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Abstract. We study polynomials computed by depth five Σ ∧ Σ ∧ Σ
arithmetic circuits where ‘Σ’ and ‘∧’ represent gates that compute sum
and power of their inputs respectively. Such circuits compute polynomials

of the form
∑t
i=1Q

αi
i , where Qi =

∑ri
j=1 `

dij
ij where `ij are linear forms

and ri, αi, t > 0. These circuits are a natural generalization of the well
known class of Σ ∧Σ circuits and received significant attention recently.
We prove an exponential lower bound for the monomial x1 · · ·xn against

depth five Σ ∧Σ[≤n] ∧[≥21] Σ and Σ ∧Σ[≤2
√
n/1000] ∧[≥

√
n] Σ arithmetic

circuits where the bottom Σ gate is homogeneous.
Our results show that the fan-in of the middle Σ gates, the degree of the
bottom powering gates and the homogeneity at the bottom Σ gates play
a crucial role in the computational power of Σ ∧Σ ∧Σ circuits.

1 Introduction

Arithmetic circuits were introduced by Valiant [19] as a natural model for algebraic
computation and conjectured that the permanent polynomial, permn, does not
have polynomial size arithmetic circuits. Following Valiant’s work, there have
been intensive research efforts towards the resolution of Valiant’s hypothesis.
Further, obtaining super polynomial size lower bounds for arithmetic circuits
computing explicit polynomials is a pivotal problem in Algebraic Complexity
Theory. However, for general classes of arithmetic circuits, the best known lower
bound is barely superlinear [2].

Lack of progress on lower bounds against general arithmetic circuits lead
researchers to explore restricted classes of circuits. Grigoriev and Karpinski [5]
proved an exponential size lower bound for depth three circuits computing the
permanent over finite fields of fixed size. However, extending these results to
infinite fields or depth four arithmetic circuits remains elusive. Agrawal and
Vinay [1] (see also [18,11]) explained this lack of progress by establishing that
proving exponential lower bounds against depth four arithmetic circuits is enough
to resolve Valiant’s conjecture. This was strengthened further to depth three
circuits over infinite fields by Gupta et al. [6].

? This work was done while the author was working at Max Planck Institute for
Informatics, Saarbrücken supported by IMPECS post doctoral fellowship.
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Gupta et al. [7] obtained a 2Ω(
√
n) size lower bound for depth four homogeneous

circuits computing permn where the fan-in of the bottom product gate is bounded
by O(

√
n). Following this, Fournier et al. [4] obtained a super polynomial lower

bound against depth four homogeneous circuits computing a polynomial in VP.
Further, the techniques in [7,8] have been generalized and applied to prove
lower bounds against various classes of constant depth arithmetic circuits for
polynomials in VP as well as in VNP (see e.g., [16] and references therein).

Most of the lower bound proofs against arithmetic circuits follow a common
framework: 1) define a measure for polynomials that is sub-additive and/or
sub-multiplicative, 2) show that the circuit class of interest has small measure
and 3) show that the target polynomial has high measure. See [16] for a detailed
survey of these measures.

Apart from the complexity measure based framework mentioned above, there
have been two other prominent approaches towards a resolution of Valiant’s
hypothesis: A geometric approach by Mulmuley and Sohoni [15] and an approach
based on the real τ conjecture proposed by Shub and Smale [17].

The geometric approach to complexity theory [15] involves the study of class
of varieties associated with each of the complexity classes and studying their
representations.

The real τ conjecture of Koiran [9] states that the number of real roots of a
univariate polynomial computed by an arithmetic circuit of size s is bounded by a
polynomial in s. Koiran [10] showed that any resolution of the real τ -conjecture or
an integer variant of it, would imply a positive resolution of Valiant’s hypothesis.
There has been several approaches towards the resolution of the real τ -conjecture
and its variants by Koiran et al. [13,12].

Circuit Model We consider the class of depth five powering circuits, i.e., Σ∧Σ∧Σ
circuits. It was shown in [6] that any homogeneous polynomial f of degree d over
a sufficiently large field computed by a circuit of size s can also be computed by

a homogeneous Σ ∧[a]Σ ∧[d/a]Σ circuit of size s
√
d logn log(sd) for suitably chosen

a. Here the superscript [a] for a gate denotes the fan-in (degree in the case of ∧
gates) at that level. This was an intermediary step in [6] which went on to obtain

a depth three ΣΠΣ circuit of size 2O(
√
d logn log(sd)) for f .

Thus, combined with the results in [18], to prove Valiant’s hypotheses over
infinite fields, it is enough to prove a 2ω(

√
n logn) size lower bound against any one

of the following classes of circuits: (1) homogeneous depth four ΣΠ [
√
n]ΣΠ [O(

√
n)]

circuits, (2) homogeneous depth five Σ ∧[
√
n] Σ ∧[O(

√
n)] Σ circuits or (3) depth

three ΣΠΣ circuits .

Models (1) and (3) have received extensive attention in the literature compared
to model (2). It follows that obtaining a 2ω(

√
n logn) lower bound for any one

of the models above would give a similar lower bound to the other. However,
known lower bounds for model (1) so far do not even imply a super polynomial
lower bound for model (2) which leaves obtaining super polynomial lower bounds
against this model wide open.
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In this article, we prove lower bounds against two restrictions of model (2)

mentioned above: Σ ∧ Σ[≤n] ∧[≥21] Σ circuits and Σ ∧ Σ[≤2
√
n/1000] ∧[≥

√
n] Σ

circuits with bottom gates computing homogeneous linear forms. Since the
transformation from depth four ΣΠ [

√
n]ΣΠ [O(

√
n)] to depth five Σ∧[a]Σ∧[d/a]Σ

in [6], in contrast to their result from general circuits, works against any chosen
parameter a < d, the restrictions on the degree of the bottom ∧ gates in the
models we consider are general enough.

Throughout, it helps to interpret the polynomials computed by Σ ∧Σ ∧Σ as
sums of powers of projections of power symmetric polynomials where the n variate
power symmetric polynomial of degree d is given by pd(x1, . . . , xn) = xd1+· · ·+xdn.

Our Results We prove lower bounds against the restrictions of depth five Σ∧Σ∧Σ.
We show:

Theorem 1. Let g =
∑s
i=1 f

αi
i where fi = pdi(`i1 , . . . , `in)+βi for some scalars

βi and for every i, either di = 1 or di ≥ 21 and `i1 , . . . , `in are homogeneous
linear forms. If g = x1 · x2 · · ·xn then s = 2Ω(n).

The proof of Theorem 1 involves the dimension of the space of projected multi-
linear derivatives as a complexity measure for a polynomial f . It is computed by
first projecting the partial derivative space of f to its multilinear subspace and
then setting a subset of variables to 0. The dimension of the resulting space of
polynomials is our measure of complexity for polynomials. Further, the method
of projected multilinear derivatives also gives our second important result of the
paper: An exponential lower bound against depth five powering circuits where
the middle Σ layers have fan-in at most 2

√
n/1000 with the degree of the bottom

∧ gates at least
√
n:

Theorem 2. Let g =
∑s
i=1 f

αi
i where fi = pdi(`i1 , . . . , `iNi ) + βi, for some

scalars βi and
√
n ≤ di ≤ n, Ni ≤ 2

√
n/1000, and `i1 , . . . , `iNi are homogeneous

linear forms. If g = x1 · x2 · · ·xn then s = 2Ω(n).

It is not difficult to see that the polynomial x1 · · ·xn has a homogeneous Σ ∧[
√
n]

Σ[O(2
√
n)] ∧[

√
n] Σ circuit of size 2O(

√
n) (see Lemma 16). Theorem 2 shows that

reducing the middle Σ gate fan-in by a constant factor in the exponent leads to
an exponential lower bound.

The homogeneity condition on the lower Σ and ∧ gates seems to be necessary
to our proofs of Theorem 1 and Theorem 2. In fact, Saptharishi [16], in a result
attributed to Forbes, showed that x1 · · ·xn can be computed by Σ ∧Σ∧ circuits
of size 2O(

√
n) where the lower Σ gates are not necessarily homogeneous.

Thus, it is important to study depth five powering circuits where the bottom
Σ gates are not necessarily homogeneous. Towards this, in Section 4, we consider
the widely used measure of the dimension of the shifted partial derivatives of a
polynomial. We show:

Theorem 3. Let g =
∑s
i=1 f

αi
i where fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ), mi ≤

1
40n, ri ≤ nε, d ≤ 2o(n), αi ≤ 2o(n) for all i where 0 < ε < 1. If g = x1x2 . . . xn
then s = 2Ω(n).
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It should be noted that Theorem 3 is much weaker than Theorems 1 and 2,
however, it allows non-homogeneous Σ gates at the bottom. It seems that the
restrictions on ri in the above theorem are necessary if the lower bound argument
uses the method of shifted partial derivatives. In particular, we show:

Lemma 4. Let k ≤ min{l, d} and α > 0 be large enough. Then

dim
(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
= Ω

((
n
k

)(
n+l
l

)
ll/(d−1)

)
.

In the cases where l/(d− 1) = O(1) and l = nO(1) the above bound is tight up to
a polynomial factor since dim

(
F -Span

{
x≤l∂=k (pd(x1, . . . , xn)α)

})
≤
(
n
k

)(
n+l
l

)
and hence indicating that the restrictions on the ris in Theorem 3 would be
necessary if the dimension of shifted partial derivatives is used as the measure of
complexity.

2 Preliminaries

An arithmetic circuit is a labelled directed acyclic graph. Vertices of zero in-degree
are called input gates and are labelled by elements in F ∪ {x1, . . . , xn}. Vertices
of in-degree two or more are called internal gates and have their labels from
{×,+}. An arithmetic circuit has at least one vertex of zero out-degree called
an output gate. We assume that an arithmetic circuit has exactly one output
gate. A polynomial pg in F[x1, . . . , xn] can be associated with every gate g of an
arithmetic circuit defined in an inductive fashion. Input gates compute their label.
Let g be an internal gate with children f1, . . . , fm then pg = pf1 op · · · op pfm
where op ∈ {+,×} is the label of g. The polynomial computed by the circuit is
the polynomial at one of the output gates and denoted by pC . The size of an
arithmetic circuit is the number of gates in it and is denoted by size(C). We will
denote a fan-in/degree bound on a layer as a superscript to the corresponding
gate e.g., Σ∧Σ[≤n]∧[≥21]Σ denotes the class of families of polynomials computed
by depth five circuits with powering and sum gates, where the middle layer of
sum gates have fan-in bounded from above by n and the bottom most powering
gates have degree at least 21.

The following bound on the binomial coefficient is useful throughout the
paper:

Proposition 5 ([14]). Let r ≤ n. Then log2

(
n
r

)
≈ nH(r/n), where H is the

binary entropy function, H(p) = −p log2(p)− (1−p) log2(1−p), and ≈ is equality
up to an additive o(n) error.

We denote by [n] the set {1, . . . , n}. For a set of polynomials S, let M≤d(S)
(M=d(S)) denote the set of all products of at most (exactly) d not necessarily
distinct elements from S. Note that when S is a set of variables, |M≤d(S)| =(|S|+d

d

)
. When the set S is clear from the context, we use M≤d (M=d) instead

of M≤d(S) (M=d(S)).
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For a subset S of variables, let X ba(S) denote the set of all multilinear mono-
mials of degree a ≤ d ≤ b in variables from the set S, i.e.,

X ba(S) = {
∏
xi∈S

xδii | a ≤
n∑
i=1

δi ≤ b, δi ∈ {0, 1}}.

For two sets A and B, define A�B 4= {a · b | a ∈ A, b ∈ B}. Additionally, we
define A · f for some polynomial f to be the set {a · f | a ∈ A}.

The notion of shifted partial derivatives is given as follows: For k ≥ 0 and
f ∈ F[x1, . . . , xn] let ∂=kf denote the set of all partial derivatives of f of
order k. For l ≥ 0, the (k, l) shifted partial derivative space of f , denoted by
F -Span

{
x≤l∂=kf

}
, is defined as:

F -Span
{
x≤l∂=kf

}
, F -Span

{
m · ∂=kf | m ∈M≤`(x1, . . . , xn)

}
where F -Span {S} , {α1f1 + · · · + αmfm | fi ∈ S and αi ∈ F for all i ∈ [m]}.
We restate the well known lower bound for the dimension of the space of shifted
partial derivatives x1 · · ·xn:

Proposition 6 ([8]).

dim
(
F -Span

{
x≤l∂=kMLx1 · · ·xn

})
= dim

(
F -Span

{
x≤l∂=kx1 · · ·xn

})
≥
(
n

k

)
·
(
n− k + l

l

)
.

In the above, ∂=kMLf denotes the set of kth order multilinear derivative space of f ,

i.e., ∂=kMLf , { ∂kf
∂xi1 ···∂xik

| i1 < . . . < ik ∈ {1, . . . , n}}.

3 Projected Multilinear Derivatives and Proof of
Theorems 1 and 2

This section is devoted to the proof of Theorems 1 and 2. Our proof follows the
standard two step approach for proving arithmetic circuit lower bounds: First,
define a sub-additive measure that is low for every polynomial computed in
the model. Second, show that the measure is exponentially larger for a specific
polynomial p. Hence allowing us to conclude that any circuit in the model that
computes p requires exponential size.

We consider a variant of the space of partial derivatives, viz., the projected
multilinear derivatives as the complexity measure for polynomials.

The Complexity Measure Let f ∈ F[x1, . . . , xn]. For S ⊆ {1, . . . , n}, let
πS : F[x1, . . . , xn]→ F[x1, . . . , xn] be the projection map that sets all variables
in S to zero, i.e., for every f ∈ F[x1, . . . , xn], πS(f) = f(xi = 0 | i ∈ S).
Let πm(f) denote the projection of f onto its multilinear monomials, i.e., if
f =

∑
α∈Nn cα

∏n
i=1 x

αi
i then πm(f) =

∑
α∈{0,1}n cα

∏n
i=1 x

αi
i .
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For S ⊆ {1, . . . , n} and 0 < k ≤ n, the dimension of Projected Multilinear
Derivatives (PMD) of a polynomial f is defined as:

PMDk
S(f) , dim(F -Span

{
πS(πm(∂=kMLf))

}
).

We omit the subscript S when either S is clear from the context or when it refers
to an unspecified set S. It is not hard to see that PMDkS is sub-additive.

Lemma 7. For any S ⊆ {1 . . . , n}, k ≥ 1, and polynomials f and g:

PMDk
S(f + g) ≤ PMDk

S(f) + PMDk
S(g).

Lower Bound for the Measure

We establish a lower bound on the dimension of projected multilinear derivatives
of the polynomial x1 · · ·xn. This follows from a simple argument and is shown
below:

Lemma 8. For any S ⊆ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4 we have:

PMDk
S(x1 · · ·xn) ≥

(
n/2− 1

n/4

)
≥ 2n/2/n2.

Proof. Let T ⊆ {1, . . . , n} with |T | = k. Then ∂k

∂T (x1 · · ·xn) =
∏
i/∈T xi. Note

that if S ∩ T = ∅ then we have πS(πm( ∂
k

∂T (x1 · · ·xn))) =
∏
i/∈T xi since setting

variables in S to zero does not affect the variables in T . Otherwise, if S ∩ T 6= ∅
then πS(πm( ∂

k

∂T (x1 · · ·xn))) = 0. Thus, we have:

F -Span
{
πS(πm(∂=kML(x1 · · ·xn)))

}
⊇ F -Span

∏
i∈T

xi | T ⊆ S, |T | ≤ n/4

 .

Hence, PMDk
S(x1 · · ·xn) ≥

(
n/2−1
n/4

)
≥ 2n/2/n2 using Stirling’s approximation of

binomial coefficients. ut

Σ ∧Σ∧ Circuits: The Curse of Homogeneity

Firstly, we observe that homogeneous Σ ∧Σ∧ circuits of polynomial size cannot
compute the monomial x1 · · · · · xn by eliminating bottom ∧ gates of degree at
least 2:

Observation 9. Let f = fα1
1 + · · ·+ fαss where fi =

∑n
j=1 βijx

di
j + βi0, βij ∈ F.

If f = x1 · · ·xn then s = 2Ω(n).

The homogeneity condition for the bottom power gates is necessary due to
the following result in [16]. Let Symn,d =

∑
S⊆[n],|S|=d

∏
i∈S xi, the elementary

symmetric polynomial of degree d.
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Proposition 10. [16, Corollary 17.16] For any d > 0, Symn,d can be computed

by a Σ ∧Σ∧ circuit of size 2O(
√
d)poly(n).4

Is it all about homogeneity at the bottom Σ gates? The answer is no. In fact,
Observation 9 can also be generalized to the case of powers of polynomials in the
span of the set {x

αij
ij
| 1 ≤ ij ≤ n, αij ≥ 2}:

Lemma 11. For any β0, β1, . . . , βr ∈ F, α, d ∈ N and for any S ⊆ {1, . . . , n}
with |S|+ k > n, we have PMDk

S((
∑r
j=1 βjx

dj
ij

+β0)α) ≤ 1 where 1 ≤ ij ≤ n and
either ∀j dj ≥ 2 or ∀j dj = 1.

We get the following generalization of Observation 9:

Corollary 12. Let f = fα1
1 + · · ·+ fαss where for every i, either fi is a linear

form or fi =
∑n
j=1 βi,ljx

dij
lj

+ βi0 for dij ≥ 2 and βi,lj ∈ F. If f = x1 · · ·xn then

s = 2Ω(n). Moreover, |{i | fi is linear}| = 2Ω(n).

Proof. Let S ⊂ {1, . . . , n} with |S| = n/2 + 1 and k = 3n/4. From Lemmas 11
and 7 we have PMDk

S(f) ≤
∑s
i=1 PMDk

S(fαii ) ≤ s. Hence by Lemma 8 we have

s ≥ 2n/2/n2 as required. Further, PMDk
S(fαii ) is non-zero only if fi is a linear

form, and hence |{i | fi is linear}| = 2Ω(n). ut

Σ ∧Σ ∧Σ Circuits: Middle Σ Fan-in versus the Bottom Degree

The argument above fails even when the degree of the power symmetric polynomial
is two (i.e., d = 2). Let f = `21 + · · ·+ `2n + β where `1, . . . , `n are homogeneous
linear functions such that each of the `i have all n variables with non-zero
coefficients and β 6= 0. It is not hard to see that the space ∂kMLf

α of the kth
order derivatives of fα is contained in the span of {fα−k

∏n
i=1 `

γi
i |

∑
i γi ≤ k}.

Even after applying the projections πm and πS for any S ⊆ {1, . . . , n}, with
|S| = (n/2) + 1, obtaining a bound on PMDkS better than the lower bound in
Lemma 8 seems to be difficult. The reason is that every multilinear monomial of
degree |n/2−1−k| appears in at least one of the projected multilinear derivatives
of fα.

A natural approach to overcome the above difficulty could be to obtain a
basis for the projected multilinear derivatives of fα consisting of a small set of
monomials and a small set of products of powers of the linear forms multiplied
by suitable powers of f . Surprisingly, as shown below in Lemma 13, the approach
works when the degree d ≥ 21, although it requires an involved combinatorial
argument.

Lemma 13. Suppose that f = (`d1 + . . . + `dn + β) for some scalar β, and `j
homogeneous linear forms, 1 ≤ j ≤ n. Let Y = {`d−ji | 1 ≤ i ≤ n, 1 ≤ j ≤ d} and

4 In [16], Corollary 17.16, it is mentioned that the resulting Σ ∧Σ∧ circuit is homo-
geneous. However, a closer look at the construction shows that the application of
Fischer’s identity produces sum gates that are not homogeneous.



8

λ = 1/4 + ε for some 0 < ε < 1/4. Then, for k = 3n/4 and any S ⊆ {1, . . . , n}
with |S| = n/2 + 1, we have:

πS(πm(∂=kMLf
α) ⊆ F -Span

{
πS(πm(F �

(
Xn/2−1λn (S) ∪M≤(1+ε)n/d(Y )

)
))
}

where F = ∪ki=1f
α−i and S = {1, . . . , n} \ S.

Proof. Let T ⊆ {x1, . . . , xn} with |T | = k, let f
(k)
T denote kth order partial

derivative of f with respect to T . Note that f
(k)
T ∈ F -Span

{
`d−kj | 1 ≤ j ≤ n

}
.

Let Li denote {`d−ij | 1 ≤ j ≤ n} so that f
(k)
T ∈ F -Span {Lk}. Then

∂kfα

∂T
∈ F -Span

{
fα−i�DT

i (f) | 1 ≤ i ≤ k
}

(1)

whereDT
i (f) =

{∏i
r=1 f

(tr)
Tr

| T1 ] . . . ] Ti = T, where tr = |Tr| > 0, 1 ≤ r ≤ i
}
.

Intuitively, the set DT
i contains one polynomial for each possible partition of

T into i many parts. The polynomial corresponding to a particular partition is
the product of the derivatives of f with respect to each of the parts. Now, the
following claim bounds the span of DT

i :

Claim. For any 1 ≤ i ≤ k, DT
i ⊆ F -Span

{⊙k
r=1 L

� jr
r |

∑k
r=1 r · jr = k

}
.

Proof. Let T1 ] · · · ] Ti = T be a partition and let jr denote the number of parts
with cardinality r, i.e., jr = |{j | |Tj | = r}|. Then

∏
|Tj |=r

f
(r)
Tj
∈ F -Span

 ⊙
|Tj |=r

Lr

 = F -Span
{
L� jrr

}
.

Thus,
∏i
r=1 f

(tr)
Tr
∈ F -Span

{⊙k
r=1 L

� jr
r

}
. Since,

∑k
r=1 r·jr = k for any partition

T1 ] · · · ] Ti of T , the claim follows. ut

Continuing from (1), we have:

∂kfα

∂T
∈ F -Span

{
fα−i�DT

i (f) | 1 ≤ i ≤ k
}

⊆ F -Span
{
F �{DT

i (f) | 1 ≤ i ≤ d}
}

⊆ F -Span

{
F �

{
d⊙
r=1

L� jrr | 1 · j1 + · · ·+ d · jd = k

}}
. (2)

It remains to show that the right side of (2) is spanned by a set of polynomials
that satisfy the properties stated in the lemma. The next claim completes the
proof of Lemma 13.
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Claim.

πS(πm

({
d⊙
r=1

L� jrr |
d∑
i=1

i · ji = k

})
⊆ F -Span

{
X

n
2−1
λn (S̄) ∪M≤ (1+ε)n

d
(Y )
}
.

Proof. Note that the polynomials in Lj are homogeneous non-constant polyno-

mials of degree d − j, and hence the set
⊙d

r=1 L
� jr
r consists of homogeneous

polynomials of degree
∑d
r=1 jr(d− r).

Let deg(
⊙d

r=1 L
� jr
r ) denote the degree of polynomials in the set

⊙d
r=1 L

� jr
r .

The remaining argument is split into three cases depending on the value of
deg(

⊙d
r=1 L

� jr
r ).

Case 1: deg(
⊙d

r=1 L
� jr
r ) ≥ n/2 then πS(πm(

⊙d
r=1 L

� jr
r )) = {0}. Note that

here we have crucially used the fact that the `j are homogeneous.

Case 2: λn ≤ deg(
⊙d

r=1 L
� jr
r )) < n/2. In this case πS(πm(

⊙d
r=1 L

� jr
r ))

is spanned by the set of all multilinear monomials in the set of variables
{xj | j /∈ S} of degree at least λn and at most n/2 − 1. Therefore we have,

πS(πm(
⊙d

r=1 L
� jr
r )) ⊆ F -Span

{
Xn/2−1λn (S̄)

}
.

Case 3: deg(
⊙d

r=1 L
� jr
r )) < λn. Recall that deg(

⊙d
r=1 L

� jr
r )) =

∑d
r=1 jr(d−

r) ≤ λn. Then,

d∑
r=1

jr · d ≤
d∑
r=1

jr · r + λn = k + λn (since

d∑
r=1

r · jr = k.)

= (λ+ 3/4)n = (1 + ε)n.

Hence, πS(πm(
⊙d

r=1 L
� jr
r )) is spanned by the set of all products of at most

(1 + ε)n/d polynomials of the form `d−ji , i.e.,

πS(πm(

d⊙
r=1

L� jrr )) ⊆ F -Span
{
M≤(1+ε)n/d(Y )

}
.

ut

This completes the proof. ut

Using Lemma 13 above and choosing suitable parameters k and S we obtain
the following upper bound on the dimension of projected multilinear derivatives:

Theorem 14. Let f = (`d1 + . . .+`dn+β) where `j are homogeneous linear forms.
For d ≥ 21 and any S ⊆ {1, . . . , n} where |S| = n/2 + 1. Then

PMDk
S(fα) ≤ 2(0.498+o(1))n.

Proof. By Lemma 13,

πS(πm(∂=kMLf
α)) ⊆ F -Span

{
πS(πm({fα−i}ki=1�

{
Xn/2−1λn (S̄) ∪M≤(1+ε)n/d(Y )

}
))
}
.
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Recall that λ = 1
4 + ε. We choose ε = 1/50 and hence λ = 0.27. We have:

PMDk
S(fα) ≤ k · (|Xn/2−1λn (S̄)|+ |M≤(1+ε)n/d(Y )|).

Now, since 1/4 < λ < 1/2, we have

|Xn/2−1λn (S̄)| ≤ (n/2− 1− λn) ·
(
n/2− 1

λn

)
≤ c(n/2) ·

(
n/2

λn

)
≤ (cn/2) · 2n2 ·H(2λ) ≤ (cn/2) · 20.498n.

Where c is an absolute constant. We bound |M≤(1+ε)n/d(Y )| as follows:

|M≤(1+ε)n/d(Y )| =
(
|Y |+ (1 + ε)n/d

(1 + ε)n/d

)
=

(
dn+ (1 + ε)n/d

(1 + ε)n/d

)
≤ 2(dn+(1+ε)n/d)H( (1+ε)n/d

dn+(1+ε)n/d )

= 2n(d+(1+ε)/d)H((1+ε)/(d2+(1+ε))) ≤ 20.4955n for d ≥ 21.

For the last inequality, note that for fixed n and ε, (d + (1 + ε)/d)H((1 +
ε)/(d2 + (1 + ε)) is a monotonically decreasing function of d, with limd→∞(d+
(1 + ε)/d)H((1 + ε)/(d2 + (1 + ε)) = 0. Therefore, the bound holds for d ≥ 21.
This completes the proof. ut

Corollary 15. Let f = (`d1 + . . . + `dN + β) where `j are homogeneous linear
forms. If d is such that N ≤ 2(d/1000), d ≤ n, and n/d = o(n) then for any α > 0,

PMDk
S(fα) ≤ 2(0.498+o(1))n.

Proof of Theorem 1: Let S = {1, . . . , n/2+1} and k = 3n/4. Then by Theorem 14
we have PMDkS(fi) ≤ 20.498n+o(n). By the sub-additivity of PMDkS (Lemma 7),
we have PMDkS(

∑s
i=1 f

αi
i ) ≤ s · 20.498n+o(n). Since PMDkS(x1 · · ·xn) ≥ 2n/2/n2,

we conclude s ≥ 20.001n, as required. ut

Proof of Theorem 2: Let S = {1, . . . , n/2 + 1} and k = 3n/4. Since di ≥
√
n,

it holds that Ni ≤ 2d/1000. Then, by Corollary 15, we have PMDkS(fαii ) ≤
20.498n+o(n). By the sub-additivity of PMDkS (Lemma 7), we have PMDkS(

∑s
i=1 f

αi
i ) ≤

s · 20.498n+o(n). Since PMDkS(x1 · · ·xn) ≥ 2n/2/n2, we conclude s ≥ 20.001n for
large enough n, as required. ut

A separation within Σ ∧Σ ∧Σ Circuits: An alert reader might have wondered
if the restriction on the fan-in of the middle layer of Σ gates in Theorem 2
is a limitation of the method of projected multilinear derivatives. By a simple
application of Fischer’s identity [3], we get:

Lemma 16. Over fields of characteristic zero or characteristic greater than n, the

polynomial x1 · · ·xn can be computed by a homogeneous Σ∧[
√
n]Σ[O(2

√
n)]∧[

√
n]Σ

circuit of size 2O(
√
n).
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This immediately leads to the following separation of homogeneous Σ ∧[
√
n]

Σ ∧[
√
n] Σ circuits:

Corollary 17. The class of polynomials computed by Σ∧[
√
n]Σ[2

√
n/1000]∧[

√
n]Σ

of size 2O(
√
n) is strictly contained in the class computed by Σ∧[

√
n]Σ[2

√
n]∧[

√
n]Σ

of size 2O(
√
n).

4 Dimension of Shifted Partial Derivatives

This section is devoted to the study of shifted partial derivatives of polynomials
that are computed by restricted Σ ∧Σ ∧Σ circuits and proofs of Theorem 3 and
Lemma 4.

We begin with a simple upper bound on the dimension of the derivatives of
powers of projections of pd onto low-dimensional sub-spaces:

Lemma 18. Let f = pd(`1, . . . , `t) where `1, . . . , `t are linear forms. Then for

any k > 0, we have dim
(
F -Span

{
∂≤kMLf

α
})
≤ (k + 1)(dk)r where r is the

dimension of the span of {`1, . . . , `t}.

Proof. Without loss of generality, assume that `1, . . . , `r is a basis for the space
spanned by `1, . . . , `t r ≤ t. Observe that:

∂≤kMLf
α ⊆ F -Span

fα−i · `β1

1 · · · `βrr |
r∑
j=1

βj ≤ dk


i∈{1,...,k}

and therefore, dim
(
F -Span

{
∂≤kMLf

α
})
≤ (k + 1)(dk)r as required. ut

Now, we bound the dimension of shifted partial derivatives of powers of the
power symmetric polynomial:

Lemma 19. Let f = pd(xj1 , . . . , xjm) for some j1, . . . , jm ∈ {1, . . . , n}. Then
for any α, l, k ≥ 1

dim
(
F -Span

{
x≤l∂=kMLf

α
})
≤ (k + 1)

(
n+m+ k + l

k + l

)
.

Note that the straightforward bound of
(
m
k

)(
n+l
l

)
is better than this bound if m

is large. However, when m is small (say m ≤ n/40), the bound shown above is
better for suitable values of k and l. Combining Lemmas 18 and 19 with the sum
and product rules for partial derivatives, we get:

Lemma 20. Let `1, . . . `t ∈ F[x1, . . . , xn] be linear forms and let r denote their
rank. Let f = pd(xj1 , . . . , xjm , `1, . . . , `t). Then for any d > k > 0, we have

dim
(
F -Span

{
x≤l∂=kMLf

α
})
≤ (α+ 1)(k + 1)3(dk)r

(
m+ n+ k + l

k + l

)
.
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Finally, using sub-additivity of shifted partial derivatives and Lemma 20 we
obtain the following upper bound:

Theorem 21. Let d > k > 0 and g =
∑s
i=1 f

αi
i where each of the polyno-

mials fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ) and `i1 , . . . , `imi are linear forms in
x1, . . . , xn. Then for any l > 0 with k + l > n+m:

dim
(
F -Span

{
x≤l∂=kMLg

})
≤ s(α+ 1)(k + 1)3(dk)r

(
n+m+ k + l

k + l

)
where m = maximi and r = maxi{dim(F -Span

{
`i1 , . . . , `iri

}
)}.

Combining the previous theorem with the lower bound from Proposition 6
gives us the required size lower bound.

Theorem 3. Let g =
∑s
i=1 f

αi
i where fi = pdi(xi1 , . . . , ximi , `i1 , . . . , `iri ), mi ≤

1
40n, ri ≤ nε, d ≤ 2n

1−γ
and αi ≤ 2n

δ

for all i, for some 0 < δ, ε, γ < 1, ε < γ.

If g = x1x2 . . . xn then s = 2Ω(n).

Proof. Let d ≥ 2 and m = maximi. Using Proposition 6 and Theorem 21

s ≥
(
n
k

)(
n−k+l

l

)
(α+ 1)(k + 1)3(dk)r

(
n+m+k+l

k+l

)
where α = maxi αi. Taking the logarithm and using that 3 log(k + 1) ≤ 3 log dk
since d ≥ 2 gives us

log s ≥ log

(
n

k

)
+log

(
n− k + l

l

)
−

(
log(α+ 1) + log

(
n+m+ k + l

k + l

)
+ (r + 3) log dk

)
.

Note that (r + 3) log dk ∈ o(n) if d ≤ 2n
1−γ

. Now, using the approximation of
binomial coefficients in Proposition 5 and setting k = n/10 and l = 10n we get
log s ≥ 0.0165n. This proves the required bound. ut
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