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Abstract: Quantum-confined Stark effect with a record absorption contrast of 2.5 for 1V swing is 

demonstrated in Ge/GeSi quantum well stacks grown on Si using ultra-thin buffer layers, targeting 

future integration in a silicon photonics platform. 
OCIS codes: (230.4205) Multiple quantum well (MQW) modulators; (200.4650) Optical interconnects 

Previously, Ge(Si) based Franz-Keldysh effect (FKE) electro-absorption modulators (EAM) have been demonstrated 

in a silicon photonics platform, capable of transmitting data at >50 Gbps with ultra-low dynamic power consumption 

[1, 2]. However, these devices suffer from a relatively low absorption contrast (∆α/α) and the operation wavelength is 

limited to the 1550-1625 nm range. Quantum-confined Stark Effect (QCSE) based EAM using Ge quantum wells 

(QWs) have higher ∆α/α (greater than 2× as compared to Ge FKE EAM) and can be tuned to operate at 1310 nm. 

They typically require thick buffer layers for their growth on Si which increase the overall thickness of the device 

stack and make optical coupling with Si waveguides difficult [3,4]. In this work, we demonstrate Ge/SiGe QWs stacks 

grown on 300 mm Si (001) wafers using ultra-thin buffer layers (150 nm) without any significant degradation of the 

∆α/α contrast. The demonstrated Ge/GeSi stacks have a total thickness of ~ 400 nm, enabling the future integration of 

QCSE EAMs with low drive voltage and low coupling loss in a 220 nm silicon photonics platform. 

The device stacks under investigation in this work are based on an epitaxy strategy that results in a minimum 

strain build-up through the entire stack while using thin relaxed buffer layers, similar to the demonstration by Edwards 

et. al [4]. In these stacks, Si0.11Ge0.89 is used as strain-relaxed buffer layer, with 4× 14 nm-thick Ge QWs sandwiched 

between 18 nm-thick Si0.19Ge0.81 barrier layers. All the layers used in this work were grown in an ASM Intrepid™ 

reduced-pressure chemical vapour deposition production cluster. 150 and 300 nm buffer layers were grown on p-type 

B-implanted Si at 500°C using germane (GeH4) and dichlorosilane (SiH2Cl2) as Ge and Si precursors. After growth, 

the buffers were subsequently annealed at 850°C in H2 for 3 min to reduce the amount of threading dislocations and 

ensure a full relaxation, confirmed using X-ray Diffraction (XRD) and Reciprocal Space Mapping (RSM). Surface 

morphology inspections performed by Atomic Force Microscopy (AFM) revealed that the 150 nm buffer had a higher 

RMS roughness compared to the 300 nm case. Additionally, the defect density in the thinner buffer is expected to be 

higher than in the thicker buffer [5]. These degradations in the form of surface roughness and defectivity could 

introduce additional linewidth broadening to the measured absorption spectrum. The implanted region in the Si wafer 

formed the p-contact of the diode with active doping level of ~3×1018 cm-3. Additionally, the 150 nm buffer was p-

type in-situ doped using diborane (B2H6), yielding a doping level of 3×1018 cm-3, so that the applied electric bias is 

effectively transferred up to the multi-QWs (MQW) region. QWs were grown at low temperature (< 400°C) using 

digermane (Ge2H6) and disilane (Si2H6) as precursors. The deposition of the MQWs was followed by the epitaxy of a 

20 nm thick undoped Si0.11Ge0.89 barrier and a 90 nm thick n-type in-situ doped Si0.11Ge0.89 grown using arsine (AsH3). 

The role of the undoped barrier layers is to avoid any dopant diffusion into the QWs region. The top layer, doped up 

to ~1×1019 cm-3, formed the n-contact of the diode.  

The QCSE-related shift in absorption was measured by monitoring the change in absorption related 

photocurrent in the diode as a function of applied electric bias. This measurement was facilitated by the fabrication of 

diodes formed by vertically dry etching circular mesas through the Ge/Si0.19Ge0.81 MQW stack down to the Si substrate. 

Ti/Pt/Au contacts were deposited with a circular opening to input light at the center of the device using electron beam 

evaporation and a subsequent lift-off process. The contacts were electrically isolated by SiO2. Fig. 1 shows a 

microscope image of the fabricated device. 
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The MQW stacks, measured with a free space spectrometer, reveal a sharp absorption feature around 1425 

nm at room temperature. To measure the photocurrent-mediated Stark effect, the devices were heated to 75°C to shift 

the absorption spectrum by 40 nm to the wavelength range supported by the tunable laser (1440 -1640 nm). The 

measured response for the MQW stack grown on the 150 nm buffer is shown in Fig. 2 (a). The photocurrent response 

was extracted by subtracting the dark current from the light current. As the reverse DC bias was increased in the diode, 

the electric field in the MQW region also increased resulting in a red shift in absorption spectrum due to the Stark 

effect. Absorption contrast (∆α/α, also known as Figure of Merit) for a voltage swing of 1 Vpp and variable DC bias 

was extracted from these photocurrent responses and is shown in Fig. 2. (b). It was found to vary from 2.2 to 3.0, 

depending on the operating wavelength, with an average value of 2.5. The absorption contrast from the 300 nm buffer 

stack, shown in Fig. 2 (c), was extracted for a voltage swing of 2 Vpp since the buffer layer was undoped. Therefore, 

the voltage applied over the diode did not efficiently translate to high electric fields. As a result, the E-field contrast 

for 2 Vpp (~ 46 kV/cm) from the MQW stack grown on the 300 nm undoped buffer is similar to the one obtained with 

1 Vpp from the stack grown on the 150 nm doped buffer. Fig. 2 (c) summarizes the absorption contrast for an E-field 

of ~ 46 kV/cm, extracted from the Ge based EAMs presented in this work and in previous literature [1,2,4]. By 

reducing the buffer thickness from 300 nm to 150 nm, ∆α/α drops from 3 to 2.5 due to linewidth broadening introduced 

by the increased surface roughness and the higher defect density. Nevertheless, such measured ∆α/α is 2.5× larger 

than the Ge based FKE EAM. This demonstration based on a 150 nm thin buffer and comparable total stack 

thicknesses, is crucial for realizing a waveguide integrated QCSE EAM.  

To summarize, quantum-confined Stark effect with record absorption contrast of 2.5 for 1V swing is 

demonstrated in Ge/GeSi MQW grown on ultra-thin buffer layers. This contrast is greater than 2× as compared to Ge 

FKE EAM and can enable waveguide-integrated QCSE EAMs with low coupling loss in a 220 nm silicon photonics 

platform due to a total stack thickness limited to ~ 400 nm. 
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Fig 1. Cross-section schematics and top-view microscope image of a fabricated device with the MQW region grown on the Si0.11Ge0.89 buffer. 

     

Fig. 2. a) Photocurrent spectra of the surface illuminated diode with MQW grown on a 150 nm-thick buffer. b) Absorption contrast (∆α/α) for 
E-field contrast of ~ 46 kV/cm estimated from the photocurrent spectra. c) Comparing the measured ∆α/α for an E-field contrast of ~ 46 kV/cm 

from Ge EAMs in [1,2,4] to the devices in this work.   
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