

THEME ARTICLE: Memristor-Based Computing

Defect-Tolerant Logic

Synthesis for Memristor

Crossbars with

Performance Evaluation

In this paper, we study defect-tolerant logic synthesis

of memristor-based crossbar architectures. We

propose a hybrid algorithm, combining heuristic and

exact algorithms, that achieves perfect tolerance for 10-percent stuck-at open defect

rates. Along with defect tolerance, we also consider area, delay, and power costs of the

memristor crossbars to elaborate on two-level and multi-level logic designs.

Due to the scaling issues of current CMOS-based technologies, research has been shifted to

novel computing elements such as memristors. Even though the theoretical manifestation of the

memristor goes back to the 1970s, physical realization of an actual circuit component is very re-

cent and was established by HP. After this initial step, a variety of memristor-based logic circuit

designs were proposed, such as Boolean logic, implication logic, and threshold logic. A compre-

hensive review and references of memristor-based logic circuits can be found in Vourkas and

Sirakoulis.1 In this paper, we mainly focus on defect-tolerance aspects of crossbar arrays using

memristors as switching elements. We also perform comprehensive performance evaluation of

the arrays by considering delay power and delay costs in relation to the used logic designs.

The first study using hysteric resistors as memristive components in crossbar architectures is

demonstrated in Snider.2 An integrated design approach is devised in Xie et al.,3 showing the im-

plementation of arbitrary Boolean logic functions on crossbar arrays. This work adopts a two-

level logic design using NAND - AND planes, obtaining the negation of a logic function with a

final inversion. However, authors overlooked the fact that the crossbar is able to produce the

logic function and its negation as outputs, so considering both cases with different two-level

logic design techniques would generate a potential optimization in terms of area and power costs,

as shown in this paper. Furthermore, by modifying the computing states, we demonstrated in a

previous paper4 that it is possible to achieve multi-level logic design that uses the outputs of

NAND gates computed in the previous level as inputs. An improvement of multi-level design is

also presented.

Onur Tunali, M. Ceylan

Morgül, and Mustafa Altun

Istanbul Technical University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/200224084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 IEEE MICRO

Considering defect issues of memristor-based crossbars realizing logic functions, defects occur-

ring in a crossbar degrade operational capacity of switches and complicate the logic-synthesis

process severely. There are various studies such as Xie et al.5 that examine the robustness of the

crossbar, which disregards any operational or switch defects. Velasquez and Jha6 perform defect-

tolerant logic mapping in which the entire process is crossbar-dependent. To tackle this chal-

lenge, first we model defects borrowing the common terminology as stuck-at open and closed

types based on their physical resistance characteristics.

Next, we devise a modular defect-tolerant logic-synthesis process consisting of generating a

crossbar-independent description of the logic function and a fast hybrid mapping algorithm uti-

lizing the combination of a heuristic matching and an assignment method. Indeed, this problem

is very similar to the logic mapping of reconfigurable nano-crossbar arrays (using AND-OR

logic) for which a quite mature literature exists.7,8 However, most of the mentioned studies focus

on a single plane of crossbar, particularly AND, and neglect the OR plane. Furthermore, the re-

lated algorithms operate using 1.5 times larger crossbars and show poor performance for opti-

mum-size crossbars. Motivated by these shortcomings, we propose a hybrid algorithm, a

combination of heuristic and exact algorithms, for optimum-size crossbars. Our algorithm covers

the whole crossbar array by applying a heuristic approach for NAND and AND planes with an

exact assignment technique for the output connections of given logic functions, which is more

critical since a single defect might discard a whole output. Furthermore, we show that defect-

tolerance performance and area, delay, and power costs of the crossbars are strongly linked with

the used logic design technique.

BACKGROUND

Memristor Model

A memristor is a nonlinear electrical component that shows resistive switching properties. When

it is SET or RESET, a memristor keeps its state unless the voltage difference between the termi-

nals of the component is inside the defined constraints. Figure 1 shows I-V characteristics and

switching behavior of an ideal memristor. In this paper, we use the Snider Boolean Logic model,

which regards a lower-resistance RON as logic “0” and a high-resistance ROFF as logic “1.”2

Figure 1. (a) I-V characteristics and (b) switching operations of a memristor.

Logic Synthesis of Memristor Crossbars

A crossbar array is constructed from two layers of orthogonal wires/lines. Every crosspoint/junc-

tion acts as a switching element, which is a memristor in this study. The memristor-based cross-

bar proposed by Xie et al.3 is able to perform two-level synthesis for an arbitrary logic function

in sum-of-products (SOP) form as 1 1...k n k nm m mf m m m , where m’s are

minterms of f. Note that minterm and product concepts are used interchangeably in the literature

 MEMRISTOR-BASED COMPUTING

(although they are fundamentally different), so we follow the same tendency in this paper, as

well.

Using the same approach, one can also perform multi-level logic synthesis.4 In short, the logic-

synthesis process of a crossbar consists of choosing which switches to activate and disable to im-

plement a given Boolean function. A memristor switch can be programmed into two operational

ranges:2,3

 Active. Memristors can switch between two resistive states (low RON and high ROFF)

 Disabled. Memristors always stay in the ROFF state regardless of voltage difference.

As an example, two-level and multi-level implementations of a Boolean function

1 2 3 4 5 6 7 8f x x x x x x x x is shown in Figures 2(a) and 2(b), respectively. Horizon-

tal and vertical lines represent the minterms and inputs, respectively. If an input is present in the

minterm, the corresponding switch is activated; otherwise, it is disabled. Here, computation cy-

cles are controlled by CMOS controllers, which either sets or resets the related memristor, se-

quentially. Since the multi-level design has more cycles, controllers tend to be more complex

compared to the two-level design.

Figure 2. Logic mapping of a Boolean function on a crossbar with (a) two-level design and (b) multi-
level design.

Readers are encouraged to refer to Xie et al.3 and Tunali and Altun4 for further information on

logic synthesis of memristor crossbars.

Area-Power-Delay Analysis of Memristor Crossbars

To evaluate operational capacity of memristor crossbars, we introduce four parameters used in

both two-level and multi-level designs and/or defect-tolerance performance of crossbars:

 IEEE MICRO

 Area cost. The size of the crossbar used to implement a given logic function. Area costs

of two- and multi-level designs are calculated as AreaTwo = (# of minterms + # of out-
puts) × (2 × (# of inputs + # of outputs)) or AreaMulti = (# of total minterms nodes + 1

+ # of nodes) × (2 × (# of inputs + # of outputs) + # of inverted nodes).

 Delay cost. Elapsed time to compute sequential states. It is calculated as (# of levels +

5), as in Xie et al.3 Note that it is always 7 for two-level design.

 Power factor. Total memristor count divided by delay cost. We aim to approximate

worst-case power. We assume that the memristor has zero static power.2,3 Dynamic

power depends on the power consumption of changing a memristor state (low to high

and high to low). We assume that occurrence probabilities of input states are equal and,

in the worst case, all memristor states are changing. Therefore, energy consumption be-
comes proportional to the number of memristors in the array,3 and power consumption

can be found as energy/delay. We encourage readers to look into Traiola, Barbareschi,

and Basio9 for more detailed information on estimating average power consumption of

memristor arrays.

 Logic inclusion ratio (IR). The ratio of the number of switches (memristors) used to re-

alize a logic function to area cost.

Using the two-level design example in Figure 2(a), a crossbar has 7 horizontal lines and 18 verti-

cal lines, so area cost is 126. There are 31 memristors used in implementation, so IR = 31/126 =

25 percent, and delay is 7. Power factor is 31/7 = 5.28. And for the multi-level design example in

Figure 2(b), the crossbar has 4 horizontal lines and 19 vertical lines, so the area cost is 76. There

are 29 memristors used in implementation, so IR = 29/72 = 38 percent, and delay cost is 8 (3 (#

of levels) + 5 = 8). The power factor is 29/8 = 3.62.

DEFECT-TOLERANT MAPPING

First, we explain the used two-level and multi-level design techniques for a technology-inde-

pendent description of a logic function for defect tolerance and performance evaluation. Then,

we elaborate on defect models and, finally, propose the defect-tolerant algorithm.

Used Two-Level and Multi-Level Logic Designs

Memristor-based crossbars use minterms (more specifically, products) of the function in SOP

form to obtain the function’s negation, and then it obtains the function itself with a last inverter.

We call forms of the original function and its negation Phase 1 and Phase 0, respectively. We

calculated the function (Phase 1) and its negation (Phase 0), and then chose which one to select

by using the PLA-based logic minimization tool Espresso. However, for multi-output functions

(most of the benchmark functions), we don’t have only two phases; rather, we have phase combi-

nations. For n outputs, a function will have 2n numbers of phase combinations. Since minterms

(or products) can be shared with outputs3 as in PLA-like synthesis, we aim to increase the num-

ber of shared products among outputs with changing phases of outputs. Since a brute-force ap-

proach has a high time cost, we have written a greedy algorithm called the Greedy Two-Level

Algorithm (GTLA). We first calculate product numbers of each output and its negation. The

phase of an output is determined as the phase having the fewest products. We obtain the final

phase combination according to the output phases.

In our previous work, for multi-level designs, we used the ABC logic-synthesis tool to acquire a

gate-level technology mapping.4 But the memristor delay-cost function is different than conven-

tional technologies.3 Therefore, in this work, we used the SIS logic-synthesis tool for technol-

ogy-independent multi-level logic synthesis. We used the area-optimization script

“script.rugged.” Later in this paper, we evaluate the two-level and multi-level design techniques

by investigating defect tolerance, as well as area, delay, and power costs of memristor crossbars.

 MEMRISTOR-BASED COMPUTING

Defect Model

A defective switch cannot operate properly (meaning no switching between stuck-at low or high

resistance states, as reported in Li et al.10), and the cause is believed to be due to insufficient do-

pants or impurities.11,12 Therefore, memristor defects might be modeled as stuck-at open and

stuck-at closed types. Physical resistance equivalence of defect types can be defined as follows:

 Stuck-at open. The memristor is always in ROFF mode, which means high resistance.

 Stuck-at closed. The memristor is always in RON mode, which means low resistance.

Stuck-at open defects show the same characteristics as programming a memristor as disabled in

the mapping phase, so avoiding these defects during logic mapping is adequate for a valid map-

ping. However, stuck-at closed defects are always RON, so they disrupt the operational capacity

of both horizontal and vertical lines. Since every computation step starts with initializing all the

memristors to ROFF and then copying the input values to minterms, a vertical line belonging to

the defective switch cannot be used. Furthermore, RON is equivalent to logic “0” in the Snider

Boolean logic model,2 so every horizontal line that computes a NAND gate results in logic “1,”

independent of the other inputs. For this reason, tolerance of stuck-at closed defects is basically

replacing the defective lines with defect-free ones, so it is not possible without any redundant

crossbar lines. Finally, prior to the mapping process, we assume we will know the locations of

defects, which are denoted with a defect map. After the fabrication of the memristor crossbar, it

is possible to construct a defect map with testing techniques, as discussed in Tunali and Altun.8

Proposed Defect-Tolerant Logic-Mapping Method

To distinguish defect-tolerant mapping, we start with a naive mapping approach (see Figure 3(a))

disregarding defects for a given logic function, and an invalid mapping is obtained at the end.

However, after careful consideration, a valid mapping is produced (see Figure 3(b)) with activat-

ing correct switches. In our methodology, we use the following concepts, which are thoroughly

explained in Tunali and Altun:4

 Function matrix (FM) is a representation of a logic function in matrix form.

 Crossbar matrix (CM) is a representation of a defect map that shows the crossbar posi-

tions of either defective or functional switches.

 Row matching checks a row of FM or CM element by element.

 Matching matrix shows valid row matchings of FM and CM.

In short, our algorithm is composed of three parts:

1. First, the description of logic function (which is generated by two-level or multi-level

logic design techniques) and the defect map of the crossbar (which is obtained through
testing in advance) are converted into matrix form as FM and CM, respectively.

2. Second, a heuristic matching is applied to all minterm (product) rows of FM (denoted

with FMm), which performs row-by-row matching between FMm and CM from top to

bottom. During the process, matched rows of the CM are traced with an array showing
which rows of the FMm are assigned to them. At first, the matching searches only un-

matched rows. If an FMm row cannot be matched with the unmatched rows of the CM,

then backtracking starts by considering the matched rows of the CM from top to bot-

tom. If a matching is found, the previously assigned row of the FMm is checked for
whether it can be assigned to an unmatched row of the CM. If this check results in a

mismatch, the algorithm continues with the next matched row of the CM and repeats

the same process to find a valid matching.

3. As a final step, a matching matrix for output rows of FM and unmatched rows of CM

(denoted with CMu) is constructed. By using an assignment algorithm that chooses

which output is mapped to unmatched rows of CM yielding a zero cost, we ensure that

every output has a valid row matching. We use the classic Munkres’ assignment algo-

rithm for finding an assignment producing zero cost. This is an exact algorithm, which
means if a zero cost is possible, it will be found.

 IEEE MICRO

We are using a hybrid algorithm due to runtime issues. Constructing a matching matrix and ap-

plying an assignment method to all rows of FM would increase computational load of the algo-

rithm excessively for larger logic functions. We show drastic runtime differences in the next

section.

Figure 3. Logic mapping of a given Boolean function. Red diagonal lines represent a defect on the
crosspoint. First, (a) mapping is applied by disregarding defects without a valid mapping and,
second, (b) mapping is applied by considering defects with a valid mapping.

OVERALL PERFORMANCE EVALUATION

For experimental results of our defect-tolerant logic-synthesis process, we use Monte Carlo sim-

ulations. We generate random defective crossbars by assigning an independent defect probability

rate (10 percent) to each crosspoint showing a uniform distribution and attempt to map given

benchmark logic functions using proposed defect-tolerant mapping algorithms. As opposed the

common tendency of using 1.5 times larger crossbars for logic mapping,7,8 we utilize optimum-

size crossbars with no redundant lines present. We only include stuck-at open defects since our

simulation regards optimum crossbars, so defect tolerance is not possible in terms of stuck-at

closed types due to redundancy requirements. Furthermore, as reported in Li et al.10 and Bor-

ghetti et al.,13 defective memristors are dominantly observed to be stuck at high-resistance states,

meaning that stuck-at open defect rates reach up to 10 percent. Considering the mentioned find-

ings, our simulation setting depicts a fairly accurate representation of physical results. Finally, all

algorithms are implemented in MATLAB, and experiments run on a 3.30-GHz Intel Core i7

CPU with 8 GB memory.

To evaluate operational capacity of memristor crossbars, we use area-cost, power-factor, and de-

lay-cost parameters. In addition, we quantify the complexity of the CMOS control unit as a rep-

resentation of its area and power. Since the control unit is functionally a demultiplexer, we

define its complexity as the product of the number of its inputs and outputs. The number of in-

puts can be formulized as log2(# of states) = log2(5 + # of levels). The number of outputs can be

formulized as 3 × (# of levels) by considering that, in each level, there are three memristor sets—

 MEMRISTOR-BASED COMPUTING

corresponding to inputs, products, and outputs—to be controlled successively. As a result, the

complexity of the control unit can be formulized as log2(5 + # of levels) × 3 × (# of levels).

For the proposed hybrid algorithm (HBA), we consider success rate (SR) and runtime values

compared to those of the exact algorithm (EA). Contrary to HBA, which applies the assignment

method only to output rows, EA constructs the matching matrix for all minterms and output rows

of FM, and then applies the assignment method.

Our simulations are performed as follows. Given a benchmark function, first, we use two-level

or multi-level logic design to obtain the description of the function. Then, the logic function is

converted into a matrix (FM). Randomly generated defective crossbars (200 samples) are in ma-

trix form (CM), as well. Finally, proposed defect-tolerant mapping methods try to find a valid

mapping of FM for each CM.

In the first simulation, we compared HBA and EA, employing original and the proposed (GTLA)

two-level logic design techniques. As can be seen in Table 1, we have managed to decrease the

area cost and power factor of most benchmarks using GTLA. For example, regarding ex5p, we

have managed to increase the SR to 100 percent while decreasing the power factor by more than

half (from 342.57 to 165.29). However, IR increases for certain benchmarks (rd53, rd73, and

rd84), which returns as a performance degradation for both HBA and EA. The reason behind that

is that higher IR means denser crossbar, so the mapping operation becomes difficult generally. In

terms of runtime, HBA is superior to EA for all cases—at least one order of magnitude and at

most two orders of magnitude for circuits such as apex4, alu4, and ex1010. In terms of SR, HBA

underperforms EA in a few cases only for the benchmarks rd73 and ex5p.

In the second simulation, we performed a comprehensive performance evaluation by only using

HBA for both two-level and multi-level logic approaches. As can be seen in Table 2, we have

managed to decrease area cost, power factor, and runtime and increase SR for rd73, sqrt8, rd84,

and alu4 using multi-level design, which is an absolute improvement regarding all parameters. In

addition, power-factor values of multi-level design are lower for all benchmark functions, occa-

sionally even down to an order of magnitude, such as rd73, rd84, and alu4. The main advantage

of multi-level design is its ability to produce sparser (low-IR) logic-function descriptions, and it

demonstrates a two to three times runtime performance increase when the area cost is lower than

that of the two-level design. Even for the exception of apex4 and ex1010, the runtime difference

is insignificant considering that mapping is executed for 16 to 30 times larger crossbars (area

cost) for the same function designed with multi-level design than with its two-level counterpart.

In terms of SR, if the original benchmark functions are designed with multi-level design, HBA is

able to find a valid mapping in 100 percent of cases. It should also be noted that, for benchmarks

such as ex5p, clip, and sao2 that require larger crossbars when synthesized with multi-level de-

sign, HBA is still able to maintain higher SRs (100 percent) than those of the two-level design.

The main drawback of multi-level design is the complexity of its control unit. It is clear from Ta-

ble 2 that multi-level design demands a fairly more complex control unit than its two-level coun-

terpart. For certain cases such as ex1010, apex4, table3, and misex3c, complexity differences

reach to an order of magnitude.

As an overall evaluation, our performance findings can be summarized as follows:

 GTLA is able to decrease area cost and power factor, but occasionally increases IR,

generating denser (higher-IR) logic functions; this is the key parameter in defect-toler-
ant mapping. Regarding defect-tolerance performance, the fewer memristors to match

(low IR), the better the algorithm performs.

 Multi-level design produces a sparser (low-IR) logic-function description and naturally

better defect-tolerance performance, but the area-cost trend is not predictable and its

CMOS control unit complexity is much higher than that of the two-level design.

 HBA overwhelms EA for runtimes with a slight or no decrease in SRs.

 IEEE MICRO

CONCLUSION

The inherent power efficiency and integration potential of memristors have set forth an interest-

ing and alternative solution path to the ongoing CMOS shrinkage issue. Although large-scale in-

tegration of memristor-based crossbars is rather recent and problematic in terms of defect rates,

fundamental computation is shown to be feasible with the right combination of fabrication and

electronic design automation techniques, as demonstrated in this paper. Currently, the main bot-

tleneck is lack of data regarding physical and operational characteristics of memristor-based sys-

tems. However, the increase in the physical realization of memristor-based circuits will generate

more in-field data related to delay, power consumption, defect rates, and so on; researchers will

soon be able to fine-tune both their instruments and computational approaches.

Table 1. SR and runtime values of HBA and EA for optimum-area crossbars with a 10-percent

defect rate.

Bench

Name

Area

Cost

Power Factor (worst-

case)
IR HBA EA

Org GTLA Org GTLA Org
GTLA

Org GTLA Org GTLA

SR T SR T SR T SR T

 rd53 544 400 26.29 21.43 33% 35% 98 1 94 1 98 1 94 1

squar5 858 806 22.00 21.71 16% 15% 100 1 100 1 100 1 100 1

inc 1,248 1,248 36.43 37.29 17% 17% 100 1 100 1 100 1 100 1

rd73 2,600 1,920 130.86 132.00 34% 40% 83 2 79 2 92 13 79 6

misex1 570 570 21.00 23.00 19% 19% 100 1 100 1 100 1 100 1

sqrt8 1,008 624 30.29 21.29 21% 20% 99 1 100 1 99 1 100 1

ex5p 19,454 18,744 342.57 165.29 10% 7% 65 6 100 7 80 21 100 10

rd84 6,216 4,560 299.00 295.71 33% 38% 71 6 47 4 79 84 57 40

clip 3,500 3,360 118.57 119.00 23% 23% 100 5 100 5 100 30 100 20

sao2 1,736 1,344 75.00 62.43 29% 28% 97 1 99 1 97 2 99 1

ex1010 11,760 11,760 400.86 402.57 23% 23% 100 3 100 2 100 54 100 50

alu4 25,652 16,500 740.57 468.57 19% 19% 100 10 100

6
100 305 100 138

apex4 25,480 25,368 796.86 790.00 21% 21% 100 8 100 7 100 152 100 150

bw 3,300 3,300 69.14 69.71 12% 12% 100 2 100 2 100 2 100 2

table3 10,584 10,584 403.71 403.71 25% 25% 100 3 100 4 100 24 100 32

misex3c 11,816 11,760 248.86 250.71 13% 13% 100 3 100 3 100 41 100 34

Org: Original two-level logic synthesis

GTLA: Two-level logic synthesis with our GTLA

SR: Success rate in percentage

IR: Logic inclusion ratio (% of activated memristors)

T: Average runtime in milliseconds

Delay cost for two-level design is 7 for all benchmarks.

 MEMRISTOR-BASED COMPUTING

Table 2. SR and runtime values of HBA with two-level and multi-level designs for optimum-area

crossbars with a 10-percent defect rate.

Bench

Name

Control

Unit

Cmp.**

Area

Cost

Power Factor

(worst-case)
Delay* IR HBA

Multi Two Multi Two Multi Multi Two Multi
Two Multi

SR T SR T

rd53 54 544 784 26.29 7.73 11 33% 10% 98 1 100 1

squar5 108 858 1,088 22.00 7.57 14 16% 9% 100 1 100 1

inc 72 1,248 2,160 36.43 14.46 13 17% 7% 100 1 100 1

rd73 120 2,600 2,544 130.86 10.67 15 34% 6% 83 2 100 1

misex1 54 570 1,440 21.00 10.18 11 19% 8% 100 1 100 1

sqrt8 24 1,008 1,064 30.29 15.89 9 21% 11% 99 1 100 1

ex5p 144 18,744† 39,900 165.29 32.88 17 7% 1% 100 7 100 6

rd84 54 6,216 4,588 299.00 21.82 11 33% 5% 71 6 100 2

clip 108 3,500 6,468 118.57 22.57 14 23% 4% 100 5 100 4

sao2 108 1,344† 3,168 62.43 18.07 14 27% 8% 99 1 100 1

ex1010 315 11,760 341,960 400.86 140.23 26 23% 1% 100 3 100 10

alu4 72 25,652 12,800 740.57 33.08 13 19% 3% 100 10 100 3

apex4 315 25,480 407,232 796.86 145.08 26 21% 1% 100 8 100 10

bw 156 3,300 8,580 69.14 16.61 18 12% 3% 100 2 100 2

table3 345 10,584 73,367 403.71 51.61 28 25% 1% 100 3 100 3

misex3c 180 11,816 21,728 248.86 41.05 20 13% 3% 100 3 100 1

SR: Success-rate percentage

IR: Logic inclusion ratio (% of activated memristors)

T: Time in milliseconds

†: Designed with GTLA

*: Delay cost for two-level design is 7 for all benchmarks.

**: Control unit complexity for two-level design is 18 for all benchmarks.

ACKNOWLEDMENTS
This work is part of a project that has received funding from the European Union’s Horizon

2020 research and innovation program under the Marie Skłodowska-Curie grant agreement

No. 691178. This work is supported by the TUBITAK-Career project #113E760.

 IEEE MICRO

REFERENCES
1. I. Vourkas and G.C. Sirakoulis, “Emerging memristor-based logic circuit design

approaches: A review,” IEEE Circuits and Systems, 2016.
2. G. Snider, “Computing with hysteretic resistor crossbars,” Applied Physics A:

Materials Science & Processing, 2005.

3. L. Xie et al., “Fast Boolean logic mapped on memristor crossbar,” 33rd IEEE

International Conference on Computer Design (ICCD), 2005.
4. O. Tunali and M. Altun, “Logic Synthesis and Defect Tolerance for Memristive

Crossbar Arrays,” Design, Automation, and Test in Europe Conference (DATE), 2018.

5. L. Xie et al., “On the robustness of memristor based logic gates,” IEEE 20th

International Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2017.

6. A. Velasquez and S.K. Jha, “Fault-tolerant in-memory crossbar computing using

quantified constraint solving,” 33rd IEEE International Conference on Computer

Design (ICCD), 2015.

7. O. Tunali and M. Altun, “Permanent and transient fault tolerance for reconfigurable

nano-crossbar arrays,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 2017.

8. O. Tunali and M. Altun, “A Survey of Fault-Tolerance Algorithms for Reconfigurable
Nano-Crossbar Arrays,” ACM Computing Surveys, 2017.

9. M. Traiola, M. Barbareschi, and A. Basio, “Estimating dynamic power consumption

for memristor-based CiM architecture,” Microelectronics Reliability, 2018.

10. C. Li et al., “Efficient and self-adaptive in-situ learning in multilayer memristor neural
networks,” Nature Communications, 2018.

11. O. Kavehei et al., “The fourth element: characteristics, modelling and electromagnetic

theory of the memristor,” Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 2010.
12. J.J. Yang, D.B. Strukov, and D.R. Stewart, “Memristive devices for computing,”

Nature Nanotechnology, 2013.

13. J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit capable of self-

programming,” Proceedings of the National Academy of Sciences, 2009.

ABOUT THE AUTHORS
Onur Tunali has a master’s degree in nanoscience and nano-engineering from Istanbul
Technical University. Previously, he studied mathematics at Istanbul University. Contact

him at onur.tunali@itu.edu.tr.

M. Ceylan Morgül is a PhD student in electronics engineering at Istanbul Technical Uni-

versity. He has a master’s degree in electronics engineering from the same university. Con-
tact him at morgul@itu.edu.tr.

Mustafa Altun is an associate professor of electronics engineering at Istanbul Technical

University. He has a PhD in electrical engineering with a PhD minor in mathematics from

the University of Minnesota. He is an author of more than 50 peer-reviewed papers and a
book chapter, and he is the recipient of the TUBITAK Success, TUBITAK Career, and

Werner von Siemens Excellence awards. Contact him at altunmus@itu.edu.tr.

