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ABSTRACT

The main aim of this project is to learn a branch of Mathematics that
studies commutative rings with unity.
The central notion in commutative algebra is that of prime ideal. This
provides common generalization of primes of airthmetics and points of ge-
ometry. The geometric notion of concentrating attention near a point has as
its algebraic analogue the important process localizing a ring at prime ideal,
therefore result about lacalization can be thought in term of geometry.
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Chapter 1

Rings And Algebra

1.1 Introduction

In this course,we shall consider ring to be commutative and with unity.

Definition 1.1.1. Algebra
Let A be any ring.An A-algebra is a ring B together with a homomorphism
φ : A →B

Example 1.1.2. Let A be any non zero ring then f : Z →A defined by
f(n)=n.1A is a ring homomorphism so A become a Z-algebra

An A-subalgebra C of B is a subring C of B together with homomor-
phism φ:A → B
Let B be an A-algebra with a homomorphism φ: A → B and let S be sub-
set of B.The intersection of all A subalgebras ofB.It is denoted by A[S] and
called the A subalgebra generated by S.If B=A[S] then S is called a set
of algebra generators of B,and A[S] is the smallest subring of B containing
S.If B=A[S] for a finite set S then B is called finitely generated A-algebra

Let b ∈B.The subalgebra A[b] generated by the singleton {b} consists
precisely of all polynomial expression in b with coefficients in A,i.e.elements
of the form

∑∞
i=0 aix

i with n a non-negative integer and ai∈A for every i.

Definition 1.1.3. : Prime Ideal
An ideal P in A is prime if P 6=A and ab∈P⇒a∈P or b∈P

3



4 1.1. Introduction

Definition 1.1.4. Maximal Ideal
An ideal M in A is maximal if M 6=A and if there an ideal J of such that
M⊆J⊆A ⇒ M=J or J=A

Definition 1.1.5. Multiplcative Subset
A set S is said be multiplicative subset if 1∈S, a,b∈S⇒ab∈S

for example,the following are multiplicative subsets.
The multiplicative set 〈f〉 generated by an element f of A,the complimrnt
of a prime ideal is also an example of multiplicative set

Theorem 1.1.6. Every proper ideal in a ring A is contained in some max-
imal ideal.

Proof. Proof is by using Zorne’s Lemma,
Let F = { J | J is an ideal in A with I ⊆ J 6= A}.
Clearly I∈F⇒ F 6=φ
Let J1,J2⇒F and define J1≤J2⇔J1⊆J2 then (F,≤) is a poset.Let C be a
chain in F and define
T0=

⋃
T∈C T and T≤T0 ∀ T∈C.So T0 is an upper bound for C and T0 is

an ideal in A containing I and also we note that T0 can not be equal to
A therefore T0∈F and T0 is a upper bound for C.Now using Zorn’s lemma
there exist a maximal element say M in F and now it is easy to show M is
maximal ideal in A by using maximality of M in F

Proposition 1.1.7. Let S be a subset of a ring A and I be an ideal of A
disjoint from S.Then the set of ideals in A containing I and disjoint from S
contain a maximal element and if S is multiplicative then every such maxi-
mal element is prime

Proof. : The set F of ideals of A containing I disjoint from S is non empty
because it contains I.Now by previous theorem we define
T0 =

⋃
T∈C T where C is a chain in F and T0 ∈ F otherwise some element

of S lies in T0 and hence in hence in T for some T which is a contradiction
to the defination of F then by Zorn’s lemma F has maximal element
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Now assume S is multplicative subset of A and let M be maximal element
in F Let bb′∈M and if b /∈M then M⊂ M + (b)
⇒ M + (b) /∈F , therefore S contains an element of M + (b) say, f=c+ab
where c∈M ,a∈A similarly if b′ /∈M then S contain an element f′=c′+a′b,
where c′ ∈M ,a′∈A
Now we have ff′=cc′+abc′+a′b′c+aba′b′ ∈M which contradicts to ff′∈S.Hence
M is prime ideal in A

1.2 Radical

Let A be a ring and I be an ideal of A then radical of I is
{f ∈ A : f r ∈ I, some r ∈ N}

Remark 1.2.1. Prime ideals are radical

Proposition 1.2.2. Let I be an ideal in a ring A then,
(a) The radical of I is an ideal
(b) rad(rad(I))=rad(I)

Proof. First part is easy i shall prove second one.Let a ∈rad(I) then ar ∈I
⇒ (ar)s∈I for some r,s ∈N
⇒ ar∈ rad(I)
⇒ a∈rad(rad(I))
Conversely,let a∈rad(rad(I)) then ar∈rad(I)
⇒ (ar)s∈I and so at∈I for some t∈N which means a∈rad(I)

Remark 1.2.3. If I and J be two radical then I∩J is also a radical but
I+J need not be an radical,for example let I = (X2−Y ) and J = (X2 +Y )
both are prime ideals in K[X,Y ] then I + J = (X2, Y ) which is not radical
because it contains X2 but not X

Proposition 1.2.4. The radical of an ideal I is equal to the intersection of
prime ideals containing it.In perticular,the nilradical of a ring A is equal the
intersection of the prime ideals of A

Proof. Claim: rad(I)=
⋂
P ,where I⊆P .If I=A then there is no prime ideal

and set of all prime ideal is ∅ and then intersection over empty set is full
ring then we are done.Let I⊆A then rad(I)

⋂
P where I⊆P because prime

ideals are radical and rad(I) is the smallest ideal containg I
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Conversely,let f/∈rad(I) and let S={1,f,f2......} be multiplicative set and we
know rad(I) is an ideal that contain I and rad(I)∩S=φ and then by prop1
∃ a prime ideal say P disjoint from S, therefore f /∈P and hence f does not
belong to the intersection of prime ideals.Hence we are done

Definition 1.2.5. The Jacobson radical J of a ring is the intersection of
the maximal ideals of the ring

J(A)=
⋂
{m |m is maximal ideal in A}

A ring is local if it has exactly one maximal ideal,for such a ring,the Jacob-
son radical is m

Proposition 1.2.6. An element c of A is in the jacobson radical of A if
and only if 1-ac is a unit for all a∈A

Proof. : We prove the contrapositive,∃ a maximal ideal M such that c/∈M iff
∃ a∈A such that 1−ac is not a unit.Let 1−ac is not a unit then (1−ac)⊂M
and 1− ac ∈(1− ac) then c/∈M otherwise,
1 = 1− ac+ ac∈M
⇒1∈M that is not possible
Conversely,let c/∈M then M⊂M + (c)
⇒M + (c)=A,since M is maximal ideal,therefore 1 = m+ ac ,m∈M ,a∈A
⇒ 1− ac∈M
⇒ 1− ac is not a unit

Theorem 1.2.7. Prime Avoidance
Let P1,P2,....,Pr,r≥1 be ideals in A such that Pi are prime ideals for i≥3.If
an ideal I is not contained any of Pi then I is not contained in the union of
Pi

Proof. :I shall prove it by induction on r.The idea is to find an element in I
but not in any of Pi’s
For r = 1 nothing to prove.Next suppose r≥2 and for each i choose

zi∈I\
⋃
Pj where i6=j

Where the set on right is nonempty by inductive hypothesis.We can assume
zi∈Pi for all i,otherwise ,if some zi does not lie in Pi, then zi∈I\

⋃
Pi for all

i = 1, 2, .., r.
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Now put

z = z1....zr−1+zr

Then z in I but not in any of Pi’s.If z is in any of Pi for some i≤r− 1 then
zr∈Pi which contradict to zr∈Pr.Now suppose z is inPr.Then z1...zr−1 is in
Pr
If r is 2,we are done.If r≥3,then,since Pr is a prime ideal,some zi, i≤r − 1
is in Pr,a contradiction so our assumption zi∈Pi for all i is wrong.So we are
done.

1.3 Contraction and extension ideals

Let φ :A →B be a ring homomorphism.For an ideal b of B, φ−1(b) is an
ideal in A called the contraction of b to A and denoted by bc,and for an ideal
a of A the ideal in B generated by φ(a) is called the extension of a to B and
denoted by ae,when φ is surjective then φ(a) is an ideal in B and when A
is subring of B then bc = b ∩ A
Properties of contraction and extension of ideals
Let a,a′ be ideals of A and b,b′ be ideals of B then
(a+ a′)e = ae + a′e , (aa′)e = aea′e , (b ∩ b′)c = bc ∩ b′c , rad(bc) = rad(b)c

Theorem 1.3.1. Correspondence Theorem
Let f : A→ B be a ring homomorphism then
(1)for any ideal I ofA we have I ⊆ Iec and Iece = Ie. For any ideal J of
B we have Jce ⊆ J and Jc = Jcec

(2) There is a bijection between contracted ideals in A and extended ideals
in B

Proof. Let r ∈ I then f(r) ∈ Ie so r ∈ Iec.The ideal Jce generated by
f(Jc).If r ∈ Jc then f(r) ∈ J ,so the ideal generated by f(Jc) is contained in
the ideal J .Since I ⊆ Iec we get Ie ⊆ Iece and since Iece ⊆ Ie, we conclude
that Iece = Ie , similarly we can prove Jcec = Jc

(2) Let C denote the set of contracted ideal in A and E denote the set of
extented ideals in B and every in C is of the form Jc for some ideal J of B
and every ideal of E is of the form Ie for some ideal I of A.Since Iece = Ie

and Jcec = Jc.Now the map ϕ : C → E given by ϕ(I) = Ie is clearly
bijective with the given condition above
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Remark 1.3.2. If J is a prime ideal of B then Jc is a prime ideal A but if
I is prime idel of A then Ie need not be prime ideal for example take identity
map Z→ Q then for any p prime pZ is ideal of Z but (pZ)e = Q which is
not prime in Q

Theorem 1.3.3. Chinese Remainder Theorem Let A be a ring and I1, I2, ...., Ik
be ideals of A such that Ii and Ij are coprime for i 6= j then,

A/I1 ∩ I2 ∩ ... ∩ Ik ∼= A/I1 × .....×A/Ik

Proof. I shall prove it for k = 2 ,one can show for finitely many such ideals
Define a map φ;A/IJ → A/I ×A/J by

φ(x+ IJ) = (x+ I, x+ J) ,φ is well define since IJ is an ideal of A and let
x+ IJ = y + IJ

x− y ∈ IJ = I ∩ J , since I, J are co prime
⇒ x+ I = y + J, x+ J = y + J therefore, φ is well define
φ is one one clearly,for onto let (x+ I, y + J) ∈ A/I ×A/J

Now we want to find α ∈ A such that φ(α+ IJ) = (x+ I, y + J)
Since I, J co prime therefore 1 = a+ b, a ∈ I, b ∈ J , now define

α = ay + bx then we have

φ(α+ IJ) = (α+ I, α+ J)

= (bx+ I, ay + J)

= (x+ I, y + J)

therefore φ is onto, and also clearly homomorphim so we are done



Chapter 2

Noetherian Rings

Proposition 2.0.1. T.F.A.E on a ring A
(a) Every ideal in A is finitely generated
(b) Every ascending chain of ideals I1 ⊂ I2 ⊂..... eventually become constant
(c) Every non empty set of ideals in A has a maximal element

Proof. (a)⇒ (b) Let I1 ( I2 ( ........ be ascending chain of ideals of A.Now
set I =

⋃∞
i=1 Ii,then I is an ideal of A therefore I is finitely generated say

I = (x1, x2, ..., xn) then ∃m such that xi ∈ Im for all i so xi in I ⇒ xi ∈ Im
then we are done
(b)⇒ (c)
Let F = {Ii, i ∈ ∧} be a non empty family of non empty family of ideals
of A .Pick any index i1 and look at Ii1 if this is maximal in F then we
are done.If not then choose i2 ∈ ∧ such that Ii1 ( Ii2 if this one is maxi-
mal then we are done if not repeat this process after finite stage it stop surely

(c)⇒ (a) Let I be an ideal of A.Consider the family of F of all finitely
generted ideals of I then F 6= φ since (0) ∈ F ,then F has maximal element
say I0 = (x1, ...., xn) .If I 6= I0 then pick x ∈ I but not in I0 then I1 = I0+(x)
⇒ I1 ∈ F which is a contraction since I0 is max so we are done

Definition 2.0.2. A ring A is said to be noetherian if it is satisfies the
above equivalent condition

Proposition 2.0.3. Let A be a ring.The following conditions on an A-
module M are equivalent
(a) Every submodule of M is finitely generated

9
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(b) Every ascending chain of submodules M1 (M2 (..... eventually become
constant
(c) every non empty set of submodules of M has A maximal element

Proof. Essentially same as the prop 2.0.1

Theorem 2.0.4. Hilbert Basis Theorem If A is Noetherian , then A[x]
is Noetherian

Proof. LetI be an ideal of A[x].We shall show I is finitely generated.Choose
a sequence f1, f2, ... ( I as follows,let f1 be non zero element of least degree
in I.For i ≥ 1, if (f1, ...., fi) 6= I then choose fi+1 to be an element of least
degree amomg those in I but not in (f1, ...., fi) otherwise if I = (f1, ...., fi)
then we are done.
Let aj be the leading coefficient of fj ,since A is noetherian then ideal
J = (a1, a2, ....) is finitely generated,so J = (x1, ...., xm) and again J can
be written J = (a1, ...., am).Now we claim I = (f1, ...., fm)
Otherwise, consider fm+1 ·am+1 ∈ J , so we can write am+1 =

∑m
j=1 ujaj for

some uj ∈ A.Define

g =
∑m

j=1 ujfjx
defm+1−degfj ∈ (f1, ..., fm)

and notice that this is of the same degree as fm+1 ,with the same initial
term.The difference fm+1 − g is in I but not (f1, ..., fm), and has degree
less than that of fm+1.But fm+1 was something of minimal degree with this
property,so we have contradiction

Remark 2.0.5. Converse of the above theorem is also true and result also
true for finitely many variables

Example of Noetherian rings
Any field , PID,finite ring,Z and the ring Z[x1, x2, ...] is not noetherian be-
cause we have non terminating ascending chain

Subring of noetherian need not be noetherian
Take above infinite variable ring which is a subring of its field of fraction
and field of fraction of a ring is noetherian
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Lemma 2.0.6. Nakayama’s Lemma Let A be a ring and I be an ideal
in A.Let M be an A- module and assume that I is contained in all maximal
ideal of A and M is also finitely generated then

(a) If M = IM then M = 0 (b) If N is a submodule of M such that
M = N + IM then M = N

Proof. Suppse M is non zero,choose a minimal gener ating set x1, x2, ..., xn
for M .Now x1∈ ∈ M so x1 ∈ IM therefore , x1 = a1m1 + ... + anmn ,
ai ∈ I,mi ∈M
now each mi can be written in form of xi
⇒ (1− a1)x1 = a2x2 + ....+ anxn , but (1− a1) is unit in A therefore x1 is
a linear combination of remaining xi which contradict minimality of gener-
ating set for M .Hence M is zero module

(b) Since N is submodule of M then M/N makes sense then we note

I(M/N) = {
n∑
i=1

ai(mi +N) | ai ∈ I,mi ∈M}

= (IM +N)/N

= M/N

then by part one

M/N = 0

⇒M = N

Note 2.0.7. Let A be a local ring with maximal ideal m.Let K = A/m be
the residue field of A. Let M be finitely generated A- module then m ⊆
Ann(M/mM)

Now we note that M/mM is a vector space over K where scalar multi-
plication is define as follows

A/m×M/mM →M/mM
(x+m, y+mM) 7→ xy+mM and this is well define can be proved by using
m ⊆ Ann(M/mM)
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Proposition 2.0.8. Let A be local ring with maximal ideal m and residue
field K = A/m. And let M be finitely generated module over A the action
of A on M/mM factor through K and elements a1, a2, ..., an of M generate
it as an A module iff the elements a1 + mM, ...., an + mM spanM/mM as
a vector space over K

Proof. If a1, .., an generates M then their images generate the vector space
M/mM
Conversely,suppose that a1 +mM, ..., an +mM span M/mM and let N be
a submodule of M then the composite map N →M →M/mM is onto and
so M = N +mM then by lemma M = N

Proposition 2.0.9. Let A be noetherian local ring with maximal ideal m.
Elements a1, ..., an of m generate m as an ideal if and only if a1+m2, ..., an+
m2 generate m/m2 as a vector space over A/m. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the
vector space m/m2.

Proof. Because A is noetherian som is finitely generated then apply previous
proposition for M = m we are done

Definition 2.0.10. Let A be a noetherian ring.
(a) The height ht(p) of a prime ideal p in A is the greatest length d of a
chain of distinct prime ideals p = pd ⊇ ..... ⊇ p0

(b) The (krull) dimension of A is sup{ht(p) | p ⊂ A, p is prime ideal}

Example 2.0.11. The hight of a non-zero prime ideal in PID is one because
(0) = p0 ( (x) = p1, so such a ring has krull dim one unless it is not field

Note 2.0.12. It is sometimes convenient to define the Krull dimension of
the zero ring to be −1
Let A be an integral domain then dim(A) = 0 iff (0) is maximal ideal of A
iff A is field

Proposition 2.0.13. Every set of generators for a finitely generated ideal
contains a finite generating set.

Proof. Let S = {S1, S2, ......} be a set of generators for an ideal I and suppose
that I is generated by a finite set {a1, ...., an}. Each ai lies in the ideal
generated by a finite subset Si of S, and so I is generated by a finite subset
∪Si of S .Since the set {a1, ...., an} ⊆ ∪Si
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Theorem 2.0.14. Krull Intersection Theorem Let I be an ideal in a
noetherian ring A. If I is contained in all maximal ideals of A, then⋂
n≥ I

n = (0)

Proof. We shall show that, for every I in a noetherian ring A⋂
n≥1 I

n = I
⋂
n≥1 I

n

Since A is noetherian ,let a1, a2, ..., ar generate I and
In = {g(a1, ..., ar) | g ∈ A[x1, ...xr], g is homogeneous of degree n}
Let Sm denote the set of homogeneous polynomials f of such that f(a1, ..., ar) ∈⋂
n≥1 I

n and let J be an ideal inA[x1, .., xr] generated by the set
⋃
m≥1 Sm.Since

A[x1, .., xr] is noetherian so J is finitely generated and generated by the srt
{f1, ..., fs} of elements of

⋃
m≥1 Sm.Let di = degfi and d = max di

Let b ∈
⋂
n≥1 I

n then b ∈ Id+1, and so b = f(a1, ..., ar) for some homo-
geneous polynomial f of degree d + 1 therefore by definition f ∈ Sd+1 ⊆ J
so f = g1f1 + ....+ gsfs for some gi ∈ A[x1, ..., xn]
As f and the fi are homogeneous, we can omit from each gi all terms not of
degree degf − degfi, since these terms cancel out. In other words, we can
choose the gi to be homogeneous of degree degf − degfi = d + 1 − di > 0,
in perticular the constant term of gi is zero and so gi(a1, ..., ar) ∈ I.Now
b = f(a1, ..., ar) =

∑
i gi(a1, .., ar)fi(aa, ..., ar) ∈ I

⋂
In and this complete

the our requirement
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Chapter 3

Rings of fraction

Let S be a multiplicative subset of a ring A. Define a relation ≡ on A× S
as follows , for a, b ∈ A, s, t ∈ S

(a, s) ≡ (b, t)

iff ∃u ∈ S such that (at− bs)u = 0
This is an equivalence relation
Write a/s for the equivalence class containing (a, s) and define addition and
multiplication of equivalence classes according to the rules

a/s+ b/t = (at+ bs)/st

(a/s) · (b/t) = (ab/st)

The operations addition and multiplication defined above are well define.Now
first we shall prove multiplication is well define
Let (a1, s1) ≡ (a2, s2) and (b1, t1) ≡ (b2, t2) then for some u, v ∈ S we have
(a1s2 − a2s1)u = 0 and (b1t2 − b2t1)v = 0
Want to show (a1b1, s1t1) ≡ (a2b2, s2t2)

[(a1b1)(s2t2)− (a2b2)(s1t1)]uv = (a1s2 − a2s1)ub1t2v + (b1t2 − b2t1)va2su

= 0 + 0 = 0

Similarly we can show addition is also well define
Now we define a set S−1A = {a/s : a ∈ A, s ∈ S} and this is ring with the

15
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operation defined above with identity 1 = s/s, ∀s ∈ S .We call S−1A the
ring of fractions of A with respect to S
If A is an integral domain and S = A \ {0} then S−1A is the familiar field
of fractions of A

Let f : A→ S−1A , where f(x) = x/1 then clearly f is a ring homomor-
phism
Observation if A is an integral domain and S any multiplicatively closed
subset not containing 0 thenf is injective.
proof Suppose A is an integral domain, 0 /∈ S ⊆ A, and S multiplicatively
closed. Let x1, x2 ∈ A such that x1/1 = x2/1,then (x1, 1) ≡ (x2, 1) ,so

(x1 − x2)u = 0

for some u ∈ S

⇒ x1 − x2 = 0

, since A is an integral domain and u 6= 0 thus f is injective

S−1A has following universal property

Theorem 3.0.1. Let g : A→ B be a ring homomorphism such that g(s) is
a unit in B for each s ∈ S.
Then there is a unique homomorphism h such that this diagrame

S−1A

A B

hf

g

commutes

Proof. Define h : S−1A→ B by

h(a/s) = g(a)g(s)−1

where a ∈ A ,s ∈ S . Now i will show h is well define
Suppose a/s = a′/s′ ,then

(as′ − a′s)t = 0
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for some t ∈ S thus
0 = g(0) = g((as′ − a′s)t)

0 = [g(a)g(s′)− g(a′)g(s)]g(t)

and g(t) is unit in B , then

g(a)g(s′)− g(a′)g(s) = 0

and since g(s), g(s′) are unit in B and this prove that h is well define map
also we note as g is ring homomorphism so is h
Further if a ∈ A then
(h ◦ f)(a) = h(a/1) = g(a)g(1)−1 = g(a) so that the diagrame

S−1A

A B

hf

g

commutes
Suppose also that h′ : S−1A → B is a ring homomorphism such that this
diagrame

S−1A

A B

h′f

g

commutes and for all s ∈ S , g(s) is unit in B,then
h′(a/s) = h′(a/1 · 1/s) = h′(a/1)h′(1/s) .But 1/s is unit in S−1A with
inverse s/1 , so that h′(1/s) is a unit in B and
h′(1/s) = [h′(s/1)]−1

Hence
h′(a/s) = h′(a/1)[h′(s/1)]−1 = g(a)g(s)−1 = h(a/s) and this proves h is
unique with this property

3.1 Localization

Let P be a prime ideal of A , and put S = A\P which is multiplicatively
closed , form AP = S−1A and put M = {a/s ∈ AP : a ∈ P}
Claim AP is a local ring with unique maximal ideal M . The process of
passing from A to AP is called localization at P . e.g. If A = Z and P = pZ
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where p is a prime integer, then localization at P produces AP = {a/b :
a, b ∈ Z, p - b}
Proof of claim We first prove ∀b ∈ A,∀t ∈ S , b/t ∈M ⇒ b ∈ P
Suppose
b/t = a/s where b ∈ A, a ∈ P and s, t ∈ S . Then (at − bs)u = 0 for some
u ∈ S

So , (at− bs) ∈ S since P is prime, 0 ∈ P and u /∈ P . Hence
bs = at − (at − bs) ∈ P . But s /∈ P , so b ∈ P , and above sub claim is
proved. By subclaim, certainly 1 = 1/1 /∈ M , (since 1 /∈ P ) so M 6= AP
and M is ideal of AP
Now if b ∈ A, t ∈ S and b/t /∈ M , then, by definition of M , b /∈ P , so
b ∈ S , yielding t/b ∈ AP , where b/t is a unit of AP , therefore M is the set
of all unit of AP so M is maximal ideal so AP is local ring

Example 3.1.1. S−1A is the zero ring iff 0 ∈ S
Solution :⇐ If 0 ∈ S then, for all a, b ∈ A, s, t ∈ S

a/s = b/t

since (at− bs)0 = 0 ,so that all elements of S−1A are equal
⇒ If S−1A contains only one element then (0, 1) ≡ (1, 1) so that
0 = (0 · 1− 1 · 1)t = −t for some t ∈ S so that 0 = t ∈ S

Proposition 3.1.2. For an ideal I of A , S−1I is a proper ideal of S−1A⇔
I ∩ S = φ.Further if P is a prime ideal of A with P ∩ S = φ then
(1) For a ∈ A, s ∈ S we have a/s ∈ S−1P ⇔ a ∈ P
(2) S−1P is a prime ideal of S−1A

Proof. If s ∈ I ∩ S then 1 = s/s ∈ S−1I, so S−1I is not proper ideal , so

I ∩ S = φ

Conversely,suppose that S−1I is not proper ideal of S−1A then 1 ∈ S−1I so
1/1 = a/s with a ∈ I, s ∈ S

⇒ at = st

for some t ∈ S .Also at ∈ I since I is an ideal ,therefore st ∈ I ∩ S 6= φ
(1) If P is prime ideal disjoint from S and if a/s ∈ S−1P then a/s = p/u for
some p ∈ P, u ∈ S therefore, a·u·t = s·p·t ∈ P for some u, s, t ∈ S but ut /∈ P

⇒ a ∈ P
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since P is a prime ideal

(2) Let (a/s)(b/t) ∈ S−1P

⇒ ab/st ∈ S−1P

then by previous part ab ∈ P so either a ∈ P or b ∈ P
⇒ either a/s ∈ S−1P or b/t ∈ S−1P .Hence S−1P is prime ideal

Example 3.1.3. Every ideal of S−1A is of the form S−1I for some ideal I
of A
Let J be an ideal of S−1A . Put I = {x ∈ A : x/1 ∈ J}.
Claim J = S−1I
If a/s ∈ J then a/1 = s/1 · a/s ∈ J so a ∈ I implies a/s ∈ S−1I.
Conversely, a/s ∈ S−1I then a ∈ I so a/1 ∈ J therefore (1/s)(a/1) = a/s ∈
J

Theorem 3.1.4. The map P 7→ S−1P is bijective from the set of prime
ideals of A and disjoint from S onto the set of all prime ideals of S−1A

Proof. If P is prime then S−1P is prime. Let P,Q be prime ideals of A
disjoint from S . If P ⊆ Q then S−1P ⊆ S−1Q
Conversely, suppose S−1P ⊆ S−1Q then for p ∈ P we have p/1 ∈ S−1P

⇒ p/1 ∈ S−1Q

⇒ p ∈ Q

Hence P ⊆ Q .This proves that P ⊆ Q ⇔ S−1P ⊆ S−1Q.Consequently
P = Q⇔ S−1P = S−1Q, therefore the given map is injective.
Let P be prime ideal of S−1A then P = S−1P1 for some ideal P1 of A and
P1 is prime since S−1P1 is prime then we are done

Proposition 3.1.5. Let S be a multiplicative subset of the ring A, and con-
sider extension I 7→ Ie = S−1I and contraction I 7→ Ic of ideals with respect
to the homomorphism φ : A→ S−1A. Then
Ice = I for all ideals of S−1A and P ec = P , if P is a prime ideal of A and
disjoint from S

Proof. Let I be an ideal in S−1A then Ice ⊆ I . Now b ∈ I then b = a/s, a ∈
A, s ∈ S
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So a/1 = s(a/s) ∈ I this implies a ∈ Ic . Hence b ∈ Ice
Now let P be prime ideal of A then P ⊆ P ec . Let a ∈ P ec so that a/1 = a′/s
for some a′ ∈ P, s ∈ S . Then (as − a′)t = 0 for some t ∈ S and therefore
ast ∈ P implies a ∈ P since st /∈ P and P is prime and this complete the
proof
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Modules of fractions

Let A be a ring, S a multiplicatively closed subset of A , and M be an
A-module.
Define a relation ≡ on M × S = {(m, s)|m ∈ M, s ∈ S} by, for m,m′ ∈
M, s, s′ ∈ S

(m, s) ≡ (m′, s′)
iff ∃t ∈ S, t(sm′ − s′m) = 0
If m ∈M and s ∈ S then write m/s = equivalence class of (m, s) and put

S−1M = {m/s : m ∈M, s ∈ S}

Define addition and scalar multiplication on S−1M by, for m,m′ ∈M, s, s′ ∈
S, a ∈ A, t ∈ S
(m/s) + (m′/s′) = (sm′+ms′)/ss′
(a/t)(m/s) = am/ts

And S−1M is an S−1A-module, referred to as the module of fractions
with respect to S

Since the mapping a 7→ a/1 is a ring homomorphism from A → S−1A ,
by restriction of scalars we have
S−1M is an A-module with scalar multiplication (∀a ∈ A,m ∈M, s ∈ S)
a · (m/s) = (a/1)(m/s) = am/s

21
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Notation
Let M be an A-module. (1) Write MP = S−1M if S = A \ P where P is a
prime ideal of A

Think S−1 as an “operator” which manufactures S−1A-modules from
A-modules.
Also S−1 “operates” on module homomorphisms. Let u : M → N be an
A-module homomorphism.
Define , S−1u : S−1M → S−1N by

m/s→ u(m)/s ,m ∈M, s ∈ S

S−1u is well define as u is an A module homomorphism .Now we observe
S−1 preserve addition and multiplication

(S−1u)(m1/s1 +m2/s2) = (S−1u)((m1s2 +m2s1)/s1s2)

= u(m1s2 +m2s1)/s1s2

= [s2u(m1) + s1u(m2)]/s1s2

= u(m1)/s1 + u(m2)/s2

Similarly we can show S−1 preserve scalar multiplicatation
Hence S−1u is S−1A module homomorphism
(and also, by restriction of scalars, an A-module homomorphism).

Further if M1
u−→M2

v−→M3 are A-module homomorphisms, then,
for all x ∈M1, s ∈ S
[S−1(v ◦ u)](x/s) = (v ◦ u)(x)/s = v(u(x))/s

= (S−1v)(S−1u)(x/s)

= [(S−1v) ◦ (S−1u)(x/s), which shows S−1(v ◦ u) = (S−1v) ◦ (s−1u)

Theorem 4.0.1. Suppose M1
f−→M

g−→M2 be exact sequence of A- modules
at M . Then

S−1M1
S−1f−−−→ S−1M

S−1g−−−→ S−1M2

is exact sequence of S−1A modules at S−1M
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Proof. Since the given sequence is exact so we have g ◦ f = 0 the zero
homomorphism,therefore
(S−1g ◦ S−1f) = S−1(g ◦ f) = S−1(0) = 0 , which proves
Im(S−1f) ⊆ ker(S−1g) . Suppose m/s ∈ ker(S−1g) , so g(m)/s is the zero
of S−1M2 . Hence (g(m), s) ≡ (0, 1) , so 0 = tg(m) = g(tm), for some t ∈ S
, yielding tm ∈ kerg = Imf .

Hence ,tm = f(m′) for some m′ ∈M1 ,and (S−1f)(m′/st)
= f(m′)/st = tm/ts = m/s , proving m/s ∈ Im(S−1f) .
Thus ker(S−1g) ⊇ Im(S−1f) , completing the proof exactness at S−1M

Example 4.0.2. Let M be an A-module. For h ∈ A, let Mh = S−1
h M where

Sh = {1, h, h2, ....}. Then every element of Mh can be written in the form
m/hr,m ∈M, r ∈ N and m/hr = m′/hr′ if and only if hN (mhr′−m′hr) = 0
for some N ∈ N

Proposition 4.0.3. Let M be a finitely generated A-module. If S−1M = 0,
then there exists an h ∈ S such that Mh = 0.

Proof. S−1M = 0 means that, for each x ∈ M , there exists an sx ∈ S such
that sxx = 0. Let x1, ...., xn generate M . Then define h = sx1 .....sxn in S
and observe hM = 0 by using M is finitely generated. Now let a/s ∈ Mh

then a/s = ha/hs = 0 , therefore Mh = 0

Proposition 4.0.4. Let M be an A module then the canonical map

M →
∏
{Mm : m is maximal ideal in A}

is injective

Proof. Let x ∈M map to zero in all Mm then we shall show x is zero.
Here Mm = S−1

m M,Sm = A�m
Let I = Ann(x) = {a ∈ A : ax = 0} is an ideal of A.
Because x maps to zero in all Mm so ∃s ∈ Sm such that sx = 0, s /∈ m, s ∈ A
⇒ s ∈ I but s /∈ m and therefore I is not contained in m and this is true
for all m so I is equal to A itself
⇒ 1 ∈ Ann(x), therefore x = 1 · x = 0 so given map is injective

Proposition 4.0.5. Let A - module M = 0 if Mm = 0 for all maximal ideal
m

Proof. Let x ∈ M and I = Ann(x) = {a ∈ A : ax = 0} , then I is an ideal
of A , since Mm = 0 for all m so ∃s ∈ A�m such that sx = 0 , doing same
as previous proposition we get x = 0
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Chapter 5

Integral Extentions

Let A be a subring of B.An element b of B is said be integral over A if it
is a root of a non zero monic polynomial with coefficients in A it means it
satisfies the equaton

bn + a1b
n−1 + ....+ an = 0, ai ∈ A. Such an equation is called an integral

equation of b over A

Proposition 5.0.1. For an element b of B , T.F.A.E

(1) b is integral over A
(2) A[b] is finitely generated as an A module
(3) There exist a subring C of B containing A[b] such that C is finitely
generated as an A module
(4) There exist a finitely generated A submodule M of B such that bM ⊆M
and annB(M) = 0

Proof. (1) ⇒ (2) Let bn + a1b
n−1 + .... + an = 0, ai ∈ A be an integral

equation of b over A . Let M be an A - submodule of A[b] generated by
1, b, b2, ...., bn−1 . We claim that br ∈ M for every r ≥ 0 .This is clear for
r ≤ n− 1 . If r ≥ n then multiplying the integral equation by br−n we get
br = −(a1b

r−1 + a2b
r−2 + ..+ anb

r−n) ∈M
Therefore br ∈ M for all non-negative and thus M = A[b]. Thus A[b] is
finitely generated as an A module

(2)⇒ (3) Take C = A[b]

25
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(3)⇒ (4) Take M = C ,and M has the property bM ⊆M since y ∈ bM
implies y = bm ∈ M for some m ∈ M , and note that 1 ∈ C implies that
annB(C) = 0

(4) ⇒ (1). Let M be an A module in B with a finite set of generators
{e1, ...., er} such that bM ⊆M and annB(M) = 0 then for all 1 ≤ i ≤ r
bei =

∑r
j=1 aijej for some aij ∈ A , and we can rewrite these equation as∑r

j=1(bδij−aij)ej = 0 where δij is Kronecker delta and put d = det(bδij−aij)
then using cramer rule we get integral equation for b over A

Corollary 5.0.2. Let b1, ..., br ∈ B be integral over A . Then A[b1, ....., br]
is finitely generated as an A-module

Proof. For r = 1 , we are done by previous proposition .Inductively assume
that B

′
= A[b1, ..., br−1] is finitely generated as an A-module .Since br is

integral over A , it also integral over B
′

. Now B
′
[br] is finitely generated as

a B
′

module by the case r = 1 . Now if x1, ...., xm are A-module generators
of B

′
and y1, .., yn are B

′
-module generators of B

′
[br] then the set {xiyj :

1 ≤ i ≤ m, 1 ≤ j ≤ n} generators of B
′
[br] as an A-module

Corollary 5.0.3. The set A
′

of elements of B which are integral over A is
a subring of B containing A

Proof. Clearly A ⊆ A′ . If b1, b2 ∈ A
′

then by previous corollary A[b1, b2] is
finitely generated as an A-module . Since b1 + b2 and b1 · b2 ∈ A[b1, b2] then
by first proposition both are integral over A

Note 5.0.4. The subring A
′

defined above is called the integral closure of
A in B . We say B is integral over A if A

′
= B , and that A is integrally

closed in B if A
′

= A

Proposition 5.0.5. Let A ⊆ B ⊆ C be integral extentions . If C is integral
over B and B is integral over A then C is integral over A

Proof. Let c ∈ C and let cn + b1cn−1 + .....+ bn = 0 be an integral equation
of c over B . Let B

′
= A[b1, ..., bn] . Then c is integral over B

′
then B

′
[c]

is finitely generated as an B
′

module by one of the above result .Therefore
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B
′
[c] is finitely generated as an A-module by using B is integral over A ,

and so c is integral A

Proposition 5.0.6. Let A be an integral domain with field of fractions F ,
and let E be a field containing F . If x ∈ E is algebraic over F then there
exist a non zero d ∈ A such that d · x is integral over A

Proof. Since x is algebraic over F we have

xn + a1x
n−1 + ....+ an = 0

where ai ∈ F . Now using common dinominator, ai = bi/d,∀i, 1 ≤ i ≤ n .So
bi = dai ∈ A,∀i . Now

dnxn + a1d
nxn−1 + ....+ and

n = 0

this implies
(dx)n + a1d1(dx)n−1 + ...+ and

n = 0

where a1d1, .., and
n ∈ A. So d.x is integral over A

Definition 5.0.7. An integral domain A is said be integrally closed or nor-
mal if it is equal to its integral closure in its field of fraction F it mean if
x ∈ F , x is integral over A implies x ∈ A

Proposition 5.0.8. Every unique factorization domain is integrally closed.

Proof. Let A be UFD . An element of the field of fractions of A not in A
can be written a/b with a, b ∈ A and b divisible by some prime element p
not dividing A , then

(a/b)n + a1(a/b)n−1 + ...+ am = 0

where ai ∈ A
⇒ a1ba

n−1 + ...+ amb
n = −an

then p divides every term in LHS and hence an but p does not divide a so
we got a contradiction

Proposition 5.0.9. Let A ⊆ B be rings, and let A
′

be the integral closure
of A in B. For every multiplicative subset S of A, S−1A

′
is the integral

closure of S−1A in S−1B
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Proof. Let b/s ∈ S−1A
′

with b ∈ A′ and s ∈ S , then
bn + a1b

n−1 + ....+ an = 0 then , b/s is integral over S−1A this implies that
S−1A

′
is contained in closure of S−1A

Conversely let b/s, b ∈ B, s ∈ S be integral over S−1A then
(b/s)n + a1/s1(b/s)n−1 + ....+ an/sn = 0 . Now multiplying snsn1 .....s

n
n and

observe that s1s2....snb ∈ A
′

and therefore
b/s = (s1s2....snb)/(s1s2....sns) ∈ S−1A

′

Corollary 5.0.10. A ⊆ B be rings and S a multiplicative subset of A. If
A is integrally closed in B, then S−1A is integrally closed in S−1B.

Proof. A is integrally closed in B implies A
′

= A then by proposition
S−1A

′
= S−1A

5.1 Prime ideal in an integral extention

Proposition 5.1.1. Let B be an integral domain and the extension A ⊆ B
is integral . Then

(1) If I is non zero ideal of B then A ∩ I 6= φ

(2) An element a ∈ A is a unit of A⇔ it is a unit in B

(3) A is field ⇔ B is field

Proof. (1) Let 0 6= b ∈ I and let bn + a1b
n−1 + .... + an = 0 be an itegral

equation of b over A .Then choose n to be the least such that an 6= 0 and
we see an ∈ I this implies an ∈ A ∩ I since an ∈ A

(2) Suppose a is a unit in B . Let b = a−1 ∈ B and
bn +a1b

n−1 + ....+an = 0 where ai ∈ A , (a−1)n +a1(a−1)n−1 + ....+an = 0
. Now multiplying this equation by an−1 and see a−1 ∈ A and this implies
a is a init of A
Converse is trivally hold
(3) If B is a field then from (2) A is field
Conversely , suppose A is a field . Let be a non zero element of B and let
bn + a1b

n−1 + .... + an = 0 be integral equation of b where ai ∈ A . Now
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assume an 6= 0 and we have
b(bn−1 + a1b

n−2 + ....+ an−1) = −1an
a−1
n b(bn−1 + a1b

n−2 + ....+ an−1) = −1 since A is field and b is unit so B is
field

Proposition 5.1.2. Let A ⊆ B be an integral extention and let P,Q be
prime ideals of B then
(1) P is maximal ideal of B ⇔ A ∩ P is maximal ideal of A
(2) If P ⊆ Q and A ∩ P = A ∩Q then P = Q

Proof. Put p = A ∩ P and define a map φ : A/p→ B/P by

φ(a+ p) = a+ P

then φ is well define and one-one

Kerφ = {a+ p : a+ P = P}

= {a+ p : a ∈ P}

= {a+A ∩ P : a ∈ P}

= A ∩ P = p

And B/P is integral over A/p
Now P is maximal ⇔ B/P is field ⇔ A/p is field
⇔ p is maximal ideal of A
(2) Consider the commutative diagram

A B

Ap = S−1A S−1B

ϕ

f g

h

where S = A \ p and S ∩ P = φ . Suppose p = A ∩ P = A ∩Q then
S−1p = S−1A∩S−1P = S−1A∩S−1Q and Ap is local ring so S−1p = pAp is
unique maximal ideal of S−1A and since S−1B is integral over S−1A by first
part S−1P is maximal ideal of S−1B and S−1P ⊆ S−1Q ⇒ S−1P = S−1Q
Now take an element in Q and not hard to see this element belong to P and
thus P = Q
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Theorem 5.1.3. Let A ⊆ B be rings and B is integral over A and
if p ∈ spec(A) then ∃q ∈ spec(B) such that q ∩A = p

Proof. Consider the commutative diagram

A B

Ap = S−1A S−1B

f

β α

fp

Here Ap is local ring . Let M be a maximal ideal in S−1B, then M ∩Ap is
maximal ideal in Ap and Ap has unique maximal ideal so M ∩Ap = pAp
Now define α−1(M) = q and

f−1
p (M) = {a/s ∈ Ap : a/s ∈M}

= M ∩Ap = pAp

Now calculate β−1(pAp) = {x ∈ A : β(x) ∈ pAp}

= {x ∈ A : x/1 ∈ pAp}

= {x ∈ A : x ∈ p}

= A ∩ p = p

And

f−1(q) = {x ∈ A : f(x) ∈ q}

= {x ∈ A : x ∈ q}

= A ∩ q

Now by the commutative diagram we have

f−1(α−1(M)) = β−1(f−1
p (M))

⇒ f−1(q) = β−1(pAp)

⇒ A ∩ q = p

and we are done since q is prime and satisfied the required condition
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Remark 5.1.4. Thus result is true for integral extention but neet not be
true for general rings

Example 5.1.5. Let f : Z → Q defined by f(x) = x and let I = 2Z then
Ie = Q and (Ie)c = Z 6= I

5.2 Going Up Going Down Thereom

Theorem 5.2.1. Going up theorem
Let A ⊆ B be an integral extension . Let p1 ⊆ p2 ⊆ ... ⊆ pn be a chain
of prime ideals of A and q1 ⊆ q2 ⊆ ... ⊆ qm be chain of prime ideals in B
m < n such that qi ∩ A = pi then there exists qm+1, ..., qn ∈ spec(B) such
that qi ∩A = pi

Proof. Consider the commutative diagram

A B

Ap = S−1A S−1B

f

ψ φ

g

Let n = 2,m = 1, q1 ∈ spec(B) such that q1 ∩ A = p1 already we know
A/p1 ⊆ B/q1 is an integral extension and p2/p1 ∈ spec(A/p1) therefore ∃ a
prime ideal q2/q1 ∈ spec(B/q1) such that g−1(q2/q1) = p2/p1 , by previous
theorem

And by commutativity of diagram we have

f−1(φ−1(q2/q1)) = ψ−1(g−1(q2/q1))

⇒ f−1(q2) = ψ−1(p2/p1)

⇒ q2 ∩A = p2

Here p2/p1 is prime ideal one can check by taking element or one famous
charactrisation for checking prime ideal .And now inductively we are done

Lemma 5.2.2. Let M be a finitely generated A module and I be an ideal of
A and φ : M → M be an A module homomorphism such that φ(M) ⊆ IM
then ∃a1, .....an ∈ I such that φn + a1φ

n−1 + ......+ an−1φ+ an = 0
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Proof. Let {x1, ...., xn} be a generating set for M .
Let φ(xi) =

∑n
j=1 aijxj where aij ∈ I . Now we write this another form

n∑
j=1

(φδij − aij)xj = 0

where δij is kronecker delta. Now consider φδij − aij ∈ A
′
[φ] where A

′
[φ] is

the subring of EndA(M) containing A
′

= {image of A in EndA(M)} and
φ where

A
′
[φ] = {

n∑
i=0

aiφ
i : n ∈ N, ai ∈ A}

where ,(ai : M → M,ai(x) = aix) and note that A
′
[φ] is a commutative

subring of EndA(M). Consider the matrix B = (φδij − aij) ∈ Mn(A
′
[φ])

Let bik denote the cofactor of B. Now

n∑
j=1

(φδij − aij)xj = 0

Take cofactor ,
∑

i bij(
∑n

j=1(φδij − aij))(xj) = 0

⇒ det(B)(xj) = 0,∀j

⇒ Det(B) is zero map as an element of A
′
[φ]

⇒ det(B) = φn + a1φ
n−1 + ......+ an−1φ+ an = 0 , where ai ∈ I

Proposition 5.2.3. Let A ⊆ B be rings and I be an ideal of A and C be the
ingral closure be the integral closure of A in B . Then the set of all elements
in B which are integral over I is the radical of IC = Ie

Proof. Let x ∈ C be integral over I then we have xn+a1x
n−1 + .....+an = 0

where ai ∈ I
xn ∈ Ie = IC so x ∈ rad(Ie)
Conversely , let x ∈ rad(Ie) implies that xn ∈ Ie for some n ∈ N
So xn =

∑m
i=1 bixi ,where bi ∈ C, xi ∈ I

Consider the ring M = A[b1, ..., bn] , and this is finitely generated A
module and xnM ⊆ IM and consider the map φxn ;M →M by,
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φxn(m) = xnm and φxn(M) ⊆ IM , therefore by lemma ∃a1, ..., ar ∈ I
such that (φxn)r + a1(φxn)r−1 + ......+ ar = 0

xnr + a1x
n(r−1) + ....+ ar = 0

and this implies x is integral over I

Proposition 5.2.4. Let A ⊆ B be integral domain and A is integrally
closed. Let b ∈ B be integral over an ideal I ⊆ A . Then b is algebraic over
field of fraction of A say K and its minimal poynomial has coefficients in
rad(I) except foe leading coefficient 1

Proof. Clearly b is algebraic over K. Let f(X) be the minimal polynomial
of b over K. Let x1, ...xn be roots of f(X) in some field F containing K
Then f(X) =

∏n
i=1(X − xi), moreover xi are all integral over I implies all

polynomial in x1, ..xn are integral over I it means the coefficients a
′
is are all

integral over I, therefore they are all in K and integral over A,
Hence ai ∈ A implies ai ∈ rad(I)

Theorem 5.2.5. Going Down Let A be an integrally closed domain and
A ⊆ B be an integral extension . Let p1 ⊆ p2 be two prime ideals of A and
q2 be prime ideal of B such that q2 ∩ A = p2 then there exist a prime ideal
of q1 contained in q2 such that q1 ∩A = p1

Proof. We need to show that p1Bq2 ∩A = p1 . Let x/s ∈ p1Bq2
Then x ∈ p1B so x

∑n
i=1 bixi for some bi ∈ B, xi ∈ p1

Let A
′

= A[b1, ...., bn] . Consider the multiplication map φx : A
′ → A

′
send-

ing (a 7→ ax) where a ∈ A′ and φx(A
′
) = xA

′ ⊆ p1A
′

, therefore ny lemma
∃a1, ..., an ∈ p1 such that xn + a1x

n−1 + .... + an = 0 and this implies x is
integral over p1

Now suppose x/s ∈ p1Bq2∩A, s ∈ B\q2, and let xn+a1x
n−1+....+an = 0

be the minimal integral equation of x over A
Let x/s = y ⇒ s = xy−1 ∈ frac(A) = K . Also s ∈ B ⇒ s is integral
over A and now multiplying above equation y−n that gives the equation
sn+(a1/y)sn−1 + .....+an/y

n = 0 , and since above equatin is minimal then
this also minimal equation for s
Now as x ∈ B is integral over p1 then we have xn + a1x

n−1 + .... + an = 0
where ai ∈ rad(p1) = p1 since p1 is prime ideal
Now let ai/y

i = ui then yiui = ai ∈ p1 and since s ∈ B is integral over A
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implies that ui ∈ A and yiui ∈ p1

Now if y /∈ p1 ⇒ ui ∈ p1,∀i and the equation in s becomes

sn + u1s
n−1 + ....+ un = 0

So sn ∈ p1B ⊆ p2B ⊆ q2 this implies s ∈ q2 a contradiction therefore y ∈ p1

and hence p1Bq2 ∩A = p1 implies p1 is contracted ideal

5.3 Noether Normalization Thereom

Lemma 5.3.1. Let f(x1, .., xn) ∈ K[x1, .., xn] be a non zero polynomial
over an infinte field K . Then there are λ, a1, ..., an−1 ∈ K such that the
polynomial λf(y1 + a1yn, ...., yn−1 + an−1yn, yn) ∈ K[y1, ....yn] is monic in
yn

Proof. Let fd be the homogeneous partof f of highest degree where d is the
degree of f . Since K is infinite we can always find a1, ..., an−1, 1 such that
fd(a1, ..., an−1, 1) 6= 0
Now let xi = yi+aiyn, i = 1, 2, .., n−1 and yn = xn and let λ = [fd(a1, ..., an−1, 1)]−1

Now f(x1, .., xn) = fd(x1, .., xn) + ...+ f0(x1, .., xn) and look at

fd(x1, .., xn) =
∑

k1+..+kn=d

Ck1 ...knx
k1
1 ...x

kn
n

fd(y1+a1yn, ...., yn−1+an−1yn, yn) =
∑

k1+..+kn=d

Ck1 ...kn(y1+a1yn)k1 ...(yn−1+an−1yn)kn−1yknn

=
∑

k1+..+kn=d

Ck1 ...kna
k1
1 ...a

kn−1

n−1 1knydn +O(yd−1
n )

= fd(a1, ..., an−1, 1)ydn +O(yd−1
n )

And multiply λ we get what we want

Theorem 5.3.2. Let R be finitely generated algebra over an infinite field
K with generators x1, ...., xn ∈ R . Then there is an injective K algebra
homomorphism φ : K[t1, ..., tr]→ R from a polynomial ring to R , such that
R is integral over K[t1, ..., tr]
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Proof. Since R is finitely generated implies R = K[x1, ...., xn] . WE shall
prove this result by induction on n
If n = 1 then R = K[x1] and let x1 = t1 then K[t1] = R and every ring is
integral over itself so we are done. Assume n > 1 , if the generators x1, ..., xn
are algebraically independent , we choose ti = xi and r = n and we are done

Suppose there an algebraic dependence between the generators it means
a non zero polynomial f over K such that f(x1, .., xn) = 0 . Let fd be the
homogeneous part of the highest degree of f . Then by previous lemma we
can find a1, ..., an−1 such that
λ, a1, ..., an−1 ∈ K such that the polynomial λf(y1+a1yn, ...., yn−1+an−1yn, yn) ∈
K[y1, ....yn] is monic in yn . The new coordinates are given by yi = xi −
aixn, yn = xn
λλf(y1 + a1yn, ...., yn−1 + an−1yn, yn) = λf(x1, ..., xn) = 0

⇒ ydn +O(yd−1
n ) = 0

This implies yn is integral overK[y1, ....yn−1] , andK[y1, ....yn] = K[x1, ....xn]
by using the relation xi = yi+aiyn . Therefore by induction hypothesis there
is an injective K algebra homomorphism φ : K[t1, ..., tr] → K[y1, .., yn−1]
such that K[y1, .., yn−1] is integral over K[t1, ..., tr] . But yn is integral over
K[y1, .., yn−1]
Now K[t1, ..., tr] ⊆ K[y1, .., yn−1] ⊆ K[y1, .., yn] , and by tower law of in-
tegrality K[y1, .., yn−1] is integral over K[t1, ..., tr] and thus K[x1, ....xn] is
integral over K[t1, ..., tr]
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Chapter 6

Tensor Products

6.1 Axiomatic definition of tensor products

In linear algebra we have many types of products. For example,
(1)The scalar product: V × F→ V
(2) The dot product Rn × Rn → R
(3) The cross product R3 × R3 → R3

(4) The matrix product Mm×k ×Mk×n →Mm×n

Note 6.1.1. Note that the three vector spaces involved aren’t necessarily
the same. What these examples have in common is that in each case, the
product is a bilinear map. The tensor product is just another example of a
product like this. If V1 and V2 are any two vector spaces over a field F, the
tensor product is a bilinear map:V1×V2 → V1⊗V2 where V1⊗V2 is a vector
space over F.
The tricky part is that in order to define this map,we first need to construct
this vector space V1 ⊗ V2 We give two definitions. The first is an axiomatic
definition, in which we specify the properties that V1 ⊗ V2 and the bilinear
map must have. In some sense, this is all we need to work with tensor
products in a practical way. Later we shall show that such a space actually
exists, by constructing it.

Definition 6.1.2. Let V1, V2 be vector spaces over a field F. A pair (Y, µ)
, where Y is a vector space over F and µ : V2 × V2 → Y is a bilinear map,
is called the tensor product of V1 and V2 if the following condition holds (∗)

37
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whenever β1 is a basis for V1 and β2 is basis for V2, then µ(β1 × β2) =
{µ(x1, x2) : x1 ∈ β1, x2 ∈ β2} is a basis for Y

Notation
We write V1 ⊗ V2 for the vector space Y , and x1 ⊗ x2 for µ(x1, x2). The
condition (∗) does not actually need to be checked for every possible pair of
bases β1, β2 it is enough to check it for any single pair of basis

Working with tensor products

Let V and W be two vector space over F. There are two ways to work
with the tensor product. One way is to think of the space V ⊗W abstractly,
and to use the axioms to manipulate the objects. In this context, the ele-
ments of V ⊗W just look like expressions of the form

∑
i ai(vi ⊗wi) where

ai ∈ F, vi ∈ V,wi ∈W

The other way is to actually identify the space V1 ⊗ V2 and the map
V1 × V 2 → V1 ⊗ V2 with some familiar object. There are many examples
in which it is possible to make such an identification naturally. Note, when
doing this, it is crucial that we not only specify the vector space we are
identifying as V ⊗ V2 , but also the product (bilinear map) that we are
using to make the identification

Example 6.1.3. Let V = R2
row and W = R2

col then V ⊗W = M2×2(R) .
Define a map µ : R2

row × R2
col → R2

row ⊗ R2
col by

µ(v, w) = v ⊗ w = w · v

Then µ is bilinear map and (∗) condition holds clearly. Similary we can do
for V = Rnrow and W = Rncol then V ⊗W = Mn×n(R)

Example 6.1.4. Let V = F[X] and W = F[Y ] then V ⊗W = F[X,Y ].
Define a map µ : F[X]× F[Y ]→ F[X]⊗ F[Y ] by
µ(f(X), f(Y ) = f(X)⊗ g(Y ) = f(X)g(Y ) , then µ is bilinear map easy to
see and (∗) condition holds easily. Note that this is NOT a commutative
product because in general f(X)⊗ g(Y ) = f(X)g(Y ) 6= g(X)f(Y ) = g(X)⊗
f(Y )

Example 6.1.5. If V is any vector space over F, then V ⊗ F = V . In this
case, ⊗ is just scalar multiplication.Both the condition obiviously hold good
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Example 6.1.6. Let V = Qn(Q) and W = R(Q) then V⊗W = Qn⊗R = Rn
as vector space over Q. Then define a map µ : Qn × R→ Qn ⊗ R by

µ(x, y) = x⊗ y = xy

where x ∈ Qn, y ∈ R and µ is a bilinear map. Now i shall prove condition
(∗). Let β = {e1, ..., en} be standard basis of Qn(Q) and γ be a basis of R(Q).

First we show that µ(β×γ) spans Rn. Let (a1, ..., an) ∈ Rn where ai ∈ R

ai =
∑
j

bijxj , bij ∈ Q, xj ∈ γ

where j runs over finite set of γ
Now (a1, ..., an) = (

∑
j b1jxj ,

∑
j b2jxj , ...,

∑
j bnjxj)

=
∑
j

b1je1xj + .......+
∑
j

bnjenxj

=
∑
i,j

bijeixj

Next we show β⊗γ is linearly independent.Suppose
∑

i,j bijei⊗xj = (0, .., 0)

(
∑
j

b1jxj , ...,
∑
j

bnjxj) = (0, ..., 0)

⇒ bi,j = 0 . Since xj linearly independent

6.2 Constructive definition of tensor product

To give a construction of the tensor product, we need the notion of a free
vector space.

Definition 6.2.1. Let A be a set, and F be field. The free vector space over
F generated by A is the vector space Free(A) consisting of all formal finite
linear combinations of elements of A. Thus, A is always a basis of Free(A)

Note 6.2.2. When the elements of the set A are numbers or vectors, the
notation get tricky, because there is a danger of confusing the operations of
addition and scalar multiplication and the zero-element in the vector space
Free(A), and the operations of addition and multiplication and the zero
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element in A and (which are irrelevant in the definition of Free(A)). To
help keep these straight in situations where there is a danger of confusion,
we’ll write �, and � when we mean the operation in Free(A). We shall
denote zero vector of Free(A) by 0Free(A)

Example 6.2.3. Let N = {0, 1, 2, ....} and F = R . Then Free(N) is an
infinite dimentional vector space whose elements are of the form (a0 � 0)�
(a1 � 1).....(am �m) for some m ∈ N, ai ∈ R
Note that the element 0 here is not the zero vector in Free(N). It’s called
0 because it happens to be the zero element in N, but this is completely
irrelevant in the construction of the free vector space. If we wanted we could
write this a little differently by putting xi in place of i ∈ N. In this new
notation, the elements Free(N) would look like a0x

0 + .....+ anx
n

For some some m ∈ N, in other words elements of the vector space of
polynomials in a single variable

Definition 6.2.4. Let V and W be two vector space over F
Let P := Free(V ×W ) , the free vector space over F generated by the set
V × W . Let R ⊆ P be the subspace spanned by all vectors of the form
(u+kv, w+ lx)� (−1� (u,w))� (−k� (v, w))� (−l� (u, x))� (−kl� (v, x))
, with k, l ∈ F, u, v ∈ V, x, w ∈W

Let π : P → P/R be the quotient and let µ : V ×W → P/R be the map
defined by

µ(v, w) = π((v, w))

The pair (P/R, µ) is the tensor product of V and W and we write V ⊗W
for P/R and v ⊗ w for µ(v, w)

Note 6.2.5. We need to show that two definitions agree, i.e.. that tensor
product as defined in the definition above satisfies the conditions of defini-
tion above In particular, we need to show thatµ is bilinear,and that the pair
(P/R, µ) satisfies condition (∗)
We can show the bilinearity immediately. Essentially bilinearity is built into
the definition.

If P is the space of all linear combinations of symbols (v, w), then R is
the space of all those linear combinations that can be simplified to the zero
vector using bilinearity. Thus P/R is the set of all expressions, where two
expressions are equal iff one can be simplified to the other using bilinearity
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Proposition 6.2.6. The map µ is bilinear µ : V ×W → P/R defined by
µ(v, w) = π((v, w))

Proof. Aim: µ(u + kv, w + lx) = µ(u,w) + kµ(v, w) + lµ(u, x) + klµ(v, x).
We know that π(z) = 0R,∀z ∈ R and this implies

π((u+kv, w+lx)�(−1�(u,w))�(−k�(v, w))�(−l�(u, x))�(−kl�(v, x))) = 0

And so µ((u+ kv, w+ lx)−µ(u,w)− kµ(v, w)− lµ(u, x)− klµ(v, x) = 0

Now to prove the condition (∗) holds we use the following important
lemma from the theory of quotient spaces

Lemma 6.2.7. Suppose V and W are vector spaces over a field F and
T : V → W is a linear transformation. Let S be a subspace of V . Then
there exists a linear transformation T̄ : V/S →W such that T̄ (x+S) = T (x)
for all x ∈ V if and only if T (s) = 0 for all s ∈ S. Moreover, if T̄ exists it
is unique

Proof. Suppose T̄ exist then T̄ (x+S) = T (x), ∀X ∈ V then ∀s ∈ S we have
T (s) = T̄ (s+ S) = T̄ (0) = 0
Conversely , suppose that T (s) = 0, ∀s ∈ S. Now define a map T̄ : V/S →W
such that T̄ (x + S) = T (x) for all x ∈ V , then T̄ is well define and linear
and clearly unique

6.3 Universal mapping property of tensor product

Theorem 6.3.1. Let V,W,M be vector spaces over a field F.Let V ⊗W =
P/R be the tensor product, as defined in above definition then For any
bilinear map φ : V × W → M ,there is a unique linear transformation
φ̄ : V ⊗W →M , such that φ̄(v ⊗ w) = φ(v, w) for all v ∈ V,w ∈W .

Proof. Since V ×W be a basis for P . We can extend any map φ : V ×W →
M to a linear map ψ : P →M defined by ψ(v, w) = φ(v, w),∀v ∈ V,w ∈W
Claim : ψ is bilinear ⇔ φ(s) = 0,∀s ∈ R . Let φ(s) = 0,∀, s ∈ R,then
ψ(s) = φ(s) = 0,∀, s ∈ R , then write s in the form of spanning vectors of
R and using bilinearity of φ we see that ψ is bilinear.
Coversely suppose ψ is bilinear , and we have ψ(z) = φ(z), ∀z ∈ R . Now
calculate ψ(z) = ψ((u+ kv, w+ lx)� (−1� (u,w))� (−k� (v, w))� (−l�
(u, x))� (−kl� (v, x)) and since ψ is bilinear implies ψ(z) = 0,∀z ∈ R and
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so φ(z) = 0,∀z ∈ R, then by previous lemma there exist unique LINEAR
map φ̄ : V ⊗W → M such that φ̄((v ⊗ w)) = φ(v, w) and uniqueness is
clear

Theorem 6.3.2. Condition (∗) holds for the tensor product as defined in
the above definition

Proof. Let β be a basis for V and γ be a basis for W then we must show
that β ⊗ γ is a basis of V ⊗W . First we show that it spans .Let z ∈ P/R
then z = x + R, x ∈ P where x = a1(u1, x1) + .... + am(um, xm) and π is
a quotient map such that π(y) = y + R ,and µ((v, w)) = π((v, w)), then
therefore we have

z = a1π(u1, x1) + ....+ amπ(um, xm)

= a1µ(u1, x1) + ....+ amµ(um, xm)

where ai ∈ F, ui ∈ V, xi ∈ W . But now ui =
∑

j bijvj , vj ∈ β and
xi =

∑
k cikwk, wk ∈ γ and putting these values in z we are done

Next we show linear independence ,suppse
∑

ij dijµ(vi, wj) = 0
where vi ∈ β,wj ∈ γ .Let fk ∈ V ∗ be the linear functional defined by
fk(k) = 1 and fk(v) = 0 for v ∈ β \ {vk}
Define a map Fk : V ×W → W by Fk(v, w) = fk(v)w , then Fk is bilinear
map then by universal mapping property there exist a map F̄k : V ⊗W →W
such that F̄k(µ(u, x)) = fk(u)x .
Now apply F̄k to the equation

∑
ij dijµ(vi, wj) = 0 , therefore

0 = F̄k(
∑
ij

dijµ(vi, wj))

=
∑
ij

dij(F̄k(µ(vi, wj)))

=
∑
ij

dijfk(vi)wj

=
∑
j

dkjwj

and thus dkj = 0 since wj are liniearly independent
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6.4 Tensor product on modules

Introduction Let R be a commutative ring and M and N be R-modules.
We always work with rings having a multiplicative identity and modules are
assumed to be unital , 1 ·m = m,∀m ∈M

Theorem 6.4.1. Let M and N be two R- module then tensor product of M
and N exists

Proof. Consider M ×N as a set simply and form a free R- module on this
set

FR(M ×N) := ⊕(m,n)∈M×NRδ(m,n)

The direct sum runs over all pairs of M × N not just pairs coming from a
basis
Let D be the submodule of FR(M ×N) spanned by all elements

δ(m+m
′
, n)− δ(m,n)− δ(m′ , n)

δ(m,n+ n
′
)− δ(m,n)− δ(m,n′)

δ(rm, n)− rδ(m,n)

δ(m, rn)− rδ(m,n)

δ(rm, n)− δ(m, rn)

Now define M ⊗N := FR(M ×N)/D
We write the coset δ(m,n)+D in M⊗N as m⊗n and from the definition of D

δ(m+m′ ,n) ≡ δ(m,n) + δ(m′ ,n), modD

Which is same as

(m+m
′
)⊗ n = m⊗ n+m

′ ⊗ n

and also we have

m⊗ (n+ n
′
) = m⊗ n+m⊗ n′

rm⊗ n = r(m⊗ n) = m⊗ rn

Suppose P is an any R- module and B : M ×N → P be a bilinear map and
then extend it linearly l : FR(M × N) → P by l(δ(m,n)) = B(m,n) so the
diagram
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FR(M ×N)

M ×N P

lf

B

Where f(m,n) = δ(m,n) Now we want to show l makes a sense as a function
on M ⊗ N which means showing Kerl contains D and using bilinearity B
and linearity of l we are done . So l induces a linear map
L : FR(M × N)/D → P such that L(δ(m,n) + D) = l(δ(m,n)) = B(m,n) ,
which means the diagram

FR(M ×N)/D

M ×N P

Lf̄

B

commutes it means L ◦ f̄ = B . Since FR(M × N)/D = M ⊗ N and
δ(m,n) +D = m⊗ n , the above diagram become

M ⊗N

M ×N P

L⊗

B

and L(m⊗ n) = B(m,n)
And this shows every bilinear B out of M ×N comes from a linear map L
out of M ⊗N such that L(m⊗ n) = B(m,n), ∀m ∈M,n ∈ N

6.5 Properties of Tensor products

Example 6.5.1. If A is a finite abelian group,then Q⊗ZA = 0. Since every
elementary tensor is 0 as
Let a ∈ A such that na = 0, n ∈ Z+ and r ⊗ a = n(r/n)⊗ a

= (r/n)⊗ (na)

= (r/n)⊗ 0 = 0
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NOTE to show that Q⊗Z A = 0 we dont need A to be finite but rather than
each element of A has finite order and thus Q⊗Z Q/Z = 0

Example 6.5.2. Let (m,n) = 1 then Z/nZ⊗ Z/mZ = 0

Theorem 6.5.3. Let a, b ∈ Z+ with d = gcd(a, b) then Z/aZ⊗Z/bZ ∼= Z/dZ
as abelian group

Proof. Since 1 spans Z/aZ and Z/bZ then 1⊗ 1 spans Z/aZ⊗ Z/bZ . Now
a(1 ⊗ 1) = 0 and b(1 ⊗ 1) = 0 , the additive order of 1 ⊗ 1 divides a and b
and therefore also d so |Z/aZ⊗ Z/bZ| ≤ d , To show Z/aZ⊗ Z/bZ has size
atleast d , we create a Z bilinear map from Z/aZ⊗ Z/bZ onto Z/dZ

Consider a map φ : Z/aZ× Z/bZ→ Z/dZ by

φ(x, y) = xy

then this is bilinear map and then by using by UMP (universal mapping property)
there exist unique Z linear map f : Z/aZ ⊗ Z/bZ → Z/dZ such that
f(x ⊗ y) = xy in perticular f(x ⊗ 1) = x , so f is onto map then we
are done

Theorem 6.5.4. For an ideal I in R and M is an R module then there is
unique R- module isomorphism (R/I)⊗M ∼= M/IM . In perticular , taking
I = 0 then R⊗M ∼= M

Proof. We shall start with a bilinear map φ : (R/I)×M →M/IM by

φ(r̄,m) = rm

Then φ is well define clearly , then by universal mapping property we get a
linear map f : (R/I)⊗M →M/IM such that the diagram commutes

(R/I)⊗M

(R/I)×M M/IM

fµ

φ
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it means f ◦ µ = φ or f(r̄ ⊗m) = rm
To create an inverse map start with a function ψ : M → (R/I) ⊗M given
by

ψ(m) = 1̄⊗m
Then ψ is linear in m and observe ψ(im) = 1̄ ⊗ im = 0 it means kills IM
therefore there exist a linear map g : M/IM → (R/IM) ⊗ M given by
g(m̄) = 1̄⊗m
To check f(g(m̄)) = m̄ and g(f(t)) = t, for all m̄ ∈M/IM, t ∈ (R/I)⊗M
first one clear f(g(m̄)) = f(1̄⊗m) = m̄ To show g(f(t)) = t we shall show
all tensor in R/I ⊗M are elementary tensor .
An elementary tensor look like r̄ ⊗ m = 1̄ ⊗ rm , and the sum of tensors
1̄⊗mi is 1̄⊗

∑n
i mi , thus all tensors look like 1̄⊗m so we have g(f(1̄⊗m)) =

g(m̄) = 1̄⊗m

Theorem 6.5.5. For ideals I and J in R , there is a unique R module
isomorphism

R/I ⊗R/J ∼= R/(I + J)

Proof. We shall start with a bilinear map φ : R/I ×R/J → R/(I + J) by

φ(x̄, ȳ) = xy

Then φ is well define clearly , then by universal mapping property we get a
linear map f : R/I ⊗R/J → R/(I + J) such that the diagram commutes

R/I ⊗R/J

R/I ×R/J R/(I + J)

fµ

φ

it means f(x̄ ⊗ ȳ) = xy Now our aim is to create inverse map ,let h : R →
R/I ⊗R/J by

h(r) = r(1̄⊗ 1̄)

and h h is l well define and linear and when r ∈ I then r(1̄⊗ 1̄) = 0
Similarly , when r ∈ J then r(1̄⊗ 1̄) = 0
And note that I + J ⊆ Ker(h) , then we get a linear map

g : R/(I + J)→ r(1̄⊗ 1̄)

Defined by g(r̄) = r(1̄ ⊗ 1̄), And now we can check by like in previous
theorem arguement that f and g are inverses to each other
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Remark 6.5.6. When f and g are additive functions you can check f(g(t)) =
t for all tensors t by only checking it on elementary tensors, but it would be
wrong to think you have proved injectivity of a linear map f : M⊗N → P by
only looking at elementary tensors. That is, if f(m⊗ n) = 0⇒ m⊗ n = 0,
there is no reason to believe f(t) = 0⇒ t = 0,∀t ∈M ⊗N , since injectivity
of a linear map is not an additive identity.

Example 6.5.7. Let f : C⊗ C→ C be the R - linear map defined by

f(z ⊗ w) = zw

on elemetary tensor . If f(z ⊗ w) = 0 then zw = 0⇒ z = 0, or, w = 0
So z ⊗ w = 0 ,but the map is not injective because ,1 ⊗ i − i ⊗ 1 7→ 0 but
1⊗ i− i⊗ 1 6= 0 , since 1⊗ i and i⊗ 1 belong to basis of C⊗ C

Theorem 6.5.8. Let R be a domain with fraction field K and V be vector
space over K then there is an R module isomorphism K ⊗ V ∼= V

Proof. Define a map φ : K × V → V , defined by

φ(r, x) = rx

then φ is R bilinear map , so by universal mapping property there exist a
linear map

f : K ⊗ V → V

Such that f(x⊗ v) = xv , on elementary tensor and that says diagram com-
mute

K ⊗ V

K × V V

fµ

φ

And since f(1⊗ v) = v implies f is onto
To show f is one one , first we show every tensor in K ⊗ V is elementary
with 1 in first component

For an elementary tensor

x⊗ v = a/b⊗ v = 1/b⊗ av = 1/b⊗ (ab/b)v = 1⊗ xv

Notice how we moved x ∈ K across even though x need not be in R, we
used K-scaling in V to create b and 1/b on the right side of ⊗ and bring b
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across from right to left, which cancels 1/b on the left side of ⊗ . This has
the efeect of moving 1/b from left to right. Thus all elementary tensors in
K ⊗ V have the form 1 ⊗ v for some v ∈ V , so by adding, every tensor is
1 ⊗ v for some v. Now we can show f has trivial kernel if f(t) = 0 then,
writing t = 1⊗ v, we get v = 0, so t = 1⊗ 0 = 0.

6.6 Questions

Questions
(1) What is m⊗ n?

(2) What does it mean to say m⊗ n = 0?

(3) What does it mean to say M ⊗N = 0?

(4) What does it mean to say m1 ⊗ n1 + ..... + mk ⊗ nk = m
′
1 ⊗ n

′
1 +

.....+m
′
k ⊗ n

′
k?

(5) Where do tensor products arise outside of mathematics?

(6) Is there a way to picture the tensor product ?

Answers
(1)m⊗ n is the image of (m,n) ∈M ×N under the canonical bilinear map
⊗ : M ×N →M ⊗N in the definition of tensor product

(2) We have m⊗ n = 0⇔ every bilinear map out of M ×N vanishes at
(m,n) , indeed if m⊗ n = 0 , then for every bilinear map B : M ×N → N
we have commutative diagram

M ⊗N

M ×N P

L⊗

B

for some linear map L, so B(m,n) = L(m ⊗ n) = L(0) = 0. Conversely,
if every bilinear map out of M × N sends (m,n) to 0 then the canonical
bilinear map M ⊗N →M ×N which is a particular example, sends (m,n)
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to 0. Since this bilinear map actually sends (m,n) to m ⊗ n, we obtain
m⊗ n = 0.

(3) The tensor product M ⊗N is 0 if and only if every bilinear map out
of M ×N (to all modules) is identically 0. First suppose M ⊗N = 0. Then
all elementary tensors m⊗n are 0, so B(m,n) = 0 for any bilinear map out
of M ×N by the answer to the second question.Thus B is identically 0.
Next suppose every bilinear map out of M × N is identically 0. Then the
canonical bilinear map M ×N → M ⊗N which is a particular example, is
identically 0. Since this function sends (m,n) to m⊗ n we have m⊗ n = 0
for all m and n. Since M ⊗N is additively spanned by all m⊗ n, the van-
ishing of all elementary tensors implies M ⊗N = 0.

(4) It is based on above two answers

(5) Tensors are used in physics and engineering (stress, elasticity, electro-
magnetism, metrics, diffusion MRI), where they transform in a multilinear
way under a change in coordinates.

(6) There isn’t a simple picture of a tensor (even an elementary tensor)
analogous to how a vector is an arrow.

Theorem 6.6.1. Let M and N be R-modules with respective spanning sets
{xi}i∈I and {yj}j ∈ J . The tensor product M ⊗ N is spanned linearly by
the elementary tensors xi ⊗ xj

Proof. An elementary tensor in M ⊗ N has the form m ⊗ n. Write m =∑
i aixi and n =

∑
i bjyj , where the ai

′s and bj
′s are 0 for all but fnitely

many i and j. From the bilinearity of ⊗

m⊗ n =
∑
i

aixi ⊗
∑
i

bjyj =
∑
ij

aibj(xi ⊗ yj)

is a linear combination of the tensors xi ⊗ yj .

So every elementary tensor is a linear combination of the particular ele-
mentary tensors xi ⊗ yj . Since every tensor is a sum of elementary tensors,
the xi ⊗ yj ′s span M ⊗N as an R-module.
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6.7 Primary Decompositions

Definition 6.7.1. An ideal in a ring A is primary if Q 6= A and if xy ∈ Q⇒
either x ∈ Q or yn ∈ Q for some n > 0

Observation: Q is primary iff A/Q is not trivial and every zero-divisor
in A/Q is nilpotent

Example 6.7.2. Every prime ideal is primary, contraction of a primary
ideal is primary

Proposition 6.7.3. The radical of a primary ideal Q is the smallest prime
ideal containing it.

Proof. Let Q be a primary ideal of A.We know that the radical of Q is the
intersection of all the prime ideals containing Q.Now it suffices to show that
r(Q) is prime,an this is obivious since Q is primary

Remark 6.7.4. Let A be a UFD and let x ∈ A be prime. Then all powers
of xA are primary.

We give an example to show that primary ideals need not be powers of
prime ideals.

Example 6.7.5. Let A = F[X,Y ], Q = (X,Y 2),define a map

φ : A→ F[Y ]/(Y 2)

by

φ(p(X,Y )) = p(0, Y ) + (Y 2)

Then φ is an onto ring homomorphism and Kerφ = Q = (X,Y 2),then FTH
we have A/Q ∼= F[Y ]/(Y 2), then by remark (Y 2) is primary ideal of F[Y ]
then this shows that Q is primary and further r(Q) = (X,Y )
Also we have r(Q)2 ( Q ( r(Q), thus Q is not a power of its radical. Now
our next claim is Q is not a power of prime ideal ,first suppose Q = Pn for
somr prime ideal P and also note that r(Q) = P and P 2 ( Pn ( P which
is impossible ,thus Q is not a power of prime ideal

We now give an example to show that powers of prime ideals need not
be primary.
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Example 6.7.6. Let A = F[X,Y, Z] , where F is a field, and put I =
(XY − Z2)A,B = A/I, P = (X + I, Z + I).
Claim:P is prime ideal of B but P 2 is not primary ideal .Idea is B/P is
integral domain implies P is prime. Now we shall show that P 2 is not
primary
Observe that (x + I)(y + I) = xy + I = xy − (xy − z2) + I = z2 + I =
(z + I)2 ∈ P 2 . Also P 2 = (x2 + I, xz + I, z2 + I) .

If P 2 is primary then x+ I ∈ P 2 or yk + I = (y + I)k ∈ P 2 for some k
so that x or yk ∈ (x2, xz, z2, xy − z2) which is impossible, by inspecting
monomials in αx2 + βxz + γz2 + δ(xy − z2) for α, β, γ, δ ∈ A .

Proposition 6.7.7. If Q C A and r(Q) is maximal, then Q is primary. In
particular, all powers of a maximal ideal M are M−primary.

Proof. We have an epimorphism φ : A/Q→ A/r(Q) and A/M is field.
Claim: Every zero divisors of A/Q is nilpotent.Let if possible x = a + Q ∈
A/Q is a zero divisor but not nilpotent.Then x 7→ x̄ 6= 0 ∈ A/M ,which is not
a zero divisor implies x is not a zero divisor contradiction so x is nilpotent
so Q is primary .If M is any maximal ideal of A then r(Mn) = M implies
Mn is primary.

Definition 6.7.8. Let Q C A and x ∈ A then (Q : x) = {y ∈ A : xy ∈ Q}.

Lemma 6.7.9. Let P be prime, Q be P-primary and x ∈ A . Then

1. x ∈ Q⇒ (Q : x) = A

2. x /∈ Q⇒ (Q : x) is P-primary

3. x /∈ P ⇒ (Q : x) = Q .

Proof. (1) and (3) are easy.We shall porve (2).We have Q ⊆ (Q : x).And
observe (Q : x) ⊆ P and conclude r(Q : x) = P .Now suppose yz ∈ (Q : x)
with y /∈ P then xyz ∈ Q⇒ y(xz) ∈ Q⇒ xz ∈ Q⇒ z ∈ (Q : x).So (Q : x)
is primary.

Lemma 6.7.10. Let P be a prime ideal and Q1, ..., Qn be P-primary ideals.
Then

⋂n
i=1Qi is also P-primary.

Proof. By induction we can see easily.

Definition 6.7.11. A primary decomposition of I C A is an expression as
a finite intersection of primary ideals: I =

⋂n
i=1Qi (∗)
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Primary decomposition above may not exist always

Definition 6.7.12. A decomposition (∗) is minimal if

1. r(Q1), ..., r(Qn) are distinct

2. Qi +
⋂
i 6=j Qj , ∀, i = 1, , , n

Theorem 6.7.13. First Uniqueness Theorem Let I be a decomposable
ideal and let (∗) be a minimal primary decomposition. Put Pi = r(Qi), ∀, i =
1, .., n,then
{P1, ...., Pn} = {Prime ideals P : P = r(I : x) for some x}.

We say that the prime ideals P1, ..., Pn belong to I or are associated to
I . In particular, I is primary iff I has exactly one associated prime ideal.
The minimal elements of P1, ..., Pn with respect to ⊆ are called minimal or
isolated prime ideals belonging to I ; the nonminimal ones are called em-
bedded prime ideals

The set {P1, ..., Pn} in the conclusion of the Theorem is independent of
the particular minimal decomposition chosen for I

Proof. Consider (I : x) = (
⋂n
i=1Qi : x) =

⋂n
i=1(Qi : x)

⇒ r(I : x) =
n⋂
i=1

r(Qi : x)

But r(Qi : x) = A, if x ∈ Qi, and Pi if x /∈ Qi by lemma.So r(I : x) =⋂n
i=1 Pi, when x /∈ Qi

If r(I : x) is prime say P then P =
⋂n
i=1 Pi when x /∈ Qi,then P = Pi

for some i and this implies r(I : x) = Pi.On the other hand ,∀i choose
xi ∈ Qj ,∀j 6= i,and so xi ∈

⋂
j 6=iQj ,therefore r(I : xi) = Pi

Note 6.7.14. Primary components need not be unique.

Example 6.7.15. Let A = F[X,Y ], I = (X2, XY ) , then we observe

I = (X) ∩ (X,Y )2

and
I = (X) ∩ (X2, Y )

Lemma 6.7.16. Let S be a multiplicatively closed subset of A , P a prime
ideal and Q a P-primary ideal. Then
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1. S ∩ P 6= φ⇒ S−1Q = S−1A

2. S ∩ P = φ⇒, S−1Q is S−1P−primary ideal and (S−1Q)c = Q

Theorem 6.7.17. Primary ideals of A which avoid S are in a one-one
correspondence with primary ideals in S−1A under the map Q 7→ S−1Q

Proof. Put P1 = {Primary ideals Q of A : Q ∩ S = φ} and P2 =
{Primary ideals of S−1A}.Now we define

φ : P1 → P2, Q 7→ S−1Q

ψ : P2 → P1, I 7→ Ic

And easy to see both are inverse of each others.

Notation Let J C A,write S(J) = Jec = {a ∈ A : a/1 ∈ S−1J}

Theorem 6.7.18. If S is a multiplicatively closed subset of A and I C A has
a minimal primary decomposition I =

⋂
iQi and we put Pi = r(Qi),∀i. We

suppose further that the ideals have been arranged so that, for some m where
1 ≤ m ≤ n , S ∩Pi = φ,∀i = 1, ..,m,and S ∩Pj 6= φ, ∀j = m+ 1, ....., n,then
we have the following minimal primary decompositions.

S−1I =

m⋂
i=1

S−1Qi

and

S(I) =
m⋂
i=1

Qi

Notation
Consider a decomposable ideal I and put L = {prime ideals belonging to I}
. Call a subset N of L isolated if ∀P ∈ N, ∀P ′ ∈ L,P ′ ⊆ P ⇒ P ′ ∈ N

Theorem 6.7.19. Let I be a decomposable ideal and P1, .., Pn be the prime
ideal associated to I.Suppose m ≤ n and N = {P1, ...Pm} is isolated,then
for any two minimal primary decompositions I =

⋂n
i=1Qi =

⋂n
i=1Q

′
i where

r(Qi) = r(Q′i),∀i then we have
⋂m
i=1Qi =

⋂m
i=1Q

′
i.

Definition 6.7.20. An ideal I is irreducible if I = J1 ∩ J2, then I = J1 or
I = J2
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Lemma 6.7.21. In a Noetherian ring A ,every ideal is a finite intersection
of irreducible ideals.

Proof. Let S be the set of ideals which are not finite intersections of irre-
ducible ideals. If S = φ,then we are done ; If S 6= φ,then S has a maximal
element, I (since R is Noetherian). Then I is not irreducible, therefore
I = J1 ∩ J2 with I ( J1, J2.So J1, J2 /∈ S, hence they are finite intersection
of irreducible ideals. Since the intersection of two finite intersection of irre-
ducible ideals, I is the intersection of irreducible ideals, i.e., I /∈ S. This is
a contradiction. Hence S = φ.

Lemma 6.7.22. In a Noetherian ring R, all irreducible ideals are primary.

Proof. Let I be an irreducible ideal. Let x, y ∈ R,with xy ∈ I.Define In =
(I : yn) for m = 1, 2, 3, ..,then I ⊆ I1 ⊆ I2 ⊆ ... and sice R is Noetherian
In = In+1 for some n.
Claim: I = (I + (x)) ∩ (I + (yn)).Let z ∈ (I + (x)) ∩ (I + (yn)),and observe
that yz ∈ I and z ∈ I.So I = (I + (x))∩ (I + (yn)) and since I is irreducible
then we are done.

Theorem 6.7.23. In a Noetherian ring R, every ideal I has a primary
decomposition.

Proof. This follows directly from the previous two lemma.

6.8 Discrete Valuation rings

Definition 6.8.1. Suppose F is a field .A discrete valuation on F is a func-
tion v : F∗ → Z such that

1. v is onto

2. v(ab) = v(a) + v(b)

3. v(a+ b) ≥ min(v(a), v(b)) if a+ b 6= 0

Proposition 6.8.2. The set R = {0} ∪ {r ∈ F : v(r) ≥ 0}, is a ring ,which
we call the valuation ring of v.

Proof. Observe that v(1) = 0,⇒ 1 ∈ R also ab ∈ R.
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Example 6.8.3. The field C((t)) = {
∑∞

n=N ant
n : N ∈ Z, an ∈ C},of

Laurent series without an essential singularity at t = 0
Define v : C((t))→ Z by

v(f(t)) = N

Where f(t) =
∑∞

n=N ant
n and we can write f(t) = aN t

Ng(t) with aN 6= 0
,g(t) ∈ A[[t]]

Definition 6.8.4. An integral domain A is called a valuation ring if for
every element a ∈ (FracA)∗,we have a ∈ a or a−1 ∈ A

Lemma 6.8.5. For any discrete valuation v on a field F with valuation ring
A ,we have A∗ = v−1(0).

Proof. We have v(x−1) = v(x), ∀x ∈ F∗ and this implies either x ∈ A
or x−1 ∈ A.Now x ∈ A is invertible in A implies v(x) = 0.Conversely if
v(x) = 0 then x is invertible in A.

Lemma 6.8.6. A valuation ring a with Frac(A) = K is a discrete valuation
ring iff the quotient group K∗/A∗ ∼= Z

Proof. Let A be a valuation ring and K∗/A∗ ∼= Z and (A−{0})/A∗ ⊆ K∗/A∗
is a submonoid

Lemma 6.8.7. Every valuation ring is normal and local.

Proof. Let A be the valuation ring and K = Frac(A).Let f(X) = Xd+1 +∑d
i=0 aiX

i be monic in A[X].Let b ∈ K st f(b) = 0.If b ∈ A then we are
done .If b−1 ∈ A, then we have f(b) = 0 and thus bd+1 = −

∑
aib

i.So
b = −

∑
aib

i/bd ∈ A
A is local: we shal show that the set A − A∗ of non units is an ideal .If
a ∈ A − A∗ and b ∈ A then clearly ab ∈ A − A∗ since otherwise a−1 =
b(ab)−1 ∈ A . Let a, b ∈ A − A∗.Suppose WLOG a/b ∈ A. If a + b ∈ A∗,
then (a/b+ 1)(1/a+ b) = (a+ b/b)1/a+ b = 1/b ∈ A contradiction.

Theorem 6.8.8. Let A be a subring of a field F then ,T.F.A.E

1. A is valuation ring.

2. The set of principal ideals of A is totally order by inclusion.

3. The set of ideal of A is totally order by inclusion.

4. A is local ring and every finitely generated ideal of A is principal.
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6.9 Topologies and completions

Definition 6.9.1. Let G be an abelian group then G is said to be topological
abelian group if both the maps G×G→ G and G→ G defined by (x, y) 7→
x+ y and x 7→ −x respectively are continuous.

Lemma 6.9.2. Let H be the intersection of all neighbourhood’s of 0 in G .
Then

1. H ≤ G.

2. H is the closure of zero.

3. G/H is Hausdorff.

4. G is Hausdorff ⇔ H = 0.

Definition 6.9.3. An inverse system of groups is a sequence of {A, θ} and
θn+1 : An+1 → An where the transition maps ∀n are homomorphisms of
groups.

Definition 6.9.4. Let {A, θ} be an inverse system of groups and inverse
limit is a subset of

∏
i≥0Ai and define by

lim←−{An} = {(a1, a2, ..) : θn+1an+1 = an, ∀n ≥ 1} ⊆
∏
i≥0

Ai

Proposition 6.9.5. The map Ḡ→ G/Gn define by

{xi} 7→ (lim−→{xi +G1}, lim−→{xi +G2}, ...)

is an isomorphism.

Proposition 6.9.6. If {0} → {An} → {Bn} → {Cn} → {0} is an exact
sequence of inverse system and {An} is a surjective system then

0→ lim←−An → lim←−Bn → lim←−Cn → 0

is exact.

Let A =
∏∞
i=1 and define dA : A → A ,by dA(an) = an − θn+1an+1 and

ker(dA) = lim←−An.Define B ,C and dB, dC similarly.The exact sequence of
inverse system defines commutative diagram
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0 A B C 0

0 A B C 0

dA

f

dB

g

dC

f ′ g′

then by snake lemma and dA is onto we are done.

Corollary 6.9.7. Let 0 → G′ → G → G′′ → 0 be an exact sequence of
groups . Let G have the topology defined by the sequence {Gn} of subgruops
and G′, G′′ have induces topology i.e. by the sequences {G′n∩Gn}, {f(Gn)},
then

0→ Ḡ′ → Ḡ→ Ḡ′′ → 0

is exact.

Proof. Exactness of given sequence implies that the diagram below is com-
mutative with exact rows

0 G′/(G′ ∩Gn+1) G/Gn+1 G′′/g(Gn+1) 0

0 G′/(G′ ∩Gn)′ G/Gn G′′/g(Gn) 0

θ′n+1

f

θn+1

g

θ′′n+1

f ′ g′

and clearly θn is surjective ∀n now use here snake lemma and Ker(θn+1) =
Gn . We have an exact sequence 0 → G′n → Gn → G′′n → 0.Now applying
previous proposition we are done.

Corollary 6.9.8. Ḡn is a subgroup of Ḡ and Ḡ/Ḡn ∼= G/Gn.

Proof. Let G′ = Gn and G′′ = G/Gn,now applying these in previous corol-
lary we get an exact sequence

0→ Ḡn → Ḡ→ ¯G/Gn → 0

So Ḡn is a subgroup of Ḡ and G′′ has discrete topology so G′′ ∼= Ḡ′′ and
Ḡ/Ḡn ∼= ¯G/Gn, this complete the proof.

Definition 6.9.9. Let I C A be an ideal. Then the completion of A with
respect to the I-adic filtration A ⊇ I ⊇ I2 ⊇ ... is called the I-adic completion
of A. It is denoted by Ā
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Definition 6.9.10. Let I C A be an ideal, M an A-module with filtration
M = M0 ⊇ M1 ⊇ M2 ⊇ ... The filtration is called I-filtration if IMn ⊆
Mn+1.

Definition 6.9.11. An I-filtration M on an A-module M is called stable if
3 N such tha ∀n ≥ N , IMn = Mn+1

Definition 6.9.12. A graded ring is a ring A together with abelian subgroups
An ⊆ A such that A = ⊕n≥0An, and AnAm ⊆ An+m. The elements of An
in a graded ring A are called homogeneous elements of degree n.

Lemma 6.9.13. If A is a Noetherian ring, I C A, then the graded ring
A = ⊕n≥0I

n is also Noetherian.

Proof. A being Noetherian implies I is a finitely generated A-module, say
by x1, ..xn. Then the A-algebra map A[X1, .., Xn] → ⊕n≥0I

n defined by
Xi 7→ xi is surjective. It is surjective because x1, ..., xn generates I. Since A
is Noetherian, Hilbert’s Basis Theorem implies A[X1, ..., Xn] Noetherian and
hence any quotient of A[X1, ..., Xn] is Noetherian. Hence we have ⊕n≥0I

n

is Noetherian.

Lemma 6.9.14. Let A be a Noetherian ring, I be an ideal of A, M a finitely
generated A-module together with an I-filtration M = M0 ⊆ M1 ⊆ ... Then
the filtration M is stable if and only if ⊕n≥0Mn is a finitely generated A =
⊕n≥0I

n-module.

Proof. Assume M is a stable I-filtration . Then 3 n, ∀k ≥ 0 such that
IkMn = Mnn+k. This implies ⊕Mn = M0⊕M1⊕ ...⊕Mn⊕IMn⊕I2Mn⊕ ..
is finitely generated by M0 ⊕ ... ⊕Mn as A-module. Since A is Noetherian
and M is finitely generated implies Mi ⊆M are all finitely generated. Hence
M0⊕ ...⊕Mn generated by finitely many elements and so ⊕Mn is generated
by these finitely many elements as A-modules.
Conversely Assume ⊕Mn is a finitely generated A = ⊕In module. Let
PK = M0 ⊕ ..MK ⊕ IMK ⊕ I2MK ⊕ .. . Now PK is a graded A-submodule
of ⊕Mn, we have P0 ⊆ P1 ⊆ P2 ⊆ ... ⊆ ⊕Mn an ascending chain of A-
submodules. Now R is Noetherian implies A is Noetherian by lemma . By
assumption ⊕Mn is a finitely generated A-module, hence a Noetherian A-
module, so the chain PK has to stop, i.e.,3 N such that PN = PN+1 = ....
But ∪ PK = ⊕Mn implies ⊕M = PN implies Mn = In−NMN ,∀n ≥ N i.e.,
the filtration is stable.
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Lemma 6.9.15. Let A be a Noetherian ring, I be an ideal of A and M a
finitely generated A-module with stable I-fultration M. Let N be a submodule
of M. Then the filtration {N ∩Mn} on N is a stable I-filtration of N

Proof. A Noetherian, I be an ideal of A an ideal, then A′ = ⊕n≥0I
n is

Noetherian. So Mn is a stable I-filtration on M implies ⊕n≥0Mn is a finitely
generated A′-module. Now ⊕Mn ∩N ⊆ ⊕Mn is a A′-submodule. Since A′

is Noetherian and ⊕Mn is a finitely generated A′-module, the submodule
⊕Mn ∩N is also a finitely generated A′-module. Hence Mn ∩N is a stable
I-filtration

Theorem 6.9.16. Let A be a Noetherian ring,C A. Let 0 → M → N →
P → 0 be an exact sequence of finitely generated A-module. Then the se-
quence of I-adic completions 0→ M̄ → N̄ → P̄ → 0 is exact

M̄, N̄ , P̄ are the completion of M,N,P with respect to the filtrations
InM, InN, InP . So we have the exact sequence ∀n.0 → M/(M ∩ InN) →
N/InN → P/InP → 0 Now M ∩ InN is a stable I-filtration (Artin-
Rees lemma). Hence by Lemma the completion of M with respect to
M∩InM is the completion M̄ of M with respect to InM . Now M/(M∩InN)
is a surjective inverse system, so by above equatio we are done.

Lemma 6.9.17. Let A be a Noetherian ring,I C A, M a finitely gener-
ated A-module . Then Ā ⊗A M → M̄ defined by {ai} ⊗ x 7→ {aix} is an
isomorphism

Definition 6.9.18. If I C A, then we set gr(A) = ⊕n≥0I
n/In+1. This

is a graded ring with multiplication In/In+1 × Im/Im+1 → In+m/In+m+1

defined by (a + In+1, b + Im+1) 7→ ab + In+m+1 The ring grA is called the
associated graded ring of A ⊇ I ⊇ I2 ⊇ ....

Lemma 6.9.19. Let A = A0 ⊇ A1 ⊇ ... and B = B0 ⊇ B1 ⊇ ... be filtered
modules and f : A→ B a map of filtered modules (that is f(Ai) ⊆ Bi).Then

1. If gr(f) : gr(A) → gr(B) is surjective (injective) then f̄ : Ā → B̄ is
surjective (injective), where gr(A) = ⊕i≥0Ai/Ai+1

Proof. Since f : A→ b is a homomorphism of filtered modules,then φ(Mn) ⊆
Nn and consider commutative diagram
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0 Mn/Mn+1 M/Mn+1 M/Mn 0

0 Nn/Nn+1 N/Nn+1 N/Nn 0

θ′n+1

f

θn+1

g

θ′′n+1

f ′ g′

By snake lemma and assuming gr(f) is injective (surjective) we are done.

Lemma 6.9.20. Let I C A which is I-adically complete. Let M be an A-
module with an I-filtration M = M0 ⊇ M1 ⊇ M2 ⊇ ... such that

⋂
Mi = 0.

Then if gr(M) = ⊕i≥0Mi/Mi+1 is a finitely generated gr(A) = ⊕i≥0I
i/Ii+1-

module, then M itself is a finitely generated A-module.

Proof. Choose a finite generating set of gr(M) over gr(R) consisting of
homogeneous elements y1, ..., yt where deg(yi) = ni, i = 1, .., t.Choosing xi ∈
Mni with yi = xi+Mni+1 . Let F = R⊕R⊕...⊕R ,(t times).And Fn = {(ai) :
ai ∈ In−ni , i = 1, 2, .., t},where Ik = R if k 5 0 and this define a filtration on
F and the map φ : F →M given by φ[(ai)] =

∑
aixi is a homomorphism of

filtered R modules,thus associated gradded homomorphism gf(φ) : gr(F )→
gr(M) is surjective as yi generates gr(M) implies φ̄ : F̄ → M̄ is surjective
Consider the commutative diagram

F M

F̄ M̄

φ

f g

φ̄

,since R is complete and F is free module of finite rank , f is an isomorphism
since intersection of Mi is zero, g is injective this implies φ is onto as φ̄ is
onto so M is finitely generated R module .

Proposition 6.9.21. Let A be nowetherian ring I C A,Ā the I-adic com-
pletion.Then

In/In+1 ∼= Īn/ ¯In+1

Theorem 6.9.22. Let A be a Noetherian ring and I C A. Then its I-adic
completion Ā is Noetherian.

Proof. Let M be an Ā ideal.Equip M with the filtration{M ∩ Īn},then
gr(M) = ⊕i≥0(M∩Īn)/M∩ ¯In+1 is submodule of gr(Ā) = ⊕n≥0Īn/ ¯In+1.Then
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by proposition we have gr(Ā) ∼= gr(A) and A being noetherian ⇒ gr(A) is
notherian hence the submodule gr(M) is also finitely generated as gr(Ā)
module and

⋂
n≥0M ∩ Īn ⊆

⋂
n≥0 Ī

n = 0 then by previous lemma we are
done.

Corollary 6.9.23. If A is noetherian then A[[X1, ..., Xn]] is noetherian.

Proof. Since A is noetherian then A[X1, ..., Xn] is noetherian and let I =
(X1, X2, ..., Xn) I adic filtration then the polynomial ring has A[[X1, ..., Xn]]
completion with this filtration then by theorem we are done.


