
393	13.	Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, Se Y, Chann S,
394		Ittiverakul M, Sia-ngam P, Kuntawunginn W, Arsanok M, Buathong N,
395		Chaorattanakawee S, Gosi P, Ta-aksorn W, Chanarat N, Sundrakes S, Kong N, Heng TK,
396		Nou S, Teja-isavadharm P, Pichyangkul S, Phann ST, Balasubramanian S, Juliano JJ,
397		Meshnick SR, Chour CM, Prom S, Lanteri CA, Lon C, Saunders DL. 2015.
398		Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13
399		C580Y in Cambodia: an observational cohort study. Lancet Infect Dis 15:683-91.
400	14.	Rasmussen SA, Ceja FG, Conrad MD, Tumwebaze PK, Byaruhanga O, Katairo T,
401		Nsobya SL, Rosenthal PJ, Cooper RA. 2017. Changing Antimalarial Drug Sensitivities in
402		Uganda. Antimicrob Agents Chemother 61.
403	15.	Menard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab
404		G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen JH, Collet L, Cui L, Thakur
405		GD, Dieye A, Djalle D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino FE, Fandeur T,
406		Ferreira-da-Cruz MF, Fola AA, Fuehrer HP, Hassan AM, Herrera S, Hongvanthong B,

Antimicrobial Agents and

Chemotherapy

430		chemoprevention in adults at high risk of malaria. Antimicrob Agents Chemother
431		56:1571-7.
432	20.	Nankabirwa JI, Wandera B, Amuge P, Kiwanuka N, Dorsey G, Rosenthal PJ, Brooker SJ,
433		Staedke SG, Kamya MR. 2014. Impact of intermittent preventive treatment with
434		dihydroartemisinin-piperaquine on malaria in Ugandan schoolchildren: a randomized,
435		placebo-controlled trial. Clin Infect Dis 58:1404-12.
436	21.	Tumwebaze P, Tukwasibwe S, Taylor A, Conrad M, Ruhamyankaka E, Asua V,
437		Walakira A, Nankabirwa J, Yeka A, Staedke SG, Greenhouse B, Nsobya SL, Kamya
438		MR, Dorsey G, Rosenthal PJ. 2017. Changing Antimalarial Drug Resistance Patterns
439		Identified by Surveillance at Three Sites in Uganda. J Infect Dis 215:631-635.
440	22.	Taylor AR, Flegg JA, Holmes CC, Guerin PJ, Sibley CH, Conrad MD, Dorsey G,
441		Rosenthal PJ. 2017. Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine Exert
442		Inverse Selective Pressure on Plasmodium Falciparum Drug Sensitivity-Associated
443		Haplotypes in Uganda. Open Forum Infect Dis 4:ofw229.
444	23.	Yeka A, Wallender, E, Mulebeke, R, Kibuuka, A, Kigozi, R, Bosco, A, Kyambadde, P,
445		Opigo, J, Kalyesubula, S, Senzoga, J, Vinden, J, Conrad, M, Rosenthal, PJ. 2018.
446		Comparative efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for
447		the treatment of uncomplicated malaria in Ugandan children. JID in press.
448	24.	Muhindo MK, Kakuru A, Natureeba P, Awori P, Olwoch P, Ategeka J, Nayebare P,
449		Clark TD, Muehlenbachs A, Roh M, Mpeka B, Greenhouse B, Havlir DV, Kamya MR,
450		Dorsey G, Jagannathan P. 2016. Reductions in malaria in pregnancy and adverse birth
451		outcomes following indoor residual spraying of insecticide in Uganda. Malar J 15:437.

452	25.	Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, Almagro-Garcia J, Neal
453		AT, Sreng S, Suon S, Drury E, Jyothi D, Stalker J, Kwiatkowski DP, Fairhurst RM.
454		2017. Genetic markers associated with dihydroartemisinin-piperaquine failure in
455		Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study.
456		Lancet Infect Dis 17:164-173.
457	26.	Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, Chy S, Kim S, Ke S,
458		Kloeung N, Eam R, Khean C, Ken M, Loch K, Bouillon A, Domergue A, Ma L,
459		Bouchier C, Leang R, Huy R, Nuel G, Barale JC, Legrand E, Ringwald P, Fidock DA,
460		Mercereau-Puijalon O, Ariey F, Menard D. 2017. A surrogate marker of piperaquine-
461		resistant Plasmodium falciparum malaria: a phenotype-genotype association study.
462		Lancet Infect Dis 17:174-183.
463	27.	Nankabirwa JI, Conrad MD, Legac J, Tukwasibwe S, Tumwebaze P, Wandera B,
464		Brooker SJ, Staedke SG, Kamya MR, Nsobya SL, Dorsey G, Rosenthal PJ. 2016.
465		Intermittent Preventive Treatment with Dihydroartemisinin-Piperaquine in Ugandan
466		Schoolchildren Selects for Plasmodium falciparum Transporter Polymorphisms That
467		Modify Drug Sensitivity. Antimicrob Agents Chemother 60:5649-54.
468	28.	Conrad MD, LeClair N, Arinaitwe E, Wanzira H, Kakuru A, Bigira V, Muhindo M,
469		Kamya MR, Tappero JW, Greenhouse B, Dorsey G, Rosenthal PJ. 2014. Comparative
470		impacts over 5 years of artemisinin-based combination therapies on Plasmodium
471		falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect
472		Dis 210:344-53.
473	29.	Kajubi R, Huang L, Jagannathan P, Chamankhah N, Were M, Ruel T, Koss CA, Kakuru
474		A, Mwebaza N, Kamya M, Havlir D, Dorsey G, Rosenthal PJ, Aweeka FT. 2017.

475		Antiretroviral therapy with efavirenz accentuates pregnancy-associated reduction of
476		dihydroartemisinin-piperaquine exposure during malaria chemoprevention. Clin
477		Pharmacol Ther 102:520-528.
478	30.	Kjellin LL, Dorsey G, Rosenthal PJ, Aweeka F, Huang L. 2014. Determination of the
479		antimalarial drug piperaquine in small volume pediatric plasma samples by LC-MS/MS.
480		Bioanalysis 6:3081-9.
481	31.	Hopkins H, Gonzalez IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B,
482		Kyabayinze DJ, Sutherland CJ, Perkins MD, Bell D. 2013. Highly sensitive detection of
483		malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated
484		isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208:645-52.
485	32.	LeClair NP, Conrad MD, Baliraine FN, Nsanzabana C, Nsobya SL, Rosenthal PJ. 2013.
486		Optimization of a ligase detection reaction-fluorescent microsphere assay for
487		characterization of resistance-mediating polymorphisms in African samples of
488		Plasmodium falciparum. J Clin Microbiol 51:2564-70.
489	33.	Bonate PL, Steimer J-L. 2006. Pharmacokinetic-pharmacodynamic modeling and
490		simulation. Springer.
491	34.	de Kock M, Tarning J, Workman L, Nyunt MM, Adam I, Barnes KI, Denti P. 2017.
492		Pharmacokinetics of Sulfadoxine and Pyrimethamine for Intermittent Preventive
493		Treatment of Malaria During Pregnancy and After Delivery. CPT Pharmacometrics Syst
494		Pharmacol 6:430-438.
495		
496		
497		
498		

499 Figure Legends

Figure 1. Trial profile. Study subjects were tested for *P. falciparum* parasitemia monthly and
when they presented for unscheduled visits due to a febrile illness.

502 Figure 2. (A) Predicted probability of parasitemia with increasing piperaquine

503 concentration in the absence of indoor residual spraying of insecticide for women receiving

504 **DHA-PQ stratified by trimester.** The solid lines (red, second trimester; blue, third trimester)

show the median probability and shading encompasses probabilities for 95% of the population.

506 The median probability of parasitemia while receiving SP as IPTp was 39%. Contributions of

507 mutant and wild type genotypes to overall parasitemia probability during the second

508 trimester for *pfmdr1* 86 (B) and *pfcrt* 76 (C). The black line represents the median probability

509 of all parasitemia, and shaded areas indicate the proportion of the probability attributed to wild

- type (blue) and mutant (red) parasites. Results for the third trimester are shown in SupplementalFigure 3.
- 512 Figure 3. Predicted probability of detecting mutant *pfmdr1* 86Y (A) or *pfcrt* 76T (B)

513 parasites with increasing piperaquine concentrations for women receiving DHA-PQ with

parasitemia. Points are the raw data, showing isolates with mutant (100%) or wild type (0%)

515 genotypes. (C) Odds of detecting mutant genotypes in the DHA-PQ treatment arms,

516 compared to the SP arm. The solid line is the median probability or increased odds of detecting

a mutant parasite during an episode of parasitemia and the shading encompasses the probability

519 Figure 4. Association between piperaquine concentration and probability of wildtype or

- 520 mutant genotype among women in the second trimester receiving DHA-PQ. Probabilities of
- 521 detecting *pfmdr1* 86 (A) or *pfcrt* 76 (B) genotypes are shown, with closer visualization of the

⁵¹⁸ or increased odds of detecting a mutant parasite for 95% of the population.

curves enclosed in boxes shown for pfmdr1 86 (C) and pfcrt 76 (D). Arrows indicate the
median concentrations (ng/ml) providing 99% protection against parasitemia. Lines indicate the
median probabilities, and the shading indicates the probability of detecting mutant parasites for
95% of the population.
Figure 5. (A) Predicted percentage of time above piperaquine concentrations protective
against 99% of parasitemia episodes during pregnancy by DHA-PQ regimen. Boxes
indicate the interquartile range and error bars represent 95% of the population. (B) Predicted
number of new episodes of parasitemia (gray bars) and episodes of parasitemia with a
mutant infection at pfmdr1 86 (red) and pfcrt 76 (blue) during pregnancy for each
chemoprevention regimen.

527 against 99% of parasitemia episodes during pregnancy by DHA-PQ reg Boxes Predicted indicate the interquartile range and error bars represent 95% of the population 528 ia with a 529 number of new episodes of parasitemia (gray bars) and episodes of para 530 mutant infection at pfmdr1 86 (red) and pfcrt 76 (blue) during pregnanc each 531 chemoprevention regimen.

- 532
- 533

534

535

536

537

538

539

540

541

522

523

524

525

526

Antimicrobial Agents and

Chemotherapy

Tables 542

Table 1. Characteristics of study participants. 543

	SP every 8			
	weeks	DP every 8 weeks	DP every 4 weeks	
Characteristic	N=106	N=94	N=100	
Age in years, mean (SD)	21 (3.6)	22 (4.3)	23 (4.0)	
Gravidity (%)				
1	42 (40%)	33 (35%)	36 (36%)	
2	32 (30%)	28 (30%)	28 (28%)	
≥3	32 (30%)	33 (35%)	36 (36%)	
Gestational age at first study drug treatment (%)				
16 weeks	-	-	68	
20 weeks	106	94	32	
Number of PQ concentration observations				
Venous	-	300	352	
Capillary	-	278	280	
Visits after participant received indoor	101	101	153	
residual spraying of insecticide	101	101	155	
First episodes of parasitemia after each				
administration of study drug ^a				
Genotypes				
pfmdr1 N86Y genotype available (%)	117 (84%)	37 (100%)	28 (93%)	
<i>pfmdr1</i> 86Y (%)	32 (27%)	18 (49%)	24 (86%)	
pfcrt K76T genotype available (%)	122 (87%)	37 (100%)	28 (93%)	
<i>pfcrt</i> 76T (%)	92 (82%)	31 (84%)	26 (93%)	

Antimicrobial Agents and Chemotherapy

^a To avoid consideration of effects of AL or repeat observations of the same parasites, parasitemia

545 detected after treatment with AL and before subsequent receipt of DHA-PQ or parasites detected

repeatedly without interval receipt of DHA-PQ were excluded.

547 Table 2. Pharmacokinetic/pharmacodynamic model parameters.

		Parameter		Between Subject	
Mode	l/Parameter	Estimate	RSE (%)	Variability (CV%)	RSE (%)
Sulfadoxine-pyrimethamine pharmacodynamic model Baseline logit441 39% 115% 14					
	Baseline logit	441	39%	115%	14%
logit ^a	Primigravid baseline	.511	78%	-	-
	Indoor residual spraying	72	60%	-	-
	Dry season	-1.13	28%	-	-
Dihyd	roartemisinin-piperaquine pha	rmacokinetic/phar	macodynamic mo	del for parasitemia	
	Baseline logit	508	72%	73%	17%
logit ^a	Primigravid baseline	.582	64%	-	-
	Slope of concentration dependent effect (mL/ng)	204	16%	-	-
	Indoor residual spraying	-10 FIXED	-	-	-
	Third trimester	-1.45	45%	-	-
Dihydroartemisinin-piperaquine pharmacokinetic/pharmacodynamic model for pfmdr1 N86Y					
	Baseline logit	-1.16	11%	3.8%	53%
	Slope of concentration dependent effect	.317	21%	-	-

Dihydroartemisinin-piperaquine pharmacokinetic/pharmacodynamic model for pfcrt K76T						
Baseline logit	1.06	11%	2.2%	22%		
Slope of concentration dependent effect	.218	22%	-	-		

^aBaseline logit used for all gravidities after start of IPTp as gravidity was not a significant predictor of

549 parasitemia after the start of chemoprevention.

		P.	ofmdr1 86Y		pfcrt 76T		
	Number of		Ratio of			Ratio of	
	infections per	Mutant	mutant			mutant	
	1,000 pregnancies	Infections	infections		Mutant infections	infections	
Piperaquine dose	(95% CI)	(95% CI)	DP/SP	p-value	(95% CI)	DP/SP	p-value
0 mg (SP)	2066 (1988-2162)	607 (570-650)	-	-	1564 (1495-1564)	-	-
2,880 mg monthly	317 (280-358)	198 (165-232)	.32	<.001	283 (248-315)	.18	<.001
960 mg weekly	105 (85-122)	87 (71.0-104)	.14	<.001	99 (80.4-115)	.06	<.001
160 mg daily	8.0 (4.0-14.0)	8.0 (3.5-13.5)	.01	<.001	8.0 (4.0-14.0)	.005	<.001
320 mg daily	1.0 (1.0-2.1)	1.0 (.96-2.1)	.002	<.001	1 (1.0-2.1)	.001	<.001

550 Table 3. Predicted number of mutant infections after starting chemoprevention per 1,000 pregnancies by dosing regimen^a.

551 *Estimated based on monthly surveillance for parasitemia in the absence of indoor residual spraying of pesticide or seasonal variation in

552 transmission

Downloaded from http://aac.asm.org/ on May 21, 2019 by guest

Figure 1. Trial profile. Study subjects were tested for *P. falciparum* parasitemia monthly and when they presented for unscheduled visits due to a febrile illness.

Antimicrobial Agents and

Chemotherapy

Figure 2. (A) Predicted probability of parasitemia with increasing piperaquine concentration in the absence of indoor residual spraying of insecticide for women receiving DHA-PQ stratified by trimester. The solid lines (red, second trimester; blue, third trimester) show the median probability and shading encompasses probabilities for 95% of the population. The median probability of parasitemia while receiving SP as IPTp was 39%. Contributions of mutant and wild type genotypes to overall parasitemia probability during the second trimester for *pfmdr1* 86 (B) and *pfcrt* 76 (C). The black line represents the median probability of all parasitemia, and shaded areas indicate the proportion of the probability attributed to wild type (blue) and mutant (red) parasites. Results for the third trimester are shown in Supplemental Figure 3.

AA(

A

Probability of pfmdr1 86Y

Antimicrobial Agents and Chemotherapy

100%

90%

80%

70%

60%

50%

40%

30%

20%

10% 0%

С

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Allele

pfmdr1 86Y

pfcrt 76T

в

Probability of pfcrt 76T

100%

90%

80%

70%

60%

50%

40%

30%

receiving DHA-PQ and parasitemia is detected. Points are the raw data, showing isolates with mutant (100%) or wild type (0%) genotypes. (C) Odds of detecting mutant genotypes in the DHA-PQ treatment arms, compared to the SP arm. The solid line is the median probability or increased odds of detecting a mutant parasite during an episode of parasitemia and the shading encompasses the probability or increased odds of detecting a mutant parasite for 95% of the population.

Antimicrobial Agents and Chemotherapy

Figure 4. Association between piperaquine concentration and probability of mutant genotype among women in the second trimester receiving DHA-PQ. Probabilities of detecting *pfindr1* 86 (A) or *pfcrt* 76 (B) genotypes are shown, with closer visualization of the curves enclosed in boxes shown for *pfindr1* 86 (C) and *pfcrt* 76 (D). Arrows indicate the median concentrations (ng/ml) providing 99% protection against parasitemia. Lines indicate the median probabilities, and the shading indicates the probability of detecting mutant parasites for 95% of the population.

Weekly 160 mg dail DHA-PQ Regimen

160 mg daily 320 mg daily

Figure 5. (A) Predicted percentage of time above piperaquine concentrations protective against 99% of parasitemia episodes during pregnancy by DHA-PQ regimen. Boxes indicate the interquartile range and error bars represent 95% of the population. (B) Predicted number of new episodes of parasitemia (gray bars) and episodes of parasitemia with a mutant infection at *pfmdr1* 86 (red) and *pfcrt* 76 (blue) during pregnancy for each chemoprevention regimen.

SP

Weekly

Chemoprevention Regimen

Monthly

160 mg daily 320 mg daily

0-

Monthly