Advances in numerical bifurcation
software: MatCont

Niels Neirynck

-0.45}
-0.46
-047r
-0.48
-0.49
o

_05F

-0.51r

-0.52

1 Nst
-0.53
1 1 1 1 1

1 1
0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86
k

Promotor: Prof. M. Van Daele, Ghent University, Belgium

Promotor: Prof. H.G.E. Meijer, University of Twente, The Netherlands
Supervisor: Prof. W. Govaerts, Ghent University, Belgium

Thesis submitted to obtain the degree of
Doctor of Science: Computer Science

2018-2019

Department of Applied Mathematics, Computer Science and Statistics

UNIVERSITEIT Faculty of Science, Ghent University

GENT

Contents

Contents
1 Introduction

2 Preliminaries
2.1 General aspects of MATCONT
2.2 Where MATCONT is being used
2.3 Bifurcation objects in ODEs
2.4 Bifurcation objects for cyclesof maps
2.5 Why programming in MATLAB?
2.6 Object-oriented programming and the GUI of MATCONT
2.7 Comparison of MATCONT and MATCONTM
2.8 Overview of contributions by N. Neirynck - I : General
2.9 Overview of contributions by N. Neirynck - II : New MATCONT

3 Numerical continuation: the algorithmic basis
3.1 Numerical continuation,
3.2 Testfunctions for bifurcations 0.
3.3 Singularity matrix Lo
3.4 Userfunctions
3.5 Software
3.6 The system m-fileof anodeormap L.

4 MATCONTM for maps
4.1 Features and functionalities of MatContM
4.2 Basic practical use of MATCONTM
4.3 Lyapunov exponents in MATCONTM
4.4 Growing one-dimensional unstable and stable manifolds
4.5 Projection algorithm for intersecting manifolds
4.6 Initialization of a homoclinic orbit from a one-dimensional manifold
4.7 Detection of bifurcations during homoclinic continuation

5 Front end features of the new MaTCoNnT GUI.

25
25
25
26
27
28
35

43
43
45
45
52
o4
60
67

77

ii CONTENTS

5.1 The MATCONT database
5.2 The main MATCONT panel,
5.3 The matfiles of curves
5.4 Input and Control panels
5.5 Output panels
5.6 Event functions and Poincaré maps
5.7 Options window
5.8 The tutorials

6 Internal working of the new MATCoNT GUI
6.1 Object oriented programming in MATLAB and MATCONT
6.2 Classesin MatCont
6.3 General description of the workflow
6.4 The Session class
6.5 The Settings class
6.6 The command line interface
6.7 Output Interpreters

7 Future work

8 Summary
8.1 English summary
8.2 Nederlandstalige samenvatting L.

Bibliography

A TUTORIAL I: Using the new MATCONT GUI for numerical integration of
ODEs
A1 Getting started
A2 Input new system
A.3 Selection of solution type
A.4 Setting initial data for integration
A5 3D visualization
A.6 Integrating orbits L
A.7 Plot manipulation
A8 2D visualization
A.9 Another method of integration L.
A.10 Archive of computed solutions L
A.11 Additional Problems

B TUTORIAL 1I: Using the new MATCONT GUI for one-parameter bifurca-
tion analysis of equilibria
B.1 An ecological model with multiple equilibria and limit points
B.2 Limit and branching points in a discretization of Bratu-Gelfand PDE

117

119
119
124

131

161
161
172

CONTENTS il

B.3 Additional Problems 178
C TUTORIAL 11I: Using the new MATCONT GUI for one-parameter bifurca-
tion analysis of limit cycles 183
C.1 Initialization from a converging orbit 183
C.2 Fold and Neimark-Sacker bifurcations of cycles in a chemical model 188
C.3 Period-doubling bifurcation in an adaptive control model 196
C.4 Additional Problems 201
D TuToORIAL 1v: Using the new MATCONT GUI for two-parameter bifurca-
tion analysis of equilibria and limit cycles 205
D.1 Bifurcations of equilibria in the Bykov—Yablonskii-Kim model 205
D.2 Fold and torus bifurcations of cycles in the Steinmetz-Larter model 213
D.3 Additional Problems 220
E Listing of Projectie.m 223
F Listing of Projectie2.m 229
G Listing of banen.m 235
H List of settings 237
I List of computations 241

Chapter 1

Introduction

The mathematical background of MATCONT is bifurcation theory which is a field of hard
analysis, see in particular [60]. Bifurcation theory treats dynamical systems from a high-
level point of view. In the case of continuous dynamical systems this means that it considers
nonlinear differential equations without any special form and without restrictions except
for differentiability up to a sufficiently high order (in the present state of MATCONT never
higher than five.) The number of equations is not fixed in advance and neither is the number
of variables or the number of parameters, some of which can be active and others not. The
essential aim of bifurcation theory is to understand and classify the qualitative changes
of the solutions to the differential equations under variation of the parameters. From the
applications point of view this knowledge cannot be applied to practical situations without
numerical software, except in some simple, usually artificially constructed situations.

A key ingredient of such numerical software packages is that of numerical continuation,
whereby curves of objects of a given type (for example, equilibria, periodic orbits, Hopf
bifurcation points, homoclinic orbits ...) are computed under variation of one or more
system parameters, cf. [4, 41, 80].

The history of numerical software packages for dynamical systems, both continuous
(ODEs) and discrete (maps) goes back to the 1980s. A survey of this history is given
in Chapter 2 (“Interactive Continuation Tools”, by W. Govaerts and Yu. A. Kuznetsov)
in [58]. The first non-interactive packages appeared in the beginning of the 1980’s and
were written in Fortran. The most widely used packages of this generation are AUTO
26, 27] and LINBLF [53]. AUTO is still widely used because of its high speed in nu-
merical computations; there are several environments which allow a more user-friendly
approach to AUTO, the best known of which is XPPAUT [33]. LOCA[82] is another
non-interactive package that is oriented towards relatively simple bifurcation problems in
large-scale systems.

The first software environments for bifurcation analysis were DsTooL [6] and
CONTENTI61]. A recent newcomer is COCO (“Continuation Core”) [16, 17] which is
a MATLAB package with emphasis on numerical continuation, boundary value problems,
theoretical rigor, algorithm development, and software engineering. One of its novel fea-
tures is the vectorized form of the defining system for periodic orbits. For other packages

2 CHAPTER 1. INTRODUCTION

we refer to the survey in [58]. They have their own merits but at present MATCONT has
more functionalities related to bifurcation theory than any other package.

"MATCONT’ stands for ' MATLAB CONTINUATION’. Its counterpart for discrete time
systems generated by iterated maps is called 'MATCONTM’. Both packages can be used
either from the command line or by using a GUI. The command line use is referred to
as CL_MATCONT or CL_MATCONTM, respectively. The GUI versions are more user-
friendly and are probably used more often. The command line versions are more flexible
and powerful but require more work and more insight in the underlying mathematics and
numerical methods.

For advanced users the distinction between MATCONT and CL_MATCONT tends to get
blurred. Indeed, the ode-files (map-files in the case of maps) are best generated by using
either the GUI or a standalone version of a part of it, cf. §3.6. The homotopy methods for
orbits homoclinic to saddle or to saddle-node and to heteroclinic orbits require the use of
the GUI. Also, there is a command line interface that allows to interact directly with the
GUI from the MATLAB command line.

Both MATCONT and MATCONTM are MATLAB [66] successor packages to CON-
TENT but were developed from scratch with many new functionalities. The project is
lead jointly by W. Govaerts (Ghent University, Belgium) and Yu.A. Kuznetsov (Utrecht,
The Netherlands) and more recently also by H.G.E. Meijer (University of Twente) who
has been a long-time co-developer. The development of non-interactive MATCONT started
with the master theses of A. Riet [79] and W. Mestrom [69] at Utrecht University. The first
GUI was built soon after by A. Dhooge (Ghent) and announced in [24]; O. De Feo provided
general software support. Since that time this 2003 paper has been the main reference to
MATCONT in spite of the continuous development that followed. V. Govorukhin (Rostov,
Russia) provided the high-order integration routines ode78.m and 0de87.m. E. Doedel
(Concordia University, Montreal, Canada) contributed to the continuation methods for
bifurcations of periodic orbits [28, 29, 59]. B. Sautois (Ghent) introduced the computation
of the phase response curve of a periodic orbit and its derivative [43]. This functionality
is in particular useful in the study of synchronization of weakly coupled oscillators, e.g.
in neural networks. V. De Witte (Ghent) [22] contributed to the initialization and con-
tinuation of homoclinic and heteroclinic orbits and introduced in [23] the computation of
normal form coefficients of codimension 2 bifurcations of periodic orbits.

The first version of CL_LMATCONTM was written by R. Khoshsiar Ghaziani (Ghent
and Shahrekord (Iran), 2008), cf. [55]; N. Neirynck (Ghent, 2012) added the GUI, cf.
[71, 44]. MATCONTM provides the functionality to compute the normal form coefficients
of bifurcations by automatic differentiation. The user can opt for this either for reasons
of speed or because the MATLAB symbolic toolbox is not available. This functionality
is largely due to J.D. Pryce (Cranfield University, UK)[75]. If symbolic differentiation is
available, then numerical tests suggest that it is faster for low iteration numbers but not for
high iteration numbers. Automatic differentiation was not introduced in MATCONT since
tests indicated that it was quite slow in that situation where no iterations are involved.

L. Vanhulle (Ghent) [92] contributed to the computation of homoclinic and heteroclinic
connections, cf. §4.5. Among other people who were involved at some point we mention

M. Friedman (University of Alabama at Huntsville), E. Nikolaev (Jefferson University,
Philadelphia) and P. Pareit (Ghent).

The software related to the MATCONT project, including the manuals and tutorials, is
freely available from www.sourceforge.net. The user should search for ‘matcont’ and then
follow the ‘readmefirst’ and ‘readme’ pdf’s.

We note that there exists a MatCont-inspired package CL_MATCONTL that is dedi-
cated to large equilibrium systems [9] but is not distributed with the regular MATCONT
and MATCONTM packages. It has no GUI, no normal form computations and only a
small list of functionalities. For the code and references to the documentation we refer
to [65]. Another related MATLAB package is DDE-BIFTOOL [31, 18] which deals with
delay-differential equations.

A part of my contributions to the development of MATCONT and MATCONTM was
published in [3], [44], [50], [72], [73], but the present thesis contains a lot of unpublished
work as well.

This thesis is structured as follows. In Chapter 2 (Preliminaries) we discuss general
aspects of MATCONT and mention some of the many application fields where MATCONT is
being used. We then briefly discuss the mathematical background of bifurcation theory for
ODEs and for maps with survey tables of bifurcations and branch switchings. In §2.8 and
§2.9 we give an overview of our own contributions to the development of the MATCONT
and MATCONTM software. Not all of this is further described in the present thesis; we
focus on the aspects which are most useful to future users and developers.

In Chapter 3 (Numerical continuation: the algorithmic basis) we discuss the (numerical)
algorithms which form the computational core of MATCONT and MATCONTM. Numerical
details are not given here since they can be found elsewhere; we focus on the aspects that
have to be understood by users and developers.

In Chapter 4 (MATCONTM for maps) we discuss some of our own contributions to
the MATCONTM software for maps and applications thereof. This involves Lyapunov
exponents for maps, the growing of stable and unstable manifolds, the initialization of
connecting orbits and the detection of codimension 1 and codimension 2 bifurcations in
homoclinic connections. Section 4.5 on the intersection of a stable and an unstable manifold
is new and unpublished.

Chapter 5 (Front end features of the new MATCONT GUI) deals with the new MAT-
ConNT GUI It is user-oriented and describes the MATCONT database and the Data
Browser to access it. A survey of of the panels and their functionalities is also given.

Chapter 6 (Internal working of the new MATCONT GUI) is developer-oriented. It
describes the inner working of the MATCONT software.

Chapter 7 (Future work) mentions some topics for further investigations with varying
degrees of complexity.

Chapter 8 (Summary) contains summaries of the thesis in English and Dutch.

This thesis further contains the Appendices A-I. The first four A-D are tutorials to
make the user familiar with the basic functionalities of the new version of MatCont. The
Appendices E-G provide listings of the algorithms discussed in Chapter 4. The appendices

4 CHAPTER 1. INTRODUCTION

H-I provide the complete lists of settings and computations that are discussed in Chapter
6.

Chapter 2

Preliminaries

2.1 General aspects of MATCONT

MATCONT is a MATLAB software package for the computational (i.e. numerical) study
of continuous dynamical systems, i.e. systems of ordinary differential equations with pa-
rameters, with the use of continuation and bifurcation methods. Numerical continuation
is in principle a simple algorithm, at least in this context. It can be seen as the numerical
pendant of homotopy theory or as the implicit function theorem in practice. On the other
hand, bifurcation theory is a mathematically difficult subject and the translation to numer-
ical methods is complex. It requires the reduction of a high-dimensional dynamical system
to a problem in a low-dimensional (nonlinear) invariant center manifold, the numerical
study on this manifold by the use of normal form theory and a transformation back to the
high-dimensional space. All transformations are local and based on Taylor expansions.

The simplest nontrivial application of these methods is that of a Hopf bifurcation.
Suppose one starts with an equilibrium state in a dynamical system which might be the
set of stoichiometric equations in a continuously stirred tank reactor. This state is stable if
it persists under small perturbations. However, it may loose stability if certain parameters
are changed and then exhibit small amplitude periodic behaviour or else other scenarios
are possible. In the case of small amplitude oscillations this is called a Hopf bifurcation.
In such a case, MATCONT can predict the loss of stability and compute the periodic orbits
which appear. It can also predict whether or not the periodic orbits themselves will be
stable or unstable and it can trace them for further changes in the parameters.

A Hopf bifurcation is an example of a codimension 1 bifurcation. In one-parameter
problems the codim 1 bifurcation points typically divide the parameter line in regions
(line segments) in which the behaviour of the dynamical system is qualitatively the same;
more precisely, for all parameter values in a region the behaviours in the state space are
topologically equivalent.

In two-parameter problems the parameter space is also typically divided into regions in
which the behaviours are equivalent. These regions are separated by curves of codimension
1 bifurcation points which meet in codimension 2 bifurcation points.

6 CHAPTER 2. PRELIMINARIES

In many application fields the qualitative dependence of dynamical systems on the
values of parameters is crucial, see §2.2. This idea lies at the heart of both mathematical
bifurcation theory and its implementation in numerical methods and software.

To deal with the complexity of dynamical systems MATCONT supports several types
of computations, in particular:

e Numerical continuation for 12 different curve types which include bifurcation curves,
periodic orbits, homoclinic and heteroclinic orbits.

e Numerical integration with different integrators and the computation of Poincaré
maps.

e Detection and location of bifurcation points of 23 bifurcation types if only equilibria
and periodic orbits are counted (and many more if homoclinics and heteroclinics are
included).

e A complicated network of initializer routines that links the previous types of compu-
tations.

e Computation of normal form coefficients for 21 bifurcation types which depend on
partial derivatives up to fifth order.

e Computation of phase response curves of periodic orbits.

e Homotopy methods to initialize orbits homoclinic to saddle, to saddle-node and het-
eroclinic orbits.

Many of these routines are not available in any other software.

The computations can be done in the command line version CL_MATCONT of MAT-
CoNT, for which there is an extensive user manual [45] and for an experienced user this
is the most powerful and flexible way. However, for practical use by application-oriented
users it is necessary to have a user-friendly GUI-version in which the basics can be learned
from tutorials (the closest to this for CL_LMATCONT is a collection of testruns that is
provided in MATCONT and discussed in the manual [45].)

2.2 Where MATCONT is being used

Bifurcation theory has applications in many fields, in fact wherever phenomena are modeled
by differential equations. Usually these applications need computational methods and
software such as MATCONT. Several books were written on the use of dynamical systems
and bifurcation methods in specific application fields, e.g. [8, 30, 34, 87]. Among the
thousands of papers we mention [37, 70, 88, 89, 76].

MATCONT has been used as a tool for teaching courses in dynamical systems or math-
ematical modelling, but it is unclear how often and at what institutions or universities. It
is easier to get an impression of its use for research purposes by considering its citations

2.2. WHERE MATCONT IS BEING USED 7

in the core collection of the Web of Science. To be specific we note that on October 6,
2016 in the Web of Science core collection 462 papers cited the first paper [24] on MAT-
CONT. By September 22, 2018 this number increased to 617. The follow-up paper [25] was
then cited 49 times. Nearly all citing papers deal with applications of bifurcation theory
and they cover most fields of quantitative science. To give examples, we cite a number of
publications that refer to MATCONT:

e Steady states in coupled oscillators [5]

e Rayleigh-Bénard convection [15]

e Bacteria-phage interaction in a chemostat [94]

e Organic matter decomposition in a chemostat [49]
e Saccharomyces Serevisiae fermentation processes [83]
e Design of cell cycle oscillators [68]

e Use of transcriptomic data (Systems biology) [74]
e Control of rotating blade vibrations [51]

e Vehicle systems dynamics [20]

e Underactuated mechanical systems [47]

e Resonances of an accelerating beam [81]

e Electronic circuits [63]

e Population dynamics of Xenopus tadpole [10]

e Predator-prey models [77]

e Bottom fishing [14]

e Dynamics of landscapes [91]

e Neural models [42, 43]

e Pattern storage in neural networks [35]

e Small neural circuits [12]

e Jansen-Rit neural mass models [2]

e Metabolic Engineering (Bioinformatics) [84]

e Insulin secretion and hepatitis [99]

8 CHAPTER 2. PRELIMINARIES

e Innate Immunity Responses of Sepsis [97]
e Chemical reaction engineering [78|
e Biochemistry [85, 86]
e Climate warming [62]
e Magnetic Resonance Force Microscopy [46]
e Harvesting piezoelectric vibration energy [98]
e Geophysics (the Lorenz-96 model) [52]
e Onset and dynamics of bicycle shimmy [90]
e Aecronautical engineering [93]
Other papers explicitly refer to MATCONT but do not cite it, e.g.
e Infectious diseases [48]

The main other general purpose packages for continuation and bifurcation software
PyDSTooL, AUTO-07P, and COCO are also available on www.sourceforge.net. On
August 6, 2018 the number of weekly downloads was recorded as 13 for PyDSTooL, 43
for AUTO-07P, 6 for COCO and 390 for MATCONT.

2.3 Bifurcation objects in ODEs

In Tables 2.1 and 2.2 we provide lists of the codimension 0, 1 and 2 objects that can be
found in generic continuous dynamical systems. To each of them we attach a label based
on standard terminology [60].

The relationships between these objects are complicated.

The detection relationships are presented in Figures 2.1 and 2.2. An arrow from O to
EP or LC means that when we compute an orbit, it is generically possible that the orbit
will converge to a (stable) equilibrium or to a (stable) limit cycle. An arrow from an object
A different from O to an object B means that the continuation of a one-parameter family
of objects of type A can generically lead to the detection of an object of type B, either
because the B- object is a special case of the A- object or because it is a limit case when
the parameter tends to a special value. An example of the first situation is a H point on
a EP curve; an example of the second situation is a HHS point as the limit situation of
an LC branch when the period tends to infinity. We do not distinguish between the two
situations for two reasons. First, the difference depends somewhat on the careful definition
of a family of objects. Second and related, in the implementations it may depend on the
defining system that is used in the computation of the branch (e.g. a H point on a family
of LC objects).

2.3. BIFURCATION OBJECTS IN ODES

Table 2.1: Equilibrium- and cycle-related objects and their labels

Type of object Label
Point P
Orbit O
Equilibrium EP
Limit cycle LC
Limit Point (fold) bifurcation LP
Hopf bifurcation H
Limit Point bifurcation of cycles LPC
Neimark-Sacker (torus) bifurcation NS
Period Doubling (flip) bifurcation PD
Branch Point BP
Cusp bifurcation CP
Bogdanov-Takens bifurcation BT
Zero-Hopf bifurcation /ZH
Double Hopf bifurcation HH
Generalized Hopf (Bautin) bifurcation GH
Branch Point of Cycles BPC
Cusp bifurcation of Cycles CpC
Generalized Period Doubling GPD
Chenciner (generalized Neimark-Sacker) bifurcation CH
1:1 Resonance R1
1:2 Resonance R2
1:3 Resonance R3
1:4 Resonance R4
Fold-Neimark-Sacker bifurcation LPNS
Flip—Neimark-Sacker bifurcation PDNS
Fold-flip LPPD

Double Neimark-Sacker NSNS

10 CHAPTER 2. PRELIMINARIES

Table 2.2: Objects related to homoclinics to equilibria and their labels

Type of object Label
Limit cycle LC
Homoclinic to Hyperbolic Saddle HHS
Homoclinic to Saddle-Node HSN
Neutral saddle NSS
Neutral saddle-focus NSF
Neutral Bi-Focus NFF
Shilnikov-Hopf SH
Double Real Stable leading eigenvalue DRS
Double Real Unstable leading eigenvalue DRU
Neutrally-Divergent saddle-focus (Stable) NDS
Neutrally-Divergent saddle-focus (Unstable) NDU
Three Leading eigenvalues (Stable) TLS
Three Leading eigenvalues (Unstable) TLU
Orbit-Flip with respect to the Stable manifold OFS
Orbit-Flip with respect to the Unstable manifold OFU

Inclination-Flip with respect to the Stable manifold IFS
Inclination-Flip with respect to the Unstable manifold IFU
Non-Central Homoclinic to saddle-node NCH

However, there are two exceptions of the same type. Namely, the arrows from EP to
BP and from LC to BPC jump over two codimension levels. In fact, these situations are
non-generic but they are so often found in systems with equivariance or invariant subspaces
that most software packages support their detection.

Branching relationships are bottom-up. In general, if there is an arrow from an ob-
ject A different from O to an object B, then for each object of type B there is a unique
one-parameter family of objects of type A that branches off the B-object if a number of
(14-codim A) free variables is chosen. However, there are four types of exceptions:

1. The arrows from EP to BP and from LC to BPC: in these cases there are generically
two codimension 0 curves rooted at the codimension 2 points.

2. The arrows from H to HH and from NS to NSNS: in these cases there are generically
two codimension 1 curves rooted at the codimension 2 points.

3. The arrow from NS to ZH. In this case, the existence of the NS curve rooted in the
ZH point is subject to an inequality constraint.

4. The arrow from NS to HH. In this case there are generically two NS curves rooted in
a HH point.

2.4. BIFURCATION OBJECTS FOR CYCLES OF MAPS 11

7N

N

BP CP BT ZH HH GH CPC BPC R1 R3 R4 CH LPNS PDNS R2 NSNS LPPDGPD

codim

Figure 2.1: Relationships between equilibrium and limit cycle bifurcations.

O\
N

1
2 NSS NSF NFF DR* ND* TL* SH OF* IF* NCH

codim
0

Figure 2.2: Relationships between homoclinic bifurcations; here * stands for S or U.

We note that it is generically also possible to start a curve of HHS orbits from a BT
point (not indicated on Figures 2.1 and 2.2).

2.4 Bifurcation objects for cycles of maps

In Table 2.3 we provide a list of the codimension 0,1 and 2 objects that can be found in
generic maps. To each of them we attach a label based on standard terminology [60].

The detection relationships between them are presented in Figure 2.3. The precise
meaning of the arrows is simpler than in the case of ODEs: if we exclude FP then an arrow
from an object A to an object B indicates that the B- object can generically be found as a
regular point on a branch of A- objects. The only exception is the arrow from FP to BP
which again is non-generic but found in many examples that exhibit a form of equivariance
or have invariant subspaces.

12 CHAPTER 2. PRELIMINARIES

Table 2.3: Dynamical objects for maps and their labels

Type of object Label
Point P
Fixed Point FP
Limit Point of cycle bifurcation LP
Period Doubling Point of cycles PD
Neimark-Sacker bifurcation NS
Branch Point BP
Cusp bifurcation CcpP
Generalized Period Doubling GPD
Chenciner (generalized Neimark-Sacker) bifurcation CH
1:1 Resonance R1
1:2 Resonance R2
1:3 Resonance R3
1:4 Resonance R4
Fold—Neimark-Sacker bifurcation LPNS
Flip—Neimark-Sacker bifurcation PDNS
Fold-flip LPPD
Double Neimark-Sacker NSNS

On the other hand, the branching diagram for maps is far more complicated than for
ODEs; this is largely due to the fact that the iteration number is an additional issue to be
taken into account. For reasons of clarity we therefore present two branching diagrams,
namely Figure 2.4 and Figure 2.5. Here possible switches at codim-1 and codim-2 bifur-
cation points are indicated graphically. Several switches to branches of lower codimension
curves with double, triple or quadruple iteration number are now possible, some of them
depending on constraints.

2.5 Why programming in MATLAB?

MATLAB is an interpreted language and its speed of execution cannot compete with a
compiled language such as FORTRAN, PYTHON or C'++. But in many applications the
speed of computing is less important than the human speed in programming or using the
software. In fact more recent packages such as COCO [17] have also chosen MATLARB as
a programming language.

A disadvantage is that MATLAB is known to often change its software, which can be
quite inconvenient to programmers and users. This has also created problems for MAT-
CoNT, see §2.8. However, in most cases the new versions only affect specific toolboxes and
do not change the core of MATLAB.

On the other hand, MATLAB is built upon extensive and well-tested numerical and

2.5. WHY PROGRAMMING IN MATLAB? 13

Figure 2.3: The detection diagram for maps.

Figure 2.4: Branching diagram 1 for maps: dashed lines indicate switching subject to
constraints and x2 indicates curve of double period.

14 CHAPTER 2. PRELIMINARIES

Codimension

1 Q C C

A
O
.
A
\\\
e
X4\ iy /
N
-
)
N
\

Figure 2.5: Branching diagram 2 for maps: dashed lines indicate switching subject to
constraints and x2(3,4) indicates curve of double (triple,quadruple) period.

graphical libraries which allow for a quick programming. MATLAB is the language of
choice in the engineering community and for many other scientists because the essential
features can quickly be learned by following a few easily readable tutorials. Users can
also easily learn the essentials of MATCONT by going through a few tutorials, and apply
this knowledge to study their own problems, export the results and produce figures for
publication. The scope of application fields is therefore amazing, see §2.2.

2.6 Object-oriented programming and the GUI of
MATCONT

The GUI of MATCONT has to deal with the complexity of the software and provide func-
tionalities for the input of systems, computational options, control of computations with
simultaneous output in 2D, 3D and numerical plots, analysing bifurcation points, archiv-
ing the obtained results and making them accessible for future use and for export to the
general MATLAB environment.

Development of Graphical User Interfaces (GUI) and Object Oriented Programming
(OOP) went hand in hand in the 1980’s and became standard features in programming
languages such as C++ and Java in the 1990’s. In MATLAB the focus was rather on the
ease of use of numerical programming and development tools for implementing numerical
algorithms.

The first version of a MATLAB GUI for MatCont was developed in 2002-2003 by Annick
Dhooge with the tools that were available at that time [24]. Though the algorithms were
programmed from scratch, the aim was to have the outward look and feel of the predecessor
package CONTENT [61] which was written in C++ and actually used OOP.

In the meantime the MATLAB programming language gradually acquired more func-

2.7. COMPARISON OF MATCONT AND MATCONTM 15

tionalities. The first step in this direction was the introduction of classes in which opera-
tions could be defined between objects of a specified class. An often-used feature was the
overloading of operators. This was, in fact, used in 2005-2007 in the discrete-time version
MATCONTM of MATCONT to introduce automatic differentiation (AD) in the computa-
tion of normal form coefficients. The basic idea of AD is that the usual arithmetic and
functional mathematical operations are overloaded with operations on Taylor polynomials
[55].

Full object-oriented programming was introduced in MATLAB in two stages, namely in
the releases 2008a and 2014b. In the 2008a release new language features were introduced
for OOP, similar to the ones in C++ and Java such as handle classes which allow to use
references instead of global structures. The Guide Object-Oriented Programming [67] was
released with version 2012a. In the 2014b release object-oriented methods were introduced
in the MATLAB graphics, which by the way caused some problems in the then current
GUI MATCONT version.

The present GUI for MATCONT is completely rewritten and fully based on object-
oriented principles with common practices from software design patterns. In particular
it uses the MVC (Model-View-Controller) design principle towards which the MATLAB
language is oriented since the 2008a release. According to this principle the “User” manip-
ulates the “Controller”. The “Model” receives input from the controller whenever input is
needed and it also processes the input and checks its validity. The “Model” also updates
the “View” through events and the “User” “sees” the “View”. From the development point
of view this eliminates the problem of handling the global structure gds which dominates
the previous version of the GUI. However, the “Model” is quite complicated in the new
version of the GUI and has several submodels. The information that was previously in the
gds is now distributed over the submodels. One of the advantages that is visible to the
user is in the consistent handling of the graphical output, which at times was awkward in
the previous GUI, in particular after the changes in the MATLAB GUI library (R2014b
update). The most obvious advantage is that a broader range of input is allowed (for
example, a mathematical expression instead of just a number) while invalid input will be
rejected. More details can be found in Chapter 6.

2.7 Comparison of MATCONT and MATCONTM

The new GUI of MATCONT is partly based on the GUI of MATCONTM which was writ-
ten as part of the master thesis of N. Neirynck [71] but is much more comprehensive and
presents many new features. The comprehensiveness is due to the fact that the underlying
numerical code is also more complex (more curve types, more point types, more bifurca-
tions, solvers for differential equations instead of maps, homotopy methods for initializing
homoclinic and heteroclinic orbits, etc.) Among the new features we cite the following:

1. The MATCoONTM GUI is based on the central idea of generating curves by numerical
continuation. The new MATCONT GUI is based on the more general idea of gener-

16 CHAPTER 2. PRELIMINARIES

ating an output from a configuration. The configuration consists of a list of settings
which correspond to the fields that appear in the Starter, Continuer and Integrator
windows. Each object has a default value and ’knows’ which type of information can
be stored there. The configuration manager calls for the settings at the appropriate
time and checks that input. In this way, it will not be possible to let the code crash
by e.g. typing a question mark in a field that is meant for a parameter value. On the
other hand, it will increase the flexibility by allowing to input MATLAB expressions.
E.g. one can type exp(2) in such a field; it will not be necessary to compute e? first
and then enter its value.

The output is most typically a curve but could be adapted to be, for example, a
Poincaré section or a set of Lyapunov exponents.

2. The MATCoNT GUI has a central branch manager. In this case a branch refers quite
generally to a starting procedure for computations. This part of the code allows the
developer to easily introduce a new type of computations, e.g. a new curve type or a
computation of Poincaré sections. The central branch manager takes care of adapting
the Starter/Integrator/Continuer windows as well as the output windows (2D,
3D, numeric).

3. The MATCONT GUI has an Output (x,v,s,h,f) interpreter. This means that for every
curve it keeps track of the meaning of the entries x,v,s,h,f. This serves two purposes.
First, it allows a less error-prone handling of the output windows (2D, 3D, numeric).
Second, it allows the user to understand the meaning of the output structure (Which
entries correspond to parameters? Where is the Period in the columns of the x—
array when a branch of periodic orbits is computed? Which entries of the h— vector
correspond to userfunctions and which correspond to testfunctions for bifurcations?)
In the pre-2018 version of the MATCONT GUI and in the MATCONTM GUI this
information is only available via the documentation or needs bookkeeping by the
user (in the case of userfunctions and testfunctions).

4. Interaction between the command-line and GUI versions by modularity of the GUIL.
This implies that e.g. the visualisation parts of the MATCONT GUI can be used to
visualise results computed in CL_MATCONT.

2.8 Overview of contributions by N. Neirynck - I :
General

Here we summarize our contributions prior to the development of the new MatCont envi-
ronment.

2.8. OVERVIEW OF CONTRIBUTIONS: GENERAL 17

2.8.1 Improvements and adaptations

e Merging of MATCONT and CL_MATCONT. In MATCONT5.4 (September 2014) and
earlier versions of MATCONT the command-line and GUI versions were separate.
This was inconvenient from the point of algorithmic development since all algorithmic
changes had to be input twice. N. Neirynck merged the two packages which required
several important changes, since the continuer cont .m now runs in two different ways,
depending on how the MATLAB session is started. The GUI version now runs on
top of the command-line algorithms and allows more control with respect to pausing,
resuming, extending, and output in graphical and numerical windows. Algorithmic
improvements have to be implemented only once.

Not all algorithms can be implemented easily in the GUI. So it is still possible to
introduce, study and use algorithms in the command-line version before they are im-
plemented in the GUIL. An example is the routine LimitCycle/initOrbLC.m which
allows to start the continuation of limit cycles from an orbit obtained by time inte-
gration. This functionality is also present in the GUI but does not use initOrbLC.m.

e In the 2014b release of MATLAB the GUI was restructured by using different Object
Oriented methods which caused havoc in the MATCONT output windows. Because
the platform for the GUI was restructured, graphical input and output windows
changed. The syntax of the commands that call the graphic libraries was changed.
Windows could no longer be resized, labels disappeared and bifurcations could no
longer be detected. Warnings about obsolete MATLAB constructions were inter-
preted as errors in the computation of testfunctions. The MATCONT and MAT-
CoNTM codes were adapted by us to the changes in the MATLAB syntax. Since
most warnings are suppressed in MATCONT we wrote a script that checks all warn-
ings that occur when running a MATCONT or MATCONTM session and filters out
the warnings about obsoleteness. In this way the developer can nearly automatically
keep track of changes in the MATLAB syntax. Without this work the GUI packages
would now be practically dead.

e Improved code for generating the system m-files. These files are sometimes called
odefile or mapfile to indicate whether odes or maps are being studied. They are an
essential part of the GUI versions of MATCONT and MATCONTM. The symbolic
derivatives in these m-files are generated by using the MATLAB symbolic toolbox.
For a long time MATLAB offered the choice between the symbolic toolbox of MAPLE
and that of MUPAD with MAPLE as the default. The MAPLE code puts some re-
strictions on the variable and parameter names. For example, ‘C’ could not be used
and had to be replaced by a substitute name, for example ‘CC’ so that users some-
times had to use unnatural and awkward names. More recently, MATLAB decided
to offer only MUPAD which made things worse since e.g. Latin names for Greek
letters are also forbidden. We solved this problem by introducing an intermediate
layer of names when using the symbolic toolbox. Internally, all parameter names are
preceded by ‘par_’ and all coordinate names by ‘coor_’. In this way, essentially all

18 CHAPTER 2. PRELIMINARIES

restrictions on variable and parameter names are lifted. Also, in the present version
spaces are allowed between the names of state variables, of parameters, and in the
equations. However, restrictions still apply to the names of the auxiliary variables
in the system definition files. These restrictions should be taken into account when
using the system m-file generator (if not, the generator will give an MUPAD error
message). Details and examples on the construction of system m-files are given in
63.6.

e Improved version of building system m-files in the case of userfunctions. In the pre-
vious versions of both MATCONT and MATCONTM the symbolic derivatives of the
system m-file were recomputed after each adding or removing of a userfunction. The
new version is more efficient: it manipulates the structure of the set of userfunctions

separately and reads the other symbolic derivatives of the system m-file from a saved
MATLAB mat-file.

e Standalone version for building system m-files. The command line packages
CL_MATCONT and CL_MATCONTM also need system m-files. We wrote a stan-
dalone software that allows to build such files. The use of this code, essentially in
the file GUI/systems_standalone.m, is documented in the MATCONT manual [45]
and the MATCONTM manual [50].

e General and algorithmic support of MATCONT and MATCONTM. Here we present
only some examples.

— Running the curve object example (Appendix A in [45]) in older versions of
MATCONT worked nicely when it was executed after a fresh start of MATLAB.
However, it failed invariably when other continuation runs were done before.
This problem was caused by the lack of an initializer for the curve object and
was solved by first declaring the global structure cds to be empty.

— A long-standing bug in the code that generates system m-files was detected and
solved. It involved the symbolic derivatives of fifth order in an ode or map with
userfunctions.

— In the older versions of MATCONT the largest in magnitude eigenvalues of the
saddle fixed points of homoclinic orbits were computed by calling eigs from
MATLAB. These eigenvalues were produced in decreasing order of magnitude.
The computations crashed when a changed version of eigs produced the eigen-
values in a more random way. As a remedy, eigs was replaced by eig and the
eigenvalues were sorted afterwards.

2.8.2 New contributions

e An algorithm for switching to two different NS curves in a Double Neimark-Sacker
(NSNS) point in MATCONTM. We implemented this algorithm and it is remarkably
simple and efficient, and quite different from the idea that is traditionally used for

2.8.

OVERVIEW OF CONTRIBUTIONS: GENERAL 19

switching to a second branch of equilibria when a branch point of equilibria is detected
on an equilibrium curve. The continuation variables in the continuation of a NS
curve consist not only of the state variable x and the free parameter p but also of the
scalar variable k = cos(a) where the Neimark-Sacker eigenvalues of the Jacobian are
e Hence the NSNS point corresponds in fact to two different points in (x,p, k)
space with the same x and p but different k& values. Therefore the two Neimark-
Sacker branches can simply be started from these two points. In MATCONTM this
corresponds to the initializers init_NSNS_NS_same and init_NSNS_NS_other where
‘same’ correspond to the curve on which the NSNS point was detected. We note
that it is not necessary to compute tangent vectors and that it is even possible to
change the choice of the free parameters, which is not the case in a branch point of
equilibria.

In CL_MATCONTM manifold and connection computations were implemented, im-
proved and documented in the manual [50]. They were also introduced in MAT-
CoNTM and discussed in the tutorials. More details are in §4.4.

Lyapunov exponents in MATCONTM. MATCONTM now contains two routines to
compute the Lyapunov exponents of a map. The class file LyaExp.m contains the
routine from [7] to compute all Lyapunov exponents of a map. The class file
LyaExp2Dlargest.m from [95] is a more restricted but efficient algorithm to compute
the largest Lyapunov exponent in the case of planar systems. It was extensively used
in [3]. Both class files are located in the directory Lyapunov and the output is written
to the MATLAB workspace.

The directory GUI contains two further files related to the computation of Lyapunov
exponents. One of them is the file FieldsModel .m which acts as the Model part in a
MVC setting. It contains the list of input variables that can be called by either of the
Lyapunov algorithms. It also contain the conditions that check their validity. The
Controller in the same MVC setting is the Starter window through which the user
sets the values of the input variables. The other file is Branch _LyaExp.m which acts
as the driver routine for the computations; it also acts as the Viewerin the MVC. The
name of the file is derived from the fact that the computation of Lyapunov exponents
is implemented as the computation of a new branch in a bifurcation point.

In §4.3 practical details of the implementation are given. As an example application
we study the monopoly model introduced in [76]. In this model we additionally detect
stable behaviour in two small parameter intervals (length less than 2 x 1073).

Unpublished but implemented work with L. Vanhulle: in her master thesis ([92],
Ghent, September 2017) she developed an improved algorithm to compute in MAT-
LAB the intersection points of two manifolds (typically a stable one and an unstable
one). It was incorporated in MATCONTM in the file Projectie2.m. Details are
given in §4.5.

20 CHAPTER 2. PRELIMINARIES

2.8.3 Publications

e Paper [72]. This conference paper describes the then available functionalities of
MATCONTM. It was written as a precursor paper to [3] and contains some example
computations in the case of the monopoly model map of [76].

e Paper [3]. This example of an application of MATCONTM is joint work with B.
Al-Hdaibat and W. Govaerts. It is a combined analytical and numerical study of
a planar map that was introduced in [76] as a monopoly model in economics with
cubic price and quadratic marginal cost functions. MATCONTM is used to compute
branches of solutions of period 5, 10, 13 and 17 and to determine the stability regions
of these solutions. General formulas for solutions of period 4 are derived analytically.
It is shown that the solutions of period 4 are never linearly asymptotically stable. A
nonlinear stability criterion is combined with basin of attraction analysis and simu-
lation to determine the stability region of the 4-cycles. This corrects the erroneous
linear stability analysis in previous studies of the model. The chaotic and periodic
behavior of the monopoly model is further analyzed by computing the largest Lya-
punov exponents, using the LyaExp2Dlargest.m implementation of the algorithm in
[95]. This confirms the above-mentioned results. For more details and additional
results see §4.3.1.

e TOMS paper with W. Govaerts, H.G.E. Meijer and Yu. A. Kuznetsov [73]. The
introductory part of this paper is recalled in §4.4. The paper discusses the numerical
study of bifurcations of homoclinic orbits of maps and applies the developed meth-
ods to obtain a rather complete bifurcation diagram of the resonance horn in a 1:5
Neimark-Sacker bifurcation point, revealing features that were unknown before, cf.
the picture on the cover. This paper is presented in §4.6 and §4.7.

2.9 Overview of contributions by N. Neirynck - II :
New MATCONT

A major part of my work consists in developing a new MATCONT-environment. We now
summarize the main aspects:

e A clear separation of computational and control routines to increase flexibility, read-
ability and maintainability.

e The workflow is consistently organized along the lines initializer — computation
— solution. The notion of continuation is replaced by the more general notion of
computation.

e A better handling of the generated data. These data are represented and managed
by the diagram organizer, the data browser and the spreadsheet viewer.

2.9. OVERVIEW OF CONTRIBUTIONS: NEW MATCONT 21

The internal working of the software is documented in Chapter 6. This chapter
provides a general overview. More details are obtained through the internal docu-
mentation in the code which can be accessed online.

We now provide more details:

2.9.1 Software development aspects of the new MATCONT

Internally the structure of MATCONT is completely reorganized. As an example,
there are now only two plot functions (one for continuation, one for time integration)
instead of one for every curve type.

A central tool in the new GUI is the Data Browser which allows to navigate fast
and easily through all stored results and use them to start new computations.

The software contains automatic tests to check if a new MATLAB version produces
the same results as the previous version.

Error handling of plots is improved so that plot errors caused by e.g. command line
interference, or by GUI interference when computations are suspended, do not crash
the computations.

Each input field has input restrictions and these are checked to minimize input errors.
So for example it will not be possible to input a float or a question mark if a positive
integer number is required. Errors are reported in the MATLAB command line. On
the other hand, numerical fields can be filled with MATLAB expressions, provided
they can be evaluated in the command line. So one can insert 2 % P instead of its
decimal expansion 6.283184...

2.9.2 Functional aspects of the new MATCONT

Computation of Poincaré maps in MATCONT. In the pre-2018 versions of MATCONT
Poincaré maps of ODEs were computed by using a specific curve type, called Discrete
Orbit (DO). For this type of orbits the ODE solvers were manipulated to use an
explicitly implemented approximation strategy to locate the Poincaré intersection
points. In the new GUI there is no longer a specific curve type. The Poincaré
sections are computed as a side result of the simulation by using the "Events’ option
of the ODE solver. One shortcoming of the MATLAB solvers is that they do not
interactively report on these events. In order to allow for interactive plotting of
events, the plot routine will also monitor for sign changes in the values of the event
function. Whenever a sign change is observed, the solver is called again on a smaller
part of the curve to extract the event. Due to the implementation of this workaround,
the list of detected events after computation in rare cases might contain more events
than were displayed on an interactive plot. More information is given in §5.6 on the
practical use of configuring events.

22

CHAPTER 2. PRELIMINARIES

A Command Line Interface (cli) allows a direct interaction between the command
line and the GUI of MATCONT. See §6.6.

The GUI has a diagram organizer to define new diagrams, delete diagrams, move
files between diagrams etcetera.

Graphical 2D and 3D plots are reorganized: only one layout window is presented and
nearly everything can be plotted.

The Select Cycle functionality is now presented as a regular initializer from orbit to
limit cycle.

2.9.3 Handling the Options in the new MATCONT

The Options tab in the main MatCont GUI panel opens a list box window that allows
the user to manage certain options in MatCont. Four of these options are global, namely:

Suspend Computation: decide whether computations are suspended after each
point, at special points or never.

Archive Filter: number of unnamed curves of the same type that is preserved.

Output Interval: number of continuation points that is computed before output
is written to the Plot2D, Plot3D, Numeric and Output windows, and to the
MATLAB command window.

Plot Properties: general instructions for making plots.

These global options do not affect the computation of a curve and are not saved with
the curve.
Three other options are computational and curve-related:

Jacobian Increment: increment that is used in finite difference approximations for
derivative functions when no symbolic derivatives are available

Moore-Penrose: whether Moore-Penrose (default) or tangent continuation is to be
used.

TSearchOrder: cycling of unit tangent vectors in increasing or decreasing order of
index when starting a continuation if no tangent vector is provided.

The choices for these options are saved with the curve so that the curve can be re-
computed if required. The default values of the computational options are usually good
and we recommend not to change them

The Suspend Computation, Archive Filter and Output Interval options were
available in the Options panel of the older versions of MATCONT. The Moore-Penrose
option was present in the old MATCONT but not visible in the GUI. The Jacobian In-
crement option was visible in all Starter windows separately. Plot Properties and
TSearchOrder options are new.

2.9. OVERVIEW OF CONTRIBUTIONS: NEW MATCONT 23

2.9.4 Practical use aspects of the new MatCont

e In continuation plots it is possible to click on a found singular point to obtain in-
formation on the curve where it was found, the type of point and the normal form
coefficients. By double clicking one selects the points as an initial point for another
continuation.

e A spreadsheet view of a computed curve can be obtained by pressing the View
Curve button in the Curve window.

e The Scroll-key can be used to scroll through MatCont windows. This functionality
had to be implemented as MATLAB does not provide this functionality as part of
their standard library.

e Several special keys can be used to control continuation computations, namely: Es-
cape to stop, Space bar to resume, Enter to pause and Control to continue (when
pressed) or to pause (when released). The use of the Control key is new.

Chapter 3

Numerical continuation: the
algorithmic basis

3.1 Numerical continuation

In general, numerical continuation methods are used to compute solution manifolds of
nonlinear systems of the form:

F(X) =0, (3.1)
where X € R"** and F: R"** — R" is a sufficiently smooth function. The solutions of this
equation consist of regular pieces, which are joined at singular solutions. The regular pieces
are curves when k = 1, surfaces when k = 2 and k-manifolds in general. Mathematically,
this is a consequence of the Implicit Function Theorem.

We will use numerical continuation methods for analyzing the solutions of (3.1) when
restricted to the case kK = 1. In fact, we construct solution curves I' in

(X:F(X)=0}, (3.2)

by generating sequences of points X;,7 = 1,2, ... along the solution curve I' satisfying a
chosen tolerance criterion. The general idea of a continuation method is that of a predictor-
corrector scheme. Starting with an initial point on the continuation path, the goal is to
trace the remainder of the path in steps. At each step, the algorithm first predicts the next
point on the path along the tangent direction, and subsequently corrects the predicted point
towards the solution curve. MatContM uses a variant of Moore-Penrose continuation which
builds upon pseudo-arclength continuation; this amounts to using a variant of Newton’s
method for the corrector step, see Figure 3.1. For details of the continuation method used
in (CL_)MATCONT AND (CL_)MATCONTM we refer to [45].

3.2 Testfunctions for bifurcations

Let X = X(s) be a smooth, local parameterization of a solution curve of (3.1) where
k = 1. Suppose that s = sg corresponds to a bifurcation point. A smooth scalar function

25

26 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

Figure 3.1: Moore-Penrose continuation with predicted/corrected points X* and updated
tangent vectors V*

1 R — R! defined along the curve is called a testfunction, a tool to detect singularities
on a solution branch, for the corresponding bifurcation if g(sy) = 0 and g(s) changes sign
at s = sg , where g(s) = ¥(X(s)). The testfunction 1 is said to have a regular zero at s
if z—g(so) # 0. A bifurcation point is detected between two successive points X, and X; on
the curve if 1(X()y(X;1) < 0. To solve the augmented system

F(X)=0
{ W(X) = 0, (3.3)

MATCONT uses a one-dimensional secant method to locate ¥(X) = 0 along the curve.
Notice that this involves Newton corrections at each intermediate point.

3.3 Singularity matrix

Every singularity that can be expected along a curve needs at least one testfunction. Such
a testfunction is usually not unique. For example, consider the situation where X = [u, A]
with u € R™ a state vector and A € R a parameter. Then (3.1) defines a curve of equilibria.
The determinant of the Jacobian F, € R™™ is a testfunction for this bifurcation. The
parameter-component 7y € R of the tangent vector T' = [T}, T)] along the curve is another
one. The user can choose the most convenient testfunction. Let us choose ¢ (X) = det(F,).

3.4. USERFUNCTIONS 27

Unfortunately, if 1;(X) = 0 in an equilibrium point X this does not imply that X is
a limit point of the equilibrium curve. Indeed, it can also be a branch point where two
equilibrium branches intersect. To detect branch points we can use another testfunction

19 where

wg(X)—det{% f;i]

If 15 (X) = 0, then necessarily 1;(X) = 0 too, but not vice versa. So to make sure that
we deal with a genuine limitpoint we also need ¥(X) # 0.

This type of situation is not rare. For example, along a curve of limitpoints both the
Zero-Hopf bifurcation (ZH) and the Bogdanov-Takens (BT) bifurcation can be detected
by the same testfunction which is essentially the same as the testfunction for a Hopf
bifurcation along a curve of equilibria. So it is necessary to distinguish between the two
cases by giving another testfunction which vanishes at one of ZH or BT and not at the
other.

Let us suppose that on a particular curve ng bifurcations are possible. Suppose also
that we need n; testfunctions defined along that curve where n; > n,.

To detect and identify all singularities we use a singularity matrix, i.e. a compact way
to describe the relation between the singularities and the testfunctions. The singularity
matrix S is an n, X n; matrix, such that:

0 means : for singularity i testfunction j must vanish
Sij=14 1 means : for singularity i testfunction j must not vanish (3.4)
otherwise means : for singularity i ignore test function j

As an example we consider again an equilibrium curve. In this case, a third bifurcation is
also possible, namely that of a Hopf bifurcation. For this bifurcation a third testfunction
13 is known and there is no need for a testfunction that does not vanish. With this ordering
of the bifurcations a singularity matrix is given by:

01 8
8 0 8
8 8 0

S = (3.5)

We note that in MATCONT the bifurcations are ordered differently so that the sin-
gularity matrix looks somewhat different. Also, the testfunction for Hopf in fact detects
Jacobian matrices with a pair of eigenvalues with sum zero, i.e. not only Hopf points but
also neutral saddles with two real eigenvalues with sum zero.

3.4 Userfunctions

The user has the possibility to define specific functions which must be scalar and can
depend only on the state variables and parameters. Userfunctions can only be active
during continuation runs. Also, using state variables is only meaningful in the case of

28 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

equilibrium, Hopf, limit point and branch point curves. The user can request that the
zeros of userfunctions are detected and computed during continuation runs as if they were
singular points. This requires that the options Userfunctions and UserfunctionsInfo
are set properly (see §3.5.3) and that the system m-file defines the userfunctions (§3.6).

3.5 Software

3.5.1 Continuer

The syntax of the continuer is:
[x,v,s,h, f] = cont(Qcurve, x0, v0, options) (3.6)

Here curve is a MATLAB m-file that contains the curve description, cf. §3.5.2.

x0 and vO are the initial point and the tangent vector at the initial point where the
continuation starts, respectively.

options is a structure as described in §3.5.3.

The function returns:

x and v, i.e. the points and their tangent vectors along the curve. Each column in x and
v corresponds to a point on the curve.

s is an array of structures; each entry is a structure that contains information about a
detected singular point. This structure has the following fields:

s.index index of the singularity point in x

s.label label of the singularity

s.data any kind of extra information

5.MS¢ a string containing a message for this particular singularity

h is used for output of the algorithm, currently this is a matrix with for each point a column
with the following components (in that order) :

e Stepsize:
Stepsize used to calculate this point (zero for initial point and singular points)

e Half the number of correction iterations, rounded up to the next integer
For singular points this is the number of locator iterations

e Userfunction values :
The values of all active userfunctions

e Testfunction values :
The values of all active testfunctions

We note that the meaning of the values in the h-output not only depends on the
curve type, but also on the choice of the active userfunctions and testfunctions during the
continuation run.

3.5. SOFTWARE 29

In general, £ can be anything depending on which curve file is used. However, f
always contains eigenvalues if they are computed during the continuation. Eigenvalues are
computed when options is set by

options=contset(options,’Eigenvalues’,1);

f always contains multipliers if they are computed during the continuation. Multipliers
are computed when options is set by

options=contset(options,’Multipliers’,1);

See §3.5.3 for more details.
It is also possible to extend the most recently computed curve with the same options
(also the same number of points) as it was first computed. The syntax to extend this curve

is:
[x, v, s, h, f] = cont(x, v, s, h, f, cds)

X, v, s, h and f are the results of the previous call to the continuer and cds is the global
variable that contains the curve description of the most recently computed curve. The
function returns the same output as before extended with the new results.

3.5.2 Curve files

The continuer uses curve definition files, i.e. special m-files in which the type of the solu-
tion branch is defined. In MATCONT twelve types are implemented, namely in the files
branchpoint.m, branchpointcycle.m, equilibrium.m, heteroclinic.m, homoclinic.m,
homoclinicsaddlenode.m, hopf.m, 1limitcycle.m, limitpoint.m, limitpointcycle.m,
neimarksacker.m and perioddoubling.m. Each curve type has its own directory in MAT-
CONT.

In MATCONTM eight curve types are implemented, namely in the files fixedpointmap.m,
heteroclinic.m, heteroclinicT.m, homoclinic.m, homoclinicT.m, limitpointmap.m,
perioddoublingmap.m and neimarksackermap.m. FEach curve type has its own directory
in MATCONTM.

A curve definition file contains several sections such as curve_func, jacobian, hes-
sians, adapt, etc. In some cases the problem definition uses auxiliary entities like bordering
vectors and it may be needed to adapt them during the continuation. In adapt these enti-
ties are adapted. If cds.options. Adapt has a value n, then after n computed points a call
[reeval,x,v]=feval(cds.curve_adapt,x,v)
is executed. It is required that m be a nonnegative integer; if n = 0 then no adap-
tations are done. For some curve types, e.g. equilibrium and fixed point, adapt is an
empty routine anyway. In the case of limit cycles the mesh is adapted at each call to
feval(cds.curve_adapt,x,v).

30 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

3.5.3 Options

In the continuation we use the options structure which is initially created with contset:
options = contset

will initialize the structure. The continuer stores the handle to the options in the variable
cds.options. Options can then be set using

options = contset(options, optionname, optionvalue);

where optionname is an option from the following list.

InitStepsize the initial stepsize (default: 0.01)

MinStepsize the minimum stepsize to compute the next point on the curve (default:
1075). Tt is assumed that the minimum stepsize is not larger than the initial stepsize.

MaxStepsize the maximum stepsize (default: 0.1). It is assumed that the maximum
stepsize is not smaller than the initial stepsize.

MaxCorrlters maximum number of correction iterations (default: 10)

MaxNewtonlIters maximum number of Newton-Raphson iterations before switching to
Newton-Chords in the corrector iterations (Jacobian is no longer updated) (default:

3)

MaxTestIters maximum number of iterations to locate a zero of a testfunction (default:
10)

Increment the increment to compute the derivatives numerically (default: 107°)

FunTolerance tolerance of function values: ||F(x)|| < FunTolerance is the first conver-
gence criterion of the Newton iteration (default: 1079)

VarTolerance tolerance of coordinates: ||0z|] < VarTolerance is the second convergence
criterion of the Newton iteration (default: 107°)

TestTolerance tolerance of testfunctions (default: 107°)
Singularities boolean indicating the presence of singularities (default: 0)
MaxNumPoints maximum number of points on the curve (default: 300)

Backward boolean indicating the direction of the continuation (direction of the initial
tangent vector vg) (default: 0)

CheckClosed number of points indicating when to start to check if the curve is closed (0
= do not check) (default: 50)

Adapt number of points indicating when to adapt the problem while computing the curve
(0 = do not adapt) (default: 3)

3.5. SOFTWARE 31

IgnoreSingularity vector containing indices of singularities which are to be ignored (de-
fault: empty)

Multipliers boolean indicating the computation of the multipliers (default: 0)

TSearchOrder numerical value that indicates if unit vectors are cycled in increasing order
of index (default: 1, increasing) or decreasing (set to a value different from 1), see
§3.5.12.

Userfunctions boolean indicating the presence of userfunctions (default: 0)

UserfunctionsInfo is an array with structures containing information about the
userfunctions. This structure has the following fields:

Jlabel label of the userfunction (must consist of four characters, including possibly
trailing spaces)

.name name of this particular userfunction

.state boolean indicating whether the userfunction has to be evaluated or not

For the options MaxCorrlters, MaxNewtonlters, MaxTestIters, Increment, FunToler-
ance, VarTolerance, TestTolerance and Adapt the default values are in most cases good.

Options also contains some fields which are not set by the user but frozen or filled by
calls to the curvefile, namely:

MoorePenrose boolean indicating the use of the Moore-Penrose continuation as the
Newton-like corrector procedure (default: 1; if 0 then pseudo-arclength is used)

SymDerivative the highest order symbolic derivative which is present (default: 0)

SymDerivativeP the highest order symbolic derivative with respect to the parameter(s)
which is present (default: 0)

AutDerivative boolean indicating the use of automatic differentiation in the computation
of normal form coefficients, not present in MATCONT (default: 1)

AutDerivativelte an integer number that indicates the use of automatic differentiation

when the iteration number of the map equals or exceeds this number, not present in
MATCONT (default: 24)

Testfunctions boolean indicating the presence of testfunctions and singularity matrix

(default: 0)

WorkSpace boolean indicating to initialize and clean up user variable space (default: 0
and no other value is used in MATCONT or MATCONTM)

Locators boolean vector indicating for which testfunctions a specific locator code exists
to locate its zeroes. Otherwise the default locator is used (default: empty)

32 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

ActiveParams vector containing indices of the active parameter(s) (default: empty)

Some more details follow here on some of the options.

3.5.4 Derivatives of the defining system of the curve

In the defining system of the object that is to be continued, the derivatives can be pro-
vided that are needed for the continuation algorithm or other computations. The con-
tinuer stores the handles to the derivatives in the variables cds.curve_jacobian and
cds.curve_hessians.

If cds.symjac= 1, then a call to feval(cds.curve_jacobian, x) must return the
(n — 1) x n Jacobian matrix evaluated at point x.

If cds.symhess= 1, then a call to feval(cds.curve hessians, x) must return a
3-dimensional ((n — 1) X n x n) matrix H such that H(i, j, k) = %.

In the present implementation cds.symhess= 0 in all cases. The curve definition file
does not provide second order derivatives, since they are not needed in the used algorithms.

3.5.5 Singularities and testfunctions

To detect singularities on the curve one must set the option Singularities on. Singularities
are detected using the singularity matrix, as described in section 3.3. The continuer stores
the handles to the singularities, the testfunctions and the processing of the singularities re-
spectively in the variables cds.curve_singmat,cds.curve_testf and cds.curve_process.

A call to [S,L] = feval(cds.curve singmat) gets the singularity matrix S and a
vector of strings which are abbreviations (labels) of the singularities.

A call to feval(cds.curve_testf, ids, x, v) then must return the evaluation of all
testfunctions, whose indices are in the integer vector ids, at x (v is the tangent vector at
x). As a second return argument it should return an array of all testfunction id’s which
could not be evaluated. If this array is not empty the newly found point on the curve is
not accepted and the stepsize is decreased.

When a singularity is found, a call to
[failed,s] = feval(cds.curve_process,i,x,v,s) will be made to process singularity
i at x. This is the point where computations can be done, like computing normal forms,
eigenvalues, etc. of the singularity. These results can then be saved in the structure s.data
which can be reused for further analysis. Note that the first and last point of the curve
are also treated as singular.

3.5.6 Locators

It may be useful to have a specific locator code for locating certain singularities. To use a
specific locator the user must set the option Locators. This is a vector in which the index
of an element corresponds to the index of a singularity. Setting the entry to 1 means the
presence of a user-defined locator. The continuer has stored the handles to the locators in

3.5. SOFTWARE 33

the variable cds.curve_locator and will then make a call to
[x,v]=feval(cds.curve_locate,i,x1,vl,x2,v2)

to locate singularity ¢ which was detected between x1 and x2 with their corresponding
tangent vectors v1 and v2. It must return the located point and the tangent vector at that
point. If the locator was unable to find a point it should return x = [].

3.5.7 Userfunctions

To detect zeros of userfunctions on the curve one must set the option Userfunctions on.
The continuer has stored the handles to the userfunctions cds.curve userf. First a call
to UserInfo = contget(cds.options, ’UserfunctionsInfo’, []) is made to get in-
formation on the userfunctions. A call to feval(cds.curve_userf, UserInfo, ids, x,
v) then must return the evaluation of all userfunctions ids, whose information is in the
structure UserInfo, at x (v is the tangent vector at x). As a second return argument it
should return an array of all userfunction id’s which could not be evaluated. If this array
is not empty the stepsize will be decreased.

A special point on a bifurcation curve that is specified by a userfunction has a structure

as follows:
s.index index of the detected singular point defined by the userfunction.

s.label a string that is in UserInfo.label, label of the singularity.

S.msg a string that is set in UserInfo.name.

s.data an empty tangent vector and values of the userfunctions and testfunctions in
the singular point.

3.5.8 Defaultprocessor

In many cases it is useful to do some general computations for every calculated point
on the curve. The results of these computations can then be used by for example the
testfunctions. The continuer has stored the handle to the defaultprocessor in the variable
cds.curve_defaultprocessor.

The defaultprocessor is called as
[failed,f,s] = feval(cds.curve defaultprocressor,x,v,s).
x and v are the point on the curve and its tangent vector. The argument s is only supplied
if the point is a singular point, in that case the defaultprocessor may also add some data
to the s.data field. If for some reason the default processor fails it should set failed to 1.
This will result in a reduction of the stepsize and a retry which should solve the problem.
Any information that is to be preserved, should be put in £. £ must be a column vector
and must be of equal size for every call to the default processor.

3.5.9 Special processors

After a singular point has been detected and located a singular point data structure will
be created and initialized. If there are some special data (like eigenvalues) which may be

34 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

of interest for a particular singular point then a call to

[failed,s] = feval(cds.curve_process,i,x,v,s)

should store this data in the s.data field. Here i indicates which singularity was detected
and x and v are the point and tangent vector where this singularity was detected.

3.5.10 Workspace

During the computation of a curve it is sometimes necessary to introduce variables and
perform additional computations that are common to all points of the curve. The continuer
has stored the handle to the initialization and clean-up of the workspace in the variables
cds.curve_init and cds.curve_done. Initialization and clean-up can be relegated to a
call of the type

feval(cds.curve_init,x,v).

This option has to be provided only if the variable WorkSpace in cds.options is switched
on. In this case a call

feval (cds.curve_done,x,v)

must clear the workspace. Variables in the workspace must be set global. In the GUI of
MATCONT and MATCONTM cds.options.Workspace is never switched on.

3.5.11 Adaptation

It is possible to adapt the problem while generating the curve. If Adapt has a value, say 5,
then after 5 computed points a call to [reeval,x,v]=feval(cds.curve_adapt,x,v) will
be made where the user can program to change the system.

For some applications it is useful to change or modify the used testfunctions while
computing the curve (like in bordering techniques). In order to preserve the correct signs of
the testfunctions it is sometimes necessary to reevaluate the testfunctions after adaptation.
To do this reeval should be one otherwise zero. The return variables x and v should be
the updated x and v which may have changed because of the changes made to the system.

3.5.12 Tangent search order

To start a continuation, an initial point xy and a tangent vector vy are needed in general.
Often, only z(is available. In this case, MATCONT and MATCONTM successively try
all unit vectors as candidate tangent vectors. By default, this is done in increasing order
of index (cds.options.TSearchOrder = 1). If cds.options.TsearchOrder is set to a value
different from 1 then the cycling is done in decreasing order of index.

In cases where the number of continuation variables is large (e.g. when computing
homoclinic connections) the choice of cds.options. TSearchOrder can substantially change
the speed of the computation.

3.6. THE SYSTEM M-FILE OF AN ODE OR MAP 35

3.6 The system m-file of an ode or map

A solution curve must be initialized before doing a continuation. Each curve file has its
own initializers which use a system m-file where the ode or map is defined. In the first case
the system m-file is also called the odefile, in the latter case the mapfile. A system m-file
contains at least the following sections (in that order):

wnit, fun_eval, jacobian, jacobianp, hessians, hessiansp, der3, derj , derd.
A system m-file may also contain one or more sections that describe userfunctions.

We note that if state variables or parameters are added or deleted then this constitutes
another dynamical system. So either all computed data should be deleted or ignored, or
the name of the system should be changed. For simplicity and robustness the last option
is strongly recommended. A system m-file can be defined by simply using the MATLAB
editor or any other text editor.

In order to illustrate the recommended method and the elements of a mapfile, we
consider the example Mry, the map of a truncated normal form, i.e. the two-dimensional
map, introduced in [60], §9.9, unfolding the normal form of an R2 point to which it reduces

for ﬁl :Bg =0.

& -1 1 & 0
MTN'(£2)'_> (B —1+p) (52)+<C£%+D£%52) (3.7)

A new mapfile can be created by calling SysGUI.new.
This opens a System window, which contains several fields and buttons. To identify
the system, type for example

Tnfmap

in the Name field (it must be one word).

Input names of the Coordinates: ksil, ksi2, and the Parameters: betal, beta2,
CC, DD. In the case of ODEs there is also an input field by which ¢ime can be given a name.
The default is t and usually there is no reason to change that.

If shown, select symbolic generation of the 1st order derivatives by pressing the corre-
sponding radio-button .

Finally, in the large input field, type the RHS of the truncated normal form map as

ksil’=-ksil+ksi?2
ksl2’=betal*ksil-ksi2+beta2*xksi2+CC*ksil~3+DD*ksil~2*ksi2

'If the MATLAB Symbolic Toolbox is present, there will be buttons indicated ’symbolically’. The first-
order derivatives are used in some of the integration algorithms, the first- and second-order derivatives are
used in the continuation, while the third-order derivatives are employed in the normal form computations.
The derivatives of fourth and fifth order are only used in the normal form computations of some codimension
2 bifurcations.

36

CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

System

-10] x|

Name |Infmap

Coordinates Iksil,ksiz

Parameters Il:etal,het.aE,CC,DD

1=t ord 2nd ord 3rd ord 4th ord

Derivatives

5th ord

- numerically
- from window

— symbolically

~
I

=

o
P
-

o

~

o

~

&

ksil'=-k=sil+ksiZ ;I
ksiE'=betal*ksil—k512+bet32*ksiE+CC*ksil“3+DD*ksil“2*ksiﬂ

[

OK | Cancel |

Figure 3.2: Specifying a new model, the truncated normal form map (3.7).

Avoid typical mistakes:
e Make sure the multiplication is written explicitly with x.
e Specify the right hand sides in the same order as the coordinates.

It is best not to add comma’s or semicolons after the equations. Now the System window
should look like in Figure 3.2, and the user can press the OK button. Two new files will
be created in the Systems directory of MATCONTM, namely the mapfile Tnfmap.m and a

mat-file Tnfmap.mat.

3.6. THE SYSTEM M-FILE OF AN ODE OR MAP 37

The mapfile can be edited later on by calling SysGUI.edit (@name) where name is the
name of an existing mapfile. Userfunctions can be added by calling
SysGUI.userfunctions(@name). See Figure 3.3.

User functions M= E3

Name TSRVl

LabeIEE

L

res=betal-2 ;]

OK Cancel |

Figure 3.3: Adding a userfunction.

First we give the mapfile of My using symbolic derivatives up to order 5:

function out = Tnfmap
out{1} = [J;

out{2} = @fun_eval;
out{3} = @jacobian;
out{4} = @jacobianp;
out{5} = @hessians;
out{6} = @hessiansp;
out{7} = @der3;
out{8} = @der4;
out{9} = @der5;

/0
function dydt = fun_eval(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

38 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

dydt=[-kmrgd (1) +kmrgd(2) ;
par_betalxkmrgd (1) -kmrgd (2)+par_beta2*kmrgd (2) +par_CCxkmrgd (1) "3
+par_DD*kmrgd (1) “2xkmrgd (2) ;] ;

A —

function jac = jacobian(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

jac=[-1 , 1 ; par_betal + 3*kmrgd(1l) "2*par_CC + 2xkmrgd(1)*kmrgd(2)*par_DD ,
par_beta2 + kmrgd(1l) "2*par_DD - 1];

A —

function jacp = jacobianp(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

jacp=[L 0 , 0, 0, O ; kmrgd(1l) , kmrgd(2) , kmrgd(1)~3 ,

kmrgd (1) “2*kmrgd (2) 1;

A —

function hess = hessians(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

hess1=[0 , 0 ; 6%kmrgd(1)*par_CC + 2%kmrgd(2)*par_DD , 2¥kmrgd(1)*par_DD];

hess2=[0 , 0 ; 2%kmrgd(1)*par_DD , O];

hess(:,:,1) =hessi;

hess(:,:,2) =hess2;

A —

function hessp = hessiansp(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

hessp1=[0, 0 ; 1, 0];

hessp2=[0 , 0 ; 0, 1 1;

hessp3=[0 , 0 ; 3*xkmrgd(1)"2 , 0];

hessp4=[0 , 0 ; 2xkmrgd(1)*kmrgd(2) , kmrgd(1)°2];

hessp(:,:,1) =hesspl;

hessp(:,:,2) =hessp2;

hessp(:,:,3) =hessp3;

hessp(:,:,4) =hessp4;

function tens3 = der3(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)
tens31=[0 , O ; 6%par_CC , 2*par_DD];

tens32=[0 , 0 ; 2*par_DD , O];

tens33=[0 , 0 ; 2*par_DD , O];

tens34=[0, 0 ; 0, 0];

tens3(:,:,1,1) =tens31;

tens3(:,:,1,2) =tens32;

tens3(:,:,2,1) =tens33;

tens3(:,:,2,2) =tens34;

function tens4 = der4(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)
tens41=[0 , 0 ; 0, 0 1;
tens42=[0 , 0 ; 0, 0];

3.6. THE SYSTEM M-FILE OF AN ODE OR MAP 39

tens47=[0 , 0 ; 0, 0 1;
tens48=[0, 0 ; 0, 0];
tens4(:,:,1,1,1) =tens4dl;
tens4(:,:,1,1,2) =tens4?2;

tens4(:,:,2,2,1) =tens47;
tens4(:,:,2,2,2) =tens48;

function tens5 = derb5(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)
tensb1=[0 , 0 ; 0, 0];
tensb2=[0 , 0 ; 0, 0 1;

tensb515=[0 ,

0;0, 01;
tens516=[0 , 0 ; 0 , O];
tens5(:,:,1,1,1,1) =tensbi;
tensb(:,:,1,1,1,2) =tensb2;
tens5(:,:,2,2,2,1) =tensb515;
tens5(:,:,2,2,2,2) =tensbi16;

We observe that:

e In the case of maps out {1} is by default empty. This output field is provided for
cases in which the user wants to do some initializations. In the case of odes it has a
default content which for the lpneuron.m example with 13 state variables is:

function [tspan,y0,options] = init

handles = feval(lpneuron);

yo0=[0,0,0,0,0,0,0,0,0,0,0,0,0];

options = odeset(’Jacobian’,handles(3),’JacobianP’,handles(4),
’Hessians’ ,handles(5),’HessiansP’ ,handles(6));

tspan = [0 10];

e The state variables are collected in a vector kmrgd.

e Internally the parameters are renamed to avoid clashes with the name restrictions of
the symbolic toolbox. E.g. CC is replaced by par_CC.

After adding a userfunction userfunl=beta2-2 we obtain:

function out = Tnfmap
out{1} = @init;
out{2} = @fun_eval;
out{3} = @jacobian;

40 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

out{4} = @jacobianp;
out{5} = Ghessians;
out{6} = @hessiansp;
out{7} = @der3;
out{8} = @der4;
out{9} = @der5;

out{10}= @userfuni;

A —
function dydt = fun_eval(t,kmrgd,betal,beta2,CC,DD)

dydt=[-kmrgd (1) +kmrgd (2) ;

betalxkmrgd (1) -kmrgd (2) +beta2*kmrgd (2) +CCxkmrgd (1) ~3+DD*kmrgd (1) ~2*kmrgd (2) ;] ;

S —
function jac = jacobian(t,kmrgd,betal,beta2,CC,DD)
jac=[-1 , 1 ; betal + 3*CCxkmrgd(1)~2 + 2+DD*kmrgd(1)*kmrgd(2) ,

beta2 + DD*kmrgd(1)°2 - 1];
A —
function jacp = jacobianp(t,kmrgd,betal,beta2,CC,DD)
jacp=L 0 , 0, 0, O ; kmrgd(1) , kmrgd(2) , kmrgd(1)~3 , kmrgd(1l) "2*kmrgd(2)];
S —
function hess = hessians(t,kmrgd,betal,beta2,CC,DD)
hess1=[0 , 0 ; 6%CCxkmrgd(1) + 2*DD*kmrgd(2) , 2*DD*kmrgd(1)];
hess2=[0 , O ; 2+DD*kmrgd(1) , 0];
hess(:,:,1) =hessi;
hess(:,:,2) =hess2;
A —
function hessp = hessiansp(t,kmrgd,betal,beta2,CC,DD)
hesspl=[0 , 0 ; 1, 0 1;
hessp2=[0 , 0 ; 0 , 1 1;
hessp3=[0 , 0 ; 3xkmrgd(1)"2 , 0];
hessp4=[0 , 0 ; 2xkmrgd(1)*kmrgd(2) , kmrgd(1)~2];
hessp(:,:,1) =hesspl;
hessp(:,:,2) =hessp2;
hessp(:,:,3) =hessp3;
hessp(:,:,4) =hessp4;

function tens3 = der3(t,kmrgd,betal,beta2,CC,DD)
tens31=[0 , 0 ; 6%CC , 2*DD 1];

tens32=[0 , 0 ; 24DD , O 1;

tens33=[0, O ; 2xDD , 0 1;

tens34=[0 , 0 ; O, 0 1;

tens3(:,:,1,1) =tens31;

3.6. THE SYSTEM M-FILE OF AN ODE OR MAP 41

tens3(:,:,1,2) =tens32;
tens3(:,:,2,1) =tens33;
tens3(:,:,2,2) =tens34;

function tens4 = der4(t,kmrgd,betal,beta2,CC,DD)
tens41=[0, 0 ; O, 0];
tens42=[0 , 0 ; 0, 0];

tens47=[0, 0 ; O, 0];
tens48=[0 , 0 ; 0, 0 1;
tens4(:,:,1,1,1) =tens4di;
tens4(:,:,1,1,2) =tens4?2;

tens4(:,:,2,2,1) =tensd7;
tens4(:,:,2,2,2) =tens4s§;

function tens5 = der5(t,kmrgd,betal,beta2,CC,DD)
tensb1=[0 , 0 ; 0, 0 1;
tensb2=[0 , 0 ; 0, 0 1;

tensb15=[

0, 0;0, 01];
tensb16=[0 , 0 ; 0 , O];
tens5(:,:,1,1,1,1) =tensbi;
tens5(:,:,1,1,1,2) =tensb2;
tensb(:,:,2,2,2,1) =tensb1b;
tensb(:,:,2,2,2,2) =tensb16;
 —

function userfunl=userfuni(t,kmrgd,betal,beta2,CC,DD)
userfunl=beta2-2;

If no symbolic derivatives are available then MATCONT uses finite difference approx-
imations instead. However, this will be less accurate and the computed normal form
coefficients are often unreliable, in particular when higher-order derivatives are involved.
MATCONTM can also use automatic differentiation (AD). A mapfile of Myy without sym-
bolic derivatives is given by:

function out = Tnfmap

out{1} = [1;
out{2} = @fun_eval;
out{3} = [1;
out{4} = [J;

out{5} (1;

42 CHAPTER 3. NUMERICAL CONTINUATION: THE ALGORITHMIC BASIS

out{6} = [];
out{7} = [J1;
out{8} = [J;
out{9} = [J;

out{10}= @userfuni;

A —

function dydt = fun_eval(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

dydt=[-kmrgd (1) +kmrgd (2) ;

par_betal*xkmrgd (1) -kmrgd(2)+par_beta2xkmrgd(2)
+par_CCxkmrgd (1) “3+par_DD*kmrgd (1) ~2*kmrgd (2) ;] ;

e
function jac = jacobian(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

e
function jacp = jacobianp(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

/A
function hess = hessians(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

S
function tens3 = der3(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)
function tens4 = der4(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)
function tens5 = derb(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)

function userfunl=userfuni(t,kmrgd,par_betal,par_beta2,par_CC,par_DD)
userfunl=beta2-2

Chapter 4

MATCONTM for maps

In this chapter we consider dynamical systems generated by smooth nonlinear maps
r— f(z,a), z€R" aeR™ (4.1)

with state variable x and parameter vector a.
A sequence (z)kez is called a connecting orbit of f if

lim z, = x_,

k——o0

flxp,a) = xpy, VEkEZ, (4.2)
lim z; = 2.,

k——+o0

where x_,, and x,, are (necessarily) fixed points of f. The connecting orbit is called
homoclinic if x, ., = x_,, and heteroclinic otherwise. From a geometric point of view, the
connecting orbit lies in the intersection of the unstable manifold W*(z_.,) of x_, and the
stable manifold W*(x,) of ;. These manifolds are defined as

W*(2100) = {z € R™: fINz,0) = 140 as J — +o0}, (4.3)
and
W7 o) = {w €R": Har}r go = v and f(grr1, @) = gr, and lim g, = :v_oo} - (44)

MATCONTM builds on the command line code CL_MATCONTM described in [50] and
[55] but supports several new functionalities, as well as providing a uniform interface. Com-
prehensive tutorials are provided that illustrate the use of MATCONTM by investigating
example models. The tutorials can be found on [64]

4.1 Features and functionalities of MatContM

In a typical use of MatContM, one starts with an initial fixed point or cycle, which may be
obtained from analysis, simulations or previous continuations. One first computes curves

43

44 CHAPTER 4. MATCONTM FOR MAPS

of fixed points or cycles under variation of one parameter, and may detect bifurcation
points on such curves. Starting from such bifurcation points, the continuer algorithm
in MatContM can compute bifurcation curves. These curves are defined by a system of
equations consisting of fixed point and bifurcation conditions. With one free parameter we
can also compute curves of connecting orbits. By varying two system parameters we can
compute bifurcation curves of limit points, period-doubling and Neimark-Sacker points as
well as tangencies of homoclinic and heteroclinic orbits. The systems that define connecting
orbits and their tangencies are fairly complicated as they involve the saddle equilibria at
the endpoints of the orbits, their eigenspace structures and the whole connecting orbit.
The following list contains functionalities that are provided by MatContM:

e Simulation (iteration) of maps, i.e. computation and visualization of orbits (trajec-
tories).

e Computation of the Lyapunov exponents of long trajectories.

e Continuation of fixed points of maps and iterates of maps with respect to a control
parameter.

e Detection of fold (limit point), flip (period-doubling point), Neimark-Sacker and
branch points on curves of fixed points.

e Computation of normal form coefficients for fold, flip and Neimark-Sacker bifurca-
tions.

e Continuation of fold, flip and Neimark-Sacker bifurcations in two control parameters.

e Detection of all codimension 2 fixed point bifurcations on curves of fold, flip and
Neimark-Sacker bifurcations.

e Computation of normal form coefficients for all codimension 2 bifurcations of fixed
points.

e Switching to the period doubled branch in a flip point.
e Branch switching at branch points of fixed points.
e Switching to branches of codimension 1 bifurcations rooted in codimension 2 points.

e Automatic differentiation for normal form coefficients of codimension 1 and codimen-
sion 2 bifurcations.

e Computation of one-dimensional invariant manifolds (stable and unstable) and in
the two-dimensional case computing their transversal intersections to obtain initial
homoclinic and heteroclinic connections.

e Continuation of homoclinic and heteroclinic orbits with respect to a control parameter
and the detection of tangencies on the curve of orbits.

e Continuation of homoclinic and heteroclinic tangencies in two control parameters.

4.2. BASIC PRACTICAL USE OF MATCONTM 45

4.2 Basic practical use of MATCONTM

A simple but important feature is that MATCONTM can simulate maps, i.e. compute
orbits (trajectories). These orbits can also be visualized and their Lyapunov exponents
can be computed, see §4.3.

The advanced use of MatContM relies on the ability to continue curves under variation
of parameter(s) and apply advanced bifurcation theory on given examples of maps. The
aim of the package is to allow a user to perform a bifurcation analysis of a map, without
deep knowledge of the workings of MatContM or even the continuation software.

The user is able to enter a system, an initial fixed point and start computing with
most of the settings left on default. This should lower the entry barrier for researchers
from different research fields who want to investigate their models but do not want to be
confronted with specification and implementation details.

The continuation curves can be visualized using the plot capabilities of MatContM; this
can be done during and after the continuation.

Tools are provided to help with managing systems, diagrams and curves.

Specific features have been implemented to make branch switching between continua-
tion curves fast and easy. An initial point can be selected out of a list of special points or
it can be selected by double-clicking on a graph of the computed curve. A list of available
curves for computation is shown depending on the type of the initial point.

An interface is also provided that allows the exchange of information between MAT-
CoNTM and the MATLAB command line. This enables the user to combine MatContM
with other MATLAB software or simply to use computed data on the MATLAB command
line.

Figure 4.1 is an action screenshot of MatContM that gives a visual impression of the
computation of a cascade of period-doubling bifurcations in a predator-prey model [1].

4.3 Lyapunov exponents in MATCONTM

The computation of Lyapunov exponents of maps (and in fact also of ode’s) is often useful
since it helps to find attractors and to compute their dimensions. However, it depends in a
rather unpredictable way on the initial point of the orbit and therefore should be used with
care and usually combined with other techniques. MATCONTM contains two routines to
compute the Lyapunov exponents of a map. The class file LyaExp.m contains the routine
from [7] to compute all Lyapunov exponents of a map. The class file LyaExp2Dlargest.m
from [95] is a more restricted but efficient algorithm to compute the largest Lyapunov
exponent in the case of planar systems. The directory GUI contains two further files related
to the computation of Lyapunov exponents. One of them is the file FieldsModel.m which
acts as the Model part in a MVC setting. It contains the list of input variables that can be
called by either of the Lyapunov algorithms. It also contain the conditions that check their
validity. The Controller in the same MVC setting is the Starter window through which
the user sets the values of the input variables. The other file is Branch LyaExp.m which

46 CHAPTER 4. MATCONTM FOR MAPS

Data Browser i
Continuer Numeric

- ‘sttems il System: PredatorPreyModel| / Diagram; cascade| / Curve:f4 PD_FP(1)]

[Continuation Dat; e et Layout]
InitStepSize 0.01 . = 0.88404955 I=eoondin m
RESISEEES 1e-05 00 This is the first point of the v 7.2718974e-188 X 0.8928289
MaxStepSize 0.1 PD Period_doubling I s y -6.1655666e-193

arameter:
o eroas 99 This is the last point on the ap = B Comemen 1
MaxNewtonlters 3 b 2 a 3.6021163
MaxCorrlters 10 g ?
- d 0.5

Testlters 10 d 0.5

VarTolerance 1e-06 2= 9z eps 0.2

FunTolerance 12-06 — testfunction:

TestTolerance 1e-05 NS -1.012538

Adapt o PD -1.3906041

Stop Dat: L Lp 0.99134993
MaxNumPaints 300 [~ BP 3.3948942
L] L »
ClosedCurve 50 P e e
[Load Curve| View StarterDatal View ContinuerData| View CurveDatal Select Point| [rod 5’ 23833268
Starter Plot2D - a,x mod_2 0.0052606963

. | ; arg_1 180
— Initial Paint Eile Edit View Insert Tools Desktop Window Help MatContM E -

> 0.849938 o OPeL- 808 arg_2 0

, CE 4 =
y 6.23446e-178 dde ‘ k ‘ s e "’)| ‘ =0 arrent_stepsize 0.037859388
npoints 17

® a 3.44949 1

O b 3

o d 05 095

) eps 0.2
— Setting oer MatContM GUI x
Iterati

eration 2 System Type Setting Output Compute Options ~
AD threshold 7

Class Map
Amplitude 0.001
= — Current System

Fla;cw;\g"anrgg[tluhers I} System PredatorPreyModel

L L0 ‘ Derivatives SSSNN
— Monitor Singularit;

Neimark-Sacker (NS) =l — Current Cun.

period Doubling (PD) =l B;”;;m fé_,;gdzpm

Limit Point (LP) o] Initial Point Type Pericéd Doubling

Curve Type Fixed Point
T e (B 0] Initializer FP-curve x2 (init_PDm_FP2m) ~

Figure 4.1: This action screenshot of MatContM presents the main windows that are opened
during the computation of a cascade of period-doubling bifurcations in a predator-prey
model [1]. Bottom right is the MatContM main window which contains general information
on the model that is being used and the top-level commands. Top left is the Continuer
window which shows the continuation variables. The fields of this window are independent
of the particular curve that is being computed, though the numeric values can vary. Bottom
left is the Starter window whose fields strongly depend on the curve that is being computed.
Top middle is the Data Browser which allows to inspect all introduced systems, computed
curves, etcetera. Top right is the Numeric window which during computation provides
numerical values of computed quantities. Bottom middle is the 2D plot window which in
this case plots several bifurcations curves; the horizontal axis presents a parameter of the
system and the vertical axis is a state variable. The PD points are flip bifurcation points;
the period-doubling cascade is clearly visible.

acts as the driver routine for the computations; it also acts as the Viewer in the MVC.
The name of the file is derived from the fact that the computation of Lyapunov exponents
is implemented as the computation of a new branch in a bifurcation point.

Both Lyapunov computation routines are implemented in a generalized way, in fact by
computing the exponents for a vector of values of a user-chosen system parameter. In the

4.3. LYAPUNOV EXPONENTS IN MATCONTM 47

case where all Lyapunov exponents are computed the input fields in the Starter window
are the following:

e Lyapunov steps : number of applications of the (possibly iterated) map.

e norm steps : number of steps between two consecutive normalizations; not present
in the case of the LyaExp2Dlargest.

e report every x normalizations : output is sent to the workspace after that number of
normalizations

e transient iterations : computing the Lyapunov exponents starts after that number of
map applications

e reuse latest computed state : if this boolean variable is 'true’, then the next compu-
tation of Lyapunov exponents starts with the latest computed state (for the previous
value of the parameter in the vector of parameters) as initial state.

e parametervalues : a MATLAB expression that generates a vector of floating point
numbers.

If only the largest Lyapunov coefficient is computed then the input field “norm steps”
is not present and the field “report every x normalizations” is replaced by “report every x
iterations”.

The option of reusing the latest computed state is mainly useful if a series of Lyapunov
exponents is computed for varying values of a system parameter. If the option is "on” then
there is a better chance to stick to a (varying) stable attractor of the system, while with
the "off” option there is a better chance to find "new” attractors. Both can be useful.

4.3.1 Example: a monopoly model

We consider the monopoly model introduced in [76] and recently studied in [3]. It can be
reformulated as a planar map

() (b) -

where 0 is a positive parameter and x,y are the quantities of a commercial good that are
produced at two consecutive time points in the search of optimal profit. Furthermore,

P(z,y) = 3.6 — 2.4(x +5) + 0.6(2* + zy + y*) — 0.05(2® + 2%y + xy* +). (4.6)

We will compute the Lyapunov exponents for a range of values of § €]0,3.5]. To start
the computations we choose the point type ”"point” and as curve type one of the two
provided algorithms; in the case of Figure 4.2 it is the Benettin algorithm [7] to compute
all Lyapunov exponents.

48 CHAPTER 4. MATCONTM FOR MAPS

El MatcontM GUI I [=] I
-

System Type Setting Output Compute Options

Class Map

Current System
System MOonopohy

Derivatives S55855

Current Curve

Name f1_FP_FP(3)
Diagram diagram
Initial Paint Type Point

Curve Type

Initializer

Compute Lyapunov exponents (QR-method) H

Figure 4.2: The main window when starting the computation of all Lyapunov exponents.

Starter S =]
Initial Point

x I 473204

 J I 473204

&+ del I 0.7
Settings

teration I 1

hyapunov steps I 100000
norm steps I 10

report every x normalizations 2000

transient iterations 10000

reuse latest computed state r

parametervalues J 0.0, 0.02, 0.03, 0.04, 0.05, 0.08, 0.

Figure 4.3: The Starter window in the case of the Benettin algorithm.

We then open the Starter window and fill it as in Figure 4.3.

We note that all orbits start from the same point in state space which is computed as
(34+v/3—107%;34+/3—107°). This is a small perturbation of the point (3++/3; 34++/3) which
is a fixed point for all 6 > 0, cf. [3]. We also note that the parameter ¢ is named “del” in
the code. The field “parametervalues” is filled by typing [0.01 : 0.01 : 3.5]. When the Enter
button is hit, this MATLAB expression generates the vector [0.01;0.012;. . .;3.49; 3.50] and
the Lyapunov exponents will be computed for all entries of this vector as parameter values
for 6.

The computations are started by clicking Compute|Forward. During the computa-
tions, the output is shown in an Output window, see Figure 4.4.

4.3. LYAPUNOV EXPONENTS IN MATCONTM 49

£l output =] E3

| Paused

Resume I

Stop |

Continuation output:

Performing 10000 tranzient iterations

new state: { 4 732051 4732051)

Computing Lyapunov exponents with 350 values fc
(14350} setting del = 0.01

steps: 20000

exponents: { -0.012384 -3.639002 }

steps: 40000

exponents: [-0.012255 -3.635013)

steps: 60000

exponents: (-0.012225 -3.635016)

steps: 20000 o
exponents: [-0.012206 -3.635018 }

steps: 100000

exponents: (-0.012194 -3.635019 }

K ! _|J

Figure 4.4: The Output window in the case of the Benettin algorithm.

At the end of the computations the main results are stored in the MATLAB workspace
in a structure called lyapunovExponents. This structure has two fields, namely
lyapunovExponents.del which returns the vector of used parametervalues (the extension
“del” refers to the name of the parameter) and a 2 x 350 matrix named
lyapunovExponents.exponents. FEach column of this matrix corresponds to a parameter-
value and gives the values of the Lyapunov exponents in decreasing order.

With standard MATLAB commands we can then generate Figure 4.5. Note that for a
considerable range of §— values the two Lyapunov exponents are equal.

In practice the largest Lyapunov exponent is usually the most important one since it
indicates when a fixed point or cycle is stable. In the case of planar maps it can be computed
separately without normalizations. In MATCONTM this is done by using the “Compute
largest Lyapunov exponent (2D-only)” field instead of the “Compute Lyapunov exponents
(QR-method)” field in Figure 4.2. In the corresponding Starter window (Figure 4.6) the
field “norm steps” is missing while the field “report every x normalizations” is replaced by
“report every x iterations”.

In Figure 4.7 we show the largest Lyapunov exponent for 6 €]0,3.5]. Figure 4.8 is a
zoom of Figure 4.7 with ¢ € [2.400,2.401,2.402, . ..,2.999, 3.000].

We add the following observations:

1. Tt is known [3] that for § €]0, 2[, (4.5) has a stable fixed point with =y = 3. This

50 CHAPTER 4. MATCONTM FOR MAPS

All Lyapunov Exponents

0 0.5 1 15 2 25 3 3.5

Figure 4.5: The largest (blue) and second (red) Lyapunov exponents for a range of § values.

Starter I =]
Initial Point
x | 4.732040807568877
¥ | 4 7320408075538877
= del | 0
Settings
fteration 1
iterations 100000
report every x iterations | 10000
transient iterations | 10000
reuse latest computed state [=]
parametervalues I 0.01, 0.02, 0.03, 0.04,1

Figure 4.6: The Starter window when computing the largest Lyapunov exponent with the
2D algorithm.

is confirmed by Figure 4.7 where the largest Lyapunov exponent is negative in that
range.

2. The computed largest Lyapunov exponent is close to zero for g < 0 < 2.615 though
we know from [3] that around 6 = 2.45 there is a stable cycle of period 17.

3. There is a range of negative values for § between 2.62 and § = 2.7. This is consistent

4.3. LYAPUNOV EXPONENTS IN MATCONTM o1

0.5

Largest Lyapunov Exponent

4|

Figure 4.7: The largest Lyapunov exponent for § €]0, 3.5].

0.4

03

1
ol /1 | W
L

0.1

Largest Lyapunov Exponent

Figure 4.8: Zoom of Figure 4.7.

with [3] where stable periodic behaviour with period 5 is found in that region.

4. For o > 2.7, the largest Lyapunov exponent increases and the system becomes more
and more chaotic. However, there are three isolated values where the largest Lya-
punov exponent is negative, namely for 6 = 2.7380 with coefficient —0.0138, for
0 = 2.8300 with coefficient —0.0444 and for 0 = 2.9850 with coefficient —0.1193.
Only the value § = 2.8300 is reported in [3] and explained by the presence of a stable
periodic orbit with period 13. The other values remain to be investigated.

52 CHAPTER 4. MATCONTM FOR MAPS

4.4 Growing one-dimensional unstable and stable
manifolds

4.4.1 One-dimensional unstable manifolds

To compute one-dimensional unstable manifolds we use a slightly improved version of the
algorithm described in [57] (the improvement is mainly in a better bookkeeping of the
metadata of the algorithm). The algorithm starts with a saddle fixed point. Near the fixed
point, the algorithm uses the unstable eigenspace (which is assumed to be one-dimensional)
to approximate the unstable manifold.

Two issues must be kept in mind. First, both directions along the unstable manifold can
possibly lead to a connecting orbit and should be tried. Second, if the unstable multiplier is
negative, then the second iterate of the map is automatically used, so that the orientation
along the manifold is preserved.

The first part is to choose a point in the unstable eigenspace close to the saddle point
and add points along the unstable manifold by applying the map. This procedure is applied
as long as the distance between two consecutive points is within some interval and an angle
condition is satisfied.

The main part consists of adding new points in the direction away from the fixed point
which are at each step at most a prescribed distance from the last added point. The
distance changes from step to step with the curvature of the manifold; many points are
added when encountering sharp folds while few points are added during locally straight
lines. To avoid cutting of sharp folds, a restriction is placed on the angle of the new
point and the last two points. Our implementation of this algorithm (an adaptation of
the implementation in [54]) also keeps track of the segment of the manifold approximation
that contains the preimage of each newly added point.

4.4.2 One-dimensional stable manifolds

England et al. [32] describe an algorithm for growing one-dimensional stable manifolds
for planar maps in which the inverse is not explicitly or implicitly (i.e. by a Newton-
like iteration) used. However, their approach, called circle search, does not generalize to
higher-dimensional spaces. We therefore use a slightly improved version of an algorithm
by C. Bruschi which essentially uses the inverse in the form of Newton-like iterations,
implicitly assuming that the manifold is locally unique (the improvement is mainly in
a better bookkeeping of the metadata of the algorithm). The algorithm starts with a
saddle fixed point. Near the fixed point, the algorithm uses the stable eigenspace (which
is assumed to be one-dimensional) to approximate the stable manifold.

The same issues as for unstable manifolds must be kept in mind.

In the first part of the algorithm we choose a point in the stable eigenspace sufficiently
close to the saddle point and add points along the stable manifold in the direction towards
the fixed point by applying the inverse map (implicitly, by Newton iteration) as long as
the distance between two points is below a threshold and an angle condition is satisfied.

4.4. GROWING ONE-DIMENSIONAL UNSTABLE AND STABLE MANIFOLDS 53

The main part consists of adding new points in the direction away from the fixed point
which are at each step at a distance approximately equal to or smaller than J;, which is
one of the threshold parameters in the code. Let p.,q be the last computed point on the
stable manifold.

The first step of the procedure is sketched in Figure 4.9. It is first checked that
1/~ (Pend) — Pendl| > Ok, where f~1(pena) is computed by Newton iterations. If this is not
the case, then ¢;, is decreased. Next, by tracing back the computed points along the stable
manifold two consecutive points ¢, and gr are identified such that ||f~'(qr) — penall > Ok
and || f71(qr) — Penal|| < Ox. In the process, pr = f~*(qr) and pr = f~1(qz) are identified.
It is not excluded that pr, = peng-

Figure 4.9: Computing a new point on the stable manifold: first step. The dotted arc
represents a sphere of radius d; around p.,q. This figure is adapted from a figure by C.
Bruschi.

Next, the zero-order approximation p to the sought next point p; on the stable manifold

is computed as
PR — Pend

HpR - pendH ’

see Figure 4.10. The further aim is to obtain p; as the solution to the system that consists
of

D = Dend + 5k

flor) = av + 7(ar — qv) (4.7)

and
(pk — D, P — Pend) = 0. (4.8)
The geometric meaning of these conditions is clear from Figure 4.10. Together, (4.7) and
(4.8) constitute a system of n + 1 equations in n + 1 variables, namely the components of

pr and the scalar 7, where n is the dimension of the state space. To obtain a first-order
approximation of (pg,7) we solve the linearized system

M |) B i ol B

which is equivalent to a single Newton step, starting with (p,0)” as initial guess.

o4 CHAPTER 4. MATCONTM FOR MAPS

It turns out that in many cases the Jacobian matrix of the system (4.7)-(4.8) is ill-
conditioned at the solution point. Therefore, in practice we keep 7 fixed and solve (4.7) by
a Newton iteration. The code contains several further checks, e.g. an angle condition (to
handle the case of sharp fold points) and the requirement that 7 is positive and smaller
than a chosen threshold. If one of these requirements is not satisfied, then 9, is decreased
and the process is started again.

fpy

Figure 4.10: Computing a new point on the stable manifold: second step. This figure is
adapted from a figure by C. Bruschi.

4.5 Projection algorithm for intersecting manifolds

In this section we restrict to planar maps and the computation of the intersection points
of two manifolds (in fact, a stable and an unstable manifold). This is the key step towards
the computation of homoclinic and heteroclinic connections and tangencies.

Since each manifold is approximated by line segments this intersection problem is a spe-
cial case of the computation of the intersection points of a collection of line segments. The
latter problem is a well-studied one and the standard solution is the line sweep algorithm,
see [19]. But so far there is no efficient way to implement this algorithm in MATLAB; in
spite of several attempts, see [92].

In fact, the standard solution so far is to simply consider each pair of line segments (a
stable one and an unstable one) and check whether they intersect [11]. We call this the
algorithm of Bruschi. It is obviously rather inefficient but it is still acceptable since its
cost is typically much smaller than the cost of computing the manifolds.

We present an algorithm based on the idea of first looking into one projection of the two
manifolds. In a first round we select the pairs of intervals whose x— projections overlap.
Typically this is a small fraction of all pairs. In the second round we select from this
fraction those pairs which also have overlapping y— projections. For the remaining pairs,
usually a tiny fraction of all pairs, we check whether they have an intersection in 2D-space.
We present two versions of this algorithm, which we call the first one and the improved one,
respectively. The first version is coded in the m-file Projectie.m and listed in Appendix E.
The improved version is coded in the m-file Projectie2.m and listed in Appendix F. For

4.5. PROJECTION ALGORITHM FOR INTERSECTING MANIFOLDS 95

comparison purposes both versions are available in MATCONTM but only the improved
version is called in the GUIL

4.5.1 First version of the projection algorithm

The first part of this algorithm might be called a line sweep algorithm though it is different
from the ’classical’ line sweep algorithm in [19]. First the starting points of all intervals
(both from the stable and unstable manifolds) are ordered in a list L by increasing values
of their x— coordinates. For each point one keeps track of the intervals to which it belongs,
whether it is a starting point or an endpoint in the x— projection and to which manifold
the interval belongs.

We then start with an empty list A and successively consider all values in the list L
in increasing order. At each point of the list L, say x(, we consider all intervals that have
To as a starting point in the z— projection. These are stored in another list C' as couples
with all intervals in the list A that belong to the other manifold. Then all intervals that
have xq as an endpoint in the x— direction are removed from list A.

When the last point of list L is taken into account we have a list C' of all couples of
intervals that belong to different manifolds and have an overlap in the x— projection. In
the next step we go through C and check for each couple if they also have an overlap in
the y— direction. If not, that couple is removed from list C'. Finally, for each remaining
couple of intervals we check if they really have an intersection in (x,y)— space.

As an example we consider the generalized Hénon map [39]:

. T T9

where «, 5, R and S are parameters.

We consider the saddle fixed point (—1.621146385, —1.621146385 for the parameter
values a = —0.4, §=1.03, R=-0.1,5=0

In Figure 4.11 we show the stable (blue) and unstable (red) manifolds of this point as
created by the function growman.m in MATCONTM with 20000 points each. In Figure 4.12
we consider a zoom of Figure 4.11.

In Figure 4.12 the z— projections of the line segments on the stable and unstable
manifolds are presented separately. Suppose that all points to the left of the (green) sweep
line (which does not contain any line segment endpoint of one of the two manifolds) have
been considered. Then the list A contains exactly all intervals that cross the green line.
The next point to be treated is xg, the point to the right of the green line with smallest
x— coordinate, see Figure 4.13.

The green line moves to that point. The (red) line segment [that has z(as a starting
point is added to list A. Every line segment in A that belongs to the other manifold (the
blue intervals in Figure 4.13) can possibly have an intersection in 2D-space with [. So all
couples that consist of a blue interval and the interval [are added to the list C'. Then all

56 CHAPTER 4. MATCONTM FOR MAPS

Figure 4.11: Stable (blue) and unstable (red) manifolds of the generalized Hénon map
(4.10).

intervals in A that have xy as an endpoint in the z— direction are removed from list A (in
the present case there are none).

Next, all couples of intervals are checked in the y— direction. In the case of Figure 4.13
there are no intersections in the y— direction, so these couples are removed from list C.
Finally, the remaining couples in C' are checked for intersections in (x,y) space which gives
us the final list of intersection points.

4.5.2 Improved version of the projection algorithm

In the version of §4.5.1 the list A contains intervals from both the stable and unstable
manifolds and this has to be checked each time when an interval is considered. In the next,
improved version we make two lists, say A, and A, for the unstable and stable manifolds,
respectively. Suppose that a new point z is considered. Then each interval [that has
To as a starting point in the x— direction is added to its own A— list. If [belongs to
the stable manifold, then it is coupled in the C'— list with each interval in the A,— list
and vice versa. If this is done for all intervals that have xy as a starting point in the x—
direction, then we remove all intervals in both A, and A, that have zy as an endpoint in
the x— direction.

4.5. PROJECTION ALGORITHM FOR INTERSECTING MANIFOLDS o7

Zo

[N

Figure 4.12: Position with no interval starting point on the sweep line (green).

In Table 4.1 we show the time (in seconds) spent in computing the intersection points
of a stable and an unstable manifold for a given number of points (the same number in
each manifold). We use the manifolds created in the test example Manifolds2DHom.m, in
Testruns/InvManifolds in MATCONTM. In this code the number of computed points
in the manifolds is set by the user. We use 25000 to 350000 points. The computations
were done on a Macbook Pro (2GHz Intel Core i5 - 8GB 1867MHz) MATLAB R2017a.
In Table 4.1 the algorithm of Bruschi is compared with the projection algorithm in §4.5.1
and its improved version in §4.5.2. Clearly the new algorithms are much faster than the
algorithm of Bruschi. This is also clear from Figure 4.14, where the algorithm of Bruschi is
presented in red and the others in blue and green, respectively. In Figure 4.15 we see that
the improved version of the projection algorithm (green) is faster than the first projection
algorithm (blue).

We note that in the worst case the projection algorithm in both its first and in its
improved form has a time complexity O(n?). Apparently, this does not occur in our
situation. Figure 4.15 suggests that in practice the time complexity of the projection
algorithms is close to linearity in the number of intervals. In Table 4.2 we give the ratio
of the time spent in the computation in the case of n points in each manifold (using the
improved algorithm with projection) versus (2n+k) log(2n) where k is the number of found
intersection points. This ratio is practically constant, so in practice the time complexity of
the improved projection algorithm is O((2n + k)log(2n)), just like that of the line sweep
algorithm [19].

58 CHAPTER 4. MATCONTM FOR MAPS

VA

Figure 4.13: The next point met by the line sweep algorithm

4.5.3 Example: homoclinic connections

In the testrun Manifolds2DHom.m in the directory Testruns/InvManifolds of MAT-
CoONTM we consider the generalized Hénon map (4.10) with parameter values « = —0.4, 5 =
1.03,R = —0.1,S = 0 and a saddle fixed point zy = (—1.621146385, —1.621146385). In
§4.5.1 we computed the stable and unstable manifolds with 20000 points each and plotted
them in Figure 4.11.

In §4.5.2 we used the improved projection algorithm to compute the intersection points
of the two manifolds. The aim of the procedure is to compute homoclinic connections. For
this we use the code provided in Appendix G. This code is based on a code of C. Bruschi
[11] which requires that the intersection points are first ordered along the stable manifold
in the direction away from the saddle fixed point. The outcome is presented in Figure
4.16, where the manifolds are plotted together with two homoclinic connections (purple
and green).

4.5. PROJECTION ALGORITHM FOR INTERSECTING MANIFOLDS 59

points Bruschi Projection Projection2
n time (s) time (s) time (s)
25000 5.2035 3.1900 1.7811
50000 18.2562 5.6752 3.8201
75000 40.5224 8.1444 5.9616
100000 69.2368 10.7070 7.9499
150000 151.2542 15.8123 12.0731
200000 266.7075 20.8992 16.4446
250000 413.8600 25.7673 20.5561
300000 596.5867 30.9975 24.5081
350000 831.9529 36.9692 29.8827

Table 4.1: Time spent by the Bruschi algorithm, the projection algorithm and the improved
projection algorithm when computing the intersection points of an unstable and a stable
manifold both approximated by n points.

4.5.4 Example: heteroclinic connections

To compute heteroclinic connections we consider again the generalized Hénon map (4.10)
but now with parameter values a = 0.3, 3 = —1.057, R = —0.5, 5 = 0. We use the testrun
Manifolds2DHet.m in the directory Testruns/InvManifolds of MATCONTM.

Unlike in the case of homoclinic connections in §4.5.3 we now use the second iterate
of the map. We compute the stable manifold rooted in the saddle equilibrium x; =
(—0.4286, —0.4286) and the unstable manifold rooted at another saddle fixed point xy =
(0.4666,0.4666). These manifolds have 15000 points each and are shown in Figure 4.17.

To compute heteroclinic connections we first need the intersection points of the stable
and unstable manifolds, which we compute by using the Bruschi algorithm, the projection
algorithm in §4.5.1 and the improved projection algorithm in §4.5.2. A survey of the
computational results is given in Table 4.3. We see that the improved projection algorithm
is the most efficient one. Now the heteroclinic connections can be computed using the
code in Appendix G (with itnumber = 2). This code is based on a code of C. Bruschi [11]
which we have adapted to the case of an iteration number larger than 1. The heteroclinic
connections are presented in Figure 4.18 in green and purple.

60 CHAPTER 4. MATCONTM FOR MAPS

Time in seconds

800t

600t

400+

200+

; : ; ! ! - : Number of points
50000 100000 150000 200000 250000 300000 350000

Figure 4.14: Time spent by the algorithm of Bruschi (red), the projection algorithm (blue)
and the improved projection algorithm (green) when computing the intersection of a stable
and an unstable manifold approximated by the same number of points.

4.6 Initialization of a homoclinic orbit from a
one-dimensional manifold

In this section we return to the general case, i.e. with state dimension two or higher. But
we restrict to the case where either the unstable or the stable manifold are one-dimensional.
This section was published as part of [73]

4.6.1 Initialization from a one-dimensional unstable manifold

Logically, four parts can be distinguished in the initialization algorithm. We discuss them
separately.

Step 1: Growing the unstable manifold. We use the algorithm described in §4.4.1
to obtain an unstable one-dimensional manifold.

Step 2: Intersecting the stable eigenspace. If a point on the unstable manifold
also lies on the stable manifold of xi., it is a point of a connecting orbit. However,
computing manifolds of dimension higher than one is a difficult problem; it is practically
unfeasible if the dimension is higher than two, but see [96] for recent advances. We avoid
this difficulty by only considering the stable eigenspace near x4.,. If an intersection point
of the unstable manifold with the stable eigenspace is close enough to ..., then it serves
as an approximation of an intersection point with the stable manifold. To find intersection
points with the stable eigenspace, we consider a left eigenvector v, of the (unique) unstable
eigenvalue. The inner product function with v! generically changes sign when the unstable

4.6. INITIALIZATION FROM A ONE-DIMENSIONAL MANIFOLD 61

Time in seconds

40+

10+

; : : : Number of points
50000 150000 250000 350000

Figure 4.15: Projection algorithm (blue), improved projection algorithm (green)

manifold crosses the stable eigenspace and the exact intersection point is approximated by
a linear interpolation in the line segment where the sign change happens.

Step 3: Tracing back the orbit to z_.,. The intersection point P found in Step
2 is only an approximation to a point on the homoclinic orbit and needs corrections by a
Newton method applied to a defining system which is a truncation of (4.2) with projection
boundary conditions, as discussed in [54]. This orbit has to be approximated first. We
start with the segment information to trace back the orbit:

First, we locate the segment on the piecewise linear approximation that contains the
point P. This segment is a line, defined by two points P, and P,. These points were added
at some stage by the algorithm. We retrieve two segments, one that contains the preimage
of P, and one that contains the preimage of P,. These two segments can be the same, they
can be consecutive or there can be several segments between them. The preimage of P lies
on one of these segments. Bisection is applied on these segments to find an accurate value
for the preimage of P. Once the preimage of P has been located, we repeat the process
with the preimage as the new P.

At some stage, we have traced the orbit back to the part of the manifold approxima-
tion where points were added along the unstable eigenspace during the initial phase. We
can then decide to stop or add extra points. For continuation purposes, we need to get
sufficiently close to the fixed point.

Step 4: Adding points towards ... The computation of the unstable manifold is

62 CHAPTER 4. MATCONTM FOR MAPS

points Ratio
n

50000 7.6319¢ — 5
100000 7.4944e — 5
150000 7.3449¢ — 5
200000 7.3366e — 5
250000 7.2124e — 5
300000 7.0679% — 5
350000 7.3023e — 5

Table 4.2: Ratio of the time (s) spent by the improved projection algorithm in the compu-
tation of the intersection points of an unstable and a stable manifold approximated each
by n points versus (2n + k) log(2n). k is the number of found intersection points.

Figure 4.16: Stable (blue) and unstable (red) manifolds of the generalized Hénon map
(4.10).

usually quite time-consuming and the computation of each subsequent intersection point
with the stable eigenspace requires more effort. At some stage we have to decide that we
are close enough to the stable manifold. We then add new points simply by applying the
map and then projecting back on the stable eigenspace to avoid being thrown off due to
the presence of the unstable direction.

4.6. INITIALIZATION FROM A ONE-DIMENSIONAL MANIFOLD 63

2 —
Fixed Point
151 Fixed Point
Stable Man
1 Unstable Man
0.5
<! 0r
0.5
AF
15F
2 1 1
-2 -1.5 2

Figure 4.17: Stable (blue) and unstable (red) manifolds of the generalized Hénon map
(4.10).

4.6.2 Initialization from a one-dimensional stable manifold

Essentially, this is done like in the case of an unstable manifold. Two other issues have
to be taken into account. First, tracing back the orbit is simpler in this case since we can
apply the map and then project to the corresponding segments of the already computed
stable manifold and choose the closest point. Second, adding points to x_., is now done
by applying the inverse map (in the form of a Newton iteration procedure) and project to
the unstable eigenspace.

4.6.3 Case Study: Adaptive Control Map

We illustrate the algorithm described in in §4.6 in the study of the adaptive control map
to obtain a rather complete bifurcation diagram of the resonance horn in a 1:5 Neimark-
Sacker bifurcation point, revealing new features.

The adaptive control map

x Y
fily |+~ bx + k + zy (4.11)
z z—ciZQ(b:L‘%—k‘quy—l)

64 CHAPTER 4. MATCONTM FOR MAPS

points Bruschi Projection Improved Proj
25000 4.5290 2.4828 1.8340
50000 17.4327 4.5864 3.7405
75000 41.9410 6.6198 5.7264
100000 68.4937 8.5738 7.5180
150000 163.4358 12.5669 10.4461
200000 278.2382 16.0458 13.2632
250000 442.3803 20.1670 16.5891
300000 640.9995 24.2855 20.2986
350000 856.5199 28.1474 23.9518

Table 4.3: Time comparison (in seconds) of three algorithms to find the intersection points
of a stable and an unstable manifold.

was introduced in [38] and studied in [36]. The parameters are k, b and c¢. In [36] an
example of a subcritical period-5 resonance horn is given. Near the tip of the horn, the
authors detect and compute a homoclinic tangency curve. This tangency curve is shown
in the (k,b) parameter space, the parameter ¢ is kept at 0.1.
For (k,b) = (0.824,—0.47), we obtain a saddle of f® mnear (1.56,0.25,0.72)7 using
Newton’s method on f®(X) — X = 0. The saddle values are x = 1.566650994666793,
= (0.253929996002914, z = 0.725117829106035. The multipliers of this saddle are 0.0674,
0.1957 and 1.7483, so we have a one-dimensional unstable manifold and a two-dimensional
stable manifold.

We use our algorithm to find a homoclinic orbit. We start this by growing the unstable
manifold, following the procedure in §4.4.1. The resulting unstable manifold is shown in
Figure 4.19 as the red line that emanates from the saddle, then turns back towards it while
showing slight oscillations before converging to a stable fixed point. This indicates that we
are nearby a homoclinic connection.

The second step is to intersect the stable eigenspace as described in §4.6.1. The tangent
plane is shown in Figure 4.20 as the grey plane. We intersect this plane with the unstable
manifold (red) and take the point that is closest to the saddle (green cross). The third step
is taking preimages of this point in the unstable manifold (blue crosses in Figure 4.20),
as described in §4.6.1. This backward computation of the homoclinic orbit ends when we
are close enough to the saddle. The fourth step is adding points at the stable side of the
homoclinic orbit. For this we use the method described in §4.6.1. This is shown in Figure
4.21 where we start from the initial intersection point (green cross) and add new points
(magenta crosses).

4.6. INITIALIZATION FROM A ONE-DIMENSIONAL MANIFOLD 65

Fixed Point
Fixed Point
151 Stable Manifold
Unstable Manifold
1+ Het Connection
Het Connection
0.5
<! 0r
0.5
AF
15F
-2 L L |
-2 1.5 1 2

Figure 4.18: Stable (blue) and unstable (red) manifolds of the generalized Hénon map
(4.10) with two fixed points and two heteroclinic connections.

This approximation of a homoclinic orbit is a sufficiently accurate starting point for
Newton’s method applied on the defining system for a homoclinic connection.

Initial Newton corrections are always applied in MatContM when starting a continua-
tion, so we can use this approximation as the initial orbit for a homoclinic continuation.
We select k as the free parameter. Figure 4.21 shows the approximation to the homoclinic
orbit when our algorithm is applied to the data presented in Figure 4.20 and an orbit
obtained after Newton corrections by varying the parameter k, as done by MatContM.

Figure 4.22 shows the correction in the (k,b) parameter space and the continuation of
the homoclinic connection by varying the parameter k. This is depicted by a black line
emanating from the corrected orbit. We encounter two distinct homoclinic tangencies dur-
ing the continuation. These tangencies are limit points of the homoclinic connection curve
and therefore denoted as LP_HO (Limit Point of a Homoclinic Orbit). The continuation
moves back and forth between these two tangencies several times.

From both homoclinic tangencies, we start homoclinic tangency continuations in both
directions using k£ and b as free parameters. The curves of homoclinic tangencies are seen in
Figure 4.22 as red curves. Robust homoclinic connections exist between those two red lines.
This reveals that our starting point for obtaining an approximation to the homoclinic orbit
was poor since there was no homoclinic connection for these parameter values. Choosing
a saddle near homoclinic connections can thus suffice to obtain a homoclinic connection

66 CHAPTER 4. MATCONTM FOR MAPS

1.1

0.8
0.7 H

0.6

0.4
0.6 08 1.5
1.2

Figure 4.19: The unstable manifold (red curve) of the saddle (green cross) of the fifth
iterate of (4.11). The unstable manifold turns back towards the saddle and then away
from the saddle towards another fixed point.

for continuation. This is very useful since areas in the parameter space where connecting
orbits exist are usually very narrow.

We now provide a more detailed picture filling in gaps in [36]. Figure 4.23 extends
Figure 4.22 and shows the full result of both homoclinic tangency continuations. The
black curve containing the two tangencies from Figure 4.22 is marked on Figure 4.23 using
a black +. In one direction the red tangency curves move towards the upper Resonance
1:1 (R1) point where the continuation process fails if tangency curves are too close. Figure
4.24 shows homoclinic tangencies in phase space on the left red line in Figure 4.22. The
blue orbit is the initial homoclinic tangency for k = 0.82445996,b = —0.47. The smallest
red one is closest to the R1 point.

Figure 4.25 shows the full resonance horn and Figure 4.26 provides a zoom showing
a remarkable interplay of local and global bifurcation curves. We have detected a HT_SF
bifurcation point (big red star) at (k,b) = (0.80179, —0.4866) and four HT_NS bifurca-
tion points (small magenta stars) at (k,b) = (0.789729826599800, —0.490045493902434),
(0.788197353086524, —0.492122114091179), (0.787017631285026, —0.493787062295342), and
(0.786651451614289, —0.494323335473866), respectively. These bifurcations and their test-
functions are described in §4.7.

4.7. DETECTION OF BIFURCATIONS DURING HOMOCLINIC CONTINUATIONo7

0.8

0.75

A
0.7 - \

N 0.65

Figure 4.20: The unstable manifold (red line), the stable eigenspace (grey plane), their
intersection point closest to the saddle (black +), points of the approximate homoclinic
orbit by computing preimages (blue crosses).

In addition, we have determined two other global bifurcation curves QN S* that indi-
cate a quasi-periodic saddle-node bifurcation. Here a stable and unstable invariant curve
coalesce and disappear. These curves were not obtained through continuation but were
constructed using an ad hoc method in order to complete the bifurcation diagram.

Notice that the curve LP_HE® extends towards the period-doubling bifurcation curve
PD® where the period-5 saddle cycle has two unstable and one stable direction (the super-
scripts refer to the period of the cycle). Indeed the geometry of the attractor seemed to
be quite complicated in that area. We did not explore this situation in more detail.

4.7 Detection of bifurcations during homoclinic
continuation

In this section we list the bifurcations that MATCONTM can detect during the continuation
of homoclinic orbits and homoclinic tangencies.

In Figure 4.27 we display the relation graph between a general homoclinic orbit (HO, at
the top), some codimension 1 bifurcations (HO_NS, HO_Dx and LP_HO at the second line)

68 CHAPTER 4. MATCONTM FOR MAPS

0.8 — *
< ¥

0.75 X

' " +

0.7 -

X X
N 0.65 —
X
0.6 | %

Figure 4.21: The approximation obtained by our algorithm (cf. Figure 4.20) where addi-
tional points are added between the intersection point and the saddle (magenta crosses)
and a corrected orbit using Newton’s method (black dots). This corrected orbit is the
starting point in a homoclinic connection continuation.

and codimension 2 bifurcations (HT_NS, HT_Dx, HT xF and HT_Ex at the bottom line).

In this graph “HO” stands for “Homoclinic Orbit”, “HT” for “Homoclinic Tangency”,
“NS for “Neutral Saddle”, “D” for “Double”, “LP” for “Limit Point”, “E” for “Extended”,
“F” for “Foliation” and “x” for either “S” (Stable) or “U” (Unstable). We note that a
limit point of homoclinic orbits is called a homoclinic tangency, so in this graph “LP_HQO”
and “HT” are used interchangeably.

The scenario for detecting bifurcations is generic: on a computed curve of bifurcation
points with codimension ¢ one detects bifurcations with codimension 7 + 1 by monitoring
test functions that change sign at the occurrence of such higher codimension points. These
test functions are evaluated at each step during the continuation. When a sign change is
detected, a bisection-like algorithm is used to locate the higher-codimension bifurcation.

4.7.1 Codimension 1 bifurcations

Let ng, n., n, be the number of stable, critical and unstable multipliers of the fixed point
of a homoclinic orbit, respectively, i.e. those with modulus less than 1, equal to 1 and

4.7. BIFURCATIONS DURING HOMOCLINIC CONTINUATION 69

-0.4692
-0.4694
-0.4696
-0.4698
o -047
-0.4702
-0.4704
-0.4706

-0.4708

1 1 1 1 1 1 1 1
0.8238 0.824 0.8242 0.8244 0.8246 0.8248 0.825 0.8252
k

Figure 4.22: Tangencies of homoclinic connections. The initial approximation is repre-
sented by the blue +. The corrected orbit is represented by the black cross. The corrected
orbit is the first point in a homoclinic connection continuation, the black line. During this
continuation, two homoclinic tangencies are detected, labeled by LP_HO (limit point of
a homoclinic orbit). The red lines are part of homoclinic tangency continuations started
from both LP_HO points. Homoclinic connections exist between those two red curves.

larger than 1, respectively. Also, let uf, us, ..., u, be the stable multipliers, ordered by

decreasing modulus. Similarly, let uf, 3, ..., 4, be the unstable multipliers, ordered by
increasing modulus. The multipliers pf and pf are called the leading stable and unstable
multipliers, respectively. Also, let (z!,22,...,2") be the computed part of a homoclinic
orbit.

Neutral Saddle Homoclinic Orbit HO_NS
This is the case where n. = 0 and |uSuY| = 1. The test function is defined as ¢yg =

it — 1.

Double-Stable Homoclinic Orbit HO_DS

This is the case where n, = 0 and u§ = p5. The test function ¢pg is defined as (u§ — p3)?
in the case where both u$ and p§ are real, as —(S(uf — u3))? if they form a conjugate

70 CHAPTER 4. MATCONTM FOR MAPS

-0.45-

-0.46

-0.47

< _0.48

-0.49

-0.51 1

| | | | | | | | | | |
0.785 0.79 0.795 0.8 0.805 0.81 0.815 0.82 0.825 0.83 0.835
k

Figure 4.23: Green: limit point curves; red: curves of homoclinic tangencies; magenta:
Neimark-Sacker curve; dashed magenta: Neutral Saddle curve; black +: starting homo-
clinic tangency. The R1 points are 1:1 resonance points of the 5th iterate.

complex pair, and undefined in all other cases.

Double-Unstable Homoclinic Orbit HO_DU

This is the case where n, = 0 and p% = p%. The test function ¢py is defined as (u% — u%)?
in the case where both pY and u% are real, as —(S(uy — u%))? if they form a conjugate
complex pair, and undefined in all other cases.

Homoclinic Tangency LP _HO

This is the case of a limit point of homoclinic orbits. The test function is simply the
parameter component of the tangent vector to the curve of approximate homoclinic orbits.

4.7. BIFURCATIONS DURING HOMOCLINIC CONTINUATION 71

Figure 4.24: Blue orbit: starting homoclinic tangency for k& = 0.82445996,b = —0.47 ;
smallest red orbit: homoclinic tangency close to R1 for k£ = 0.82990325,b = —0.45615685;
largest red orbit: homoclinic tangency far away from R1 for £ = 0.79163754,b =
—0.48923588.

4.7.2 Codimension 2 bifurcations

The following codimension 2 bifurcations occur when in a tangency another condition is
satisfied.

Neutral Saddle Homoclinic Tangency HT NS

This is the case where n. = 0 and |p§ut| = 1. The test function is ¢ng = |pipuf| — 1.

Double-Stable Homoclinic Tangency HT_DS

This is the case where n, = 0 and u§ = p5. The test function ¢pg is defined as (u§ — p5)?
in the case where both u$ and p§ are real, as —(J(uf — p3))? if they form a conjugate
complex pair, and undefined in all other cases.

72 CHAPTER 4. MATCONTM FOR MAPS

-0.45F
-0.46
-0.47
-0.48
-0.49
o

-0.5

-0.511

-0.52

o B Y B |

0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86
k

Figure 4.25: The full resonance horn. The dark magenta curve (straight horizontal line) is
a NS1 curve, all other curves are bifurcation curves of the 5th iterate. Green=LP5 curves,
Magenta solid=NS5 curve, Magenta dashed=neutral saddle fixed points. The magenta
curves touch the green curves in R1 points. Red=Homoclinic tangency curves LP_HO,
rooted in the R1 points. Orange and yellow: heteroclinic tangencies. Blue=PD5. Note
the presence of a HT_SF bifurcation point on the LP_HO curve, cf. Figure 4.27.

Double-Unstable Homoclinic Tangency HT DU

This is the case where n, = 0 and u} = p%. The test function ¢py is defined as (pY — uy)?
in the case where both pY and u4 are real, as —(S(uy — p%))? if they form a conjugate
complex pair, and undefined in all other cases.

Stable Foliation Homoclinic Tangency HT _SF

Gonchenko, Gonchenko and Tatjer [40] studied the dynamics due to a generalized ho-
moclinic tangency for maps. This generalized tangency is defined as a tangency of the
unstable manifold to the strongly stable foliation of the stable manifold at the homoclinic
orbit. Hence, this bifurcation may occur in (at least) three-dimensional maps and we re-
strict to the case where the unstable manifold is one-dimensional. Then for neighborhoods
of the connecting orbit, there exist return maps for each sufficiently large iteration number
such that the dynamics on this neighborhood is given by a Generalized Hénon Map. See

4.7. BIFURCATIONS DURING HOMOCLINIC CONTINUATION 73

-0.48|

-0.485

-0.49

« LPyg> -

T LPyg> + QSN

-0.495

-0.5

0.775 0.78 0.785 0.79 0.795 0.8

k

Figure 4.26: Zoom of Figure 4.25. The four magenta crosses on the dashed magenta curve
are HT_NS bifurcation points, cf. Figure 4.27. Note that the form of one of the LP_HO
curves suggests the nearby presence of a swallowtail bifurcation of homoclinic orbits.

Figure 4.28 for a sketch of the orbit structure.

The construction of the test function ¢gp is based on the observation that in a gener-
alized homoclinic tangency, the tangent vector to the unstable manifold near the saddle is
orthogonal to the leading stable left eigenvector v! which we assume to be real.

The tangent vector along the unstable manifold during continuation of a homoclinic
tangency is not available as only the homoclinic orbit and not the full manifold is computed
during continuation. We therefore need to approximate the tangent vector of the unstable
manifold. We start with the unstable eigenvector v, at the saddle point. Let the computed
internal points of the homoclinic orbit (different from the saddle point) be denoted by
T1,To, ..., Ty in that order. Also, let v} v2 ... vY be the corresponding tangent vectors
to the unstable manifold. Now as tangent vectors are mapped to tangent vectors by the
linearization, i.e. v ~ Dy(x,,)v™, we can map v, along the connecting orbit so that the
tangent vector at the unstable manifold at any point x,, of the connecting orbit is given
by

vyt = Dy(@™) Dyp(a™?) - Dy(a' vy

74 CHAPTER 4. MATCONTM FOR MAPS

Figure 4.27: Detection graph of homoclinic bifurcations. ”x” stands either for S (stable)
or U (unstable). Dashed curves indicate that such a bifurcation exists, but its detection is
not supported.

T .
Then we can choose ¢sr = vl vY as a test function.

Extended Stable Homoclinic Tangency HT_ES

In the case of a one-dimensional unstable manifold the unstable extended manifold W "¢
depicted in Figure 4.29 is a non-unique invariant manifold that contains the unstable man-
ifold and the leading (assumed to be one-dimensional) stable manifold. Its tangent plane
at each orbit point x,, is spanned by the tangent vector v to the unstable manifold (the
green arrow in Figure 4.29) and the mapped leading stable eigenvector v* (the red arrow
in Figure 4.29) which is assumed to be real. The HT_ES bifurcation occurs if the unstable
extended manifold is tangential to the stable manifold. Since v;" is already tangential to
the stable manifold, the condition is that v]* is also tangential to the stable manifold, i.e.
orthogonal to the left unstable eigenvector at the saddle point v,. As in the preceding case
this bifurcation may occur in (at least) three-dimensional maps. The test function ¢pg is
defined in a dual way to ¢gsr and given by ¢gps = vaTvév where vY is defined as in the
previous case, replacing v, by the leading stable eigenvector v,.

Unstable Foliation Homoclinic Tangency HT _UF

This generalized tangency is defined as a tangency of the stable manifold to the strongly
unstable foliation of the unstable manifold at the homoclinic orbit. Hence, this bifurcation
may occur in (at least) three-dimensional maps and we restrict to the case where the stable
manifold is one-dimensional and the leading unstable eigenvalue is real and unique. So the
tangent vector to the stable manifold near the saddle is orthogonal to the leading unstable
left eigenvector v

4.7. BIFURCATIONS DURING HOMOCLINIC CONTINUATION 5

e
e

FSS

Figure 4.28: An instance of a HT_SF bifurcation. The green arrows are the tangent vectors
of the unstable manifold. W?#* W*" W?** and W*"® denote the stable, unstable, strongly
stable and unstable-extended manifolds, respectively. F'*® is the strongly stable foliation.
Upon returning in the stable manifold the tangent vectors are tangential to the strongly
stable foliation. The Figure is adapted from [40].

We map v, along the connecting orbit so that the tangent vector at the stable manifold
at x,, is given by
~1 1\ -1 2 —1(,.N
vy = D; (2™)D; (2™t) Dy (@)

S

l

T .
! ol as a test function.

Then we choose ¢yr = v

Extended Unstable Homoclinic Tangency HT _EU

As in the preceding case this bifurcation may occur in (at least) three-dimensional maps
and we restrict to the case where the stable manifold is one-dimensional and the leading
unstable eigenvalue is real and unique.

The test function ¢ gy is defined in a dual way to ¢y r and given by ¢y = ’UéTUi where
vl is defined as in the preceding case.

76 CHAPTER 4. MATCONTM FOR MAPS

Figure 4.29: An instance of a HT_ES bifurcation. W* W*" W* and W*¢ denote the stable,
unstable, strongly stable and unstable-extended manifolds, respectively. F*** is the strongly
stable foliation. The red arrows are mapped from the leading stable eigenvector at the
saddle point. Together with the tangent vectors of the unstable manifold, they span the
tangent plane to the W manifold. Upon returning in the stable manifold the unstable-
extended manifold becomes tangential to the stable manifold. The tangent vector to the
unstable manifold (green arrow) converges to a vector in the leading stable direction. The
Figure is adapted from [40].

Chapter 5

Front end features of the new
MaTCoNT GUIL.

5.1 The MATCONT database

The database of MATCONT consists of an archive of systems one of which is the current
system.

A system is internally characterized by a system m-file, a system mat-file and a system
directory, all with the name of the system. They are all in the directory Systems of
MatCont.

The system m-file is the odefile of the system which is described extensively in §3.6 and
in the manual [45].

The mat-file of the system contains the information that is necessary to restart the
computations on a previously studied system at the stage where it was left, including the
position and contents of all windows. However, computed data have to be redrawn.

The system directory has at least one default subdirectory called Diagram. This and
other subdirectories of the system directory are called diagrams.

Each diagram contains a number of mat-files and each mat-file describes a computed
curve with enough information to reproduce the computation exactly if desired.

Each computed curve contains a number of special points, which includes the first point,
the last point, bifurcation points, and zeros of userfunctions but other entities may also
be defined as special points. An important example of this is the case of an orbit where
a Select Cycle object is identified as a special point. Selecting this special point as an
initial point opens a subpanel with two fields that allow to choose a convergence criterion
and a number of mesh intervals for initializing a curve of periodic orbits that starts from
the periodic orbit found by time integration (the number of collocation points is always
the default 4, cf. §5.4.1).

The MATCoONT GUI provides a special tool called the Data Browser to navigate
through this database. The Data Browser can be accessed through the main MATCONT
panel but also from the Output window of a computed curve.

77

78 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

5.2 The main MATCONT panel

Figure 5.1 is a screenshot of a typical MATCONT main panel.
The MatCont GUI has a tab bench (line at the top of the screen) with six tabs, which
each correspond to a panel. The panels are named as follows:

1. Tab 1: Select

2. Tab 2: Type

3. Tab 3: Window/Output
4. Tab 4: Compute

5. Tab 5: Options.

6. Tab 6: Help

The main panel is vertically divided in three fields, namely the Class field, the Current
System field and the Current Curve field.

The Current System field displays the name of the system that is loaded (if any) and
also which derivatives are available symbolically (S) or have to be approximated by finite
differences (N). More precisely, a string of five letters from {S,R,N} is displayed. If i €
{1,2,3,4,5} then the derivatives of order i are obtained from symbolic derivatives if the
1—th letter is “S”, from a user-provided script if the letter is “R”, and by finite difference
approximations if the letter is “N”. Normally the string only contains “S” and “N” with
the “S” preceding the “N”. Derivatives of order higher than 3 are only needed if codim 2
bifurcations are involved.

The Current Curve field displays the name of the current curve, i.e. the curve that is
loaded (if any), the name of the diagram in which it is kept, the Initial Point type (if
any), the Curve type (if any) and the name of the initializer that was used or will be used
to start the computation of the curve.

The main panel can be used from the tab bench. For quick access to the Data Browser
one can also right-click on either the Current System field or the Current Curve field. In
the last two cases location-dependent menus are opened that allow to manage the diagrams
and curves of the system. In the Current System case one can choose between Load
New System, Create New System, Edit Current System, and ManageUserfunctions.
In the Current Curve case the choice is between View Curve, View Diagram, Rename
Curve, New Diagram, Continuer/Integrator, and Starter. Renaming a curve allows
to preserve it permanently in spite of the restriction on the number of untitled curves, cf.
the use of the ARCHIVE FILTER button in §2.9.3.

Figure 5.2 is a screenshot of a MATCONT main panel where Select/Systenm is pressed.
The meaning of the further tabs New, Load/Edit/Delete Systems and
Manage Userfunctions is obvious.

5.2. THE MAIN MATCONT PANEL 79

Matcont GUI O]
N

Select Type Window/Output Compute Options Help

Class ODE

Current System

System Rossler

Derivatives. SNNNN

Current Curve

Name P_O(1)

Diagram diagram

Initial Point Type: Point (P}

Curve Type Orbit (O}

Initializer Orbit {ode4s) d

Figure 5.1: The main MATCONT panel.

Clicking Select|Diagram opens the Data Browser with a panel that shows all dia-
grams. Further tabs allow to Load, Rename, or Delete an existing diagram or to create a
New one.

Clicking Select|Curve opens the Data Browser with a panel that shows all curves in
the current diagram. Further tabs allow to Load, Rename, or Delete an existing curve or
to create a New (empty) one. There is also a View tab that opens a spreadsheet-type view
of the data in the current curve. If a curve is loaded, then the first point is automatically
selected as Initial Point.

Clicking Select|Initial Point opens the Data Browser with a panel that shows all
special points in the current curve (if no curve is loaded, then it is not possible to use this
functionality.) Further tabs allow to see the settings with which the curve was computed,
to get a spreadsheet view of the data in the current curve and to select one of the special
points to be used as initial point for a new computation.

Clicking Select|Organize Diagrams opens a tool that allows to move curves from
one diagram to another one, but also to view, rename, plot and delete curves, see Figure
5.3.

Clicking Select|Exit closes the MATCONT session. The main panel disappears. De-
pending on the operating system it may be necessary to close other windows separately.

Clicking Type|Initial Point opens a list box window with the list of allowed Initial
Point types. By selecting one of these the user declares that the loaded Initial Point has
that type, see Figure 5.4.

Clicking Type|Curve opens a list box window with the list of Curve types which are
allowed for the type of the loaded Initial Point. By selecting one of these the user declares
that a curve of that type is to be computed (but it does not start the computation), see
Figure 5.5.

Clicking Window /Output allows to open graphic windows (2D or 3D), a Numeric
window, a Starter window or a Continuer /Integrator window, see Figure 5.6. Multiple

80 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

lﬂType Window/Output Compute Options Help ~
System Mew
Diagram Load/Edit/Delete Systems

T Manage Userfunctions

Initial Paint Rossler
Organize Diagrams

Exit

SNNMN

Current Curve

Name P_O(1)

Diagram diagram

Initial Point Type Point (P}

Curve Type Orbit (O}

Initializer Orbit (ode45) j

Figure 5.2: Clicking Select|System in the main MATCONT panel.

diagram -

Organize Diagram !IEI E

EP_EP({1).mat

EP_EP(2).mat
H_LC(1).mat

=l [

Figure 5.3: Clicking Select|Organize Diagrams in the main MATCONT panel.

graphic windows can be open at the same time, but there cannot be more than one Nu-
meric window, Starter window or Continuer/Integrator window. We note also that
Continuer and Integrator are mutually exclusive. In fact, they are internally the same
window.

The Compute tab opens a subpanel that allows either to start a continuation Forward
or Backward or to Extend a finished continuation or integration, see Figure 5.7.

The Options tab opens the subpanel displayed in Figure 5.8. It allows to set the seven
options already mentioned in §2.9.3. More details are given in §5.7.

The Help tab opens a subpanel that allows to consult the MATCONT documentation
or to unlock the GUI-session in an emergency situation, see Figure 5.9.

5.3. THE MATFILES OF CURVES 81

Select ’ﬁ Window/Output Compute Options Help £
Class —Point
Current System Limit cyde
System Period Doubling
Limit point of cydes
Derivatives Neimark-Sacker
Hopf
current Curve Limit point
Diagram Branch point
Initial Point Type Cusp
Curve Type Bogdanov-Takens
Initiglizer Generalized Hopf) d
Zero-Hopf
Double Hopf

Branch point of cydes

Cusp Point of Cyde
Generalized Period Doubling

Homodinic to saddle

Homodinic to saddle-node

Mon-central HomSM

ConnectionSaddle
ConnectionSaddleNode
HomotopySaddle
HomotopySaddieMode
ConnectionHet
HomotopySaddleHet
Heterodinic

Figure 5.4: Clicking Type|Initial Point|Equilibrium in the main MATCONT panel.

5.3 The matfiles of curves

In the case of a continuation curve, such a mat-file contains the following data:

e z,u,5,h, f,ie. the standard output of the continuation run, cf. §3.5.1 and [45],§3.2.
This information allows to export the in MATCONT computed results to the general
MATLAB environment, e.g. to use them in other software environments, sophisti-
cated graphical packages etcetera.

e A structure globals with two fields. One field is always cds, the continuation de-
scriptor structure which contains most of the settings used in the computation of the
curve, cf. [45], §3.8. The other substructure is more specific and depends on the type
of the computed curve, so it can be one of eds, 1pds, hds, bpfd, 1ds, homds, or
hetds. We refer to [45] §3.2 for more details.

e A character string called initUsed which contains the name of the initializer that
was used in the continuation, e.g.

’cont_init_EP_EP’

82 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

Matcont GUI 9 [=]
k]

Select | Type Window/Output Compute Options Help

Class

Current System
System

Derivatives

Current Curve
Name

Diagram

Initial Point Type
Curve Type
Initializer

Initial Point » |

Orbit

v Equilibrium (jnit_EF_EF)

Limit cycle

Hopf

Limit paint

Period-doubling
Limit: point of cydes

Meimark-Sacker

Branch point

Branch point of cydes

Discrete orbit

Homodinic to saddle
Homodinic to saddle-node

EP_EP) -l

ConnectionSaddle (ode45)
ConnectionSaddeiode
HomotopySaddle
HomotopySaddleiode

ConnectionHet
HomtopyHet
Heterodinic

Figure 5.5: Clicking Type|Curve|Equilibrium (init EP_EP) in the main MATCONT

panel.

in the case of an equilibrium curve started from an equilibrium point.

e A structure gui that contains information for the GUI. It contains three fields, namely
CLSettings, compbranch and loader. This information is not typically useful for

the MATCONT user.

In the case of an orbit, the following is stored:

e connectData: this field is used to store additional information needed to perform
the homotopy method.

e method: name of the integrator, e.g. ode4b.

e param: the row vector of parameters

e x0: the row vector of the initial point

e gui: a structure that contains metadata utilized only by the GUI

e ¢: the column vector of time points where the orbit was computed (not including the

Event values if any)

e tspan: the time interval

5.3. THE MATFILES OF CURVES 83

Matcont GUI O]
Select Type | Window/Output Compute Options Help £

. EEECEEE oo

3D plot

Current Syster ContinuerIntegrator Previous

System EU =sler

Derivatives SNNNN

Current Curve

Name P_O(1}

Diagram diagram

Initial Point Type Equilibrium (EP)

Curve Type Equilibrium (EP)

idiclizer Equillbrium (init_EP_EP) -l

Figure 5.6: Clicking Window /Output|Graphic in the main MATCONT panel.

Matcont GUI O]]
Select Type Window/Output | Compute Options Help u
Forward
Class
Backward
Current System Extend
System Rossler
Derivatives SHNNN
Current Curve
Name P_O{1)
Diagram diagram
Initial Point Type Equilibrium (EF}y
Curve Type Equilibrium (EP}
dtick2e Equilibrium (int_EP_EP)]

Figure 5.7: Clicking Compute in the main MATCONT panel.

y: the matrix whose rows are the state values at the time points.

options: the options used in the time integration, e.g. AbsTol, RelTol, name of the
FEvent function if any, Normcontrol and Refine.

tE: if an Event function was present, then tE is the column vector of time points
where events were detected. Otherwise tE is empty.

yE: if an Event function was present, then yE is the matrix whose rows are the state
values at the time points in tE.

iE: if an Ewvent function was present then iE is the column vector of the indices of
the events detected at the time points present in tE.

84 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

Matcont GUI O]
N

Select Type Window/Output Compute | Options Help

Suspend Computation
Class C

Archive Filter
Current System Output Interval
System r FPlotProperties

Computational options bk

Derivatives. SNNNN

Current Curve

Name P_O(1)
Diagram diagram

Initial Point Type: Equilibrium (EP})
Curve Type Equilibrium (EP}
Initializer

Jacobian Increment
Moore-Penrose
TSearchOrder

Equilibrium (init_EP_EP)

Figure 5.8: Clicking Options|Computational Options in the main MATCONT panel.

Matcont GUT S [=]
k]

Emergency Reset GUI

Select Type Window/Output Compute Options | Help
I Help
Class 0ODE
Current System
System Rossler
Derivatives SHMNN

Current Curve

Name F_0{1)
Diagram diagram

Initial Point Type Equilibrium (EF}
Curve Type Equilibrium (EP}
Initializer

Equilibrium (init_EP_EP}

Figure 5.9: Clicking Help in the main MATCONT panel.

We note that userfunctions can be plotted during time integration but the data are not

stored in the mat-file.

5.4 Input and Control panels

As a general remark, the CONTINUER and INTEGRATOR windows cannot be visible at the
same time. Opening one automatically closes the other one (in fact, internally they are

the same window).

5.4. INPUT AND CONTROL PANELS 85

5.4.1 Detailed description of the panels

1. Continuer. This panel is open only if continuation is to be performed. It has a fixed
structure and always consists of the following numeric input fields which correspond to a
subset of the settings which can be used in MATCONT:

1.

2.

3.

Continuation Data

e InitStepsize
e MinStepsize
e MaxStepsize

Corrector Data

e MaxNewtonlters
e MaxCorrlters

MaxTestlIters

e VarTolerance
e FunTolerance
e TestTolerance
e Adapt

Stop Data

e MaxNumPoints

e ClosedCurve

2. Integrator. This panel is opened only if integration is to be performed. It has a fixed
structure and always consists of the following input fields:

1.

Method (choice between standard MATLAB integrators and two additional integra-
tors ode78.m and 0de87.m)

Interval

EventFunction (is only enabled if Events are to be monitored during time integration;
this functionality is typically used to compute Poincaré sections)

InitStepsize
MaxStepsize
RelTolerance

AbsTolerance

86 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

8. Refine
9. Normcontrol

Details on these choices can be found in the MATLAB help page (doc odeset). In partic-
ular, in the case of ode4b, the default for Refine is 4. This means that only every fourth
step in the output is a real Runge-Kutta step. The default for Refine for all other solvers
is 1.

3. Starter. This subpanel is opened if either integration or continuation is to be
performed. Its structure depends on the curve type but in the continuation case also on
the dimension of the state space since for each bifurcation type a sufficient number of state
variables is needed.

e In the case of time integration the initial values of time and of the state variables
and parameters have to be introduced in that order.

e In the case of an equilibrium continuation from init_EP_EP the Starter panel consists
of the following input fields:

1. State variables

2. Parameters; exactly one parameter must be chosen as the active one, in all other
cases an error message is issued when the continuation is started.

3. Monitor Singularities, i.e. indicate which of the three bifurcations “Branching”,
“Hopf”, “Limit Point” are to be monitored. “Branching” and “Limit Point”
require only one state variable, “Hopf” requires two.

4. Calculate eigenvalues, i.e. indicate whether the eigenvalues of the computed
equilibrium points are to be computed and stored in the output of the continu-
ation

e In the case of a fold (Limit Point) continuation from init_LP_LP the Starter panel
consists of the following input fields:

1. State variables

2. Parameters; exactly two parameters must be chosen as the active ones, in all
other cases an error message is issued when the continuation is started.

3. Monitor Singularities, i.e. indicate which of the three bifurcations “Bogdanov-
Takens”, “Zero-Hopf”, “Cusp” are to be monitored “Cusp” requires one state
variable, “Bogdanov-Takens” requires two, “Zero-Hopf” requires three.

4. Calculate eigenvalues, i.e. indicate whether the eigenvalues of the computed fold
points are to be computed and stored in the output of the continuation

Note. In this Starter there are two columns of radio boxes for the system parameters.
To activate a parameter one clicks in the right column. The left column is optional.
If a parameter in this column is activated then branching points with respect to this
parameter will be detected along the curve.

5.4. INPUT AND CONTROL PANELS 87

e In the case of a Hopf continuation from init_H_H the Starter panel consists of the
following input fields:

1.
2.

State variables

Parameters; exactly two parameters must be chosen as the active ones, in all
other cases an error message is issued when the continuation is started.

Monitor Singularities, i.e. indicate which of the four bifurcations “Bogdanov-
Takens”, “Zero-Hopt”, “Generalized Hopf”, “Double Hopf” are to be monitored.
“Bogdanov-Takens” and “Generalized Hopf” require two state variables, “Zero-
Hopf” requires three, “Double Hopf” requires four.

Calculate eigenvalues, i.e. indicate whether the eigenvalues of the computed
Hopf points are to be computed and stored in the output of the continuation

e In the case of a limit cycle continuation from init_ H_LLC the Starter panel consists
of the following input fields:

1.
2.

State variables.

Parameters; exactly one parameter and the Period must be chosen as active,
or two parameters. In all other cases an error message is issued when the
continuation is started.

Period; cannot be given an initial value and no value is displayed. But it has
be chosen as active if only one system parameter is active (this is the natural
situation).

Switch Data, i.e. ‘amplitude’, a measure for the amplitude of the initial limit
cycle.

Discretization Data, i.e. the number ntst of test intervals used in the discretiza-
tion and the number ncol of collocation points, which is also the degree of the
piecewise polynomials that are used to approximate the limit cycle.

Monitor Singularities, i.e. indicate which of the four bifurcations “Branching”,
“Period Doubling”, “Limit Point of Cycles” and “Neimark-Sacker” are to be
monitored. “Branching”, and “Limit Point of Cycles” require two state vari-
ables, “Neimark-Sacker” and “Period Doubling” require 3.

Calculate multipliers, i.e. indicate whether the multipliers of the computed limit
cycles are to be computed and stored in the output of the continuation.

Phase response curve. Requires three input fields, i.e. a field PRC with entry
either 0 or 1, a field dPRC with entry either 0 or 1, and a field Input with entry
either a scalar or a column vector with a scalar value for each state variable.

e In the case of a limit cycle continuation from init_LC_LC the Starter panel consists
of the following input fields:

88

CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

. Parameters; either two parameters must be active, or one parameter and the

Period. All other cases will generate an error message when the continuation is
started.

Period; cannot be given an initial value but has to be active if only one parameter
is active (this is the natural situation).

Discretization Data, i.e. the number ntst of test intervals used in the discretiza-
tion and the number ncol of collocation points, which is also the degree of the
piecewise polynomials that are used to approximate the limit cycle.

. Monitor Singularities, i.e. indicate which of the four bifurcations “Branching”,

“Period Doubling”, “Limit Point of Cycles” and “Neimark-Sacker” are to be
monitored. “Branching”, and “Limit Point of Cycles” require two state vari-
ables, “Neimark-Sacker” and “Period Doubling” require 3. Default is none.

Calculate multipliers, i.e. indicate whether the multipliers of the computed limit
cycles are to be computed and stored in the output of the continuation.

Phase response curve. Will require three input fields, i.e. a field PRC with entry
either 0 or 1, a field dPRC with entry either 0 or 1, and a field Input with entry
either a scalar or a column vector with a scalar value for each state variable.

e In the case of a limit cycle continuation from init_PD_LC the Starter panel consists
of the following input fields:

1.

Parameters; one or two parameters must be set to be active. In all other cases
an error message is issued when the continuation is started.

Period; cannot be given an initial value but has to be active if only one system
parameter is active (this is the most natural situation).

Discretization Data, i.e. the number ntst of test intervals used in the discretiza-
tion and the number ncol of collocation points, which is also the degree of the
piecewise polynomials that are used to approximate the limit cycle.

Monitor Singularities, i.e. indicate which of the four bifurcations “Branching”,
“Period Doubling”, “Limit Point of Cycles” and “Neimark-Sacker” are to be
monitored. “Branching”, and “Limit Point of Cycles” require two state vari-
ables, “Neimark-Sacker” and “Period Doubling” require 3. Default is none.

Switch Data, i.e. ‘amplitude’, a measure for the distance from the PD to the
initial (period doubled) LC.

Calculate multipliers, i.e. indicate whether the multipliers of the computed limit
cycles are to be computed and stored in the output of the continuation.

Phase response curve. Will require three input fields, i.e. a field PRC with entry
either 0 or 1, a field dPRC with entry either 0 or 1, and a field Input with entry
either a scalar or a column vector with a scalar value for each state variable.

5.5. OUTPUT PANELS 89

e In the case of a limit cycle continuation from init_ BPC_LC the Starter panel consists
of the following input fields:

1.

Parameters; one or two parameters must be set to be active. In all other cases
an error message is issued when the continuation is started.

Period; cannot be given an initial value but has to be active if only one system
parameter is active (this is the most natural situation).

Discretization Data, i.e. the number ntst of test intervals used in the discretiza-
tion and the number ncol of collocation points, which is also the degree of the
piecewise polynomials that are used to approximate the limit cycle.

Monitor Singularities, i.e. indicate which of the four bifurcations “Branching”,
“Period Doubling”, “Limit Point of Cycles” and “Neimark-Sacker” are to be
monitored. “Branching”, and “Limit Point of Cycles” require two state vari-
ables, “Neimark-Sacker” and “Period Doubling” require 3.

Switch Data, i.e. ‘amplitude’, a measure for the distance from the BPC to the
initial LC on the new branch.

Calculate multipliers, i.e. indicate whether the multipliers of the computed limit
cycles are to be computed and stored in the output of the continuation.

Phase response curve. Will require three input fields, i.e. a field PRC with entry
either 0 or 1, a field dPRC with entry either 0 or 1, and a field Input with entry
either a scalar or a column vector with the dimension of the state space.

Starter windows for other continuation curves are structured along the same lines and
are self-explaining by now. In the case of a curve of limit point of cycles the same Note
applies as in the case of a limit point of equilibria.

5.5 Output panels

The essential results computed by MATCONT are stored in its database and can afterwards
be accessed by its Data Browser. During the computations the results can be output
through the following windows:

1. 2D Plot windows (any number).

2. 3D Plot windows (any number).

3. A Numeric window.

4. An Output window (is automatically opened during all continuation and integration
runs).

5. The MATLAB command window.

90 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

5.5.1 The case of continuation curves

For continuation curves the 2D plot, the 3D plot and the Numeric windows can draw
or display the values of:

e State variables (not in the numerical window for periodic orbits)

e Parameters

e Period (for periodic orbits and codim 1 bifurcations of periodic orbits only)
o Testfunctions

e Userfunctions

e Eigenvalues, in the following cases:

— Equilibria
— Homoclinic orbits, of the equilibria associated to the orbits.

— Heteroclinic orbits, of the endpoint equilibria (different colors).
e Multipliers (for periodic orbits and codim 1 bifurcations of periodic orbits only)
e Current stepsize

e Point number.

If in a 2D plot the x—axis displays a parameter or a point number and the y— axis
displays a state variable, then for periodic orbits it is possible to display the minimum and
maximum values of the state variable along the orbit.

5.5.2 The case of orbits

For orbits, the 2D plot, the 3D plot and the Numeric windows can draw, as desired by
the user, the values of:

e Time
e State values

e Parameters (although constant during simulation)

5.6. EVENT FUNCTIONS AND POINCARE MAPS 91

5.6 Event functions and Poincaré maps

A Poincaré section is a (in general, curved) surface in phase space that cuts across the flow
of a dynamical system. The Poincaré map transforms the Poincaré section onto itself by
relating two consecutive intersection points. We note that only those intersection points
count, which come from the same side of the section. In this way, a Poincaré map turns
a continuous-time dynamical system into a discrete-time one. If the Poincaré section is
carefully chosen no information is lost concerning the qualitative behaviour of the dynamics.
For example, if the system is being attracted to a limit cycle, one observes dots converging
to a fixed point in the Poincaré section.

When computing an orbit (¢, y(¢)) in MATLAB an event can be defined as going through
a zero of a scalar event function G(t,y). If G does not explicitly depend on time in an
autonomous dynamical system, this functionality can be used to see the Poincaré map in
action.

For the sake of generality MATLAB allows to define vector-valued event functions
whereby each component function defines its own event. This is done by setting the Events
property to a handle to a function, e.g. @events with the syntax

[value,isterminal,direction| = events(t,y,varargin)

where y is a state vector. The input variable varargin is a cell array that contains the
values of the parameters. If parameters are explicitly used in the definition of the event
function, then varargin should be replaced by an explicit list of parameter names.

If there are k event functions then for ¢ € {1,... k}:

e value(i) is the value of the i—th event function.

e isterminal (i) = 1 if the integration is to terminate at a zero of the i—th event
function and 0 otherwise.

e direction(i) = 0 if all zeros of the i—th component are to be computed (the
default), +1 if only the zeros are needed where the event function increases, and -1
if only the zeros are needed where the event function decreases.

The use of event functions to compute Poincaré maps in CL_MATCONT is discussed
in the manual [45]. We now illustrate the GUI implementation by example. Consider the
Rossler system:

T = —Yy—2z
y = x+Ay
2 = Bx—Cz+xz,

where (z,y,z) are the phase variables, and (A, B,C) are the parameters (this system is
also studied in Tutorial I in Appendix A)

Suppose that we want to compute an orbit and detect two events along it, namely
x = 0.2 and y = 0.3 We need only the events where x, respectively y, are increasing and
the integration will not be terminated if an event is detected

92 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

We then define an event function testEV as follows:

function [value,isterminal,direction]= testEV(t,y,varargin)
value=[y(1)-0.2;y(2)-0.3];

isterminal=zeros(2,1);

direction=ones(2,1);

end

The function testEV.m is placed in the MATCONT main directory (or anywhere else
on the MATCONT path)

We integrate the Rdssler system from 0 to 100 starting from the point [—5;5;10]
with parameter values (0.25,0.4,4.5) and input the name ’testEV’ (without quotes) in
the EventFunction field of the Integrator, see Figure 5.10.

Method odedS [=]
Interval 100

EventFunction testEV

InitStepSize zgutomatics
MaxStepSize <automatic=
RelMolerance 0.001
AbsTelerance 1e-06

Refine 4

Normcontrol r

Figure 5.10: Integrator with an Event function.

We also open a MATCONT Plot3D window to display the state variables in the range
{-9<2<9,-9<y<9 -2<z<11}. The 3D output is shown in Figure 5.11. We
note that zeros of the first event function are marked as ‘E1’, those of the second as ‘E2’
etcetera.

To see the convergence of the Poincaré iterates to a fixed point open a Plot2D window
with {4.22 <z <4.32,2.3 < z < 2.8}, see Figure 5.12.

The computed output is stored in the mat-file of the computed curve, see §5.3, from
where it can be recovered for further use. Event points can also be selected as special
points in the data browser and by double-clicking on the labels in the plots.

5.7 Options window

This panel was mentioned in §5.2 and its typical appearance on the screen is shown in
Figure 5.8. The seven options were briefly discussed in §2.9.3. It is a modal window with
seven buttons, namely Suspend Computation, Archive Filter, Output Interval,
Plot properties, Jacobian Increment, Moore-Penrose and TSearchorder. This

5.7. OPTIONS WINDOW 93

Figure 5.11: Time integration with event points that converge to fixed points.

panel is normally closed and cannot be opened when computations are being done. When
it is open, no actions in other windows can be performed. Here we give some more details
on the four non-computational options.

Clicking the Suspend Computation button opens a list box selection panel which
offers the choice of three options to suspend computations, namely at each point, at special
points (default) or never. The user then has the possibility to stop and change to a different
type of computation, or just to think before proceeding. This functionality applies only to
continuation routines.

Clicking the Archive Filter button opens a panel with a numerical input window. In
this field a positive integer number can be input and the default is 2. It means that only
that number of untitled curves of a particular type is preserved. After that number the
oldest curve of that type is removed and replaced by a new curve. To preserve a computed
curve “permanently”, it is necessary to rename it, cf. §5.5.

Clicking the Output Interval button opens a panel with a numerical input window.
In this field a positive integer number can be input and the default is 1. It means that
only after that number of computed points the output to graphical or numerical windows
is generated. This functionality applies to continuation curves and orbits. Since output is
a very time-consuming part of most computations, this functionality can be used to speed
up computations.

Clicking the Plot Properties button opens an edit box panel Plot properties which
allows to assign plot properties (color, linestyle, ...) to each type of computed curve.

94 CHAPTER 5. FRONT END FEATURES OF THE NEW MATCONT GUL

Figure 5.12: Convergence of Poincaré iterates to a fixed point.

Defaults are provided for all types of computed curves, which can be overwritten using
MATLAB code in the edit boxes. For curves of equilibria and curves of limit cycles, it
is possible to differentiate between stable and unstable parts of the curves by assigning
different colors and/or linestyles. Advanced MATLAB users can edit the file GUICurve-
Modifications.m to add new differentiations of the plot properties within a curve.
Clicking the Enter key on the keyboard closes the Options window and its subwindows.

5.8 The tutorials

Four tutorials are available to introduce the users to practical work with MATCONT. For
consistency and ease they treat essentially the same material as similar tutorials for the
previous versions of MATCONT, first written by Yu. A. Kuznetsov and later adapted
many times by himself and others. For the new MATCONT the practical details are again
different.

Tutorial I (Appendix A) deals with the input of a new system, time integration, se-
lecting initial data, 3D plots, starting a computation, inspecting a computed curve in the
Data Browser and in a spreadsheet form, qualitative changes of orbits under parameter
variation, exporting a figure, 2D plots and archiving solutions.

Tutorial 1T (Appendix B) deals with the location of equilibria by time integration,
selection special points on a computed curve via the Data Browser, computing a curve
of equilibria, using the Numeric window, detecting fold and Hopf points and interpreting
their normal form coefficients, detecting branch points and continuing a new branch of
equilibria, introduction and use of userfunctions.

Tutorial IIT (Appendix C) deals with the initialization of limit cycles by time integra-

5.8. THE TUTORIALS 95

tion, starting a limit cycle continuation from a Hopf point, detecting a period doubling
bifurcation, detecting a limit point of cycles bifurcation and a Neimark-Sacker (torus) bi-
furcation, modulated oscillations (movement on a stable torus), detecting a homoclinic
orbit.

Tutorial IV (Appendix D) deals with the continuation of fold and Hopf points under
variation of two parameters, two-parameter bifurcation diagrams, continuation of a limit
point of cycles curve by starting from a Generalized Hopf (Bautin) point and continuation
of a Neimark-Sacker (torus) curve under variation of two parameters.

Chapter 6

Internal working of the new
MATCoONT GUI

In this chapter we discuss the inner workings of the MATCONT GUI. We focus on the core
mechanism of MATCONT, i.e the inner layer between CL_MatCont and the GUI as seen by
the user. Important other parts, which can be used semi-autonomously are not discussed
here. By this we mean the generator of the system m-files (SysGUILm), the spreadsheet
viewers (G UISimCurveTable.m and GUIContCurveTable.m) and the GUI subsystems Data
Browser and Diagram Organizer, which are stored in subfolders of the GUI folder.

The internal documentation of all files is accessed by performing ‘doc filename.m’, a
reference page is generated based on the comments in the source files. The main driver
files are matcont.m, GUI/MATCONTGUI .m and GUI/Session.m.

6.1 Object oriented programming in MATLAB and
MATCONT

By default, in MATLAB objects are passed along by value (if used as an argument, a copy
is made). However, MATLAB contains a superclass called handle with the special property
that an object is passed by reference if the class of that object inherits from handle. This
is not to be confused with the function handles which are used in CL_LMATCONT, cf. [45].
More information can be found in Chapter 5 of the MATLAB OOP manual [67]: Value or
Handle Class — Which to Use.

In programming for GUI’s it is common to inherit from graphical user interface classes
(which may be related to, e.g. a specific button) to add a specific functionality. Another
technique is ’encapsulation” which is used extensively in the MATCONT GUI. This means
that a MATCONT object can contain as fields one or more MATLAB GUI objects, i.e.
objects from the GUI library of MATLAB. We often use varargin in the class constructor
of a MATCONT object to pass along extra arguments to the internal MATLAB GUI object.

97

98 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

The new MATLAB OOP language [67] makes it very easy to use certain popular design
patterns for graphical user interface programming, like Model-View-Controller (MVC).
Sometimes the controller and view are merged into one.

MATLAB has already implemented a base model, including the adding of listeners
(observers) and dispatching of events (signals). This base model is provided in the class
handle and inheriting from it. Events declarations are included in the language as a clause:

classdef Session < handle Yinherits from handle
events

settingsChanged
end

One can then add listeners to an object:

session.addlistener (’settingsChanged’,@(obj,event) myfunction(obj,event));

One can trigger an event by using:
sessionobj.notify(’settingsChanged’) ;

The addlistener command generates an object and should be captured if the user wants
to undo the listener at later times. One major difference between the MATLAB OOP
language and other OOP languages such as C++ and Java is that the object itself is
always passed as an argument to its own methods. This style is also used in the Python
programming language.

Consider the following function header of a method.

function changeSystem(obj, system)

The variable obj is the object on which the method is invoked. Invoking the method
can be done in two ways:

>> changeSystem(session, system);
>> session.changeSystem(system) ;

We use the syntax of the second line, because it resembles the syntax used in Java and
C++. In the next section we will describe the main classes in MATCONT.

6.2. CLASSES IN MATCONT 99

6.2 Classes in MatCont

The four most important classes in MATCONT are

e Session.m (Session)

This class maintains the state of the GUI and is considered the ‘driver’ of the GUI.
We discuss this class in more detail in §6.4.

e CLSettings.m (Settings)

An object of this class contains a collection of settings (objects of CLSetting.m)
required to start a certain computation. We discuss this class in §6.3 and §6.5.

e CompConf.m (Computation Configuration)

This class represents the computations performed in the GUI. An object of this class
contains a listing of the required settings and the code for executing the computation.
Simulations and continuations are coded in separate class files with CompConf .m as
base class. An overview of all computations is given in Appendix I.

e CompSolution.m (Computation Solution)

Each object of this class is the outcome of a computation. It will be referred to as a
Solution object in §6.3.

6.3 (eneral description of the workflow

In MATCONT every action involves a System, i.e. a dynamical system with state variables
and parameters, coded in a system m-file.

A typical action starts with a settings object containing an Initial Point and various
other settings most of which are visible in the Continuer /Integrator or Starter windows.
A full list is given in Appendix H.

Depending on the type of the initial point a list of computation objects is available.
These computations are usually either continuations or simulations. The computation can
be chosen by the user; the first one on the list is selected by default (typically, it is the most
natural or most often used choice). In Appendix I we provide a full list of all computations.

The computation requires starting conditions to be fulfilled by the user. For example,
an equilibrium continuation requires the options in the Continuer to be available but it
also requires an initial point with parameters, a setting whether eigenvalues need to be
computed and it also requires a selection of testfunctions to be monitored. Internally, this
selection of testfunctions is derived from the list of bifurcations that the user has selected
for detection. Other continuations like init BP_EP require an additional setting called
amplitude, a positive double to quantify the distance from the initial point to the first
point on the new curve.

The computation object configures the settings object and checks if all necessary set-
tings are present and satisfy the input restrictions. Settings that are already used by

100 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

previous computations are re-used. If the settings are not present, then they are created
with default values. Once the settings are configured by the computation object, the Con-
tinuer /Integrator and Starter windows are rendered and the user can again configure
the settings object.

The computation object has three available actions referred to as Forward, Backward
and Extend. When the action is selected the computation object gathers all relevant
settings. In the case of continuations the relevant settings are passed to the initializer and
the initializer is called. Then the options structure is built and passed to the continuer.

The file ContConf.m contains the base class for all continuation computations and
contains the core code (compute) for generically processing all continuations. We now
display the lines of code of the compute function which is the most important function for
continuation.

function [solution, errormsg, overwrite] = compute(obj, settings, forward)
solution = []; Y%default return value
overwrite = 0; %default return value
settings.setValue(’forward’, forward);
parametersmodel = settings.getSetting(’parameters’);
activeParams = parametersmodel.getActive();
system = settings.system;
x0 = settings.coord;
x0 = x0(:); %make column vector
param = settings.parameters;
param = param(:); %make column vector

The first lines retrieve settings (active parameters, current system, initial point, parameter
values) from the settings object that was passed along. The direction of continuation is
stored in settings (forward or backward).

hrestore global variables of source curve
initialPoint = settings.getSetting(’IP’);
if “isempty(initialPoint.source)

initialPoint.source.restoreGlobals();
end

If the selected point came from a previous continuation curve, the global variables associ-
ated with that curve are restored before the continuation starts (cds, eds, ...).

[valid, errormsg] = obj.sanityCheck(system.handle, x0, param,
activeParams, settings);

6.3. GENERAL DESCRIPTION OF THE WORKFLOW 101

if “valid; return; end
[x0, v0, errormsg] = obj.performInit(system.handle, x0, param,
activeParams, settings);
if isempty(x0)
if isempty(errormsg); errormsg = ’init failed’; end
return;
end

A sanity check is performed on the current state before any computation starts. Errors
might include a wrong number of active parameters or missing data to start a branch.
This check can differ depending on the type of continuation computation. After the sanity
check, the initializer is called. This initializer can also report an error and shut down the
computation.

options = contset;
options.ActiveParams = activeParams;
options = obj.constructContOptions(options, settings);

[x, v, s, h, f] = obj.contfunction(obj.curvedefinition, x0, vO, options);
if isempty(x); errormsg = ’’; return; end

S = obj.postProcess(s);
solution = ContCurve(settings, obj, x, v, s, h, f);

After the initializer is called, contset is called to provide a new clean options structure
for continuation. The active parameter selection is placed in this new structure and a func-
tion is called to place the relevant settings from settings to this structure. The continuer
function cont.m gets called and the result is stored in a solution object for continuation
(ContCurve).

In the case of time integration another version of compute is called from the file Sim-
Conf.m which contains the base class for all simulation (time integration) computations.
We now display the lines of code of the compute function which is the most important
function for time integration.

function [solution, errmsg, overwrite] = compute(obj, settings, forward)
%set default:
solution = []; errmsg = []; overwrite = 0;
settings.setValue(’forward’, forward);

[tspan, optionsODE] = obj.buildOptions(settings);

102 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

system = settings.system;

handles = system.handle();

x0 = settings.coord;

x0 = x0(:); %make column vector

param = num2cell(settings.parameters);
method = str2func(obj.methodname) ;

After storing the forward setting, the relevant settings are collected into a MATLAB ODE
options structure. The initial point and parameter values are extracted from the settings
object.

if isempty(optionsODE.Events)
[t, y] = method(handles{2}, tspan, x0, optionsODE, param{:});
tE = [1; yE = [J;
else
[t, y, tE, yE, iE] = method(handles{2}, tspan, xO0,...
optionsODE, param{:});
end
solution = SimCompSolution(settings, obj, t, y, tE, yE,
method, tspan, x0’, optionsODE, cell2mat(param));
end

The selected integrator method is called. If a MATLAB FEwvent function is present, the call
to the method has to be done slightly differently. The simulation results are stored in a
solution object for time integration (SimCurve).

In all cases the results of the computation are stored in a Solution object. The Solution
object is then displayed as the current curve in the main MATCONT panel.

The user now sees a newly computed current curve. Usually there are special points
displayed in the plots, numeric window or data browser which the user can select. On
selection a new settings object is generated which inherits the settings of the Solution
object but is configured for the type of the new initial point. Typically the initial point is
changed and matches the type of the detected point. The initial point data (coordinates
and parameters) also match the coordinates and parameter values of the detected point.
The transition to a new Settings object is internally called a switch.

At this point the workflow cycle is closed. The new settings replace the old settings
and a new list of computations becomes available.

6.4 The Session class

In §6.3 we described the general workflow of the core-mechanism in the MATCONT GUIL
The class Session in Session.m implements and executes this mechanism.

6.4. THE SESSION CLASS 103

This class has a property named settings which stores the current settings used in
the workflow. The selected computation (usually simulation or continuation) is stored in
the computation property of Session. The current solution, after computation, is stored
in a property called solutionhandle (class name: CLSolutionHandler) which contains a
reference to the current solution and the current diagram.

We will now describe some of the inner workings of the sessions object. We will start
by describing the Events that are triggered by this object.

settingsChanged:

This event is activated whenever a new settings object is loaded as current settings
object or whenever a settings object gets reconfigured. For example, whenever a
new computation is selected the settings object will be reconfigured in order to fulfill
the demands of this computation. A settingsChanged event is fired which causes the
Starter window and the Continuer window to reconfigure.

settingChanged:

This event is activated whenever a setting within a settings object gets a new value
assigned. This applies to the current settings object. Whenever a new settings object
is loaded, the settingslistener property in the class Session gets updated so it will
react to the newly loaded settings object.

computationChanged:

This event is activated whenever a new computation is selected. For example, this
event is activated when the user selects a simulation or a continuation branch (in
fact, an initializer) based on the type of initial point.

solutionChanged:

This event is activated whenever a computation of a new solution is finished or an
old solution is loaded. When this event is triggered the main window will update the
labels. The menu item to ‘Extend’ the current solution must also listen to this event
to verify if a solution is available for extension.

initpointChanged:

This event is activated whenever the user changes the type of the initial point. It is
actually a settingChanged-event but due to many components that are dependent on
the type of the initial point this special event was introduced.

lockChanged:

During computation, most of the GUI components remain locked so that no adjust-
ments can be made by the user. A lockChanged-event notifies those components of
changes in the lock-status of the session.

shutdown:

This event is activated when the method shutdownGUI is called and is used by the
various GUI objects to perform a cleanup and shut down. This event occurs when
the user closes the main window.

104 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

We already discussed the properties settingslistener, settings, computation and
solutionhandle. Other properties of the Session objects are

e The property globalsettings contains the settings that are independent of the
current system and computations, they contain the settings for the windows and plot
properties.

e The property systemspath contains the path to the directory Systems which contains
the systems and the computed data. This property is set during the startup of the
GUI. The user is allowed to change the current directory of the workspace because
the GUI uses the systempath property to locate the systems and the data. However,
the user should never move the source directory while running the GUI.

e The Boolean property locked keeps track if the GUI is locked during computa-
tion. Other GUI components are notified of changes to this variable through the
lockChanged event.

e The property pointloader contains a CLPointLoader object. The MATCoONT GUI
allows for the user to double-click on plots and select special points to load in as
the new initial point. However, problems occur when a plot exists but the solution
that is depicted gets renamed or deleted from the hard-drive. Solutions are often
renamed after computation and this should not lead to a crash whenever an existing
plot is used to select a new initial point by double-clicking. Some plots are generated
during computation when the solution does not yet exist on the hard-drive. The
pointloader solves these problems by maintaining an internal name for each (to
be) computed solution. This internal name is passed to the plots. Whenever the
user interacts with the plot and loads a new initial point, the pointloader is called
with the internal name. The pointloader will map the internal name onto the real
name of the solution on the hard-drive. If a solution gets deleted or renamed, the
pointloader gets informed and adjusts its mappings of the labels.

Because Session is the main object in the GUI, the class-definition file contains a lot
of code. To break up the code into multiple files and to keep this important object main-
tainable, a number of features are delegated to ‘submodels’. Each submodel specializes in
a certain task maintained by the session object. The three submodels are branchmanager,
windowmanager and outputmanager.

e The property branchmanager contains a CLBranchManager object. This objects keeps
track of the available computations depending on the selected initial point type. The
available computations are visible in the main window. Whenever the session triggers
an initpointChanged event, the branchmanager object will iterate over all possible
computations and select those that are compatible with the initial point. The list
of available computations gets sorted based on their priority and the computation
with the highest priority gets automatically loaded as the initial computation of the

6.4.

THE SESSION CLASS 105

new initial point. The branchmanager can activate two events. The newlist event is
activated whenever a new list of computations is generated based on an initial point
change. A selectionChanged event is activated when the selected computation has
been changed (by the user).

The property windowmanager contains a GUIWindowManager object. This object
serves as a submodel for the session model. This object stores and restores the posi-
tions of the windows, keeps track of windows that have been opened and makes sure
no window is opened twice. The windowmanager can be called upon to close all win-
dows or restore certain windows. The windows managed by this object are the main
window, the Numeric window, the Starter and Continuer/Integrator windows, the
plotlayout windows, the diagram organizer window, the plot configuration window
and the (d)PRC windows.

The property outputmanager contains a GUIOutputManager object. This object
maintains the plot windows and the numeric window. Plot windows and numeric
windows are generated by this object and get placed in a list of windows that require
computation-output. Before a computation gets started, the list is called upon to
prepare itself for computational output and this list is then passed along to the
computation.

The Session object has several methods; we mention only the most important ones.
Methods that are not mentioned are the usual getter/setter methods and methods for
obtaining the current status of the session object.

changeState(obj, system, diagram, solution, newsettings)

This function changes the state of the Session object and is called upon mainly by
the Data Browser. The session object will adopt the new system, new diagram,
new solution or new settings. Arguments are left empty if no change is needed. For
example, by leaving solution and newsettings empty, one can load in a new system
with a given diagram using a blank solution and a default settings object.

function changeInitPoint(obj, point)

This function changes the initial point in the current settings objects and triggers an
initpointChanged event. This causes the branchmanager to recompile a new list of
available computations.

function selectCompConf (obj, compconf)

This function changes the computation (simulation or continuation) and triggers
computationChanged event.

function computeSolution(obj, action)

When called upon, this function will use the current computation with the current
settings to compute a new solution. This fires a solutionChanged event. The new

106 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

solution is stored in solutionhandle. The argument action determines if the com-
putation is ‘forward’, ‘backward’ or ‘extend’. Other actions could be specified but
this option is not utilized in the current implementation.

e function shutdownGUI(obj)

This function is called when the user closes the main window. The session will call
the saveToFile method to save the current state to a file in System/. The session
will call a similar routine for its submodels windowmanager and outputmanager. The
windowmanager and outputmanager will close all their windows and will make sure
the positions are stored for recovery. A shutdown event is generated to notify other
GUI components.

e function loadFromFile(obj, local)

This functions loads a stored session object from a file into the current session objects.
The submodels windowmanager and outputmanager are called upon to restore their
windows.

e The methods lock and unlock are called upon by computation objects to freeze the
GUI during computation. This blocks the user from making changes while comput-
ing. A resetState method is available to reset the GUI if it were to malfunction
during computation. For example, this situation occurs when the user debugs code
during computation and exits debug mode before the unlocking occurs. This action
causes the GUI to remain in a locked state. The reset function can be called to
restore the session. This function is available to the user through the ‘Help’” menu.

When starting the GUI, the session object is stored as the global variable session.
Global variables are frowned upon in object oriented programming. However, the session
object is passed along where needed, as it should be. The global variable session is only
used to access it from the command line by the developer. It is useful for debugging, one
can always access the session object by declaring it global and view its content. One can
then check it for errors while the GUI is still active.

6.5 The Settings class

The large majority of routines in MATCONT is directly related to numerical continuation,
including initialization and branch switching, or directly related to time integration, includ-
ing Poincaré maps. Internally, the MATCONT GUI treats these routines in a unified way
in which each routine uses a collection of settings. The interaction of these settings with
the user and with the computational routines is crucial for the performance of MATCONT.
The object containing these settings is defined in the file CLSettings.m.

In Appendix H we provide a listing of a settings object that contains all possible settings.

6.5. THE SETTINGS CLASS 107

6.5.1 The settings of a continuation or integration routine

The MATCONT directory GUI contains a subdirectory SettingModel which collects the
code related to the use of settings in MATCONT.

In particular it contains the class file CLSettings.m which defines the class of objects
of type ClSettings.

It contains also the class file C1Setting.m which defines the class of objects of type
ClSetting.

A ClSettings object is a key value collection in which each key (an internal name) refers
to an object of the class ClSetting.

A ClSetting obect has a number of properties, namely:

e a ’displayname’, for example ’Amplitude’

e a 'value’, must be a MATLAB object

a 'validitycheck’. The validity checks are contained in a file. For each key there is
a set of functions whose argument is the 'value’ of the ClSetting object and whose
output is a boolean value.

e a 'visibility’. This is a boolean value which indicates whether the ClSetting object is
visible to the end user.

e a ‘groupid’. Can be one of 0,1,2,3 where 1 refers to the Starter window, 2 refers
to the Continuer window and 3 refers to the Integrator window. A ClSetting
object with 'groupid’ 0 is not rendered in one of these three windows but may appear
elsewhere, e.g. in the MATCONT main window in an options menu.

e a ’subgroupid’ determines in which part of the ’groupid’ window the object is to be
rendered, e.g. in the 'Continuation Data’, 'Corrector Data’, or ’Stop Data’ of the
Continuer window.

e a 'itemid’, determines the ordering in the display of the ’subgroupid’.
e a ’help’i.e. atooltip, a text that appears when the cursor moves over the displayname.

e a boolean ’editable’ which indicates whether the 'value’ of the ClSetting object can
be changed

The class ClSetting further contains a subclass ClSettingBlank with an extra property
‘Blankmessage’. If its (boolean) value is empty then the ’'value’ is not subject to the
'validitycheck’.

Preparing a new type of computation e.g. a limit cycle curve from a Hopf point (ini-
tializer init H_LC,) includes the following steps:

e The visibility of all settings is set to zero.

108 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

e The existing required settings are re-activated, i.e. become visible and are not over-
written. The non-existing required settings are created, filled with default values and
made visible.

e The user can overwrite the values except for the rare cases that they are not ’editable’.

6.6 The command line interface

The structure of the MATCONT GUI allows to use practically all GUI functionalities from
the command line in an interactive way. The collection of MATLAB commands to perform
this is called the Command Line Interface (cli).

This has a number of advantages. For example, if the number of state variables or
parameters is large and provided by an external file, then it is possible in this way to
load them as vectors directly into MATCONT. Also, it is possible to write a MATLAB
script that uses MATCONT in a semi-automatic way, for example to perform a bifurcation
analysis for a range of values of external parameters, i.e. parameters which are fixed in
each particular bifurcation analysis.

The first step in the use of the cli is to set one or more of the class variables settings,
session or solution global. These classes form the middle layer of MATCONT, i.e. the
layer between CL_MATCONT and the GUI as seen by the user. In the cli we address
directly this intermediate layer which also contains the protection against e.g. nonsense
input in the CL_MATCONT routines.

For simplicity, we start with the use of the settings class. We introduce the Rossler
system with state variables x,y, z and parameters A,B,C, as in §5.6 and in Tutorial I in
Appendix A. To avoid confusion we introduce it under the new name ROESSLERTest.
After selecting the initial point type "Point” and introducing some initial values we turn to
the MATLAB command line to reset the values:

>> global settings
>> settings
settings =
system: ROESSLERTest
IP: Point (P)

option_pause: At Special Points
option_archive: 2
option_output: 1
option_tsearchorder: true
option_moorepenrose: true
option_increment: 1e-05

time: 4.55359945382384
co_x: 1

6.6. THE COMMAND LINE INTERFACE 109

co_y: 2
co_z: 3
coord: [

parameters: [O
pa_A: 0.2
pa_B: 0.4
pa_C: 4.5

Interval: 200

eventfunction: <disabled>
InitStepSize_sim: <automatic>
MaxStepSize_sim: <automatic>

RelTolerance: 0.001

AbsTolerance: 1le-06

Refine: 4
Normcontrol: false

>> settings.co_x
ans =

1
>> settings.co_y
ans =

2
>> settings.coord
ans =

1 2 3
>> settings.coord.set([-5 5 10])
>> settings.parameters.set([0 0.4 4.5])
>> settings
settings =

system: ROESSLERTest
IP: Point (P)

option_pause: At Special Points
option_archive: 2
option_output: 1
option_tsearchorder: true
option_moorepenrose: true
option_increment: 1le-05

time: 4.55359945382384
co_x: -5

110 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

co_y: b
co_z: 10
coord: [-5, 5, 10]

parameters: [O, 0.4, 4.5]
pa_A: O
pa_B: 0.4
pa_C: 4.5

Interval: 200

eventfunction: <disabled>
InitStepSize_sim: <automatic>
MaxStepSize_sim: <automatic>

RelTolerance: 0.001

AbsTolerance: 1le-06

Refine: 4
Normcontrol: false

We turn to the GUI and check that these changes are visible in the Initializer window;
then we perform the computation in the GUI. The outcome of the computation is stored
in the solution class. We inspect it in the MATLAB command window:

>> global solution
>> solution
solution=
SimCompSolution with properties:
t: [1477x1 double]
y: [1477x3 double]
method: Qode4b5
tspan: [4.5536 204.5536]
options: [1x1 struct]
param: [0 0.4000 4.5000]

tE: []
yE: []
iE: []

>> solution.y

ans=

-5.0000 5.0000 10.0000
-5.0763 4.9739 9.5078

6.6. THE COMMAND LINE INTERFACE 111

We return to the GUI, select the last point of the computed orbit and declare it to be
an equilibrium. By default the Curve Type will now be 'Equilibrium’. We again inspect

the settings:

>> settings
settings =

system:
IP:

option_pause:
option_archive:
option_output:
option_tsearchorder:
option_moorepenrose:
option_increment:

ROESSLERTest
Equilibrium (EP)

At Special Points
2

1

true

true

1le-05

InitStepsize:
MinStepsize:
MaxStepsize:

MaxNewtonIters:
MaxCorrIters:
MaxTestIters:
VarTolerance:
FunTolerance:

TestTolerance:
Adapt:

MaxNumPoints:
CheckClosed:

0.01
le-05
0.1

10
10
1e-06
1e-06
1e-05

300
50

CO_X:
Co_y:
co_z:
coord:

parameters:
pa_A:

pa_B:

pa_C:
pa_A_select:
pa_B_select:
pa_C_select:

-0.000335576810360529
-0.000180608885605843
-3.20127988121691e-05

[-0.00033557681, -0.00018060888, -3.2012798e-05]

[0, 0.4, 4.5]
0

0.4

4.5

false

false

false

112 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

test_EP_BP: true
test_EP_H: true
test_EP_LP: true

eigenvalues: true

We need to select an active parameter in the equilibrium continuation. This can be
done via the command line:

>> settings.pa_A_select.set(true)
We execute the continuation in the GUI and get the output:

first point found

tangent vector to first point found

label = H , x = (0.000000 0.000000 0.000000 0.086282)
First Lyapunov coefficient = -2.884394e-03

elapsed time = 1.8 secs
npoints curve = 49

The solution data can be obtained in the MATLAB Command window:

>> solution
solution=
ContCurve with properties:

[4x49 double]
[4x49 double]
[3x1 struct]
[56x49 double]
[3x49 double]

H B wn g X

>> size(solution.x)
ans=
4 49

So far all driving steps were executed in the GUI, where they were relegated to the
session class. In a more advanced use of the cli we can also perform these steps from the
command line by declaring the session class global. We then add the commands:

6.6. THE COMMAND LINE INTERFACE 113

>> global session
>> session

The session output recalls the settings and then offers a choice of three buttons,
labeled

View Computations View Actions View Switches
Clicking the first button is equivalent to executing the command
>> session.select()

It provides the numbered list of computations (usually time integrations or continuation
runs) that can be selected from the given Initial Point type. They can be selected by
clicking, or by typing

>> session.select (k)

where k is the list number.
Clicking the second button is equivalent to executing the command

>> session.compute()

It provides a fixed list of options, namely Forward, Backward, and Extend. The list
can be handled as in the previous case.
Clicking the third button is equivalent to executing the command

>> session.switches()

It provides the list of objects that can be chosen as new Initial Points. The list can be
handled as in the previous cases. One can change the type of an initial point from the
command-line by using the instruction

>>> session.changeInitPoint(’H’) Yforce IP type to be ’Hopf (H)’

We note that it is always possible to get information on the current system:
>> settings.system
ans=

CLSystem with properties:

name: ’ROESSLERTest’

coordinates: {’x’ ‘’y’ ’z’}
parameters: {’A’ °’B’ ’C’}
dim: 3
time: ’t’

handle: OROESSLERTest

114 CHAPTER 6. INTERNAL WORKING OF THE NEW MATCONT GUI

userfunctions: []
ufdata: []
diagramlocation: ’/home/nineiryn/repo/MatCont/Systems/ROESSLERTest’
derstr: ’SSSNN’
equations: [3x16 char]

6.7 Output Interpreters

A computation provides a solution with an Qutput Interpreter object. There are two main
types of interpreter objects, one for time integration (simulation) and one for continuation.
There is also a special interpreter (a subclass of the continuation interpreter) for connecting
orbits.

An output interpreter takes a solution and provides a mapping that is used in the
Numeric window, the Plot Layout windows and the spreadsheet view of the data. This
mapping translates the raw output data into concepts meaningful for the user. In the case
of continuation, the interpreter object maps the coordinates, parameters, testfunctions,
userfunctions, multiplier /eigenvalues, stepsizes, period (if present) onto the (x,v,s,h,f)
output of the continuer (cont.m).

For example, a system with 2 coordinates (u, v) and one parameter (d) has the following
interpretation for an equilibrium curve:

x(1,:): u

x(2,:): v

x(3,:): d

h(1,:): stepsize
h(2,:): correction
h(3,:): BP

h(4,:): H

h(5,:): LP

£(1,:): eig
£(2,:): eig

Note that along this curve three bifurcations (BP, H and LP) were monitored for detection.

The output from a time integration is easy to interpret and is performed by the class
in CLSimQutputInterpreter.m. The (t,y) output in the case of the above example will
lead to y(1,:) being interpreted as w and y(2,:) being interpreted as v. The t vector is
labeled as time.

The output from a continuation is far more complex and is performed by the class in
CLContOutputinterpreter.m. There exist subclasses like CLContQutputInterpreterHom.m
who add a few exceptions in the interpretation for connecting orbits. The complexity of
the interpretation is caused by the many settings that alter the interpretation:

6.7. OUTPUT INTERPRETERS 115

e Working with points, cycles or connecting orbits

e The enabling or disabling of certain bifurcation detections. Some bifurcations require
two testfunctions

e The enabling or disabling of userfunctions if present
e The selection of the active parameter.

e The period is always given in the output for codim 1 limit cycle continuations; for
limit cycle continuation the period is given in the output only if selected as active.

e The options to select the computation of eigenvalues or multipliers or (d)PRC data.

A change of computation or a change in the current settings can cause the interpretation
to change. The Output Manager, which maintains the plot windows and the numeric
window, monitors any relevant changes through the Event mechanism in session and
calls upon the current interpretation to produce new selections for the numeric window
and plot windows. For example, if one selects to compute eigenvalues for an equilibrium
continuation the option to plot eigenvalues or to monitor eigenvalues in the numeric window
becomes available.

The output interpreters have as main function the function interpret:

function [outputmap, numconfig, plotsel] = ...
interpret(obj, solution, settings, computation)

Based on the settings and the computation, the interpreter produces three outputs.
If the solution argument is non-empty, the settings and computation will be taken from
the solution. The outputmap is a simple mapping used in the spreadsheet data viewer and
is also used for debugging. The numconfig provides a list of categories with values which
is used as the selection in the numeric window. The plotsel provides the menu in the
plot layout windows.

Chapter 7

Future work

The present list of tasks for future work was written up at the beginning of October 2018.
It is roughly ordered by what we consider as priority.

1.

As mentioned in §2.9.2 and §6.6 a Command Line Interface (cli) allows direct inter-
action between the MATLAB workspace and the new GUI version of MATCONT.
However, this is not yet documented or discussed in a tutorial.

The new MATCONT GUI supports the use of Event functions during time inte-
gration and the computation of Poincaré maps, see §5.6, but so far this is not yet
documented or discussed in a tutorial.

The restrictions on the names of auxiliary variables (§2.8.1) in the system m-files
generator should be lifted as the names for these variables can come into conflict
with built-in MUPAD names. The current version of the generator will produce an
error message and force the user to change the names of the variables.

Initializers for the two Hopf branches that are rooted in a Double Hopf (HH) point
(similar to the two NS branches that are rooted in an NSNS point of maps).

Similarly, an initializer for the two NS branches rooted in an NSNS point of limit
cycles.

Computation of Lyapunov exponents of orbits for ODEs. A combination of the
normal form coefficients in MATCONT with computation of Lyapunov exponents is
a powerful tool to investigate unfoldings of codim 2 bifurcation, [23].

Plotting two variables along the y-axis as a function of the same variable along the
z-axis in 2D plots in the MATCONT GUI. At present, a replacement strategy is to
open two windows simultaneously.

. Vectorization of the continuation algorithms for limit cycles and their codimension 1

bifurcations. In the case of limit cycles this is done in COCO [17].

117

118 CHAPTER 7. FUTURE WORK

9. Introduction of vector state variables. This might in particular be useful in the case
of discretized PDEs.

10. Import of Systems Biology Markup Language (SBML) systems into MATCONT (pro-
vided in the pre-2018 MATCONT GUI but not often used).

Chapter 8

Summary

8.1 English summary

The mathematical background of MATCONT is bifurcation theory which is a field of hard
analysis. Bifurcation theory treats dynamical systems from a high-level point of view. In
the case of continuous dynamical systems this means that it considers nonlinear differential
equations without any special form and without restrictions except for differentiability up
to a sufficiently high order (in the present state of MATCONT never higher than five.)
The number of equations is not fixed in advance and neither is the number of variables
or the number of parameters, some of which can be active and others not. The aim of
bifurcation theory is to understand and classify the qualitative changes of the solutions
to the differential equations under variation of the parameters. This knowledge cannot
be applied to practical situations without numerical software, except in some artificially
constructed situations.

"MATCONT’ stands for ' MATLAB CONTINUATION’. Its counterpart for discrete time
systems generated by iterated maps is called 'MATCONTM’. Both packages can be used
either from the command line or by using a GUI. The command line use is referred to
as CL_MATCONT or CL_MATCONTM, respectively. The GUI versions are more user-
friendly and are probably used more often. The command line versions are more flexible
and powerful but require more work and more insight in the underlying mathematics and
numerical methods.

Both MATCONT and MATCONTM are MATLAB successor packages to CONTENT
but were developed from scratch with many new functionalities. The project is lead jointly
by W. Govaerts (Ghent University, Belgium) and Yu.A. Kuznetsov (Utrecht, The Nether-
lands) and more recently also by H.G.E. Meijer (University of Twente) who has been a
long-time co-developer.

On October 6, 2016 in the Web of Science core collection 462 papers cited the first
(2003) paper on MATCONT. By September 22, 2018 this number increased to 617. The
follow-up paper (2008) was then cited 49 times. The citing papers cover most fields of
quantitative science, e.g.

119

120 CHAPTER 8. SUMMARY

e Rayleigh-Bénard convection;

e Bacteria-phage interaction in a chemostat;
e Design of cell cycle oscillators;

e Control of rotating blade vibrations;

e Vehicle systems dynamics;

e Electronic circuits;

e Population dynamics of Xenopus tadpole;
e Bottom fishing;

e Dynamics of landscapes;

e Neural models;

e Pattern storage in neural networks;

e Insulin secretion and hepatitis;

e Chemical reaction engineering;

e Climate warming;

e Magnetic Resonance Force Microscopy;

e Harvesting piezoelectric vibration energy;
e Omnset and dynamics of bicycle shimmy;

e Aeronautical engineering.

The software related to the MATCONT project, including the manuals and tutorials,
is freely available from www.sourceforge.net. The main other general purpose packages
for continuation and bifurcation software PYDSTooL, AUTO-07P, and COCO are also
available on www.sourceforge.net. On August 6, 2018 the number of weekly downloads was
recorded as 13 for PYDSTooL, 43 for AUTO-07P, 6 for COCO and 390 for MATCONT.

A key ingredient of MATCONT is numerical continuation, whereby curves of objects of
a given type (for example, equilibria, periodic orbits, Hopf bifurcation points, homoclinic
orbits ...) are computed under variation of one or more system parameters.

In the present thesis we describe our contributions to the MATCONT project. This
includes several new numerical algorithms, improvements to many existing algorithms,
many software improvements and, most importantly, the development of a completely new
environment for MATCONT with the following features:

8.1. ENGLISH SUMMARY 121

A clear separation of computational and control routines to increase flexibility, read-
ability and maintainability.

e The workflow is consistently organized along the lines initializer — computation
— solution. The notion of continuation is replaced by the more general notion of
computation.

e A better handling of the generated data. These data are represented and managed
by the diagram organizer, the data browser and the spreadsheet viewer.

e The internal working of the software is documented in Chapter 6. This chapter
provides a general overview. More details are obtained through the internal docu-
mentation in the code which can be accessed online.

e The software contains automatic tests to check if a new MATLAB version produces
the same results as the previous version.

e Error handling of plots is improved so that plot errors caused by e.g. command line
interference, of by GUI interference when computations are suspended, do not crash
the computations.

e Each input field has input restrictions and these are checked to minimize input errors.
So for example it will not be possible to input a float or a question mark if a positive
integer number is required. Errors are reported in the MATLAB command line. On
the other hand, numerical fields can be filled with MATLAB expressions, provided
they can be evaluated in the command line. So one can insert 2 % P instead of its
decimal expansion 6.283184...

e A Command Line Interface (cli) allows a direct interaction between the command
line and the GUI version of MATCONT.

The thesis is structured as follows. After an introductory Chapter 1 we discuss in Chap-
ter 2 (Preliminaries) general aspects of MATCONT and the mathematical background of
bifurcation theory for ODEs and for maps with survey tables of bifurcations and branch
switchings. In the last two sections of Chapter 2 we give an overview of our own contribu-
tions to the development of the MATCONT and MATCONTM software.

One of them is the merging of MATCONT and CL_MATCONT. In MATCONT5.4
(September 2014) and earlier versions of MATCONT the command-line and GUI versions
were separate. This was inconvenient from the point of algorithmic development since all
algorithmic changes had to be input twice. We merged the two packages which required
several important changes, since the continuer cont.m now runs in two different ways,
depending on how the MATLAB session is started.

Another contribution is an improved code for generating the system m-files. These files
are sometimes called odefile or mapfile to indicate whether odes or maps are being studied.
They are an essential part of the whole software since they provide the handles to the
dynamical system that is being studied.

122 CHAPTER 8. SUMMARY

We developed an algorithm for switching to two different NS curves in a Double
Neimark-Sacker (NSNS) point in MATCONTM. We implemented this algorithm and it
is remarkably simple and efficient, and quite different from the idea that is traditionally
used for switching to a second branch of equilibria when a branch point of equilibria is
detected on an equilibrium curve. The continuation variables in the continuation of a NS
curve consist not only of the state variable x and the free parameter p but also of the
scalar variable k = cos(a) where the Neimark-Sacker eigenvalues of the Jacobian are e*™.
Hence the NSNS point corresponds in fact to two different points in (z,p, k) space with
the same x and p but different k& values. Therefore the two Neimark-Sacker branches can
simply be started from these two points. In MATCONTM this corresponds to the initializ-
ers init_NSNS_NS_same and init_NSNS_NS_other where ‘same’ correspond to the curve on
which the NSNS point was detected. We note that it is not necessary to compute tangent
vectors and that it is even possible to change the choice of the free parameters, which is
not the case in a branch point of equilibria.

In Chapter 3 (Numerical continuation: the algorithmic basis) we discuss the (numeri-
cal) algorithms which form the computational core of MATCONT and MATCONTM. Few
numerical details are given here since they can be found elsewhere; we focus on the aspects
that have to be understood by users and/or developers.

In Chapter 4 (MATCONTM for maps) we discuss some of our own contributions to
the MATCONTM software for maps and applications thereof. This involves Lyapunov
exponents for maps, the growing of stable and unstable manifolds, the initialization of
connecting orbits and the detecting of codimension 1 and codimension 2 bifurcations of
homoclinic orbits. The joint work with L. Vanhulle on the intersection of a stable and an
unstable manifold is new and unpublished. This work is restricted to planar maps and
forms the key step towards the computation of homoclinic and heteroclinic connections
and tangencies.

Since each manifold is approximated by line segments this intersection problem is a spe-
cial case of the computation of the intersection points of a collection of line segments. The
latter problem is a well-studied one and the standard solution is the line sweep algorithm,
but so far there is no efficient way to implement this algorithm in MATLAB.

In fact, the standard solution so far is to simply consider each pair of line segments
(a stable one and an unstable one) and check whether they intersect. We call this the
algorithm of Bruschi. It is obviously rather inefficient but it is still acceptable since its
cost is typically much smaller than the cost of computing the manifolds.

We present an algorithm based on the idea of first looking into one projection of the two
manifolds. In a first round we select the pairs of intervals whose x— projections overlap.
Typically this is a small fraction of all pairs. In the second round we select from this
fraction those pairs which also have overlapping y— projections. For the remaining pairs,
usually a tiny fraction of all pairs, we check whether they have an intersection in 2D-space.
We present two versions of this algorithm, which we call the first one and the improved one,
respectively. The first version is coded in the m-file Projectie.m and listed in Appendix
E. The improved version is coded in the m-file Projectie2.m and listed in Appendix F. For
comparison purposes both versions are available in MATCONTM but only the improved

8.1. ENGLISH SUMMARY 123

version is called in the GUI.

MATCoONTM now contains two routines to compute the Lyapunov exponents of a map.
One computes all Lyapunov exponents; the other is a more restricted but efficient algorithm
to compute the largest Lyapunov exponent in the case of planar systems. As an example
application we study a monopoly model in which we detect stable behaviour in two small
parameter intervals (length less than 2 x 1073).

Chapter 5 (Front end features of the new MATCONT GUI.) deals with the user-oriented
features of the new MATCONT GUI. It discusses the MATCONT database, the Data
Browser to access it, and the structure of the mat-files in which the data of computed
curves are stored. It shows how to obtain a spreadsheet view of a computed curve and how
the MATCONT data can be exported to other environments. A survey of the input and
output panels and their functionalities is also given.

Chapter 6 (Internal working of the new MATCONT GUI) is developer-oriented. This
is, in fact, the first time that the inner working of a version of the MATCONT software is
explicitly described.

The new GUI of MATCONT is based on the MVC design principle. We start with a
description of the “Model” which is based on the Class file Session.m, a subclass of the
handle class of MATLAB.

Compared to the pre-2018 version of the GUI there is a restructuring and redistribution
of the information in the mat-file of the system over a number of submodels to make the
working of the software more logical and transparent. It also allows for more control when
reloading a system, for example if a diagram was removed. This data model stores all the
GUI related data; its fields have to belong to specific classes, some of which are defined
specifically for MATCONT, namely System, Curve, CurveType, PointType, Branch.

Chapter 7 (Future work) mentions some topics with varying degrees of complexity for
further investigation.

This thesis further contains the Appendices A-I. A-D are tutorials to make the user
familiar with the basic functionalities of the new version of MatCont.

Tutorial I (Appendix A) deals with the input of a new system, time integration, se-
lecting initial data, 3D plots, starting a computation, inspecting a computed curve in the
Data Browser and in a spreadsheet form, qualitative changes of orbits under parameter
variation, exporting a figure, 2D plots and archiving solutions.

Tutorial II (Appendix B) deals with the location of equilibria by time integration,
selection of special points on a computed curve via the Data Browser, computing a curve
of equilibria, using the Numeric window, detecting fold and Hopf points and interpreting
their normal form coefficients, detecting branch points and continuing a new branch of
equilibria, introduction and use of userfunctions.

Tutorial IIT (Appendix C) deals with the initialization of limit cycles by time integra-
tion, starting a limit cycle continuation from a Hopf point, detecting a period doubling
bifurcation, detecting a limit point of cycles bifurcation and a Neimark-Sacker (torus) bi-
furcation, modulated oscillations (movement on a stable torus), detecting a homoclinic
orbit.

124 CHAPTER 8. SUMMARY

Tutorial IV (Appendix D) deals with the continuation of fold and Hopf points under
variation of two parameters, two-parameter bifurcation diagrams, continuation of a limit
point of cycles curve by starting from a Generalized Hopf (Bautin) point and continuation
of a Neimark-Sacker (torus) curve under variation of two parameters.

The appendices E-G are related to the joint work with L. Vanhulle. Appendices E,
F were mentioned in the discussion on Chapter 4. Appendix G (Banen) is the listing
of the routine which extracts connecting orbits from the set of intersection points of an
unstable and a stable orbit. The appendices H-I provide the complete lists of settings and
computations in MATCONT.

8.2 Nederlandstalige samenvatting

De wiskundige achtergrond van MATCONT is bifurcatietheorie, een deelgebied van de
wiskundige analyse. In bifurcatietheorie worden dynamische systemen beschouwd van-
uit een hoog niveau van algemeenheid. In het geval van continue dynamische systemen
betekent dit dat men stelsels van normale niet-lineaire differentiaalvergelijkingen beschouwt
zonder speciale vorm en zonder restricties behalve een voldoend hoog order van differen-
tieerbaarheid (in de huidige vorm van MATCONT niet hoger dan vijf.) Het aantal verge-
lijkingen is niet bij voorbaat vastgelegd, evenmin als het aantal variabelen en het aantal
parameters, waarvan er sommige actief kunnen zijn en andere niet. Het doel van bi-
furcatietheorie is het begrijpen en classificeren van de kwalitatieve veranderingen van de
oplossingen van de differentiaalvergelijkingen onder variatie van de parameters. Deze ken-
nis kan niet toegepast worden in concrete situaties zonder numerieke software behalve in
sommige artificieel geconstrueerde gevallen.

"MATCONT’ staat voor 'MATLAB CONTINUATION’. De tegenhanger voor discrete-
tijd systemen die gegenereerd worden door geitereerde afbeeldingen wordt "M ATCONTM’
genoemd. Beide pakketten kunnen ofwel gebruikt worden via de command line of via een
GUI. We verwijzen naar de command line vorm als CL_LMATCONT of CL_MATCONTM,
respectievelijk. De GUI versies zijn meer gebruiksvriendelijk en worden waarschijnlijk meer
gebruikt. Anderzijds zijn de command line versies flexibeler en krachtiger maar vereisen
meer werk en inzicht in de onderliggende wiskundige en numerieke methoden.

MATCONT en MATCONTM zijn MATLAB opvolgers van CONTENT maar werden
volledig nieuw ontwikkeld met vele nieuwe functionaliteiten. Het project wordt geleid door
W. Govaerts (Gent) en Yu.A. Kuznetsov (Utrecht, Nederland) en meer recent door H.G.E.
Meijer (Universiteit Twente) die ook zeer lang actief was als co-ontwikkelaar.

Op 6 oktober 2016 bevatte de core collection van de Web of Science 462 artikels die het
eerste artikel (2003) over MATCONT citeerden. Op 22 september 2018 was dit aantal geste-
gen tot 617. Het follow-up artikel (2008) werd toen 49 keer geciteerd. De citerende artikels
komen uit ongeveer alle domeinen van de kwantitatieve wetenschappen, bijvoorbeeld:

e Rayleigh-Bénard convection;

e Bacteria-phage interaction in a chemostat;

8.2. NEDERLANDSTALIGE SAMENVATTING 125

e Design of cell cycle oscillators;

e Control of rotating blade vibrations;

e Vehicle systems dynamics;

e Electronic circuits;

e Population dynamics of Xenopus tadpole;
e Bottom fishing;

e Dynamics of landscapes;

e Neural models;

e Pattern storage in neural networks;

e Insulin secretion and hepatitis;

e Chemical reaction engineering;

e Climate warming;

e Magnetic Resonance Force Microscopy;

e Harvesting piezoelectric vibration energy;
e Omnset and dynamics of bicycle shimmy;

e Aecronautical engineering.

De software met betrekking tot het MATCONT project, inbegrepen de handleidingen
en tutorials, is vrij beschikbaar op www.sourceforge.net. De belangrijkste andere general-
purpose software pakketten voor continuatie- en bifurcatietheorie PyDSTooL, AUTO-
07P, en COCO zijn ook beschikbaar op www.sourceforge.net. Op 6 augustus 2018 werd
het aantal wekelijkse downloads weergegeven als 13 voor PYDSTooL, 43 voor AUTO-
07P, 6 voor COCO en 390 voor MATCONT.

Numerieke continuatie is een belangrijk ingrediént van MATCONT. Hierbij worden ob-
jecten van een gegeven type (bijvoorbeeld equilibria, periodieke banen, Hopf bifurcatiepun-
ten, homoclinische connecties etc.) gevolgd onder de variatie van een of meer parameters
van het systeem.

In dit proefschrift beschrijven we onze bijdragen tot het MATCONT project. Dit om-
vat verschillende nieuwe algoritmen, verbeteringen aan vele bestaande algoritmen, verbe-
teringen aan de bestaande software en als belangrijkste bijdrage een volledig nieuwe en
up-to-date software-omgeving voor MATCONT met de volgende aspecten:

126 CHAPTER 8. SUMMARY

e FEen duidelijke scheiding tussen computationele routines en controleroutines. Dit
verhoogt de flexibiliteit en zorgt voor een betere leesbaarheid van de code en een
eenvoudiger onderhoud van de software.

e De workflow is georganiseerd volgens de lijnen van initialisatie — berekening — op-
lossing. De software is niet langer zuiver gericht op continuatie maar werkt met het
breder concept van een berekening.

e Een betere athandeling van de gegenereerde data. Deze data worden weergegeven en
bewerkt door de diagram organizer, de data browser en de spreadsheet viewer.

e De interne werking van de software documenteren we in Hoofdstuk 6. Dit hoofdstuk
biedt een algemeen overzicht. Meer details vindt men terug in de documentatie
binnenin de code. Deze documentatie is ook online beschikbaar.

e De software bevat automatische tests die nagaan of een nieuwe MATLAB versie
dezelfde resultaten produceert als de vorige versie.

e De foutafhandeling bij het plotten is verbeterd zodat plotfouten, bijvoorbeeld als
gevolg van een command line tussenkomst, of bij een GUI tussenkomst wanneer de
berekeningen opgeschort zijn, de berekeningen niet doen crashen.

e [eder inputveld heeft aangepaste restricties en die worden gecheckt om inputfouten te
minimaliseren. Bijvoorbeeld zal het niet mogelijk zijn om een float of een vraagteken
in te vullen als een geheel getal gevraagd wordt. Fouten worden gemeld in de MAT-
LAB command line. Anderzijds, numerieke velden kunnen ingevuld worden met
MATLAB uitdrukkingen op voorwaarde dat ze kunnen geévalueerd worden in de
MATLAB command line. Men kan dus 2 % Pi invullen in plaats van de decimale
expansie 6.283184...

e Een Command Line Interface (cli) laat een directe interactie toe van de command
line met de GUI versie van MATCONT.

Het proefschrift is als volgt georganiseerd. Na een inleidend hoofdstuk (‘Introduc-
tion’) bespreken we in Hoofdstuk2 (’Preliminaries’) algemene aspecten van MATCONT
en de wiskundige achtergrond van bifurcatietheorie voor ODEs en voor afbeeldingen met
overzichtstabellen voor bifurcaties en takverwisselingen. In de laatste twee secties van
Hoofdstuk 2 geven we een globaal overzicht van onze bijdragen tot de ontwikkeling van de
MATCONT en MATCONTM software.

Een van die bijdragen is het samenvoegen van MATCONT en CL_MATCONT. In MAT-
CoNT5.4 (september 2014) en vroegere versies van MATCONT zijn de command-line en
GUTI versies gescheiden. Dat was onhandig van het standpunt van de algoritmische ont-
wikkeling daar alle algoritmische veranderingen tweemaal moesten ingevoerd worden. Wij
voegden de twee versies samen, hetgeen verschillende belangrijke veranderingen impliceerde
daar de continuer cont .m nu werkt in twee verschillende modussen, athankelijk van de wijze
waarop de MatCont sessie gestart wordt.

8.2. NEDERLANDSTALIGE SAMENVATTING 127

Een andere bijdrage is de verbeterde code voor het genereren van de m-files van de
systemen. Die files worden soms odefiles of mapfiles genoemd naargelang ze voor ODEs
of voor afbeeldingen gebruikt worden. Ze vormen een essentieel onderdeel van de hele
software daar ze de handles vormen tot het dynamisch systeem dat bestudeerd wordt.

We ontwikkelden een algoritme om van een dubbel Neimark-Sacker (NSNS, torus) punt
in MATCONTM de berekening van de twee verschillend Neimark-Sacker krommen op te
starten. We implementeerden dit opmerkelijk eenvoudige en efficiénte algoritme dat heel
verschillend is van het idee dat traditioneel gebruikt wordt voor bijvoorbeeld het switchen
naar de tweede tak in een branch punt dat ontdekt wordt tijdens een continuatie van
vaste punten. De continuatievariabelen in de continuatie van een NS kromme bestaat
namelijk niet alleen uit de toestandsvariabelen en de vrije parameter maar ook uit de
scalaire variabele k = cos(a) waarbij de Neimark-Sacker eigenwaarden van de Jacobiaan
van de vorm et zijn. Het NSNS punt correspondeert dus in feite met twee verschillende
punten in de (x, p, k) ruimte met dezelfde x en p maar verschillende waarden van k. Daarom
kunnen de twee Neimark-Sacker takken eenvoudig worden gestart van de twee punten in de
(x,p, k) ruimte. In MATCONTM correspondeert dit met de initializers init NSNS_NS_same
en init NSNS_NS_ other waarbij ‘same’ correspondeert met de kromme waarop het NSNS
point gedetecteerd werd. We merken op dat het dus niet nodig is om de raaklijnvectoren
langs de twee takken te berekenen of te benaderen. Men kan zelfs de keuze van de vrije
parameter veranderen hetgeen niet kan bij de vertakking in een branch punt van vaste
punten.

In Hoofdstuk 3 (Numerical continuation: the algorithmic basis) bespreken we de (nu-
merieke) algoritmen die de computationele kern van MATCONT en MATCONTM vormen.
We geven weinig details daar die elders beschikbaar zijn; we focussen op de aspecten die
nuttig zijn voor de gebruikers en ontwikkelaars.

In Hoofdstuk 4 (MATCONTM for maps) bespreken we in meer detail een deel van onze
bijdragen tot de ontwikkeling van MATCONTM en een toepassing daarvan. Het gaat om
de berekening van Lyapunov exponenten voor afbeeldingen, het groeien van onstabiele en
stabiele variéteiten, de initializatie van connecting orbits, en het detecteren van codimensie
1 en codimensie 2 bifurcaties van homoclinische connecties. Het gemeenschappelijk werk
met L. Vanhulle over de intersectie van een onstabiele en een stabiele variéteit is nieuw
en ongepubliceerd. In dit werk beperken we ons tot planaire afbeeldingen en het vormt
de essenticle stap naar de berekening van homoclinische en heteroclinische connecties en
tangencies.

Daar iedere variéteit benaderd wordt door lijnsegmenten is dit intersectieprobleem een
speciaal geval van de berekening van alle intersectiepunten van een verzameling van lijn-
segmenten. Dit laatste probleem is goed bestudeerd en de standaardoplossing is het zoge-
naamde line sweep algorithm. Maar er is geen efficiénte implementatie in MATLAB bekend
voor ons probleem. In feite is de standaardoplossing tot nog toe dat men eenvoudig de
intersectie zoekt van ieder onstabiel lijnsegment met ieder stabiel lijnsegment. We noemen
dit het algoritme van Bruschi. Hoewel het heel inefficiént is, is het nog aanvaardbaar omdat
de kost ervan klein is in vergelijking met die van het berekenen van de variéteiten zelf.

Wij stellen een algoritme voor dat gebaseerd is op het idee om eerst te kijken naar een

128 CHAPTER 8. SUMMARY

eerste projectie van de twee variéteiten, zeg op de x— as. In die ronde selecteren we alle
paren van lijnsegmenten waarvan de x— projecties overlappen. Voor deze paren, meestal
een klein deel van alle paren, onderzoeken we dan of hun y— projecties ook overlappen.
Slechts voor deze paren, meestal een uiterst kleine fractie van alle paren, onderzoeken we
dan of ze ook snijden in de globale tweedimensionale ruimte. We presenteren twee versies
van dit algoritme, waarvan de tweede de verbeterde versie genoemd wordt. De eerste versie
is gecodeerd in de m-file Projectie.m met listing in Appendix E. De verbeterde versie is
gecodeerd in de m-file Projectie2.m met listing in Appendix F. Ter vergelijking zijn beide
versies opgenomen in MATCONTM maar alleen de tweede wordt opgeroepen in de GUI.

MATCONTM bevat nu ook twee routines om de Lyapunov exponenten van een afbeel-
ding te berekenen. De ene berekent alle Lyapunov exponenten, de andere is beperkt tot
tweedimensionale systemen en berekent alleen de grootste Lyapunov exponent, maar is
daarvoor ook veel efficiénter. Als voorbeeld van toepassing bestuderen we een monopo-
liemodel waarin we onder andere stabiel gedrag detecteren in twee zeer kleine parameter-
intervallen (diameter kleiner dan 0.001).

Hoofdstuk 5 (Front end features of the new MATCONT GUI.) behandelt de gebruiker-
georiénteerde aspecten van de nieuwe MATCONT GUI. Hierin wordt de MATCONT database
besproken, evenals de Data Browser die toegang geeft tot de database, en ook de structuur
van de mat-files waarin de data van de berekende krommen opgeslagen worden. We tonen
hoe we een overzicht van de berekende data van een kromme in spreadsheetvorm naar
buiten kunnen brengen en hoe de MATCONT data geéxporteerd kunnen worden naar een
andere omgeving.

Hoofstuk 5 bevat verder een overzicht van de functionaliteiten van het MATCONT
hoofdpaneel en van de input en output panelen.

Hoofdstuk 6 (Internal working of the new MATCONT GUI) is ontwikkelaar-georiénteerd.
Het is in feite het eerste document waarin de interne opbouw van de GUI van een MATCONT-
versie wordt besproken en dat dus een houvast kan bieden voor later verder werk.

De nieuwe GUI van MATCONT is gebaseerd op het MVC ontwikkelingsprincipe. We
beginnen met een beschrijving van het “Model” dat een element is van de Class file
Session.m, een subklasse van de handle klasse van MATLAB.

In vergelijking met de pre-2018 versies van de MATCONT GUI is er een herverdeling van
de informatie in de mat-file van het systeem over een aantal submodellen van de GUI om
de werking van de software meer logisch en transparant te maken. Dit vergemakkelijkt het
herladen van het systeem als bijvoorbeeld een diagram weggelaten wordt. Het data model
slaat alle GUI-gerelateerde data op in velden die tot klassen behoren die specifiek voor
MATCONT gedefiniéerd worden, namelijk System, Curve, CurveType, PointType, Branch.

Hoofdstuk 7 (Future work) vermeldt een aantal nieuwe onderwerpen die in aanmerking
komen voor verder onderzoek en implementatie. Sommige daarvan zijn uitbreidingen die
waarschijnlijk zonder veel moeite gemaakt kunnen worden, andere vereisen een herwerking
van de hele code en zijn dus eerder lange-termijn projecten.

Dit proefschrift bevat verder de Appendices A-I. A-D zijn tutorials die de gebruiker
vertrouwd moeten maken met de basisfunctionaliteiten van MATCONT.

8.2. NEDERLANDSTALIGE SAMENVATTING 129

Tutorial I (Appendix A) behandelt de input van een nieuw systeem, tijdsintegratie, het
selecteren van initial data, 3D plots, het starten van een berekening, inspecteren van een
berekende kromme in de Data Browser en in spreadsheetformaat, kwalitatieve veran-
deringen van banen onder variatie van een parameter, het exporteren van een MATLAB
figuur, 2D plots en het archiveren van een berekende kromme.

Tutorial 1T (Appendix B) behandelt de locatie van equilibria die gevonden worden
door tijdsintegratie, selectie van speciale punten op een berekende kromme via de Data
Browser, berekening door continuatie van een kromme van equilibria, het gebruik van
het Numeric venster, het detecteren van fold en Hopf punten en het interpreteren van de
coéfficiénten van hun normaalvormen, detecteren van een branch punt en continueren van
een nieuwe tak van equilibria, het introduceren en gebruiken van userfunctions.

Tutorial 11T (Appendix C) behandelt de initializatie van periodieke banen door gebruik
van tijdsintegratie, het opstarten van een kromme van periodieke banen uit een Hopf punt,
detecteren van een periode-verdubbelings (flip) bifurcatie, detecteren van een limietpunt
van cycli, detecteren van een Neimark-Sacker (torus) bifurcatie, gemoduleerde oscillaties,
detecteren van een homoclinische baan.

Tutorial IV (Appendix D) behandelt de continuatie van fold en Hopf punten onder
variatie van twee parameters, twee-parameter bifurcatiediagrammen, continuatie van een
kromme van limietpunten van cycli vanuit een Generalized Hopf (Bautin) punt en de
continuatie van een kromme van Neimark-Sacker (torus) bifurcatiepunten onder variatie
van twee parameters.

De appendices E-G zijn gerelateerd aan het gemeenschappelijk werk met L.Vanhulle.
Appendices E, F werden besproken bij de behandeling van Hoofdstuk 4. Appendix G
(Banen) is de listing van de routine die connecting orbits berekent uitgaande van de verza-
meling van intersectiepunten van een onstabiele en een stabiele baan. De appendices H-I
geven een overzicht van alle instellingen (‘settings’) en berekeningen (‘computations’) be-
sproken in Hoofdstuk 6 in MATCONT.

Bibliography

H.N. Aciza, E.M. ELABBASY, H. EL-METWALLY, AND A.A. ELSADANY,
Chaotic dynamics of a discrete prey-predator model with Holling type II. Non-
linear Analysis: Real World Applications, 10(1):116 — 129, 20009.

SAEED AHMADIZADEH, PHILIPPA J. KAROLY, DRAGAN NESIC, DAVID
B. GRAYDEN, MARK J. COOK, DANIEL SOUDRY, DEAN R. FREESTONE,
Bifurcation analysis of two coupled Jansen-Rit neural mass models.

PLOS ONE, March 27, 2018 (Open Access)
http://journals.plos.org/plosone/article/related7id=10.1371/journal.pone.0192842

BASHIR AL-HDAIBAT, WILLY GOVAERTS AND NIELS NEIRYNCK, On periodic
and chaotic behavior in a two-dimensional monopoly model, Chaos, Solitons and
Fractals 70(2015) 27-37.

http://dx.doi.org/10.1016/j.chaos.2014.10.010

E.L. ALLGOWER AND K. GEORG, Numerical Continuation Methods: An in-
troduction, Springer-Verlag, 1990 .

BipEsu K. BERA, CHITTARANJAN HENS, SOURAV K. BHOWMICK, PINAKI
PAL AND DIBAKAR GHOSH, Transition from homogeneous to inhomogeneous
steady states in oscillators under cyclic coupling, Physices Letters A 380 (2016)
130-134.

http://dx.doi.org/10.1016 /j.physleta.2015.09.044

A. BACK, J. GUCKENHEIMER, M.R. MYERS, F.J. WICKLIN AND P.A. WOR-

FOLK, DsTool: computer-assisted exploration of dynamical systems. Notices
Amer. Math. Soc., 39(4):303-309, 1992.

G. BENETTIN, L. GALGANI, A. GIORGILLI, J.-M. STRELCYN LYAPUNOV,
Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian
Systems; A Method for Computing All of Them.

Meccanica, 15 (1980), p. 9-30

A. BEUTER, L. Grass, M.C. MACKEY AND M.S. T1iTCOMBE (EDS.): Non-
linear Dynamics in Physiology and Medicine, Springer Verlag, New York 2003.

131

132

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BIBLIOGRAPHY

D. BiNnDEL, M. FRIEDMAN, W. GOVAERTS, J. HUGHES AND YU.A.
KuznNETsov, Numerical Computation of Bifurcations in large equilibrium sys-
tems in MATLAB, J. Comp. Appl. Maths 261 (2014) 232-248.
http://dx.doi.org/10.1016/j.cam.2013.10.034

BORISYUK, ROMAN; MERRISON-HORT, ROBERT; SOFFE, STEVE R.; ET AL.,
To swim or not to swim: A population-level model of Xenopus tadpole decision
making and locomotor behaviour, Workshop on Neural Coding (NC) Location:
Cologne, GERMANY Date: Aug 29-Sep 02, 2016 BIOSYSTEMS, Vol. 161, Spe-
cial Issue, pp. 3-14, Published: Nov 2017
https://doi.org/10.1016/j.biosystems.2017.07.004

BruscHi, CATERINA, Growing 1D stable and unstable manifolds of n-
dimentional maps, Master thesis, Utrecht University 2010.

Fasorr D, CaTrTant A, PANZERI S (2016) The Complexity of Dynamics in
Small Neural Circuits.

PLoS Comput Biol 12(8): €1004992.
https://doi.org/10.1371/journal.pcbi. 1004992

SAMUEL I. A. COHEN, MICHELE VENDRUSCOLO, MARK E. WELLAND,
CHRISTOPHER M. DOBSON, EUGENE M. TERENTJEV, AND TuomMmAs P. J.
KNOwLES, Nucleated polymerization with secondary pathways. I. Time evolu-
tion of the principal moments. The Journal of Chemical Physics 135, 065105
(2011); doi: 10.1063/1.3608916

JEREMY COLLIE, JAN GEERT HIDDINK, TOBIAS VAN KOOTEN, ADRIAAN
D. RIJNSDORP, MICHEL J. KAISER, SIMON JENNINGS AND ROY HILBORN,
Indirect effects of bottom fishing on the productivity of marine fish, Fish and
Fisheries, 2017, 18, 619-637

DOI: 10.1111/faf.12193

DaN, S (DAN, SuraJT); GHOSH, M (GHOSH, MANOJIT); NANDUKUMAR,
Y (NANDUKUMAR, YADA); DaNA, SK (DanA, SyAMAL K.); PaL, P (Par,
PINAKI), Bursting dynamics in Rayleigh-Benard convection, European Physical
J - Special Topics 226(9) pp. 2089-2099. Jun 2017

DOI: 10.1140/epjst /e2017-70006-8

HARRY DANKOWICZ AND FRANK SCHILDER, Recipes for Continuation, STAM
Publications 2013.

HARRY DANKOWICZ AND FRANK SCHILDER, Continuation Core and Toolboxes
(COCO).

https://sourceforge.net /projects/cocotools/?source=directory

BIBLIOGRAPHY 133

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

JAN SIEBER AND YURI A. KuzNnETsov, DDE-BIFTOOL, Bifurcation analysis

for delay-differential equations.
https://sourceforge.net/p/ddebiftool /code/HEAD /tree/

DE BERG, MARK; CHEONG, OTFRIED; VAN KREVELD, MARC; OVERMARS,
MARK, Computational Geometry: Introduction, Springer 2008.

F. DELLA ROSsA AND G. MASTINU, Straight ahead running of a nonlinear

car and driver model - new nonlinear behaviours highlighted, Vehicle System
Dynamics, January 2018. DOI10.1080/00423114.2017.1422526

D. DE SCHRIJVER, Object-georienteerd programmeren in MATLAB, Master
thesis, Ghent University, June 2003.

V. DE WITTE, W. GOVAERTS, YU. A. KUZNETSOV AND M. FRIEDMAN,
Interactive Initialization and Continuation of Homoclinic and Heteroclinic Orbits
in MATLAB, ACM Transactions on Mathematical Software. Volume 38, Issue 3,
Article Number: 18, DOI: 10.1145/2168773.2168776 Published: APR 2012

V. DE WITTE, F. DELLA R0OssA, W.GOVAERTS AND YU.A. KUZNETSOV,
Numerical Periodic Normalization for Codim2 Bifurcations of Limit Cycles:
Computational Formulas, Numerical Implementation, and Examples, STAM J.
Applied Dynamical Systems 12,2 (2013) 722-788.

DOI: 10.1137/120874904

A. DHOOGE, W. GOVAERTS AND YU. A. KuzNETSOV: MATCONT : A MAT-
LAB package for numerical bifurcation analysis of ODEs, ACM Transactions on
Mathematical Software 29(2) (2003), pp. 141-164.

A. DHOOGE, W. GOVAERTS, YU.A. KuzNETsov, H.G.E. MEIJER AND B.
SAuTOIS: New features of the software MatCont for bifurcation analysis of dy-
namical systems, Mathematical and Computer Modelling of Dynamical Systems,
Vol. 14(2), pp. 147-175, Published: 2008
https://doi.org/10.1080/13873950701742754

E. DoEDEL AND J KERNEVEZ: AUTO: Software for continuation problems in
ordinary differential equations with applications, California Institute of Technol-
ogy, Applied Mathematics, 1986.

E.J. DoEDEL, A.R. CHAMPNEYS, T.F. FAIRGRIEVE, YU.A. KUZNETSOV,
B. SANDSTEDE AND X.J. WANG: AUT097-00 : Continuation and
Bifurcation Software for Ordinary Differential Equations (with Hom-
Cont), User’s Guide, Concordia University, Montreal, Canada (1997-2000).
(http://indy.cs.concordia.ca).

134

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

BIBLIOGRAPHY

DoepEL, E.J., GoVvAERTS W., KUzZNETSOV, YU.A.: Computation of Peri-
odic Solution Bifurcations in ODEs using Bordered Systems, STAM Journal on
Numerical Analysis 41,2(2003) 401-435.

DoEDEL, E.J., GOVAERTS, W., KUzZNETSOV, YU.A., DHOOGE, A.: Numer-
ical continuation of branch points of equilibria and periodic orbits, Intern. J.
Bifurcation and Chaos, 15(3) (2005) 841-860.

STEPHEN P. ELLNER AND JOHN GUCKENHEIMER: Dynamic models in biology,
Princeton University Press, Princeton 2006.

K. ENGELBORGHS, T. LUZYANINA, AND D. ROOSE: Numerical bifurcation
analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math.
Softw. 28 (1), pp. 1-21, 2002.

J. P. ENGLAND, B. KRAUSKOPF AND H. M. OsiNGA, Computing one-
dimensional stable manifolds and stable sets of planar maps without the inverse,
SIAM Journal on Applied Dynamical Systems 3(2) 2004 pp. 161-190.
http://dx.doi.org/10.1137/030600131

ERMENTROUT, B.: Simulating, Analyzing, and Animating Dynamical Systems.
Siam Publications, Philadelphia, 2002.

C.P.FaLL, E.S.MARLAND, J.M.WAGNER AND J.J.TysoN: Computational
Cell Biology, Springer 2002.

Fasori, D; CATTANI, A; PANZERI S., Pattern Storage, Bifurcations, and
Groupwise Correlation Structure of an Exactly Solvable Asymmetric Neural Net-
work Model.

Neural Comput. 2018 Mar 22:1-38.

doi: 10.1162/NECO_a_01069. [Epub ahead of print]

C. E. Frouzakis, R. A. Apomaitis, AND I. G. KEVREKIDIS: Resonance
phenomena in an Adaptively-controlled System. International Journal of Bifur-
cation and Chaos 01, 01 (1991), 83-106.
https://doi.org/10.1142/50218127491000075

FRrREIRE, E., RODRIGUEZ-LUIS, A., GAMERO E. AND PONCE, E.: A case

study for homoclinic chaos in an autonomous electronic circuit: A trip from
Takens-Bogdanov to Hopf-Shilnikov, Physica D 62 (1993) 230-253.

M.P. GOLDEN AND B.E. YDSTIE: Bifurcation in model reference adaptive
control systems. Systems & Control Letters 11, 5 (1988), 413-430.

V.S. GONCHENKO, YU.A. KuzNETSOV AND H.G.E. MEWUER, Generalized
hénon map and bifurcations of homoclinic of homoclinic tangencies, STAM J.

BIBLIOGRAPHY 135

[40]

[43]

[44]

[45]

[46]

Appl. Dyn. Systems, 4,2 (2005) 407-436.
https://doi.org/10.1137/04060487X

S.V. GONCHENKO, V.S. GONCHENKO, AND J.C. TATJER: Bifurcations of
three-dimensional diffeomorphisms with non-simple quadratic homoclinic tan-
gencies and generalized Hénon maps. Regular and Chaotic Dynamics 12, 3 (2007),
233-266.

https://doi.org/10.1134/S156035470703001X

W.J.F. GoVAERTS, Numerical Methods for Bifurcations of Dynamical Equilib-
ria, STAM, 2000.

GOVAERTS, W. AND SAuTOIs, B.: Phase response curves, delays and synchro-
nization in MATLAB. Lecture Notes in Computer Science, 3992 (2006), 391-398.

GOVAERTS, W. AND SAUTOIS, B.: Computation of the phase response curve:
a direct numerical approach. Neural Comput. 18(4) (2006), 817-847.

W. GovaerTs, YU.A. KuzneETsov, H.G.E. MEIJER AND N. NEIRYNCK,
A study of resonance tongues near a Chenciner bifurcation using MatcontM,
Proceedings of the 7th European Nonlinear Dynamics Conference (ENOC 2011)
Eds: D. Bernardini, G. Rega and F. Romeo, ISBN: 978-88-906234-2-4.
https://research.utwente.nl/en/publications/a-study-of-resonance-tongues-near-
a-chenciner-bifurcation-using-m

W. GovAERTs, YU. A. KuzneETsov, H.G.E. MEUER, B. AL-HDAIBAT, V.
DE WiTTE, A. DHOOGE, W. MESTROM, N. NEIRYNCK, A.M. RIET AND B.
SAuTols: MATCONT: Continuation toolbox for ODEs in MATLAB, Manual
2018.

https://sourceforge.net/projects/matcont/

E. HACKER, O. GOTTLIEB, Application of reconstitution multiple scale asymp-
totics for a two-to-one internal resonance in Magnetic Resonance Force Mi-
CTOSCOPY.

International Journal of Non-Linear Mechanics 94 (2017) 174-199.

DOI: 10.1016/j.ijnonlinmec.2017.04.013

NAHLA HADDAD, SAFYA BELGHITH, HASSENE GRITLI, AHMED CHEMORI,
From Hopf-bifurcation to limitcycles control in underactuated mechanical sys-
tems.

International Journal of Bifurcation and Chaos, World Scientific Publishing,
2017, 27 (07),

https://doi.org/10.1142/50218127417501048

136

[48]

[49]

[50]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

PaAuL J. HURTADO, SPENCER R. HALL, STEPHEN P. ELLNER, Infectious dis-
ease in consumer populations: dynamic consequences of resource-mediated trans-
mission and infectiousness.

Theoretical Ecology 7(2) 2014 pp. 163-179.

JUDE DZEVELA KONG, PAUL SALCEANU, HAO WANG, A stoichiometric or-
ganic matter decomposition model in a chemostat culture.

Journal of Mathematical Biology 76(6) (2018) pp. 609-644.
https://doi.org/10.1007/s00285-017-1152-3

H.G.E. MEUER, W. GOVAERTS, YU. A. KuzNETSOvV, R. KHOSHSIAR
GHAZIANI, N. NEIRYNCK: MATCONTM, A toolbox for continuation and bi-
furcation of cycles of maps: Command line use.
https://sourceforge.net/projects/matcont/

KaANDIL, A. AND EL-GOHARY, H. Investigating the performance of a time de-
layed proportional - derivative controller for rotating blade vibrations, Nonlinear

Dynamics, January 2018, DOI10.1007/s11071-017-4036-6.

DIrRK L. vAN KEKEM AND ALEF E. STERK, Wave propagation in the Lorenz-
96 model, Nonlin. Processes Geophys., 25, 301-314, 2018
https://doi.org/10.5194 /npg-25-301-2018

A.T. KHIBNIK, LINBLF: A program for continuation and bifurcation analysis of
equilibria up to codimension three. In D.Roose, B. De Dier and A. Spence (eds.)
Continuation and Bifurcation: Numerical Techniques and Applications, vol. 313

of NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., pages 283-296. Dordrecht 1990.

R. KHOSHSIAR GHAZIANI, W. GOVAERTS, YU.A. KUZNETSOV AND H. G.
E. MEUJER, Numerical continuation of connecting orbits of maps in MATLAB,
Journal of Difference Equations and Applications, 15 (8-9) 2009 pp. 849-875.
http://dx.doi.org/10.1080/10236190802357677
http://eprints.eemcs.utwente.nl /13858 /

R. KHOSHSIAR GHAZIANI, Bifurcations of maps: numerical algorithms and ap-
plications, PhD thesis, Ghent University 2008.
http://dx.doi.org/1854/9725.

GLENN E. KRASNER AND STEPHEN T. POPE, A cookbook for using the

model-view-controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, Vol 1(3) Aug/Sept 1988, pp. 26-49.

B. KrRAUSKOPF AND H. OsINGA, Growing 1D and Quasi-2D Unstable Manifolds
of Maps, Journal of Computational Physics 146(1) 1998 pp. 404-419.
http://dx.doi.org/10.1006 /jcph.1998.6059

BIBLIOGRAPHY 137

[58]

[59]

[63]

B. KrauskopF, H.M. OSINGA AND J. GALAN VIOQUE (EDs.) Numerical
Continuation Methods for Dynamical Systems, Springer Complexity Series 2007.

Yu. A. KuzNETsov, W. GOVAERTS, E.J. DOEDEL AND A. DHOOGE, Nu-
merical periodic normalization for codim 1 bifurcations of limit cycles, STAM J.
Numer. Anal. 43 (2005) 1407-1435.

Yu. A. KuzNeETsov, Elements of Applied Bifurcation Theory, Springer-Verlag,
1998. (third edition 2004).

Yu. A. KuzNeTsov AND V.V. LEvVITIN, CONTENT: Integrated En-
vironment for analysis of dynamical systems. CWI, Amsterdam 1997:
ftp://ftp.cwi.nl/pub/CONTENT

Max LINDMARK, MAGNUS Huss, JAN OHLBERGER AND ANNA GARDMARK,
Temperature-dependent body size effects determine population responses to cli-

mate warming, Ecology Letters 21(2), November 2017.
DOI10.1111/ele.12880

D.W.C. MARCONDES, G.F. CoMASSETTO, B.G. PEDRO, J.C.C. VIEIRA, A.
HorFr, F. PREBIANCA, C. MANCHEIN, C. MANCHEIN, H.A. ALBUQUERQUE,
Extensive Numerical Study and Circuitry Implementation of the Watt Governor
Model Int. J. Bifurcation and Chaos 27(11) Oct. 2017, Article Number: 1750175
DOI: 10.1142/S0218127417501759

https://sourceforge.net /projects/matcont /?source=directory

D. BINDEL, W. GOVAERTS, J. HUGHES, YU.A. KUZNETSOV, M. PEKKER,
AND D. VELDMAN, CL.MATCONTL: Continuation Toolbox in MATLAB,
October 2015.

https://www.uah.edu/science/departments/math/373-faculty /pekkermj/9996-
software-development

MATLAB, The Mathworks Inc., http://www.mathworks. com.

MATLAB, Object-Oriented Programming (R2012a)
www .mathworks . com/help/pdf_do/MATLAB/MATLAB_oop.pdf

MATTINGLY, HENRY H.; SHEINTUCH, MOSHE; SHVARTSMAN, STANISLAV Y.,
The Design Space of the Embryonic Cell Cycle Oscillator Biophysical Journal,
Vol 113(3) pp. 743-752, Published Aug. 8, 2017
https://doi.org/10.1016/j.bpj.2017.06.045

W. MESTROM, Continuation of limit cycles in MATLAB, Master Thesis, Math-
ematical Institute, Utrecht University, The Netherlands, 2002.

138

[70]

[71]

[72]

[74]

BIBLIOGRAPHY

Morris, C., LECAR,H., Voltage oscillations in the barnacle giant muscle
fiber,Biophys J. 35 (1981) 193-213.

NIELS NEIRYNCK, Algoritmen voor de numerieke berekening van bifurcaties van
afbeeldingen en hun implementatie in MATLAB, Master thesis, Ghent University
2012.

NiELS NEIRYNCK, BASHIR AvL-HDAIBAT, WILLY GOVAERTS, YURI A.
KuznNeETsov AND H.G.E. MEUJER, Using MatContM in the study of a non-
linear map in economics.

NOMA15 International workshop on nonlinear maps and applications, Dublin,
Ireland, June 15-16, 2015.

Journal of Physics Conference Series Volume: 692 Article Number: 012013 Pub-
lished: 2016, Edited by: Gelfreich, V; FournierPrunaret, D; LopezRuiz, R; et al.
(eds.)

N. NEIRYNCK, W. GOVAERTS, YU. A. KuzneETsov AND H.G.E. MEI-
JER, Numerical Bifurcation Analysis of Homoclinic Orbits Embedded in One-
Dimensional Manifolds of Maps, ACM Transactions on Mathematical Software
44(3), Article 25, January 2018 (19 pages).

https://doi.org/10.1145/3134443

PANDEY, R (PANDEY, RAKESH), ARMITAGE, JP (ARMITAGE, JUDITH P.)
AND WaDHAMS, GH (WADHAMS, GEORGE H., Use of transcriptomic data for
extending a model of the AppA /PpsR system in Rhodobacter sphaeroides. BMC
SYSTEMS BIOLOGY 11 (Dec 2017),Article Number: 146.

DOI: 10.1186/s12918-017-0489-y

J.D. PrYCE, R. KHOSHSIAR GHAZIANI, V. DE WITTE AND W. GOVAERTS,
Computation of normal form coefficients of cycle bifurcations of maps by al-
gorithmic differentiation, Mathematics and Computers in Simulation 81 (2010)
109-119. ISSN: 0378-4754, DOI: 10.1016/j.matcom.2010.07.014.

T. Puu, The chaotic monopolist, Fractals 1995:5(1), pp. 35-44.

MiCHAEL RAATZ, URSULA GAEDKE AND ALEXANDER WACKER, High food
quality of prey lowers its risk of extinction, Oikos 000: 001-010, 2017 doi:
10.1111/0ik.03863.

L. RAzoN, Stabilization of a CSTR in an Oscillatory State by Varying the
Thermal Characteristics of the Reactor Vessel, International Journal of Chemical
Reactor Engineering 4(1), January 2006. DOI10.2202/1542-6580.1320

A. RIET, A Continuation Toolbox in MATLAB, Master Thesis, Mathematical
Institute, Utrecht University, The Netherlands, 2000.

BIBLIOGRAPHY 139

[80]

[81]

[84]

[85]

[36]

D. ROOSE ET AL., Aspects of continuation software, in : Continuation and
Bifurcations: Numerical Techniques and Applications, (eds. D. Roose, B. De
Dier and A. Spence), NATO ASI series, Series C, Vol. 313, Kluwer 1990, pp.
261-268.

SAHOO BAMADEV, PANDA LOKANATH AND PoHIT GouTAM, Combination,
principal parametric and internal resonances of an accelerating beam under two
frequency parametric excitation, International Journal of Non-Linear Mechanics
78(2016):35-44-

DOI: 10.1016/j.ijnonlinmec.2015.09.017

SANDIA NATIONAL LABORATORIES, LOCA: Library of continuation algorithms

for performing bifurcation analysis of large-scale applications, 2002.
http://www.cs.sandia.gov/LOCA/.

LAksaMmi N. SRIDHAR, Using Magnetic Nanoparticles to Eliminate Oscilla-
tions in Saccharomyces cerevisiae Fermentation Processes, Journal of Sustain-
able Bioenergy Systems, 2012, 2, 27-32
http://dx.doi.org/10.4236/jsbs.2012.23004

Published Online September 2012 (http://www.SciRP.org/journal /jsbs)

SHYAM SRINIVASAN, WILLIAM R CLUETT AND RADHAKRISHNAN MAHADE-
VAN, Model-based Design of Bistable Cell Factories for Metabolic Engineering,
Bioinformatics, December 2017.

https://DOI10.1093 /bioinformatics/btx769

STRAUBE, RONNY; SHAH, MEERA; FLOCKERZI, DIETRICH; ET AL., Trade-
off and flexibility in the dynamic regulation of the cullin-RING ubiquitin
ligase repertoire Plos Computational Biology, Vol 13(11), Article Number:
€1005869,Published: NOV 2017

https://doi.org/10.1371/journal.pcbi.1005869

HADI TAGHFAVARD, HILDEBERTO JARDON KOJAKHMETOV AND MING CAO,
Parameter-robustness analysis for a biochemical oscillator model describing the
social-behaviour transition phase of myxobacteria, January 2018, Proceedings of
the Royal Society A 474 (2209).

DOI10.1098 /rspa.2017.0499.

CLIFFORD HENRY TAUBES, Modeling Differential Equations in Biology, Cam-
bridge University Press, Cambridge, UK 2001, sec. ed. 2008.

TERMAN, D., Chaotic spikes arising from a model of bursting in excitable mem-
branes, Siam J. Appl. Math. 51 (1991) 1418-1450.

TERMAN, D., The transition from bursting to continuous spiking in excitable
membrane models, J. Nonlinear Sci. 2, (1992) 135-182.

140

[90]

[91]

[92]

[93]

[94]

[95]

BIBLIOGRAPHY

NicoLO TOMIATI , ALESSANDRO COLOMBO AND GIANANTONIO MAGNANI,
A nonlinear model of bicycle shimmy, Vehicle System Dynamics, International
Journal of Vehicle Mechanics and Mobility. Published online: 26 Apr 2018
https://doi.org/10.1080/00423114.2018.1465574

J.D. TouBouL, A.C. STAVER AND S.A. LEVIN, On the complex dynamics of

savanna landscapes, Proc. Nat. Acad. Sci., Jan 2018.
DOI10.1073/pnas.1712356115

VANHULLE, LAURA Computationele detectie van homoclinische en heteroclin-
ische connecties voor geitereerde afbeeldingen, Master thesis, Ghent University,
2017.
https://lib.ugent.be/en/catalog/rug01:00237627071=0&q=Laura+Vanhulle

Vora, AnNuJ S.; SiNnHA, NanDAN K., Direct Methodology for
Constrained System Analysis with Applications to Aircraft Dynamics
JOURNAL OF AIRCRAFT, Volume: 54(6), pp. 2378-2385, (2017)
https://doi.org/10.2514/1.c034264

WENDI WANG, Dynamics of bacteria-phage interactions with immune response
in a chemostat. Journal of Biological Systems 25(4), Dec. 2017, pp. 697-713.
DOI: 10.1142/S0218339017400010

ALAaN Worr, JACck B. SwiFT, HARRY L. SWINNEY, JOHN A. VASTANO,

Determining Lyapunov exponents from a time series,
Physica D: Nonlinear Phenomena, Volume 16, Issue 3, July 1985, Pages 285-317

J.K. WROBEL AND R.H. GooDMAN, High-order adaptive method for comput-
ing two-dimensional invariant manifolds of three-dimensional maps,
Communications in Nonlinear Science and Numerical Simulation 18,7(2013), pp.

1734-1745.

CHIH-HANG JOHN WU, ZHENZHEN SHI, DAVID BEN-ARIEH, STEVEN Q
SIMPSON Mathematical Modeling of Innate Immunity Responses of Sepsis: Mod-
eling and Computational Studies: From Data to Knowledge to Healthcare Im-
provement, August 2016 DOI10.1002/9781118919408.ch8

In book: Healthcare Analytics: From Data to Knowledge to Healthcare Improve-
ment, eds. Hui Yang and Eva K. Lee, Wiley 2016

ISBN: 978-1-118-91939-2

LiuvyaNG XI10NG, LIHUA TANG, KEFU L1u AND BRrRIAN R. MACE1, Broadband
piezoelectric vibration energy harvesting using a nonlinear energy sink,

Journal of Physics D Applied Physics - March 2018

DOI: 10.1088/1361-6463/aab9e3

BIBLIOGRAPHY 141

[99] GANG ZHAO, DAGMAR WIRTH, INGO SCHMITZ AND MICHAEL MEYER-
HERMANN: A mathematical model of the impact of insulin secretion dynamics
on selective hepatitic insulin resistance. Nature Communications, Volume 8, Ar-
ticle number: 1362 (2017).
d0i:10.1038 /s41467-017-01627-9

Appendix A

TUTORIAL I: Using the new MATCONT

GUI for numerical integration of
ODEs

This session was tested on MATCONT7pl with MATLAB2017b. It illustrates how to input
a system of autonomous ordinary differential equations (ODEs)

= f(z,a), r€R" aeR™

into MATCONT and numerically integrate it with simultaneously visualizing orbits in
graphic windows.

It is not possible to load into MATCONT a system without any parameters. However,
you can introduce a dummy variable to perform time-integration.

We will study the Rdssler chaotic system:

T = —y—=z
y = x4+ Ay
2 = Bx—Cz+xz,

where (x,y, z) are the phase variables, and (A, B, C') are the parameters.

A.1 Getting started

We assume that MATCONT is placed into the directory MATCONT of your system and has
been installed properly!. Start MATLAB and change the current directory to MATCONT.
Start MATCONT by typing

matcont

'With this we refer to the compilation of the C-files in the subdirectory LimitCycle; for details see
documentation at https://sourceforge.net/projects/matcont/

143

144

APPENDIX A. TUTORIAL I

in the MATLAB command line window and press Enter.

You will get several windows related to a default ODE system, like in Figure A.1. The

position of the windows might be rearranged if they do not fit the screen.

The main window is called MatCont and has several menus. For instance, to end your
MATCONT session, choose the Exit item in the Select menu. Hereafter this operation

will be indicated with Select|Exit.

Note. It is sometimes desirable not to load a previously used system (e.g. because the

last used system was in some way corrupted). Then by typing

matcont clean

one gets a fresh start with a blank main MATCONT window.

A.2 Input new system

The command Select|System|New opens the System window, which contains several

fields and buttons. To identify the system, type for example

EETE g o ae W
Select Type Window/Output Compute Gpfions Help w | Fle Edt View Insert Tools Desktop Window Help MatCont ~
¥ X
Class oDE Dcds|2|0E|&E
Current System 4
System SLTest
Derivatives SS885 5
Current Curve 3
EP_EP(1)
Diagram diagram
25
Iniial Point Type Equiibrium (EP)
Curve Type Equiibrium (EP)
Iniializer I @ 2
Equilbrium (int_EP_EP) |
15
[Continuer =] 3 || D starter I =] 3}
Continustion Data 1
InitStepsize T Initiat Point
MinStepsize 16-05 A 31.78997 05
MaxStepsize 01] 45868
x 5295
Corrector Data b 201524506 0 - -)
Madiewtonters = LG a2 3] 3 % a7 38
k1 0.1631021 A
MaxCorrkters. T
MaxTestiters. ke 1250
"’ o 10 fal <) 0.046875 [@Qnwmenc - (O] x|
FarTn‘arance To08 g = o -
unTolerance Te 05
ks 1104
TesiTolerance Te05 Goordinates
(o] 0.001 A
Adapt 3
& K 4235322 B
Stop Data ¢ kmi 01175 x
MaxNumPoints. 300 (ol 0.5 v
Bt 50 Monitor Singuiarities Porameters
Branching (BP} |7 o
Hopf bifurcation (H) ~
Limit Foint (fold) bifurcation (LF) ~ Eigenvalues
Rel]
Cslculste sigenvaives i
cigenvalues. " Rel2]
m2]
Rel3)]
Imi3]
Rel4]
Im[4)

Figure A.1: A typical MATCONT startup screen.

A.2. INPUT NEW SYSTEM 145

in the Name field (it must be one word).
Input names of the Coordinates: x,y,z, the Parameters: A,B,C, and the name for

Time: t (default).
If shown, select symbolic generation of the 1st order derivatives by pressing the corre-

sponding radio-button 2.

System M =] B3

Name |Rossler
Coordinates [x.y.z
Parameters |AB.C

Time It
Derivatives 1stord 2ndord 3rdord 4thord 5thord

- numerically o = oy = =
-fromwindow s

- symbaolically i~ r [e (o
X'=-y-z B
y=x+A%Y

7=B"x-C *z+x*zi

=

OK | Cancel |

Figure A.2: Specifying a new model.
Finally, in the large input field, type the RHS of Rossler’s system as

xX’=-y-z
y’=x+hxy

2If the MATLAB Symbolic Toolbox is present, there will be buttons indicated ‘symbolically’. The first-
order derivatives are used in some of the integration algorithms, the first- and second-order derivatives are
used in the continuation, while the third-order derivatives are employed in the normal form computations.

146 APPENDIX A. TUTORIAL I
z’ =Bxx-C*z+x*Z

Avoid typical mistakes:
e Make sure the multiplication is written explicitly with x*.
e Specify differential equations in the same order as the coordinates.

Now the System window should look like in Figure A.2, and you can press OK button.

If you made no typing mistakes, the System window disappears, and you will see in
the main MATCONT window that Rossler becomes the current System of MATCONT.
If selected, the information field Derivatives shows the string SNNNN meaning that the
symbolic 1st order derivatives of the RHS will be used.

If you want to change or correct an existing system, click Select|Systems|Edit/Load/Delete,
select this system in the appearing Systems window, and press Edit button. The inputed
system can be completely erased by selecting Action|Delete there.

A.3 Selection of solution type

To tell MATCONT that we want to integrate the system, i.e. to numerically solve the
initial value problem for it, we have to specify the type of the initial point and the type of
the curve to compute. To select the initial point type, input Type|Initial Point|Point,
which means that the initial point has no special properties. To select the curve type, click
Type|Curve|Orbit?. The information fields in the MATCONT main window will reflect
the selections, and two more windows appear. These are the corresponding Starter and
Integrator windows. Move them, if necessary, to make both visible.

A.4 Setting initial data for integration

The Starter window is curve-dependent and is used here to specify initial data for the
integration. If any field (cf. Figure A.3) seems to be missing, then press Type|Initial
point|Point again. Let us input the following initial coordinate and parameter values:

X -5.0
y 5.0
z 10.0
A 0.0
B 0.4
C 4.5

3 Actually, it is default.

A.5. 3D VISUALIZATION 147

Starter M[=] B3

Initial Point

=

4]

tn

0.4
g

O om B Mo X
L=

Figure A.3: Starter window for integration.

(see Figure A.3).

We will use the default numerical parameters of the Integrator, except of the Interval.
Input in the Integrator window:

Interval 100

to get Figure A.4. Check that the default method of integration is ode45. You can inspect
available methods by clicking the Method menu button.

Method odeds =
Interval 100]

EventFunction zdizabled=

InitStepSize <automatic:=

MaxStepSize =<automatic=

RelMolerance 0.001

AbsTolerance 1e-06

Refine 4

Normcontrol r

Figure A.4: Integrator window.

A.5 3D visualization

To visualize the orbits, we have to open at least one more window and setup plotting
attributes.

148 APPENDIX A. TUTORIAL I

A.5.1 3D graphic window

In the main MATCONT window, select Window/Output|Graphic|3D plot. The first
Plot3D window appears.

Plot3D windows are used to represent solution curves by their projections to 3-
dimensional spaces endowed with right-handed rectangular Cartesian coordinate systems.
3D space is specified by three variables whose values are plotted along axes. The visible
part of the space is given by minimum and maximum values for each axis. By default, the
visibility limits are from 0 to 1 for all axes.

A.5.2 Variables on axes

First, we need to choose the variables along the axes and the ranges of displayed values
along these axes. This can be done by selecting the coordinates x, y, and z and the ranges

—-9<xr<9, 9<y<Y —2<2< 11

in the Layout window (see Figure A.5). This window is accessible via the menu MatCont|Layout
in the Plot3D window. Click OK to confirm the choice of variables and ranges.

B Plot3D - xy,z M [=1ES] | Layout !EIE
File FEdit View Insert Tools Desktop Window Help MatCont ~ | Abscissa

EEE BRI AR [| Coordinates -
B

Range: | 6 =

Ordinate.

Figure A.5: Selecting variables and ranges along the axes.

The graphics window Plot3D is updated automatically with the input and the new
names of the axes become visible.

A.6 Integrating orbits

Now we are ready to start numerical integration. We will perform multiple simulations
of the Rossler system at different values of a parameter. We will see that the behaviour
of the orbits changes qualitatively, suggesting that bifurcations happen in between these
parameter values.

A.6. INTEGRATING ORBITS 149

A.6.1 Start computation

Input the Compute|Forward menu command in the main window to start integration.
An Output window is opened automatically. The computation can be paused or stopped
by clicking the corresponding button in that window. If paused, the computation can be
resumed by clicking the corresponding button as shown in Figure A.6.

Also, you can interrupt the computation at any time by pressing the Esc key on the
keyboard.

£l output _[O]]

| Paused

Resume |

Continuation output: 2]

Figure A.6: Output window.

The integration will start and shortly after produces Figure A.7. The orbit tends to a
stable equilibrium.

When the computation is finished, the Output window looks like Figure A.8. You can
now either close the Output window or press the View Result button to inspect the
output in a Data Browser window, see Figure A.9. By pressing the View CurveData
button in the Data Browser window one obtains a spreadsheet view of all points computed
during the time integration, see Figure A.10.

A.6.2 Other parameter and coordinate values

Clear the Plot3D window by selecting MatCont|Clear menu option there. Change the
parameter A value to 0.2 — while keeping all other parameters unchanged — and the initial
value of z to 1. Start the new integration by Compute|Forward. The computed orbit
now tends to a stable periodic orbit (limit cycle), see Figure A.11. This stability loss by the
equilibrium with the generation of a limit cycle is called the (supercritical) Andronov-Hopf
bifurcation.

150

ﬁ Plot3D - x,y,7

APPENDIX A. TUTORIAL I

File Edit View Insert Tools Desktop Window Help MatCont

=10l x|

SEEEIN R E AR EIL:

Figure A.7: An orbit in the Plot3D window converging to a stable equilibrium

I
Output

Finished

View Result

Continuation output:

- (O] x|

Figure A.8: The Output window when the computation is finished.

A.6. INTEGRATING ORBITS 151

Data Browser i =]]
Systemsl M System; Russlerl ! Diagram; diagraml ! Curve; P_0(1}|
. A [interval 100

coordinates
P First Point t [0
P LastPoint x |5
¥ |5
z (10
parameters
A |0
B |0.4
C |45

Select entire orbit as limit cycle (LC)

[|

Load Curve | View Settings | View CurveDatal Select Point |

Figure A.9: Inspect the output of the computation in a Data Browser window.

P_o(1) 1o
File Edit View Insert Tools Desktop Window Help £l
3
AR EE
v | 2] 03 | 4 | s | s | 7 |
t 0 0.0052 0.0104 0.0155 0.0207 0.0441 0.0674
X -5 -5.0763 -5.1500 -52212 -5.2899 -5.5726 -5.8154
Y 5 49735 49474 4.9208 4.8933 47654 46333
z 10 9.5078 9.0357 8.5831 8.1496 6.4135 5.0037
il 2|

Figure A.10: A spreadsheet view of the points computed by time integration.

Repeat the integration at A equal 0.25. You should get Figure A.12 showing another
orbit tending to a limit cycle but slowly.

When we now repeat the integration for A equal to 0.3, we notice that the orbit
tends to a limit cycle making two turns before closure. The appearance of a stable
cycle with approximately doubled period, while the primary cycle becomes unstable, is
called the (supercritical) period-doubling bifurcation. To erase transient behaviour, select
MatCont|Clear in the Plot3D window and then continue the integration via the menu
selection Compute|Extend in the main window. You should obtain Figure A.13 (left
panel after the initial integration and right panel without showing the transient).

Increasing the parameter A to 0.315, results in a more complicated cycle making four
global turns before closure, see and reproduce Figure A.14. We can conclude that the
doubled cycle undergoes the next period-doubling bifurcation from a cascade of such bi-

152 APPENDIX A. TUTORIAL I

Plot3D - v, S [=l B3 |
~

File Edit View Insert Tools Desktop Window Help MatCont

FEEEI R AR EEE L

Figure A.11: An orbit in the Plot3D window converging to a stable limit cycle at A = 0.20.

PIot3D-x,v,Z _IEI 1[
£

File Edit View Insert Tools Desktop Window Help MatCont

DEES L RRODEL- | /0E DO

Figure A.12: An orbit in the Plot3D window converging to a stable limit cycle at A = 0.25.

A.6. INTEGRATING ORBITS

Plot3D - x,y,z

File Edit View Insert Tools Desktop Window Help MatCont

EAPlot3D - x,y,z

Fie Edit View Insert Tools Desktop Window Help MatCont

—lofx|

AEE RN R EREEEE

AEE N EE R E =

153

Figure A.13: An orbit in the Plot3D window converging to a stable 2-cycle at A = 0.3.

furcations.

Plot3D - xy,z

File Edit View Insert Tools Desktop Window Help MatCont

P [=] 3

Plot3D - X,y,z

File Edit View Insert Tools Desktop Window Help MatCont

~=1o0jxj

NEE bR OUDEL- 30|00

IR A EEEE

Figure A.14: An orbit in the Plot3D window converging to a stable 4-cycle at A = 0.315.

Finally, change A into 0.36, set the Interval in the Integrator window to 500, clear
the graphic window, and start computation. After some time, you should see a chaotic

attractor as in Figure A.15.

154 APPENDIX A. TUTORIAL I

JREETE] B8 ot vz WETE|
File Edit Wiew Insert Tools Desktop Window Help MatCont w | File Edit View Insert Tools Desktop Window Help MatCont L
Ocdsal0E|:E Dcds[@a/0E|LE

Figure A.15: A chaotic attractor in the Plot3D window at A = 0.36.

A.7 Plot manipulation

A.7.1 Another viewpoint

You can change the viewpoint in the Plot3D window using the standard MATLAB fa-
cilities. If you press the Rotate 3D button in the Tools section of the menu bar of the
Plot3D window, then the coordinate system can be rotated with the help of the mouse.
A rotated orbit is shown in Figure A.16.

To view the orbit in the original projection, use the standard MATLAB tools.

A.7.2 Redraw

The computed orbit (including the transient) can be redrawn without recomputation using
commands from the Plot3D window, namely: Plot|Clear followed by Plot|Redraw
Curve.

A.7.3 Export a figure

You can save the produced figure in various formats using the standard MATLAB tools.
For example, to produce an Encapsulated PostScript file corresponding to Figure A.16,
click File|Save As.. button in the Plot3D window and select EPS type. Then specify
the file name and location in the appearing dialog box, and press Save.

A.8. 2D VISUALIZATION 155

o
k-

File Edit View Insert Tools Desktop Window Help MatCont

Acde R TPEL- (|08 a1

10 —

Figure A.16: Another viewpoint on the chaotic attractor at A = 0.36.

A.8 2D visualization

Let us plot the time series corresponding to the computed chaotic orbit for 0 < ¢ < 250.
For this, open another graphic window via the Window /Output|Graphic|2D plot in
the main MATCONT window.
A new window Plot2D appears that has a structure similar to the Plot3D window.
Using MatCont|Layout, set time t as the Abscissa and coordinate x as the Ordinate
and input new visibility limits along the axes:

The layout window is presented at the right of Figure A.17.

Close the Plot3D window. In the Plot2D window, you can get with MatCont|Redraw
Curve a time series shown in Figure A.18. You may need to resize the window for a better
view.

A.9 Another method of integration

The method of integration can be changed. For example, one can select ode23s as Method
in the Integrator window. After selection, the Integrator window will be updated.

156 APPENDIX A. TUTORIAL I

.
A TSI 5 covoue BEE
File Edt View Insert Tools Desktop Window Help MatCont ~ | ~Abscissa
Ndde b |RR0DE.L 208D
Tm [-] [Time B
8
6
Rang [0 [250
4
2 Ordinate
=0
% B Coordinat:
-2
4
Rang: 2 [8
-6
-8
1] 50 100 150 200 250 oK
Time

Figure A.17: Coordinates and range limits in a 2D plot.

0 50 100 150 200 250

Figure A.18: The first solution component versus time in the Plot2D window.

Repeat computations with Compute|Forward. Notice in Figure A.19 a change in the
time series for big values of ¢t due to a difference in the accuracy of the methods. This
shows that one has to be careful with numerical solutions of ODEs.

Note: Normally you will get Figure A.19 in one color. We used a property editor to
change the color of the second curve.

A.10 Archive of computed solutions
By default, MATCONT keeps only a certain number of computed curves (e.g. orbits) under

the standard names corresponding to their Point type and Curve type. This number is
determined by the Archive Filter which can be seen and adapted by the user by pressing

A.10. ARCHIVE OF COMPUTED SOLUTIONS 157

0 50 100 150 200 250

Figure A.19: Two numerical solutions obtained with different integration methods. The
second curve was computed with ode23s. The color of the second curve has been set to
red to accentuate the difference.

Matcont GUT -0l x|
Select Type Window/Qutput Compute Options Help L
Class ODE

Avrchive Filter M=l Ed

Current System
System Rossler E

Derivatives SHNMM 0K Cancel |

Current Curve

Name P_O(1)

Diagram diagram

Initial Point Type Point (P}

Curve Type Orbit (O}

Initializer Orbit (pdedS) j

Figure A.20: The Archive Filter is set to 2.

158 APPENDIX A. TUTORIAL I

the Options|Archive Filter button, see Figure A.20. With this setting, only two curves
of each type are preserved.

You can manipulate the curves via Select|Curve menu in the main MATCONT window.
This opens a Data Browser window as displayed in Figure A.21.

e S— S— =
[Eyoatobrowser e
| Systemsl M System; Russlerl ! Diagram; diagraml

B d Npoints 6401
| | Initial Pointtype P
-I P 0(2) Integrator Orbit (oded5)
tspan [0, S00]

|

\ New | Load | View | Rename | Delete |

Figure A.21: The Data Browser window opened by pressing the Systems|Curve button.

It is now possible to load a curve (for example to redraw it separately), view, rename or
delete it.

As an exercise, inspect a spreadsheet view of the computed points of the highlighted
curve by pressing the View button in the Data Browser window.

If a curve is renamed, it will be stored permanently. As an exercise rename the two
remaining orbits into orbitl and orbit2, respectively. By pressing the New button one
returns to an empty curve in the diagram that is open in the Data Browser window.

Close the Data Browser window.

All currently available curves form a diagram that can be redrawn in a graphic window
via MatCont|Redraw Diagram. If you do this in the Plot2D window, you should get
Figure A.19 again.

A.11. ADDITIONAL PROBLEMS 159

A.11 Additional Problems

:)'32:1:(1—%)

with positive a, e.g. a = 2. Plot solutions (¢, z(t)) with different initial conditions

x(0).

A. Consider the logistic equation

B. Van der Pol’s equation is given by
i—a(l -2 +x=0.

Rewrite the equation as a system of two first-order ODEs by introducing y = —a.
Plot its orbits for v = 0 and « = 0.5 in the phase space (z,y).

C. Simulate the Lorenz chaotic system

r = o(y—ux),
Yy = rr—y-—2zxz,
z = —bz+uy,

for c =10, b= g, r = 28. Maks 3D phase plots as well as plot time-series of z for

various initial conditions.
D. Consider the following Langford system

i = (A=bx—cy+zz+de(l—2?),
g o= e+ (A=by+yz+dy(l - 2%,
2= hz— (22 + 9P+ 2?),

where b = 3, c:iandd:%.
1. Integrate this system in MATCONT for A = 1.5,1.9,2.01. Always start from
To = Yo = 0.1,2’0 =1.
2. Briefly describe what you see in each case.

3. Could you support your conclusions by some other numerical and/or analytical
arguments 7

Appendix B

TUTORIAL I1I: Using the new MATCONT
GUI for one-parameter bifurcation
analysis of equilibria

This session was tested on MATCONT7pl with MATLAB2017b. It is devoted to the
numerical continuation of equilibria in systems of autonomous ODEs depending on one
parameter

= f(u,a), ueR" aeR,

and detection of their bifurcations.

B.1 An ecological model with multiple equilibria
and limit points

Consider the following system appearing in mathematical ecology:
Yy

r+a’
zy dy’

r+a y+b

t = rz(l—x)—
(B.1)

y = —cy+
Fix
r=2, a=0.6, b=c=0.25,

and consider d as a bifurcation parameter with initial value d = 0.1. The aim is to locate
equilibria of (B.1) and study their dependence on d.

B.1.1 System specification

Start MATCONT, choose Select|System|New, and input a new ODE system — say EcoMod
— into MATCONT as shown in Figure B.1.

161

162 APPENDIX B. TUTORIAL II

System I =]

Name IEcoMod
Coordinates [xy
Parameters |rab,cd

Time It
Derivatives 1stord 2ndord 3rdord 4thord Sthord
- numerically r s o & ol
- from window r s
- symbaolically = = &~ s I
K=r(1-%)-x*yl (x+a) -l

y'=-Cc*y+x"y/(x+a)-d *y“Ef{y“2+b“2]{

[

OK | Cancel |

Figure B.1: The ecological model.

B.1.2 Locate an equilibrium by numerical integration

Select Type|Initial point|Point and check that the default Type|Curve|Orbit is se-

lected.
In the appearing Integrator window, increase the integration Interval to 200 and set

RelTolerance to 1e-7 and AbsTolerance to 1e-10 (to assure smaller integration steps).
Via the Starter window, input the initial point

X 1.2
y 1

and the initial values of the parameters, namely

r 2

B.1. MULTIPLE EQUILIBRIA AND LIMIT POINTS 163

Q0 o e

O O O O

= NN O
(2]

Open a 2Dplot window with Window /Output|Graphic|2Dplot and a Layout win-
dow by clicking MatCont | Layout in the 2Dplot window. Select x and y as variables
along the corresponding axes and the following visibility limits:

Abscissa: 0 1.2
Ordinate: 0 2.0

as shown in Figure B.2.

B B e
Fle Edt View Insert Tools Desktop Window Help MatCont ~ | Abscissa
DS de | kRO E 4 - 2|0E O

" [eoorsinates =l

Range: 0 12
Ordinate

= [coorinates E

0 02 0.4 06 08 1 12 oK
X

Figure B.2: Opening a 2Dplot window.

Start Compute|Forward. You will get an orbit converging to an equilibrium, see
Figure B.3

To see how the coordinates vary along the orbit, select Window /Output|Numeric
which opens a Numeric window. Then input another initial point in the Starter window

X 1.0
y 0.001

and Compute|Forward. You get the second orbit from Figure B.3 tending to the same
equilibrium, whose (approximate) coordinates can be seen in the Numeric window shown

in Figure B.4. Close both the Numeric window and the Output window.

B.1.3 Equilibrium curve

We can continue the equilibrium found by integration with respect to the parameter d.
Open the Data Browser window by pressing Select|Initial Point in the main MATCONT
window. Then click on Last Point and Select Point, as shown in Figure B.5.

164 APPENDIX B. TUTORIAL II

A Plot2D - x,y 10| x|

File Edit View Insert Tools Desktop Window Help MatCont £

NEde | bARTDEL- 2|08 |80

0.5

Figure B.3: Phase orbits approaching a stable equilibrium for d = 0.1.

i

Layout |
Coordinates
0.20279712516344
¥ 1.26372094574225
Time
t 200

Figure B.4: The coordinates of the stable equilibrium.

B.1. MULTIPLE EQUILIBRIA AND LIMIT POINTS 165

Data Browser _[O] =]
Systems | 4/ System; Ecolod | # Dingram; diagram| / curve; P_o4)|
2] [“rpoint[re0s
L Serctcyce coordinates
P First Point t_[200
[P Last Point | x 028279713
| vy 12837208

parameters

r 2
06
0.25
| c Jozs
[a o
=l

Load Curve | View Settings | View CurveDalal Select Point

Figure B.5: Data Browser window with Last Point selected.

Starter i [=]

Imitial Point

x 0.25279712518344

¥ 1.263720084574225

O 2

a 0.6

b 0.25

c 0.25

o d 0.1

Monitor Singuilarities

Branching (BP} rd

Hopf bifurcation (H) [+

Limit Point (fold} bifurcation (LP} [+
Calculate eigenvalues

gigenvalues 3

Figure B.6: Starter window for the equilibrium continuation: Parameter d is activated.

166 APPENDIX B. TUTORIAL II

Continuer =] E1
Continuation Data
InitStepsize 0.1
MinStepsize 1e-05
MaxStepsize 0.0z
Corrector Data
MaxNewtonlters 3
MaxCorriters 10
MaxTestlters 10
WarTolerance 1e-06
FunTolerance 1e-06
TestTolerance 1e-05
Adapt 3
Stop Data
MaxHumPoints 100
CheckClosed 50

Figure B.7: Continuation parameters in the Continuer window.

To tell MATCONT to continue an equilibrium curve, we have to specify the initial point
type and the curve type. Selecting Type|Initial Point|Equilibrium we set the point
type EP and the same (default) curve type, so that we prepare to compute the EP_EP
equilibrium curve, as indicated in the main MATCONT window. The Starter window is
now modified and the Integrator window is replaced by a Continuer window.

The initial values of the parameters and the equilibrium coordinates are visible in the
Starter window. Press the radio-button next to parameter d, indicating that it will be a
bifurcation parameter (i.e. activate parameter d). The resulting Starter window is shown
in Figure B.6. There you can also see which singularities will be monitored (all), and
whether the equilibrium eigenvalues will be computed (yes).

In the Continuer window, several default numerical parameters related to the contin-
uation are listed. Change only

MaxStepsize 0.02
MaxNumPoints 100

(see Figure B.7).
Use MatCont | Layout menu in the 2Dplot window to select the parameter d as
abscissa and the coordinate y as ordinate with the visibility limits:

Abscissa: 0 0.5

B.1. MULTIPLE EQUILIBRIA AND LIMIT POINTS 167

Plot2D - d,y I8 [l
~

File Edit View Insert Tools Desktop Window Help MatCont

NDods (R0 EL-|E|0E a0

15

05

L I L I L L I L I |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure B.8: Equilibrium manifold in the (d, y)-plane: LP’s denote limit points, H is a Hopf
point.

Ordinate: 0 1.5

and clear the window by pressing MatCont—Clear in the 2DPlot window.

Now click Compute|Forward to get part of a sigmoidal curve as in Figure B.8. During
the computations an Output window is opened and the continuation is stopped each time
when a singularity is found, see Figure B.9. Then press Resume in the Output window
to restart the continuation. Now click Compute|Backward to complete the sigmoid.

Along the forward branch, MATCONT stops at two limit points labeled LP. You can
Resume the computation at these points in the Output window.

After finishing this continuation press the View Result button in the Qutput window.
This opens a Data Browser window. Press the View button at the bottom of the Data
Browser window. This opens a spreadsheet view of all computational values that will
be stored as data of the curve. Figure B.10 shows part of this spreadsheet; the Curve
Data correspond to the x,v,s,h,f output of the continuer as described in the MATCONT
manual.

Along the backward branch, MATCONT stops at a Hopf point labeled H. Terminate the
computation by pressing Stop there.

To determine stability of the equilibria and read the bifurcation parameter values, open
Window /Output|Numeric and select Layout in the Numeric window.

The Layout window offers the choice to visualise during the continuation the coordi-
nates (i.e. state variables), active parameters, testfunctions, eigenvalues, current stepsize,
userfunctions (when userfunctions are present), and number of computed points. Activate
only the coordinates, parameters and eigenvalues.

168 APPENDIX B. TUTORIAL II

3 Output =10] x|
| Paused, Limit point
Resume |
Stop |

Continuation output:

=l

Figure B.9: The Output window when paused at an LP point.

This makes the state variables, active parameters and eigenvalues of the equilibrium
visible in the Numeric window (upon resizing it).

Clear the 2Dplot window with MatCont|Clear and repeat Compute|Forward. In
the Numeric window you can read the LP parameters:

de = 0.256805 ..., d; =0.176927...

(see Figures B.11 and B.12). One eigenvalue (close to) zero is also present in each case.
The existence of three equilibria for d € (dy,ds) is evident from the figure.

In the MATLAB Command Window, the value of the fold normal form coefficient a is
shown at each limit point:

label = LP, x = (0.619532 0.927986 0.256805)
a=-5.311546e-01
label = LP, x = (0.911266 0.268200 0.176927)
a=5.681504e-01

Finally, clear the 2Dplot window once more and recompute the equilibrium curve
forward with Options | Suspend Computation | At Each Point mode selected as
shown in Figure B.13. Resume computations after each computed point and monitor the

B.1. MULTIPLE EQUILIBRIA AND LIMIT POINTS

EP_EP(1) = [=] E5
File Edit WView Insert Tools Desktop Window Help ~
o 5 @ (=
NGl (L RRAONDEL 2|0 a0
Label | Index | Message |
oo 1 This is the first point of the curve
LP 28 Limit point
LP 66 Limit point
99 100 This iz the last point on the curve
1 2 3 = 5 [7 3
I ®(1,:): x 0.2528 0.2958 0.308% 0.3208 0.3350 0.3452 0.3635 0.3776
®(2.:): y 1.2628 1.2601 1.2563 1.2508 1.2435 1.2355 1.2266 1.2169
' ®(3,:):d 0.1023 0.1089 01174 0.1280 0.1401 0.1516 0.1626 01728
I v(1,:) 0.6968 0.7001 0.7037 0.7073 0.7100 0.7108 0.7085 0.7072
; w{z:) -0.2587 -0.2794 -0.3065 -0.3419 -0.3835 -0.4244 -0.4542 -0.5025
| v(3,2) 0.6690 0.6572 0.6410 0.6187 0.5906 0.5608 0.5296 0.4574
h(1,:): stepsize 0 0.0100 0.0130 0.0169 0.0200 0.0200 0.0200 0.0200
4 h(2,:): corr.] 1 1 1 1 1 1 1
h(3,:): BP 0.452% 0.4575 0.4646 0.4737 0.4550 0.4572 0.5102 0.5241
h(4,:): H 0.0457 0.0561 0.0650 0.0776 0.0936 01110 0.1296 0.14592
h(5,:): LP 0.5590 06572 0.5410 0.5187 0.5506 0.5508 0.5295 0.4974
{1,:): eig -0.0248 + 0.... -0.0281 +0.... -0.0325+0.... -0.0388+0.... -0.0458 + 0.... -0.0555+0.... -0.0648+0.... -0.0745 +0.... -(||
{2,:): eig -0.0248 - 0.5... -0.0281 - 0.5... -0.0325- 0.5... -0.0388 - 0.5... -0.0468 - 0.5... -0.0555- 0.5... -0.0648 - 0.5... -0.0746-0.5... -0
K1 — |

Figure B.10: Spreadsheet view of the Curve Data.

169

eigenvalues in the Numeric window. You should see that, indeed, the upper and lower
branches correspond to linearly stable equilibria (with all Re A\; < 0), while the middle
branch correspond to a linear saddle (with A\; < 0 < \y).

Since a # 0 within numerical accuracy, the equilibrium curve is approximately a (scaled)
parabola near each of the limit points.

Restore the original pause option (At Special Points) via Options | Suspend Com-
putation | At Special Points and close the Numeric window.

B.1.4 Phase portrait

To verify our conclusions, compute several orbits to get a phase portrait of the system at
d = 0.2 as in Figure B.14. Start always at x = 1.2 but with different values for y.

170 APPENDIX B. TUTORIAL II

=
Layout]
Coordinates
0.619531679443366
0.5927986330836245
Paramelers
d 0.256804633026587
Eigenvalues
Re[1] -0.629410768466554
Im[1] 0
Re[2] 50532231751 7765e-07
Im[2] 0

Figure B.11: Numeric window at the first limit point.

—Ioix

Layout a
Coordinates
0.9112665402605026
0.268200209050609
Parameters
d 0.17652554782344
Eigenvalues
Re[1] -1.69075840857012
Im[1]]
Re[2] -5.8419620451583e-07
Im[2]]

Figure B.12: Numeric window at the second limit point.

B.1. MULTIPLE EQUILIBRIA AND LIMIT POINTS 171

suspend Computation =]

At Special Points

Ok l Cancel |

Figure B.13: Pause at each computed point.

ol
File Edit Wiew Insert Tools Desktop Window Help MatCont N
Dode || RXAOMDLEL- (2| 0E 00
2t
15T
I
>
1F
0.5
|
0 L
0 0.2 0.4 0.6 0.8 1 1.2
X

Figure B.14: Two stable equilibria (a focus and a node) and a saddle in the ecological
model at d = 0.2. The stable manifold of the saddle separates the domain of attraction of
the focus from that of the node.

172 APPENDIX B. TUTORIAL II

B.2 Limit and branching points in a discretization of
Bratu-Gelfand PDE

Consider the following evolution problem for u = u(x,t) with x € [0,1],¢ > 0:
Up = Ugy + e®, u(0,t) = u(l,t) =0 for all ¢, (B.2)

where « is a real parameter. It is called the Bratu-Gelfand problem. In this section we
study the behaviour of a stationary solution of (B.2) as a function of « using a finite-
difference approximation over an equidistant mesh. One such time-independent solution is
obvious: u = 0 for a = 0.

B.2.1 Discretization

Characterize a solution to (B.2) at time ¢ by its values uy(t) = u(xy,t) at the uniformly
distributed mesh points

1
=kh, h=—,k=0,1,..., NN +1
Tk) N_I_la) Ly 9) + 9

for some N > 1. Then approximate the spatial derivative in (B.2) by finite differences at
the inner points

_ up—1(t) — 2up(t) + upgr (t)
72

and add the boundary conditions in the form

{ u(t) = 0, (B.4)

UN+1(t) = 0.

i (t) Faexp(up(t) =0, k=1,2,...,N, (B.3)

After elimination of ug(f) and wun1(t) and introduction of a rescaled time 7 such that
t = h?7, the equations (B.3) and (B.4) take the form of the ODE-system

U= F(U,NM), (B.5)

where U = (ug,ug,...,uy) and F : RN x R — RY is given by (B.3) (with ug = u,, = 0)

and
«

N=ha=——.
RN
An equilibrium of this system approximates a stationary solution to (B.2) with O(h?)-
accuracy.
In this section, we will study a crude spatial discretization of (B.2) with only two
internal points (i.e. N =2 and h =), so that (B.5) becomes

{ul = —2u1+u2+)\e“1,

Uy = uy — 2ug + Ae¥?, (B.6)

B.2. LIMIT AND BRANCHING POINTS 173

R
A

File Edit View Insert Tools Desktop Window Help MatCont

D de | B|RKAMDE -

==

u1
=

0 005 01 015 02 025 03 035 04 045 05
LAMEDA

Figure B.15: The curve of symmetric equilibria of (B.6) with limit point LP, neutral saddle
H, and branching point BP.

where A = h?a = %a. The system (B.6) has Zs-symmetry: It is invariant under the
involution (uy, ug) — (ug, uy).

We will compute the equilibrium manifold of (B.6) in the (uy, u2, A)-space starting from
point (0,0, 0) corresponding to the trivial stationary solution of (B.2), namely u(x,t) = 0.

B.2.2 System specification

Input a new ODE system into MATCONT, namely

U1’=-2xU1+U2+LAMBDA*exp (U1)
U2’ =U1-2%U2+LAMBDA*exp (U2)

and choose to generate the derivatives of order 1 and 2 symbolically.

174 APPENDIX B. TUTORIAL II

B.2.3 Symmetric equilibrium branch

Select Type|Initial Point|Equilibrium. Two windows will appear: Starter and Con-
tinuer windows corresponding to the equilibrium continuation (curve type EP_EP). In
the Starter window, activate the parameter LAMBDA. Since (B.6) has an equilibrium
up = ug = 0 for A = 0, no further changes to the Starter parameters are required.

Open a 2Dplot window and select the parameter LAMBDA and the coordinate Ul as
abscissa and ordinate, respectively, with the visibility limits

Abscissa: 0

0.5

Ordinate: 0 8.0

To monitor the stability of the equilibrium, open a Numeric window and activate the
eigenvalues to be visible via the Numeric|Layout window.

Click Compute|Forward. The first bifurcation point, namely a limit point LP, will

be located at A = 0.367879.... In the MATLAB Command Window, you can read the

following message:

label = LP, x = (1.000001 1.000001 0.367879)
a=3.535537e-01

that gives the critical equilibrium coordinates and the critical parameter value, as well
as the quadratic normal form coefficient a = 0.35355... at LP. Thus, the limit point is
nondegenerate and the equilibrium manifold near LP looks like a parabola.

Further computation detects a neutral saddle labeled H at A = 0.270671..., where the
equilibrium has eigenvalues ji; » = %1, so that their sum is zero. In the MATLAB Com-
mand Window, you can read the following message:

label = H, x = (2.000000 2.000000 0.270671)
Neutral saddle

This is not a bifurcation point for the equilibrium, since it is a hyperbolic saddle.

Resume computations to get the second bifurcation point at A = 0.14936122..., namely
a branching point labelled BP, with the following message in the MATLAB Command
Window

label = BP, x = (3.000000 3.000000 0.149361)

Extend the equilibrium curve further until you leave the window. You should get Figure
B.15.
To get more information on the BP point, single-click at the label and the message

xxx EP_EP(1): Branch point (BP)
npoint: 53

B.2. LIMIT AND BRANCHING POINTS 175

will appear in the MATLAB command window. It tells us that the BP point is a Branch
point that was detected along the EP_EP(1) curve as its 53—th point.
To get more information on the H point, single-click at the label and the message

xx*x EP_EP(1): Neutral Saddle Equilibrium (H)
npoint: 37
1st Lyapunov: Neutral saddle

will appear in the MATLAB command window. It tells us the H point is a Neutral Saddle
that was detected along the EP_EP (1) curve as its 37—th point. Since it is not a Hopf point,
it does not have a 1st Lyapunov coefficient.

To get more information on the LP point, single-click at the label and the message

xxx EP_EP(1): Limit point (LP)
npoint: 22
a: 3.5355366e-01

will appear in the MATLAB command window. It tells us the LP point is a Limit point
that was detected along the EP_EP(1) curve as its 22—th point. Is normal form coefficient
a is nonzero, so it is nondegenerate.

Notice that along the whole computed branch we have u; = s, i.e. it is composed of
symmetric equilibria. Check by looking at the eigenvalues in the Numeric window that
only the lower part of the branch is stable, while it is a saddle between LP and BP, and a
repeller above it.

Rename the computed curve via Select| Curve|Rename to symmetric.

B.2.4 Symmetry breaking

Let us compute the second branch passing through the branching point BP. Double-click
with the computer mouse at the BP point in the 2Dplot window presented in Figure
B.15. This opens a small Select BP as a new initial point window, see Figure B.16.
Click "Yes’ and the (uy, us, A)-values corresponding to BP will be loaded and by default the
initializer BP_E P to the new equilibrium curve is loaded as well.

In the appearing Starter window, untick monitoring all singularities as in Figure B.17.

Leave the Continuer window as it is and click Compute|Forward and
Compute|Backward. You will get Figure B.18. Thus, the branching point BP corre-
sponds, actually, to a pitchfork bifurcation: Two more branches of equilibria bifurcate
vertically from this point. Moreover, each branch is composed of equilibria which are not
symmetric, u; # us. However, one branch is mapped into the other by the involution. This
phenomenon is called the symmetry breaking: We got non-symmetric equilibrium solutions
in a symmetric system.

Warning: We have shown numerically that a discretization of the Bratu-Gelfand prob-
lem (B.2) has multiple stationary solutions and limit and branching points. It does not

176 APPENDIX B. TUTORIAL II

i
k-

File Edit View Insert Tools Desktop Window Help MatCont

NEde b [RR09EL£- E|0E[nDT

Select BP as a new initial point _ o]

Load in Branch pant (BP) from "EP_EP(1)?

Yes No | Cancel |

U1
-

0 005 01 015 02 025 03 035 04 045 0.5
LAMBDA

Figure B.16: BP selection.

imply immediately that the original PDE problem has the same properties. To verify this,
one has to repeat the continuation with smaller h (i.e. bigger N) and eventually make
some error estimates. It should be noted that the appearance of the pitchfork is due to the
equidistant mesh with a small number of points. If more accurate discretizations of (B.2)
are used, the pitchfork and associated branches disappear. The limit point remains and
corresponds to a limit point on the branch of the stationary solutions of (B.2).

B.2.5 Stopping at a zero of a userfunction

Sometimes we want to stop computation at a prescribed parameter value. This can be
done in MATCONT by specifying a userfunction. For example, let us compare two non-
symmetric equilibria at A = 0.1.

Userfunctions can be introduced in two different ways. One of them is by pressing Se-
lect | System | Manage Userfunctions. The other way is to right-click in the Current
System field of the MATCONT main window and then selecting Manage Userfunctions.
Use the second method. This opens a Userfunctions window. Define a userfunction Stop
with the associated label S by typing res=LAMBDA-0.1 in the edit field of the Userfunc-
tions window (see Figure B.19). Next press Add and then OK buttons. The Starter
window will change and show a user function control. Click to activate it. If one wants to
monitor the userfunction, the userfunctions must also be activated in the layout of the
Numeric window.

Recomputing the non-symmetric branches with Compute|Forward and
Compute|Backward will stop at two points labeled S, where the user-defined function

B.2. LIMIT AND BRANCHING POINTS 177

Starter !EI E
Initial Point
U1 3
uz 7
¥ LAMBDA 0.148351205103592
Switch Data
ampltude 1e-08
Monitor Singularities
Branching (BP} r
Hopf bifurcation (H) r
Limit Point (fold} bifurcation (LP} r
Calculate eigenvalues
gigenvalues |

Figure B.17: Starter window to switch branches at BP.

Plot2D - LAMBDA,UL M=l
u

File Edit View Insert Tools Desktop Window Help MatCont

Odde | 3|RRANDEL- |2 |0H|= O

0 0.05 0.1 015 02 025 03 035 04 045 05
LAMBDA

Figure B.18: Two equilibrium branches passing through a branch point BP.

178

APPENDIX B. TUTORIAL II

User functions | |C)

Name htOP P

Updatel
Labels Deletel

=
res=LAMEDA-0.1 |
[|

OFK | Cancel |

Figure B.19: Userfunction input.

stop vanishes, see Figure B.20. You can see the corresponding equilibrium coordinates
and eigenvalues in the Numeric window.

B.3 Additional Problems

A. Compute the equilibrium manifold of the scalar ODE

y=2"+y"—1, yeR,
where x € R is a parameter.
Consider the following chemical model

&= 2q2* — 2¢52° — qzy,

U = 22— QY — q3TY,
s = qz— Kqs,

where z =1—x —y — s and
¢1 = 2.5, ¢ =155 ¢q3=10, ¢4 =0.0675, ¢5=1.0, g5 = 0.1,

and
K =2.0.

Given an equilibrium (x,y,s) = (0.0032...,0.8838...,0.0376...), find two
positive equilibria of the system.

(B.7)

more

B.3. ADDITIONAL PROBLEMS

i

File Edit Wiew Insert Tools Desktop Window Help MatCont B

=

LROPDE L2 0BT

0 005 01 015 02 025 03 035 04 045 0.5
LAMBDA

Figure B.20: Zeros of a userfunction are labeled ’S”.

Hint: Compute a curve in the (z,y, s)-space defined by the first two equations:

{ 2¢12% — 2g52* — qzvy = 0,
G2z — qey — @3y = O,

and detect zeros of the user-defined function F' = g2 — Kqus along this curve!.

C. Find a real eigenvalue and the corresponding eigenvector of the matrix

-5 2 =3
B=| -5 0 —4
8 =2 6

179

! As described in Section 2.5, click Select | Userfunction in the MATCONT window and type the
expression for F' after res= in the edit field of the appearing Userfunctions window. Fill in the Name

and Label fields, and press Add and OK.

180

APPENDIX B. TUTORIAL II

by continuation of the eigenvector v; = (0,0, 1)7 of the matrix

1 0 0
A=|o0o -1 o],
0 0 -2

corresponding to its eigenvalues A\; = —2.

1. Consider a one-parameter family of matrices
Cla) =aB+ (1—a)A, C(0)=A, C(1)= B,
and the following continuation problem in the (v, A, a)-space:

Cla)v— v = 0,
vTv—1 = 0.

Explain, how it can be used to solve the formulated problem.
2. Setup an auxiliary 4D-system of ODEs
{ v = Cla)v— v,

A= To—1
and continue its equilibrium manifold in the (v, A, a)-space. Use (vy, A1,0) as
the initial point. Stop when a = 1 using a user-defined function.

3. Continue other two eigenvectors of A and produce a plot tracing all three real
eigenvalues in the (a, \)-plane. What happens in the limit points of these curves?

4. Can you setup a continuation problem for (real and imaginary) parts of complex
eigenvalues and eigenvectors of C'(a)?

D. Study equilibria of the following complex ODE:

i=a+2, 2e€Ch (B.8)

where the parameter o and the time are real. Hint: Write z = = + iy, where (x,y)
are real. Then (B.8) takes the form

T = a+z? -1y
{?J = 2xy. ’ (B:9)

At a = —1 this system has equilibrium (2, yo) = (1,0), which can be continued.

Plot also the phase portraits in the (x,y)-plane of (B.9) for a = —0.25, « = 0, and
a=0.25

E. Study discretizations of the Bratu-Gelfand problem in more detail:

B.3. ADDITIONAL PROBLEMS 181

1. For N = 2, find analytically the parameter value Agp corresponding to the
branching point in system (B.6) and compare it with the numerical result in
Section 2.

2. Analyse numerically the effect of increasing the number of equidistant mesh
points to N =3, N =4, and and N = 10 on the a-values corresponding to the
limit and branching points in the finite-difference approximation (B.3)-(B.4) of
the Bratu-Gelfand problem (B.2).

Hint: Do not forget that o = (N + 1)2\.

Appendix C

TUTORIAL III: Using the new
MATCONT GUI for one-parameter
bifurcation analysis of limit cycles

This session was tested on MATCONT7pl with MATLAB2017b. It is devoted to the
numerical initialization and continuation of limit cycles in systems of autonomous ODEs
depending on one parameter

= f(zr,a), r€R" aeR,

and detection of their bifurcations. We will also switch to the continuation of the limit
cycle from the Hopf bifurcation and to the continuation of the doubled cycle at the period-
doubling bifurcation.

C.1 Initialization from a converging orbit
We consider again the Rossler system that was introduced in TUTORIAL I:
T = —y—=z

i T+ Ay
2 = Bxr—Cz+xz,

where (z,y, z) are the phase variables, and (A, B, C') are the parameters.

Introduce this system in MATCONT, generating the derivatives of order 1, 2 and 3
symbolically. We start with computing by time integration an orbit, using the Starter
and Integrator windows presented in Figure C.1.

The computed orbit is presented in the 3D-plot in Figure C.2 in (x,y, z) - space within
the region

184 APPENDIX C. TUTORIAL III

Starter _ O] x| Integrator 1Ol x|
Method ndeds I
Interval
initial Point =00
- EventFunction <dizabled=
0 .]
InitStepSize <gutomatic=
® -5 .
B MaxStepSize =gutomatic=
: ReMolerance 0.001
i
10 AbsTolerance 1e-06
A 0.2
Refine 4
: 04 Normcontrol -
C 4.a

Figure C.1: The Starter and Integrator windows for the initial time integration.

10

Figure C.2: 3D-plot of the computed orbit.

C.1. INITIALIZATION FROM A CONVERGING ORBIT 185

It is visually clear that the orbit has converged to a (presumably stable) limit cycle.
We select the last point of the orbit using Select | Initial Point | Last Point | Select
Point and clear the 3D-plot.

It is readily seen that time integration from the selected point over a time interval 5
does not close the orbit, see the Starter and Integrator windows in Figure C.3, and the
orbit displayed in Figure C.4.

Starter =] Integrator - O] x|
Method odeds j
. . Interval c
Initial Point < <
EventFunction «dizsabled>
t 500 .) EEEE——
InitstepSize <automatic=
X 4.42233710505348 .
Max3StepSize <automatics
¥ -1.58553065272306
RelMolerance 0.001
= 1.10885496225373
AbsTolerance 1e-06
A 0.2
Refine 4
B 0.4
Mormcontrol r
c 45

Figure C.3: Starter and Integrator windows for time integration from a selected point
on the orbit.

10

Figure C.4: Computed orbit over an interval 5.

Now perform a time integration over an interval 8 and check that it closes the limit
cycle. This implies that 8 is larger than the period of the limit cycle but smaller than

186 APPENDIX C. TUTORIAL III

twice that period, which is the condition for starting the continuation of limit cycles from
an orbit that is computed along the limit cycle. That is why time integrations over an
interval 5 or 500 are of no use.

Now press Output | View Result and double-click at Select Cycle. (we note that
a single-click at Select Cycle followed by clicking Select Point also works). This opens
a small Choose Tolerance ... input window with two input fields. The top one allows to
change the tolerance for detecting a limit cycle along the orbit. The bottom one allows to
change the number of mesh intervals that will be used to discretize the limit cycle. Make
sure that it is set to 40; the window should now look like Figure C.5.

Now press OK. The main MATCONT window is then prepared for the continuation
of a limit cycle, see Figure C.6(left). In the corresponding Starter window activate the
parameter A and the Period. Also, click all singularity monitoring buttons to ’yes’; cf.
Figure C.6(right). We note that the initial value of the Period is estimated by the initializer
and equal to 6.27..., a value between 5 and 8.

I

Enter the tolerance to select a oycle
1e-2

Enter the numbser of test intervals

40
D I l:ann:ell

Figure C.5: Input window opened by pressing the Select Cycle button.

In the corresponding Continuer window only default values are to be used. Open a
Numeric window and click on the 'multipliers’ field in its Layout window to activate
the multipliers of the periodic orbits to be displayed in the Numeric window during
continuation.

Press Compute|Forward. The continuation of limit cycles now starts. Observe that
there is period-doubling bifurcation for A = 0.27191773. The 3D-plot window and the
Numeric window are displayed in Figure C.7. Observe that at the PD-point there is a
multiplier equal to —1.

In the MATLAB command line the output

Period Doubling (period
Normal form coefficient

6.148967e+00, parameter = 2.719177e-01)
-4.283700e-03

C.1.

INITIALIZATION FROM A CONVERGING ORBIT

Matcont GUI --- DEMO 10l =|
Select Type Window/Output Compute Options Help N
Class ODE

Current System

System Ross

Derivatives SSSHN

Current Curve

Name =nothing=

Diagram diagram

Initial Point Type

Curve Type

Initializer

LC frem Orbit (LC)

Limit cycle (LC)

Limit cycle (init_LC_LC})

Starter

& A
B
Folls
i+ Period

ntst

ncol

Branch Point of Cycles (BPC)
Period Doubling (flip) bifurcation (PO}
Limit Point bifurcation of cycles (LPC)

Neimark-Sacker (torus) bifurcation (NS}

multipliers.

Input
PRC
dPRC

=]
0.z
0.4
4.5
6.2759426320367
Dizcretization Data
40
4
Monitor Singularities
Il
Il
Il
Il
Calculate multipliers
I

Phase Response Curve

=

Open PRC Plot
Open dPRC Plot

Figure C.6: The main MATCONT window when prepared to start the continuation of limit

cycles.

is generated, including the normal form coefficient of the PD bifurcation.

Stop the computation and close the session.

A

Period

Mod[1]
Hod[2]
Mod[3]
Arg[1]
Argl2]
Argl3]

B3 Plot3D - xy,z M [=E3) EA Humeric _[O] x|
File Edit View Insert Tooks Desktop Window Help MatCont Layout ~
NS KRR ODEL-|(2|0E|aD o

0.271917726555696.

Period
6.14B96667954848

Muitipliers
1.28707825434793e-11
1.00000000001427
1.00000098007509
130
0
130

Figure C.7: The 3D-plot and the Numeric windows at detection of the period-doubling

bifurcation.

188 APPENDIX C. TUTORIAL III

C.2 Fold and Neimark-Sacker bifurcations of cycles
in a chemical model

Consider the following chemical model by Steinmetz and Larter:

A = —kABX — ksABY + kr — k_7 A,

3 = —kABX — k3ABY + ks, n
X = kKABX — 2k X? + 2k3ABY — k4 X + kg, '
Y = —k3ABY + 2k X2 — k:Y.

We will fix all parameters but k7 and study periodic solutions (limit cycles) of (C.1) when
this parameter varies.

C.2.1 System specification

Specify a new ODE system — say StLar — in MATCONT

A’ =-k1xAxB*xX-k3*A*B*Y+k7-km7*A
B’=-k1*A*xB*X-k3*A*B*xY+k8

X7 =k1*AxB*X-2xk2*X"2+2xk3*xA*xB*Y-k4d*xX+k6
Y2 =-k3*xAxB*Y+2xk2*X"2-k5*Y

where (A,B,X,Y) are the coordinates and (k1,k2,k3,k4,k5,k6,k7,km7,k8) are the pa-
rameters. Use (default) t for time and generate symbolical derivatives of order 1, 2 and
3.

C.2.2 Fold bifurcation of limit cycles
Continuation of an equilibrium

We will continue an equilibrium of (C.1) and detect its Hopf bifurcation, from which the
continuation of a limit cycle can be started.

Input Type|Initial point|Equilibrium and Type|Curve|Equilibrium in the main
MATCONT window.

Input the following numerical data in the appeared Starter window:

A 31.78997

B 1.45468

X 0.01524586
Y 0.1776113
k1 0.1631021

k2 1250

k3 0.046875

C.2. FOLD AND NEIMARK-SACKER BIFURCATIONS OF CYCLES 189

kb 1.104

k6 0.001

k7 4.235322
km7 0.1175
k8 0.5

These values correspond to an unstable equilibrium (A, B, X,Y) in the system. Activate
the parameter k7.

Open Window/Output | Numeric and change its appearance via the Numeric |
Layout command. Namely, select Eigenvalues to be shown in the window.

Use Window/Output | Graphic | 2D plot to open the corresponding window and
select the coordinates (A,B) as abscissa and ordinate, respectively, with the visibility limits:

Abscissa: 32 38
Ordinate: 0 4
respectively.

Start Compute|Forward. The equilibrium curve will be continued and you get a Hopf
bifurcation point labeled by H. The message in the MATLAB Command Window

label = H , x = (34.808899 1.328517 0.015246 0.177611 4.590046)
First Lyapunov coefficient = 1.527549e-02

at k; = 4.590046 . .. indicates a subcritical Hopf bifurcation. Indeed, there are two eigen-
values of the equilibrium with Re A\ 2 ~ 0 at this parameter value visible in the Numeric
window. The critical frequency Im A; # 0, while the first Lyapunov coefficient is positive.
Thus, there should exist an unstable limit cycle, bifurcating from the equilibrium. Resume
computations and terminate them when the curve leaves the graphic window.

For later use, rename the computed curve via Select | Curve | Rename into
Equilibrium(+).

Cycle continuation

Click Select | Initial point | Hopf | Select Point to select the H: Hopf point in the
Equilibrium(+) curve as initial point. The Starter and Continuer windows for the
continuation of the limit cycle from the Hopf point will appear.

Tick boxes to monitor all Monitor Singularities fields of the Starter window.
Increase the MaxStepsize to 1.0 in the Continuer window to allow larger steps along the
curve and set MaxNumPoints to 50. The Starter and Continuer windows should look like
in Figure C.8.

Change the layout of the Numeric window via Numeric|Layout by selecting all
Multipliers to be shown. The absolute values (modulae) and arguments in angular grads
will be displayed.

190 APPENDIX C. TUTORIAL III
Starter ;Iglll Continuer !EI E I
Continuation Data
Initial Point InitStepsize 0.01
R 34.3088987660758 MinStepsize o0
B 1.32851748581083 MaxStepsize 1
X 0.0152458581537606
Corrector Data

7 0.177511265330424 T S
S 01631021 MaxCorrtters
o 1250 MaxTestlters =
o 0.046573 VarTolerance —
K 20 1e-06
o 1104 ::.:::::annccee =
ol 0.001 . 1e08
(ot 4.59004560501391 3
¢ km7 0.1175 Stop Dats
kB 05 MaxNumPoints | =p
& Period CheckClosed |)

Discretization Data
ntst I 20
ncol | 4

Switch Data

amplitude I 0.001

Monitor Singularities
Branch Point of Cycles (BPC) I
Period Doubling (flip) bifurcation (PD) I
Limit Point bifurcation of cycles (LPC) I~
Neimark-Sacker (torus) bifurcation (NS) I

Calculate multipliers
muttipliers. =2

Phase Response Curve

Input | 1
PRC Open PRC Piot
dPRC Dpen dPRC Plot

Figure C.8: The Starter and Continuer windows for the cycle continuation.

Compute|Forward will produce a family of cycles with a cycle limit point labeled by
LPC at k; = 4.74838 The Numeric window corresponding to LPC is shown in Figure
C.9.

In the MATLAB Command Window, the following message appears:

Limit point cycle (period = 1.036108e+01, parameter = 4.748384e+00)

Normal form coefficient = -2.714838e-01

The critical cycle has (approximately) a double multiplier 4 = 1 and the normal form
coefficient is nonzero. Thus, the limit cycle manifold has a fold here. Resume the com-
putations. The continuation algorithm will automatically follow the second (stable) cycle
branch after the LPC point. Verify this by looking at the nontrivial multipliers in the Nu-
meric window (|u| < 1 for all such multipliers). The computations produce Figure C.10
(after MatCont|Redraw diagram in the 2Dplot window.)

C.2. FOLD AND NEIMARK-SACKER BIFURCATIONS OF CYCLES 191
Numeric I =]
Layout k'l

Parameters
k7 4.74838428332547

Period
Period 10.3610827322857
Muitipliers

Mod[1] 1.0818990716387%e-12
Mod[2] 0.295743662725967
Mod[3] 0.999720145226892
Mod[4] 1.00027505104632
Arg[1] 0
Argl2] 0
Arg[3] 0
Argl4] 0

Figure C.9: The Numeric window at the LPC-point.

/////(/////j// 7
;4« / / 7
3\

1 1 1 |
32 33 4 35 36 37 38

Figure C.10: The family of limit cycles bifurcating from the Hopf point H: LPC is a fold
bifurcation of the cycle.

192 APPENDIX C. TUTORIAL III

To visualize LPC in another way, open another 2Dplot window and select parameter
k7 and Period of the cycle as abscissa and ordinate, respectively. Use the visibility limits:

Abscissa: 4.5 4.8
Ordinate: 7 12

You will get a curve with a limit point, clearly indicating the presence of two limit cycles
with different periods for k; < 4.74838 near LPC (see Figure C.11). Close both 2Dplot

LPC

Period
o
o

45 4.55 4.6 4.65 4.7 4.75 4.8
k7

Figure C.11: Period of the cycle versus k7.

windows.

C.2.3 Neimark-Sacker bifurcation
Backward continuation of the equilibrium

Load the first computed equilibrium curve Equilibrium(+) in the Data Browser win-
dow appearing after the Select|Curve command. Select Type|Curve|Equilibrium for
continuation.

Open a new 2Dplot window but select now B and X as abscissa and ordinate, respec-
tively, with the visibility limits:

Abscissa: 25 27
Ordinate: 0 0.03

Compute|Backward and Extend once until you get another Hopf bifurcation at
kr; = 0.712475 ... with the message

label = H , x = (1.808301 25.573303 0.015246 0.177611 0.712475)
First Lyapunov coefficient = -2.371880e-02

C.2. FOLD AND NEIMARK-SACKER BIFURCATIONS OF CYCLES 193

in the MATLAB Command Window. The first Lyapunov coefficient is negative now. This
means that a stable limit cycle bifurcates from the equilibrium, when it loses stability.
Resume computations and terminate them when the equilibrium curve leaves the graphic
window. Rename the computed curve into Equilibrium(-).

Cycle continuation

Select the Hopf point in the curve Equilibrium(-) as initial. MATCONT will prepare
to continue a limit cycle curve from the Hopf point (curve type H.LC). Select yes in all
Monitor Singularities fields of the Starter window. Activate k7 and the Period in the
Starter window. Set

MaxStepsize 1
MaxNumPoints 25

in the Continuer window. Activate the Multipliers to be shown in the Numeric win-
dow.

Click Compute|Forward to start the continuation of the limit cycle. At k7 = 0.716434. ..

the message Neimark-Sacker indicates a torus bifurcation. In the MATLAB Command
Window, the following message appears:

Neimark-Sacker (period = 1.091213e+01, parameter = 7.164336e-01)
Normal form coefficient = -4.912065e-08.

Indeed, there are two complex multipliers with (approximately) || = 1 and one trivial
at = 1. This can be seen in the Numeric window that stays open, see Figure C.12.
The normal form coefficient is small but nonzero, indicating that a stable two-dimensional
inwvariant torus bifurcates from the limit cycle.

Resume computations further to see that after the NS-point the cycle becomes unstable
(with two multipliers satisfying |u| > 1. You should get a family of limit cycles bifurcating
from the Hopf point as in Figure C.13.

Close the Numeric window.

Dynamics on a stable torus

Click Select|Initial point... and select the NS: Neimark-Sacker point in the computed
limit cycle curve. The critical parameter values will be read in from the archive. Imme-
diately after that select Type|Initial point|Point and Type|Curve|Orbit. A point on
the critical cycle will thus be selected as the initial for orbit integration.

Increase slightly the value of the parameter k7 and perturb the initial point by altering
the value of B, namely set:

k7 0.7165
B 26.2

194

APPENDIX C. TUTORIAL III

I —]|
Layout]
Parameters
k7 0.716433562463935
Period
Period 10.9121267324705
Muitipliers
Mod[1] 1.88537906332152e-17
Mod[2] 0.999999977572202
Mod[3] 0.999999977572202
Mod[4] 0.999999953934018
Arg[1] 0
Argl[2] 4.75707576214961
Argl[3] -4 757075762148561
Argl4] 0

Figure C.12: The Numeric window at the NS-point.

0.03
0.025 [~

0.02 -

> 0.015 F @
0.01

0.005 [~

25 252 25.4 25.6 25.8 26 26.2 26.4 26.6 26.8 27
B

Figure C.13: Family of limit cycles bifurcating from the second Hopf point.

C.2. FOLD AND NEIMARK-SACKER BIFURCATIONS OF CYCLES 195

Change Method of integration to ode23s and alter

Interval 1000
Rel.Toletance le-6
Abs.Tolerance 1e-9

in the Integrator window.
To speed up visualization, click Options|Output Interval and set Plot after 1000
points, see Figure C.14

Output Interval [H[=] E3

o

Figure C.14: Output Interval window.

Clear the graphic window and Compute|Forward followed by Compute|Extend.
The integration will take some time. After a transient, the orbit will exhibit modulated
oscillations with two frequencies near the limit cycle. This is a motion on a stable two-
dimensional torus born via the Neimark-Sacker bifurcation, see Figure C.15. Open another

0.03 -
0.025 -
0.02 -

> 0.015

0.01 -

0.005 -

I I I I]
25 255 26 26.5 27 275

Figure C.15: Dynamics on a stable 2-torus.

2Dplot window with time t and coordinate B as abscissa and ordinate, with the visibility
limits:

196 APPENDIX C. TUTORIAL III

265

26

255

25 1 1 1 1 1 1 1 1
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time

Figure C.16: Modulated chemical oscillations.

Abscissa: 1000 2000
Ordinate: 25.0 26.5

You will see the high-frequency oscillations with low-frequency modulation as in Figure
C.16.

Restore the original Plot after 1 point setting using Options|Output menu of the
main MATCONT window.

C.3 Period-doubling bifurcation in an adaptive
control model

Consider the following adaptive control system of Lur’e type

To=y,
y = z (C.2)
i = —az— By —ax+ 22

We will fix @ = 1 and continue limit cycles of (C.2) using 5 as a bifurcation parameter.

C.3.1 System specification

As usual, define a new system in MATCONT with the coordinates x,y,z, parameters
alpha,beta, and select derivatives of order 1, 2, and 3 to be generated symbolically.

C.3. PERIOD-DOUBLING BIFURCATION 197

C.3.2 Equilibrium continuation

Select Type|Initial point|Equilibrium and Type|Curve|Equilibrium. In the Starter
window, set alpha equal to 1 and activate beta.

Open a 3Dplot window and select beta,x and y as variables along the coordinate axes
with the visibility limits:

Abscissa: 0.4 1.2
Ordinate: -0.5 1.2
Applicate: -0.6 0.7
respectively.

Compute|Forward results in an equilibrium curve with a Hopf bifurcation (labeled
H) detected with the following message in the MATLAB Command Window:

label = H , x = (0.000000 0.000000 0.000000 1.000000)
First Lyapunov coefficient = -3.000000e-01

The Hopf bifurcation occurs at § = 1 and is supercritical, thus generating a stable limit
cycle. Resume the continuation and eventually stop it, when the curve leaves the plotting
region.

C.3.3 Cycle continuation starting from the H-point

Click Output | View Result and double-click at the H: Hopf point. The Starter and
Continuer windows appear, corresponding to the limit cycle curve H.LC. Make sure that
beta and Period are activated.

In the Starter window, increase the number of mesh points ntst to 40 and select yes
in all Monitor Singularities fields. In the Continuer window, set MaxStepsize to 0.7
and MaxNumPoints to 80.

With Window/Output | Numeric, open a Numeric window and make the cycle
multipliers visible by activating them in the Numeric | Layout window.

Compute|Forward will produce a branch of limit cycles of increasing amplitude with
two period-doubling bifurcations (labeled PD). The Numeric windows at both PD bifurca-
tions are shown in Figures C.17 and C.18.

Resume the computations at both PD points. The MATLAB Command Window will
contain the messages

Period Doubling (period 6.273245e-01)
Normal form coefficient
Period Doubling (period

Normal form coefficient

8.386068e+00, parameter
-3.405330e-03
9.864971e+00, parameter
-7.655596e-04

5.417461e-01)

198 APPENDIX C. TUTORIAL III

—
Layout »l
Parameters
beta 0.6273246340239
Period

Period 8.38606710485977

Muilipliers I
KMod[1] 0.000228022250534554
KMod[2] 0.99999957339161
Mod[3] 1.00000000000037
Arg[1] 180
Argl2] 180
Argl3] 0

—-'_ﬁ

Figure C.17: The Numeric window at the first period-doubling bifurcation. The bifurca-
tion parameter value is § = 0.6273246

indicating that in both cases the normal form coefficients are negative, so that stable
double-period cycles are involved.

You get a cycle manifold shown in Figure C.19. The period of the cycle rapidly increases
when [approaches fpom = 0.515489 To see this, open a 2Dplot window (see Figure
C.20) with the axes beta and Period and the plotting region

1 0.53

Abscissa: 0.5
0.0 35.0

Ordinate:

Actually, the limit cycle approaches a homoclinic orbit to the second equilibrium (z,y, 2) =
(1,0,0) of (C.2), which is a global bifurcation'. Below Syom no cycle exists. Near the
homoclinic bifurcation, the computation of the cycle and its multipliers becomes inaccurate.

LAt B = Bhom, this equilibrium is a saddle-focus with the saddle quantity ¢ < 0. Thus, according to
Shilnikov’s Theorem, from this homoclinic orbit only one limit cycle bifurcates - the one we computed.

C.3. PERIOD-DOUBLING BIFURCATION 199

— i
I} Humeric - O] =]
Layout »

Paramelers
beta 0.541746134367183
Period
Period 5.86497021716061
Multipliers I

KMod[1] 5. 1963409062053e-05
KMod[2] 1.00000000003414
Mod[3] 1.00000054152602
Argl1] 180
Argl2] 0
Argl3] 180

—-—

Figure C.18: The Numeric window at the second period-doubling bifurcation. The bifur-
cation parameter value is § = 0.5417461

The loss of accuracy can be seen in the Numeric window, where no multiplier close to 1
is present at the last computed point.

C.3.4 Continuation of the double cycle from the PD-point

Using Select|Initial point, take the first PD: Period Doubling point in the computed
above curve as initial.
Adjust the 3Dplot window by setting the visibility limits for beta as follows:

Abscissa: 0.5 0.63

In the Starter window, set the number of mesh points ntst to 80, increase the
amplitude to 0.005, and select yes only to Branching in the Monitor Singularities
section.

200 APPENDIX C. TUTORIAL III

i

File Edit Wiew Insert Tools Desktop Window Help MatCont N

DEde | A [RATDEL- T |0E| e

Figure C.19: The cycle branch in system (C.2) rooted at the Hopf point. Two critical
cycles undergoing the period-doubling bifurcations are labeled by PD.

In the Continuer window, increase MaxTestIters to 30, and make sure that MaxStepsize
remains equal to 0.7.

Click Compute|Forward and continue the doubled cycle bifurcating from the first
PD-point at 8 = fpp 1, see Figure C.21. This cycle remains stable until at (approximately)
B = Pppa a branching point cycle (BPC) is detected. This is not surprising, since the PD-
bifurcation for the original limit cycles corresponds to a branching point for the doubled
cycles.

Stop computations at BPC and exit MATCONT.

C.4. ADDITIONAL PROBLEMS 201

H A Plot2D - beta,Period oy] B3
Fle Edit View Insert Tools Desktop Window Help MatCont N

D8 de [k UT9E£- |2 |0B (8O
i 40

35

0
051 0512 0.514 0516 0.518 052 0522 0.524 0526 0.528 0.53
beta

Figure C.20: The cycle period near the homoclinic bifurcation.

C.4 Additional Problems

A. Study numerically limit cycles in the system

T = ur—yY-—2xz,
y = T+ py,
2 = —z+y* 4+ 2%,

that is another model of a feedback control system.

B. Consider the following predator-prey model

. Ty
r = T — ,
1+ ax
. Ty 2
= —y+ — 0y”.
Yy Yy 1+ ar Yy

1. Prove that the following polynomial system

t = z(1+azx) -y,
{ y = —(y+dy*)(1+ az) + zy, (C.3)

has the same orbits in the positive quadrant as the original model. Derive an
explicit condition on (a, d) for system (C.3) to have a positive equilibrium with
one zero eigenvalue. Derive a similar condition for (C.3) to have a positive
equilibrium with a pair of purely imaginary eigenvalues.

¢ = Inx,
n = Iny,

2. Introduce new variables

202 APPENDIX C. TUTORIAL III

in which the original system becomes:

f o1 exp(n)

14+ aexp(§)’ (1)
. exp(é) '
77 1 + a exp(g) eXp(TI)

Fix a = 0.3 and study numerically limit cycles of (C.4), when the parameter ¢
varies. Hint: Begin with finding an equilibrium at 6 = 0.35 by integration.

3. Relate your analytical and numerical results.

C. Consider the following predator-double prey system:

T = x(24—1x— 6y —4z),

2 = —2(1-0.25z —4y+ 2),

A Plot3D - betaxy ol =||

File Edit View Insert Tools Desktop Window Help MatCont u

Dode | B|RAODEL- 2 0B el

X 0.5 0.5 beta

Figure C.21: The branch of stable doubled cycles connects two PD points.

C.4. ADDITIONAL PROBLEMS 203

modelling dynamics of two prey populations affected by a predator.

1.
2.
3.

Starting from 5 = 1.77, find its positive equilibrium by orbit integration.
Continue the equilibrium with respect to until it exhibits a Hopf bifurcation.

Continue a limit cycle from the Hopf point and monitor the dependence of its
period upon 5. Hint: Set ntst to a high value.

Plot the cycle at different period values and try to understand its asymptotic
shape. Hint: Compute and analyze the equilibria located on the coordinate
planes.

D. Consider the famous Lorenz system

r = o(—z+y),
Yy = rer—y-—az,
z = —bz+uay,

with the standard parameter values o = 10,b = g and r > 0. Use MATCONT to
analyse its simplest limit cycles numerically.

1.

Compute a critical parameter value rgp, at which the trivial equilibrium (0, 0, 0)
undergoes a symmetric pitchfork bifurcation.

Compute a critical parameter value 7y, corresponding to a Hopf bifurcation of
nontrivial equilibria.

Continue the limit cycle born at the Hopf bifurcation with respect to r and find
out what happens to it. Plot the cycle period as function of r, and monitor
stability.

. Demonstrate by numerical integration that for » = 400 the system has a stable

symmetric limit cycle and determine its period approximately. Continue this
cycle with respect to r and find the critical parameter value rgpc corresponding
to a branch point of cycles (symmetry breaking). Hint: Use the procedure to
start LC continuation from a simulation as done in Section 1, for the Rdssler
system.

Derive explicit formulas for rgp and ry as functions of (o, b) and verify the numerical
values obtained with MATCONT.

Appendix D

TUTORIAL 1V: Using the new
MATCONT GUI for two-parameter
bifurcation analysis of equilibria and
limit cycles

This session was tested on MATCONT7pl with MATLAB2017b. It is devoted to the
numerical continuation of codim 1 bifurcations of equilibria and limit cycles in systems of
autonomous ODEs depending on two parameters

i = f(z,a), r€R" acR?

and detection of their codim 2 bifurcations. We will also switch at some codim 2 equilibrium
bifurcations to the continuation of codim 1 bifurcation curves rooted there.

D.1 Bifurcations of equilibria in the
Bykov—Yablonskii—Kim model

We will use MATCONT to continue equilibria and their bifurcations in the following chem-
ical model that describes CO-oxidation on platinum:

T = 2k12% —2k_12% — ksay
Yy = koz—k oy — ksxy
s = IC4Z — kZ_4S,

where z =1 —x — y — s. The ratio

and the parameter ky will be used as two bifurcation parameters.

205

206 APPENDIX D. TUTORIAL IV

D.1.1 Specify the model in MATCONT

Specify a new ODE system in MATCONT with coordinates (x,y,s) and time (t):

z=1-x-y-s
x7=2%Q1*%z"2-2xQ5*x " 2-Q3*x*y
y’=Q2*z-Q6*y-Q3*x*y
s’=Q4*z-K*Q4*s

The reaction rates ky, ko, k3, kg, k_1, k_o are denoted by Q1, Q2, Q3, Q4, Q5, Q6, respec-
tively, while K stands for K. Generate the derivatives of order 1, 2, 3, 4 and 5 symbolically.
Note that z is an auxiliary variable which is introduced to simplify the formal form of the
equations and to improve the readability. The choice of the name is irrelevant but it should
not conflict with the internal names in the MATLAB symbolic toolbox if that toolbox is
used.

D.1.2 Equilibrium continuation

Select both Type|Initial point|Equilibrium and Type|Curve|Equilibrium. In the
Starter window input the following numerical values, corresponding to a stable equilibrium
in the system:

X 0.001137
y 0.891483
s 0.062345
Q1 2.5

Q2 2.204678
Q3 10

Q4 0.0675
Q5 1

Q6 0.1

K 0.4

Activate the parameter Q2.
In the Continuer window, decrease the MaxStepsize along the curve to

MaxStepsize 0.025
Open a 2Dplot window with (Q2,x) on the axes and input the following visibility limits:

2.0

Abscissa: 5
0 0.16

0.

Ordinate: 0.
Also open a Numeric window and make Eigenvalues visible using Numeric|Layout.

Start the continuation of the equilibrium curve with the Compute|Forward command.

Monitor the eigenvalues in the Numeric window. There will be four bifurcation points

D.1. BIFURCATIONS OF EQUILIBRIA 207

detected: two Hopf points (labeled by H) and two fold points (labeled by LP). Resume
computations at each bifurcation point, and stop them when the curve leaves the window.
You should get the central S-shaped curve presented in Figure D.1. In a narrow interval
of Q2-values (between two LP-points) the system has three equilibria.

Plot2D - Q2,x M =] B3
-]

File Edit View Insert Tools Desktop Window Help MatCont

BNER MO E L

NG de|h

2| 0E| a0

016

0.14

D12

017

* 0.08

0.06 r

0.04

0.02 -

Q2

Figure D.1: Equilibrium curves with K = 0.15,0.4, and 2.0

The normal form coefficients for the Hopf and limit point bifurcations can be read in

the MATLAB Command Window:

.523973 0.328336 1.051558)
1.070259e+01
.450257 0.375018 1.042049)

label = H , x = (0.016357
First Lyapunov coefficient
label = LP, x = (0.024717
a=1.166509e-01

label = LP, x = (0.054030
a=-1.346534e-01

label = H , x = (0.077929
First Lyapunov coefficient

[N N e)

(@]

.302241 0.459807 1.052200)

o

.233063 0.492149 1.040991)
4.332247e+00

208 APPENDIX D. TUTORIAL IV

Note that both first Lyapunov coefficients are positive (implying that unstable limit cycles
bifurcate there), while the LP-coefficients are both nonzero (their sign is irrelevant and
depends on the choice of a direction).

Rename the computed equilibrium curve via Select|Curve and Select| Curve|Rename
into

Equilibriuml (+)
Change the value of the parameter K in the Starter window:
K 0.15

and repeat the computations with Compute|Forward. You will get a monotone curve
without bifurcation points (the left curve in Figure D.1). There is only one equilibrium for
all parameter values Q2.

Finally, change the value of K to

K 2.0

and click on Compute|Forward again. Another equilibrium curve will come out with
the order of the singularities reversed (the right curve in Figure D.1). There is now a big
interval of the parameter values, in which there are three equilibria in the system.

In the MATLAB Command Window, the following messages appeared:

label = LP, x = (0.013310 0.771372 0.071773 1.252630)
a=1.705787e+00
label = H , x = (0.019639 0.726319 0.084681 1.271109)
Neutral saddle
label = H, x = (0.128699 0.384106 0.162399 1.640254)
Neutral saddle
label = LP, x = (0.151168 0.344167 0.168222 1.648672)
a=-1.787355e+00

indicating that the LP-bifurcations are still nondegenerate (a # 0), while — instead of two
Hopf points — two neutral saddles have appeared, which are not bifurcation points. Note
that they are still marked by H.

Store the last two computed curves permanently by renaming them into

Equilibrium2(+)
Equilibrium3(+)

via Select |Curve | Rename. Close the Data Browser window.

D.1.3 Continuation of fold and Hopf bifurcations

This section explains how to continue fold and Hopf bifurcations with respect to two control
parameters. While doing so, you will see how MATCONT detects some codim 2 bifurcations
and reports their normal form coefficients.

D.1. BIFURCATIONS OF EQUILIBRIA 209

Fold continuation

Select the second LP: Limit point in the first computed curve Equilibriuml(+) via
Select | Curve | Equilibrium1(+) | LP: Limit point | Select point. The new
Starter window corresponding to the continuation of a limit point curve LP_LP is to appear,
in which you should keep parameter Q2 active and activate parameter K, see Figure D.2.

Compute the limit point curve in both directions to get Figure D.3. Notice that both

Starter !E E
Initial Point
x 0.05402963 19369226
¥ 0.302240674140428
3 0.459206524230464
[aE et 25
a2 1.052200287355906
O a 10
(e el 0.0675
ccas L
oS 0.1
[l ClLs 0.4
Monitor Singularities
Bogdanov-Takens bifurcation (BT} I~
Zero-Hopf bifurcation (ZH) I~
Cusp bifurcation (CP) Ird
Calculate eigenvalues
eigenvalues I~

Figure D.2: Starter window for the continuation of the limit point curve.

parameters (Q2,K) are varied along the curve. Each point on the curve is a limit point for
the equilibrium curve at the corresponding value of K (or
Q2).

Three points were detected, corresponding to codim 2 bifurcations: two Bogdanov-
Takens (BT) and one cusp (CP). At each BT point the system has an equilibrium with a
double zero eigenvalue, while at the CP point there is an equilibrium with a simple zero
eigenvalue but the normal form coefficient of the fold is zero. The normal form coefficients
(a, b, c) of these bifurcations are reported in the MATLAB Command Window and they
are all nonzero:

label = BT , x = (0.115909 0.315467 0.288437 1.417628 0.971397)
(a,b)=(-8.378442e-02, -2.136280e+00)

210

APPENDIX D. TUTORIAL IV

Plot2D - Q2%

File Edit View Insert Tools Desktop Window Help MatCont

=10] x|

NEEdS (k| RATDLEL- 2|08 a0

0.16 1

0171

* 0.08

0.06

0.04 1

0.02

1.5 2
Q2

Figure D.3: Limit point curve in Bykov’s model: BT - Bogdanov-Takens points; CP - cusp.

label = CP , x
c=3.627844e-01
label = BT , x
(a,b)=(-4.822563e-02, -1.937632e+00)

(0.035940 0.352008 0.451368 1.006408 0.355991)

(0.016337 0.638410 0.200456 1.161199 0.722339)

Rename the obtained limit point branches as following:

Fold(+)
Fold(-)

Hopf continuation

The Bogdanov-Takens points are common points for the limit point curves and curves
corresponding to equilibria with eigenvalues A\; + Ao = 0, A3 # 0. Actually, at each BT
point, the Hopf bifurcation curve (with A\ o = %iwp, wy > 0) turns into the neutral saddle
curve (with real \; = —X\;). Thus, we can start a Hopf curve from a Bogdanov-Takens

point.

D.1. BIFURCATIONS OF EQUILIBRIA 211

Select the BT: Bogdanov-Takens point in the curve Fold(+) as initial. Then choose
Type |Curve|Hopf to prepare for the continuation of the Hopf curve. The new Starter
window for the continuation of a Hopf curve will appear automatically, see Figure D.4.

BEE
Initial Point

£ 0.1158087125252

Y 0.315487275691127

3 0.288437031522818

¢ atl 25

& Qz 1.41762756654893

a3 10

04 0.0675

¢ as 1

a8 0.1

&K 0.971397390902253
Monitor Singularities

Bogdanov-Takens bifurcation (BT) 12

Zero-Hopf bifurcation (ZH) I~

Generalized Hopf (Bautin} bifurcation (GH) 12
Calculate eigenvalues

eigenvalues I~

Figure D.4: Starter window for the continuation of the Hopf curve from the BT-point.

Check that the type of the curve to be computed is changed in the MATCONT window.
Activate the parameters)2, K.

Compute|Forward (resuming the computation at each special point and using Com-
pute |Extend) produces a closed Hopf curve as in Figure D.5. Actually, only the part of
it to the left of two BT points corresponds to a Hopf bifurcation; the other part represents a
neutral saddle. As it has been mentioned, this transition happens at the Bogdanov-Takens
points. There are two more codim 2 bifurcation points at the Hopf point: Two Bautin or
generalized Hopf (GH) points, where the first Lyapunov coefficient [; vanishes.

The Command Window of MATLAB shows a message about the starting BT point and
the following messages related to the GH points:

label = GH, x = (0.018022 0.368238 0.497968 0.891319 0.232487 0.003324)
12=-7.768996e+02
label = GH, x = (0.064311 0.211095 0.554870 0.924255 0.305879 0.003512)
12=-2.401233e+02

212 APPENDIX D. TUTORIAL IV

A Plot2D - Q2,x - 101 x|
a

File Edit View Insert Tools Desktop Window Help MatCont

A dS kRO DE -

2068 a0

016

0141

012

017

= 0.08r,

0.06

0.04

0.02

Figure D.5: The parameter plot with the added Hopf curve in Bykov’s model: GH - gener-
alized Hopf points

indicating that both GH points are nondegenerate, since the second Lyapunov coefficients
12 are nonzero (in fact, negative).
Two-parameter bifurcation diagram

Rename the obtained Hopf curve into
Hopf (+)

and delete all computed equilibrium curves.
Open a new 2Dplot window to plot the bifurcation diagram in the (Q2,K)-plane with
the visibility limits

Q2
K

o O
N
[ERNSN
= O

Upon redrawing the diagram in the (Q2,K)-window, you will get Figure D.6.

D.2. FOLD AND TORUS BIFURCATIONS OF CYCLES IN THE
STEINMETZ-LARTER MODEL 213

Plot2D - Q2,K O]]
-]

File Edit View Insert Tools Desktop Window Help MatCont

NEES (L RAOVDEL-C|0E e

117

1t

09r

08T

0.7

X 06|

0.5

0471

0.3

D2r

01)
0.7 0.8 0.9 1 1.1 1.2 1.3 14 1.5

Figure D.6: Fold and Hopf curves in Bykov’s model: BT- Bogdanov-Takens, CP -cusp, GH -
generalized Hopf points

The edge between two fold curves is a parameter region where the system has three
equilibria. Crossing a Hopf curve results in the appearance of either stable or unstable
periodic orbit. There are other bifurcations in the model.

D.2 Fold and torus bifurcations of cycles in the
Steinmetz—Larter model

Consider the following chemical model:

K ABX — k3 ABY + ky — koA,

Kk ABX — k3ABY + ks,

kiABX — 2k X2 + 2ks ABY — kX + ks,
— k3 ABY 4 2k X2 — k5.

e
|

We will study bifurcations of limit cycles of this model when parameters (kr, kg) vary.
Note: If you have worked out TUTORIAL III, the system was already introduced in the

214 APPENDIX D. TUTORIAL IV

second section. In this case, recompile the system with symbolic derivatives up to order 5
and delete all previously computed curves.

D.2.1 System specification
Specify a new ODE system — say STLAR — in MATCONT

A’ =-k1*AxB*X-k3*A*BxY+k7-km7*A

B’ =-k1xA*xBxX-k3*A*B*Y+k8
X?=k1*A*xB*X-2xk2*X"2+2xk3*xA*xB*xY-k4d*X+k6
Y =-k3*xAxB*xY+2xk2*X"2-k5*Y

where (A,B,X,Y) are the coordinates and (k1,k2,k3,k4,k5,k6,k7,km7,k8) are the pa-
rameters. Use (default) t for time and generate symbolically partial derivatives of order 1,
2, 3, 4 and 5.

D.2.2 Preliminary one-parameter analysis
Continuation of an equilibrium

To begin with, we continue an equilibrium of the model and detect its Hopf bifurcation.
Input Type|Initial point|Equilibrium in the main MATCONT window.
Input the following numerical data in the appearing Starter window:

A 31.78997

B 1.45468

X 0.01524586
Y 0.1776113
k1 0.1631021
k2 1250

k3 0.046875
k4 20

kb 1.104

k6 0.001

k7 4.235322
km7 0.1175

k8 0.5

These values correspond to an equilibrium (A, B, X,Y) in the system. Activate the pa-
rameter k7.
Open Window/Output | Numeric and change its appearance via the Numeric |
Layout command. Namely, select Eigenvalues and stepsize to be shown in the window.
Start Compute|Forward. The equilibrium curve will be continued and you get a Hopf
bifurcation. The message in the MATLAB Command Window

D.2. FOLD AND TORUS BIFURCATIONS OF CYCLES 215

label = H , x = (34.808899 1.328517 0.015246 0.177611 4.590046)
First Lyapunov coefficient = 1.527549e-02

at k; = 4.590046 . .. indicates a subcritical Hopf bifurcation. Indeed, there are two eigen-
values of the equilibrium with Re A\; 2 /=~ 0 at this parameter value visible in the Numeric
window. The critical frequency Im A; # 0, while the first Lyapunov coefficient is positive.
Thus, there should exist an unstable limit cycle, bifurcating from the equilibrium.

Note also that in the Hopf point, as in all other bifurcation points, the stepsize is
indicated as 0 in the Numeric window. The reason for this is that bifurcation points are
not located by continuation but by a variant of the bisection method.

Stop computations and rename the computed curve via Select | Curve | Rename
into

Equilibrium(+)

Compute|Backward with Compute|Extend once until you get a Hopf bifurcation
at k; = 0.712475 ... with the message

label = H , x = (1.808301 25.573303 0.015246 0.177611 0.712475)
First Lyapunov coefficient = -2.371880e-02

in the MATLAB Command Window. The first Lyapunov coefficient is negative now. This
means that a stable limit cycle bifurcates from the equilibrium, when it looses stability.
Stop computations and rename the computed curve into Equilibrium(-).

Cycle continuation

Select the H: Hopf point in the curve Equilibrium(-) as initial. MATCONT will prepare
to continue a limit cycle curve from the Hopf point (curve type H.LC). Choose the yes-
option to monitor all singularities in the Starter window and set amplitude to 0.001.
Choose k7 and Period as the free parameters. Set

MaxStepsize 1
MaxNumPoints 25

in the Continuer window. Change the appearance of the Numeric window via the
Window|Layout command by selecting Multipliers to be shown.

Click Compute|Forward to start the continuation of the limit cycle. At k; = 0.716434. ..
the message Neimark-Sacker indicates a torus bifurcation. In the MATLAB Command
Window, the following message appears:

Neimark-Sacker (period = 1.091213e+01, parameter = 7.164336e-01)
Normal form coefficient = -4.912065e-08

216 APPENDIX D. TUTORIAL IV

Indeed, there are two complex multipliers with (approximately) |u| = 1 and one trivial
multiplier (approximately) equal to 1. This can be seen in the Numeric window. The
normal form coefficient is small but negative, indicating that a stable two-dimensional
inwvariant torus bifurcates from the limit cycle.

Rename the computed curve into cycle.

D.2.3 Two-parameter analysis
Continuation of the Hopf bifurcation curve

Select the H: Hopf point in the computed Equilibrium(+) curve starting with the Select
| Curve command. Then navigate in the Data Browser to the Equilibrium(+) curve,
double-click it and then select the Hopf point.

Select Type|Curve|Hopf. Activate two parameters, namely k7 and k8, in the Starter
window.

Open a new 2Dplot window with the parameters k7 and k8 as abscissa and ordinate,
respectively, and the visibility limits:

Abscissa 0 7
Ordinate 0.3 1

Continue the Hopf bifurcation curve with Compute|Forward followed by Compute|Extend.
At
(kr, ks) = (6.336084. ..,0.413039.. . .)

a generalized Hopf bifurcation will be found, where the first Lyapunov coefficient vanishes
(label GH). Resume the continuation and terminate it when the Hopf curve leaves the
window. In the MATLAB Command Window, the following message has appeared:

label = GH, x = (50.40856 0.97900 0.01342 0.13184 6.33604 0.41303 0.59436)
12=3.325910e-03

from which it follows that this codim 2 bifurcation is nondegenerate (the second Lyapunov
coefficient 12 is nonzero). Rename the computed curve to Hopf (+).
The backward continuation of the Hopf bifurcation curve reveals one more generalized
Hopf point at
(k7,ks) = (0.999480. ..,0.645896. . .).

Resume and extend until the curve leaves the window. You should get Figure D.7.
The MATLAB Command Window contains the message:

label = GH, x = (3.00921 14.18442 0.01797 0.26026 0.99947 0.64589 0.29229)
12=-4.044531e-03

indicating that this GH is also nondegenerate. Rename this curve to Hopf (-).

D.2. FOLD AND TORUS BIFURCATIONS OF CYCLES 217

8 I Plot2D - k7,k8 -0l x|
-]

. File | Edit View Insert Tools Desktop Window Help MatCont

Dodde b RATBDEL- 2| 0E|eD

09 r

0.8 r

0.7 r

k8

0.6

05

04T

0.3

Figure D.7: The Hopf bifurcation curve with two GH’s - generalized Hopf points.

Continuation of the LPC-bifurcation starting at the GH-point

Using Select | Curve and the Data Browser select GH: Generalized Hopf point in
the Hopf (+) curve as initial point. Since it is known that an LPC curve originates there,
select Type|Curve|Limit point of cycles to continue. The Starter and Continuer
windows for the continuation of the fold bifurcation of cycles from the generalized Hopf
point will appear.

In the Starter window, set yes to monitor for all singularities except the Cusp point
of cycles and increase the amplitude of the predicted LPC to 0.01. To increase speed set
ntst to 20 and check that ncol is 4. In the Continuer window, set MaxStepsize equal
to 2.0 and MaxNumPoints equal to 300. The Starter and Continuer windows should look
like in Figure D.S.

Compute|Forward the LPC-bifurcation curve (with Compute|Extend) and observe
that it actually connects the two found GH points in the Hopf curve, see Figure D.9. The
continuation (which takes some time) stops with the message Current step size too
small near the left GH point.

The computed curve will also contain two extra codim 2 points labeled by R1. These
are strong resonance 1:1 points, where the cycle has a triple multiplier 1 (counting the

218 APPENDIX D. TUTORIAL IV

=10l x| =10lx]
Continuation Data
el el 0.1631021 InitStepsize 0.01
el ol 7 1250 MinStepsize 1e-05
k3 0.04B875 MaxStepsize 2
ol all 20
Jp 104 Corrector Data
o 0.001 MaxMewtonlters 3
e B 33804512811721 MaxCorriters 10
kT 01175 MaxTestiters 10
~EK 0.213039110962945 | lete
Period FunTolerance 1e-06
TestTolerance 1e-05
Discretization Data Adapt 3
ntst 20
ncol 4 e
MaxMNumPaoints 300
Switch Data CheckClosed 50
amplitude 0.01

Monitor Singularities

1:1 Resonance (R1) I~

Cusp bifurcation of Cycles (CPC) -

Fold-Meimark-Sacker bifurcation (LPNS) I~

Fold-flip (LPPD) 72
Calowlate multipliers

multipliers I~

Figure D.8: The Starter and Continuer windows for the LPC-continuation from the
GH-point.

trivial multiplier). In the Numeric window, you can read the corresponding values of
(k7, ks). The MATLAB Command Window gives the following messages:

Resonance 1:1 (period
ab=1.432638e-01
Resonance 1:1 (period
ab=-2.686129e-03

1.40019e+01, parameters = 1.85767e+00, 9.30422e-01)

1.23945e+01, parameters 1.17955e+00, 7.23957e-01)

where the critical cycle period and parameter values, as well as the product of the normal
form coefficients for R1, are reported.

Rename the computed GH_LPC curve to cyclefold.

Continuation of the NS-curve in two parameters

Take the NS: Neimark-Sacker point in the limit cycle curve cycle as initial point. By
default, the Curve Type is Neimark-Sacker. Activate k7, kg as free parameters.

D.2. FOLD AND TORUS BIFURCATIONS OF CYCLES 219

ol
File Edit Wiew Insert Tools Desktop Window Help MatCont o
NEde | RRAODEL- B0 D

09r

08

0.7 r

k8

0.6

05

04T

0.3

Figure D.9: Hopf and limit point of cycles curves connecting the GH-points.

To speed up the continuation, untick the boxes for monitoring any singularity. Compute
the multipliers, though. Set MaxNumPoints to 300.

Change the plotting region of the 2Dplot window to

Abscissa 1 2.2
Ordinate 0.6 1

and redraw the diagram.

Click Compute|Forward and wait until the computed NS-curve enters the window
(this takes some time). Extend the computation several times to obtain (after some editing)
Figure D.10.

The computed NS-curve passes through the R1 points of strong resonance 1:1, where
it tangentially meets the LPC-curve and turns from the Neimark-Sacker bifurcation curve
into the non-bifurcation neutral saddle cycle curve (both are characterised by the presence
of two multipliers with g = 1).

Warning: There are many other bifurcations in the model and Figure D.10 shows only
a few of them.

220

APPENDIX D. TUTORIAL IV

Figures - Plot2D - k7,k8 19 [=]
File Edit View Insert Tools Debug Desktop Window Help MatCont L | A x
Nod2|rRAO9RL- (2080 D == =]

| Plot2D -k7,k8

1
0.95 -
[09

085

k8

075

07

0.65

0.6

0.8

Figure D.10: Hopf (green), limit point of cycles (blue) and Neimark-Sacker (red) curves:
The NS-curve between two R1-points corresponds to neutral saddle cycles.

D.3 Additional Problems

A. Consider the following system by Lorenz [1984]:

t = —y?—22—ax+afF,
y = zy—brz—y+G,
z = bry+axz— 2,

where (a, b, F, G) are parameters.

(D.1)

1. Using MATCONT, compute fold and Hopf bifurcation curves for equilibria of
(D.1) with @ = {,b = 4, in the parameter domain

(G, F):0<G<3,0<F <3},

Find numerical parameter values (Gzy, Fzx) at which (D.1) exhibits a fold-Hopf
bifurcation, i.e. has an equilibrium with eigenvalues \; = 0, g3 = Fiwp, wo >
0. Find numerical parameter values (Gep, Fep) at which (D.1) exhibits a cusp
bifurcation, i.e. has an equilibrium with a triple zero.

D.3. ADDITIONAL PROBLEMS 221

2. Derive analytical expressions for (Gzy, Fzy) and (Gep, Fep) as functions of (a, b)
and verify the numerical results above.
Hints: At the fold-Hopf both the trace and the determinant of the Jacobian
matrix of (D.1) vanish. To find a triple equilibrium, reduce the equilibrium
system for (D.1) to one cubic equation for the z-coordinate of the equilibrium
and look for its triple root.

B. Consider the adaptive control system of Lur’e type

T =y,
y = z, (D.2)
;= —az—fy—x+z%

1. Continue the equilibrium (x,y, z) = (0,0,0) of (D.2) with respect to parameter
a starting at « = 2, 8 = 1 and detect its Hopf bifurcation.

2. Compute the Hopf bifurcation curve in the («, §)-plane and plot it using the
visibility limits
alpha 0 1.5
beta 0 2

3. Find the period-doubling (PD) of the cycle bifurcating from the Hopf point and
continue it in two parameters.

4. Find the period-doubling of the doubled cycle and continue it in the (¢, §)-plane.

C. Consider the following prey-predator system from mathematical ecology by Bazykin
and Khibnik [1981]:
2%(1 —)
= ——— —uy,
n+mx (D.3)

wheren > 0,0 <m < 1.

1. Compare its bifurcation diagrams with respect to parameter m for n; = i and

Ny = 1—16 using MATCONT.

2. Compute the two-parameter bifurcation diagram in the (m,n)-plane and sketch
all qualitatively different phase portraits.

Hint: The diagram should include a Hopf bifurcation curve (H) and a cycle fold
curve (LPC) that connects a generalized Hopf point (GH) on H with the point
(m,n) = (0,0).

3. Derive an analytic expression for the Hopf bifurcation curve in (D.3). Hint:
Consider the orbitally-equivalent polynomial system

i = (1—) - ay(n +3),
{y = —y(m—x)(n+x). (D-4)

222 APPENDIX D. TUTORIAL IV

4. Verify the numerically found GH-point by proving that the first Lyapunov coef-
ficient [; vanish at (meg, nen) = (i, %) Hints:

(a) At Hopf parameter values, translate the origin in (D.4) to the equilibrium
and scale the variables to obtain a system in the form

{é = —wn+ P(n),
n o= wE+QE),

where P, () contain terms of order two and higher in (£, 7).
(b) Introduce complex variables z = £ +in and z = £ — in, and derive the
equation

. 1 -

2<j+k<3
(¢) Compute

1
I, = 22 Re (igo0g11 + wgor) -

Appendix E

Listing of Projectie.m

function obj = Projectie(Uman, Sman, itnumber)
tic
intersecties=[];
% De punten worden geordend
[7,I]=sort(Uman(1,:));

A=Uman(:,I);
[7,Y]=sort(Sman(1,:));
B=Sman(:,Y);

%hstruct construeren met als velden, het punt, de lijnstukken die
%heindigen met dit punt, de lijnstukken die beginnen met dit punt
%en tot welke variéteit het behoort (stable of unstable)
s=struct(’punt’, {}, ’eindpunt’, {}, ’beginpunt’, {},...

’stab’, {}, ’index’, {});
i=1;
j=1;
while i <= length(Uman) || j <= length(Sman)

if i > length(Uman) || A(1,i) > B(1,j)

punt=B(:,j);
s(i+j-1) .punt=punt;
col=Y(1,3j);

s(i+j-1) .index=col;
if (col-1) > O
lijnstuk(col, col-1, Sman, i+j-1);
end
if (col+1l) <= length(Sman)
lijnstuk(col, col+l, Sman, i+j-1);
end
s(i+j-1) .stab=’stable’;

223

224 APPENDIX E. LISTING OF PROJECTIE.M

J=3+1;
elseif j > length(Sman) || A(1,i) <= B(1,j)
punt=A(:,1i);
s(i+j-1) .punt=punt;
col=I(1,1i);
if (col-1) > O
lijnstuk(col, col-1, Uman, i+j-1);
end
if (col+1l) <= length(Uman)
lijnstuk(col, col+l, Uman, i+j-1);
end
s(i+j-1) .stab="unstable’;
i=i+1;
end
end

function lijnstuk(a, b, man, index)
if man(1,a) >= man(1,b)
lijn=[man(:,b); man(:,a)];
if isempty(s(index).eindpunt)
s(index) .eindpunt=1ijn;
else
s(index) .eindpunt=[s(index) .eindpunt, lijn];
end
else
lijn=[man(:,a); man(:,b)];
if isempty(s(index).beginpunt)
s(index) .beginpunt=1ijn;
else
s (index) .beginpunt=[s(index) .beginpunt, 1lijn];
end
end
end

% koppels van lijnstukken met overlappende x intervallen
c=struct(’lijnstuk’, {}, ’index’, {});

225

% for-lus over alle punten
for i=1: length(s)
[7,n]=size(s(i) .beginpunt);
% for-lus over lijnstukken die punt als begin hebben (max 4
% lijnstukken)
for j=1: n
c(k).lijnstuk=s(i) .beginpunt(:,j);
c(k) .index=s(i);
% for-lus over lijnstukken die overlappen
% met interval (max n)
for 1=1:k-1
if "strcmp(c(l).index.stab, c(k).index.stab)
x{m}=c(1) .1lijnstuk;
x{m+1}=c(k) .1lijnstuk;
m=m+2;
if strcmp(c(l).index.stab, ’stable’)
E(e)=c(1l) .index.index;

else
E(e)=c(k) .index.index;
end
e=e+1;
end
end
k=k+1;
end

% for-lus over lijnstukken die punt als eind hebben (max 4
% lijnstukken)
[",n]=size(s(i).eindpunt);
for j=1:n
% for-lus over lijnstukken die overlappen
% met interval (max n)

1=1;
while “(isequal(c(l).lijnstuk, s(i).eindpunt(:,j)))
1=1+1;
end
c()=[1;
k=k-1;
end
end
e=0;

% koppels die ook in y-intervallen overlappen
for i=1:2:1length(x)

226

APPENDIX E. LISTING OF PROJECTIE.M

maxl=max(x{1,i}(4,1),x{1,i}(2,1));
max2=max (x{1,i+1}(4,1) ,x{1,i+1}(2,1));
minl=min(x{1,i}(4,1),x{1,i}(2,1));
min2=min(x{1,i+1}(4,1) ,x{1,i+1}3(2,1));
e=et+l;
if max2 <= maxl && ~(max2 < minl)
punt=intersectie(x{1,i}, x{1,i+1});
if “isempty(punt)
dummy=[punt;E(e)];
intersecties=[dummy, intersecties];
end
elseif min2 >= minl && ~“(min2 > max1)
punt=intersectie(x{1,i}, x{1,i+1});
if “isempty(punt)
dummy=[punt;E(e)];
intersecties=[dummy, intersecties];
end
elseif min2 <= minl && max2 >= maxl
punt=intersectie(x{1,i}, x{1,i+1});
if “isempty(punt)
dummy=[punt;E(e)];
intersecties=[dummy, intersecties];
end
end

end
% Intersecties worden geordend volgens stabiele variéteit
[*,W]l=sort(intersecties(4,:), ’descend’);
intersecties=intersecties(:,W);
for i=1:length(intersecties)
j=1;
while (i+j) <= length(intersecties) && ...
intersecties(4,i)==intersecties(4,i+j)
J=i+L
end
if > 1
[7,Z]=sort(intersecties(3,i:i+j-1));
B=intersecties(:,i:i+j-1);
intersecties(:, i:i+j-1)=B(:, Z);
end
end
obj=banen(intersecties(1:2,:), itnumber);

end

toc

function [punt] = intersectie(a, b)

end

punt = [];
x1=b(1,1);
x2=b(3,1);
y1=b(2,1);
y2=b(4,1);
int=[];

fold=(x2-x1)*(a(2,1)-y2)-(y2-y1)*(a(1,1)-x2);
fnew=(x2-x1)*(a(4,1)-y2)-(y2-y1)*(a(3,1)-x2);
if (fnewxfold)<O0

system=[1, O, x2-x1;
0, 1, y2-y1;
a(4,1)-a(2,1), a(1,1)-a(3,1), 0 1;

RHS=[x2;y2;a(4,1)*a(1,1)-a(3,1)*a(2,1)];
int=system\RHS;

end

if “isempty(int) && int(3)>0 && int(3)<=1
punt= int;

end

227

Appendix F

Listing of Projectie2.m

function obj = Projectie2(Uman, Sman, itnumber)
tic
intersecties=[];
% De punten worden geordend
[7,I]=sort(Uman(1,:));

A=Uman(:,I);
[7,Y]=sort(Sman(1,:));
B=Sman(:,Y);

%hstruct construeren met als velden, het punt, de lijnstukken die
%heindigen met dit punt, de lijnstukken die beginnen met dit punt
% en tot welke variéteit het behoort (stable of unstable)
s=struct(’punt’, {}, ’eindpunt’, {}, ’beginpunt’, {},...

’stab’, {}, ’index’, {});
i=1;
j=1;
while i <= length(Uman) || j <= length(Sman)

if i > length(Uman) || A(1,i) > B(1,j)

punt=B(:,j);
s(i+j-1) .punt=punt;
col=Y(1,3j);

if (col-1) > O
lijnstuki(col-1, col, Sman, i+j-1);
end
if (col+1l) <= length(Sman)
lijnstuk(col, col+l, Sman, i+j-1);
end
s(i+j-1) .stab=’stable’;
s(i+j-1) .index=col;

229

230 APPENDIX F. LISTING OF PROJECTIE2.M

J=3+1;
elseif j > length(Sman) || A(1,i) <= B(1,j)
punt=A(:,1i);
s(i+j-1) .punt=punt;
col=I(1,1i);
if (col-1) > O
lijnstuki(col-1, col, Uman, i+j-1);
end
if (col+1l) <= length(Uman)
lijnstuk(col, col+l, Uman, i+j-1);
end
s(i+j-1) .stab="unstable’;
i=i+1;
end

end

function lijnstuk(a, b, man, index)
if man(1,a) >= man(1,b)
lijn=[man(:,b); man(:,a)];
if isempty(s(index) .eindpunt)
s(index) .eindpunt=1ijn;
else
s(index) .eindpunt=[s(index) .eindpunt, 1lijn];
end
else
lijn=[man(:,a); man(:,b)];
if isempty(s(index).beginpunt)
s(index) .beginpunt=1ijn;
else
s (index) .beginpunt=[s(index) .beginpunt, 1lijn];
end
end
end

function lijnstukl(a, b, man, index)
if man(1,a) >= man(1,b)
lijn=[man(:,b); man(:,a)];
if isempty(s(index) .beginpunt)
s (index) .beginpunt=1ijn;
else
s (index) .beginpunt=[s(index) .beginpunt, 1lijn];

else

end

lijn=[man(:,a); man(:,b)];
if isempty(s(index).eindpunt)
s(index) .eindpunt=1ijn;

else

s(index) .eindpunt=[s(index) .eindpunt, lijn];

end
end
end

c=struct(’lijnstuk’, {}, ’index’, {});
z=struct (’lijnstuk’, {}, ’index’, {});

k=1;

e=1;

% for-lus over alle punten

for i=1: length(s)
[7,n]=size(s(i) .beginpunt);
for j=1: n

% De lijnstukken van het punt worden toegevoegd aan c of z
% naargelang het punt stabiel of onstabiel is
if strcmp(s(i).stab, ’stable’)

c(k).lijnstuk=s(i) .beginpunt(:,j);

c(k) .index=s(i) .index;

% Het lijnstuk wordt met alle lijnstukken van de andere

231

% lijst opgeslagen als paar, aangezien ze overlap hebben

% in de x-richting
for 1=1:w-1

x{m}=z(1) .1lijnstuk;
x{m+1}=c(k) .1ijnstuk;

E(e)=c(k) .index;
e=e+1;
m=m+2;

end

k=k+1;

elseif strcmp(s(i).stab, ’unstable’)
z(w) .1lijnstuk=s(i) .beginpunt(:,j);

for 1=1:k-1

x{m+1}=c(1) .1ijnstuk;

232

APPENDIX F. LISTING OF PROJECTIE2.M

x{m}=z(w) .1lijnstuk;
E(e)=c(1).index;
e=e+1;
m=m+2;
end
w=w+1;
end
end
% Lijnstukken met punt als eindpunt worden verwijderd uit lijst
[",n]=size(s(i) .eindpunt);
for j=1:n
if strcmp(s(i).stab, ’stable’)
1=1;
while ~(isequal(c(l).lijnstuk, s(i).eindpunt(:,j)))
1=1+1;
end
c(=[1;
k=k-1;
elseif strcmp(s(i).stab, ’unstable’)
1=1;
while “(isequal(z(l).lijnstuk, s(i).eindpunt(:,j)))
1=1+1;
end
z(L)=[1;
w=w-1;
end
end
end
% koppels die ook in y-intervallen overlappen
e=0;
for i=1:2:1length(x)
maxl=max(x{1,i}(4,1),x{1,i}(2,1));
max2=max (x{1,i+1}(4,1) ,x{1,i+1}(2,1));
minl=min(x{1,i}(4,1),x{1,i}(2,1));
min2=min(x{1,i+1}(4,1),x{1,i+1}3(2,1));
e=e+l;
if max2 <= maxl && ~(max2 < minl)
punt=intersectie(x{1,i}, x{1,i+1});
if “isempty(punt)
dummy=[punt;E(e)];
intersecties=[dummy, intersecties];
end
elseif min2 >= minl && ~“(min2 > max1)

punt=intersectie(x{1,i}, x{1,i+1});
if “isempty(punt)
dummy=[punt;E(e)];

intersecties=[dummy, intersecties];

end
elseif min2 <= minl && max2 >= maxl
punt=intersectie(x{1,i}, x{1,i+1});
if “isempty(punt)
dummy=[punt;E(e)];

intersecties=[dummy, intersecties];

end
end

end

% Intersecties worden geordend volgens stabiele variéteit

[,W]=sort(intersecties(4,:), ’descend’);
intersecties=intersecties(:,W);
for i=1:length(intersecties)

J=1;

while (i+j) <= length(intersecties) && ...
intersecties(4,i)==intersecties(4,i+j)

J=j+1;
end
if § > 1
[7,Z]=sort(intersecties(3,i:i+j-1));
B=intersecties(:,i:i+j-1);
intersecties(:, i:i+j-1)=B(:, Z);
end
end
obj=banen(intersecties(1:2,:), itnumber);
toc

function [punt] = intersectie(a, b)

punt = [];
x1=b(1,1);
x2=b(3,1);
y1=b(2,1);
y2=b(4,1);
int=[];

fold=(x2-x1)*(a(2,1)-y2)-(y2-y1)*(a(1,1)-x2);

233

234 APPENDIX F. LISTING OF PROJECTIE2.M

fnew=(x2-x1)*(a(4,1)-y2)-(y2-y1)*(a(3,1)-x2);
if (fnewxfold)<0

system=[1,0, x2-x1;
0,1, y2-yi;
a(4,1)-a(2,1), a(1,1)-a(3,1), 0];

RHS=[x2;y2;a(4,1)*a(1,1)-a(3,1)*a(2,1)];
int=system\RHS;

end

if “isempty(int) && int(3)>0 && int(3)<=1
punt= int;

end

end

Appendix G

Listing of banen.m

function [HomCell]=banen(intersections, itnumber)

global man_ds
homCurves=zeros(l+size(intersections, 1) ,size(intersections,2));
homCurves(2:end, :)=intersections;
Dot
index=1;
findedind=1;
while “isempty(findedind)
homCurves(1,findedind)=index;
j=findedind;
f_p=homCurves(2:end, j);
for k=1:itnumber
f_p=feval(man_ds.func,0,f_p,man_ds.PO{:});
end
for i=j+1:size(homCurves,?2)
if norm(homCurves(2:end,i)-f_p)<le-3
homCurves(1,i)=index;
f_p=homCurves(2:end,i);
for k=1:itnumber
f_p=feval(man_ds.func,0,f_p,man_ds.PO{:});
end
end
end
index=index+1;
findedind=find (homCurves(1,:)==0,1);
end
assignin(’base’, ’homCurves’ ,homCurves) ;

index=index-1;

235

236 APPENDIX G. LISTING OF BANEN.M

HomCell=cell(index,1);
for i=1:index
indici=homCurves(1,:)==1;
HomCell{i}=homCurves(2:end,indici);
end

end

Appendix H

List of settings

The settings in de Settings class are configured by the computations. To give an overview
of all settings that can be made in the current version of the MATCONT GUI, we provide
a listing of a settings object that has been configured by all computations and therefore
contains all possible settings. The system adapt2 was selected as the current system and
has as coordinates x, y and z. The parameters are alpha and beta.

system:
userfunctions:
IP:

forward:

option_pause:
option_archive:
option_output:
option_tsearchorder:
option_moorepenrose:
option_increment:

adapt2
<ufdata>
Equilibrium (EP)

true

At Special Points
2

1

true

true

1le-05

A settings contains a ‘initial point (IP)’. This point has been set to an Equilibrium. This
setting can also store additional data.

E.g. whenever a point is selected from a continuation curve, the relevant data from
the s, x and v structures are also stored in that setting. This setting is required for some
initializers. The setting forward is set whenever a computation is activated.

These are the settings related to the continuation computation.

InitStepsize:
MinStepsize:
MaxStepsize:

MaxNewtonIters:

0.01
1e-05
0.1

237

238

MaxCorrIters:
MaxTestIters:
VarTolerance:
FunTolerance:
TestTolerance:
Adapt:

MaxNumPoints:
CheckClosed:

APPENDIX H. LIST OF SETTINGS

10
10
1e-06
1e-06
1le-05

300
50

Coordinates are added to the settings with prefix co_ and parameters are added with
prefix pa_. To select a parameter as active parameter, you address the setting with suffix
_select. The settings with suffix branch are used to select branch parameters. The
settings coord and parameters can be used to set all coordinates or all the parameters at
once respectively. The userfunctions are added with prefix uf_ combined with the label.

time:
COo_X:
co_y:
co_z:
coord:

parameters:
pa_alpha:
pa_beta:

pa_alpha_select:
pa_beta_select:
pa_alpha_branch:
pa_beta_branch:
Period:

uf_U1l:
uf_U2:
uf_U2:

ntst:
ncol:

amplitude:
eps:

false
false
false
false
false

false

false
false

40

1e-06
1e-06

239

bt_amplitude: 0.0001
whichNS: 1
bt_ttolerance: 1e-05

multipliers: true
eigenvalues: true

prclnput: 1
PRCenabled: false
dPRCenabled: false

Various initializers need some specialized settings. The most important of them are
the discretization settings (ntst and ncol) and the options to compute eigenvalues or
multipliers.

The names of all options for selecting to detect bifurcations consist of the prefix test_,
followed by the label of the curve and the label of the bifurcation.

test_EP_BP: true
test_LP_BT: true
test_H_BT: true
test_LC_BPC: true
test_LPC_R1: true
test_NS_R1: true
test_PD_R2: true
test_Hom_NS: true
test_EP_H: true
test_LP_ZH: true
test_H_ZH: true
test_LC_PD: true
test_LPC_CPC: true
test_NS_R2: true
test_PD_LPPD: true
test_Hom_DRS: true
test_EP_LP: true
test_LP_CP: true
test_H_HH: false
test_LC_LPC: true
test_LPC_LPNS: true
test_NS_R3: true
test_PD_GPD: true
test_Hom_DRU: true
test_H_GH: true

240

test_LC_NS:
test_LPC_LPPD:
test_NS_R4:
test_PD_PDNS:
test_Hom_NDS:
test_NS_LPNS:
test_Hom_NDU:
test_NS_CH:
test_Hom_test_3LS:
test_NS_PDNS:
test_Hom_test_3LU:
test_NS_NSNS:
test_Hom_SH:
test_Hom_NCH:
test_Hom_BT:
test_Hom_OFS:
test_Hom_0OFU:
test_Hom_IFS:
test_Hom_IFU:

true
true
true
true
true
true
true
true
true
true
true
false
true
true
true
true
true
true
true

APPENDIX H. LIST OF SETTINGS

The following settings are used for simulation (time integration):

Interval:
eventfunction:
InitStepSize_sim:
MaxStepSize_sim:
RelTolerance:
AbsTolerance:
Refine:
Normcontrol:

BDF:

MaxQOrder:

1
<disabled>
<automatic>
<automatic>
0.001

1le-06

1

false

false

5

Appendix 1

List of computations

The class file CompConfigurations.m constructs a list of all possible computations. A
computation is also referred to as a Computation Configuration (internally: CompConf).
Each computation represents either a simulation or an initializer plus continuation. Other
types of computations can be added in this file in future releases. E.g. the computation
of the Lyapunov exponents could be added as a new computation like as it is done in the
maps version of MATCONT.

This part of the code registers all simulations into the GUI:

obj.0rbitConfs{end+1} = SimConf (’oded45’, 4, true, 0); %default refine: 4
obj.0rbitConfs{end+1} = SimConf(’0de23’, 1,true, 1); J%default refine: 1
obj.0OrbitConfs{end+1} = SimConf(’0del13’, 1,true, 2); %default refine: 1
obj.0rbitConfs{end+1} = SimConf_odelb5s(1l,true, 3); %default refinel
obj.0OrbitConfs{end+1} = SimConf(’ode23s’, 1,true, 4); %default refine: 1
obj.0rbitConfs{end+1} = SimConf(’o0de23t’, 1,true, 5); %default refine: 1
obj.0rbitConfs{end+1} = SimConf (’ode23tb’, 1,true, 6); %default refine: 1
obj.0OrbitConfs{end+1} = SimConf (’0de78’, 1,false, 7); %default refine: 1
obj.0rbitConfs{end+1} = SimConf (’0de87’, 1,false, 8); %default refine: 1

For each available simulation, a ‘Connect’ simulation computation is added which is
used in the Homotopy methods. This computation performs a simulation but adds addi-
tional instructions for locating a suitable point on the simulation near a saddle.

for k = 1:length(obj.0rbitConfs)
obj.0OrbitConfs{end+1} = SimConf_Connect (’ConnectionSaddle’,
obj.0rbitConfs{k});
end

This part of the code registers all the initializers in the gui. Each computation performs
the initializer and the continuation. Some of the computations are specifically constructed
for a certain initializer. Other computations are more generic and can work with an
initializer passed along as argument during construction. Note that in the names of the

241

242 APPENDIX 1. LIST OF COMPUTATIONS

ContConf classes the curve label is placed first and then the point label placed second.
The addition of a pointlabel indicates that this computation does something specialized
for that pointlabel, e.g. adding an extra setting.

conflist{end+1} = ContConf_EP();

conflist{end+1} = ContConf_EP_BP();

conflist{end+1} = ContConf_EP_point(’H’, @init_H_EP);
conflist{end+1} = ContConf_EP_point(’LP’, Qinit_LP_EP);

Jneutral saddle equilibrium

conflist{end+1} = ContConf_EP_point(’NE’, Qinit_EP_EP);

conflist{end+1} = ContConf_LP_point(’BP’, Qinit_BP_LP);

conflist{end+1} = ContConf_LP_point(’CP’, @init_CP_LP);

conflist{end+1} = ContConf_LP_point(’ZH’, @init_ZH_LP);

conflist{end+1} = ContConf_LP_point(’BT’, Qinit_BT_LP);

conflist{end+1} = ContConf_LP_LP();

conflist{end+1} = ContConf_H(’H’, @init_H_H);

conflist{end+1} = ContConf_H(’GH’, @init_GH_H);

conflist{end+1} = ContConf_H(’HH’, @init_HH_H);

conflist{end+1} = ContConf_H(’ZH’, @init_ZH_H);

conflist{end+1} = ContConf_H(’BT’, @init_BT_H);

conflist{end+1} = ContConf_H(’NE’, @init_H_H); %Neutral Saddle Equilibrium
conflist{end+1} = ContConf_LC_H();

conflist{end+1} = ContConf_LC_PD()

conflist{end+1} = ContConf_LC_BPC();

conflist{end+1} = ContConf_LC_LC(); %LC, BPC and NC (neutral saddle Eq.)
conflist{end+1} = ContConf_LPC(’LPC’ , @init_LPC_LPC);

conflist{end+1} = ContConf_LPC(’BPC’ , @init_BPC_LPC);

conflist{end+1} = ContConf_LPC(’CPC’ , @init_CPC_LPC);

conflist{end+1} = ContConf_LPC(’LPNS’, @init_LPNS_LPC);

conflist{end+1} = ContConf_LPC(’LPPD’, @init_LPPD_LPC);

conflist{end+1} = ContConf_LPC(’R1’ , @init_R1_LPC);

conflist{end+1} = ContConf_LPC(’GPD’ , @init_GPD_LPC);

conflist{end+1} = ContConf_LPC_GH();

conflist{end+1} = ContConf_NS(’NS’ , @init_NS_NS);

conflist{end+1} = ContConf NS(’NC’ , @init_NS_NS); %Neutral Saddle Cycle

conflist{end+1}

ContConf_NS(’LPNS’ ,

@init_LPNS_NS);

conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}

conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}

conflist{end+1}
conflist{end+1}

conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}
conflist{end+1}

ContConf_NS(’R2’
ContConf_NS(’R3’

= ContConf_NS(’R4’
= ContConf_NS_HH();
= ContConf_NS_ZH();

ContConf_PD(’GPD’

= ContConf_NS(’PDNS’
= ContConf_NS(’CH’
= ContConf_NS(’R1’

3

b

ContConf_PD(’LPPD’
ContConf_PD(’PDNS’, @init_PDNS_PD);
ContConf_PD(’R2’, @init_R2_PD);
ContConf_PD(’PD’, @init_PD_PD);

= ContConf_BP();

ContConf_BPC() ;

= ContConf_Hom() ;

ContConf_Hom_LC();
ContConf_Hom_BT() ;

= ContConf_Hom_NCH();
= ContConf_Hom_HTHom() ;

, @init_PDNS_NS);
@init_CH_NS);
Q@init_R1_NS);
@init_R2_NS);
Q@init_R3_NS);
Q@init_R4_NS);

@init_GPD_PD);

, @init_LPPD_PD);

243

