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M A J O R A R T I C L E
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African trypanosomiasis encompasses diseases caused by pathogenic trypanosomes, infecting both humans
and animals. In the present article, we dissected the possible role of members of the interleukin (IL)–12 family
during infection with Trypanosoma brucei brucei and Trypanosoma evansi in mice. IL-12p35�/�, IL-12p40�/�,
and IL-12p35�/�/p40�/� mice were susceptible to both pathogens, as was demonstrated by the increased mor-
tality among these mice, compared with wild-type C57BL/6 mice. The different IL-12p70�/� mouse strains
showed similar mortality kinetics, suggesting that IL-12p70—but not the IL-12p80 homodimer or IL-23—
plays a crucial role in survival. Although there were similar plasma levels of immunoglobulin (Ig) M and
IgG2a in IL-12–deficient mice and wild-type mice, interferon (IFN)–g production, especially during early
infection, was severely impaired in all IL-12p70�/� mouse strains, demonstrating an IL-12p70–dependent
mechanism for IFN-g production. Because IFN-g receptor–deficient mice (IFN-gR�/�) were also highly sus-
ceptible to both Trypanosoma species, IL-12p70–dependent IFN-g production seems to be the important
mechanism involved in resistance against both pathogens.

Trypanosomes are unicellular eukaryotic parasites that

replicate freely in the bloodstream of a mammalian

host, ultimately resulting in sleeping sickness in hu-

mans, “nagana” (due to Trypanosoma brucei brucei) in

cattle, or “surra” (due to Trypanosoma evansi) in var-

ious other animals [1].

Trypanosomes regulate and escape the B and T cell

responses of the host. The foremost mechanism is an-

tigenic variation, whereby the surface coat of the try-
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panosome consisting of variant surface glycoprotein

(VSG) is regularly replaced, thus continually evading

the immune response of the host [2, 3]. At the time of

infection, the host responds with rapid B cell activation,

which has been found to be important for clearance of

parasites from within vascular regions [4, 5]. Further-

more, a rapid Th1 response is initiated [6–9], with the

characteristic production of interleukin (IL)–12 and in-

terferon (IFN)–g [10]. Results from Mansfield and

Paulnock [11] suggested that initiation of a polarized

VSG-specific Th1 cellular response is dependent on the

presence of IL-12 and IL-18.

The IL-12p70 molecule is a heterodimeric protein

composed of 2 glycosylated subunits—namely, p35 and

p40 [12, 13]. The p40 subunits also form homodimers

(i.e., IL-12p80) and may act antagonistically to the

functioning of IL-12 by blocking signal transduction

via the receptor [14]. However, IL-12p80 homodimer

may also act in an agonistic manner to IL-12 in its

ability to induce cell-mediated Th1 immune responses

[15, 16]. In addition to forming p35/p40 and p80 di-

mers, the p40 subunit also binds to p19, forming
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IL-23 [17]. The IL-12p80 homodimer also acts as an antagonist

in IL-23 signaling [14].

Studies using IL-12–deficient mice in models of severe in-

fectious disease, such as toxoplasmosis [18], listeriosis [19],

leishmaniasis [20], Chagas disease [21], and tuberculosis [16],

have found that IL-12–independent IFN-g can be produced,

resulting in residual resistance. IFN-g, which plays a central

role in resistance to trypanosomiasis, is produced primarily by

activated Th1 cells, which, in turn, induce macrophages to

release trypanocidal molecules, including reactive oxygen in-

termediates, reactive nitrogen intermediates, and tumor necro-

sis factor (TNF) [7, 8, 22, 23]. Mice lacking TNF have displayed

reduced ability to control the parasite load in the vascular com-

partment [24].

In this comparative study of T. b. brucei and T. evansi in-

fection models, the IL-12 family—namely, IL-12p70, IL-12p80

homodimer, and IL-23—were examined using IL-12p35–, IL-

12p40–, and IL-12p35/p40–deficient mice. The data obtained

suggest that IL-12p70—but not IL-12p80 homodimer or IL-

23—is necessary for the development of resistance against both

T. brucei and T. evansi parasites. IL-12 deletion resulted in the

impaired IFN-g production necessary for parasitemia control

and survival.

MATERIALS AND METHODS

Mice. IL-12p35�/� [20] and IL-12p40�/� [25] on a 129Sv/Ev

background, backcrossed 5 times to C57BL/6, IFN-g receptor

(IFN-gR)�/� 129Sv/Ev [26], C57BL/6, and 129Sv/Ev mice were

maintained under specific pathogen–free conditions. For the

generation of homozygous double-deficient mice, IL-12p35�/�

and IL-12p40�/� mice were intercrossed and genotyped by poly-

merase chain reaction [20, 25]. Experiments were performed

within the guidelines of the Animal Research Ethics Board of

the University of Cape Town (Cape Town, South Africa) (an-

imal ethics approval number 005/041).

Parasites. The pleomorphic T. b. brucei AnTat 1.1E clone

and T. evansi (code, KETRI 2480; stock no., ITMAS 110297)

were obtained from the Institute of Tropical Medicine (An-

twerp, Belgium).

Infection and parasitemia. Mice were infected intraperi-

toneally with T. b. brucei trypanosomes and T.3 35 � 10 1 � 10

evansi trypanosomes. Blood samples were obtained for parasite

enumeration, diluted 1/200 in RPMI 1640 (10% fetal calf se-

rum) (Highveld Biological, Johannesburg), and counted under

a light microscope (Nikon).

Cytokine ELISAs. Cytokines in plasma were measured by

ELISA performed as described elsewhere [27], with modifica-

tions. Plasma and cytokine standards were serially diluted 3-

and 2-fold, respectively. Cytokine standards, together with coat-

ing and biotinylated antibodies for TNF and IFN-g (BD

PharMingen), were used. Streptavidin-labeled horseradish per-

oxidase (BD PharMingen) and 3,3′,5,5-tetramethylbenzidine

(KPL) were used for detection and development, respectively.

The lower limit of detection for both IFN-g and TNF was 16

pg/mL.

Quantification of anti-VSG plasma titers. Anti–trypano-

some-derived antigen antibody titers were determined as de-

scribed elsewhere [28].

Graph and statistical analysis. Data are expressed as the

mean (�SE) of individual determinations, with statistical

analysis performed using the unpaired Student’s t test for ELI-

SAs. Survival data showed that, for each experiment, mortality

in 11 IL-12–deficient group was significantly increased, com-

pared with mortality in wild-type mice, by use of Kaplan-Meier

analysis with the log-rank test. Thus, experiments were pooled,

increasing the number of mice per group. Analysis between

wild-type groups of repeated experiments performed using 1-

way analysis of variance (ANOVA), with Dunnett’s test per-

formed as the posttest, found that parasitemia was not signif-

icantly different between experiments, and, thus, data were

pooled. At each time point, the pooled parasitemia was analyzed

using 1-way ANOVA, with Dunnett’s test performed as a post-

test and Student’s t test performed to compare IL-12– and IFN-

gR–deficient mice with their wild-type controls, respectively.

RESULTS

Reduced survival among IL-12p355/5/p405/5, IL-12p405/5,

and IL-12p355/5 mice infected with T. b. brucei and T.

evansi. To determine the role of IL-12p70 (p35/p40), IL-23

(p19/p40), and IL-12p80 homodimer during trypanosomiasis,

mice deficient in either the p35 gene, the p40 gene, or both

were infected with T. b. brucei and T. evansi and were monitored

for survival (table 1). The duration of survival was significantly

decreased in all T. b. brucei– and T. evansi–infected mice de-

ficient in the p35 gene, the p40 gene, or both, compared with

survival among infected wild-type controls. No differences in

mortality were observed between the different groups of IL-

12–deficient mice.

A specific role for IL-12 in the control of parasitemia in

T. b. brucei–infected mice during the chronic stages of disease.

The first parasitemia peak (occurring 5–8 days after infection,

depending on the Trypanosoma strain) was similar in all 3 p35-

and p40-deficient mice infected with T. b. brucei or T. evansi

and in wild-type controls (figure 1A and 1B). However, the

rate of clearance of the first parasitemia peak was slightly re-

duced (by 4- to 8-fold) in IL-12–deficient mice, compared with

wild-type mice infected with T. b. brucei, at day 7 after infection

( ) (figure 1A).P ! .05

The second parasitemia peak and subsequent parasite control

were clearly impaired during T. b. brucei infection, with an up

to 100-fold increase in the parasite burden occurring in IL-12–

deficient mice, compared with wild-type mice. No significant
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Table 1. Increased mortality among interleukin (IL)–12–deficient
mice infected with Trypanosoma brucei brucei or Trypanosoma
evansi, compared with wild-type mice.

Parasite species,a

mouse strain
Survival,

mean days � SD
Mice/group,b

no. P c

T. b. brucei
Wild type 40.6 � 8.8 29
IL-12p35�/�/p40�/� 35.1 � 6.4 15 !.05
IL-12p40�/� 32.0 � 3.7 15 !.0001
IL-12p35�/� 33.3 � 4.2 15 !.001

T. evansi
Wild type 47.0 � 24.1 33
IL-12p35�/�/p40�/� 31.4 � 14.3 35 !.001
IL-12p405/5 31.1 � 13.1 21 !.001
IL-12p35�/� 30.3 � 20.6 34 !.01

a Mice were intraperitoneally infected with 5 � 103 T. b. brucei try-35 � 10
panosomes and T. evansi trypanosomes and were monitored daily for31 � 10
survival.

b Results from 3 independent experiments were combined.
c Compared with wild-type mice. Statistical significance was determined

using the Kaplan-Meier test.

Figure 1. Parasitemia profiles of Trypanosoma brucei brucei–infected
(A) and Trypanosoma evansi–infected (B) wild-type (�), interleukin (IL)–
12p35�/�/p40�/� (�), IL-12p40�/� (�), and IL-12p35�/� (�) mice. Mice
were intraperitoneally infected with T. b. brucei trypanosomes35 � 10
and T. evansi trypanosomes, with a lower limit of detection of31 � 10

and parasites/mL, respectively, for infected mice. Data5 52.7 � 10 4 � 10
points are the mean values from 2–3 pooled experiments involving 10–
15 individual mice/group. J, Inferred data points appearing below the
limit of detection. The x-axis of panel B has been cropped from 100 days
to 65 days to show detail. At each time point, the statistical significance
between infected wild-type and IL-12–deficient mice was determined
using 1-way analysis of variance (Dunnett’s posttest). * ; **P ! .05 P !

..01

differences in parasitemia were observed between the different

IL-12–deficient strains.

In T. evansi infection, wild-type mice reduced their parasi-

temia at days 12, 23, and 36 after infection, forming several

waves of parasitemia, as opposed to all IL-12–deficient mice,

which failed to reduce their parasitemia (figure 1B). No sig-

nificant differences were observed between the IL-12–deficient

strains. In contrast to T. b. brucei infection, in which loss of

parasitemia control correlated with death among IL-12–defi-

cient mice, T. evansi infection was associated with a high par-

asite burden during infection in both wild-type and IL-12–

deficient strains.

Differential regulation of IFN-g and TNF by IL-12p70, de-

pending on the Trypanosoma species. IFN-g and TNF play

a role in resistance and parasitemia control [22, 29], with IL-

12 a known promoter of IFN-g production [30]. Plasma sam-

ples were obtained at the first parasitemia peak; at days 6 and

8 after infection with T. b. brucei and T. evansi, respectively;

and also after the second parasitemia peak, at days 20 and 28

after infection with T. b. brucei and T. evansi, respectively (figure

2). Both Trypanosoma species induced systemic IFN-g and TNF

production in wild-type mice, with there being a few days’ delay

associated with T. evansi infection. T. b. brucei infection in IL-

12–deficient mice resulted in a marked reduction in IFN-g

( ) and TNF ( ) production (figure 2A and 2B),P ! .05 P ! .01

compared with T. b. brucei infection in wild-type mice, with

similar residual low levels in all IL-12–deficient strains

observed.

In IL-12–deficient mice, T. evansi infection also resulted in

impaired IFN-g responses, compared with those seen in wild-

type controls, as was also seen in IL-12–deficient mice with T.

b. brucei infection (figure 2C). In contrast to T. b. brucei in-

fection, T. evansi infection in IL-12–deficient mouse strains

produced substantial amounts of TNF, with only a slight re-

duction observed (figure 2D).

Unimpaired IgG2a and IgM antibody titers in IL-12–de-

ficient mice, compared with wild-type mice, in response to

trypanosomiasis. Anti-VSG antibody responses are impor-

tant in parasitemia control and survival and, thus, were tested

in IL-12–deficient mice (figure 3). IgG2a levels were similar

between wild-type and IL-12–deficient mice at days 6 (figure

3A) and 20 (figure 3B) after infection with T. b. brucei. At either

the first parasitemia peak (figure 3C) or during chronic stages

of infection (figure 3D), IgM levels were similar in IL-12–de-

ficient and wild-type mice infected with T. evansi.
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Figure 2. Plasma levels of interferon (IFN)–g and tumor necrosis factor (TNF) measured in wild-type (black bars), interleukin (IL)–12p35�/�/p40�/�

(white bars), IL-12p40�/� (diagonally striped bars), and IL-12p35�/� (hatched bars) mice infected with Trypanosoma brucei brucei (A and B), and
Trypanosoma evansi (C and D) by means of ELISA. Results are representative of findings from 2 independent experiments; however, TNF levels in IL-
12p40–deficient mice were not consistently significantly reduced. Data are expressed as mean values (�SE) for 2–3 individual mice. Statistical
significance was determined using an unpaired Student’s t test. * ; ** .P ! .05 P ! .01

IFN-g production crucial for resistance to trypanosomiasis.

Reduced survival was observed among IFN-gR (129Sv/Ev)–

deficient mice, compared with wild-type (129Sv/Ev) mice, for

both Trypanosoma strains, with death occurring at a mean of

16 versus 41 days after T. b. brucei infection ( ) (figureP ! .001

4A) and at a mean of 15 versus 27 days after T. evansi infection

( ) (figure 4C), respectively. IFN-gR–deficient mice in-P ! .001

fected with T. b. brucei were unable to sufficiently clear the first

wave of parasitemia and died shortly thereafter (figure 4B), in

association with a 10-fold increase in parasitemia from day 9

after infection until death ( ), compared with the wild-P ! .05

type controls. The T. b. brucei results obtained in this study are

similar to those reported for Trypanosoma brucei rhodesiense–

infected C57BL/6 wild-type and C57BL/6 IFN-g–deficient mice

[22], indicating no major differences between the 129Sv/Ev and

C57BL/6 genetic backgrounds with regard to susceptibility due

to loss of IFN-g signalling. Interestingly, T. evansi infection

resulted in high parasitemia in both wild-type and IFN-gR–

deficient strains (figure 4D).

DISCUSSION

IL-12p35�/�/p40�/�, IL-12p40�/�, and IL-12p35�/� mouse

strains showed significantly reduced survival, compared with

wild-type controls, when infected with either T. b. brucei or T.

evansi. This outcome is in agreement with previous results

showing an association with lower IL-12p70 levels in susceptible

wild-type mice, compared with mice that were more resistant

to trypanosomiasis, during the initial stages of infection [22].

Between the 3 IL-12–deficient mouse strains, no differences in

survival rates were observed, suggesting that IL-12p70 is the

main protective factor for survival, with there being no major

contribution from other IL-12 family members—namely, IL-

23 or the IL-12p80 homodimer. IL-12–deficient mice survived

several waves of parasitemia; therefore, residual protection oc-

curs and may imply that IL-12 plays a more striking role during

established disease.

Because IFN-g is an important factor in survival, as was

previously shown in association with T. b. brucei infection [22],
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Figure 3. IgG2a and IgM plasma antibody titers of Trypanosoma brucei brucei–infected (at day 6 [A] and day 20 [B] after infection) and Trypanosoma
evansi–infected (at day 8 [C] and day 28 [D] after infection) C57BL/6 wild-type (�), C57BL/6 interleukin (IL)–12p35�/� (�), C57BL/6 IL-12p40�/� (�),
and C57BL/6 IL-12p35�/�p40�/� (�) mice. Preimmune plasma was used as a noninfected control (�). Data points denote mean values (�SE) for
plasma antibody titers from 2–3 individual mice.

we determined plasma levels of IFN-g during infection. In wild-

type mice, IFN-g was present during the first wave of parasi-

temia, with striking reductions in IFN-g levels observed in all

IL-12–deficient mouse strains. These results also demonstrate

that residual IL-12–independent IFN-g production is induced

during infection by both trypanosome strains. Therefore, the

observed, limited type-1 response allowed residual protective

immunity. IL-12–independent induction of IFN-g may also

include a direct stimulus by either trypanosome species. Try-

panosome-derived lymphocyte triggering factor has been found

to induce the production of IFN-g by binding to CD8+ cells

in T. b. brucei [31] and T. evansi [32] infections and, therefore,

may have contributed to residual resistance in the absence of

IL-12. In addition, work describing IL-12–independent IFN-g

production with residual Th1 responses has been demonstrated

by us and others during infections with Listeria monocytogenes

[19], Mycobacterium bacille Calmette-Guérin [16], and Leish-

mania major [20]. Furthermore, to evaluate the possible con-

tribution of IFN-g to resistance, IFN-gR–deficient mice were

infected; they died shortly after the first wave of parasitemia.

Although the IFN-gR–deficient mice used in the present study

were of a different genetic background than the IL-12–deficient

mice, the results are in line with the conclusions of Hertz et

al. [22], who studied IFN-g–deficient mice with a C57BL/6

background. These results clearly highlight the crucial impor-

tance of IFN-g responsiveness during acute infection with T.

b. brucei or T. evansi.

Although IL-12–deficient mice did have significantly reduced

rates of parasitemia clearance after the first peak, compared

with wild-type mice, the IL-12–deficient mice ultimately were

as effective in clearing the first peak as were the control mice.

IFN-g and TNF cytokine levels in all groups of IL-12–deficient

mice were significantly attenuated during the initial parasitemia

peak. Together with the observation of a drastically reduced

capacity to control parasitemia in infected IFN-gR– and TNF-

deficient mice [24] during this period, the low plasma con-

centrations of these 2 cytokines in IL-12–deficient mice are still

effective for initial parasitemia control. These results further

suggest that IL-12 plays a more dominant role in parasitemia

control after the second peak than during the initial parasitemia

peak, for optimal promotion of TNF and IFN-g production.

TNF has been found to have dual effects in T. b. brucei

infections, such as causing trypanolytic effects [29, 33], reduc-

ing the parasite burden in T. b. brucei AnTat 1.1 infections [24,

34, 35], and causing immunopathological effects in the host

[24]. Although TNF levels were reduced in IL-12–deficient
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Figure 4. Survival and parasitemia profiles of 129Sv/Ev wild-type (�) and 129Sv/Ev interferon-g receptor (IFN-gR)–deficient (�) mice infected with
Trypanosoma brucei brucei (A and B) and Trypanosoma evansi (C and D). Mice were intraperitoneally infected with T. b. brucei trypanosomes35 � 10
(11 wild-type and 12 IFN-gR–deficient mice) and T. evansi trypanosomes (14 wild-type and 17 IFN-gR–deficient mice) per mouse. The limit31 � 10
of detection for T. b. brucei parasitemia and T. evansi parasitemia is and parasites/mL, respectively. Data on mortality and parasitemia5 64.4 � 10 1 � 10
were pooled from 2 independent experiments performed on 4–5 mice/group used for parasitemia measurement for either experiment. J, Inferred data
points appearing below the limit of detection. The Kaplan-Meier test was used for mortality, and the unpaired Student’s t test was used for parasitemia.
* .P ! .05

mice, no decrease in pathological findings was detected in

spleen and liver sections obtained from T. b. brucei– or T.

evansi–infected mice (data not shown). In addition, B cell re-

sponses are necessary for the elimination of vascular-bound

parasites; in particular, IgM and IgG2a are said to be the main

antibodies necessary for clearance of T. b. brucei infection (S.M.,

R.A.A., A. Schwegmann, M. Drennan, F. Claes, P. De Baetselier,

F.B., unpublished data) [4]. Both VSG-specific antibodies were

present in the plasma of IL-12–deficient mice, albeit in mod-

erately reduced levels, compared with wild-type mice; therefore,

they may not be the overall mechanism of increased parasite

burden. The role of IL-12 in T. b. brucei infection therefore

seems to be limited to the more chronic stage of disease and

the promotion of the TNF and IFN-g production necessary to

control parasitemia.

Natural killer cells, which are thought to be necessary for

resistance during initial infection, are activated by both IL-12

and IL-18 [36], and IL-18 thus may effectively drive the Th1

response in the absence of IL-12. Furthermore, in a recent study,

Drennan et al. [37] found that MyD88 signaling is crucial for

resistance and that there is a role for Toll-like receptor (TLR)

9 in this immune pathway. The TLR9- and IL-12–deficient mice

share many phenotypic characteristics in their response to T.

b. brucei infection, including (1) effective parasitemia control

during the first parasitemia peak but increased parasitemia dur-

ing the chronic stages of disease and (2) reduced IFN-g pro-

duction but normal IgG2a responses during the chronic stages

of disease, compared with those noted in wild-type mice. Bone

marrow–derived macrophages obtained from TLR9-deficient

mice also displayed severely reduced TNF and IL-12p40 levels
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in response to T. b. brucei genomic DNA. Therefore, IL-12 may

be involved in the immunologic pathway, whereby TLR9 pres-

ent on macrophages responds to T. b. brucei genomic DNA

released after the first parasitemia peak and, on IL-12 secretion,

stimulates peripheral blood mononuclear cells (PBMCs) to se-

crete IFN-g. With the presence of TLR9 on B cells, a role for

IL-12 may also be considered. However, with only a slight

reduction in IgG2a responses during the chronic stages of dis-

ease, as reported in this article as well as in the study by Dren-

nan et al. [37], it is more likely that other factors play a more

significant role in proliferation and differentiation of these cells.

In contrast to IL-12–deficient mice, TLR9-deficient mice pro-

duce more IFN-g during the chronic stages of T. b. brucei

infection. Reduced IFN-g production may explain the increased

susceptibility in IL-12–deficient mice, compared with TLR9-

deficient mice, which showed resistance similar to that noted

among wild-type mice. The function of IL-12 may thus be to

associate TLR9 signaling in macrophages during the chronic

stages of T. b. brucei infection with the up-regulation of IFN-

g secretion in PBMCs necessary for effective parasitemia con-

trol and survival.

Parasitemia in wild-type mice infected with T. evansi differed

from that in wild-type mice infected with T. b. brucei. Wild-

type mice with T. evansi infection showed a severe inability to

efficiently clear waves of parasitemia, with this inability dete-

riorating after each successive wave and suggesting a progressive

erosion of immune control. IL-12–deficient mice infected with

T. evansi were unable to reduce parasitemia, compared with

wild-type mice. However, later during infection, no differences

between IL-12–deficient and wild-type mice were found. This

suggests a role for IL-12p70 signaling in early parasitemia con-

trol. During the initial and late time points examined, plasma

levels of IFN-g were severely reduced in IL-12–deficient mice,

compared with wild-type mice; however, in contrast to T. b.

brucei, plasma levels were only moderately lower for TNF in

IL-12–deficient mice. IFN-gR–deficient mice infected with T.

evansi were highly susceptible to trypanosomiasis, were unable

to clear the first parasitemia peak, and rapidly died thereafter.

This finding clearly demonstrates the importance of IFN-g,

although a direct comparison with IL-12–deficient mice is ham-

pered by the difference in the genetic background of the de-

ficient mouse strains and the mortality rate among wild-type

controls with T. evansi infection. TNF levels were not severely

reduced in IL-12–deficient mice and were found not to be

important in survival or parasitemia control [38]. In terms of

anti-VSG B cell responses, it recently has been shown that IgM

is crucial for parasitemia control and survival [38]. However,

we found no obvious differences between wild-type and IL-12–

deficient mouse strains. Therefore, the mechanism of impaired

parasitemia control in T. evansi infection is dependent on IL-

12, with a possible role for IFN-g, as has been found in T. b.

brucei infection.

A comparison between the results obtained by Baral et al.

[38] for the C57BL/6 IFN-g–deficient mice and the results

shown in the present article for the 129Sv/Ev IFN-gR–deficient

mice reveals opposing findings. This difference could be due

to the emergence of a more virulent strain in our experiments,

because the T. evansi parasites used are nonclonal field stabilates

and have been passaged for stock maintenance. In addition,

the specific pathogen–free conditions at our facilities may ex-

clude concurrent infections that may independently initiate an

IL-12–driven Th1 response necessary for optimal resistance.

These effects, although untested, add impetus for further in-

vestigation into the immunology of T. evansi.

In conclusion, the data presented in this article show that

IL-12p70—but not the IL-12p80 homodimer or IL-23—is nec-

essary for optimal resistance to T. evansi and T. b. brucei in-

fection, in terms of mortality and parasitemia control. The

resistance attributed to IL-12 is mediated through IFN-g, the

production of which was significantly decreased in the absence

of IL-12. Furthermore, a role for IL-12 in parasitemia control

during the chronic stage of T. b. brucei infection was shown,

in which the presence of IL-12 is needed for optimal TNF and

IFN-g production reducing the parasitemia burden.
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