
Synthesis and Optimization of Switching Nanoarrays

Muhammed Ceylan MORGUL and Mustafa ALTUN,

Department of Electronics and Communication Engineering,

Istanbul Technical University, Istanbul, TURKEY

Emails: morgul@itu.edu.tr, altunmus@itu.edu.tr

Abstract — In this paper, we study implementation of Boolean

functions with crossbar nanoarrays where each crosspoint

behaves as a switch. This study has two main parts “formulation”

and “optimization”. In the first part of formulation, we investigate

nanoarray based implementation methodologies in the literature.

We classify them as two-terminal or four-terminal switch based.

We generalize these methodologies to be applicable for any given

Boolean function by offering array size formulations. In the second

part of optimization, we focus on four-terminal switch based

implementations; we propose a synthesis method to implement

Boolean functions with optimal array sizes. Finally, we perform

synthesis trials on standard benchmark circuits to evaluate the

proposed optimal method in comparison with previous nanoarray

based implementation methods. The proposed synthesis method

gives by far the smallest array sizes and offers a new design

paradigm for nanoarray based computing architectures.

Keywords—switching nanoarrays; logic synthesis; optimization

I. INTRODUCTION

CMOS transistor dimensions have been shrinking for
decades in an almost regular manner. Nowadays this trend has
reached a critical point and it is widely accepted that the trend
will end in a decade [1]. Even Gordon Moore, who made the
most influential prediction in 1965 about CMOS size shrinking
(Moore Law), accepted that his prediction will lose it validity in
near future [2]. At this point, research is shifting to novel forms
of nanotechnologies including molecular-scale self-assembled
systems [3-4]. Such technologies have apparent advantages over
conventional CMOS technologies, such as high density and easy
manufacturability. Unlike conventional CMOS that can be
patterned in complex ways with lithography, self-assembled
nanoscale systems generally consist of regular structures.
Logical functions and memory elements are achieved with
arrays of crossbar-type switches. In this study, we target this
type of switching arrays where each crosspoint behaves as a
switch, either two-terminal or four-terminal. This is illustrated
in Figure 1. We implement Boolean functions by considering
array sizes. Table 1 compares different implementation
methodologies for few XOR functions (Parity functions)
regarding the array sizes. The columns “diode based” and
“transistor based” represent two-terminal switch based
implementation methodologies. These methodologies have been
proposed to implement simple logic functions [5-6]. In this
study, we generalize them to be applicable for any given
Boolean function with offering array size formulations. The last
two columns represent four-terminal switch based
implementation methodologies that offer favorably better
results. The results shown in bold from the last column are taken
from our synthesis method proposed in this study that
implements Boolean functions with optimal array sizes.

Two-terminal switch

Closed Open

Four-terminal switch

Closed Open

Switching nano array

Fig. 1. A switching crossbar nanoarray modeled with two-terminal and four-

terminal switches.

TABLE 1

ARRAY SIZES FOR NANOARRAY COMPUTING MODELS; XOR2 = X1⊕ X2,

XOR3 = X1⊕ X2⊕ X3, AND XOR4 = X1⊕ X2⊕ X3⊕ X4.

Two-terminal switch

based nanoarray models

Four-terminal switch

based nanoarray models

Diode

based [7]

Transistor

based [8]

Four-

terminal [9]

Four-terminal

(Proposed)

XOR2 2×5 array
10 switches

4×4 array
16 switches

2×2 array
4 switches

2×2 array
4 switches

XOR3 4×7 array
28 switches

6×8 array
48 switches

4×4 array
16 switches

3×3 array
9 switches

XOR4 8×9 array

72 switches

8×16 array

128 switches

8×8 array

64 switches

3×5 array

15 switches

 Although this study is at the technology-independent level,
the targeted two-terminal and four-terminal switching arrays
have applications in variety of emerging technologies including
nanowire crossbar arrays [8-10], magnetic switch-based
structures [11], arrays of single -electron transistors [12], and
memristive arrays [13]. Furthermore, switching nanoarrays have
true potential for commercial fabrication [16]. Figure 2 shows a
SEM image of a 2x2 nano-crossbar array made by n-type
nanowires and a complete fabricated chip of a nanocomputer.

 a) b)

Fig 2. SEM image of a) a 2x2 nano-crossbar array [4] and b) a complete
fabricated chip [16].

The paper is organized as follows. In Section II, we
investigate nanoarray based implementation methodologies and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/200224083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mcmorgul@yahoo.com
mailto:altunmus@itu.edu.tr

propose generalized array size formulations. In Section III, we
focus on four-terminal switch based implementation techniques
and propose a synthesis method to implement Boolean functions
with optimal array sizes. In Section IV, we evaluate our
synthesis methods on standard benchmark circuits. In Section V,
we discuss the contributions of this study.

A. Definitions

Consider k independent Boolean variables, x1, x2, …., xk.
Boolean literals are Boolean variables and their complements,
i.e., x1, 𝑥1̅̅̅, x2, 𝑥2̅̅ ̅,…., xk, 𝑥𝑘̅̅ ̅. A product (P) is an AND of literals,
e.g., P = x1𝑥2̅̅ ̅ x3. A sum-of-products (SOP) expression is an OR
of products. An irredundant sum-of-products (ISOP)
expression is an SOP expression with minimum number of
products.

f and g are dual Boolean functions iff

f (x1, x2, …., xk) = �̅� (𝑥1̅̅̅, 𝑥2̅̅ ̅, …., 𝑥𝑘̅̅ ̅).

Given an expression for a Boolean function in terms of AND,
OR, NOT, 0, and 1, its dual can also be obtained by
interchanging the AND and OR operations as well as
interchanging the constants 0 and 1. For example, if f (x1, x2, x3)=
x1 x2 + x1𝑥3̅̅ ̅ then f D (x1, x2, x3) = (x1 + x2) (x1 + 𝑥3̅̅ ̅). A trivial
example is that for f = 1, the dual is f D = 0.

II. IMPLEMENTATION METHODOLOGIES AND FORMULATIONS

We investigate three major implementation methodologies
developed for switching nanoarrays. We classify them as two-
terminal or four-terminal switch based.

A. Two-terminal switch based methodologies

These methodologies consider each crosspoint of an array as
a two-terminal switch that behaves like a diode or a CMOS
transistor. This is illustrated in Figure 3. Since diodes and
CMOS transistors conduct current through their two terminals
that are anode & cathode for diodes and source & drain for
CMOS transistors, they are fundamentally two-terminal
switches.

Diode basedNano array

Crosspoint

CMOS based

Fig. 3. A switching crossbar nanoarray modeled with diode and CMOS based

two-terminal switches.

Boolean functions are implemented by using conventional
techniques from diode-resistor logic and CMOS logic with an
important constraint regarding nanoarray structures. Boolean
functions should be implemented in their sum-of-products
(SOP) forms; other forms such as factored or BDD can not be
used since these forms require manipulation/wiring of switches
that is not applicable for self-assembled nanoarrays. Figure 4
shows implementation of a Boolean function XOR2 with diode
and CMOS based nanoarrays.

R1

A

B

f

x1
R3

f

R2

R1

x2 x2x1

a)

f

x1

x2

x2

PMOS part NMOS part

b)

x1

Fig. 4. a) Diode and b) CMOS based nanoarrays implementing

XOR2 = x1⊕ x2 with 2×5 and 4×4 arrays, respectively

Array size formulations: Given a target Boolean function f,

we derive formulas of the array sizes required to implement f.

This is shown in Table 2. For diode based implementations,

each product of f requires a row (horizontal line), and each

literal of f requires a column (vertical line) in an array.

Additionally, one extra column is needed to obtain the output.

For CMOS based implementations, each product of f and f D

requires a column, and each literal of f requires a row in an

array. As an example shown in Figure 4, f = XOR2 = 𝑥1𝑥2̅̅ ̅ +

𝑥1̅̅̅𝑥2 has 4 literals and 2 products; f D = 𝑥1𝑥2 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ has 2

products. This results in array sizes of 2×5 and 4×4 for diode

and CMOS based implementations, respectively. Note that both

formulas, for diode and CMOS, always result in optimal array

sizes; no further reduction is possible.

TABLE 2

ARRAY SIZE FORMULAS FOR DIODE AND CMOS BASED IMPLEMENTATIONS

Type Array Size Formulas

Diode (number of products in f) x (“number of literals in f ”+ 1)

CMOS
(number of literals in f) x (“number of products in f ” +

“number of products in f D”)

B. Four-terminal switch based methodology

This methodology considers each crosspoint of an array as a
four-terminal switch. This is illustrated in Figure 5. Boolean
functions are implemented with top-to-bottom paths in an array
by taking the sum (OR) of the product (AND) of literals along
each path. This makes Boolean functions implemented in their
sum-of-products (SOP) forms. Figure 6-a) and Figure 6-b) show
the implementations of a Boolean function XOR2 in an array and
lattice representations, respectively. Figure 6-c) shows a lattice
of four-terminal switches implementing a Boolean function
x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6. The function is computed
by taking the sum of the products of the literals along each path.
These products are x1x2x3, x1x2x5x6, x2x3x4x5, and x4x5x6.

Nano array

Crosspoint

Four-terminal

Fig. 5. A switching crossbar nanoarray modeled with four-terminal switches.

x1

x2

x2

x1

f
R

x2 x1

x1 x2

TOP

BOTTOM

R

b)a)

x2 x5

x1 x4

TOP

x3 x6

BOTTOM

c)
Fig. 6. a) Four-terminal switch based nanoarray and b) its lattice

representation implementing XOR2 = x1⊕ x2 with a size of 2×2 c) Four-terminal

switch based lattice implementing x1x2x3 + x1x2x5x6 + x2x3x4x5 + x4x5x6.

Array size formulation: Given a target Boolean function f, the
array size formula was proposed by Altun and Riedel [9] that is

shown in Table 2. In their implementation, each product of f and

f.D require a column and a row, respectively, in an array. As an

example shown in Figure 6-a), f = XOR2 = 𝑥1𝑥2̅̅ ̅ + 𝑥1̅̅̅𝑥2 and

f.D= 𝑥1𝑥2 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ have both 2 products. This results in an array
size of 2×2.

TABLE 3

ARRAY SIZE FORMULA FOR FOUR-TERMINAL SWITCH BASED IMPLEMENTATION

Type Array Size Formula

Four-
terminal

(number of products in f) x (number of products in f D)

Examining the array size formulas in Table 2 and Table 3,
we see that while the formulas in Table 2 always result in
optimal sizes, but the sizes derived from the formula in Table 3
that is for four-terminal switch based arrays, are not necessarily
optimal. In the following section we propose an algorithm that
finds an optimal size implementation of any given target
Boolean function.

III. OPTIMIZATION

Finding whether a certain array with assigned literals to its
switches implements a target function is the main problem in
finding optimal sizes. This problem requires to check if each
assignment of 0’s and 1’s to the switches, corresponding to a
row of the target function’s truth table, results in logic 1 (a top-
to-bottom path of 1’s exists). To check this we have to
enumerate all top-to-bottom paths that is exponentially growing
with the array size. Therefore any algorithm that finds optimal
sizes should have exponential time complexity with respect to
the array size so is our algorithm.

Our algorithm finds optimal array sizes to implement given
target Boolean functions with arrays of four-terminal switches
in four steps:

1) Obtain irredundant sum-of-products (ISOP) expressions of a

given-target function fT and its dual fT
D. Determine the

upper bound on the array size using the formula in Table 3:

Upper Bound (UB): (number of products in fT) x (number

of products in fT
D).

The implementable lower bound (LB) values are taken from
the lower bound table proposed in [9].

2) List the array shapes (RxC) (which are in between LB and
UB) into the ‘List of Implementable Nanoarray Shapes’ and
sort them regarding of array sizes, in ascending order. While
ordering, first take the array shape which has lower number

of rows (e.g. if the kth shape is “3x4”, then the (k+1)th shape can be

“4x3”.). Suppose that there are total of N different shapes in
the list. For step-3, start with n=1 (1≤n≤N).

3) Compute the value of the following statement for the nth
shape.
The Statement: An array which has the shape in the nth line
of the list is implementable for fT.
If the statement is TRUE
 Change UB to the RxC (save the design);
 Go to the step-4;
If the statement is FALSE
 Increase the number “n” by 1 (n=n+1);
 Repeat step-3

4) Declare that UB is optimal size for given-target function fT

can be realized in.

Our algorithm is mainly based on finding a design in a
certain sized array such that the design implements fT. Our
algorithm does not check every possible design. If it did then
the algorithm would be intractable even for small sized arrays.
For example, if a target function fT having 6 variables, 8 literals,
is tested on a 3x4 array then there are 1210 possible designs and
26 truth table rows. Note that for each of the 12 switches in the
array there are 10 different options; it might be one of the 8
literals, 0, or 1. In this scenario, the algorithm would have to
check 1210x26 truth table rows. To overcome this problem, we
discard a significant portion of designs to be checked. For this
purpose, we offer 3 major improvements:

 I) We create a library of reduced number of Rx2 sized sub-
designs. We use them to achieve RxC sized designs. While
creating sub-designs we exploit the following simple lemmas.
First lemma allows us to discard designs implementing a
product (s) that does not imply fT. The second lemma allows us
to discard designs with “0” assignments to the switches if fT has
a product having a single literal.

Lemma 1: If a design has a path realizing a product p for
which fT ≠ fT+p, then the design can not implement fT.

Proof: Since p is not an implicant of fT, then a design
including p implements a different function.

Lemma 2: If a function fT has a single variable product term
p=x then the algorithm does not need to assign “0” to the
switches.

Proof: All the “0” assignments can be replaced with x’s
without a loss of generality.

II) If there is a product of fT such that the number of literals
of the product equals to the number of switches in the longest
top-to-bottom path in the array, then we settle that particular
product onto that particular path.

III) We discard designs having fewer number of total
literals than the total number literals of fT.

These improvements make our algorithm much faster. As
an example, suppose that XOR3 is given as a target function for
which the improved algorithm runs roughly 400 times faster.
For 3x2 sized sub-designs, there are 86=262,144 designs. With
applying the proposed improvements, this number is reduced to
12,114, roughly 20 times smaller than the unimproved one.
Since we use two sub-arrays for XOR3, for the optimal array size
of 3x4, the improved algorithm works 400 times faster.

IV. EXPERIMENTAL RESULTS

TABLE 4

EXPERIMENTAL RESULTS FOR STANDARD BENCHMARK CIRCUITS

Benchmark CMOS Diode 4-Terminal
Optimal 4-

Terminal
Benchmark CMOS Diode 4-Terminal

Optimal 4-

Terminal

Alu 0 30 18 6 6 Dc1 2 72 36 16 12

Alu 1 30 18 6 6 Dc1 5 35 15 12 6

Alu 2 30 18 6 6 Dc1 6 36 18 9 6

Alu 3 30 18 6 6 Ex5 31 156 104 32 24

B12 0 80 32 24 12 Ex5 33 110 77 21 21

B12 1 120 70 35 16 Ex5 46 81 54 18 18

B12 3 30 20 8 8 Ex5 49 72 54 12 12

B12 4 42 28 8 8 Ex5 50 81 63 14 14

B12 6 132 77 35 18 Ex5 61 64 48 12 12

B12 7 110 66 24 18 Ex5 62 49 35 10 10

B12 8 90 70 14 14 Misex1 1 48 16 8 8

C17 0 36 18 9 6 Misex1 2 132 55 35 15

C17 1 30 20 8 8 Misex1 3 156 60 40 24

Clpl 0 64 32 16 12 Misex1 4 121 44 28 16

Clpl 1 36 18 9 9 Misex1 5 90 45 25 15

Clpl 2 16 8 4 4 Misex1 6 143 66 42 18

Clpl 3 144 72 36 18 Misex1 7 81 36 20 15

Clpl 4 100 50 25 15 Mp2d 4 345 75 90 24

Dc1 1 25 10 6 6 Newtag 108 72 32 18

 In Table 4 we report synthesis results for standard

benchmark circuits [14]. We treat each output of a benchmark

circuit as a separate target function. The number of products

for each target function fT and its dual fT
D are obtained

through sum-of-products minimization using the program

Espresso [15]. The array size values for “Diode”, “CMOS”,

and “4-terminal” are calculated by using the formulas in

Table 2 and Table 3. The array size values for “Optimal 4-

terminal” are obtained using the proposed optimization

algorithm in Section III: Optimization.

 Examining the numbers in Table 4, we always see the

same sequence from the worst to the best result as “CMOS”,

“Diode”, “4-terminal”, and “Optimal 4-terminal”. This

demonstrates that nanoarray models based on four-terminal

switches overwhelm those based on two-terminal switches

regarding the array size. Further, the numbers obtained by our

optimal synthesis method compares very favorably to the

numbers obtained by previous methods.

V. CONCLUSION

 In this paper, we extensively investigate computing
models developed for switching nanoarrays. We classify them
as two-terminal or four-terminal switch based. We derive
array size formulations in terms of the properties of given
Boolean functions. We synthesize arrays of four-terminal
switches to implement Boolean functions with optimal array
sizes. We perform synthesis trials on standard benchmark
circuits to evaluate the proposed optimal method in
comparison with previous methods by using their derived
formulas. The proposed synthesis method gives by far the
smallest array sizes and offers a new design paradigm for
nanoarray based computing architectures. With this promising
motivation, we seek to develop our algorithm to make it useful
for complex benchmark functions.

ACKNOWLEDGMENT

This work is supported by TUBITAK (The Scientific and
Technological Council of Turkey) Career Program #113E760.

REFERENCES

[1] "Overall Technology Roadmap Characteristics". International
Technology Roadmap for Semiconductors. 2010. Retrieved 2013.

[2] Dubash, M. Moore’s Law is dead, says Gordon Moore. Techworld.
com, 13 (2005).

[3] Ariga, Katsuhiko, et al. "Two-dimensional nanoarchitectonics based
on self-assembly." Adv. in colloid & interface science 154 (2010)

[4] Whitesides G. M. and Grzybowski B.. Self-assembly at all scales.
Science, 295(5564):2418-2421, (2002).

[5] Chen, Zhihong, et al. "An integrated logic circuit assembled on a single
carbon nanotube." Science 311.5768 (2006): 1735-1735.

[6] Yan, Hao, et al. "Programmable nanowire circuits for nanoprocessors."
Nature 470.7333 (2011): 240-244.

[7] Huang, Yu, et al. "Logic gates and computation from assembled
nanowire building blocks." Science 294.5545 (2001): 1313-1317.

[8] Snider, Greg. "Molecular-junction-nanowire-crossbar-based inverter,
latch, and flip-flop circuits, and more complex circuits composed, in
part, from molecular-junction-nanowire-crossbar-based inverter, latch,
and flip-flop circuits." U.S. Patent No. 6,919,740. 19 Jul. 2005.

[9] Altun, Mustafa, and Marc D. Riedel. "Logic synthesis for switching
lattices." Computers, IEEE Transactions on 61.11 (2012): 1588-1600.

[10] Dehon, André. "Nanowire-based programmable architectures." ACM
J. on Emerging Tech. in Computing Sys. (JETC) 1.2 (2005): 109-162.

[11] Khitun, Alexander, Mingqiang Bao, and Kang L. Wang. "Spin wave
magnetic nanofabric: A new approach to spin-based logic circuitry."
Magnetics, IEEE Transactions on 44.9 (2008): 2141-2152.

[12] Chen, Yung-Chih, et al. "Automated mapping for reconfigurable
single-electron transistor arrays." Proceedings of the 48th Design
Automation Conference. ACM, 2011.

[13] Levy, Yifat, et al. "Logic operations in memory using a memristive
Akers array." Microelectronics Journal (2014).

[14] K. McElvain, “IWLS93 benchmark set: Version 4.0, distributed as part
of the IWLS93 benchmark distribution,
http://www.cbl.ncsu.edu:16080/benchmarks/lgsynth93/,” 1993.

[15] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

[16] Yao. J.; Yan, H.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C.
M. Nanowire nanocomputer as a finite-state machine. Proc. Natl. Acad.
Sci. U.S.A. (2014), 111, 2431– 2435.

