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Abstract
We present a system for linking dictionaries at the sense level, which is part of a wider programme
aiming to extend current lexical resources and to create new ones by automatic means. One of
the main challenges of the sense linking task is the existence of non one-to-one mappings among
senses. Our system handles this issue by addressing the task as a binary classification problem using
standard Machine Learning methods, where each sense pair is classified independently from the
others. In addition, it implements a second, statistically-based classification layer to also model
the dependence existing among sense pairs, namely, the fact that a sense in one dictionary that is
already linked to a sense in the other dictionary has a lower probability of being linked to a further
sense. The resulting double-layer classifier achieves global Precision and Recall scores of 0.91 and
0.80, respectively.
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1 Introduction

Dictionary usage has changed tremendously in the past decades, both in terms of quality
(e.g., type of searches, preferred support: paper or digital, etc.) and quantity (number of
dictionary users, average number of searches by user, etc.). That dictionaries as a product
are in decline is a well-known fact, but this trend is not appreciated in the case of bilingual
dictionaries. In spite of the availability of free translation tools of remarkable quality, often
integrated in web browsers, the generalization of internet access paired with the growth of
online content in multiple languages seems to guarantee their continuance.
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20:2 Cross-Dictionary Linking at Sense Level

An obvious and very widespread use case for bilingual dictionaries is supporting second
language learning. Although learners can nowadays resort to online content for a quick
translation, manually edited dictionaries remain the go-to sources for good quality information,
especially with respect to less frequent uses, and wider descriptions on how words are
employed. This is because dictionaries filter out noisy content, distill the key aspects of
linguistic expressions, and provide a broad view on words, e.g., labels for register or domain.

Bilingual dictionaries also play a key role in several language technology areas. For
instance, they are a component of search engines for cross-lingual information retrieval,
or in metadata tagging tools for multilingual image search systems. Moreover, they are
complementary to machine translation systems, which despite their significant improvement
with the advent of neural networks technology in the past years, still fall short of returning
adequate or informative enough answers when it comes to translating words or lexical
constructions provided out of context.

The manual compilation of dictionaries is nevertheless a costly and time-consuming
activity, which has led to efforts towards developing methods for (semi-)automating the
process. An example of this is the shared task Translation Inference Across Dictionaries
(TIAD), initiated in 2017 with the aim of exploring methods and techniques to auto-generate
bilingual and multilingual dictionaries based on existing ones.1 The current paper presents
research in a similar direction. In particular, it introduces a piece of work embedded within
a wider programme with a two-fold goal:

1. Automatically creating new bilingual dictionaries, a task that touches upon the area
known as lexical translation, concerning systems able to return translations of words or
phrases, e.g., [15].

2. Enriching existing bilingual dictionary information with additional data available from
other lexical resources (e.g., sense definitions, grammatical notes, domain information,
etc.). This second task has to do with the area referred to as word sense linking (aka
sense alignment, sense mapping or sense matching) [10].

To these ends, we developed a system for linking entry senses from a monolingual
dictionary in language L and a bilingual dictionary between languages L and L′ whenever
they correspond to the same meaning. In particular, we considered sense links between a
monolingual English dictionary and the English side of an English-L′ bilingual dictionary.

Linking senses from a bilingual dictionary to a monolingual one is the first step towards
goal 2 above of enriching the content of bilingual sources, given that monolingual dictionaries
tend to offer information of a different nature from that available in bilingual dictionaries.
Furthermore, this same sense linking component can feed into a broader system for developing
new bilingual dictionaries. By taking the monolingual dictionary as the pivot to which several
bilinguals are linked at the sense level, we expect to be able to automate the creation of
bilingual dictionaries involving language pairs not covered by the original bilinguals, therefore
addressing goal 1 above. The process is illustrated in Figure 1.

Given an initial phase (Step 1) where the senses in the English side of the bilingual
dictionaries are linked to the corresponding senses in the English monolingual dictionary, it
should be possible to then move to a second phase (Step 2) where the English senses act as
the bridge between the non-English parts of the two bilinguals, thus generating a bilingual
dictionary for a new language pair. This paper focuses on the work carried out for Step 1.

1 See: https://tiad2017.wordpress.com/ and http://tiad2019.unizar.es
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Figure 1 Automated bilingual dictionary generation process.

One of the main challenges of the sense linking task is the fact that it is not restricted to
one-to-one mappings. Dictionaries differ in terms of sense granularity (that is, one sense in a
dictionary corresponds to two or more in another), and in terms of coverage (one sense in a
dictionary does not correlate to any in the other). Throughout the paper we will refer to this
type of misalignment as non one-to-one mappings. A further challenge, in this case specific
to our project, has to do with the different nature of information in bilinguals as opposed to
monolinguals. While the latter tend to contain more extensive textual elements, bilinguals
do not have definitions but describe senses by means of translations or short glosses. We will
show that the system we put forward here offers a solution to these two issues.

The paper is structured as follows. Section 2 discusses related work. Then, sections 3
and 4 describe the solution proposed to the task at hand. In the first of these sections we
give a global overview on the methodology we followed, while the second one goes into the
design details of the system we developed. Results are presented in Section 5, and Section 6
closes with final remarks and suggests directions for future work.

2 Related Work

The work presented here belongs to the area of sense linking and also, although less directly,
to that of lexical translation. Less directly in the latter case because, as just argued, the
development of a full lexical translation system has yet to be completed. In spite of that, we
considered it worth reviewing previous work also on that second area.

Sense linking. The past years have witnessed notable activity in this field, motivated by
the interest in developing large Linked Lexical Knowledge Bases (LLKBs) by means of
integrating multiple resources into a single one (e.g., BabelNet [17], UBY [9]) in order to
achieve maximum lexical coverage and information richness, and thus to be able to better
support different NLP tasks. Most of this previous activity involves direct sense linking of
Lexical Knowledge Bases (LKBs), as opposed to more traditional dictionary content, even if
shaped as Machine Readable Dictionaries (MRDs), e.g., Niemann and Gurevych [18] among
many others. The difference between dictionaries (or MRDs) and LKBs is that the latter
organize their content in a graph-based structure, depicting the lexical relations that hold
among words (e.g., hyper- and hyponymy, entailment, synonymy, etc.). Thus, much of the
research on LKB sense linking benefits from lexical information structural organization.

Nevertheless, there is also some work around sense linking which disregards information
organization structure and is based solely on similarity between textual elements such as
definitions. This approach appears more suited for sense linking dictionary content, although
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20:4 Cross-Dictionary Linking at Sense Level

as will be seen next, in some cases it has been applied to LKBs only. A first strategy here
relies on word overlap, that is, on the number of words shared by the textual elements in
each dictionary, e.g., the early work by Lesk [13] and Byrd [2]. More recently also, Ponzetto
and Navigli [19] used word overlap for a conditional probability-based approach for aligning
Wordnet and Wikipedia. There are some significant shortcomings of this strategy: it strongly
depends on the presence of common words, and in some cases the number of shared words is
the same for different senses of the same entry, making the decision hard.

A second, more elaborate strategy consists in representing dictionary textual elements
as vectors in a multi-dimensional vector space and then computing the distance between
them as a proxy for their similarity. The closer the vectors, the more similar the texts
they represent. Ruiz-Casado and colleagues [21], for example, followed this strategy for
sense aligning Wikipedia articles to their corresponding WordNet synsets [6]. Nevertheless,
two major drawbacks of this strategy are, first, the need to set a threshold for determining
equivalent senses; and second, the fact that only one-to-one mappings can be accounted for,
while it is often the case that a sense in one dictionary corresponds to several in the other.

These issues are not shared by other research resorting to well-known graph-based methods
for modelling textual information. For example, Ide and Veronis [11] built a complex network
of senses and the words present in their definitions, and applied a spreading activation strategy
for identifying sense pairs between the Oxford Advanced Learner’s Dictionary (OALD) and
the Collins English Dictionary (CED). Although the authors reported good results (90%
accuracy), the experiments were unfortunately quite partial as they were applied to only 59
senses selected from OALD. What is more relevant for us here is the fact that the proposed
system, seemingly successful when applied to two monolingual dictionaries, does not appear
suitable for linking a monolingual and a bilingual dictionary, given that the latter does not
contain sense definitions but only translations and indicators.

To our knowledge, there is no work applying a Machine Learning (ML) based approach
yet to the task of sense linking dictionary content This is the strategy adopted in this project
because it can handle non one-to-one mappings and does not require setting any threshold.

Lexical translation. Lexical translation involves systems capable of providing translations
for words or lexical expressions. It is closely related to the automatic creation of bilingual
dictionary content, especially concerning languages for which there are no translation lexicons
of any sort. Work in this area tends to rely on the combination of several bilingual dictionaries
to generate a new one involving a language pair not covered in the initial bilingual lexicons.
A basic strategy for that is known as triangulation. It generates new translation pairs from
a source language Lsource to a target language Ltarget by simultaneously translating from
Lsource to 2 intermediate languages, Linter1 and Linter2 , and from each of these to the target
language Ltarget. The final translation is obtained from what is shared in both translation
paths. See for example [8, 14].

A second strategy is based on translation cycles across languages (as in, e.g., [24, 1]).
A cycle is a translation chain across different languages which starts and ends with the
same term. For instance, tL1 > tL2 > tL3 > tL1 , where tL is the term used for a word
in language L, and tL > tL′ expresses that term tL translates to tL′ . Not all translation
chains correspond to translation cycles due to the semantic shift that may take place between
translations (e.g., a word in one language can have a wider or narrower meaning than its
translation in another). Thus, this approach considers as valid only the translation pairs
within a translation cycle. Translation cycles tend to give a good precision score because the
cycle guarantees translation validity, but low coverage due to its restrictiveness.
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Finally, a third approach is based on the notion of transitivity chains. That is, the
possibility of translating term tA to term tC if it is the case that tA > tB and at the
same time tB > tC . There are different takes on that, e.g., using probabilistic inference
algorithms [15], supporting the decision with parallel corpora [20], or training a machine
learning classifier [5].

All these approaches, however, rely exclusively on bilingual dictionaries. This means that a
potential lower degree of lexical coverage in any bilingual dictionary used as intermediate step
will cause the triangulation or chain to fail. Similarly, differences in sense granularity between
two bilinguals may invalidate the linking with a third one. These issues can be avoided if
using a more complete, finer-grained monolingual dictionary as a pivot to which to link all
bilingual dictionaries. The monolingual dictionary will act as the bridge across the different
languages and therefore will ensure consistency on sense equivalence [22, 4, 12, 23, 26]. Our
work aligns with this other line of research.

3 Methodology

3.1 General Overview
Since we had a large amount of manually annotated data already available (see Section 3.2),
we opted for a ML-based approach. Specifically, we approached the task building a binary
classifier capable of judging any sense pair as a link (i.e., both senses correspond to the
same meaning) or a non-link (each sense denotes something different). A sense pair is a pair
(smono, sbil), where smono is a sense from an entry in the monolingual dictionary and sbil a
sense from the same entry in the bilingual dictionary.

The requirement of both senses to belong to the same entry means that they have the
same lemma and part of speech (POS) class (e.g., water noun is different from water verb).
We will refer this unit of information as lexeme. Note that dictionary homographs (e.g., lie1
verb “Be in or assume a horizontal position” vs. lie2 verb “Tell a lie”) will be considered
here as belonging to the same lexeme unit, thus deviating from the standard notion.

Given that the classifier considers each sense pair independently, differences of granularity
do not pose a challenge anymore. Any sense in one dictionary can be linked to another sense
in the other even if it has previously been linked to a further sense. This strategy, however,
is not sensitive to the fact that senses already linked to a sense in the other dictionary have
a lower probability of being linked to a second sense. Thus, in order to also benefit from
this observation, we complemented the ML classifier with a meta-algorithm which adjusts
the judgment on each sense pair based on the potential existence of other links for the same
senses in the pair, as will be explained in detail in Section 4.

3.2 Dictionary Sources and Manual Annotation
We took the Oxford Dictionary of English (ODE)2 as the monolingual dictionary, and
linked it to the English side of several bilingual dictionaries, also compiled by Oxford
University Press, involving English and a second language: English-German (EN-DE),
English-Spanish (EN-ES), English-French (EN-FR), English-Italian (EN-IT), English-Russian
(EN-RU), and English-Chinese (EN-ZH).3 To our benefit, the bilingual dictionaries had
already been manually linked to ODE at the sense level. The task had been performed by

2 https://en.oxforddictionaries.com/ (August 2017 release).
3 https://premium.oxforddictionaries.com/
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20:6 Cross-Dictionary Linking at Sense Level

Table 1 Dictionary fields extracted to build the vector features, by alphabetical order, indicating
the type of dictionary they belong to.

Field Dict. Type Description
Collocate Bilingual Type of words that can be collocated with the word at point

(e.g., food is a subject collocate for eat). Collocates for verbs
specify whether they are usually the object or the subject.

Definition Monolingual Description of the word meaning.
Domain Both Semantic area of a word (e.g., Medicine)
Gram. Feature Both Grammatical traits of the word. For example, type of comple-

mentation pattern for verbs (intransitive, transitive, etc.)
Indicator Bilingual Meaning description, generally a one-word or short phrase

expression (e.g., sickly sweet, sweet-tasting, etc.)
Region Both Providing the geographical location of a word (e.g., British)
Register Both Classifying the tone of a word (e.g., formal)
Sense order Both Ranking of the sense within its lexeme.

expert lexicographers at Oxford University Press, who examined all senses in the bilingual
dictionaries except for those: (a) tagged with the POS classes of abbreviation or symbol, and
(b) presenting no information other than the translation term, i.e., lacking other possible
data such as domain, register, region, collocates, example sentences, etc. These annotations
were used for training the model and as gold standard to assess results (see Section 3.5).

3.3 Classifier Development Datasets

Instances creation. The dataset of instances for developing our classifier was created as
follows: for each lexeme present in both ODE and the bilingual dictionary, we generated
all possible sense pairs resulting from coupling each sense smono from ODE with each sense
sbil in the bilingual, i.e., the Cartesian product Smono × Sbil, where Smono and Sbil are
respectively the sets of monolingual and bilingual senses for that lexeme. The resulting set
of sense pairs included both sense links and non-links.

Next, for each sense pair in Smono × Sbil, the dictionary fields in Table 1 were extracted
together with the label link or non-link that had been manually tagged. Sense pairs for
which the bilingual sense had only a translation and no other information, were excluded.
The translation field was not useful for our purposes. The extracted pieces of dictionary
information were used to build feature vectors, as will be explained in Section 4.1.

Splitting the dataset by POS class. Some POS classes tend to have a higher degree of
polysemy than others. Verbs, for instance, are significantly more polysemous than nouns,
and even more so than adverbs, as can be seen in Table 2.

Based on this observation, we experimented with separately trained models for different
POS classes. We split the training set into 5 subsets, for (a) adjectives, (b) adverbs and
prepositions, (c) nouns, (d) verbs, and (d) all the remainder classes (pronouns, determiners,
conjunctions, interjections, etc.). The resulting sizes and their class frequencies (links,
non-links) are presented in Table 3.
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Table 2 Polysemic behaviour by POS class in the Oxford Dictionary of English: % of monosemous
entries (i.e., single-sense entries), % of entries with 5 or more senses, % of entries with 10 or more
senses, and maximum number of senses found in an entry for that POS class.

% monosemous % entries 5 % entries 10 max. no.
entries or more senses or more senses of senses

Adjs 74.4% 2.2% 0.4% 40
Advs & Preps 83.4% 1.7% 0.4% 26
Nouns 76.8% 3.1% 0.6% 53
Verbs 51.2% 11.5% 2.6% 49
Other 72.3% 5.4% 0.7% 22

Table 3 Dataset characteristics: Number of instances, percentage of instances over the dataset,
percentage of instances corresponding to links, percentage of instances corresponding to non links.

No. instances % instances % links % no links
Adjs 228,170 13.7% 37.5% 62.5%
Advs & Preps 42,369 2.5% 35.7% 64.3%
Nouns 824,503 49.6% 31.5% 68.5%
Verbs 556,969 33.5% 15.7% 84.3%
Other 11,256 0.7% 50.6% 49.4%
All POS 1,663,267 100% 27.2% 72.8%

3.4 Building the Classifier

ML classifier. The system features were engineered following recommendations from expert
lexicographers from Oxford University Press, who were very acquainted with the content
in the different dictionaries. We ran several rounds of experiments and assessed results
using standard measures of feature importance and feature ablation techniques. Section 4.1
describes the key features in more detail, while the appendix provides the complete list. We
experimented with different ML algorithms (Naïve Bayes, Support Vector Machines, Decision
Trees), and based on results opted for the ensemble method Adaboost applied on DTrees.4

Meta-classifier. Judging each possible sense pair independently from the others allows to
handle the challenges posed by non one-to-one mappings (i.e., differences of granularity and
coverage). Nevertheless, sense links are to some extent dependent on the existence of other
sense links in the same lexeme. That is, a sense in one dictionary already linked to a sense
in the other dictionary has a lower probability of being linked to an additional sense. This
observation prompted the development of a meta-classifier sensitive to the number of senses
already linked in the same lexeme. We compared results from applying or not applying this
algorithm on top of the ML-based classifier. Thus, we investigated two experimental settings:

Single-layer classifier: Using an ML classifier only
Double-layer classifier: Using an ML classifier in combination with the meta-classifier

4 Specifically, we used python sk-learn implementation of [7], with parameters tree maximum depth
max_depth=1, maximum number of estimators n_estimators=100, and learning_rate=1.
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20:8 Cross-Dictionary Linking at Sense Level

Baseline classifier. Finally, in order to evaluate the performance of each model, we compared
the results against those of a baseline classifier. For each lexeme, the baseline classifier simply
links the first monolingual sense to the first bilingual sense, the second to the second, and so
on. Formally:

B((smonoi
, sbilj

)) = 1 ⇐⇒ i = j (1)

3.5 Evaluation

In order to avoid overfitting the model, we applied 10-fold cross validation on the manually
annotated data, which thus was used as gold standard against which to assess results.
Performance was scored by means of Precision, Recall and its associated F1 measure on
sense pairs classified by the model as links. In addition, we used Cohen’s Kappa as a way to
disregard the effect of correct classifications occurring by chance.

4 Experiment Settings

This section presents the experimental settings in more detail. Specifically, Subsection
4.1 describes the features used by the ML classifier, whereas Subsection 4.2 describes the
meta-classifier algorithm applied in conjunction with the ML classifier to take into account
possible dependencies among sense pairs.

4.1 ML Classifier Features

In total we considered 120 features, 42 of which were selected for the final classifier. The
complete list of the selected features is given in the appendix. Here we explain the rationale
applied to create them. We developed two types of features: (a) based on the dictionary
fields (presented in Table 1), and (b) based on the entry sense structure, i.e., the ordering of
senses within each entry.

4.1.1 Features Based on Dictionary Fields

Domain, register and region. In the dictionaries we used, these three fields can be found
qualifying different pieces of information, such as the definition in the monolingual dictionary,
the translation in the bilingual, or some example sentences. We extracted domain, register
and region elements while differentiating the piece of data they were associated to, and built
independent features for each of these. There were 2 types of features based on these fields:

Boolean features indicating whether the monolingual or bilingual sense has domain (or
register, or region) information;
Similarity scores (ranging [0,1]), comparing the domain (or register, or region) tags from
the monolingual and bilingual dictionaries. Similarity was computed in one of two ways:
either by the Wu-Palmer metric on WordNet [25], or by measuring how often the two
tags cooccurred on the same sense in the same dictionary (note, this value is 1 if and
only if both tags are the same).

A single “cross comparison” feature was also included comparing the tags from all possible
locations in one dictionary (definition, example sentences, etc.) with the tags from all possible
locations in the other.
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Indicators and definitions. For each sense pair, the monolingual definition and the bilingual
indicator were compared using two features:

A Boolean feature indicating if they had a word in common;
A semantic similarity score (ranging [0,1]) calculated as the cosine similarity between vec-
tors generated with word2vec on the GoogleNews corpus, thus leveraging recent advances
in word embedding technologies [16] to compute more accurate semantic comparisons.

Grammatical features. We built a Boolean feature for verbs only, encoding if both dictionary
senses shared the same complement pattern (i.e., transitive, intransitive, etc.). Similarly,
nouns had two bespoke features, signaling if the monolingual and bilingual senses shared the
same countability (mass vs. count) and type (proper vs. common).

All textual fields. As a final semantic comparison, we concatenated all text fields from the
bilingual sense on the one hand, and all text fields from the monolingual sense on the other,
and compared the two resulting text segments using word vectors as described above.

Naive Bayes. One of the major challenges that emerged in this project was the sparsity
of each feature. Because there are many possible types of dictionary information for each
sense (domain, register, etc.) with only one or two actually being realized, the majority
of features were null most of the time. The classifier, however, expected to read the same
number of features for all instances, so by default it converted null values to 0, negatively
impacting on its performance. Consequently, we found that the more common a feature
was the more helpful it was observed to be for our performance, and so a natural course of
action was to explicitly design a feature to be non-null. With this in mind, we computed
a simple probability estimate using a Naive Bayes classifier on all the non-null features for
a given instance, where the assumption of independence let us ignore the null values. We
discretized each feature into 10 bins, and equated the conditional probabilities with the
empirical probability of a link:

p(y = 1|xi = b) = Ni,b,1

Ni,b,0 +Ni,b,1
(2)

where Ni,b,c is the number of data points with ith feature equal to b, receiving classification
c. The product of all such features was then added as an additional feature,

∏
i∈F pi, where

F is the set of all non-null features. At the cost of an independence assumption, this feature
filtered out the noise introduced by the null values. As this Naive Bayes estimate assumes the
features are class-conditionally independent, and as this does not fully hold in practice, the
product in (2) is often the product of many small values and so it tends to 0. To counteract
this, we worked with the geometric mean of all non-null features, instead of the product.
Thus, the value for this feature was given by:

|F |

√∏
i∈F

pi (3)

4.1.2 Features Based on Entry Sense Structure
Sense frequency. Some senses for a given entry are more frequent than others, and this
partially informs how senses are ranked in an entry. That is, more common senses tend
to be placed first. Based on that, we inferred an estimate of the frequency of each sense
according to its position in the entry, and used the result to form a feature. We assumed
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20:10 Cross-Dictionary Linking at Sense Level

that the frequency of use of a sense is a monotonically decreasing function of its position in
the lexeme, and after experimenting with some obvious choices for such a function, we found
f(n) = 1/n+ 1/n2 to give reasonable frequency estimates when evaluated qualitatively. This
function was then normalized for each lexeme (the number of senses in a lexeme is variable
so they must be normalized separately). The resulting feature was the absolute difference of
the normalized frequency estimates for each of the two senses.

Main sense. The first listed sense in a lexeme can in general be assumed to be the most
commonly used and most general. Therefore it was felt that the first sense of each dictionary
could more likely (a) be linked to the first sense in the other dictionary, (b) contain multiple
links than later senses in the lexeme. To supply this information to the classifier, we included
two Boolean features, which indicated whether the bilingual sense and the monolingual sense
were the main senses in their respective lexeme.

Single sense. We hypothesized that senses which are the only sense in their lexeme will
more likely be linked to at least one sense in the other dictionary. Thus, we included two
Boolean features, indicating whether the bilingual sense and the monolingual sense were
single senses in their respective lexemes.

4.2 Meta-algorithm for dependent classifications

The ML classifier considers whether a sense pair within a lexeme corresponds to a link
individually, without taking into consideration the existence of other links for the same senses
in that pair. A complementary solution to this consists in looking at the set of sense pairs of
a lexeme as responding to a dependence pattern. More specifically, in considering whether a
sense pair corresponds to a link as being partly determined by whether there are other links
already present in the same lexeme.

Take as example lexeme L, which has monolingual senses {sm1, sm2, sm3, sm4} and
bilingual senses {sb1, sb2, sb3}, and consider the question of whether to assign a link to sense
pair (sm4, sb1). If sb1 has already been linked to sm1, sm2 and sm3, and if in addition sm4
has already been linked to sb2 and sb3, then it is unlikely that a further link should be added.
If, on the other hand, sb1 has yet to be linked to any monolingual sense, and sm4 has yet to
be linked to any bilingual sense, then it is more likely that a new link should be added. This
is based on the assumption that in general we should expect each sense in one dictionary to
be linked to exactly one sense in the other. Therefore we should require stronger evidence to
add a second link than to add a first link, and stronger again to add a third link, etc.

The meta-classifier is designed to make use of this expectation. It applies after the ML
classifier in the following manner. In a first step, it takes the confidence score p returned
by the ML classifier for each sense pair (smono, sbil), which it interprets as the probability
of a link taking place between senses smono and sbil. In total, each lexeme L gives rise to
|Smono| × |Sbil| such probability estimates. These estimates are re-calibrated using Isotonic
regression, as introduced by [3], to adjust for the otherwise unnaturally low variance that
arises from Adaboost averaging across all models in the ensemble.5

5 The details of this are beyond the scope of the current paper, but are explained in a general way in the
reference provided above.
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Then, the meta-algorithm assesses whether each sense pair (smono, sbil) ∈ {Smono × Sbil}
corresponds to a sense link, one at a time and in decreasing order of the estimates p output
by the ML classifier. It does this by supplementing the original ML classifier estimate p with
two additional probability estimates on whether the sense pair corresponds to a link. These
additional estimates are computed using (a) the number of bilingual senses to which smono

has already been linked, and (b) the number of monolingual senses to which sbil has already
been linked.

This is done invoking the cumulative distribution F̃ (x), which indicates the probability
that a given sense is truly linked to more than x senses in the other dictionary. This function
is approximated empirically as:

F̃ (x) ≈ F (x) = 1/N × |{s ∈ D | s has at most x links}| (4)

where N = |D|, that is N is the size of the whole dataset D. The values of F (x) for
0 ≤ x ≤ 15 are computed during the pre-processing phase, 15 being the maximum number
of observed links for a sense in our dataset. These values are then stored for use by the
meta-classifier in order to compute the 2 additional estimates of a link between smono and
sbil: (a) 1−F (m), and (b) 1−F (n), where m and n are the numbers of links already assigned
to smono and sbil, respectively. These estimates are then combined into a voting ensemble as:

(1− λ1 − λ2)pml((smono, sbil)) + λ1(1− F (m)) + λ2(1− F (n)) (5)

where λ1, λ2 are the voting weights and pml is the probability estimate of the ML classifier.
Just as the vanilla ML classifier assigns a link iff pml((smono, sbil) = 1) > 0.5, the meta-

classifier assigns a link if and only if the value in (5) is greater than 0.5. Experimentally, we
found the best results setting λ1 = λ2 = .25. That is, assigning a link if and only if:

0.5(pml((smono, sbil))) + 0.25(1− F (m)) + 0.25(1− F (n)) > 0.5 ⇒
pml((smono, sbil) = 1) > 0.5(F (m) + F (n)) (6)

Thus, one way to view the action of the meta-classifier is as a method for varying the
threshold required for linking, based on the already identified sense links in the same lexeme.
The ML classifier classifies a sense pair as a link if and only if its probability estimate pml
exceeds 0.5, while the meta-classifier replaces this global value (i.e., global in the sense that
it is same for all sense pairs) with a local threshold T , which varies for each sense pair
depending on the other sense pairs in the same lexeme.6 Specifically,

T = F (m) + F (n)
2 (7)

If no links have yet been assigned to the senses in a sense pair (i.e., m = n = 0), then T will
be small and so even a small probability estimate will be sufficient for a positive classification.
If by contrast, the senses in question have already been linked to several other senses (i.e.,
m,n are large), then T will also be large and thus the estimate of the ML classifier will
have to be high in order for a positive link to be assigned. The complete action of the
meta-classifier is presented in Algorithm 1.

6 To be more precise, depending on the other sense pairs with a higher pml estimate, since they will have
been previously evaluated as to whether they correspond to a sense link.
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Algorithm 1 Meta-classifier algorithm.
1: for each lexeme L with monolingual senses set Smono and bilingual senses set Sbil do
2: for each sense pair (smono, sbil) ∈ Smono × Sbil do
3: Obtain its probability estimate pml from the ML classifier
4: for each probability estimate pml, of sense pair (smono, sbil), from largest to smallest, do
5: Determine m and n, the number of already existing links for smono and sbil, respectively
6: Compute T = F (m)+F (n)

2
7: if pml > T then
8: Classify sense pair (smono, sbil) as a link
9: else
10: Classify as no link

Though it has only been tested on the present task of sense linking, this algorithm can in
theory be generalized to any classification problem in which there is a dependency between
the classification on certain sets of elements.7

5 Results and Discussion

As just presented, we explored two experimental settings: (a) using only a ML classifier, and
(b) applying it in combination with a statistically-based meta-classifier. Table 4 provides
the results for the two settings, along with those for the baseline classifier. Performance is
evaluated using Precision (P), Recall (R) and its derived F1 score over sense pairs classified
as links. Our focus was to assess the correctness of what the system had tagged as links
(P on links) and its capacity to identify true links (R on links).8 Moreover, we employed
Cohen’s kappa as the most common statistic used to account for correct classification that
takes place purely by chance. For each metric, for each experimental setting, the best result
is in bold face while the worst one is underlined.

Verbs is consistently the worst performing POS class, while the miscellaneous class Other
performs the best in all cases but one. The good results for Other can be explained partly
by the fact that it has a perfectly balanced training dataset (see Table 3), and partly by
its low degree of polysemy (shown in Table 2), as opposed to verbs, which are the most
polysemous POS. Adverbs & Prepositions is the second best performing class, also explained
by its low degree of polysemy relative to nouns and, more particularly, verbs. Adverbs and
prepositions present the highest percentage of monosemous entries, with the number of senses
per entry declining very quickly. At most, 26 senses can be found in an entry for an adverb
or preposition, which is half the size of the most polysemous entry for nouns.

The level of balance of each dataset (Table 3) is also a factor in the performance for each
POS class. This can be appreciated when comparing P&R scores for sense pairs classified as
links (those reported in Table 4) against P&R scores for sense pairs classified as non-links,

7 For example, the task of assigning tags to YouTube videos could be viewed as a linking task between
a set of videos and a set of tags. We might expect each video to be, on average, correctly assigned
to around 3 tags. It would be surprising if a video was assigned no tags, or was assigned 20 tags. In
the other direction, assuming the given tags were chosen so as to be meaningful and realistic, it would
be surprising if one tag was not assigned any videos or if one tag was assigned to every video. These
expectations could be leveraged by the meta-classifier. What is described above would require slight
modification to work in other domains, but it is reasonable to conjecture that some version of the same
idea may prove similarly effective elsewhere.

8 We also obtained P and R for sense pairs classified as non-links, not shown here due to space constraints
and given that our interest was on the correctness and coverage of link-tagged sense pairs.
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Table 4 Performance scores for baseline, ML classifier only, and ML classifier + meta-classifier.

Precision Recall F1 Kappa
base

ML
ML+ base

ML
ML+ base

ML
ML+ base

ML
ML+

line Meta line Meta line Meta line Meta

Adjs 0.77 0.91 0.94 0.66 0.83 0.87 0.71 0.87 0.90 0.56 0.79 0.84
Advs-Preps 0.80 0.93 0.94 0.76 0.85 0.90 0.78 0.89 0.92 0.66 0.83 0.88
Nouns 0.74 0.89 0.92 0.68 0.78 0.83 0.71 0.83 0.87 0.58 0.76 0.82
Verbs 0.47 0.80 0.83 0.42 0.53 0.64 0.44 0.64 0.72 0.35 0.59 0.67
Other 0.87 0.95 0.95 0.82 0.89 0.91 0.84 0.92 0.93 0.70 0.84 0.87
All POS 0.70 0.88 0.91 0.63 0.75 0.80 0.66 0.81 0.85 0.54 0.74 0.80

not shown here due to space constraints. The more balanced a dataset, the more similar the
P&R values for both types of sense pairs are. By contrast, in the case of verbs (the least
balanced class, with only around 16% of links), the difference between the scores for links and
non-links is noticeable. In the double-layer system, P and R for non-links respectively raise
to 0.94 and 0.98 (vs. 0.83 and 0.64 for links). In general, the unbalance in favor of non-links
results in high R scores for these, ranging between 0.95 and 0.98 across all POS classes. In
other words, the system has a stronger tendency to identify sense pairs as non-links.

Overall, we assess these results as notably positive. In spite of balance issues, P and R
on links reach a very decent level of performance. Our interest is on high P over R scores
because we prefer correct links at the cost of, possibly, low coverage, which we had initially
set at a minimum R score of 0.60. All POS classes attained this target. Similarly, all POS
classes except for verbs reached a P score of at least 0.92, which indicates a high degree of
correctness. Though not as perfect as hand-curated content, the resulting links (including
those for verbs) can already be used for less quality-demanding use cases than traditional
dictionaries, such as generating multilingual datasets feeding into cross-lingual search engines
or image tagging systems.

Finally, Table 4 shows the positive effect of the meta-classifier. The double-layer system
consistently outperforms the ML classifier alone. The improvement is most remarkable for
verbs. If classified with the ML classifier only, verbs are 15 points behind Other in P and 36
behind in R, but the meta-classifier reduces the gap considerably, a very positive result since
verbs correspond to one third of the total data (see Table 3). We thus chose the double-layer
setting as our system final design.

6 Conclusions and Next Steps

This paper presented a system for linking senses between a monolingual and a bilingual
dictionary. The system approaches the task as a binary classification problem, a strategy
which avoids the issue of non one-to-one sense mappings between two dictionaries due to
differences in sense granularity and coverage. This classifier was built using Adaboost on
Decision Trees and informed with features engineered based on lexicographic knowledge.

Sense links, however, are to some extent dependent on the existence of other links for
the same senses. That is, a sense in one dictionary already linked to a sense in the other
has a lower probability of being linked to a further sense. Therefore, we experimented with
a second classification layer to also model the dependence relation observed among sense
links, which was implemented as a statistically based meta-classifier sitting on top of the ML
classifier, and which resulted in significantly higher performance scores.
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At this point, there are several natural next steps for this project. First, the system
can already be used to generate sense links for other monolingual-bilingual dictionary
pairs. Second, the double-layer system provides us with a solid framework for develop-
ing models for sense linking different types of dictionary pairs (e.g., bilingual-bilingual,
monolingual-monolingual, monolingual-thesaurus, etc.), therefore contributing to the cre-
ation of a significant linguistic linked data resource. A relevant question to address as part of
this work is to what extend the approach adopted here is also applicable to other dictionaries
with lower degrees of curation than the ones we used. Last but not least, we can continue
work towards our two-fold goal of developing methods for generating new bilingual dictionary
content, as well as enriching existing ones with data from linked resources.
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A Features

Feature Description

bil_dom_direct Boolean: bilingual domain is non-empty
mono_dom_direct Boolean: monolingual domain is non-empty
dom_col_sim_avg co-occurrence similarity score for domain labels, avg if multiple
dom_col_sim_max as above but max across all values if multiple
dom_col_sim_min as above but min across all values if multiple
dom_wup_sim_avg wu-palmer similarity score for domain labels, avg if multiple
dom_wup_sim_max as above but max across all values if multiple
dom_wup_sim_min as above but min across all values if multiple
bil_dom_indirect Boolean: not all the above comparisons are non-empty
dom_cross_comps a weighted average of the above domain-related features
bil_reg_direct Boolean: bilingual register is non-empty
mono_reg_direct Boolean: monolingual register is non-empty, 0 otherwise
reg_col_sim_avg co-occurrence similarity score for register labels, avg if multiple
reg_col_sim_max as above but max across all values if multiple
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reg_col_sim_min as above but min across all values if multiple
bil_reg_indirect Boolean: not all the above comparisons are empty
reg_cross_comps a weighted average of the above register-related features
bil_ge_direct Boolean: bilingual regions is non-empty
mono_ge_direct Boolean: monolingual region is non-empt
ge_col_sim_avg co-occurrence similarity score for region labels, avg if multiple
ge_col_sim_max as above but max across all values if multiple
ge_col_sim_min as above but min across all values if multiple
bil_ge_indirect Boolean: not all the above comparisons are empty
ge_cross_comps a weighted average of the above region-related features
bil_ind_direct Boolean: bilingual sense-level indicator s non-empty
ind_def_wv cos similarity of sense-level indicators and definition, GoogleNews word

vectors
ind_in_def Boolean, word from sense-level indicators appears in definition
bil_ind_tr_direct Boolean: bilingual translation-level indicator is non-empty
ind_tr_def_wv cos similarity of translation-level indicators and definition, GoogleNews

word vectors word vectors
ind_tr_in_def Boolean, word from translation-level indicators appears in definition
bil_ind_ex_direct Boolean: bilingual example-level indicator is non-empty
ind_ex_def_wv cos similarity of example-level indicators and definition, GoogleNews

word vectors word vectors
ind_ex_in_def Boolean, word from example-level indicators appears in definition
same_number Boolean: both marked for same countability (nouns only)
same_trans Boolean: both marked for same transitivity (verbs only)
same_type Boolean: both marked for same noun type, (nouns only)
all_text_comp cos similarity of all the text from one sense with all from the other,

GoogleNews word vectors
naive_bayes_estimate see section 4.1.1
freq comparison of frequency estimates for each sense, see section 4.1.2
mono_is_main Boolean: monolingual sense is first in its lexeme
bil_is_main Boolean: bilingual sense is first in its lexeme
single_sense Boolean: this sense pair is the only sense pair in its lexeme
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