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Abstract 

The practically important problem of the modification of laminate out-of-plane shear stiffness by 

ply cracks is hardly investigated in the literature. In this paper, out-of-plane shear stiffness 

reduction of laminates containing uniform and non-uniform distributions of ply cracks is studied. 

A novel variational model is developed to determine accurately stress transfer mechanisms and 

consequently out-of-plane shear stiffness reduction of general cracked laminates under applied 

out-of-plane shear loads. It is shown that the presence of ply cracks in a laminate under out-of-

plane shear loads, perturbs the uniform distribution of shear stresses and induces high gradients 

of in-plane stresses leading to large shear stiffness reductions. The results are compared with 

those of the finite element method (FEM) implementing periodic boundary conditions. It is 

shown that there is excellent accordance between the results obtained from these approaches. 

The outcome of the paper provides necessary information for determination of damage-based 

constitutive laws for composites.  

Keywords: Out-of-plane shear stiffness reduction; Ply cracking; Stress transfer; Periodic 

boundary conditions; non-uniform cracking 
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1. Introduction 

Three types of behavior are usually considered when designing composite laminated structures 

[1]: (i) linear elastic behavior without the presence of any microscopic damage modes for 

relatively low applied loads, (ii) non-linear stress-strain behavior and deterioration of effective 

laminate properties due to the stable formation of microscopic damage mechanisms (ply 

cracking, delamination, fiber fracture, etc.) for larger applied loads, and (iii) finally catastrophic 

failure due to the unstable progressive formation of damage mechanisms. It has been observed in 

many experimental studies [2-4] that ply cracks (also known as matrix cracks, transverse cracks, 

intralaminar cracks) in laminates with off-axis plies are the first ply level damage mode under 

both applied thermo-mechanical service and environmental loads. The accumulation of ply 

cracks leads to the degradation of laminates’ thermo-elastic constants. The current research work 

concerns the first two design stages with focus on obtaining the out-of-plane shear stiffness of 

intact and cracked laminates when there is a certain distribution of uniformly and non-uniformly 

spaced ply cracks. 

Many analytical [5-9] and numerical [10, 11] models have been developed to determine stress 

transfer mechanisms between ply cracks in laminates under in-plane loads in order to predict the 

degradation of effective in-plane thermo-elastic properties of cracked symmetric laminates. 

Moreover, stress transfer in cracked un-symmetric laminates under flexural loads has also been 

addressed leading to determination of bending thermo-elastic properties [12-17] of general 

cracked laminates. In addition, cracked laminates under out-of-plane normal (through-thickness) 

applied loads are also investigated and, thus, the effective out-of-plane axial properties of 

cracked laminates can be determined [5]. Although ply cracking might largely degrade the 

effective out-of-plane shear stiffness of laminates, stress transfer analysis of cracked laminates 
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under out-of-plane shear loads is sadly neglected in the literature. It is mainly due to the lack of 

physical boundary conditions and difficulty in making admissible stress fields in analytical 

models under out-of-plane shear loads. The use of finite element models is also tedious as 

complex three dimensional periodic boundary conditions are needed. However, an objective 

multiscale physics-based damage modeling [18, 19] of ply cracking should take into account the 

effects of ply cracking on all stiffness parameters. Even in continuum damage modeling of ply 

cracking, only reduction of the in-plane properties of a cracked ply like that of Ladevèze’s meso-

model [20] is not sufficient because a transversely isotropic ply after cracking and being 

homogenized is no longer transversely isotropic.  

In the current paper, a novel variational model is developed to determine accurately the stress 

fields and subsequently out-of-plane shear stiffness of general laminates (possibly un-balanced 

and un-symmetric) under applied out-of-plane shear loads in the presence of a uniform 

distribution of ply cracks. A completely different stress transfer mechanism than those under in-

plane loads is observed. In a laminate under in-plane loads, the presence of cracks perturbs the 

uniform distribution of in-plane stresses and induces high gradients of out-of-plane shear 

stresses leading to the in-plane stiffness reductions. However, it is shown here that in a laminate 

under out-of-plane shear loads, the presence of cracks perturbs the uniform distribution of out-

of-plane shear stresses and triggers high gradients of in-plane stresses leading to out-of-plane 

shear stiffness reductions. The study of this stress transfer mechanism in the cracked laminate is 

necessary for the modification of laminate out-of-plane shear stiffness and prediction of 

secondary damage modes, e.g. ply cracking in neighboring plies and delamination at the 

interfaces. To verify the developed variational approach, the finite element method is applied on 

a repeated unit cell by implementing three dimensional periodic boundary conditions. A simple 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

approximate methodology is also derived to obtain the out-of-plane shear stiffness of general 

cracked laminates containing non-uniformly spaced ply cracks. It is shown that the presence of 

cracks largely degrades the out-of-plane shear stiffness of laminates. The single fundamental 

assumption of the developed method is that the out-of-plane shear stresses are linear through the 

thickness of each ply. This assumption is also relaxed by implementing a ply refinement 

technique by dividing each ply into several ply elements with the same material properties. 

2. Theoretical formulation of variational approach 

2.1 Geometry and coordinate system 

A multi-layered composite laminate made of N plies with general lay-up (possibly un-

symmetric) under axial (τa) and transverse (τt) out-of-plane shear loads, is considered. A 

Cartesian coordinate system with its origin located at the center of the laminate will be 

considered as shown in Figs. 1a and b, where the x, y and z directions, respectively, define the 

in-plane axial, in-plane transverse and through-thickness directions. The N-1 interfaces between 

the layers are shown by z=zi; i=1, 2... N-1. The lower and upper external surfaces are denoted by 

z=z0=-h and by z=zN=h, where 2h is the total thickness of the laminate. The thickness of the ith 

ply is specified by hi=zi-zi-1. The laminate is assumed to have length 2L in the axial direction (x-

axis) and width 2W in the  transverse direction (y-axis).  

2.2 Analysis of undamaged laminate 

For an undamaged laminate subject to the input applied loading parameters τa and τt, the 

effective out-of-plane axial shear strain 0
aγ  and the effective out-of-plane transverse shear strain 

0
tγ , control the deformation of the laminate. Moreover, the external edges of the undamaged 

laminate are subject to uniform shear stresses τa and τt, thus, for all layers in the laminate, we 

have 
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0( ) 0( ) 0( ) 0( ) 0( ) 0( ), , 0, 1... .i i i i i i
xz a yz t xx yy zz xy i Nτ τ τ τ σ σ σ τ= = = = = ≡ =  (1) 

where 0( ) 0( ),i i
xx xzσ τ , etc., denote stress terms in the ith layer of the undamaged laminate. The 

material is monoclinic (no coupling between out-of-plane shear and axial directions) and thus, 

we have: 

 0( ) 0( ) 0( ) 0( ) 0( ) 0( )
44 45 45 55, , 0.i i i i i i i i i i

yz t a xz t a xx yy zz xys s s sγ τ τ γ τ τ ε ε ε γ= + = + = = = =  (2) 

where 44
is , 45

is  and 55
is  terms are members of  the compliance matrix 6 6[ ]i

kls ×  of the ith layer in the 

global (x, y, z) coordinate system and 0( )i
xxε , 0( )i

xzγ , etc., denote strain terms in the undamaged 

laminate. The effective out-of-plane axial 0
aγ  and transverse 0tγ  shear strains for the undamaged 

laminate are then given by 

0
0 0( ) 0

0 0
1

0
0 0( ) 0

0 0
1

1 1
,

2
1 1

,
2

N
i s

t i yz t t a
i t a
N

i s
a i xz a t a

i a a

h
h G G

h
h G G

λγ γ γ τ τ

λγ γ γ τ τ
=

=

= ⇒ = −

= ⇒ = − +

∑

∑
 

 

(3) 

where the out-of-plane transverse 0tG  and axial 0
aG  shear stiffness modules and out-of-plane 

shear coupling parameter 0sλ for the undamaged laminate, can be obtained as follows: 

  

45
0 0 0 1

44 55 55
1 1 1

1 1
, , .

1 1
2 2

N
i

i
i

t a sN N N
i i i

i i i
i i i

h s
G G

h s h s h s
h h

λ =

= = =

= = = −
∑

∑ ∑ ∑
 

 

(4) 

The analysis presented in this section might be regarded as an extension of the classical 

laminated plate theory where the effects of out-of-plane loads are included and out-of-plane 

shear stiffness terms are defined. 

2.3 Analysis of the laminate containing uniformly spaced ply cracks 
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Imagine now that the laminate is damaged with uniformly spaced ply cracks, having a separation 

2a, in some of its 900 plies (parallel to the y-axis, see Fig. 1a). As cracks are uniformly 

distributed, a unit cell of length 2a, thickness 2h and width 2W between two consecutive cracks 

with the (x, y, z) coordinate system located at the center of the unit cell, will be considered to 

derive the stress fields. 

2.3.1 Stress transfer analysis  

It is noted that the presence of cracks perturbs the undamaged stress fields and thus, the stresses 

in the ith ply of the cracked laminate ( )i
mnσ  will be written as follows: 

 ( ) 0( ) ( )( , ) ( ) ( , ), , , , ,i i p i
mn mn mnx z z x z m n x y zσ σ σ= + =   (5) 

where 0( )i
mnσ are the stresses in the ith layer of the undamaged laminate (obtained in the previous 

section) and ( )p i
mnσ are the unknown perturbation stresses in the ith ply due to the presence of 

cracks.  

We assume that out-of-plane perturbation shear stresses have piecewise linear forms, as follows: 

( ) 1 1

( ) 1 1

' '

' '

( )( ) ( )( )
,

( )( ) ( )( )
, 1... ,

p i i i i i
xz

i i

p i i i i i
yz

i i

p x z z p x z z

h h

q x z z q x z z
i N

h h

τ

τ

− −

− −

− −= −

− −= − =
  

(6) 

where pi(x) and qi(x) are 2(N+1) unknown perturbation stress terms which are functions of x 

only, and are zero when the laminate is undamaged. Also, the prime sign shows the derivative 

with respect to x. It should also be noted that the above assumed forms satisfy automatically the 

continuity of out-of-plane shear stresses at the interface between plies (z=zi, i=1…N-1). The 

other stress terms can be found using the satisfaction of equilibrium equations
, 0i

mn nσ =  and 

traction continuity conditions between plies for out-of-plane normal stresses( )p i
zzσ , as follows: 
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( ) ( )1 1

2 2 1
1( ) 1 1 0 1

1

'''' '' ''

( ) ( ) ( ) ( )
, ,

( )( )( )( ) ( )( ) ( )
,

2 2 2 2

p i p ii i i i
xx xy

i i

i
j j jp i i i i i

zz
ji i

p x p x q x q x

h h

p x h hp x z z p x z z p x h

h h

σ τ

σ

− −

−
+− −

=

− + − += =

+− −= − + − −∑
  

(7) 

The obtained perturbation stress fields should also balance the applied out-of-plane shear loads. 

The undamaged stress fields have already balanced the applied loads, thus, the following 

relations must be considered between the perturbation stresses: 

 
( )

( )
1

1

( ) ' '
1

1 1

( ) ' '
1

1 1

0 ( ) ( ) 0,
2

0 ( ) ( ) 0,
2

i

i

i

i

N Nz p i i
xz i iz

i i

N Nz p i i
yz i iz

i i

h
dz p x p x

h
dz q x q x

τ

τ

−

−

−
= =

−
= =

= ⇒ + =

= ⇒ + =

∑ ∑∫

∑ ∑∫
  

(8) 

where the satisfaction of the above equations ensure the normal traction free conditions (σzz=0) 

at z=±h. The in-plane perturbation transverse stresses ( )p i
yyσ  can be defined in terms of other 

stress terms with the assumption that under the assumed loading condition the in-plane 

transverse strains are zero in both cracked and undamaged laminates, as follows:  

( )

( ) ( ) ( ) ( ) ( )
12 22 23 26

( ) ( ) ( ) ( )
12 23 26

22

0

1
,

p i i p i i p i i p i i p i
yy xx yy zz xy

p i i p i i p i i p i
yy xx zz xyi

s s s s

s s s
s

ε σ σ σ τ

σ σ σ τ

≡ = + + + ⇒

= − + +
  

(9) 

Finally, the Eqs. (6), (7) and (9) form an admissible stress field that satisfies exactly the 

equilibrium equations and all through-thickness traction continuity and boundary conditions for 

any 2(N+1) functions pi(x) and qi(x). In addition, Eqs. (8) and (9) assert that there are two 

relations between the perturbation functions, thus, the number of unknown perturbations function 

that must be found is 2N. These unknown functions will be obtained by minimization of the 

complementary energy. 
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 It is shown [21] that in order to minimize the complementary energy, it is sufficient to minimize 

the perturbation complementary energy UP, which can be written as follows:  

{ } { }
1

( ) ( )

1

1 1
.

2 2
i

i

N a z Tp pT p p i i p i
klV a z

i

U s dV s dzdxσ σ σ σ
−−

=

  = =    
∑∫ ∫ ∫  

 (10) 

Where V is the region occupied by the laminate. 

The perturbation complementary energy can be simplified as Eq. (11) in terms of 2N unknown 

independent perturbation functions, by inserting the perturbation functions (Eqs. (6)-(9)) and the 

compliance matrices of each ply into Eq. (10) and integrating over z: 

{ } { } { } { } { }( )' '' '

00 00 00
11 22 12

11 11 11
11 22 12

22 20 20
11 11 12

' ' ' ' ' '

'' '' '' ''

, , , , , ,

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ } { } [ ]{ }

{ } [ ]{ } { } [ ]{ } { } [ ]{ },

aP

a

T T T

T T T

T T T

U F x p p p q q dx where

F p C p q C q p C q

p C p q C q p C q

p C p p C p p C q

−
=

= + +

+ + +

+ + +

∫

 

(11) 

and where {p} and {q} represent independent unknown perturbation functions (written in a 

vector form) and the coefficient matrices00
11[ ]C , etc., can be easily evaluated analytically in terms 

of ply properties. Finally, minimizing the functional in Eq. (11) leads to a set of ordinary 

differential equations with constant coefficients, as follows: 

1 2 3 4 5

4 5 6 7

'''' '' ''

'' ''

[ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ } 0,

[ ] { } [ ] { } [ ]{ } [ ]{ } 0,T T

T p T p T p T q T q

T p T p T q T q

+ + + + =

+ + + =
 

(12) 

where 

22 22 20 20 11 11 00 00
1 11 11 2 11 11 11 11 3 11 11

11 20 00 11 11 00 00
4 12 12 5 12 6 22 22 7 22 22

[ ] [ ] [ ] , [ ] [ ] [ ] [ ] [ ] , [ ] [ ] [ ] ,

[ ] [ ] [ ] ,[ ] [ ], [ ] [ ] [ ] , [ ] [ ] [ ] .

T T T T

T T T

T C C T C C C C T C C

T C C T C T C C T C C

= + = + − − = +

= − + = = − − = +
 

(13) 

The readers can refer to many available mathematical text books or Ref. [6] to find the general 

solution of the differential equations similar to that of Eq. (12). However, after finding the 
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general solution, boundary conditions are needed to determine the solution. The coupled system 

of differential equations in Eq. (12) requires, in total, 6N traction boundary conditions. It is noted 

that for a laminate with N layers there are N+1 interface locations (z=zk, k=0…N) including the 

external lower and upper surfaces. Imagine there are Nc interface locations adjacent to cracked 

plies and Nu interface locations which are not adjacent to any cracked plies (there should be at 

least one interface of this type), thus, we have Nc+Nu=N+1. Suppose further that 

{ }0,1,2,...,pI N=  is the set of all N+1 interface indices (z=zk, k=0…N). Moreover, c pI I⊂  is 

the set of indices of interface locations adjacent to cracked plies and u pI I⊂  is the set of indices 

of the uncracked interfaces. Therefore, we have clearly c u pI I I=U  and 0c uI I ≡I  .  

The traction free conditions at the plane containing cracks x=±a for Nc interface locations 

adjacent to cracked plies provide 6Nc boundary conditions, as follows:  

( ) 0 ( ) 0,xx k ca p a k Iσ ± = ⇒ ± = ∈ , 
(14) 

( ) 0 ( ) 0,xy k ca q a k Iτ ± = ⇒ ± = ∈
 , 

(15) 

'( , ) 0 ( ) ,xz k k a ca z p a k Iτ τ± = ⇒ ± = − ∈ . (16) 

For Nu interface locations which are not adjacent to any cracked plies, the periodic boundary 

conditions together with rotational anti-symmetry [22] (under assumed loading condition) about 

the vertical central axis assert the following 5(Nu-1) boundary conditions (see Eq. (8) by which 

one out of any N+1 unknowns functions were eliminated): 

( ) ( ) ( ) ( ) 0,xx xx k k ua a p a p a k Iσ σ= ± − ⇒ = ± − = ∈ , 
(17) 

( ) ( ) ( ) ( ) 0,xy xy k k ua a q a q a k Iτ τ= ± − ⇒ = ± − = ∈
 , 

(18) 

' '( , ) ( , ) ( ) ( ),xz k xz k k k ua z a z p a p a k Iτ τ= − ⇒ = − ∈ . 
(19) 
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The physical construction of the problem does not offer any evident boundary condition even in 

terms of displacement. Here, we introduce the last traction boundary condition in terms of 

mathematical natural boundary conditions [22] for Nu-1 independent interface locations, which 

are not adjacent to any cracked plies. Indeed, to minimize the functional in Eq. (11) when 

boundary values are not fully defined, it is needed to satisfy the following equation in addition to 

the differential equations in Eq. (12), 

{ } { } { } { }( )1
' '' ''

''
0 [ ] ( ) ( ) 0

x aT

x a

F
p T p a p a

p

=

=−

 ∂  ∂ = ⇒ − − =
  ∂
 

. 

(20) 

The above equation clearly provides (Nu-1) boundary conditions, as required to find the solution.  

2.3.2 The effective out-of-plane shear stiffness modules 

The effective out-of-plane shear modules of the cracked laminate can be determined, provided 

that stress fields are already obtained as a function of applied shear loads. The principle of 

minimum complementary energy for the assumed loading condition can be simplified as follows: 

{ } { }

0

0 0

0

0 0

1 1

1 1
,

12 2 1

s s

t a t at tP p p
true t a t a adm

a as s

a a a a

G G G G
U V V U U

G G G G

λ λ
τ τ

τ τ τ τ
τ τλ λ

  
        = ≤ + =         
  
    

 

(21) 

Where tG , aG  and sλ are, respectively, the out-of-plane transverse shear stiffness, axial shear 

stiffness and shear coupling parameter for the cracked laminate. Moreover, P
trueU denotes the true 

complementary energy while p
admU specifies the complementary energy computed with an 

admissible stress field. We have minimized the perturbation complementary energy pU leading 

to an upper bound for the laminate stiffness parameters. Therefore, the effective shear modules 
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of the cracked laminate can be obtained by applying three special loading cases and finding the 

perturbation complementary energy UP using Eq. (11) , as follows:  

{ , } {1,0}

{ , } {0,1}

{ , } {1,1}

0

0

0

0 0 0

1 1 2
,

(2 2 )

1 1 2
,

(2 2 )

1 1 1 1 2
2 2 .

(2 2 )

t a

t a

t a

p

t t

p

a a

ps s

a a t t a a

U
G G h L

U
G G h L

U
G G G G G G h L

τ τ

τ τ

τ τ

λ λ

=

=

=

≤ +
×

≤ +
×

≤ + − + − +
×

 

(22) 

2.4 Analysis of the laminate containing non-uniformly spaced ply cracks 

Imagine now that the laminate is damaged with non-uniformly spaced ply cracks (see Fig. 1b). 

Unlike laminates with uniformly spaced cracks, it is not possible to select a repeating unit cell 

and the stress analysis must be conducted for the entire cracked laminate. Moreover, a 

progressive ply cracking simulation usually needs considering more than hundred non-uniformly 

distributed cracks. While it is still possible to perform an exact variational analysis (see Ref. [23] 

for in-plane loads) for laminates with non-uniform distribution of ply cracks under out-of-plane 

shear loads, the simplicity and computational efficiency of the approach might be negated by too 

many coupled differential equations and boundary conditions that will arise. It should be noted 

that performing such an analysis using FEM is also not feasible when there are too many cracks 

(>100). Therefore, an approximate approach based on an assumption is implemented to obtain 

out-of-plane shear modules of the laminate. We assume that for a non-uniformly cracked 

laminate under out-of-plane shear loads, crack tip opening and in-plane sliding displacements are 

negligible in comparison to crack tip out-of-plane sliding. In other words, we assume that for a 

laminate with non-uniform distribution of cracks -L ≤x≤L (see Fig. 1b), the stress distribution for 

each fragment J between the two neighboring ply cracks, where J=1…M, corresponds to that 

found in a uniformly cracked laminate having the same crack separation (2aJ). It is noted that all 
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fragments are under the same effective average applied loads. Therefore, the total 

complementary energy of the cracked laminate can be determined by adding the complementary 

energy of each fragment which can be obtained separately, leading to simple expressions for 

laminate shear modules, as follows: 

( )
1

1 1 1
,

M

JJ
Jt t

a
G L G=

= ×∑  
(23) 

( )
1

1 1 1
,

M

JJ
Ja a

a
G L G=

= ×∑  
(24) 

( )

( )
1 1

1
, .

JM M
s s

J JJ
J Ja a

a where L a
G L G

λ λ
= =

= × =∑ ∑  
(25) 

2.5 Finite element modeling of uniform ply cracking under out-of-plane shear loads 

To verify the developed variational model for uniformly spaced ply cracks, a FEM simulation in 

ABAQUS/Standard general purpose software was performed using the 8-noded brick elements 

with full integration scheme. A unit cell similar to that considered in section (2.3), was 

considered and discretized into finite elements where traction free conditions on the crack 

surfaces were enforced. In order to consider any state of applied far-field strain/stress as out-of-

plane shear loads, periodic boundary conditions for all faces in the three dimensions were 

implemented [24]. The procedure of applying FEM and the formulation of periodic boundary 

conditions are already described in Ref. [24] and the reader should refer to this publication for 

more details. The convergence study for the FEM models was performed and very refined 

meshes were used at locations close to the crack tips and ply interfaces. An example of such 

mesh is shown in Fig. 2.  

3. Results and discussion 
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We first verify the accuracy of the developed model by comparing the stress fields obtained from 

the variational approach with those of FEM. To do so, two symmetric laminates of type [0/90]s 

and [45/90]s, made of Carbon/Epoxy, containing uniformly distributed ply cracks with density of 

ρ=1/2a=1/mm in the 900 ply, under an effective out-of-plane applied axial shear stress τa, are 

considered. The unidirectional material properties for these laminates are, E11= 141.3 GPa, 

E22=9.58 GPa, G12=5 GPa, υ12=0.3, υ23=0.32 and tply=0.25 mm. For all results obtained from the 

developed variational model, a ply refinement technique [23] is implemented by which each 

layer is first divided into six elements of equal thickness to relax the effects of assumptions in 

Eq. (6). In addition, ply elements next to the interfaces which are adjacent to the cracks were 

subdivided in half, five times to ensure having converged results. The convergence study has 

also been performed for FEM to make sure that the results are converged and as can be seen in 

Fig. 2, very refined meshes are used specially close to the cracks. Figs.3a and b show, 

respectively, the through-thickness variations of the normalized out-of-plane axial shear τxz/τa 

and normal σzz/τa stresses at the plane containing cracks (x=a) for the [0/90]s laminate. Figs. 4a 

and b depict, respectively, the axial distribution of normalized interfacial out-of-plane shear τxz/τa 

and normal σzz/τa stresses at the upper 0/90 interface (z=0.25 mm). Figs. 5a and b also show the 

axial distribution of, respectively, the normalized out-of-plane axial shear stresses τxz/τa at the 

upper external surface (z=0.5 mm) and the normalized in-plane axial stresses σxx/τa at the upper 

0/90 interface (z=0.25 mm in 900 ply). Moreover, Figs.6a and b show, respectively, the through-

thickness variations of the normalized out-of-plane axial shear τxz/τa and normal σzz/τa stresses at 

the plane containing cracks (x=a) for [45/90]s laminate. Figs. 7a and b depict, respectively, the 

normalized axial distribution of in-plane axial σxx/τa and shear τxy/τa stresses at the upper 45/90 

interface (z=0.25 mm in 900 ply). The general observation is that there is a perfect agreement 
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between the two sets of results verifying the accuracy of both approaches and the implementation 

in each software. In order to show the capability of the current approach to deal with un-

symmetric laminates, a symmetric [90/45]s laminate which is un-symmetrically cracked 

(containing cracks only in the upper 900 ply with density 1/mm) under an effective out-of-plane 

applied axial shear stress τa, is also considered. Through-thickness variations of the normalized 

out-of-plane axial τxz/τa and transverse τyz/τa shear stresses at the plane containing cracks (x=a) 

are shown, respectively, in Figs. 8a and 8b. The axial variations of the normalized out-of-plane 

axial τxz/τa and transverse τyz/τa shear stresses at the upper external surface (z=0.5mm) are also 

shown, respectively, in Figs. 9a and 9b. 

In order to study the effects of ply cracking on the laminate out-of-plane shear stiffness 

parameters, two symmetric laminates of type [0/90]s, [60/90]s and two un-symmetric laminates 

of type [0/90/30/45], [0/30/45/90], made of Glass/Epoxy, containing uniformly distributed ply 

cracks in 900 plies are considered. The unidirectional material properties for these laminates are, 

E11= 45 GPa, E22=12 GPa, G12=5.8 GPa, υ12=0.3, υ23=0.42 and tply=0.25 mm. Fig. 10a depicts 

variation of the normalized axial 
0
a

a

G

G
 and transverse 

0
t

t

G

G
 out-of-plane shear stiffness terms 

versus crack density in 900 layer.  Similarly, the variation of the out-of-plane shear coupling 

parameter λs versus crack density is shown in Fig. 10b. It can be seen that the out-of-plane axial 

shear stiffness Ga and coupling shear parameter λs are largely dependent to the crack density for 

different laminates. It can also be seen that that in a coordinate system where cracks are in 900 

plies, the transverse shear stiffness parameters Gt remain constant and are independent of crack 

density.  

Finally, in order to compare the out-of-plane shear stiffness parameters of uniformly and non-

uniformly cracked laminates, a representative volume element of [30/90]s laminate, made of 
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Glass/Epoxy, containing two cracks (M=2) in the length 2L=2mm (see Fig. 1b) with uniform and 

non-uniform distribution of cracks in 900 ply, is considered. Table 1 compares the effective out-

of-plane shear terms of laminates with different degree of non-uniformity. 

 

Table. 1: Effective elastic constants of [30/90]s laminate with 2L=2mm and M=2 (see Fig. 1b) 

when the laminate is cracked with average crack density M/2L=1/mm.  

Shear 
properties 

a1/L=0.5 
(uniform 
cracking) 

a1/L=0.4 
 

a1/L=0.3 
 

a1/L=0.2 
 

a1/L=0.1 
 

Gt (GPa) 5.089 5.089 5.089 5.089 5.089 
Ga (GPa) 4.046 4.149 4.223 4.279 4.323 

λs 0.0562 0.0577 0.0587 0.0595 0.0601 
 

It can also be observed that assuming a uniform distribution of ply cracks (a1/L=0.5) 

overestimates the out-of-plane shear stiffness reduction of the cracked laminates which is in 

agreement with previous observations on the in-plane laminate properties [23]. It also means that 

the effects of this non-uniformity should be taken into account specifically at the beginning of 

the cracking process where cracks are randomly distributed. 

4. Conclusion 

A new variational model is developed to predict accurately the stress transfer mechanisms in 

cracked general laminates under applied out-of-plane shear loads. The effective out-of-plane 

shear stiffness of laminates as a function of crack density is studied and it has been shown that 

ply cracking largely degrades the out-of-plane shear laminate properties. An approximate 

methodology is introduced to deal with non-uniformly spaced ply cracks. The comparison of the 

results with direct FE results implementing 3D periodic boundary conditions shows perfect 

accordance. The effects of ply cracking and its random or uniform distribution on the effective 
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out-of-plane shear parameters of laminates should also be taken into account when modeling ply 

cracking at structural level.  
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(a) (b) 

Fig. 1. Geometry of a laminate with arbitrary lay-up containing a) uniformly spaced and b) 

non-uniformly spaced ply cracks in one of 90-layers under out-of-plane shear loads.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

20 

 

 

Fig. 2. An example of the finite element mesh implemented in this simulation.  

 

  

(a) (b) 

Fig. 3. Through-thickness variation of a) the normalized out-of-plane axial shear τxz/τa and b) 

normal σzz/τa stresses at plane containing cracks (x=0.5mm) in the [0/90]s laminate. 
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(a) (b) 

Fig. 4. Axial distribution of a) the normalized out-of-plane axial shear τxz/τa and b) normal σzz/τa 

stresses at the upper 0/90 interface (z=0.25mm) in the [0/90]s laminate. 

 

 

 
 

(a) (b) 

Fig. 5.  Axial distribution of a) the normalized out-of-plane axial shear stress τxz/τa at the upper 

external surface (z=0.5mm) and b) the normalized in-plane axial stresses σxx/τa at the upper 0/90 

interface (z=0.25mm in 900 ply). 
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(a) (b) 

Fig. 6. Through-thickness variation of a) the normalized out-of-plane axial shear τxz/τa and b) 

normal σzz/τa stresses at plane containing cracks (x=a) in the [45/90]s laminate. 

 

 
 

(a) (b) 

Fig. 7. Axial distribution of a) the normalized in-plane axial σxx/τa and b) shear τxy/τa stresses at 

the upper 45/90 interface (z=0.25mm in 900 ply) in the [45/90]s laminate. 
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(a) (b) 

Fig. 8. Through-thickness variation of a) the normalized out-of-plane axial τxz/τa and b) 

transverse τyz/τa shear stresses at the plane containing cracks (x=a) in the unsymmetrically 

cracked [90/45]s laminate. 

 

(a) (b) 

Fig. 9. Axial distribution of a) the normalized out-of-plane axial τxz/τa and b) transverse τyz/τa 

shear stresses at upper external surface (z=0.5mm) in the unsymmetrically cracked [90/45]s 

laminate. 
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(a) (b) 

Fig. 10. Out-of-plane shear stiffness modules of laminates versus crack density in 900 ply.  

 


