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Abstract

Decision fusion is a fundamental operation in many signal processing systems where

multiple sensors collaborate to improve the accuracy and robustness of the decision

being made. The decision of each individual binary decision maker (or sensor) is often

error-prone due to various environment challenges. These challenges are mitigated

to certain extent using the spatial diversity obtained by deploying the sensors over

a geographically distributed area. Subsequently, the decisions from the individual

sensors are collected and fused at a fusion center to obtain a global decision.

One such recent application of decision fusion is cooperative spectrum sensing in

cognitive radio networks (CRN). The secondary users (SUs) of the CRN are tasked

to garner the much needed unutilized spectrum allocated to the primary users (PUs).

It is important for the SUs to precisely detect the spectrum usage opportunities

inorder to improve the spectral efficiency and also to restrict the interference caused

to PUs in this process. However, these are two conflicting objectives. Tuning the

system to low levels of interference to the primary network will result in higher missed

spectrum utilization oppurtunities. Similarly, increasing the detection of spectral

usage opportunities will lead to increased interference to the primary users.

The fusion centers require optimal fusion rules that improve the spectral efficiency

of the CRN and minimize the interference caused to the primary network. The spec-

trum sensing in this case is generally modeled as a binary hypothesis problem: ‘PU

signal present’ and ‘PU signal absent’. The fusion rules are broadly classified into

two categories, namely (i) non-randomized (ii) randomized. In a ‘non-randomized’

rule, the global decision generated is deterministic for all the combinations of the

local observations received. And in a ‘randomized’ rule the global decision generated

is random (0 or 1) with a certain probability distribution for some local observations.

The design of the optimal randomized decision fusion is generally simple, however in-

troduce randomness in the decision equations and are difficult to implement. Whereas
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the design of the optimal non-randomized hard decision fusion rule is difficult, and

under the Neyman-Pearson (NP) criterion is known to be exponential in complexity.

In this thesis, we develop low-complexity (i) optimal and (ii) near-optimal algo-

rithms for two variants of non-randomized hard decision fusion problems under NP

crierion (i) clairvoyant1 decision fusion and (ii) novel (semi-)blind decision fusion. In

all the sub-categories considered therein, we present low-complexity algorithms and

obtain receiver operating characteristics (ROCs) for different number of participating

sensors (N) which was intractable with the existing approaches.

We formulate a more generalized version of this problem called “Generalized De-

cision Fusion Problem (GDFP)” and relate it to the classical 0−1 Knapsack problem.

Consequently we show that the GDFP has a worst case pseudo-polynomial time so-

lution using dynamic programming approach. Additionaly, we show that the decision

fusion problem exhibits semi-monotonic property in most practical cases. We pro-

pose to exploit this property to reduce the dimension of the feasible solution space.

Subsequently, we apply dynamic programming to efficiently solve the problem with

further reduction in complexity.

Further, we show that though the non-randomized single-threshold likelihood ratio

based test (non-rand-st LRT) is sub-optimal, its performance approaches the upper

bound obtained by randomized LRT (rand LRT) with increase in N . This alleviates

the need for employing the exponentially complex non-randomized optimal solution

for N larger than a specific value.

As a variant of GDFP, we propose novel (semi-)blind hard decision fusion rules

that use the mean of the secondary user characteristics instead of their actual values.

We show that these rules with slight (or no) additional system knowledge achieve

better ROC than existing (semi-)blind alternatives.

Finally, we present a branch and bound algorithm with novel termination to obtain

1A rule that has complete knowledge of the system

viii



a near-optimal solution as the proposed dynamic programming approach exhibits

limitations for the GDFP that require high-precision computations. We validate the

performance of the proposed branch and bound algorithm for a wide range of {high,

low} precision and {monotonic, semi, non-monotonic} GDFPs.

All the algorithms have been rigorously verified by simulations in Matlab.
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Chapter 1

Introduction

The focus of this dissertation is on developing low complexity algorithms for solving

‘non-randomized Hard Decision Fusion’ problems. Decision fusion is a fundamental

operation in many signal processing systems like Communications, Radar, Sonar, Im-

age processing, Speech, Biomedicine, Weather prediction, Control, Internet of Things

etc. One of the recent application of decision fusion is in cooperative spectrum sensing

in cognitive radio networks.

1.1 Motivation and Scope of the Thesis

The demand for wireless mobile data consumption has grown at a phenomenal rate

in the past decade. The rapid deployement of more and more wireless systems and

services to cater to the demand has led to a serious problem of lack of availability of

radio spectrum for wireless communications. Cognitive radio technologies promise to

alleviate this problem by garnering and flexibly using the unutilized licensed spectrum.

The secondary users (SUs) are allowed to use the spectrum while it is unutilized by

the primary users (PUs).

This requires a robust and accurate mechanism to identify the spectrum white

space slot availability to share it among the SUs while strictly controlling the inter-
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ference caused to the PUs. To acheive this, cooperative spectrum sensing is widely

researched to obtain diversity gains in demanding propagation environments such

as fading, shadowing and the hidden node problem. All the SUs share a common

aim of being able to decide when the PU is not transmitting and the existence of

the spectrum usage opportunity for the secondary network. Typically, due to the

limitations on (reporting channels) the amount of communication allowed, the SUs

make hard (binary) decisions and transmit these results to the fusion center (FC)

for decision combining. The distributed sensing problem is generally modeled as a

binary hypothesis test. The incorrect decisions: (i) missed detection leads to collision

in transmission with the PU; (ii) false alarm leads to missed oppurtunity for the SUs

to utilize the spectrum. The chosen decision-making strategy like Neyman-Pearson,

Bayesian etc., specify the criterion to control the interference while maximizing the

spectral efficiency.

The computational complexity to obtain a decision fusion rule varies greatly with

the nature of the problem and the chosen strategy. Non-randomized hard decision

fusion under Neyman-Pearson is known to be exponential in complexity on M (the

cardinality of the observation data space), that is double-exponential on N (the num-

ber of participating SUs). This problem gets intractable with increase in N .

The scope of this thesis is to develop low-complexity (i) optimal and (ii) near-

optimal algorithms for two variants of non-randomized hard decision fusion problems

(i) clairvoyant decision fusion and (ii) novel (semi-)blind decision fusion. In all

the sub-categories considered therein, we present low-complexity algorithms and ob-

tain receiver operating characteristics (ROCs) for different values of N which was

intractable with the existing approaches. All the algorithms have been rigorously

verified by simulations in Matlab.
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1.2 Organization of the Thesis

The content of this thesis can be categorized into the following main topics:

(A) formulation of the generalized decision fusion problem (GDFP) and establishing

that it is a well-known 0− 1 Knapsack problem;

(B) defining variants of the GDFP:

(i) the clairvoyant fusion problem and

(ii) the (semi-) blind decision fusion problem;

(C) categorization of the GDFP based on the properties exhibited:

(i) monotonic (case-A and case-B),

(ii) semi-monotonic and

(iii) non-monotonic;

(D) presentation of different types of low-complexity solutions:

(i) dynamic programing based optimal solution for low-precision non-monotonic

problems,

(ii) solution space variable reduction method for semi-monotonic problems,

(iii) near-optimal non-randomized single-threshold likelihood ratio test (non-

rand-st LRT) for problems with larger number of participating SUs,

(iv) near-optimal novel termination branch and bound based solution for all

types of problems.

Figure 1.1 summarizes the contributions of this thesis in the form of a flowchart.

Chapter 2 We introduce the hard decision fusion problem and categorize the same based on

the properties exhibited by its likelihood ratio (LR) based decision equation. We
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non-randomized generalized decision
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Figure 1.1: Depiction of the contributions in a flowchart.

establish that the optimal fusion rule requires the decision equation to be com-

pared with multi-thresholds for the most general case. Subsequently, we formu-

late the problem into GDFP and show that it is a 0− 1 Knapsack problem. We

present a low-complexity optimal solution that is pseudo-polynomial (O(αCM))

in computation complexity whereas computating the multi-thresholds is expo-

nential (O(2M), i.e., O(22N )) in complexity.

Accordingly, Chapter 2 has seven sections dealing with the GDFP, its properties,

categorization, the 0− 1 Knapsack equivalence and the dynamic programming

based solution.

Chapter 3 We define a new desirable property of the GDFP namely, semi-monotonic. We

show that the feasible solution space of the problems with this property is

reduced. Subsequently, the DP based solution for such problems is reduced to

O(αCM ′) where M ′ < M .

Accordingly, Chapter 3 has six sections dealing with the semi-monotonic prop-
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erty, the feasible solution space reduction of the GDFP and the numerical re-

sults.

Chapter 4 We show analytically that the performance of the widely used non-rand-st LRT

approaches the upper-bound obtained by the randomized likelihood ratio test

(rand LRT) for asymptotic number of participating SUs. Further, we show

numerically that performance difference is insignificant for number of SUs N ≥

13, thereby allowing the use of log-linear (O(M log(M)) complexity solution for

such cases.

Accordingly Chapter 4 has five sections dealing with defining the performance

difference metrices and numerical computation of the parameters for various

network scenarios.

Chapter 5 We introduce novel variants of the GDFP, called (semi-)blind hard decision

fusion rules. These use the mean of the SU characteristics instead of their actual

values. The semi-blind rules, namely MSB assume that the characteristics under

the hypothesis H1 are unknown and the blind rules, namely MCB assume that

the characteristics under both the H0 and H1 are unknown. These rules with

slight (or no) additional system knowledge achieve better receiver operating

characteristics than existing (semi-)blind alternatives.

Accordingly Chapter 5 has six sections dealing with definition of the rules, their

monotonic properties, proposed solutions and the numerical results.

Chapter 6 Finally, we present branch and bound algorithm with novel termination to ob-

tain the near-optimal solution as the dynamic programming approach proposed

in chapter 2 exhibits limitations for the GDFP that require high-precision com-

putations. We validate the performance of the proposed branch and bound

algorithm for a wide range of {high, low} precision and {monotonic, semi, non-

monotonic} GDFPs.
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Accordingly Chapter 6 has five sections dealing with branch and bound algo-

rithm, the proposed termination mechanism and the numerical results.

Chapter 7 We conclude the thesis by summarizing the main results obtained and enumerate

future avenues of research.

Chapter B In Appendix, we provide one numerical example each for the different GDFP

properties discussed in the thesis.

1.3 Research Contributions

The main contribution of this thesis is developing low-complexity solutions to obtain

the optimal and near-optimal fusion rules for non-randomized decision fusion prob-

lems under Neyman-Pearson criterion. Details of the research contributions in each

chapter are as follows:

Chapter 2 The main result in this chapter is to show that the non-randomized hard decision

fusion problem requires multi-threshold decision equation to obtain optimum

performance and later mapping it to the well-known 0− 1 Knapsack problem.

Thereby this allows us to use dynamic programming to obtain optimal fusion

rules. The results of this chapter have been published in one journal paper:

[J.1] M. F. Rahaman and M. Z. A. Khan, “Low-Complexity Optimal Hard

Decision Fusion Under the Neyman-Pearson Criterion,” IEEE Signal Pro-

cess. Lett., vol. 25, no. 3, pp. 353-357, Mar. 2018.

Chapter 3 The main result in this chapter is definition of a new property, namely semi-

monotonic that is exhibited by the GDFP in most practical cases. This property

reduces the dimension of the feasible solution space thereby further reducing the

solution complexity of proposed algorithms. The results of this chapter have

been published in one conference paper:
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[C.1] D. Nikhil, M. F. Rahaman and M. Z. A. Khan, “Reduced Complex-

ity Optimal Hard Decision Fusion under Neyman-Pearson Criterion,” 26th

IEEE SIU 2018 conference, pp. 1-4, May 2018, Turkey.

Chapter 4 The main result in this chapter is definition of two metrics to quantify the

performance difference between non-rand-st LRT and rand LRT. This allows

us to show analytically that the performance difference approaches zero for

asymptotic number of SUs. The results of this chapter have been published in

one conference paper:

[C.2] M. F. Rahaman and M. Z. A. Khan, “On non-Randomized Hard Decision

Fusion under Neyman Pearson Criterion using LRT,” 88th IEEE Vehicular

Technology Conference, Chicago, (In Press, June 2018).

Chapter 5 The main result in this chapter is the definition of variants of the GDFP. Groups

of semi-blind namely MSB and completely-blind fusion rules namely MCB are

defined and their monotonic property is established. Numerical results are

obtained by the solutions proposed in the previous chapters. The results of this

chapter have been published in one journal paper:

[J.2] M. F. Rahaman, D. Ciuonzo and M. Z. A. Khan, “Mean-based Hard

Decision Fusion Rules,” IEEE Signal Process. Lett., vol. 25, no. 5, pp.

630-634, May 2018.

Chapter 6 The main result in this chapter is applying the branch and bound algorithm

for the GDFP with a novel termination mechanism to handle the exception

scenarios. As a result this mechanism is conjectured to provide the near-optimal

solution in quadratic time complexity for a wide range of GDFPs. The results

of this chapter are under preparation for a journal paper:

[J.3] M. F. Rahaman and M. Z. A. Khan, “Fast Computation of Optimal
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Hard Decision Fusion under Neyman-Pearson Criterion,” (In preparation

for IEEE Signal Process. Lett.,).
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Chapter 2

Generalized Decision Fusion

Problem

2.1 Introduction

Typical binary events
monitored
1. Spectrum white space
2. Phenomenon occurrence
3. Target presence

Types of networks

1. Cognitive Network
2. Sensor Network
3. Radar Network

Event

FC

Secondary Users

Primary Users

Figure 2.1: Illustration of a Distributed Detection network.

Distributed detection (as illustrated in Figure 2.1) is widely researched in sensor

networks [1,2], military surveillance, environment monitoring, internet of things (IoT)

and has also found vast application for cooperative spectrum sensing (CSS) in cog-

nitive radio networks (CRN) [3,4]. Typically a distributed sensor network comprises
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of geographically distributed sensors deployed to monitor the occurrence of an event

of interest. The local decisions are collected by a fusion center (FC indicated by blue

dotted box) to generate a global decision. The fusion rule at the FC makes use of the

spatial diversity of the local decisions to increase the accuracy of the global decision.

In a CSS scheme of a CRN [5–9], multiple secondary users (SUs indicated by

blue dotted circles) (or sensors in some cases) collaborate to increase the reliability

of the binary hypothesis test to detect a specturm hole (an event indicated by red

starred box). The likelihood ratio (LR) function of the SU decisions is used as the

fundamental measure to design the optimal fusion rule of the fusion center (FC)

[10, 11]. It is desirable that a sufficient statistic1 function for the LR exist, and that

it is monotonic2, as it simplifies the computation of the threshold for the LR-based

decision equation under NP criterion [10, 12]. However, many practical problems

are non-monotonic wherein the optimal decision regions in the observation space are

not simply connected. In such cases, the optimal fusion rule requires multi-threshold

decision equation and the problem often requires computationally intensive exhaustive

search methods.

Different factors that influence the complexity3 of the decision fusion problem can

be categorized as follows:

(i) the property of the LR function {monotonic, non-monotonic};

(ii) the performance criterion {Bayesian, Neyman-Pearson};

(iii) the decision threshold equations used {single (st), multi (mt)};

(iv) the test used {randomized (rand), non-randomized (non-rand)};

(v) the nature of the observation space {discrete (D-OS), continuous (C-OS)};
1A compressed statistic that provides complete knowledge of the observation data.
2A decision fusion problem is called monotonic if the sufficient statistics function exists and the

LR function is monotonic on it [12].
3Complexity is defined as the number of addition/multiplication floating-point operations (flops)

required by an algorithm to compute a solution.
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Table 2.1: Categorization of Decision fusion problems with references

LR Fn. monotonic non-monotonic

Thres. Eq. single single multi

Bayesian → [13–16], [*] [17,18], [*] x

NP → non-rand. [19, 20], [*] [22–26] [*]

rand. [21] [26–28] x

[*] Represents all the special cases of the proposed GDFP.
x These categories do not exist.

(vi) the SU decisions {dependent, independent} etc.

Table 2.1 lists some of the categories and the corresponding references in the literature

where these problems have been considered.

Under Bayesian criterion it is straight forward to compute the single-threshold

for the LR test when the apriori probabilities of the hypothesis and the Bayes costs

are known. Using the threshold, the probability of error PE can be computed in

logarithmic time for monotonic problems [13–16] and in linear time for non-monotonic

problems [17,18].

In general, the constrained optimization of the NP criterion increases the problem

complexity. For problems with monotonic property, low complexity methods like

bisection, gradient descent etc., can be used to compute the optimal threshold in

some cases [19–21]. The non-monotonic property of the LR complicates the optimal

decision equation, which is generally intractable in C-OS [12]. To circumvent this

difficulty, sub-optimal single-threshold weighted decision equation is used in [22–26].

In D-OS, the exhaustive search method can be employed, however it is exponential

in complexity [1, 2]. Alternatively, the randomized test as in [26–28] reduces the

complexity at the cost of introducing randomness in the decision equation. Additional

background information related to the existing work is provided in the Appendix A.

In this thesis, we focus on the non-randomized optimal hard decision fusion in the

discrete observation space. The main contributions in this chapter are:
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(i) We formulate a generalized decision fusion problem (GDFP) wherein both

monotonic / non-monotonic problems under both Bayesian and NP criterion

are special cases (categories marked with [*] in Table 2.1).

(ii) We subsequently present an approach that reduces the exponentially com-

plex non-monotonic hard decision fusion NP criterion special case into pseudo-

polynomial4 time by showing that the proposed GDFP is related to the classical

0− 1 Knapsack problem (KP).

(iii) The proposed approach is valid for system with dependent SU decisions as well.

(iv) The solution complexity can be further reduced for monotonic relevant cases of

the GDFP. A special case of monotonic GDFP is identified where the complexity

reduces to linear time in the worst case.

(v) Boolean switching equation is introduced as a convinient way of implementing

the multi-threshold decision equation.

The outline of this chapter is as follows: In Section 2.2 we explain the system model,

formulate the GDFP and show that the problem is non-monotonic in general. We

relate the GDFP to 0-1 KP and present dynamic programming (DP) based solution

in Section 2.3. Section 2.6 contains the numerical results, followed by conclusions in

Section 2.7.

2.2 System Model

We consider a parallel network of N distributed SUs and a FC as depicted in the

Figure 2.2. The SUs (indicated by the blue dotted circles) sense the spectrum for

PU transmissions and generate individual local binary decisions ui, where ui = 0

implies hypothesis H0 : PU signal absent and ui = 1 implies hypothesis H1 : PU

4Computation time is polynomial in the numeric value of an input parameter
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SUN−1
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, PdN−1

}

SUi

{Pfi , Pdi}

SU0
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{PF , PD}
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N−

1

u1

u 0
∈ {

0,
1}

ufc ∈ {0, 1}
Ĥ

Binary hypothesis
H0: PU signal absent
H1: PU signal present

SU Characteristics

Pfi , p(ui = 1|H0)
Pdi

, p(ui = 1|H1)
Pfi < Pdi

,∀i Observation data

u , [uN−1 · · ·u0]T
U , {um}M−1

0 ,M = 2N

System
Characteristics

PF , p(ufc = 1|H0)
PD , p(ufc = 1|H1)

NP Criterion
Max PD

Sub. to PF ≤ α

Figure 2.2: Depiction of System Model.

signal present respectively. These local decisions are received by the FC (indicated

by blue dotted rectangle) over non-erroneous reporting channels as a N-dimensional

observation vector u, where u , [uN−1 · · ·u0]T . As a result, the observation space U ,

is discrete (= BN where B ∈ {0, 1}) with cardinality M = 2N . The mth vector in the

observation space is represented as um, m ∈ {0, · · · ,M − 1}. Figure 2.3 represents

all the observation vectors possible for an example using N = 2.

u3 u2 u1 u0

u1 1 1 0 0

u0 1 0 1 0

M = 2N (= 22)

N(= 2)

Figure 2.3: Observation vectors for N = 2.

Each SU is characterized by its average probability of detection Pdi , p(ui = 1 |

H1) and probability of false alarm Pfi , p(ui = 1 | H0), ∀i. Based on the received

observation vector u, the fusion rule Γ(·), of the FC generates the global decision
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ufc = Γ(u), where ufc = 0 implies hypothesis H0 and ufc = 1 implies hypothesis

H1 respectively. The performance of the fusion rule is characterized by the system

probability of detection PD (, p(ufc = 1|H1)) and probability of false alarm PF

(, p(ufc = 1|H0)), that are obtained as [10],

PD=
∑

u∈R1

p(u|H1), PF=
∑

u∈R1

p(u|H0), (2.1)

where R0,R1 are two decision regions in the N -dimensional continuous real space RN ,

such that U ⊂ {R0 ∪R1}, {R0 ∩R1} = ∅ (empty set), um ∈ R0 implies Γ(um) = 0

and um ∈ R1 implies Γ(um) = 1,∀m. This indicates that an optimal definition of

decision regions results in an optimal fusion rule. Figure 2.4 depicts two types of

decision regions possible for the example with N = 2.

u3

u1

u2

u0

R1

R0

(a) Connected regions

u3

u1

u2

u0

R1

R1

R0

(b) Disconnected regions

Figure 2.4: Depiction of sample decision regions for N = 2.

We now formulate the generalized decision fusion problem (GDFP) as,

Maximize
R1

CD PD − CF PF , Sub to: PF ≤ α, (2.2)

where CD, CF are coefficients in the objective function and α is the constraint

value on the system PF .

By substituting α = 1, CD = π1 (C01 − C11), CF = π0 (C10 − C00) in (2.2), where

Cjl is the cost of deciding Hj when Hl is true, and πl is the apriori probability of
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hypothesis Hl, for j, l ∈ {0, 1}, we get

Maximize
R1

π1 (C01 − C11) PD − π0 (C10 − C00) PF , (2.3)

which by definition [11] is an unconstrained fusion problem under Bayesian criterion.

This special case of the GDFP with independent SU decisions is the Chair-Varshney

problem [17] for which a linear complexity solution to compute the PE exists. Simi-

larly, substituting CD = 1, CF = 0 in (2.2) we get,

Maximize
R1

PD, Sub to: PF ≤ α, (2.4)

which by definition [11] is a constrained optimization problem under NP criterion for

which the solution is exponential in complexity [1].

We now focus on reducing the complexity of obtaining the optimum decision region

R1, for the GDFP. The Lagrangian function that needs to be maximized is,

F = CD PD − CF PF + λ′(PF − α), (2.5)

where λ′ is the Lagrange multiplier [10]. Using (2.1), we have

F = −λ′α +
∑

u∈R1

[CD p(u|H1) + (λ′ − CF ) p(u|H0)] , (2.6)

which indicates that, the optimal decision region R1 for the GDFP can also be ob-

tained by LR test given by,

(
Λ(Pd,Pf ,u) , p(u|H1)

p(u|H0)

)
ufc=1

≷
ufc=0

λ, (2.7)

where Pd , {Pdi}N−1
i=0 , Pf , {Pfi}N−1

i=0 and λ (= CF−λ′
CD

) is the threshold to be com-

puted. When the SU decisions are independent (assuming the SUs are spatially
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segregated and experience different listening channel characteristics), we have

p(u|H1) =
N−1∏

i=0

(Pdi)
ui(P̄di)

1−ui ,

p(u|H0) =
N−1∏

i=0

(Pfi)
ui(P̄fi)

1−ui , (2.8)

where P̄ , (1 − P ). As an example, Table 2.2 lists the conditional probabilities of

the observation vectors for N = 2.

Table 2.2: Conditional probability of the observation vectors for N = 2.

u p(u|H1) p(u|H0)

u3 = [1 1]T Pd1Pd0 Pf1Pf0

u2 = [1 0]T Pd1P̄d0 Pf1P̄f0

u1 = [0 1]T P̄d1Pd0 P̄f1Pf0

u0 = [0 0]T P̄d1P̄d0 P̄f1P̄f0

Equation (2.7) can further be simplified as [1],

(
Ω(Pd,Pf ,u) ,

N−1∑

i=0

g(Pdi , Pfi) ui

)
ufc=1

≷
ufc=0

ω, (2.9)

where g(Pdi , Pfi) , log(
Pdi P̄fi
P̄di Pfi

) and ω = log(λ
∏N−1

i=0

P̄fi
P̄di

). For this case, the threshold

ω of (2.9) is to be computed that optimizes the GDFP.

Next we describe the {monotonic, non-monotonic} properties of the GDFP which

influence the type of {single-threshold, multi -threshold} decision equations required

to obtain the optimal solution.
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2.2.1 GDFP properties

Monotonic property:

The GDFP is said to be monotonic when there exist an arbitrary function T (u) [10,12]

(T : BN 7→ R) such that

(i) it is a sufficient statistic 5 and Ω(·) is monotonic on it, or

(ii) Λ(Pd,Pf ,u), p(u|H1) and p(u|H0) are all monotonic on it.

Further there are two scenarios (case-A and case-B) in a monotonic problem which

lead to a single-threshold and multi-threshold decision equation respectively.

case-A:
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Figure 2.5: Illustration of the decision regions of a GDFP in R with monotonic case-A
property.

In Figure 2.5, we plot the conditional probabilities of an example GDFP for N = 4

whose numerical values are provided in Appendix B.1. A T (u) function is chosen

5A statistic T (u) is a sufficient statistic for {Pd,Pf} if the conditional distribution of the sample
u given the value of T (u) does not depend on {Pd,Pf} [29].
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(given by (B.1)) such that the LR function Λ(·) is monotonic on it. Further note

from the figure that p(u|H1) and p(u|H0) are also monotonic on the chosen T (u),

(i) p(u|H1) is non-decreasing and p(u|H0) is non-increasing with T (u), as a result

(ii) the optimal decision regions {R0,R1} (represented by red dotted marker and

green dashed marker respectively under the real-line) are connected under NP

criterion (Lemma 2.2.1) and a single-threshold suffices for the decision equations

(2.7) and (2.9), thereby simplifying the computations for obtaining the optimum

solution.

Lemma 2.2.1. The optimal decision regions {R0,R1} are connected under NP cri-

terion for a monotonic case-A problem.

Proof: (By contradiction) Without loss of generality, consider

· · · < T (um−1) < T (um) < T (um+1) < · · ·

then,

· · · < p(um−1|H1) < p(um|H1) < p(um+1|H1) < · · · and

· · · > p(um−1|H0) > p(um|H0) > p(um+1|H)) > · · · . (2.10)

Assume an optimal decision region that is not simply connected exists. i.e., {um} ∈

R0 and {um−1,um+1} ∈ R1. Then from (2.1) we have,

P ∗D =
∑

u∈R1

p(u|H1), (2.11)

(
P ∗F =

∑

u∈R1

p(u|H0)
)
≤ α. (2.12)
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However from (2.10) we have,

(
PD , P ∗D − p(um−1|H1) + p(um|H1)

)
> P ∗D and

(
PF , P ∗F − p(um−1|H0) + p(um|H0)

)
< α , (2.13)

contradicting the assumption about the existence of a disconnected optimal decision

region.

case-B:
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Figure 2.6: Illustration of the decision regions of a GDFP in R with monotonic case-B
property.

In Figure 2.6, we plot the conditional probabilities of an example GDFP for N = 4

whose numerical values are provided in Appendix B.2. A T (u) function is chosen

(given by (B.2)) such that the LR function Λ(·) is monotonic on it. Further note

from the figure that p(u|H1) and p(u|H0) are also monotonic on the chosen T (u).

However,

(i) p(u|H1) and p(u|H0) are both non-decreasing with T (u), as a result
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(ii) the optimal decision regions {R0,R1} (represented by red dotted marker and

green dashed marker respectively under the real-line) are generally not con-

nected under NP criterion [10] and multi-thresholds are required for (2.7) and

(2.9), there by complicating the computations for obtaining the optimum solu-

tion.

non-Monotonic property:

The GDFP is said to be non-monotonic when

(i) no sufficient statistic function exist or

(ii) no function T (u) exist on which Λ(·), p(u|H1) and p(u|H0) are all monotonic.

In Figure 2.7, we plot the conditional probabilities of an example GDFP for N = 4

whose numerical values are provided in Appendix B.3. As seen from the figure, in

this non-monotonic case both p(u|H1) and p(u|H0) are non-monotonic on the T (u)

of (B.3), where as Λ(·) is monotonic (as shown in Table B.6).

Note that in this case

(i) p(u|H1) and p(u|H0) are non-monotonic on T (u), where as Λ(·) is monotonic. In

this case, no function T (u) exists on which all the three functions are monotonic.

(ii) the optimal decision regions {R0,R1} are not simply connected [10] and the de-

cision equations (2.7) and (2.9) require multi-thresholds, there by complicating

the computations for obtaining the optimum solution in this case.

Table 2.3 summarizes the different properties considered in this subsection and

their corresponding optimal decision equations.

The property of a particular GDFP is based on its realization of the {Pd,Pf}

distribution family. We now focus on analytical classification of the GDFP instances

based on their properties.
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Figure 2.7: Illustration of the decision regions of a GDFP in R with non-monotonic
property.

Table 2.3: Summary of GDFP properties and decision equations under NP Criterion

GDFP property Optimal Decision Equation

monotonic case-A single-threshold

monotonic case-B multi-threshold

non-monotonic multi-threshold

2.2.2 GDFP Classification

Remark 2.2.2.1 (Independent Homogeneous). Consider a system with identical

(Homogeneous) and independent SUs, i.e., Pdi = Pd, Pfi = Pf , ∀i and Pd > Pf , as

in [15,16]. Then Ω(·) of (2.9) can be factored as

Ω(Pd,Pf ,u) = g(Pd, Pf ) T (u), (2.14)

where T (u) =
∑N−1

i=0 ui.

(i) From the definition of factorization criterion in [12], the factor T (u) is the
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sufficient statistic of Ω(·) as it is independent of the parameter family {Pd,Pf}

in this case.

(ii) As the factor g(Pd, Pf ) is always positive for all Pd > Pf , Ω(·) is increasing on

T (u), thereby implying the GDFP is monotonic for this case.

As a result, (2.9) can be replaced with the sufficient statistic test as [16],

k
ufc=1

≷
ufc=0

ωk, where k ,
N−1∑

i=0

ui. (2.15)

However, with the given system knowledge of the GDFP, this case cannot be classified

into the desirable monotonic case-A, there by requiring a multi-threshold decision

equation under NP criterion in the general case.

Remark 2.2.2.2 (Independent Homogeneous with Pd > 0.5 > Pf ). With an

additional assumption that Pd > 0.5 > Pf for the Remark 2.2.2.1 class, the con-

ditional probability p(u|H1) becomes non-decreasing with k and p(u|H0) becomes

non-increasing. As a result, this case can be classified as monotonic case-A.

Remark 2.2.2.3 (Independent Heterogenous case). For the general values of

Pdi , Pfi ,∀i, the function Ω(·) of (2.9) is non-separable as required by the factoriza-

tion criterion [12], thereby implying that a sufficient statistic does not exist and the

GDFP is non-monotonic for the most general case.

Remark 2.2.2.4 (Dependent General case). Similar to Remark 2.2.2.3, the GDFP

for a system with dependent SU decisions for which joint conditional pmfs, p(u|H0)

and p(u|H1) are obtainable as in [18] can be shown to be non-monotonic in the most

general case as Λ(·) of (2.7) is non-separable.

Table 2.4 lists the GDFP instances and their class covered in this subsection.

The complete classification of the special cases of the GDFP into monotonic/non-

monotonic problems is not covered in this chapter. It needs to be addressed separately.
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Table 2.4: Summary of GDFP Instances and their class

GDFP Instance Class

Independent Homogeneous (Pdi = Pd, Pfi = Pf , ∀i) monotonic case-B

Independent Homogeneous with Pf < 0.5 < Pd monotonic case-A

Independent Heterogenous non-monotonic

Dependent General non-monotonic

However, for the most general case (with both independent/dependent SU de-

cisions), the optimal decision regions {R0,R1} are not simply connected and the

decision equation (2.7), (2.9) requires multi-thresholds thereby complicating the com-

putations. To alleviate this difficulty, we now reformulate the GDFP and then related

it to the 0− 1 Knapsack problem.

2.3 Decision Region-based Fusion Rule

Define a binary-valued vector x , [xM−1 · · · x0]T , each element of which corresponds

to an observation vector in the observation space U , and where xm = 0 implies

um ∈ R0 and xm = 1 implies um ∈ R1 respectively. Using this notation, (2.1) can be

rewritten as,

PD(x) =
M−1∑

m=0

xm p(um|H1), PF (x) =
M−1∑

m=0

xm p(um|H0). (2.16)

Using (2.16), the GDFP of (2.2) can now be written as,

Max
x

CD PD(x)− CF PF (x), Sub to: PF (x) ≤ α. (2.17)

Note that, xm is the truth table value corresponding to the binary-valued observation

vector um, ∀m. As a result the optimal fusion rule Γ(.), can now be implemented

as a boolean switching equation using binary variables ui,∀i and the optimal vector
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x∗. This boolean equation generalizes (i) the single-threshold (non-rand-st LRT); (ii)

the multi-threshold (non-rand-mt LRT) decision equation (2.7), (2.9) of the general

cases; and (iii) the K-out-of-N equation (2.15) of the monotonic case [30].

As an example, Figure 2.8 lists few fusion vectors out of the 24 values of vector x

for N = 2. Note that the widely used rules like ‘OR’, ‘AND’, ‘MAJORITY’ etc., are

special cases of the fusion rules that x can represent.

u3 u2 u1 u0

u1 1 1 0 0

u0 1 0 1 0

x , [x3 x2 x1 x0]

1 1 1 1

OR → 1 1 1 0

...
AND → 1 0 0 0

0 1 1 1

...
0 0 0 0

M = 2N (= 22)

N(= 2)

2M = 22
N

Figure 2.8: Example fusion vectors for N = 2.

A total of 2M(= 22N ) distinct fusion vectors (x) are possible, thereby implying

that an exhaustive search for the optimum x∗ has an exponential complexity in M

and double exponential complexity in N . As an example, note that for N = 10 a total

of 2210(= 21024) fusion vectors are possible there by making the exhaustive search

mechanism intractable even for small value of N .

However, the GDFP as defined in (2.17) is in the form of the 0 − 1 Knapsack

problem (KP) [31,32], implying that existing efficient solutions can be re-used for the

GDFP.
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2.4 0− 1 Knapsack Problem

Definition 2.4.1 (0− 1 Knapsack problem (KP) [31]). Given a set of M items, each

with a value and weight {Vm,Wm} respectively for 0 ≤ m ≤ M − 1, choose a subset

s, of items such that

Max
s

M−1∑

m=0

smVm, Sub to:
M−1∑

m=0

smWm ≤ Wlim, (2.18)

where s , [sM−1 · · · s0], sm = 0 implies the item m is left-out, sm = 1 implies it is

chosen and Wlim is the total weight limit allowed.

For a better appreciation of the 0 − 1 Knapsack problem, we present two simple

numerical examples one each with monotonic case-A and non-monotonic property.

2.4.1 Example of a monotonic 0− 1 KP:

Select items from the list 0 to 3 (blue dotted cuboids) depicted in the Figure 2.9 and

place them in the red box (Knapsack) such that the total value of the items selected

is maximized and the weight limit of the box (i.e., 10 kg in this case) is not violated.

3. | 15 , 5 kg

2. | 40 , 4 kg

1. | 10 , 6 kg

0. | 50 , 3 kg

Weight Limit
10 kg

Figure 2.9: Example monotonic problem with M = 4.

Table 2.5 lists the items in descending order of their value-weight ratio ( Vm
Wm

)

i.e., {0, 2, 3, 1}. Note that in this case, this sequence results in the values to be in
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descending order and the weights to be in the ascending order implying that the

problem is monotonic. The optimum solution s is then obtained by sequentially

selecting the items with highest ratio until the weight limit of the box is not violated.

As a result the maximum value of | 90 and weight 7 kg is obtained when items {0, 2}

are placed in the box.

Table 2.5: Items sorted based on value-weight ratio

Item (m) Value (Vm) Weight (Wm) Ratio ( Vm
Wm

) Selection †(sm)

0 50 3 16.7 1

2 40 4 10.0 1

3 15 5 3.0 0

1 10 6 1.7 0

† Optimum Selection

Also note that the optimum solution can be obtained by a single-threshold decision

equation by using an appropriate threshold value λ. The decision equation analogous

to the LR-based Test (non-rand-st LRT) is given as

Vm
Wm

sm=1

≷
sm=0

λ, (2.19)

with the threshold λ chosen as 3.0 < λ < 10.0 for this example.

However for a non-monotonic problem, a single-threshold decision equation does

not suffice to obtain an optimal solution. This is apparent from the below non-

monotonic numerical example with slightly different item characteristic values.

2.4.2 Example of a non-monotonic 0− 1 KP:

Table 2.6 lists the items in descending order of their value-weight ratio ( Vm
Wm

) i.e.,

{0, 2, 3, 1}. Note that both the values and the weights are not in any particular order

in this case, there by implying that the problem is non-monotonic. The optimum

solution can be obtained only with the exhaustive search of all the combinations (i.e.,
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3. | 15 , 5 kg

2. | 40 , 4 kg

1. | 45 , 6 kg

0. | 50 , 3 kg

Weight Limit
10 kg

Figure 2.10: Example non-monotonic problem with M = 4.

24 searches in this case). A maximum value of | 95 and weight 9 kg is obtained when

items {0, 1} are placed in the box. However note that this choice is not from among

the items with the highest value-weight ratio. Thereby implying that a decision

equation (2.19) with multi-thresholds (non-rand-mt LRT) is required in this case to

obtain the optimal result.

Table 2.6: Items sorted based on value-weight ratio

Item (m) Value (Vm) Weight (Wm) Ratio ( Vm
Wm

) Selection †(sm)

0 50 3 16.7 1

2 40 4 10.0 0

1 45 6 7.5 1

3 15 5 3.0 0

† Optimum Selection

Also note that applying the low-complexity non-rand-st LRT for this case results

in a slightly sub-optimal result of | 90 and weight 7 kg.

2.5 GDFP and 0− 1 Knapsack Problem

To the best of our knowledge, the non-randomized hard decision fusion problem is

being mapped to the 0− 1 Knapsack problem for the first time.

Theorem 2.5.1. The GDFP defined in (2.17) is a 0− 1 KP (2.18).
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Proof: Define individual objective and constrained parameter corresponding to

a observation vector um as:

RM(m) , CD p(um|H1)− CF p(um|H0),

PFM (m) , p(um|H0). (2.20)

Then, using (2.16), (2.20), the GDFP of (2.17) can be written as,

Max
x

M−1∑

m=0

xmRM(m), Sub to:
M−1∑

m=0

xmPFM (m) ≤ α, (2.21)

which by Definition 2.4.1, is a 0 − 1 KP where Vm = RM(m), Wm = PFM (m),

Wlim = α and s = x.

Now, using the sufficient statistic k of the Remark 2.2.2.1 monotonic case, define

a set of observation vectors with same k value as Uk , {um : T (um) = k, ∀m},∀k,

and a corresponding vector y , [yN · · · y0]T , where yk = 0 implies Uk ∈ R0 and yk = 1

implies Uk ∈ R1 respectively. Then the GDFP of (2.17) for this case can be written

as,

Max
y

N∑

k=0

ykRK(k), Sub to:
N∑

k=0

ykPFK (k) ≤ α, (2.22)

where

RK(k) , CD p(Uk|H1)− CF p(Uk|H0),

PFK (k) , p(Uk|H0) (2.23)

and where

p(Uk|H1) =

(
N

k

)
(Pd)

k(P̄d)
N−k,

p(Uk|H0) =

(
N

k

)
(Pf )

k(P̄f )
N−k. (2.24)
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2.5.1 GDFP Solution using Dynamic Programming

It is well known that the 0− 1 KP can be solved using dynamic programming (DP)

[33, 34]. We now present a recursive equation and an algorithm that searches the

solution space for the optimum vector x∗ for the GDFP of (2.21) in pseudo-polynomial

time in the worst case. Define a parameterized GDFP G(a, b), as:

G(a, b) ,





Max
xa

∑a
m=0 xmRM(m),

Sub to:
∑a

m=0 xmPFM (m) ≤ b,
(2.25)

where xa is the later part of vector x such that xa = [xa · · · x0], {a ∈ N : 0 ≤ a < M}

and b is a constraint variable, {b ∈ R : 0 ≤ b ≤ α}. Equation (2.25) can be rewritten

in the form of a recursive equation as,

G(a, b) = max
{
RM(a) + G(a− 1, b− PFM (a)), G(a− 1, b)

}
, (2.26)

with initial conditions as,

G(0, b)=





0 for 0 ≤ b < PFM (0),

max{0, RM(0)} for PFM (0) ≤ b ≤ α,

G(a, 0)= 0 for 0 ≤ a ≤M − 1. (2.27)

Note that in (2.26) the GDFP of (2.21) is recursively split into sub-GDFP prob-

lems. To implement (2.26) as an algorithm, DP requires the constrained parameter

PFM (·), ∀m be mapped one-to-one to the integer scale. To facilitate this, we define a

scaling function I(r) , bC ·r+ 1
2
c, (R≥0 7→ N≥0) where r is a real-valued non-negative

input argument, C is a positive scaling factor and b·c is the integer floor function.

We map the required parameters of (2.26) and (2.27) one-to-one to the integer scale

as PFM [m] , I(PFM (m)),∀m; Iα , I(α) and {Ib ∈ N≥0 : Ib ≤ Iα}. Note that the
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scaling factor C needs to be sufficiently large such that PFM [m] > 0,∀m.

The complete algorithm for (2.26) is presented in Algorithm 1, which uses a two

dimensional array G[·, ·]M×Iα (depicted in Figure 2.11) to hold the results of the

sub-problems G(·, ·) of (2.26).

G[0, 0] G[0, 1] G[0, 2] G[0, 3] G[0, Iα]

G[1, 0] G[1, 1] G[1, 2] G[1, 3] G[1, Iα]

G[M − 1, 0] G[M − 1, 1] G[M − 1, 2] G[M − 1, 3] G[M − 1, Iα]

Ib
Iα

a

M− 1

0

0

Figure 2.11: Illustration of two dimensional array to hold the results of the sub-
problems.

Algorithm 1 DP Solution for GDFP

1: Initialize G[·, ·] with (2.27)
2: for a← 1 to (M − 1) do
3: for Ib ← 1 to Iα do
4: if PFM [a] ≤ Ib then

5: G[a, Ib] = max
{
RM(a) + G[a− 1, Ib − PFM [a]], G[a− 1, Ib]

}

6: else
7: G[a, Ib] = G[a− 1, Ib]
8: end if
9: end for

10: end for
11: x∗ ← getTrace(G)

Using the initial values given in (2.27) (represented by the dotted cells in Figure

2.11) the Algorithm 1 incrementally solves sub-problems (represented by the star

pattern in Figure 2.11) by looping through variable a (line 2) and Ib (line 3). This

results in the maximized objective value of the GDFP (2.21) to be populated into

the cell G[M − 1, Iα] (represented by the brick pattern in Figure 2.11). The array
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is then scanned backwards to trace and mark the contributing indices a, to form the

optimum vector x∗.

2.5.2 Example application of the algorithm

In this subsection, we apply the dynamic programming algorithm to the example

non-monotonic KP problem presented in subsection 2.4.2 given by the Table 2.7.

Table 2.7: Items and their values

Item id (m) Value (Vm) Weight (Wm)

0 50 3

1 45 6

2 40 4

3 15 5

In this case the variable a represents the item id and is a ∈ {0, 1, 2, 3}. The

variable b represents the weights and α = 10 Kgs. Note that in this example as the

weights are integers, no further scaling is required. Further, in the specified example,

the parameterized GDFP G(3, 10) represents the main problem to be solved.

0

0

0 0

1

0

2

50

3

50

4

50

5

50

6

50

7

50

8

50

9

50

10

01 0 0 50 50 50 50 50 50 95 95

02 0 0 50 50 50 50 90 90 95 95

03 0 0 50 50 50 50 90 90 95 95

weight in Kgs, b

item
ids,a

Figure 2.12: Two dimensional array with the results of the sub-problems.

Figure 2.12 represents the two dimensional array populated with the results of
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the sub-problems G(a, b) represented by each cell. Each result is obtained using the

equivalent of (2.26) given as,

G(a, b) = max
{
Va + G(a− 1, b−Wa), G(a− 1, b)

}
. (2.28)

Using (2.28), the main result of the example (cell with brick pattern) is obtained

as

G(3, 10) = max
{

15 + G(2, 5), G(2, 10)
}
. (2.29)

Similarly, the results for G(2, 5) and G(2, 10) are further recursively obtained by

lower sub-problems (connected by the arrows in the figure).

2.5.3 Computation complexities

For the general case under the NP criterion, Algorithm 1 takes a maximum of three

flops to solve each sub-problem (line 4 to 8), and the getTrace() method (line 11)

requires M flops in the worst case. As a result, a total of 3 Iα (M − 1) +M flops are

required to compute the optimum vector x∗ for the GDFP (2.21) in the worst case.

For the monotonic case-B under the NP criterion, while the GDFP of (2.21)

provides the optimal fusion rule, the GDFP of (2.22) reduces computation complexity

to 3 IαN + (N + 1) flops at the cost of sub-optimal fusion rule for certain values of

α, i.e., when PFK (y∗) < PFM (x∗) ≤ α.

For the monotonic case-A in Remark 2.2.2.2 the GDFP of (2.21) reduces in com-

plexity under NP criterion. For this case, consider the observation vectors um are

sequenced in non-decreasing order of their k value, i.e., T (um) ≤ T (um+1), 0 ≤ m <

(M − 1). Then the conditional probabilities p(um|H1) and p(um|H0) become non-

decreasing and non-increasing on m respectively. Index a∗ can now be identified in

linear time in the worst case, such that
∑M−1

m=a∗−1 PFM (m) > α ≥ ∑M−1
m=a∗ PFM (m).

The fusion vector x∗ is then set as xm = 0,∀m < a∗ and xm = 1,∀m ≥ a∗.
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Note that under the Bayesian criterion, the constraining loop on Ib in the Algo-

rithm 1 is redundant and each sub-problem on a, G[a] = max{RM(a)+G[a−1],G[a−

1]} requires only 1 flop. Consequently the worst case computational complexity is M

for the GDFP of (2.21) and N + 1 for (2.22) respectively, as in [15–18]. Table 2.8

summarizes the algorithmic complexities discussed in this section.

Table 2.8: Worst-case algorithmic complexities in FLOPS

Special cases of GDFP Bayesian Neyman-Pearson

General (Remark 2.2.2.3, 2.2.2.4):

Pfi < Pdi ,∀i M 3 Iα (M − 1) +M

Monotonic case-B (Remark 2.2.2.1):

(Pfi = Pf ) < (Pdi = Pd), ∀i (N+1) 3 Iα N + (N + 1)

Monotonic case-A (Remark 2.2.2.2):

(Pfi = Pf ) < 0.5 < (Pdi = Pd), ∀i (N+1) M

Computational complexity to compute the fusion rule, the optimum
PD, PF (under NP criterion) and PE (under Bayesian).

2.6 Numerical results and Discussions

To validate the effectiveness of the proposed algorithm, as an example we consider

each SU to be using energy detector with different local thresholds εi, common time-

bandwidth product L, and experiencing different received signal-to-noise ratios γi,

over additive white Gaussian noise. The expressions for Pfi and Pdi are given as [35]

Pfi =
Γ(L, εi

2
)

Γ(L)

Pdi = QL(
√

2Lγi,
√
εi), (2.30)

where Γ(·, ·) is incomplete Gamma function and QL(·, ·) is generalized Marcum Q-

function. We consider γi = −15 + 15 i
N−1

dB, εi = 21 + 2 i
N−1

, ∀i ∈ {0, · · · , N − 1} and

L = 10. As a result we obtain (Pfi , Pdi) ∈ {(0.40, 0.44), · · · , (0.29, 0.96)}.
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Figure 2.13: Optimum PD vs PF plot for the General GDFP under NP Criterion for
N = 4, 7 and 11.

Figure 2.13 plots the performance points P ∗D Vs P ∗F obtained by the fusion rules

for the GDFP under NP criterion using exhaustive search and the proposed Algorithm

1 (labelled “Exhaustive Search” and “Proposed DP Algo. for GDFP”) by varying α

in uniform steps. For N = 4, as few discrete optimum P ∗D and P ∗F value pairs are

obtainable, the curve is not uniformly spaced.

Note that the optimum performance points plotted using the proposed GDFP

solution exactly match the exhaustive search results for N = 4. For larger values of

N , the exhaustive search requires prohibitively large resources and it is intractable

to obtain the optimum solution using this method. Whereas, the optimum solutions

are easily obtained using the proposed DP algorithm for even N = 11.

As listed in Table 2.9 the number of flops required for exhaustive search grow

double exponentially with N and get impractical even for small values of N . As an

example, for N = 11 and α = 0.01, the exhaustive search requires ≈ 10616 flops,

whereas the proposed algorithm requires only ≈ 61× 105 flops when C = 105 is used.

Focusing on the limitations, note that the GDFP solution based on dynamic
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Table 2.9: Numerical values of worst-case solution complexities in FLOPS

N Exh. Search GDFP monotonic GDFP

4 ≈ 106 ≈ 45×103 16

5 ≈ 1010 ≈ 93×103 32

7 ≈ 1038 ≈ 38×104 128

11 ≈ 10616 ≈ 61×105 2048

α = 0.01 and C = 105 is used.

programming is practically constrained by the dimensionality (M , Iα) of the problem.

The dimension Iα is dependent on the scaling factor C, which needs to be sufficiently

large such that the scaled values of PFM (m), i.e., PFM [m] > 0,∀m. As a result the

dimension Iα becomes large and impractical for scenarios when min{PFM (m),∀m} �

10−5.

Alternative solutions based on branch and bound technique etc., [31, 32] maybe

applied to such high-precision GDFP and are discussed in subsequent chapters.

2.7 Conclusions

A generalized decision fusion problem (GDFP) is formulated that allows monotonic/non-

monotonic, independent/dependent decisions problems under Bayesian and NP cri-

terion as special cases. The proposed GDFP is shown to be in the form of 0 − 1

Knapsack problem and a solution in pseudo-polynomial time worst case complexity

has been presented. Further, this approach has the potential to be applied to broader

categories of problems such as the following:

(i) the C-OS problems using softened hard approach in [21,24,36];

(ii) unknown SU characteristics as in [37,38];

(iii) decision / fusion rule joint optimization as in [26,39–41];

(iv) generalization of conditionally dependent decisions as in [42];
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(v) SU censoring as in [43–46];

(vi) non-ideal reporting channels as in [47].
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Chapter 3

Reduced Complexity Optimal

Hard Decision Fusion under

Neyman-Pearson Criterion

3.1 Introduction

It was shown in Chapter 2 that non-randomized hard decision fusion under Neyman-

Pearson criterion is a NP-hard 0− 1 knapsack problem with exponential complexity

in general. A pseudo-polynomial complexity dynamic programming based solution

was proposed for the same.

In this chapter, we show that the decision fusion problem exhibits semi-monotonic

property in a relevant case. We propose to exploit this property to reduce the dimen-

sion of the feasible solution space. Subsequently, we apply dynamic programming

to efficiently solve the problem with further reduction in complexity under Neyman-

Pearson Criterion. Numerical results are provided to verify the correctness of the

proposed solution.

The main contributions are:
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(i) To the best of our knowledge, for the first time we show that a non-monotonic

decision fusion problem exhibits the desired monotonic property locally (namely

semi-monotonic) in a relevant case.

(ii) We show that this property reduces the dimension of the optimal solution space

(namely variable reduction).

(iii) Subsequently, we apply dynamic programming technique to obtain the solution

with further reduced complexity under Neyman-Pearson Criterion.

(iv) We provide numerical comparision of the performance (ROC) and the complex-

ity of

(a) the proposed variable reduction technique and

(b) the solution of generalized decision fusion problem (GDFP) presented in

chapter 2.

The outline of the chapter is as follows: Section 3.2 contains the system model, the

DP-based solution for GDFP and is followed by the definition of the semi-monotonic

property in Section 3.3. Section 3.4 contains the proposed solution for variable re-

duced GDFP followed by the numerical results in Section 3.5 and conclusions in

Section 3.6.

3.2 System Model

We focus on GDFP under Neyman-Pearson criterion by substituting CD = 1 and

CF = 0 in (2.17) and represented as,

Max
x

M−1∑

m=0

xm p(um|H1),

Sub. to
M−1∑

m=0

xm p(um|H0) ≤ α, xm ∈ {0, 1}, (3.1)
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where α is the constrain on PF . Under NP criterion this is a constrained optimization

problem for which the solution is exponential in complexity i.e., O(2M). The opti-

mal fusion vector x∗ is required to be searched from a solution space of 2M(= 22N )

observation vectors (as illustrated in Figure 3.1).

U = {uM−1, · · · u1, u0}
x , [xM−1 · · · x1 x0]

1 · · · 1 1

1 · · · 1 0

...
1 · · · 0 0

...
0 · · · 0 1

0 · · · 0 0

M = 2N

2M

Dynamic
Programming
pseudo-Polynomial
O(αCM)

x∗ = [xM−1 · · · x0]

Figure 3.1: An illustration of DP applied to solution space of size 2M .

In chapter 2 it was shown that in the most general case, the solution can be ob-

tained in pseudo-polynomical time complexity i.e O(αCM) using the dynamic pro-

gramming (DP) concepts, where C is the scaling factor used to convert the conditional

probability p(u|H0) into integers.

However the proposed DP-based solution has the same best-case and worst-case

complexity of O(αCM). We now focus on further reducing this complexity by showing

that the optimum solution x∗ is obtained by using a smaller dimensional observation

space U ′ in some cases, where |U ′| = 2M
′

and where M ′ < M (as illustrated in Figure

3.2).

To facilitate this we define a desirable property namely semi-monotonic in the

next section.
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U ′ = { · · · u1, u0}
x , [xM−1 · · · x1 x0]

0 · · · 1 1

0 · · · 1 0

...
0 · · · 0 0

M ′ (< M)

2M
′

Dynamic
Programming
pseudo-Polynomial
O(αCM ′)

x∗ = [0 · · · x1x0]

Figure 3.2: An illustration of DP applied to solution space of size 2M
′
.

3.3 Semi-Monotonic property

Define a set corresponding to an observation vector um′ as

S(um′) ,
{
i : ui,m′ = 1, ∀i

}
. (3.2)

Note that this set comprises indices of the SUs that have reported their local decision

as ‘1’ (i.e., hypothesis H1) in the observation vector um′ .

Further define another set corresponding to an observation vector um′ as

S(um′) ,
{
m : S(um′) ( S(um), ∀m

}
. (3.3)

Note that this set comprises indices of other observation vectors that have one or

more SUs reporting ‘1’ in addition to those in um′ .

As an example, the observation vectors and their corresponding set S(·) and S(·)

values are provided in the Table 3.1 for N = 3.

Definition 3.3.1 (semi-monotonic). We name a decision fusion problem as semi-

monotonic if there exists subsets of the observation vectors on which the LR function

and the conditional probabilities are monotonic as in case-A of (2.2.1). A numerical

example of semi-monotonic GDFP for N = 4 is provided in the Appendix B.4.
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Table 3.1: Values of S(·) and S(·) for an example with N = 3.

m′ um′ S(um′) S(um′)

0 [0 0 0]T {} {1, 2, 3, 4, 5, 6, 7}
1 [0 0 1]T {0} {3, 5, 7}
2 [0 1 0]T {1} {3, 6, 7}
3 [0 1 1]T {0, 1} {7}
4 [1 0 0]T {2} {5, 6, 7}
5 [1 0 1]T {0, 2} {7}
6 [1 1 0]T {1, 2} {7}
7 [1 1 1]T {0, 1, 2} {}

Lemma 3.3.1. GDFP with Pfi < 0.5 < Pdi , ∀i is semi-monotonic.

Proof: The simplified form of the LRT is given by (2.9)

[
Ω(um) ,

N−1∑

i=0

g(Pdi , Pfi) ui,m

]
xm=1

≷
xm=0

ω, (3.4)

where g(Pdi , Pfi) , log
( Pdi

1−Pdi

1−Pfi
Pfi

)
. Note that for this special case,

Pdi
1−Pdi

> 1,

1−Pfi
Pfi

> 1 and thereby g(·, ·) is always positive ∀i. As a result, using (3.3) we get

Ω(um′) < Ω(um), ∀m ∈ S(um′). (3.5)

Further using (2.8) and (3.3) we get,

p(um′ |H1) < p(um|H1), ∀m ∈ S(um′), (3.6)

p(um′ |H0) > p(um|H0), ∀m ∈ S(um′). (3.7)

Figure 3.3 illustrates the semi-monotonic property exhibited by the observation

vectors for N = 3. The SU-index set S(ut) of the observation vector at the tail of any
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u7 = [ 1 1 1 ]T

{0, 1, 2}†, {}‡

u3 = [ 0 1 1 ]T

{0, 1}†, {7}‡
u5 = [ 1 0 1 ]T

{0, 2}†, {7}‡
u6 = [ 1 1 0 ]T

{1, 2}†, {7}†

u1 = [ 0 0 1 ]T

{0}†, {3, 5, 7}‡
u2 = [ 0 1 0 ]T

{1}†, {3, 6, 7}‡
u4 = [ 1 0 0 ]T

{2}†, {5, 6, 7}‡

u0 = [ 0 0 0 ]T

{}†, {1, 2, 3, 4, 5, 6, 7}‡

Figure 3.3: An illustration of semi-monotonic property exhibited by the observation
vectors for N = 3. † represents S(·) and ‡ represents S(·)

arbitrary arrow is the subset of the corresponding SU-index set S(uh) of the vector

at the head of that arrow, i.e., S(ut) ( S(uh), where {ut,uh} denote the observation

vectors at the tail and head of the arbitrary arrow.

Proposition 3.3.1. In an optimal fusion rule x∗ of GDFP (3.1), if xm′ = 1 then

xm = 1, ∀m ∈ S(um′), (3.8)

in the said fusion rule.

Proof: (by contradiction) Assume P ∗F (xm′ = 1, xms = 0) and P ∗D(xm′ = 1, xms =

0) be the system performance corresponding to an optimum fusion rule, where ms ∈

S(um′).

But from (3.7) and (3.6) we get

PD(xm′ = 0, xms = 1) > P ∗D(xm′ = 1, xms = 0), and

PF (xm′ = 0, xms = 1) < α,
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thereby contradicting the assumption.

Lemma 3.3.2. If xm′ = 1 in an optimal fusion rule, then the corresponding system

probability of false alarm denoted by P ∗F (xm′ = 1) is

P ∗F (xm′ = 1) ≥
∏

i ∈ S(um′ )

pfi (3.9)

Proof: From Proposition 3.3.1, we have

P ∗F (xm′ = 1) ≥ p(um′|H0) +
∑

m ∈ S(um′ )

p(um|H0). (3.10)

Expanding and simplifying the RHS of (3.10) using (2.8), we get

P ∗F (xm′ = 1) ≥
∏

i ∈ S(um′ )

pfi (3.11)

We now provide an example for better understanding of the semi-monotonic prop-

erty and the corresponding Lemmas.

Example 3.3.1. Using the values provided for a semi-monotonic problem with N = 3

in Table 3.1, the Lemma 3.3.2 states that the system P ∗F for an optimum fusion rule

x∗ with x2 = 1 as

P ∗F (x2 = 1) ≥
∏

i ∈ S(u2)

pfi ,

= pf1 .

Explanation:

From the Proposition 3.3.1, given that x2 = 1 in an optimum fusion rule implies
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x3 = x6 = x7 = 1. As a result we have

P ∗F (x2 = 1) ≥ p(u2|H0) +
∑

m ∈ {3,6,7}

p(um|H0),

= p̄f2pf1 p̄f0 + p̄f2pf1pf0 + pf2pf1 p̄f0 + pf2pf1pf0 ,

= pf1 .

We now focus on using these properties of the semi-monotonic GDFP to obtain a

reduced feasible solution space.

3.4 Variable Reduction in GDFP

Using Lemma 3.3.2, we now define a reduced set of observation vector space U ′ as

U ′ , {um :
∏

i ∈ S(um)

pfi ≤ α, ∀m}, (3.12)

and reduced dimension M ′ = |U ′|. Note that the computation of the RHS of

(3.11) is O(log(M)) in complexity. As a result, the complexity to obtain the U ′

is O(M log(M)). Further, note that

(i) those observation vectors um that result in the system false alarm P ∗F (xm = 1)

to exceed the specified constraint value α, are not included in the reduced

observation space U ′,

(ii) the feasible fusion solutions are now confined to the space U ′,

(iii) the boolean variables xm corresponding to the um not in the space U ′, can now

be fixed to xm = 0 (namely fixed-variable),

(iv) to obtain the optimal x∗, we now need to search the optimum value of only the

remaining free-variables .
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Using (3.1) the reduced variable GDFP is now defined as

Max
x

M−1∑

m=0

xm p(um|H1),

Sub. to
M−1∑

m=0

xm p(um|H0) ≤ α,

xm ∈ {0, 1} ∀um ∈ U ′,

xm = 0 ∀um /∈ U ′.

The DP-based solution proposed in Section 2.5.1 can now be applied to (3.13) to

obtain the optimal value of the free-variables in x∗. The computational complexity

for GDFP of (3.13) is now reduced to O(αCM ′). In the following section we present

the numerical results that (i) confirm the correctness of the proposed solution and

(ii) compute the reduced dimension M ′ for different N and α.

3.5 Numerical Results and Discussions

We consider a system with N = {3, 5, 7, 9}, the SU characteristics as Pfi ∼ U(0.2, 0.4)

and Pdi ∼ U(0.6, 0.8),∀i where U(s1, s2) denotes uniform probability distribution

with supports as s1 and s2. In Figure 3.4 we plot the average system performance

(PD vs α) obtained by applying (i) the DP-based solution to the GDFP of (3.1)

(labeled “GDFP”), (ii) the DP-based solution to the reduced GDFP of (3.13) (labeled

“reduced GDFP”) The performance curves are obtained under NP criterion (α is

varied from 0.001 to 0.1) using 103 realizations of (Pf ,Pd). Note that as expected the

performance curve obtained by the proposed reduced GDFP method exactly matches

the curve obtained by GDFP.

Remark 3.5.0.1. Note that the solution of the reduced GDFP is not confined to the

DP-based approach alone. BB-based approach presented in chapter 6 can also be

used to obtain the solution.
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Figure 3.4: PD vs PF plot for ‘GDFP ’ and ‘reduced GDFP ’ using dynamic program-
ming.

In Figure 3.5 we plot the average reduced dimension we obtain (M ′ vs α) by

varying α for different N values. Note that in this case the solution space dimension
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Figure 3.5: M ′ vs α plot for ‘reduced GDFP ’ using variable reduction method.

M for GDFP is always fixed at {8, 32, 128, 512} whereas the reduced dimension M ′

is significantly low for small α and gradually increases with α.
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3.6 Conclusions

We have shown that the decision fusion problem exhibits the semi-monotonic in a

relevant case. We exploited this property to reduce the dimension of the feasible

solution space. Subsequently, we applied dynamic programming to efficiently solve

the problem with further reduced complexity. Numerical results are provided to

verify the correctness of the proposed solution. Further avenues for research include

exploring the properties of the decision fusion problem for other special cases and

exploiting them for obtaining effcient solutions.
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Chapter 4

On non-Randomized Hard Decision

Fusion under Neyman-Pearson

Criterion using LRT

4.1 Introduction

The non-randomized optimal hard decision fusion considered in chapters 2 and 3 is

known to be an NP-hard classical 0−1 Knapsack Problem with exponential complex-

ity. In this chapter, we show that though the non-randomized single-threshold likeli-

hood ratio based test (non-rand-st LRT) is sub-optimal, its performance approaches

the upper-bound obtained by randomized LRT (rand LRT) with the increase in the

number of participating sensors (N). This alleviates the need for employing the ex-

ponentially complex non-randomized optimal solution (non-rand-mt LRT) for large

N . The main contributions in this chapter are

(i) We define metrics to quantify the performance difference between the non-rand-

st and the rand LRT.

(ii) To the best of our knowledge, for the first time we show analytically that the
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performance of the non-rand-st LRT approaches the rand LRT with asymptotic

number of participating sensors (generally available in the case of IoT).

(iii) Numerical results and the receiver operating characteristics (ROC) are plotted

to verify the analytical results.

(iv) Using numerical results we show that the performance difference between the

non-rand-st and the rand LRT becomes insignificant starting with N ≥ 13.

The outline of this chapter is as follows: In Section 4.2, we present the system

model, the GDFP and the (non-rand / rand) LRT decision equations. In Section

4.3 we define the performance metrics for the LRTs and present their asymptotic

properties. Section 4.4 contains the ROC plots and numerical results, followed by

conclusions in Section 4.5.

4.2 System Model

SUN−1

{PfN−1
, PdN−1

}

SUi

{Pfi , Pdi}

SU0

{Pf0 , Pd0}

H0/H1 Fusion Center

{PF , PD}

u
N−

1

P
e
N
−
1

v
N−

1

ui
Pei

vi

u 0

P e
0

v 0

ufc ∈ {0, 1}
Ĥ

Binary hypothesis
H0: PU signal absent
H1: PU signal present

SU Characteristics

Pfi , p(ui = 1|H0)
Pdi

, p(ui = 1|H1)
Pfi < Pdi

,∀i Observation data

u , [uN−1 · · ·u0]T
U , {um}M−1

0 ,M = 2N

System
Characteristics

PF , p(ufc = 1|H0)
PD , p(ufc = 1|H1)

NP Criterion
Max PD

Sub. to PF ≤ α

Figure 4.1: Depiction of System Model.

49



Slightly different from the Chapter 2, in this chapter we considered the reporting

channels between the SUs (or sensors) and the FC to be error-prone (as depicted in

Figure 4.1). The sensors sense the common phenomenon being observed and generate

individual local binary decisions vi, where vi = 0 implies hypothesis H0 : event absent

and vi = 1 implies hypothesis H1 : event present respectively. The sensors are

assumed to be heterogenous and are characterized by probability of detection Pdi ,

p(vi = 1 | H1) and probability of false alarm Pfi , p(vi = 1 | H0) where Pdi >

Pfi ,∀i. Each local decision is received by the FC (as ui) over dedicated erroneous

reporting channel (modeled as a binary symmetric channel) with bit-error probability

(BEP) Pei ,∀i. The FC receives the error infested local decisions as a N-dimensional

observation vector u (, [uN−1 · · ·u0]T ). The observation space U remains discrete

(= BN where B ∈ {0, 1}) with cardinality M = 2N . The mth vector in the observation

space is represented as um, m ∈ {0, · · · ,M − 1}. Considering the SU decisions to be

conditionally independent, we have

p(u|H1) =
N−1∏

i=0

(P e
di

)ui(P̄ e
di

)1−ui

p(u|H0) =
N−1∏

i=0

(P e
fi

)ui(P̄ e
fi

)1−ui , (4.1)

where q̄ , 1− q and

P e
di

, P̄eiPdi + PeiP̄di ,

P e
fi

, P̄eiPfi + PeiP̄fi . (4.2)

Based on each observation vector u, the fusion rule Γ(u) of the FC generates a global

decision ufc ∈ {0, 1} declaring hypothesis H0 and H1 respectively. The performance

of the fusion rule is characterized by the system probability of detection PD , p(ufc =
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1|H1) and the false-alarm PF , p(ufc = 1|H0) that are obtained as [10],

PD=
∑

u∈R1

p(u|H1), PF=
∑

u∈R1

p(u|H0), (4.3)

where R0,R1 are two decision regions in the N -dimensional continuous real space RN ,

such that U ⊂ {R0 ∪R1}, {R0 ∩R1} = ∅ (empty set), um ∈ R0 implies Γ(um) = 0

and um ∈ R1 implies Γ(um) = 1,∀m. This indicates that an optimal definition of

decision regions results in an optimal fusion rule. The Generalized Decision Fusion

Problem (GDFP) under Neyman-Pearson criterion remains the same as,

Maximize
R1

PD, Sub to: PF ≤ α, (4.4)

where α is the specified constraint value on the system PF .

4.2.1 non-Randomized decision equation

The optimal decision region R1 for the GDFP can be obtained by the multi-threshold

non-rand-mt LRT given by (2.7),

(
Λ(u) , p(u|H1)

p(u|H0)

)
ufc=1

≷
ufc=0

λnr, (4.5)

where λnr are the threshold(s) to be computed that is exponential in computational

complexity. However in this chapter we confine ourselves to the widely used low-

complexity non-randomized single-threshold LRT (non-rand-st LRT) that is known

to be slightly sub-optimal.
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4.2.2 Randomized decision equation

The randomized decision equation for the GDFP is given by the rand LRT as [21]

If Λ(u)





> λr ufc = 1,

= λr ufc = 1 with probability γr,

< λr ufc = 0,

(4.6)

where λr (a single-threshold) and γr (probability) is to be computed. It is well known

that the system performance acheived by rand LRT is an upper bound to both non-

rand-st LRT and non-rand-mt LRT [48]. We now focus on presenting the solutions

for the non-rand-st and rand LRT of (4.5) and (4.6).

4.3 Solutions for the GDFP

Without loss of generality, assume that the observation vectors are sequenced in

descending order of their LR-value Λ(u) as

Λ(u0) ≥ · · · ≥ Λ(uM−1). (4.7)

Note that the sorted sequence of (4.7) can be obtained with a worst-case complexity

of O(M log(M)). Assuming α < 1, define a split-index s as


PFnr ,

m=s−1∑

m=0

p(um|H0)

 ≤ α and PFnr + p(us|H0) > α . (4.8)

Further define

PDnr ,
m=s−1∑

m=0

p(um|H1). (4.9)
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Note that for a given sensor network with {Pdi , Pfi},∀i , the split-index s is dependent

on the specified α and can be computed in linear complexity. Also note that the single-

threshold λnr for (4.5) can be obtained by choosing any value in the open interval
(

Λ(us−1),Λ(us)
)

. Further PFnr and PDnr are the system probabilities obtained by

the non-rand-st LRT.

The system performance for the rand LRT (which is an upper-bound for the

non-rand-st LRT) in terms of s is given by

PFr = α , (4.10)

PDr = PDnr +
(α− PFnr)
p(us|H0)

p(us|H1) ,

= PDnr + ε(α) , (4.11)

where the unknown parameters of (4.6) are γr =
(α− PFnr)
p(us|H0)

and λr = Λ(us).

Note that ε(α) is the gain in system performance (PDr − PDnr) obtained by the

rand LRT over the non-rand-st LRT for a specified α. The gain is in the interval

ε(α) ∈
[
0, p(us|H1)

)
, where

ε(α) = 0 when (α− PFnr) = 0 ,

ε(α)→ p(us|H1) when (α− PFnr)→ p(us|H0). (4.12)

Lemma 4.3.1. For any specified sensor network, the gain is upper bound by ε(α) <

εub where εub ≤
∏N−1

i=0 max{Pdi , P̄di}, ∀α.

Proof: From (4.12), we have the upper-bound on gain εub for a specified sensor

network as

εub = max
m

p(um|H1). (4.13)
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Using (4.1), the upper bound can be simplified as

εub =
N−1∏

i=0

max{P e
di
, P̄ e

di
}

≤
N−1∏

i=0

max{Pdi , P̄di} (4.14)

Lemma 4.3.2. The upper-bound εub approaches 0 for asymptotic number of the par-

ticipating sensors N .

Proof: Practically, the sensor characteristic is

Pdi < 1, ∀i,

except for the ideal sensor. As a result,

max{Pdi , P̄di} < 1, ∀i.

There by
N−1∏

i=0

max{Pdi , P̄di} → 0 when N →∞,

implying,

εub → 0 when N →∞.

Proposition 4.3.1. Lemma 4.3.2 implies that the performance of the non-rand-st

LRT approaches the performance of the rand LRT for asymptoic number of partici-

pating sensors N .

Further, we obtain the expectation of the gain ε to quantify the performance

improvement of rand LRT under the non-asymptotic case.
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4.3.1 Expectation of the gain

Assuming that α is uniformly distributed with supports (0, 1), the expectation of the

gain (, εµ) for a specified sensor network can be obtained as

εµ = Eα{ε} ,

=
M−1∑

m=0

p(s = m)
p(um|H1)

2
,

=
M−1∑

m=0

p(um|H0)
p(um|H1)

2
. (4.15)

We now focus on the numerical results of the non-rand-st and rand LRT for

different scenarios.

4.4 Numerical results and discussion

Firstly, we consider non-errorneous reporting channels i.e., Pei = 0,∀i. Figure 4.2

plots the numerical average performance gain ε obtained against different α loga-

rithmically spaced in {10−2, 100} for 1000 realizations of sensor networks with Pfi ∼

U(0, 1), Pdi = Pfi + pi and pi ∼ U(Pfi , 1), ∀i, where U(s1, s2) denotes uniform prob-

ability distribution with supports as s1 and s2. Note that,

(i) theoritically the gain is 0 for α = {0, 1} for any N ,

(ii) as expected, in Figure 4.2 the gain curve for a given N (visible for N = {3, 5}),

initially increases with α and subsequently decreases.

(iii) the expectation of the gain and the upper-bound are dependent on the value of

N .

Table 4.1 presents the average numerical values obtained for 1000 realizations of

sensor networks with α ∼ U(0, 1). Note that
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Figure 4.2: ε vs α plots under NP criterion for different number of sensors N using
non-erroneous reporting channels.

Table 4.1: Average εµ and εub obtained for a scenario with non-erroneous reporting
channels

N → 3 5 7 9 11 13

Expected gain, εµ 0.1 0.032 0.011 0.004 0.001 0.0005

Upper-bound, εub 0.5 0.32 0.21 0.13 0.08 0.05

(i) The expected gain εµ and upper-bound εub decrease with increasing N

(ii) The gain εµ is insignificant for N = 13 indicating that the non-rand-st LRT

approaches the performance of rand LRT for N ≥ 13.

Figure 4.3 plots the ROC obtained by non-rand-st and rand LRT for different

values of N by varying α between (0.01, 1). Note that while there is significant

difference in performance for N = 3, the ROCs converge as N increases and nearly

overlap for N = 13.
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Figure 4.3: PD vs α plots under NP criterion for different number of sensors N using
non-erroneous reporting channels.

4.4.1 With erroneous reporting channels

Secondly, we consider the local decisions vi,∀i are transmitted using on-off keying

on reporting channels experiencing Rayleigh fading, i.e., yi = hivi + wi, where hi ∼

NC(0, 1), wi ∼ NC(0, σ2
w) and yi ∈ C. The FC employes coherent detection to obtain

ui,∀i from yi resulting in Pei = Q( |hi|
2σw

). Assuming the a-priori probabilities Pr{H1} =

Pr{H0} = 1
2
, the individual channel SNR for independent local decisions is defined

as SNRi ,
Pdi+Pfi

2σ2
wi

.

In Figures 4.4 to 4.6 we plot the average performances of the non-rand and rand

LRT over the erroneous reporting channels under different scenarios with 1000 real-

izations of the sensor networks.

In Figure 4.4 we plot the PD versus α curves for N = 5 for different reporting

channel SNRs. Note that under low SNR (= 0 dB), the performance difference

between the LRTs is low as they are dominated by the large channel errors. The
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performance of rand LRT gradually improves over non-rand-st with increase in SNR.
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Figure 4.5: PD vs SNR plots under NP criterion for different number of sensors.

In Figure 4.5 we plot the PD versus SNR curves for different number of sensors

N ∈ {5, 7, 9, 11}. Note that for a specific N , the performance of rand LRT gradually

improves over non-rand-st with increase in SNR, however is insignificant for large
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values of N .
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Figure 4.6: PD vs N plots under NP criterion for different reporting channel SNRs.

In Figure 4.6 we plot the PD versus N curves for different reporting channel SNRs

(SNR ∈ {0, 5, 15} dB). Note that irrespective of the reporting channel SNR, the

performance of the non-rand-st LRT converges with the rand LRT with increase in

number of sensors N .

4.5 Conclusion

Two metrics (expected gain and gain upper-bound) are defined to quantify the per-

formance difference between the non-rand-st and the rand LRT. Using these metrics,

it is shown that the performance of the non-rand-st LRT approaches the rand LRT

with asymptotic number of participating sensors, thereby alleviating the need for

employing the exponentially complex non-randomized optimal solution for large N .

Using numerical results it is further shown that the performance difference between

the non-rand-st and the rand LRT is insignificant even for a low number of sensors

N > 13.
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Chapter 5

Mean-based Blind Hard Decision

Fusion Rules

5.1 Introduction

In the previous chapters, it was assumed that the FC (is clairyovant) has the required

knowledge of the characteristics of each of the participating SU (probability of detec-

tion Pdi and probability of false-alarm Pfi , ∀i) and the reporting channel (bit error

probability Pei) to design a decision fusion rule [17,21]. However, due to the resource

constraints of the reporting channels in the CRN, the instantaneous SU character-

istics are generally not available at the FC. In such scenarios, the FC is compelled

to resort to blind schemes [38, 49] that use the limited system knowledge available

to design a fusion rule at the cost of slightly lower system performance, measured in

terms of system probability of detection PD and false-alarm PF . In [49], it is assumed

that the Pdi ,∀i are not known and the proposed scheme (namely Wu rule) estimates

the unknown parameters from the received local decisions. A similar semi-blind rule

(namely LOD) assuming Pdi ,∀i are unknown and a completely-blind rule (namely IS )

assuming both Pfi , Pdi ,∀i are unknown is proposed in [38]. Alternatively, in [50] it is
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assumed that the instantaneous wireless channel coefficients are unknown, whereas

the SU characteristics are known.

In this chapter we propose novel (semi-)blind hard decision fusion rules that are

a variant of GDFP presented in previous chapters. These rules use the mean of the

secondary user characteristics instead of their (unknown) actual values. We show that

these rules with slight (or no) additional system knowledge achieve better receiver

operating characteristics than existing (semi-)blind alternatives. These rules also

have a low-complexity analytical solution under Neyman-Pearson in some relevant

cases. Numerical results are reported in a channel-aware scenario to demonstrate

their appeal and to confirm the theoretical findings.

More specifically, the main contributions are:

(i) We propose a group of semi-blind rules (MSB) (assuming that the mean value

of the Pdi∀i is known instead of the actual instantenous values) and a group of

completely-blind rules (MCB) (assuming that the mean value of {Pdi , Pfi ,∀i}

is known instead of the actual instantaneous values) that collectively cover a

wide spectrum of system knowledge requirements.

(ii) We formulate the considered fusion rules into generalized decision fusion problem

(GDFP) [51] equivalent to the classical 0 − 1 knapsack problem to obtain the

nonrandomized and randomized boolean decision equations.

(iii) We compare the receiver operating characteristics (ROCs) of the proposed and

the existing rules using both analytical computations and Monte Carlo simu-

lations, showing that the former achieve better ROC than the latter in their

respective categories.

Table 5.1 summarizes (other than the proposed rules) the list of existing alter-

native rules considered for comparison hereinafter, along with corresponding system

knowledge required.
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Table 5.1: List of Rules and their System Knowledge Requirement

Fusion Rules ↓ Parameters Used under H0 and H1

Semi-blind [*] 2 Pfi P̂di ∈ {Pfi + µd,
1+Pfi

2
, 1

2
}

Completely-blind [*] 3 P̂fi = µf P̂di ∈ {µf + µd,
1+µf

2
, 1

2
}

cLRT [38, 51] 1 Pfi Pdi

LOD [38], Wu [49] 2 Pfi none

IS and CR [38] 3 P̂fi = 0, none P̂di = 1, none

* New rules proposed in this letter.
1 Clairvoyant rule (cLRT ) with knowledge of Pfi and Pdi ,∀i.
2 Semi-blind rules with no knowledge of Pdi ,∀i.
3 Completely-blind rules with no knowledge of Pfi and Pdi ,∀i.

The BEP Pei of reporting channels is assumed to be known by all
the rules except the Counting Rule (CR).
The LOD, CR and the proposed new rules implicitly assume Pdi >
Pfi ,∀i.
The notation â represents the estimate of the parameter where the
actual is not known.
The mean values µf , E{Pfi},∀i and µd , E{Pdi − Pfi}, ∀i.

The outline of this chapter is as follows: In Section 5.2, we explain the system

model and the GDFP formulation. We propose the blind rules and formulate their

likelihood ratio (LR) based decision equations in Section 5.3. Then, in Section 5.4 we

provide analytical solutions for the proposed (semi-) blind rules. Section 5.5 contains

the numerical results and is followed by conclusions in Section 5.6.

5.2 System Model

Slightly different from the Chapter 4, in this chapter we assume that the local per-

formance (Pfi , Pdi),∀i are random variables with mean values E{Pfi} = µf and

E{Pdi − Pfi} = µd, ∀i. Following Chapter 4 we have,
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(i) the conditional probabilities as

p(u|H1) =
N−1∏

i=0

(P e
di

)ui(P̄ e
di

)1−ui

p(u|H0) =
N−1∏

i=0

(P e
fi

)ui(P̄ e
fi

)1−ui , (5.1)

where q̄ , 1− q, P e
di
, P̄eiPdi + PeiP̄di and P e

fi
, P̄eiPfi + PeiP̄fi .

(ii) the system characteristics as

PD(x) =
M−1∑

m=0

xm p(um|H1), PF (x) =
M−1∑

m=0

xm p(um|H0). (5.2)

(iii) the non-rand GDFP formulation under NP criterion as

Max
x

M−1∑

m=0

xm p(um|H1),

Sub. to
M−1∑

m=0

xm p(um|H0) ≤ α, xm ∈ {0, 1}. (5.3)

Note that relaxing the constraint on x to {xm ∈ R : 0 ≤ xm ≤ 1} results in rand

GDFP. The optimal fusion vector x∗ for the clairvoyant rule (cLRT ) i.e., when the

complete system knowledge {Pdi , Pfi , Pei}, ∀i is available, can be obtained from the

non-rand-mt LRT given by

[
Λ(um) ,

N−1∑

i=0

ui,m log

(
P̄ e
fi

P e
fi

P e
di

P̄ e
di

)]
xm=1

≷
xm=0

λclrt, (5.4)

provided the appropriate threshold(s) λclrt are computed. The single-threshold non-

rand-st LRT is slightly sub-optimal for non-rand GDFP in general (2.2.2.3) and is

optimal when the LR function Λ(u) is monotonic (case-A, 2.2.2.1). For the rand

GDFP, the rand LRT (4.6) always provides the optimal solution x∗.
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We now focus on proposing the (semi-)blind fusion rules and formulating their LR-

based decision equations using the estimate of the unknown parameters and establish

their monotonic property.

5.3 Formulation of the proposed blind rules

5.3.1 Mean-based semi-blind rule (MSB)

In this case the false-alarm of the SUs and the link BEPs are assumed to be known

whereas the detection probabilities are unknown. We now propose a group of rules

(namely MSB) based on the mean value instead of the actual instantaneous values

of Pdi . Further, we propose three special cases in the MSB with different system

knowledge requirements and computational complexities.

MSB-1

In this special case we assume that the mean value µd is known. We propose to use

the estimate of the unknown Pdi as

P̂di = Pfi + µd, ∀i. (5.5)

We then have

P̂ e
di

= P e
fi

+ µ′di , ∀i, (5.6)

where µ′di = µd(1−2Pei). Substituting the estimate (5.6) in (5.4), the LRT for MSB-1

can be written as

N−1∑

i=0

ui,m log

(
P̄ e
fi

P e
fi

P e
fi

+ µ′di
P̄ e
fi
− µ′di

)
xm=1

≷
xm=0

λmsb1. (5.7)
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For the most general values, the LR function in this case is nonseparable as required

by the factorization criterion [12], thereby implying that MSB-1 is non-monotonic

(2.2.2.3).

MSB-2

In this case we use the information that the support of the probability distribution of

the unknown Pdi is (Pfi , 1]. Adopting the Bayesian inference approach, we propose

to use the estimate as

P̂di = Pfi +
1− Pfi

2
, ∀i, (5.8)

i.e., the conditional expectation of Pdi assuming it follows uniform distribution within

the support. Differently from the previous case, note that this special case does not

require the knowledge of the mean value µd.

Using the estimate in (5.8), the LRT is given by

N−1∑

i=0

ui,m log

(
P̄ e
fi

P e
fi

P e
fi

+ P̄ei
P̄ e
fi

+ Pei

)
xm=1

≷
xm=0

λmsb2 . (5.9)

For the most general values, the LR function in this case is also nonseparable, thereby

implying that MSB-2 is non-monotonic (2.2.2.3).

MSB-3

We assume a special case of the MSB where the mean of the unknown Pdi , E{Pdi} =

1
2
,∀i. We then have

P̂ e
di

= (1− Pei)
1

2
+ Pei

1

2
=

1

2
, ∀i, (5.10)
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and the conditional probability is given by

̂p(u|H1) =
1

2N
, (5.11)

which is constant and independent of Pei ,∀i. As a result the GDFP formulation of

the MSB-3 is simplified to

Max
x

1

2N

M−1∑

m=0

xm,

Sub. to
M−1∑

m=0

xm p(um|H0) ≤ α. (5.12)

Note that the objective function of (5.12) has simplified to maximizing the count of

the observation vectors being declared as H1 with the system probability of false-

alarm PF constrained by the value α.

To verify the monotonic property of the GDFP of (5.12), we simplify the LR func-

tion by applying the monotonically increasing function (i.e., logarithmic operation)

as

Λ(u) , p(u|H1)

p(u|H0)
=

1

2N
1

p(u|H0)
, (5.13)

log (Λ(u)) = log

(
1∏N−1

i=0 (P e
fi

)ui(P̄ e
fi

)1−ui

)
+K ,

=
N−1∑

i=0

ui log

(
P̄ e
fi

P e
fi

)
+K ′ ,

= T (u) +K ′ , (5.14)

where K, K ′ are terms independent of u and T (u) =
∑N−1

i=0 ui log

(
P̄ efi
P efi

)
. Further,

from (5.13) and (5.14) we infer that

(i) p(u|H0) is non-increasing monotonic on T (u),

(ii) p(u|H1) is non-decreasing monotonic (as it is constant) on T (u),
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(iii) Λ(u) is non-decreasing monotonic on T (u).

There by implying that this rule is of type monotonic case-A (2.2.2.1). As a result

its non-rand-st LRT given by

N−1∑

i=0

ui,m log

(
P̄ e
fi

P e
fi

)
xm=1

≷
xm=0

λmsb3 , (5.15)

provides the optimal solution for the non-rand GDFP under NP criterion.

Table 5.2: List of MSB special cases and the corresponding system knowledge used.

Special Cases P̂fi = P̂di = P̂ei = Required Knowledge

MSB-1 Rule Pfi ,∀i Pfi + µd, ∀i Pei ,∀i {Pfi , µd, Pei},∀i

MSB-2 Rule Pfi ,∀i Pfi +
1−Pfi

2
,∀i Pei ,∀i {Pfi , none, Pei}, ∀i

MSB-3 Rule Pfi ,∀i 1
2
,∀i Pei ,∀i {Pfi , none, Pei}, ∀i

Table 5.2 summarizes the special case of the proposed MSB rules with the system

knowledge required under each hypothesis.

5.3.2 Mean-based completely-blind rule (MCB)

In this subsection, we focus on another set of rules assuming that both the instan-

teneous false-alarm and detection probabilities of the SUs are unknown. We now

propose a group of rules (namely MCB) based on the mean values instead of the

actual values of {Pdi , Pfi}. We propose the following special cases in the MCB :
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MCB-1

In this special case we assume µf and µd is known. We propose to use the estimates

as

P̂fi = µf ,

P̂di = µf + µd, ∀i. (5.16)

Then the LRT is given by

N−1∑

i=0

ui,m log

(
µ̄efi
µefi

µefi + µedi
µ̄efi − µedi

)
xm=1

≷
xm=0

λmcb1 , (5.17)

where

µedi , P̄eiµd + Peiµ̄d ,

µefi , P̄eiµf + Peiµ̄f . (5.18)

For the most general values, the LR function in this case is nonseparable, thereby

implying that MCB-1 is non-monotonic (2.2.2.3).

MCB-2

In this special case, similar to the MSB-2 we propose to use the estimates as

P̂fi = µf ,

P̂di = µf +
1− µf

2
. (5.19)
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The conditional probabilities can be obtained as

̂p(u|H1) =
1

2N

N−1∏

i=0

(µefi + P̄ei)
ui(µ̄efi + Pei)

1−ui ,

̂p(u|H0) =
N−1∏

i=0

(
µefi
)ui (µ̄efi

)1−ui . (5.20)

The LRT is then given by

N−1∑

i=0

ui,m log

(
µ̄efi
µefi

µefi + P̄ei
µ̄efi + Pei

)
xm=1

≷
xm=0

λmcb2 , (5.21)

and is non-monotonic (2.2.2.3) for the most general values.

MCB-3

Similar to the MSB-3, in this special case we propose to use the estimates as

P̂fi = µf ,

P̂di =
1

2
. (5.22)

Then the LRT is
N−1∑

i=0

ui,m log

(
µ̄efi
µefi

)
xm=1

≷
xm=0

λmcb3 , (5.23)

and is of type monotonic case-A (2.2.2.1) similar to MSB-3.

MCB-4

For this special case we propose to use the estimates as

P̂fi = µf , ∀i,

P̂di = µf + µd, ∀i,

P̂ei = µe, ∀i. (5.24)
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where we assume E{Pei} = µe, ∀i. Then the LRT is given by

N−1∑

i=0

um,i log

(
µ̄ef
µef

µef + µed
µ̄ef − µed

)
xm=1

≷
xm=0

λmcb4 , (5.25)

where

µef , µ̄eµf + µeµ̄f ,

µed , µ̄eµd + µeµ̄d . (5.26)

This simplifies to the Counting rule (CR) [16,38] (which is monotonic case-B for the

most general values),

N−1∑

i=0

ui,m
xm=1

≷
xm=0

λ′mcb4 , (5.27)

implying that no system knowledge is required for the decision equation.

Table 5.3: List of MCB special cases and the corresponding system knowledge used.

Special Cases P̂fi = P̂di = P̂ei = Required Knowledge

MCB-1 Rule µf ,∀i µf + µd,∀i Pei ,∀i {µf , µd, Pei},∀i

MCB-2 Rule µf ,∀i µf +
1−µf

2
,∀i Pei ,∀i {µf , none, Pei},∀i

MCB-3 Rule µf ,∀i 1
2
,∀i Pei ,∀i {µf , none, Pei},∀i

MCB-4 Rule µf ,∀i µf + µd,∀i µe,∀i {none, none, none},∀i

Table 5.3 summarizes the special case of the proposed MCB rules with the system

knowledge required under each hypothesis.
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5.4 Proposed Analytical Solutions

Table 5.4 lists the LR-functions and the monotonic properties established for each

special case of the proposed blind rules.

Table 5.4: List of special cases with the simplified LR-function and the problem type.

Special Cases Λ(u) Problem Type

MSB-1 Rule
∑N−1

i=0 ui,m log

(
P̄ efi
P efi

P efi
+µ′di

P̄ efi
−µ′di

)
xm=1

≷
xm=0

λmsb1 non-monotonic

MSB-2 Rule
∑N−1

i=0 ui,m log

(
P̄ efi
P efi

P efi
+P̄ei

P̄ efi
+Pei

)
xm=1

≷
xm=0

λmsb2 non-monotonic

MSB-3 Rule
∑N−1

i=0 ui,m log

(
P̄ efi
P efi

)
xm=1

≷
xm=0

λmsb3 monotonic case-A

MCB-1 Rule
∑N−1

i=0 ui,m log
(
µ̄efi
µefi

µefi
+µedi

µ̄efi
−µedi

) xm=1

≷
xm=0

λmcb1 non-monotonic

MCB-2 Rule
∑N−1

i=0 ui,m log

(
µ̄efi
µefi

µefi
+P̄ei

µ̄efi
+Pei

)
xm=1

≷
xm=0

λmcb2 non-monotonic

MCB-3 Rule
∑N−1

i=0 ui,m log
(
µ̄efi
µefi

) xm=1

≷
xm=0

λmcb3 monotonic case-A

MCB-4 Rule
∑N−1

i=0 ui,m
xm=1

≷
xm=0

λ′mcb4 monotonic

5.4.1 MSB rule under NP criterion

In chapter 2, we proposed low complexity dynamic programming (DP) based solu-

tion for the non-randomized tests. However the MSB rules and the existing rules

({LOD,cLRT} used for numerical comparison) require high precision computations

for which the DP-based solution is not practical in some cases. Alternatively, algo-

rithms such as branch and bound [31] could be used and is discussed in chapter 6.

Presently, for performance comparison of the proposed MSB non-monotonic rules,

we use the non-rand-st and rand LRT based solutions proposed in Chapter 4. As a

recapulation of the approaches we established in the previous chapters,
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(i) Chapter 2 (Table 2.3): The single-threshold LRT is optimal for non-randomized

tests (non-rand-st LRT) for monotonic case-A rules,

(ii) Chapter 4 (Proposition 4.3.1 and Table 4.1): The performance of the non-rand-

st LRT approaches the upper-bound obtained by rand LRT with asymptotic

number of sensors. The performance difference is insignificant even for small

number of sensors, i.e., N ≥ 13.

5.4.2 MCB rules

As the actual Pfi is unknown for this category, the NP criterion cannot be applied.

Instead, the performance curve is obtained by sequencing the observation vectors in

non-increasing order of their Λ(u) values and the fusion vector x is computed for each

a∗ ∈ {0, · · · ,M − 1}.

5.5 Numerical results

Following [38], we consider the local decisions di,∀i are transmitted using on-off keying

on reporting channels experiencing Rayleigh fading, i.e., yi = hidi + wi, where hi ∼

NC(0, 1), wi ∼ NC(0, σ2
w) and yi ∈ C. The FC employes coherent detection to obtain

ui,∀i from yi resulting in Pei = Q( |hi|
2σw

). Assuming the a-priori probabilities p(H1) =

p(H0) = 1
2
, the individual channel SNR for independent non-identically distributed

(i.n.i.d) local decisions is defined as SNRi ,
Pdi+Pfi

2σ2
wi

.

In Figure 5.1 we plot the non-randomzied test average system performance (PD

vs PF ) of the rules considered in this letter for i.n.i.d decisions using analytical com-

putations and Monte Carlo simulations. We consider a CRN with N = 10, the

SU characteristics as Pfi ∼ U(0, 2µf ), Pdi = Pfi + pi, pi ∼ U(0, 2µd),∀i, where

(µf , µd) = (0.05, 0.4) and reporting channel SNRi ∈ {5, 15} dB ∀i. The ROC of the

Wu and IS rule is not plotted as it is found that their performance is lower than the
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Figure 5.1: Non-randomized test PD vs PF plots under NP criterion for N = 10, re-
porting channel SNRi ∈ {5, 15} dB, for conditionally i.n.i.d decisions with (µf , µd) =
(0.05, 0.4).

MSB and LOD rules.

The non-randomized test performance of the clairvoyant and the MSB rules are

obtained under NP criterion (α is varied from 0 to 1) using 102 i.n.i.ds of (Pf ,Pd), and

102 random channel coefficients hi,∀i (i.e Pei , ∀i) for each realization of the (Pf ,Pd).

The non-rand fusion vector x and the system performance {PF , PD} is obtained ana-

lytically (represented by solid lines) using the solutions proposed in Section 5.4. The

results are then verified by 104 Monte Carlo runs (represented by discrete marks) for

each combination of {Pfi , Pdi , Pei , ∀i}. Among the semi-blind rules:

(i) as expected, the MSB-2 rule outperforms all other rules including the existing

LOD in most of the cases as it uses the optimal estimate of P̂di (using Bayesian

inference) from the known instantaneous Pfi ,

(ii) MSB-2 and MSB-3 require same system knowledge as the LOD.

Among the completely-blind rules:
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(i) as expected, the proposed MCB rules perform better than the CR at the cost

of using slightly additional system knowledge,

(ii) the performance of MCB-1 detoriates for low SNR.

Figure 5.2 and 5.3 report the randomized test PD vs SNRi and PD vs N of the

fusion rules generated by Monte Carlo simulations for i.n.i.d decisions and constant

α = 0.01. The plots confirm that (i) among the semi-blind category, the MSB-2

rule always has the best performance, (ii) among the completely-blind category, the

MCB-2 and MCB-3 perform better than the CR with the MCB-1 detoriating for low

SNR.
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Figure 5.2: Randomized test PD vs SNR (dB) plots comparison of different rules
with N = {10, 30} and α = 0.01 for conditionally i.n.i.d decisions with (µf , µd) =
(0.05, 0.4).

5.6 Conclusions

Novel (semi-)blind fusion rules, using the mean value of the SU characteristics in-

stead of the instantaneous values, have been proposed for the resource-constrained

distributed networks. We have shown that these rules with slight (or no) additional

system knowledge perform better than the existing rules and have simple decision
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Figure 5.3: Randomized test PD vs N with SNR = {−5, 5, 15} dB and α = 0.01, for
conditionally i.n.i.d decisions with (µf , µd) = (0.05, 0.4).

equations. The rules {MSB-2, MCB-2} of {semi-blind, completely-blind} categories

use Bayesian inference to estimate the unknown value and outperform for most of the

cases in their respective categories. Further avenues of research include the deriva-

tion of blind rules for more advanced cooperative/collaborative spectrum sensing

schemes [52].
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Chapter 6

Fast Computation of Hard

Decision Fusion under

Neyman-Pearson Criterion

6.1 Introduction

It is shown in chapter 2 that the optimal solution for the GDFP under the Neyman-

Pearson criterion can be computed using low complexity methods like bisection, gra-

dient descent etc., in some cases [19–21] if the LR function is monotonic. However for

the non-monotonic problems, the optimal fusion rule requires multi-threshold deci-

sion equation and the computations require exponentially complex exhaustive search

methods [1, 2, 51].

Secondly, it is shown that the non-randomized hard decision fusion problem is in

the form of the classical 0 − 1 Knapsack problem (KP) and thereby a low complex-

ity solution using dynamic programming (DP) is proposed. However DP is not an

efficient approach for the KP that require high-precision computations, as the space

requirement gets impractical for large scaling factor C.
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Thirdly, it is shown in Chapter 4 that the performance of the single-threshold

LRT (non-rand-st LRT) approaches the upper-bound obtained by rand LRT as the

number of sensors N increases. The performance difference gets insignificant even for

a low number of sensors, N > 13.

In this chapter we focus on using a novel terminiation branch and bound algo-

rithm for the non-randomized hard decision fusion under Neyman-Pearson criterion

to obtain the near-optimal solution specially for the range 3 ≤ N ≤ 11 for wide

range of problems with {high, low} precision and {monotonic, semi, non-monotonic}

properties. The main contributions are

1. To the best of our knowledge, a novel termination branch and bound algorithm

(BB) is used for the first time to obtain the solution for non-randomized GDFP

in O(2M2) quadratic time complexity which originally

(i) required O(2M) exponential time using exhaustive search,

(ii) requires O(αCM) pseudo-polynomial time using DP algorithm, that gets

impractical for problems with large C.

2. To the best of our knowledge, for the first time we show the performance im-

provement possible in receiver operating characteristics (ROC) over the con-

ventional single-threshold LR-based decision equation (non-rand-st LRT) for a

wide range of GDFPs.

3. We propose a novel termination mechanism to handle the exception scenarios

where the BB gets into repeated unsuccessful searches.

4. We show numerically that the proposed BB obtains the performance ROC that

matches with the DP algorithm (i.e., for the low-precision problems where DP

can be applied).
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The outline of this chapter is as follows. In Section 6.2, we recapitulate the system

model and the results from the previous chapters. We present the BB based solution

and a novel termination mechanism in 6.3. Section 6.4 contains the ROC plots and

numerical results, followed by conclusions in Section 6.5.

6.2 System Model

Using the system model from Chapters 2 and 4 we have,

(i) the conditional probabilities as

p(u|H1) =
N−1∏

i=0

(Pdi)
ui(P̄di)

1−ui

p(u|H0) =
N−1∏

i=0

(Pfi)
ui(P̄fi)

1−ui . (6.1)

(ii) the system characteristics as

PD(x) =
M−1∑

m=0

xm p(um|H1), PF (x) =
M−1∑

m=0

xm p(um|H0). (6.2)

(iii) the non-rand GDFP formulation under NP criterion as

Max
x

M−1∑

m=0

xm p(um|H1),

Sub. to
M−1∑

m=0

xm p(um|H0) ≤ α, xm ∈ {0, 1}. (6.3)

(iv) the optimal multi-threshold non-rand-mt LRT given by,

(
Λ(u) , p(u|H1)

p(u|H0)

)
ufc=1

≷
ufc=0

λnr, (6.4)
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where λnr are the thresholds to be computed that is exponential in computa-

tional complexity. The non-rand-st LRT is slightly sub-optimal for non-rand

GDFP in general (2.2.2.3) and is optimal when the LR function Λ(u) is mono-

tonic (case-A, 2.2.2.1).

Assuming the observation vectors are sequenced in descending order of their

LR-value Λ(u) as

Λ(u0) ≥ · · · ≥ Λ(uM−1),

the split-index s and the system performance corresponding to non-rand-st LRT

is obtained as (4.3)


PFnr ,

m=s−1∑

m=0

p(um|H0)

 ≤ α and PF nr + p(us|H0) > α ,

and

PDnr ,
m=s−1∑

m=0

p(um|H1). (6.5)

(v) the optimal rand LRT (for rand GDFP) as

If Λ(u)





> λr ufc = 1,

= λr ufc = 1 with probability γr,

< λr ufc = 0,

(6.6)

where λr (a single-threshold) and γr (probability) is to be computed. The

system performance for the rand LRT (which is an upper bound for the non-
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rand LRT) in terms of s is given by

PF r = α ,

PDr = PDnr +
(α− PF nr)
p(us|H0)

p(us|H1) , (6.7)

where the unknown parameters of (6.6) are γr =
(α− PF nr)
p(us|H0)

and λr = Λ(us).

(vi) additionally, Table 6.1 summarizes the list of tests, the categories of the GDFP,

the corresponding optimal LR-based decision equations and their solution com-

plexities.

Table 6.1: Categorization of GDFP tests and their LR-based Optimal solution com-
plexities

Test GDFP property LRT Complexity‡ DP Algo.

randomized
non-monotonic single O(M log(M)) -

monotonic single O(M) -

non-randomized

non-monotonic† multi O(2M) O(αCM)

semi-monotonic† multi O(2M) O(αCM ′)

monotonic † multi O(2M) O(αCM)

monotonic (case-A) single O(M) -

† These problems are known to be NP-hard.
‡ The original complexity.

Focusing on the optimal solution for non-randomized test of GDFP, it is shown to

be a classical 0−1 Knapsack problem (in Chapter 2) and NP-hard in the most general

case [31]. The DP based algorithm proposed in Chapter 2 is an integer programming

approach and requires the conditional probability p(u|H0) (a function of Pfi ,∀i) to

be scaled to integers. As a result DP requires large scaling factor C for high-precision

computations (i.e., when p(u|H0) � 105). Its computational complexity (time and

space) given by O(αCM) increases with C, and C increases with N , thereby making

DP impractical for such scenarios.
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To alleviate this, we now propose to use the simple branch and bound (BB) method

[31,32] used for 0−1 Knapsack to obtain the optimal solution for the GDFP. Further

improvising the BB, we use a novel termination mechanism (to handle exceptions1)

that assists in obtaining the solution in O(2M2) quadratic time complexity.

6.3 Branch and Bound Algorithm

We now focus on the BB method to efficiently search the complete solution space of

cardinality 2M to obtain the M -dimensional optimum fusion vector x∗.

We assume that the observation vectors are sequenced in descending order of

their LR-value. Slightly different from the Chapter 2, define a parameterized GDFP

G(a, b), as:

G(a, b) ,





Max
xa

∑M−1
m=a xm p(um|H1),

Sub to:
∑M−1

m=a xm p(um|H0) ≤ b,
(6.8)

where xa is the initial part of vector x given by xa = [xM−1 · · ·xa], a ∈ {0, · · · ,M−1}

and b is a constraint variable, b ∈ R, 0 < b ≤ α. Further, GDFP (6.8) can be rewritten

in the form of a recursive equation as,

G(a, b) =





max

p(ua|H1) + G(a+ 1, b− p(ua|H0)),

G(a+ 1, b)

, for p(ua|H0) ≤ b, (6.9a)

G(a+ 1, b), for p(ua|H0) > b, (6.9b)

and with final condition as

G(M − 1, b) =

{
p(uM−1|H1), for p(uM−1|H0) ≤ b, (6.10a)

0, for p(uM−1|H0) > b. (6.10b)

Note that the optimum P ∗D for GDFP of (6.3) can be obtained by computing G(0, α)

1Unsuccessful searches
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using the recursive equations in (6.9) and (6.10). Simultaneously, the optimum fusion

vector x∗ can be obtained by setting each boolean variable of x corresponding to the

parameter index a as xa = 1 when p(ua|H1) contributes to the optimum solution (i.e.,

first term of ’max()’ in (6.9a) and (6.10a)) and xa = 0 otherwise ∀a.

Note that in the worst-case each function call of G(a, ·) results in two recursive

function calls (namely branches) of G(a + 1, ·) as in (6.9a), thereby resulting in

exponential number of branching operations (BO) (= 2M) for obtaining the optimum

solution. Typically some of the branches are pruned (not traversed) as the condition

on constraining variable b in (6.9a) is not satisfied, and alternatively the single-branch

in (6.9b) is traversed.

We now focus on further reducing the computation complexity by identifying and

preempting the BOs that are not likely to improve the objective value beyond what

is already achieved (P̂D) by the traversed branches. To facilitate this, the key idea is

to use a linear complexity upper-bound operation ub
(
·
)

such that ub(a, b) ≥ G(a, b),

∀a and ∀b. Note that a tight upper-bound function is desirable to identify and prune

as many non-contributing branches as possible preemptively.

The bound functions typically used are:

UB-1

As a simple option, the optimal objective value obtained by applying rand. LRT

(6.7) to the sub-problem G(a, b) can be used as an upper bound,

ub(a, b) , PDr . (6.11)
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UB-2

Alternatively ub(·) function which results in a tighter bound is defined as [31]

ub(a, b) , max


PDnr +

(
b− PFnr

)p(us+1|H1)

p(us+1|H0)
,

PDnr +p(us|H1)+
(
b−PFnr−p(us|H0)

)p(us−1|H1)

p(us−1|H0)


, (6.12)

where {s, PDr , PFr} are the non-rand-st LRT values computed using (6.5) for the

sub-problem G(a, b). Note that the upper-bound from (6.12) is the objective value

obtained from a type of rand. LRT where {0 ≤ xs+1 ≤ 1} or {xs = 1, xs−1 ∈ R}

is used. For s ∈ {a,M − 1}, ub(·) in (6.12) is not defined and alternatively UB-1 is

used in such case.

Algorithm 2 provides the complete implementation of the recursive branching

equations of the GDFP in (6.9) along with the bound mechanism of (6.12). The

recursive equation of G(a, b) is implemented by the function bb(a, b,x) (line 3-15).

The execution is initiated with a call to the function bb(·) with the seed parameters

on line 2.

The lines 4 and 6 terminate the function when the parameters {b, a} cross their

valid range. The branches corresponding to xa = 1 and xa = 0 are implemented

in lines 7-10 and 11-14 respectively. Execution of a branch is continued only if the

corresponding upper-bound value of the complete branch is greater than the already

achieved objective value P̂D (lines 7 and 11 ). The variables P̂D, P̂F and x̂ are

continously updated (line 5) with the best solution obtained as the algorithm recurs.

These variables are updated with the incrementally improved values found and hold

the optimal solution (P ∗D, P
∗
F ,x

∗) by the end of all recursions. Note that the algorithm

traverses depth-first into the tree with xa = 1 branches as the best objective values

are found in this path (due to the LR-value based ordering), thereby obtaining a high
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Algorithm 2 Branch and Bound solution for GDFP

1: Initialize P̂D ← 0; P̂F ← 0; x̂← [0 · · · 0]; fails← 0
2: call bb(0, α, x̂)

3: function bb(a, b,x)
4: if b < 0 then return end if
5: call update(x)
6: if a > M − 1 then return end if
7: if PD(x) + ub(a, b) > P̂D then
8: xcopy ← x; xcopy(a)← 1
9: call bb(a+ 1, b− p(ua|H0),xcopy)

10: end if
11: if PD(x) + ub(a+ 1, b) > P̂D then
12: xcopy ← x; xcopy(a)← 0
13: call bb(a+ 1, b,xcopy)
14: end if
15: end function

16: function update(x)
17: fails← fails+ 1
18: if PD(x) > P̂D then

19: P̂D ← PD(x); P̂F ← PF (x); x̂← x; fails← 0
20: end if
21: if fails > maxFAILS then
22: Exit
23: end if
24: end function
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P̂D value in the initial few BOs itself and as a result preempting many BOs later.

It is known that the BB algorithm generally terminates with linear number of

BOs due to violation of conditions in lines 4, 6, 7 and 11. However in the exception

scenarios the number of BOs could be exponential. To handle this scenario, we pro-

pose to add an additional condition based on the number of contiguous unsuccessful2

calls to the update(·) function.

Intuitively as the ub(·) is not tight enough, under the worst-case scenario the

recursions continue even after the optimal objective value is obtained (i.e., P̂D = P ∗D).

We propose to identify this scenario by keeping track of contiguous unsuccessful calls

(fails) to the update(·) function and exit the algorithm when a reasonable count

(maxFAILS) is reached (line 23). This mechanism improves the average number of

BOs (ABOs) at the cost of potentially a slight sub-optimal value for the worst-case

scenario.

6.4 Numerical solution and discussion

In Figure 6.1 we plot the average system performance (PD vs α) obtained for

(i) the randomized test for the GDFP using randomized LRT (labeled “rand LRT ”),

(ii) the non-randomized test for the GDFP obtained by

• the proposed BB Algorithm 2 using the worst-case termination count max-

FAILS = 100 (labeled “BB”)

• and the conventional non-randomized single-threshold LRT (labeled “non-

rand-st LRT ”).

We consider a system with N = {3, 5, 7, 9, 11}, the SU characteristics as Pfi ∼ U(0, 1)

and Pdi = Pfi +U(Pfi , 1), ∀i where U(s1, s2) denotes uniform probability distribution

2We count a call to update(·) function as unsuccessful when there is no improvement to the
achieved objective value.
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Figure 6.1: PD vs α plots under NP criterion for different number of SUs N for the
most general case.

with supports as s1 and s2. The performance curves are obtained under NP criterion

(α is varied from 0.01 to 1) using 103 realizations of (Pf ,Pd) (note that this scenario

can result in p(u|H0)� 105 and thereby making DP impractical).

In the non-randomized test category the ROC “BB” is near-optimal and out-

performs the sub-optimal ROC “non-rand-st LRT ” for all N . Note that the non-

randomized test ROCs approach the randomized test ROC for larger values of N (i.e.,

> 11) reaffirming that a non-randomized single-threshold LRT is close to optimal for

large N.

Table 6.2 presents the computational complexity of the proposed BB algorithm

in terms of the ABOs executed by the BB to obtain the optimal solution for α = 0.1

and different N when run for 103 realizations of (Pf ,Pd) with different monotonic

properties. Note that the BB algorithm has used O(M) linear number of ABO for

all the GDFP types, with each BO consuming O(M) for computing ub(·) value. Also
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Table 6.2: Average number of BOs used by the Branch and Bound
algorithm for different N for non-randomized tests

GDFP Type ↓ N → 3 5 7 9 11

non-monotonic 10 91 242 349 878

semi-monotonic 9 47 212 497 1647

monotonic 15 98 171 280 714

monotonic (case-A) 11 89 159 397 1371

Exhaustive† 28 232 2128 2512 22048

† indicates the number of BOs required for the Exhaustive Search
(i.e., 2M = 22N ).

note that the proposed algorithm obtains the solution for the GDFP with different

monotonic properties in similar time complexity, thereby preempting the need to

categorize the GDFP apriori based on monotonic properties.

In Figure 6.2 we plot the average system performance (PD vs α) obtained for

the non-randomized test for the GDFP obtained by (i) the proposed BB Algorithm

(marked in red ’x’) and (ii) the DP algorithm (marked in blue ’o’). To make it

conducive for applying the DP algorithm (i.e., causing p(um|H0) ≥ 105, ∀m), we

consider a system with N = {3, 5, 7, 9, 11}, the SU characteristics as Pfi ∼ U(0.3, 0.7)

and Pdi = Pfi+U(Pfi , 1),∀i. The performance curves are obtained under NP criterion

(α is varied from 0.01 to 1) using 103 realizations of (Pf ,Pd).

Table 6.3 lists the average PD obtained by DP and BB algorithms respectively for

different number of SUs N and the DP scaling factor as C = 105.

From the Figure 6.2 and Table 6.3, we can conclude that

(i) The ROC plots from DP and BB almost match each other.

(ii) There is slight (insignificant) performance drop from BB due to search termi-

nation for the exception cases.

(iii) Unlike the DP, the BB algorithm is immune to the precision of the system
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Figure 6.2: PD vs α plots for different number of SUs N using DP and Branch and
Bound algorithms.

Table 6.3: Average PD obtained by DP and BB algorithms for α = 0.1 for different
N values.

N DP BB

3 0.1916 0.1916

5 0.5030 0.5030

7 0.6627 0.6615

9 0.7657 0.7654

11 0.8199 0.8199

characteristics. It can be applied to a GDFP with any precision.

(iv) The computational complexity of the BB is conjectured to be quadratic in M

and is independent of the precision.

6.5 Conclusion

The simple and efficient BB computational algorithm is presented and applied to a

wide range of GDFPs to obtain the non-randomized optimal fusion vector in O(2M2)
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quadratic time which was originally an O(2M) exponential complex problem. A novel

termination mechanism for the BB is proposed to handle the exception scenario.

Additionally, the BB has the potential to be used for other problems in the area of

distributed detection like joint optimization of decision / fusion rule as in [26,39–41]

etc.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have formulated the non-randomized hard decision fusion problem

under Neyman-Pearson criterion as the GDFP and related it to the classical 0 − 1

Knapsack problem. We have applied dynamic programming concepts and obtained

an optimal solution with pseudo-polynomial complexity (i.e., O(αCM)) for the non-

monotonic case which originally was O(2M) in computational complexity.

We then defined a desirable semi-monotonic property that the GDFP exhibits

in most practical cases. This property was exploited to reduce the dimension of the

feasible solution space and the optimal solution using DP was obtained withO(αCM ′)

complexity.

For a larger network with participating sensors N ≥ 13, we showed that the

performance of the single-threshold non-rand-st LRT (which has a simple solution in

O(M log(M)) and is known to be sub-optimal) approaches the upper-bound obtained

by the rand LRT.

Using the low complexity solutions presented, we proposed novel (semi-)blind

hard decision fusion rules (that are variants of the GDFP) and showed that these
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rules with slight (or no) additional system knowledge achieve better ROC than the

existing alternatives.

As the dynamic programming based solution was constrained by the precision

for the problem, we further presented the branch and bound based algorithm (with

O(2M2) complexity) to obtain the near-optimal solution especially for the range

3 ≤ N ≤ 11 for wide range of problems with {high, low} precision, {monotonic, semi,

non-monotonic} properties. Table 7.1 summarizes all the proposed algorithms, their

applicability and the solution characteristics.

Table 7.1: Summary of proposed solutions.

Proposed algo-
rithms

optimal solution near-optimal solution

Dynamic program-
ming

O(αCM) for low-precision
GDFPs

Variable reduction O(αCM ′) for low-precision
and semi-monotonic
GDFPs

Single-threshold
LRT

O(M log(M)) for all
GDFPs with N ≥ 13

Branch and bound Conjectured to be O(2M2)
for all GDFPs

7.2 Future research avenues

In this thesis, we showed that the hard decision fusion problem is a 0− 1 Knapsack

problem and proposed low complexity algorithms to obtain optimal fusion rules. Fur-

ther, this approach has the potential to be applied to broader categories of problems

such as the following:

(i) the fusion problems with continuous observation space using softened hard ap-

proach in [21,24,36];
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(ii) jointly optimizing the decision rules at the SUs and the fusion rule at the FC

as in [26,39–41];

(iii) generalization of conditionally dependent decisions as in [42];

(iv) censoring some of the SUs for resource (like energy, reporting channel band-

width, system throughput etc.,) optimization as in [43–46].
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Appendix A

Background

A.1 Fusion rule performance criteria

A.1.1 Bayesian criterion

The Cost function C̄ is defined as

C̄ =
∑

i,j

Ci,j Pr{ say Hi when Hj true } =
∑

i,j

Ci,j πj Pr{ say Hi |Hj true }

=
∑

i,j

Ci,j πj Pr{u ∈ Ri |Hj true } =
∑

i,j

Ci,j πj
∑

u∈Ri

p{u |Hj}

=
∑

u∈R0

[
C0,0 π0 p{u |H0}+ C0,1 π1 p{u |H1}

]
+

∑

u∈R1

[
C1,0 π0 p{u |H0}+ C1,1 π1 p{u |H1}

]

where Ci,j is the cost associated with the decision that Hi is declared when Hj is true

and π0, π1 are the apriori probabilities of the hypothesis H0 and H1.
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LR-based Test minimizes the cost function C̄ and is given as [1]

(
Λ(u) , p{u|H1}

p{u|H0}

)
u∈R1

≷
u∈R0

π0

[
C1,0 − C0,0

]

π1

[
C0,1 − C1,1

] ,

and can be simplified to

N−1∑

i=0

ui log

(
P̄fi
Pfi

Pdi
P̄di

)
u∈R1

≷
u∈R0

λ,

which is also widely known as the Chair-Varshney rule. In this case the threshold

λ is computed in constant time using the values of the cost function and the apriori

probabilities.

A.1.2 Neyman-Pearson criterion

The Neyman-Pearson criterion does not require the knowledge of the cost functions

and the apriori probabilities of the hypothesis. It can be defined as,

Maximize
R1

PD, Sub to: PF ≤ α .

The optimum decision equation is again given by the LRT,

N−1∑

i=0

ui log

(
P̄fi
Pfi

Pdi
P̄di

)
u∈R1

≷
u∈R0

λ,

however the threshold(s) λ now need to be computed to satisfy the constraint value

α.
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A.2 Types of decision equations

Non-randomized decision equations [22,24–26]

LR Test: Λ(u)
ufc=1

≷
ufc=0

λlrt

Linear weighted sum:
N−1∑

i=0

Wiui
ufc=1

≷
ufc=0

λlws

Counting Rule:
N−1∑

i=0

ui
ufc=1

≷
ufc=0

K

Randomized decision equation [21]

If Λ(u)





> λrnd ufc = 1,

= λrnd ufc = 1 with probability γrnd
1,

< λrnd ufc = 0,
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A.3 Relevant work

Ref Criterion Secondary

Users

Local Deci-

sions

Reporting

Ch.

Fusion Center

[13] Bayesian Pdi , Pfi Hard (ind.),

OOK

Rayleigh

Flat-fading

MAC

LRT using re-

ceived energy

[14] Bayesian Pd, Pf Hard (ind.),

OOK

Rayleigh,

Racian flat-

fading MAC

LRT using re-

ceived energy

[15,16] Bayesian Pd, Pf Hard (ind.) Ideal K-out-of-N

(LRT using re-

ceived decisions)

[17] Bayesian Pdi , Pfi Hard (ind.) Ideal LRT using re-

ceived decisions

[18] Bayesian Pd,i, Pf,i Hard (dep.) Ideal LRT using re-

ceived decisions

Table A.1: Summary of relevant work available in the literature.

96



Ref Criterion Secondary

Users

Local Deci-

sions

Reporting

Ch.

Fusion Center

[19, 20] Neyman-Pearson

(throughput and PD

under constraint on

PF )

Pd,Pf Hard (ind.) Ideal K-out-of-N, k∗,

local threshold

λ∗

[21] Neyman-Pearson Pdi ,Pfi Soft and Hard

(ind.)

BSC rand. LRT

Table A.1: Summary of relevant work available in the literature.

where OOK is On-Off Keying, MAC is multiaccess channel, ind. is independent, dep. is dependent, BSC is binary symmetric

channel.
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Appendix B

Examples

B.1 Monotonic case-A

A numerical example for which the GDFP exhibits the monotonic case-A property is

given in Table B.1.

Table B.1: Numerical values of the SU characteristics for N = 4.

i Pdi Pfi

3 0.6838 0.3053

2 0.5852 0.3820

1 0.5567 0.4225

0 0.5617 0.4204

We obtain the conditional probabilities {p(u|H1), p(u|H0)} for each of the possible

observation vectors u using (2.8) and list them in Table B.2. Further the function

T (u) on which the LR function Λ(u) is monotonic is,

T (u) = 7.55u3 + 3.55u2 + 1.55u1 + 2.55u0 . (B.1)

Note in Table B.2 that for this special case, the conditional probability p(u|H1)

is non-decreasing on T (u) of (B.1) and p(u|H0) is non-increasing.
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Table B.2: Numerical conditional probabilities of the observation vectors for N = 4.

u T (u) p(u|H1) p(u|H0) Λ(u) m

[0000]T 0 0.0255 0.1437 0.1773 0

[0010]T 1.55 0.0320 0.1051 0.3044 1

[0001]T 2.55 0.0327 0.1042 0.3133 2

[0100]T 3.55 0.0359 0.0888 0.4048 3

[0011]T 4.10 0.0410 0.0763 0.5379 4

[0110]T 5.10 0.0452 0.0650 0.6949 5

[0101]T 6.10 0.0461 0.0644 0.7152 6

[1000]T 7.55 0.0551 0.0632 0.8725 7

[0111]T 7.65 0.0579 0.0471 1.2278 8

[1010]T 9.10 0.0692 0.0462 1.4978 9

[1001]T 10.10 0.0706 0.0458 1.5415 10

[1100]T 11.10 0.0777 0.0390 1.9914 11

[1011]T 11.65 0.0887 0.0335 2.6464 12

[1110]T 12.65 0.0976 0.0286 3.4188 13

[1101]T 13.65 0.0996 0.0283 3.5186 14

[1111]T 15.20 0.1251 0.0207 6.0406 15
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B.2 Monotonic case-B

A numerical example for which the GDFP exhibits the monotonic case-B property

is given in Table B.3.

Table B.3: Numerical values of the SU characteristics for N = 4.

i Pdi Pfi

3 0.6752 0.5924

2 0.6192 0.5700

1 0.5389 0.5115

0 0.6576 0.5829

We obtain the conditional probabilities {p(u|H1), p(u|H0)} for each of the possible

observation vectors u using (2.8) and list them in Table B.4. Further the function

T (u) on which the LR function (Λ(u)) is monotonic is,

T (u) = 6.2u3 + 2.7u2 + 1.2u1 + 5.2u0 (B.2)

Note in Table B.4 that for this special case, both the conditional probabilities

p(u|H1) and p(u|H0) are non-decreasing on T (u) of (B.2).
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Table B.4: Numerical conditional probabilities of the observation vectors for N = 4.

u T (u) p(u|H1) p(u|H0) Λ(u) m

[0000]T 0 0.0195 0.0357 0.5468 0

[0010]T 1.2 0.0228 0.0374 0.6103 1

[0100]T 2.7 0.0318 0.0473 0.6708 2

[0110]T 3.9 0.0371 0.0496 0.7487 3

[0001]T 5.2 0.0375 0.0499 0.7515 4

[1000]T 6.2 0.0406 0.0519 0.7821 5

[0011]T 6.4 0.0438 0.0523 0.8388 6

[1010]T 7.4 0.0474 0.0543 0.8730 7

[0101]T 7.9 0.0610 0.0662 0.9218 8

[1100]T 8.9 0.0660 0.0688 0.9594 9

[0111]T 9.1 0.0713 0.0693 1.0289 10

[1110]T 10.1 0.0771 0.0720 1.0709 11

[1001]T 11.4 0.0780 0.0725 1.0748 12

[1011]T 12.6 0.0911 0.0759 1.1997 13

[1101]T 14.1 0.1268 0.0961 1.3185 14

[1111]T 15.3 0.1482 0.1007 1.4716 15
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B.3 non-monotonic

A numerical example for which the GDFP exhibits the non-monotonic property is

given in Table B.5.

Table B.5: Numerical values of the SU characteristics for N = 4.

i Pdi Pfi

3 0.8290 0.5036

2 0.6082 0.5273

1 0.8598 0.5229

0 0.4362 0.4177

We obtain the conditional probabilities {p(u|H1), p(u|H0)} for each of the possible

observation vectors u using (2.8) and list them in Table B.6. Further the function

T (u) on which the LR function Λ(u) is monotonic is,

T (u) = 4.8u3 + 2.8u2 + 6.8u1 + 0.8u0 (B.3)

Note in Table B.6 that for this special case, both the conditional probabilities

p(u|H1) and p(u|H0) are non-monotonic on T (u) of (B.3).
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Table B.6: Numerical conditional probabilities of the observation vectors for N = 4.

u T (u) p(u|H1) p(u|H0) Λ(u) m

[0000]T 0 0.0053 0.0652 0.0813 0

[0001]T 0.8 0.0041 0.0468 0.0877 1

[0100]T 2.8 0.0082 0.0727 0.1131 2

[0101]T 3.6 0.0064 0.0522 0.1220 3

[1000]T 4.8 0.0257 0.0661 0.3883 4

[1001]T 5.6 0.0199 0.0474 0.4188 5

[0010]T 6.8 0.0325 0.0714 0.4545 6

[0011]T 7.6 0.0251 0.0512 0.4903 7

[1100]T 7.6 0.0399 0.0738 0.5403 8

[1101]T 8.4 0.0308 0.0529 0.5829 9

[0110]T 9.6 0.0504 0.0797 0.6325 10

[0111]T 10.4 0.0390 0.0572 0.6823 11

[1010]T 11.6 0.1574 0.0725 2.1716 12

[1011]T 12.4 0.1218 0.0520 2.3426 13

[1110]T 14.4 0.2444 0.0809 3.0222 14

[1111]T 15.2 0.1891 0.0580 3.2601 15
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B.4 semi-monotonic

A numerical example for which the GDFP exhibits the semi-monotonic property is

given in Table B.7.

Table B.7: Numerical values of the SU characteristics for N = 4.

i Pdi Pfi

3 0.6589 0.3588

2 0.7261 0.4490

1 0.8761 0.4576

0 0.5549 0.4367

We obtain the conditional probabilities {p(u|H1), p(u|H0)} for each of the possible

observation vectors u using (2.8) and list them in Table B.8. Further the function

T (u) on which the LR function Λ(u) is monotonic is,

T (u) = 3.95u3 + 2.95u2 + 6.95u1 + 1.45u0 (B.4)

Note in Table B.8 that for this special case, both the conditional probabilities

p(u|H1) and p(u|H0) are non-monotonic on T (u) of (B.4). However, semi-monotonic

property is apparent when the observation vectors and the corresponding values are

organized in a graph as depicted in Figure B.1.

Each realization of the observation vector u is represented by a node (blue box).

Each node is connected by an arrow (going out) to another node with higher T (u)

and Λ(u) value. Note that in every possible path traversed along the arrows from

node u0 to u15, the Λ(u) is non-decreasing, {p(u|H1) is non-decreasing and p(u|H0)}

is non-increasing. Thereby exhibiting the monotonic case-A property on subset of

observation vectors, namely the semi-monotonic property.
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Table B.8: Numerical conditional probabilities of the observation vectors for N = 4.

u T (u) p(u|H1) p(u|H0) Λ(u) m′

[0000]T 0 0.0052 0.1079 0.0477 0

[0001]T 1.45 0.0064 0.0837 0.0767 1

[0100]T 2.95 0.0137 0.0880 0.1553 4

[1000]T 3.95 0.0100 0.0604 0.1647 8

[0101]T 4.4 0.0170 0.0682 0.2497 5

[1001]T 5.4 0.0124 0.0468 0.2650 9

[1100]T 6.9 0.0264 0.0492 0.5360 12

[0010]T 6.95 0.0364 0.0911 0.4000 2

[1101]T 8.35 0.0329 0.0382 0.8620 13

[0011]T 8.4 0.0454 0.0706 0.6433 3

[0110]T 9.9 0.0966 0.0742 1.3013 6

[1010]T 10.9 0.0704 0.0510 1.3808 10

[0111]T 11.35 0.1204 0.0575 2.0928 7

[1011]T 12.35 0.0877 0.0395 2.2207 11

[1110]T 13.85 0.1866 0.0415 4.4923 14

[1111]T 15.3 0.2326 0.0322 7.2247 15
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u15 = [1111]T

{15.30, 7.2247}†

{0.2326, 0.0322}‡

u14 = [1110]T

{13.85, 4.4923}†

{0.1866, 0.0415}‡

u13 = [1101]T

{8.35, 0.8620}†

{0.0329, 0.0382}‡

u11 = [1011]T

{12.35, 2.2207}†

{0.0877, 0.0395}‡

u7 = [0111]T

{11.35, 2.0928}†

{0.1204, 0.0575}‡

u12 = [1100]T

{6.90, 0.5360}†

{0.0264, 0.0492}‡

u10 = [1010]T

{10.90, 1.3808}†

{0.0704, 0.0510}‡

u6 = [0110]T

{9.90, 1.3013}†

{0.0966, 0.0742}‡

u9 = [1001]T

{5.40, 0.2650}†

{0.0124, 0.0468}‡

u5 = [0101]T

{4.40, 0.2497}†

{0.0170, 0.0682}‡

u3 = [0011]T

{8.40, 0.6433}†

{0.0454, 0.0706}‡

u8 = [1000]T

{3.95, 0.1647}†

{0.0100, 0.0604}‡

u4 = [0100]T

{2.95, 0.1553}†

{0.0137, 0.0880}‡

u2 = [0010]T

{6.95, 0.4000}†

{0.0364, 0.0911}‡

u1 = [0001]T

{1.45, 0.0767}†

{0.0064, 0.0837}‡

u0 = [0000]T

{0, 0.0477}†

{0.0052, 0.1079}‡

Figure B.1: Depiction of semi-monotonic property where † represents values-
{T (u),Λ(u)} and ‡ represents values- {p(u|H1), p(u|H0)} corresponding to each ob-
servation vector.
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