
University of Cagliari

PhD School of Mathematics
and Computer Science

XXVIII CYCLE

Course in Computer Science

Distributed Processing of Large
Triangle Meshes

INF/01

Author:
Daniela Cabiddu

Supervisors:
Prof. Riccardo Scateni

Dr. Marco Attene

PhD Coordinator:
Prof. G. Michele Pinna

2014 - 2015

Quello che non ho è un orologio avanti
per correre più in fretta e avervi più distanti

quello che non ho è un treno arrugginito
che mi riporti indietro da dove sono partito.

– Fabrizio De Andrè

Acknowledgements

There are a number of people without whom this work might not have been
done and to whom I am greatly grateful.

To Marco Attene, whose constant guidance, encouragement and support
have been key factors for the development of this work.

To Riccardo Scateni, who introduced me to geometry processing re-
search, started me down this road and encouraged me to purse my goals.

To Bianca Falcidieno, Michele Pinna, and Michela Spagnuolo, who
opened this door of opportunities and gave me the strength to persist and
succeed.

To the project “Tecniche di visualizzazione avanzata di immagini e dati
3D in ambito biomedicale”, the European projects Visionair and IQmu-
lus, and the international joint project “Mesh Repairing for 3D Printing
Applications”, who partially supported this work. To all the project part-
ners, who got me involved in their activities and helpful discussions.

To all the colleagues at Cnr-Imati in Genova, who welcomed with open
arms and helped me to grow professionally and as a person.

To all the colleagues at the Computer Graphics Lab (aka Batcave) in
Cagliari, who kept in touch with me and succeeded in supporting me in
spite of the distance.

To my family and my friends, who supported me although they are
still wondering what I am actually doing and why I love my job.

Thank you!

5

Abstract

Thanks to modern high-resolution acquisition techniques, 3D digital rep-
resentations of real objects are easily made of millions, or even billions, of
elements. Processing and analysing such large datasets is often a non trivial
task, due to specific software and hardware requirements.
Our system allows to process large triangle meshes by exploiting nothing
more than a standard Web browser. A graphical interface allows to select
among available algorithms and to stack them into complex pipelines, while
a central engine manages the overall execution by exploiting both hardware
and software provided by a distributed network of servers.
As an additional feature, our system allows to store workflows and to make
them publicly available. A semantic-driven search mechanism is provided
to allow the retrieval of specific workflows.
Besides the technological contribution, an innovative mesh transfer protocol
avoids possible bottlenecks during the transmission of data across scattered
servers. Also, distributed parallel processing is enabled thanks to an innova-
tive divide and conquer approach. A simplification algorithm based on this
paradigm proves that the overhead due to data transmission is negligible.

7

Sommario

Le nuove tecnologie di acquisizione permettono la ricostruzione digitale ad
alta risoluzione di oggetti reali. I modelli 3D generati sono spesso composti
da milioni, a volte miliardi, di elementi geometrici. La loro elaborazione
richiede l’utilizzo di hardware e software specifici, spesso non disponibili.
Il nostro sistema permette di elaborare mesh triangolari di grandi dimen-
sioni attraverso l’uso di un tradizionale browser Web. L’interfaccia utente
consente di selezionare uno o più algoritmi e costruire pipeline complesse.
Un motore centrale gestisce l’esecuzione sfruttando l’hardware e il sofwate
messo a disposizione da una rete distribuita di server.
In aggiunta, il nostro sistema permette di archiviare le pipeline generate
e renderele publicamente disponibili. Un meccanismo di ricerca semantica
supporta la ricerca di pipeline che soddisfano particolari requisiti.
Oltre al contributo tecnologico, un protocollo di trasferimento per mesh tri-
angolari limita il verificarsi di possibili colli di bottiglia sulla rete durante
l’esecuzione delle pipeline. Elaborazioni parallele sulla rete distribuita sono
inoltre rese possibili grazie ad un metodo innovativo di tipo divide et impera.
Un algoritmo di semplificazione per mesh di grandi dimensioni sfrutta tale
approccio e dimostra che il costo aggiuntivo di trasmissione dei dati sulla
rete è trascurabile.

9

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 5
1.2 Objective . 6
1.3 Impact and Applications . 7
1.4 Challenges and Scientific Contributions 8
1.5 Thesis Structure . 9
1.6 Reading Guidelines . 10

II Distributed Environments 13

2 Related Works 15
2.1 Offline Workflows . 16
2.2 Online Workflows . 17
2.3 Workflows and Model Repositories 18
2.4 Applications . 20

3 The Framework 23
3.1 The Architecture . 23

3.1.1 The Graphical User Interface 24
3.1.2 Web Services . 25
3.1.3 The Workflow Engine 26

3.2 Technical Aspects . 28

4 Mesh Transfer Protocol 35
4.1 Background . 35
4.2 Concurrent Mesh Transfer . 36
4.3 Technical Aspects . 39

4.3.1 The Download and Update Module 39
4.3.2 Correction Encoding 40

4.4 Results . 41

i

5 Workflow Formalization 49

5.1 The Workflow XML Language 50

5.1.1 Atomic Tasks . 52

5.1.2 Sequential Loops . 52

5.1.3 Conditional Tasks . 53

5.1.4 Analysis Tasks . 53

5.2 Semantically Enriched Workflows 54

5.2.1 Background . 55

5.2.2 The Workflow Ontology 56

5.2.3 Workflow Retrieval . 57

III Parallelization 61

6 Introduction 63

6.1 Motivation . 64

6.2 Objective . 64

6.3 Challenges and Scientific Contributions 65

7 Related Works 69

7.1 Sequential Processing . 70

7.2 Parallel Processing . 71

7.3 Input Partitioning . 72

7.4 Output Generation . 73

8 Out-of-core Processing 75

8.1 Mesh Partitioning . 76

8.2 Independent Sets . 79

8.3 Output Merging . 80

9 Distributed Mesh Simplification 85

9.1 Objective . 85

9.2 Background . 86

9.3 The Algorithm . 87

9.3.1 Adaptivity . 88

9.3.2 Boundary Coherence 89

9.4 Results . 91

9.4.1 Elaboration Time . 92

9.4.2 Quality . 95

9.4.3 Memory Space Evaluation 98

9.4.4 Summary of the features 99

IV Conclusions and Discussion 101

10 Conclusions 103
10.1 Technological and Scientific Innovation 103
10.2 Limitations . 105
10.3 Work in progress . 105
10.4 Future Developments . 107
10.5 Future Research . 107
10.6 Published As . 108

A Available Web Services 111
A.1 Atomic Tasks . 111
A.2 Analysis Tasks . 114

B Editing Operations 117

List of Figures

1.1 Examples of high resolution digital models 4
1.2 Example of distributed processing 9

3.1 The three-layered system architecture 23
3.2 The “Upload Workflow” page 24
3.3 The “Browse Workflows” page 25
3.4 An example of workflow execution 27
3.5 The system home page . 29
3.6 Detailed view of an existing workflow 30
3.7 Workflow execution. Technicalities. 31

4.1 Parallelogram Rule . 36
4.2 Mesh transfer protocol example 37
4.3 Typical geometry processing workflow 42

5.1 The “Workflow Formalization” Interface 50
5.2 Example of our reference scenario 54
5.3 The WorkflowExecutable class 57
5.4 The “Remove Workflows” page 58

6.1 Focus on parallel processing 65

7.1 Processing Sequences . 70
7.2 Streaming Meshes . 71
7.3 The divide and conquer approach 72

8.1 Vertex partitioning . 76
8.2 Triangle partitioning . 77
8.3 Independent sets . 80
8.4 Vertex merging . 81

9.1 Distributed simplification . 88
9.2 Simplified Atlas model . 96
9.3 Simplified Lucy model . 96

v

9.4 Simplified St. Matthew model 97
9.5 Simplified Terrain model . 97

10.1 Adaptive-Resolution Surface Reconstruction 106

A.1 Smallest Components Removal 112
A.2 Noise Addition . 112
A.3 Laplacian Smoothing . 113
A.4 Hole Filling . 113

List of Tables

4.1 Input Dataset . 41
4.2 Workflow execution. Output size evaluation 43
4.3 Workflow execution. Elaboration time evaluation 45
4.4 Workflow execution. Elaboration time evaluation (IF) 46
4.5 Workflow execution. Elaboration time evaluation (WHILE) . 47

9.1 Simplification results. Elaboration times 94
9.2 Simplification results. Dragon model quality evaluation . . . 95
9.3 Simplification results. Dragon model quality comparison . . . 95
9.4 Feature-based comparison with the state of the art. 99

A.1 Web Service. Atomic Tasks 111
A.2 Analysis Tasks. Supported Comparison Operators 114

B.1 Supported editing operations 117

vii

viii

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

1

Part I

Introduction

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 3

1

Introduction

“Big Data is a vague term, used loosely, if often, these days. But
put simply, the catchall phrase means three things. First, it is
a bundle of technologies. Second, it is a potential revolution in
measurement. And third, it is a point of view, or philosophy, about
how decisions will be – and perhaps should be – made in the future.”

– Steve Lohr, [Loh13]

Nowadays, the evolution of 3D data acquisition techniques provides fast
and efficient means for generating extremely detailed digital representations
of real objects in diverse industrial and research areas such as design, ge-
ology, archaeology, medicine and entertainment. Thanks to modern 3D
scanners and their capability of acquiring data at very high resolution, both
very small and very large objects can be digitally reconstructed by capturing
their geometrical information from the reality.

As an example, modern radar and lidar technologies allow to acquire
both terrains and urban areas. Radar technologies transmit radio waves or
microwaves and process their reflection to detect any object in their path,
while airborne and stationary lidar allow to scan real scenes at very high
resolution by illuminating a target with a laser and analyzing the reflected
light. Both technologies allow to detect subtle topographic features (eg.
river terraces and river channel banks, land-surface elevation beneath the
vegetation canopy, ...) and have enabled the possibility to generate high-
resolution digital elevation maps (DEMs) representing the acquired areas
(Figure 1.1a) and to analyse them in order to retrieve useful information.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

4 Introduction

Another example is the generation of long-term digital archives of cultural
artifacts. To achieve the goal, modern laser rangefinder technologies are
exploited to reliably and accurately digitize the external shape and surface
characteristics of many sculptures and architectures (Figure 1.1b).

Digital 3D models generated in both application areas (eg. original raw
scans and their elaborations) are easily made of millions, or even billions, of
geometric elements and huge disk memory is required to store them. More-
over, the limited RAM available on commodity PCs makes the processing
and analysis of these models a non trivial task.

(a) An image of the world generated us-
ing acquired elevation data (resolution is
≈ 1000m) [Fea07].

(b) A full-resolution 3D model of
Michelangelo’s David (≈ 900M
points) [mic09]

Figure 1.1: Examples of high resolution digital models representing scanned ob-
jects from different application domains.

To support and allow the analysis and processing of 3D models coming
from different application areas, new geometry processing algorithms and
methods are continuously being developed on the top of state-of-the-art
previous works. Traditional algorithms require the input to be small enough
to be completely loaded into main memory and sequential approaches are
followed to perform the task. When large datasets appeared that could not
fit into main memory, existing approaches needed to be redesigned in order
to support these kind of inputs.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 5

Out-of-core approaches are usually exploited to be able to deal with large-
size inputs. Many of these methods subdivide the input into subparts, each
of them sufficiently small to be processed with traditional incore approaches.
In some cases the input can be partitioned using an incore algorithm: this is
appropriate when memory is enough to store the model, but no further space
is available to host all the support data structures necessary for elaboration
which are often more memory-demanding than the input itself. Conversely,
when even the plain mesh is too large, out-of-core partitioning is required
to produce the sub-meshes.

An important aspect that should be taken into account when designing
methods for processing large input datasets is efficiency. Typically, multi-
core technologies and parallel approaches are exploited to accelerate the
process and reduce the overall elaboration time. Multi-core architectures
provide the possibility to process different subparts of the input simulta-
neously, but the available memory is shared among the processes and I/O
operations are sequential in any case.

Nowadays, the well-known client/server model allows to distribute the
computation on different machines that may be geographically scattered
and communicate through a traditional Internet connection. This kind of
architecture assumes that several servers are available, each of them expos-
ing one or more remote services. The client is responsible of receiving the
input from the user, managing the remote execution by properly invoking
the available services one after the other, and finally returning the output.
Web service technologies already provide the possibility to efficiently per-
form remote computations in many life science areas, but they are scarcely
exploited in geometry processing since the transmission of very large inputs
would represent a bottleneck and slow the elaboration down.

Summarizing, geometry processing is a mature research area where the
state of the art brings together diverse solutions that allow to process meshes
through incore approaches. Conversely, only a few algorithms are suitable
for managing huge 3D geometric data that do not fit into main memory
and specific hardware requirements need to be satisfied in order to run
them efficiently. Finally, the possibility to exploit geographically distributed
environments is scarcely considered in geometry processing literature.

1.1 Motivation

Researchers in geometry processing need to invent new algorithms and
to fairly compare them against previous works, and such a need calls for
approaches to share shape models and algorithms. In order to fulfill their

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

6 Introduction

needs, available source codes are recompiled on client machines where ge-
ometry processing libraries and tools are installed. Furthermore, algorithms
that are not available need to be reimplemented from paper descriptions.
Due to the required software and hardware compatibilities and to the com-
plexity of algorithms described in scientific articles, these easily become
costly and error prone operations.

Other than designing and implementing innovative algorithms, running
experiments is a fundamental activity in geometry processing research. A
typical experiment in this area considers an input data set, performs a
sequence of operations on it, and analyzes the results. Sometimes a fixed
sequence of operations is used to process a variety of data sets, whereas some
other times the operation list is slightly changed while keeping the input
constant. Proper pipelines of geometric algorithms to analyse and process
digitized models have been defined in the literature and can be implemented
as automatic processing workflows. Mesh processing and editing software
tools allow to interactively edit a mesh, save the sequential list of executed
operations and locally re-execute the workflow from their user interfaces.
In most cases, the entire pipeline can take place in a completely automatic
manner, that is, without user intervention. However, some workflows may
need to iterate the execution of one or more basic algorithms to converge to
an eventual clean result and user interaction may be required between se-
quential steps. Automatic re-execution of these pipelines on different input
datasets are not always possible.

In the last decades we have assisted to an impressive growth of online
repositories of 3D shapes and geometric software tools that allow researchers
to share their input datasets and results of their experiments. Current repos-
itories store the same shape model in several different versions (e.g. original
raw scans, cleaned mesh, simplified mesh, remeshing, ...). This approach
appears to be unsustainable since nowadays a single mesh can easily be
made of millions of triangles that require significant storage resources, and
for each model a repository may be called to expose the results of numerous
algorithms in the long term. In view of a more intensive and collaborative
use of the repositories to compare research works, innovative technologies
must be provided, aimed to save as much storage as possible.

1.2 Objective

The main objective of this thesis is to provide an innovative tool to sup-
port geometry processing and sharing for large 3D models to make them
independent of local hardware and software requirements. Our aim is to de-
vise a Web-based platform that allows to run geometry processing pipelines

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 7

on arbitrarily large inputs by using only a standard Web browser.

In our reference scenario, the user wants to analyse and elaborate a very
large input mesh by performing a set of geometry processing operations and
to make the result available for any other user. The input mesh is stored on
the local disk of a commodity PC with no assumption on memory capacity
or computational performance. The user should be allowed to access the
system through a traditional Web browser, upload the input mesh, select
the desired list of processing operations, ask the system to run the pipeline
and finally download the result. Specifically, the user should be allowed to
both create new workflows from scratch and to reuse existing workflows by
simply selecting them from the graphical user interface. Non-expert users
(eg. researchers in any field other than geometry processing) should be able
to exploit the system to understand which tools and operations better fit
with the specific purpose, and to define a workflow that allows to achieve
the goal. Since understanding which software better fits with the specific
purposes is frequently difficult for non-experts, the system should provide
a high level description of available pipelines to guide the user to retrieve
existing workflows or to define new processes. When the input mesh has
been uploaded and the desired workflow has been defined, the user should
simply ask the system to run the pipeline. At the end of the elaboration,
the output should be available to the user for the download.

1.3 Impact and Applications

The advantages of such a system are diverse. First, researchers in the area
of geometry processing can reuse simple geometric algorithms provided by
the system, can stack them to construct workflows and can exploit them for
extension or comparison purposes. Second, an online repository endowed
with our system allows to rerun experiments on the fly from any location
without the need to locally satisfy any software or hardware requirement.
Therefore, results of short-lasting experiments can be recomputed on the
fly when needed and there is no more need to keep them explicitly stored.
Since experiments can be efficiently encoded as a list of operations, sharing
them instead of output models sensibly reduces required storage resources.
Finally, thanks to the high level documentation, researchers and practition-
ers in other fields (eg. mathematics, physics, biomedical imaging, ...) can
exploit the most recent geometric algorithms without the need to be skilled
programmers and to know the technical details of geometry processing.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

8 Introduction

1.4 Challenges and Scientific Contributions

The integration of Web service technologies and workflow-based frame-
works already provides the possibility to remotely rerun experiments in
many life science areas. The same approach can be used in computer graph-
ics and geometry processing, but not surprisingly the possible slow data
transfer among available servers and their possible limited main memory
may cause bottlenecks and crashes during the remote processing of large-size
inputs. Specifically, the distribution of the computation on geographically
scattered machines requires to transfer the input from one to another by
exploiting the Internet connection among them. The transfer of large-size
meshes may constitute a bottleneck in the workflow execution, in particu-
lar when slow connections are involved. Moreover, remote servers may not
satisfy specific hardware requirements (eg. huge main memory, high com-
putational performance) necessary to efficiently process large datasets. As
a consequence, the remote server that is asked to process a very large input
may require a long time to finish its task or, even worse, a memory leak
may occur and interrupt the elaboration.

In order to avoid that either a bottleneck or a memory leak occurs, and
thus to efficiently support the processing of large meshes, solutions for the
aforementioned problems need to be accurately designed. In order to im-
prove the transfer speed and avoid possible bottlenecks, we propose an op-
timized mesh transfer protocol that manages the communication among
servers and allows to reduce the amount of shared data that is flowed
through the net during a workflow execution. Furthermore, possible mem-
ory leaks and very long computations are avoided by providing an innovative
distributed divide and conquer approach that allows partitioning the large
input mesh into subparts and remotely processing them simultaneously.

Summarizing, this thesis studies how large 3D models may be managed
to efficiently implement distributed geometry processing workflows (Figure
1.2). Specifically, the following original contributions are provided:

1. definition of a formal representation for geometry processing pipelines
that may be built as a composition of several existing algorithms;

2. design of an optimized mesh transfer protocol to reduce the amount
of data shared among distributed servers;

3. design and implementation of an innovative partitioning method for
large input meshes that enables distributed parallel processing;

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 9

4. design and implementation of a mesh simplification algorithm for large
meshes that exploits our partitioning to distribute the computational
load across multiple servers.

Figure 1.2: Example of a distributed geometry processing workflow.

1.5 Thesis Structure

The thesis is organized as follows.

Part I (Chapter 1) provides a general introduction to this dissertation.
Both the motivation and main objectives have been described.

Part II describes the idea of exploiting a distributed environment to run
geometry processing workflows and shows how we made it possible in prac-
tise. In particular, Chapter 2 discusses the existing tools that currently sup-
port both geometry processing research and workflow management. Chap-
ter 3 describes our system and its three-layer architecture, while Chapter 4
goes on to explain the innovative mesh transfer protocol. Finally, Chapter
5 focus on workflow representation and provides a description of both the
specialized XML grammar and the ontology exploited to store geometric
workflows.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

10 Introduction

Part III shows how parallel approaches can be exploited to guarantee effi-
ciency and effectiveness in a distributed environment. Specifically, Chapter
6 describes the limitations of our system when dealing with large datasets.
Chapter 7 provides a summary description and analysis of existing ap-
proaches that allow to process large input meshes. In Chapter 8, an in-
novative partitioning approach is proposed that enables distributed parallel
processing. Chapter 9 demonstrates the efficiency and effectiveness of our
approach through an innovative distributed simplification algorithm that
exploits our partitioning method.

Finally, Part IV (Chapter 10) draws the conclusions, describes the ongo-
ing research and the plans for future work.

1.6 Reading Guidelines

Along the whole dissertation, technical aspects are provided through a cus-
tomized style. Specifically, grey frame boxes are exploited to hold technical
specifications. Each frame box is provided with a logo that represents the
type of technicality and a title that specifies the main subject. The following
technical types are considered:

Technology Exploitation

The list of technologies exploited for the implementation. (eg.
development environment, programming language, ...).

File Management

Technical aspects related to a specific file or group of files (eg.
access scheduling, encoding format, ...).

Geometry Processing

Technical aspects related to a geometry processing operation
(eg. geometry and topology modifications).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 11

Algorithms & Data Structures

Technical description of an algorithm (eg. pseudocode) or of a
specific data structure.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

12 Introduction

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

13

Part II

Distributed Environments

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 15

2

Related Works

‘A workflow is the computerized facilitation or automation of
a process, in whole or part”.

– D. Hollingsworth, [Hol95]

‘A Workflow Management System is a system that com-
pletely defines, manages and executes workflows through the execu-
tion of software whose order of execution is driven by a computer
representation of the workflow logic”.

– D. Hollingsworth, [Hol95]

The aforementioned definitions were provided in The Workflow Reference
Model [Hol95] [HSK04] that still forms the basis of most frameworks in use
today. To put it simply, a workflow can be considered as a list of oper-
ations that can be automatically executed. In [Hol95], the structure of a
generic WorkFlow Management system (WFM) is described by identifying
the interfaces which enable products to interoperate at a variety of levels. A
minimal WFM usually includes a syntactical tool to turn user-defined work-
flow specifications to a machine-readable form, and an interpreter (known
as workflow engine) that turns the specifications to an actual sequence of
processes. Where user interaction is necessary to build and/or control the
process, a WFM may also include a user interface and a worklist handler
which manages the interaction between parts.

In geometry processing and engineering applications, the effective use
of 3D models frequently requires some model processing to satisfy the ap-
plication requirements. Typically, a sequence of geometric operations are
performed on the input dataset in order to obtain the desired result. This
processing can involve conversion of the representation and format as well as

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

16 Related Works

modifications in object geometry and/or topology. In the literature, proper
pipelines of geometric algorithms have been defined [Att10] and, most of
them, can be implemented as automatic processing workflows.

2.1 Offline Workflows

The idea of allowing automatic replication of workflows is not new in life
science research areas and many business activities already exploit specific
frameworks that allow to reapply the same list of operations on different
inputs. Many business and research activities take advantage of recently-
designed WFMs specialized in different kinds of computation. Noticeable
examples can be found in life science areas [TS07] like drug discovery, ge-
nomics, gene analysis and biology [WHF+13] [GNTT10] [LAB+06].

In geometry processing research areas, several standalone applications
are now available that allow to exploit already implemented methods to
edit a mesh on the user local machine and to visualize the results through a
graphical interface [CCR08] [MK12] [AF06]. In order to create a new shape
or elaborate an existing model, the user is required to:

1. search the net for the available tools and select the appropriate one
by making sure of hardware and software compatibility between the
application and the local operating system;

2. download and install the software, possible dependencies, and plugins
on the local machine;

3. manually select the desired sequence of operations and set possible
input parameters.

Understanding which tools and operations better fit with specific pur-
poses is frequently difficult for non-experts. The Web provides plenty of
documentation and tutorials on the use of many geometric tools, but they
are weakly organized and generally related to specific software. Moreover,
new geometry processing algorithms are continuously being developed on
the top of already complex previous works. In order to take advantage of
them, researchers often need to install required geometry processing libraries
and recompile available source codes. This kind of activity may require lots
of efforts and, even worse, algorithms may be described in scientific papers,
but no corresponding executable is available. In these cases, it is necessary
to reimplement the entire pipeline from paper description, but, due to the
level of complexity, this easily becomes a costly and error prone operation.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 17

To support the idea of replicating the same list of geometry operations
on different inputs, MeshLab [CCR08] and OpenFlipper [MK12] allow to
interactively edit a mesh and save the sequential list of executed operations,
so that it can be re-executed locally from the tool user interface. Unfor-
tunately, to reproduce such an experiment, a researcher needs a similarly
performing machine, and needs to install the same software tool (eg. Mesh-
Lab) and possible plugins.

2.2 Online Workflows

In the last decades, service-oriented architectures have been exploited to
make system independent from local hardware and software requirements.
Users are allowed to use tools and applications that, in their turn, can
be provided by others (i.e. service providers) who publish them as on-
line services. Mainly, service providers offer their services according to two
models, namely platform-as-a-service and software-as-a-service. In the for-
mer, providers deliver a computing platform (typically including operating
system, programming-language execution environment, database, and Web
server) that can be exploited by developers to implement and run their soft-
ware solutions, while, in the latter, applications are delivered over networks
as Web services and end users are allowed to access them remotely using
Internet.

The recent concept of executable paper is just an example that exploits
the platform-as-a-service model. In this new concept, experiments reported
in an article should be reproducible directly from the paper itself which, in
its electronic version, encapsulates the data and the code, and not just the
results as traditionally done. This concept of executable publication was
addressed by Nowakowski et al. through the Collage Authoring Environ-
ment [NCH+11]. The system is fully Web-oriented, and all the resources
necessary to reproduce and reuse executable code (eg. hardware, servers,
storage) are publicly provided. The platform allows scientists to enrich the
digital publication with executable code and gives the possibility to readers
to rerun it remotely.

Conversely, the software-as-a service paradigm is exploited in life science
research and business areas. As an example, Taverna [WHF+13] is an open
source domain independent WFM that allows to design and execute sci-
entific workflows by exploiting a number of different Web services from a
diverse set of domains (eg. biology, chemistry, medicine).

Web service technologies are scarcely considered in geometry processing
literature, since the transmission of large 3D models can easily slow the pro-

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

18 Related Works

cess down too much. Campen and colleagues published an online service
called WebBSP [Cam] which is able to remotely run a few specific geometric
operations. The user is required to upload an input mesh from a standard
Web browser and select a single geometric algorithm from a set of available
operations. The algorithm is actually run on the server and a link to down-
load its output is returned. The available operations are not customizable
by users, only one of them can be run at each call, and the service is accessi-
ble only from the WebBSP graphical interface. Similarly, the possibility to
remotely run a hex mesh optimization algorithm is provided at [LSVT15].
Again, a Web interface allows users to upload a poor quality hex mesh and
to provide an email address to receive an optimized version of the mesh.

Conversely, MeshLabJS [Mes15] provides a Web-based graphical interface
that allows to interactively edit triangle meshes by exploiting a modern Web
browser that is able to run C++ code compiled into a javascript at a pretty
decent speed. Unfortunately, it is still rudimental, minimal and does not
consider the idea of supporting automatic pipeline replication.

Also, it is worth mentioning that geometric Web services were previously
considered by Pitikakis [Pit10] with the objective of defining semantic re-
quirements to guarantee their interoperability. Unfortunately, in [Pit10]
Web services are stacked into hardcoded sequences, users are not allowed
to dynamically construct workflows, and the transmission of large models
is not dealt with.

2.3 Workflows and Model Repositories

3D model repositories are already key instruments for researchers in the
area of geometry processing and product design. Not by chance, in the
last decades we have assisted to an impressive growth of online repositories
of 3D shapes coming from different application areas. Current repositories
store a large number of shape models to reduce the efforts in creating 3D
objects from scratch and to provide a variety of input datasets.

The Stanford 3D Scanning Repository [sta96] is one of the earliest widely-
used online collections of 3D models, and several authors used its meshes to
demonstrate the benefits of their algorithms and the improvements achieved
over the state of the art. Stanford’s repository was focused on models
coming from 3D digitization and both range data and reconstructed surfaces
are available for many of the scanned objects. Conversely, the 3D CAD
Browser [cad01] deals with synthetic CAD models. It provides high-quality
3D polygonal mesh as well as 3D CAD solid objects that can be downloaded

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 19

by any registered user. Also, users have the possibility to upload new models
and provide new input data to the community.

Some other available collections focus on specific algorithms and aim
to evaluate the performance of such methods. As an example, several
3D shape retrieval benchmarks are available which aim to evaluate shape
query and retrieval algorithms. Among them, the Princeton Shape Bench-
mark [SMKF04] is one of the mainly used collections and provides generic
3D polygonal models with a set of software tools that are widely used by
researchers to compare their shape matching results with other algorithms,
while Purdue Engineering Shape Benchmark [JKIR06] is a public 3D shape
database for evaluating shape retrieval algorithms mainly in the mechanical
engineering domain.

The more recent Digital Shape Workbench (DSW) [dsw12] tries to en-
capsulate most of the functionalities provided by previous repositories. The
DSW is an e-Science support in the field of computer graphics and scientific
visualization, initially developed by AIM@SHAPE [Aim04] and currently
maintained by the VISIONAIR project [Vis12]. It provides a data reposi-
tory and a knowledge management system able to perform data browsing
and discovery. The data repository is aimed to collect and share a large
number of 3D shapes and state-of-the-art tools that can be used to process
digital models. Registered users are allowed to upload resources (eg. test
models, prototype tools, algorithm results, ...) and make them available on
the Internet. The DSW gives the possibility to share whole benchmarks by
“grouping” shape models into collections. The shape repository explicitly
stores the uploaded models, often requiring a huge amount of memory to
save geometric and connectivity information. Redundancy is one of its main
problems, due to the fact that outputs of similar processes, which are often
very similar to each other, are individually uploaded with no attention to
avoid possible duplicated models and data.

Since in several cases different shapes are modifications of the same orig-
inal data, it should be possible in principle to reproduce these models on
demand instead of storing them explicitly. In general, besides storing 3D
data, a modern repository should provide the possibility to store and exe-
cute algorithms on such data, so that users can create a virtually infinite
set of input models on the fly without struggling with software installations,
compatibility issues, or hardware requirements. Moreover, executable work-
flows might be reused from any location to reproduce geometric experiments
much more easily and fairly than current solutions. Hence, endowing mod-
ern 3D model repositories with geometric workflow capabilities is expected
to further boost their efficacy.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

20 Related Works

At a more abstract level, the need of sharing scientific workflows is con-
sidered by the open-source Web infrastructure myExperiment [GBA+10],
where in silico experiments in any field of life science can be published.
Most of the existing WFMs include a client application that needs to be
installed and allows the user to graphically build workflows and run them
either locally, involving local tools, or on remote computational infrastruc-
tures, by taking advantage of available Web services. To the best of our
knowledge, no existing 3D model repository considers the idea of re-execute
geometric workflows to allow the generation of 3D data by exploiting avail-
able Web services.

2.4 Applications

Nowadays the use of various systems for the creation and analysis of 3D
digital models has moved most of the engineering applications into the dig-
ital world. Based on the end-use, input geometric models are required to
satisfy specific application requirements. Algorithms to adapt input models
to specific applications have been defined in literature [BPK+07] and mostly
involve operations to remove both geometric and topological defects. Some
examples will be presented in which shape processing is generally performed
according to steady sequences of operations resulting from technological
constraints and experience.

Finite Element Analysis As an example, performing the finite element
analysis during a product design not only requires the creation of a mesh
model from the CAD B-Rep but also model adjustments, and a shape sim-
plification involving both topological and geometric changes [FCF+08]. The
few long and thin triangles produced by a tessellation algorithm are perfect
for a visualization setting because they allow higher frame rates. Unfortu-
nately, these triangles are definitely not appropriate for a FEA application,
where the regularity of the mesh and its density in regions affected by par-
ticular stress are determinant to guarantee faithful simulation results. In
this case, a remeshing process is necessary to modify the shape of the trian-
gles without modifying the overall shape of the model. Before remeshing,
however, possible pre-processing might be necessary to guarantee that the
mesh actually encloses a solid [Att14]. Also, after remeshing and depending
on the analysis type, the surface mesh can be used to produce a conforming
tetrahedral mesh.

3D Printing Another example is the process required to get correctly
printable shapes. Today fabricating an appropriate 3D model using a low-
cost 3D printer is as easy as printing a textual document, but creating a

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 21

3D model, which is actually “appropriate” for printing, is definitely compli-
cated. A 3D model can be produced either from scratch by using traditional
CAD software, or from real-world objects using 3D digitizers. In both cases,
the raw model is likely to have a number of defects and flaws that make it
unsuitable for printing [ACK13].

3D Visualization When a mesh model must be visualized, it is often
important to convey a clear unbiased picture of the object. This require-
ment is in contrast with the characteristics of typical raw models coming
from 3D digitization sessions, where a number of surface holes are com-
monplace just as surface noise, tiny disconnected components, gaps, and
so on. Mesh visualization is not as demanding as 3D printing, but all the
aforementioned defects should be removed or reduced to produce a nice and
informative rendering. Geometric pipelines including surface smoothing,
hole filling, gap closing and possibly simplification are therefore necessary.
Automatic process workflows can be implemented in this case too, and a
number of variations can be provided depending on the target visualization
device (e.g. a powerful graphics workstation, a desktop PC, a smartphone).
For example, the level of the simplification can depend on the rendering
capabilities, whereas the amount of smoothing can depend on the specific
rendering engine used.

Virtual Reality Virtual reality is the combination of real-time presenta-
tion and immersive interaction for the modification and evaluation of models
and processes within a computer-generated environment. In order to use
digital models in virtual reality environments, shape model adaptation is of-
ten required. Design reviews and simulations in virtual reality environments
demands for high visualization capabilities obtained by processing polygon
data, whereas CAD models are based on continuous surfaces. Therefore,
CAD models need to be converted in a virtual reality compatible format,
i.e. a polygonal representation. Various problems can be detected in this
conversion [RCW+06]. First, there is an inadequate treatment of the geom-
etry with loss of precision leaving to inconsistent models with wrong surface
orientation or cracks. In addition, the obtained models are too complex with
unnecessary details, e.g. hidden areas, but at the same time, they miss re-
alism. Finally, semantic information associated to each object, including
its structure, is lost and frequently needs to be recreated. To overcome
these problems, several adjustments have to be performed by virtual reality
specialists using ad hoc tools.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

22 Related Works

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

The Framework 23

3

The Framework

“A collection of independent computers that appears to its users
as a single coherent system.”

– A. S. Tanenbaum and M. van Steen , [TS06]

Our system allows to remotely perform complex geometry processing on
triangle meshes. A distributed network of servers provides both the software
and hardware necessary to undertake the computations, while the overall
execution is managed by a central engine that both invokes appropriate Web
services and handles the data transmission. Nothing more than a standard
Web browser needs to be installed on the client machine.

3.1 The Architecture

The framework architecture (Figure 3.1) is organized in three layers, ac-
cording to Hollingsworth WFM specifications [Hol95].

Figure 3.1: The three-layered
system architecture composed by
a graphical user interface that al-
lows to upload and run geometry
processing workflows, the workflow
engine responsible of workflow ex-
ecution, and available Web ser-
vices, each of them exposing a Web
service to support a geometry pro-
cessing algorithm.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

24 The Framework

On one side, a Web-based user interface allows to choose the desired al-
gorithms among the available ones and to combine them in order to define
complex geometry processing pipelines. On the other side, a set of Web
services is available, each of them able to run a specific geometry processing
algorithm using possible input parameters and returning the generated out-
put address. The workflow engine is the interface between the two sides and
is responsible of the pipeline runtime execution. It receives the specification
of a geometry processing workflow and the address of an input mesh. When
all the data is available, the engine sequentially invokes the various Web
services, manages the flow of data among them and returns the address of
the eventual result to the user interface.

3.1.1 The Graphical User Interface

A dedicated user-friendly interface supports the creation of new geometry
processing workflows. The user is asked at first to provide the information
directly related to the workflow, such as its name, a description and the list
of geometry processing algorithms that constitute the pipeline (Figure 3.2).

Figure 3.2: Detail of the graphical user interface. The user can dynamically
create a new workflow by selecting the operations and setting possible required
parameters.

The user may define a new workflow by selecting each task from a list
of available ones and, for each task selected, the interface dynamically calls
for possible parameters. Besides atomic tasks, the user defines possible

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

The Framework 25

conditional tasks or loops by specifying their conditions and by delimiting
their execution bodies. Once the whole procedure is defined, the interface
allows the user to associate an input mesh to the workflow in order to turn
it into an actual experiment. If no input is associated, the workflow can be
stored on the system as an abstract procedure to be necessarily instantiated
on a specific input for each execution.

Other than creating new workflows from scratch, the user is allowed to
browse the previously-defined workflows and to select one of them to be
executed (Figure 3.3). To reuse one of the available workflows, the user
is simply asked to select the desired one and provide an input mesh. The
system is responsible of associating the identifier of the selected abstract
procedure with the provided input model, running the actual pipeline and
returning the result to the user.

Figure 3.3: Detail of the graphical user interface. The user can browse existing
workflows and select one of them for actual execution.

3.1.2 Web Services

Our system has been designed with the objective of being continuously ex-
tensible by indexing more and more Web services. Thus, in our context
a Web service can be seen as a sort of “remote plugin” that any skilled
student should be able to implement. In other words, a Web service can
be considered as a black box able to perform a specific operation. A single

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

26 The Framework

server (i.e. a provider) can expose a plurality of Web services, each imple-
menting a specific algorithm and identified by its own address. Also, each
Web service provides the specification of its interface, that is the number
and type of required input data and the type of returned output. Thanks
to this information, any client is able to properly invoke the service.

Our system supports the invocation of two types of Web services, namely
atomic and boolean. Atomic Web services are required to:

1. run a simple processing operation on a 3D triangular mesh using pos-
sible input parameters;

2. store the output on the server where it is located;

3. make the output available by returning its address.

Conversely, boolean Web services do not generate any output mesh and
return a boolean value. Specifically they are required to analyze the input
triangular mesh and check if a specific condition is satisfied. For example, if
a watertight input mesh is required, a “isWatertight” Web service is invoked
that reads the mesh and returns a boolean value depending on whether the
mesh is watertight or not.

Theoretically, any atomic task may be made available as a Web service.
Mainly, geometric tasks may be subdivided into two main categories, namely
generic and model-specific. While the former includes all the methods able
to perform a specific operation on any valid input mesh, the latter group
together algorithms that are tailored to process one ore more elements of a
specific mesh. It is worth noticing that only generic tasks are currently sup-
ported by our framework and can be stacked to constitute abstract pipelines.

3.1.3 The Workflow Engine

The workflow engine is the core of the system and is responsible of the
workflow runtime execution. From the user interface it receives the specifi-
cation of a geometry processing workflow, which can be either a new one or
the identifier of one of the available pre-defined workflows, and possibly the
address of an input mesh to be downloaded from the Internet. When all the
data is available, the engine reads the encoded workflow and sequentially
invokes the various Web services.

An example of workflow execution is shown in Figure 3.4 where three
Web services are involved. The engine receives both the input mesh and
the workflow from the user interface. Then, it reads the workflow, selects
the involved Web services, and invokes the first one by sharing the input

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

The Framework 27

mesh. The first Web service runs its task and returns the generated output
to the engine that shares it with the successive Web service to be invoked.
All the successive Web services are sequentially invoked and each of them
receives the output of the previous one as an input. Finally, the output
generated by the last Web service is returned to the user.

1 2 3 4

3

4

-

+

0 +

- + +

3

4

1

3

1

3

4

2

3

1 2

3

3

3

3

3

4

4

3

Figure 3.4: An example of workflow execution. The workflow includes three
operations. Each operation is performed by a specific Web service. The workflow
engine is responsible of sequentially invoking the algorithms and managing the flow
of data among them.

Specifically, the engine stores the list of Web services that are available
and able to perform specific tasks. For each workflow task, the engine selects
and invokes the appropriate Web service. When triggered for execution,
each Web service receives the address of the input mesh and possible input
parameters. When the task terminates, the address of the generated output
is returned to the Engine so that it can be forwarded to the next involved
Web service. When the last Web service terminates its task, its output
is returned to the engine that forwards it to the user by publishing the
corresponding link.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

28 The Framework

In order to enable the definition of non-trivial workflows, the engine is
also able to manage the execution of conditional tasks and loops, and the
evaluation of the condition itself is delegated to boolean Web services. When
a conditional task or loop is read in the workflow, the Web service able to
evaluate the condition is invoked. It receives from the engine the address
of the input mesh and possible information necessary for the evaluation.
A boolean value is returned to the engine to indicate if the condition is
satisfied. If so, the list of operations in the execution body is read and Web
services are invoked to execute each of them. If not, the execution body is
skipped and the Web service corresponding to the first operation outside it
is invoked.

3.2 Technical Aspects

In practice, the three-layered architecture described in Section 3.1 and
shown in Figure 3.1 has been carefully designed and implemented, in or-
der to provide the desired features.

Development Environment

Our framework has been implemented by integrating technolo-
gies described in [WCL+05] and exploiting Web Service devel-
opment environments (e.g. NetBeans, GlassFish, OpenESB),
specific programming languages (e.g. WSDL, BPEL) and com-
munication protocols (e.g. SOAP).

Tool Version Role

Netbeans 6.5
Integrated Development
Environment (IDE)

Java EE 6 1.6.0 u11
Platform for the Java
programming language

GlassFish Server 2.1.1 Application Server

OpenESB 2.0
Enterprise Service Bus for
communication among
software applications

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

The Framework 29

The Graphical User Interface

The Web application provides a home page where a summary description
of the system is provided. Moreover, two main pages are available, each
of them allowing to easily create a new workflow and browse existing ones
respectively. Both pages are accessible from the left sidebar (Figure 3.5).

Figure 3.5: The system home page. A summary description of the system is
provided. Both pages that allow to create a new workflow and browse existing
ones are accessible from the left sidebar.

The “Browse Workflows” page allows the user to browse through the
workflows stored in the repository and to select one of them to be executed.
By clicking on a workflow, the user can access a new tab with a more
detailed view on it (i.e. workflow name, creator name, creation data, link to
the corresponding file) and a “Run Workflow” button is provided to allow
the workflow execution (Figure 3.6). When the “Run Workflow” is clicked,
the user is required to upload the input mesh and wait for the result. Users
do not need to be registered to browse and run existing workflows. They
are asked to provide only their email address where they wish to receive the
link to the generated output.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

30 The Framework

Figure 3.6: Detailed view of an existing workflow. The page provides useful
information about the author and the workflow itself. The “Run Workflow” button
is provided to allow the workflow execution. When the “Run Workflow” is clicked,
the user is required to upload an input mesh and wait for the result.

Contrary to the browsing page, only registered users are allowed to access
the “Upload Workflow” (Figure 3.2) page. From this page, the user can
easily define new workflows by selecting the list of operations from the
pull-down menus where the available ones are listed. When the complete
workflow has been designed and the “Save Workflow” button is clicked, the
system stores the pipeline as a file according to a specific XML format (see
Chapter 5). From now on, the workflow is available as an abstract procedure
that may eventually be turned into an actual experiment by associating an
input triangle mesh to it.

Graphical User Interface

The Web-based interface consists in a set of Web pages gener-
ated by exploiting JavaServer Pages (JSP) technologies. The
layout, colors, and fonts of each page have been designed by
using Cascading Style Sheets (CSS). Moreover, Javascript and
JQuery are exploited to dynamically update the graphical inter-
face based on the user interaction (eg. when a workflow oper-
ation is selected, the Web page dynamically updates to call for
possible required parameters). Behind the graphical interface,
dedicate Java servlets have been implemented that are respon-
sible of storing new pipelines and uploaded input meshes into
the system.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

The Framework 31

The Workflow Engine

Mainly, the engine is composed of two servlets, specialized in reading the
workflow and managing its runtime execution respectively. The former is
responsible of reading the encoded selected workflow and turning it into a
list of active tasks, while the latter manages the workflow execution and the
flow of data among involved Web services. Moreover, the engine stores the
list of Web services that could perform a specific task. Each Web service
is stored as a tuple of technical information, including an identification
ID, the interface address, and possible required parameters. Also, for each
Web service, the engine keeps track of the available bandwidth and the
number of concurrent process executions at each moment. The selection of
the most appropriate Web service favours the largest bandwidth and the
smaller number of process executions at that moment.

(b)

(a)

Atomic_1

Condition_1

 Atomic_2

Condition_2

 Atomic_3

Atomic_4

Condition_1

 Atomic_2

Condition_2

 Atomic_3

Atomic_4

 Atomic_2

Condition_2

 Atomic_3

Atomic_4

Condition_2

 Atomic_3

Atomic_4

 Atomic_3

Condition_2

 Atomic_3

Atomic_4

Atomic_4

TRUE

Atomic_1

Condition_1

 Atomic_2

Condition_2

 Atomic_3

Atomic_4

URL_1

URL_1C

 URL_2

URL_2C

 URL_3

URL_4

<Atomic_1 />

<IF Condition_1>

 <Atomic_2 />

</IF>

<WHILE Condition_2>

<Atomic_3 />

</WHILE>

<Atomic_4 />

Workflow Active Tasks Web Services Addresses

Figure 3.7: An example of workflow execution with technical details. The work-
flow involves both atomic and conditional tasks. (a) The engine reads the input
workflow, creates the corresponding list of active tasks with Web service addresses.
(b) Then, the workflow is executed and the list of active tasks is updated at each
Web service invocation.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

32 The Framework

At the beginning of the workflow execution, all the tasks involved in the
workflow are active. For each task, the address of the corresponding Web
service is associated (Figure 3.7a). Then, the involved Web services are
sequentially invoked. Upon termination, if the Web service runs an atomic
task (i.e. neither an “IF” nor a “WHILE”), the corresponding active task is
removed from the list meaning that it is no longer involved in the workflow.
The same happens when an “IF” task is encountered with true condition.
Conversely, after an “IF” or a “WHILE” whose condition is false, all the
tasks constituting the body are removed from the list. After a “WHILE”
with true condition, an additional copy of the condition’s task and of all the
tasks in its body is added to the list (Figure 3.7b) right after the original
copy.

Workflow Engine

The system core is implemented as a dynamic orchestration of
services and deployed in a Java Business Integration (JBI) en-
abled platform. Both servlets are implemented in Java and their
interfaces are described using the Web Service Description Lan-
guage (WSDL), while their orchestration with the involved Web
services is implemented using the Business Process Execution
Language (BPEL). We took advantage of the BPEL dynamic
binding technology and the WS-Addressing standard mecha-
nism, namely Endpoint Reference, to sequentially invoke, for
each process activity, the Web service able to execute it. The
data exchange between Web services is implemented according
to the Simple Object Access Protocol (SOAP).

Web Services

To make a new algorithm exploitable by our system, a properly designed
executable must be wrapped within a Web service. Service providers should
register their Web service by communicating the corresponding address and
possible input parameters to the system. The system automatically up-
dates the Web service database and the list of available Web services in the
graphical user interface.

To support the idea of including Web services provided by third parties,
and to allow input models to be stored on remote servers, we require that
Web services are designed to receive the address of the input mesh and to
download it locally. Each of these services can either execute an atomic

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

The Framework 33

task (i.e. a list of editing operations that modifies the mesh) or an analysis
operation (i.e. a task that checks a condition of the mesh without modifying
it). Specifically, Web services that run an atomic task should save the output
model locally and make it available through the Internet through a public
URL. Similarly, Web services that perform an analysis operation should
download locally the received input mesh and return the quality value as
an output, but no output mesh should be generated. Appendix A provides
a detailed technical description of currently available Web services.

Web Services

We have implemented a first set of Web services according to
the aforementioned specifications. Java has been exploited for
the wrapper and C++ for the actual algorithms. For all these
algorithms, we simply started from the corresponding C++
functions provided by ReMesh [AF06] and the Mesh Quality
Tool [Att13]. The interface of each Web service is described us-
ing WSDL. SOAP is exploited to implement the communication
between each Web service and the workflow engine. Each Web
service is designed to receive a SOAP message where the address
of the input mesh and possible input parameters are listed and
return a SOAP message containing the result (eg. the URL of
the output mesh or the quality value) to the workflow engine.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

34 The Framework

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 35

4

Mesh Transfer Protocol

“A cascade, a torrent, a deluge of data is going to want to move
around the network”

– B. Golden, [Gol09]

Not surprisingly, we have observed that the transfer of large-size meshes
from a server to another constitutes a bottleneck in the workflow execu-
tion, in particular when slow connections are involved. Mesh compression
techniques can be used to reduce the input size, but they do not solve the
intrinsic problem. In order to improve the transfer speed and thus effi-
ciently support the processing of large meshes, we designed an optimized
mesh transfer protocol that sensibly reduces the amount of data shared
through the network. Our solution is inspired on the prediction/correction
paradigm.

4.1 Background

The general idea of prediction/correction works as follows. A sender S
needs to transmit a data set to a receiver R, but instead of transmitting
the whole data set at once, S sends a piece of data only, let it be d0. Then,
R tries to predict what the next piece of data d1 will be based on the
previously received information d0. At the same time S does exactly the
same prediction and, instead of sending the next piece of data, sends the
difference between the prediction and the actual data to be sent, that is
c1 = d1 − d0. Thus, R can calculate d1 by correcting the prediction using
c1. The benefits of all this machinery become evident when the predictions

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

36 Mesh Transfer Protocol

are accurate enough: in this case the corrections to be sent are small if
compared with the original data and thus can be encoded with fewer bits.

A typical example in geometry processing is the so-called “parallelogram
rule” used for mesh compression [TG98]. According to such an approach,
the position of a vertex D can be predicted by assuming that it completes
the parallelogram formed by the vertices (A,B,C) of a neighboring triangle.
When the predicted position DP is different from the actual position of D,
a corrector vector ~DP is provided (Figure 4.1).

Figure 4.1: An example of
the parallelogram rule used in
mesh compression.

4.2 Concurrent Mesh Transfer

A triangle mesh can be defined by an abstract simplicial complex that spec-
ifies its connectivity endowed with a set of vertex positions that uniquely
identify its geometric realization [Att13]. We have observed that there are
numerous mesh processing algorithms that simply transform an input mesh
into an output by computing and applying local or global modifications.

An algorithm that modifies an input mesh can act on its geometry only
(e.g. by changing the position of the vertices), on its connectivity only (e.g.
by triangulating boundary loops), or on both. Furthermore, in many cases
modifications can be only local (e.g. sharp feature restoration). In all these
cases, it is possible to predict the result by assuming that it will be identical
to the input, and it is reasonable to expect that the corrections (i.e. list
of applied editing operations) to be transmitted can be more compactly
encoded than the explicit result of the process.

The aforementioned observation can be exploited in our setting as shown
in Figure 4.2, where an example of execution of a simple workflow composed
by three tasks is provided. The engine reads the whole workflow and, for
each of the three tasks requested, looks for a server exposing an appropriate
Web service (i.e. a Web service which implements the task). Then, the
engine sends the address of the input mesh to all the servers that have

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 37

(a) (b)

(c) (d)

Figure 4.2: Mesh Transfer Protocol Example. Three servers are involved into the
workflow execution. Each of them exposes a Web service to support a geometry
processing algorithm and two modules able to download (D) meshes and update (U)
the previously downloaded mesh by applying the corrections. (a) The engine shares
in parallel the address of the input mesh with all the involved servers that proceed
with the download. (b) The first service runs the task, produces the corrections
and returns the corresponding address to the engine that shares it in parallel to the
following involved servers. Both download the file and correct the prediction. (c)
The second service is invoked, runs the task and makes the correction available,
so that the third involved server can download it and update its local copy of the
mesh. (d) The engine triggers the third service that runs the algorithm and makes
available the modified output mesh so that it can be directly downloaded by the
user.

been identified so that they can download it (Figure 4.2a). Right after
having sent the address, the engine triggers the first Web service (Figure
4.2b) to locally run the algorithm. Such an algorithm produces both the
output mesh and the list of changes applied on the input to obtain the result
(e.g. vertices/edges/triangles that have been added, removed or modified).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

38 Mesh Transfer Protocol

Both the output mesh and the list of changes (i.e. the correction) are
compressed and made available through two URLs which are communicated
to the workflow engine. In its turn, the engine forwards this information
to the next two Web services to be triggered, so that both of them can
download the compressed correction from the first server, and can reproduce
the output of the first step by decoding and applying the correction to the
mesh that was previously downloaded. At this point the engine triggers the
second Web service (Figure 4.2c) that follows the same protocol by running
the algorithm and publishing the URLs of the output and the correction.
Finally, the third Web service corrects its prediction, runs its task and
returns the URL of the final result (Figure 4.2d).

In a more general setting, the protocol works as follows. Through the
user interface, the user selects/sends a workflow and possibly the URL of
an input mesh to the workflow engine. The engine analyses the workflow,
locates the most appropriate servers hosting the involved Web services, and
sends in parallel to each of them the address of the input mesh. Each
server is triggered to download the input model and save it locally. At the
first step of the experiment, the workflow engine triggers the suitable Web
service that runs the algorithm, produces the result, and locally stores the
output mesh and the correction file (both compressed). Their addresses are
returned to the workflow engine that forwards them to all the subsequent
servers involved in the workflow. Each server downloads the correction and
applies it to the mesh it already has in memory in order to update the local
copy of the model. Then, the workflow engine triggers the next service for
which an up-to-date copy of the mesh is readily available on its local server.
At the end of the workflow execution, the engine receives the address of the
output produced by the last invoked Web service and returns it to the user
interface, so that the user can proceed with the download.

In this scenario, the entire input mesh is broadcasted only once at the
beginning of the process, whereas the final result is transmitted only once at
the end. Inbetween, only the corrections are broadcasted to the subsequent
servers. Thus, when the corrections are actually smaller than the partial
results, this procedure produces significant benefits. In any case, each Web
service produces both the correction and the actual result so, should the
former be larger than the latter, the subsequent Web services can directly
download the output instead of the corrections. Thus, our mesh transfer
protocol improves the overall performances when the aforementioned con-
ditions hold, while no degradation is introduced otherwise.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 39

4.3 Technical Aspects

In order to make the transfer protocol work, service providers are required
to set up their servers so that they are able to download the input mesh at
the beginning of the workflow execution, save it locally, and update it at
each workflow step by applying the corrections. Moreover, each algorithm
provided as a Web service should be able to perform the streaming of applied
editing operations according to our specific format. To simplify the work of
potential contributors, we provide dedicate tools to set up their own server
and a library for streaming editing operations according to our specification.

4.3.1 The Download and Update Module

Two modules must be installed on each service provider that take care of
downloading the original mesh and downloading/applying the correction re-
spectively (Figure 4.2a). Specifically, the “Download” module is triggered
at the beginning of the workflow execution and receives the address of an
input mesh to be downloaded, while the “Update” module is invoked when
each atomic Web service finishes its task and receives the address of a com-
pressed binary file representing the previously generated corrections.

Both modules pay attention not to download the same file twice. This lat-
ter check is necessary because the same service provider can host more than
one Web service and thus the Workflow Engine may trigger the “Download”
and “Update” modules more than once on the same machine. To perform
the check, both modules exploit a database where the already downloaded
files are stored. Specifically, each record of the database identifies a down-
loaded file by providing the address of the corresponding file and the local
path where the file has been stored on the server.

When triggered, both the “Download” and the “Update” modules receive
the address of the input file as an input and query the database to check
if a record containing the received URL exists. If not, the input file, which
can be either a mesh or a correction file, is downloaded, and a new record
is added to the database. The “Update” module is responsible of updating
the previously downloaded mesh by applying the received corrections. In
addition to the address of the correction file, it also receives the address of
the input mesh that should be updated. To achieve its tasks, the module
downloads the correction file and queries the database to get the local path
of the input mesh. Then, the model is loaded into main memory and each
operation in the correction file is reapplied. Finally, the output result is
stored by overwriting the original mesh file.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

40 Mesh Transfer Protocol

Download and Update Modules

We implemented both modules as one-way Web services by us-
ing Java. They receive a SOAP message with the URL of the
file they will use as an input (the input mesh and the correction
file respectively), open an HTTP connection with the sender
and perform the download.

4.3.2 Correction Encoding

In our setting, each Web service runs a geometry processing algorithm,
keeps track of the editing operations, and saves them along with the final
result. To do this, each algorithm has been enriched with proper code to
stream such operations into the correction file. Each operation is identified
by a unique opcode, while each simplex is uniquely identified by an integer
ID. Thus, to represent an “edge swap” we need an opcode representing the
swap operation and an integer identifying the edge to be swapped.

Besides such atomic operations, we include some derived functionalities
that group atomic changes for the most diffused editing operations. In many
cases this allows to further save storage space (and thus transmission time).
For example, let us suppose that we need to subdivide a triangle into three
subtriangles by inserting a new vertex: in this case we would need to encode
a “remove triangle” (1 opcode + 1 ID), a “create vertex” (1 opcode + 3
coordinates), and three “create triangle” (3 opcode + 9 IDs for the vertices)
operations. Conversely, if we include a single “split triangle” operation in
our set, we can simply use its opcode endowed with the identifier of the
triangle to be split and the coordinates of the splitting vertex. Appendix B
reports a comprehensive overview of currently supported editing operations.

Sometimes a careful analysis of the algorithm at hand allows to avoid
streaming all the operations. For example, let us consider an algorithm that
performs N iterations of Laplacian smoothing on a mesh with V vertices.
At each iteration all the vertices are moved to the center of mass of their
neighbors, thus by a naive approach we would stream N ∗ V vertex shifts.
A more clever implementation, however, can simply stream the eventual
global shift once for each vertex, thus reducing the size by a factor of N .

When an algorithm terminates, the produced sequence of operations
is further compressed through arithmetic coding to minimize redundancy
[Sai02]. The application of the correction by the subsequent Web services

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 41

requires less computational efforts and time than the rerun of the algorithm
because of the fact that its analysis part and the operation precondition
checks are not needed anymore.

Streaming Editing Operations

We implemented a C++ library providing such functions.
Mainly, we support atomic operations to encode the insertion,
removal and modification of single simplexes of any order (i.e.
vertices, edges and triangles).

4.4 Results

For the sake of experimentation, the proposed Workflow Management
System has been deployed on a standard server running Windows 7, whereas
our Web services have been deployed on different machines to constitute a
distributed environment. However, since all the servers involved in our
experiments were in the same lab with a gigabit network connection, we
needed to simulate a long-distance network by artificially limiting the trans-
fer bandwidth to 5 Mbps. Then, to test such a system we defined multiple
processing workflows involving the available Web services. The dataset has
been constructed by selecting some of the most complex meshes currently
stored within the Digital Shape Workbench (see Table 4.1).

Mesh |V | |T | |C| |B|

Sicily 1.391.754 2.775.090 16 23
Rome 957.456 1.911.110 1 1

Dolomiti 810.000 1.616.420 1 1
Isidore 1.071.671 2.128.494 161 404
Nicolo 945.924 1.886.968 103 157

Neptune 1.321.838 2.643.684 1 0
Ramesses 775.712 1.537.462 308 824
Raptor 1.000.080 2.000.000 51 0
Dancers 703.207 1.399.805 1 105

Table 4.1: Dataset extracted from the Digital Shape Workbench. Acronyms indi-
cate Number of Vertices (|V |), Number of Triangles (|T |), Number of Components
(|C|) and Number of Boundaries (|B|).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

42 Mesh Transfer Protocol

As an example, one of our test workflows is depicted in Figure 4.3. The
input model (Figure 4.3a) has 160 spurious disconnected components that
are removed by the first Web service (Figure 4.3b). Then one iteration
of laplacian smoothing is applied (Figure 4.3c) by the second Web service
to reduce the noise on the surface, while its 404 holes are patched by the
third Web service implementing Liepa’s [Lie03] hole filling algorithm (Figure
4.3d). Finally, degenerate triangles are removed by the fourth Web service
(Figure 4.3e). This test gives a first idea of the benefits provided by our
transfer protocol: for example, consider that all the simplexes removed in
the first step (≈ 3K vertices, ≈ 7.5K edges and ≈ 4.5K triangles) could
be encoded within a 11 KB correction file, whereas the compressed output
mesh file size was 20.5 MB.

(a) (b) (c)

(d) (e)

Figure 4.3: A typical example of geometry processing workflow. (a) The raw
model. (b) Smallest components removed. (c) Laplacian smooth applied. (d)
Holes filled. (e) Degenerate triangles removed.

The same workflow was run on all the other meshes in our dataset to
better evaluate the performance gain achievable thanks to our concurrent
mesh transfer protocol. Table 4.2 reports the size of the output mesh and

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 43

the size of the correction file after each operation (both after compression),
whereas Table 4.3 shows the total time spent by the workflow along with
a more detailed timing for each single phase. In both tables, tasks are
indicated by acronyms as follows: Removal of Smallest Components (RSC),
Laplacian Smoothing (LS), Hole Filling (HF), and Removal of Degenerate
Triangles (RDT).

Mesh RSC LS HF RDT

Sicily*
21.203 18.989 18.365 22.663

26 2.070 1 1

Rome*
14.915 15.551 14.915 13.166

1 1.425 1 1

Dolomiti*
11.146 11.637 11.146 10.588

1 1.402 1 1

Isidore
20.573 23.333 23.717 25.497

11 9.433 154 2

Nicolo
19.498 21.447 20.601 20.171

3 9.296 48 2

Neptune
39.881 40.131 39.891 39.937

1 15.237 1 1

Ramesses
17.484 19.544 19.934 19.802

3 8.754 149 3

Raptor
14.465 15.621 15.552 15.441

688 10.195 1 1

Dancers
16.457 18.037 18.325 18.116

1 7.220 80 1

Table 4.2: Output sizes (in KB). For each mesh and for each task, the first line
shows the size of the compressed output mesh, while the second line reports the size
of the compressed correction. Average compression ratio is 5:1. Acronyms indicate
Removal of Smallest Components (RSC), Laplacian Smoothing (LS), Hole Filling
(HF), and Removal of Degenerate Triangles (RDT). Note that a modified version
of the Hole Filling algorithm has been run to process “2.5D” geospatial data (*)
in order to preserve their largest boundary.

As expected, the corrections related to tasks that locally modify the model
(eg. RSC, HF, RDT) are significantly smaller than the whole output mesh
by several orders of magnitude; corrections regarding more “global” tasks
(eg. LS) are also smaller than the output mesh, although in this latter
case the correction file is just two/three times smaller than the whole out-
put. Nevertheless, these results confirm that the proposed concurrent mesh
transfer protocol provides significant benefits when the single steps produce
mainly little or local mesh modifications.

For each mesh in our dataset, Table 4.3 reports the time spent by each
algorithm to process the mesh (columns RSC, LS, HF, RDT), the time

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

44 Mesh Transfer Protocol

needed to transfer the correction file to the subsequent Web service (columns
T1 . . . T3), and the time spent to update the mesh by applying the correction
(columns U1 . . . U3). For the sake of comparison, below each pair (Ti, Ui)
we also included the time spent by transferring the whole compressed result
instead of the correction file, and the overall relative gain achieved by our
protocol is reported in the last column. It is worth noticing that, in all
our test cases, the sum of the transfer and update times is smaller than
the time needed to transfer the whole mesh, with a significant difference
when the latter was produced by applying little local modifications on the
input. Clearly, the additional instructions introduced in the geometry pro-
cessing algorithms to stream out the corrections should be considered for
a fair comparison, but we have verified that such an overhead is definitely
negligible with respect to the overall processing time of each algorithm, and
therefore has not been reported in Table 4.3.

Typically, geometry processing algorithms include (1) an “analysis” part
that performs the calculations to derive what to add, modify or remove, and
(2) an “editing” part that applies such changes to the mesh. Depending on
the algorithm these two parts may be not necessarily sequential, but the
editing operations can always be tracked and are sufficient to reconstruct
the result. The editing part is usually faster and it is the only one that must
be replicated by the subsequent servers. In the worst case, when the mesh
is completely rebuilt from scratch, this list is a sequence of “add vertex”
and “add triangle” operations preceded by a “clear all” (see Appendix B).

As additional examples, Tables 4.4 and 4.5 show results concerning the
execution of workflows involving conditional tasks and loops respectively.
Table 4.4 shows execution times of a workflow that removes disconnected
components and fills holes. The corresponding Web services are invoked
only if appropriate precondition checks return true, that is that the input
mesh has components to be removed and/or holes to be filled. Table 4.5 is
related to a workflow involving a “while” loop where Laplacian smoothing is
applied as long as the average normal instability [Att13] exceeds a threshold
value. Times are related to a single workflow step (eg. a Web service
execution or a data transfer), while numbers between parenthesis indicate
how many times the corresponding step is run during loop execution.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 45

M
e
sh

IB
R

S
C

T
1

U
1

L
S

T
2

U
2

H
F

T
3

U
3

R
D

T
T

o
ta

l
B

e
n

e
fi

ts

S
ic

il
y
*

3
0
,4

9
,1

0
,0

6
,5

1
2
,6

3
,3

1
4
,1

8
,6

0
,0

6
,4

1
0
,7

1
0
1
,7

6
2
%

3
3
,9

3
0
,4

2
9
,4

1
6
5
,1

R
o
m

e*
2
0
,4

5
,8

0
,0

0
,0

8
,4

2
,3

9
,4

5
,5

0
,0

0
,0

6
,9

5
8
,7

1
0
4
%

2
3
,9

2
4
,9

2
3
,9

1
1
9
,7

D
o
lo

m
it

i*
1
5
,8

4
,9

0
,0

0
,0

7
,2

2
,2

7
,8

4
,6

0
,0

0
,0

5
,7

4
8
,2

9
2
%

1
7
,8

1
8
,6

1
7
,8

9
2
,4

Is
id

o
re

3
3
,0

7
,7

0
,0

5
,8

1
2
,4

1
5
,1

7
,1

8
,4

0
,2

6
,0

1
3
,8

1
0
9
,5

6
7
%

3
2
,9

3
7
,3

3
7
,9

1
8
3
,4

N
ic

o
lo

3
1
,2

6
,5

0
,0

4
,8

1
0
,5

1
4
,9

6
,1

7
,5

0
,1

4
,9

1
1
,5

9
8
,0

6
9
%

3
1
,2

3
4
,3

3
3
,0

1
6
5
,7

N
ep

tu
n

e
6
3
,8

1
3
,0

0
,0

0
,0

1
8
,6

2
4
,4

1
1
,0

1
2
,6

0
,0

0
,0

1
4
,4

1
5
7
,8

9
9
%

6
3
,8

6
4
,2

6
3
,8

3
1
4
,2

R
a
m

es
se

s
2
8
,0

6
,7

0
,0

4
,3

9
,6

1
4
,0

5
,4

7
,0

0
,2

4
,5

1
0
,3

9
0
,0

7
0
%

2
8
,0

3
1
,3

3
1
,9

1
5
2
,8

R
a
p

to
r

2
6
,7

7
,7

1
,1

5
,6

9
,6

1
6
,3

5
,8

6
,0

0
,0

0
,0

9
,3

8
8
,1

5
0
%

2
3
,1

2
5
,0

2
4
,9

1
3
2
,3

D
a
n

ce
rs

2
6
,3

4
,9

0
,0

0
,0

7
,3

1
1
,6

4
,3

5
,2

0
,1

3
,6

7
,0

7
0
,3

9
2
%

2
6
,3

2
8
,9

2
9
,3

1
3
5
,2

T
a
b
le

4
.3
:

E
la

bo
ra

ti
o

n
ti

m
es

(i
n

se
co

n
d

s)
.

A
cr

o
n

ym
s

in
d

ic
a

te
In

p
u

t
B

ro
a

d
ca

st
(I

B
),

R
em

o
va

l
o

f
S

m
a

ll
es

t
C

o
m

po
n

en
ts

(R
S

C
),

L
a

p
la

ci
a

n
S

m
oo

th
in

g
(L

S
),

H
o

le
F

il
li

n
g

(H
F

),
a

n
d

R
em

o
va

l
o

f
D

eg
en

er
a

te
T

ri
a

n
gl

es
(R

D
T

).
C

el
ls

la
be

ll
ed

by
T

i
in

d
ic

a
te

th
e

ti
m

e
n

ee
d

ed
to

tr
a

n
sf

er
th

e
co

rr
ec

ti
o

n
fi

le
.

C
el

ls
la

be
ll

ed
by

U
i

in
d

ic
a

te
th

e
ti

m
e

n
ee

d
ed

to
u

pd
a

te
th

e
m

es
h

by
a

p
p

ly
in

g
th

e
co

rr
ec

ti
o

n
.

N
o

te
th

a
t

a
m

od
ifi

ed
ve

rs
io

n
o

f
th

e
H

o
le

F
il

li
n

g
a

lg
o

ri
th

m
h

a
s

be
en

ru
n

to
p

ro
ce

ss
“

2
.5

D
”

ge
o

sp
a

ti
a

l
d

a
ta

(*
)

in
o

rd
er

to
p

re
se

rv
e

th
ei

r
la

rg
es

t
bo

u
n

d
a

ry
.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

46 Mesh Transfer Protocol

In our test cases, the mesh transfer protocol reduces the execution time
if the mesh satisfies the required mesh quality and therefore the subsequent
Web service is invoked. No advantage and no degradation are introduced
when the operation precondition does not hold due to the fact that no
output file is transferred from one server to the others.

Mesh IB |C| RSC T1 U1 |B| HF Total Benefits

Sicily* 30,4 5,0 8,6
0,0 6,6

5,1 8,5
64,2

43%33,9 91,5

Rome* 20,4 3,3 –
– –

3,3 —
27,0

0%– 27,0

Dolomiti* 15,8 2,9 –
– –

2,9 —
21,6

0%– 21,6

Isidore 33,0 4,3 7,7
0,0 5,7

4,4 8,2
63,3

43%32,9 90,5

Nicolo 31,2 3,5 6,5
0,0 9,5

4,4 13,1
68,2

32%31,2 89,9

Neptune 63,8 7,8 –
– –

7,7 –
79,3

0%– 79,3

Ramesses 28,0 3,4 6,1
0,0 4,5

3,60 6,8
52,4

45%28,0 75,9

Raptor 26,7 4,2 7,7
1,1 5,6

3,8 –
49,1

33%23,1 65,5

Dancers 26,3 3,0 –
– –

2,7 5,5
37,5

0%– 37,5

Table 4.4: Elaboration times (in seconds). Acronyms indicate Input Broad-
cast (IB), Check Number of Components (|C|), Removal of Smallest Components
(RSC), Check Number of Boundaries (|B|) and Hole Filling (HF). Cells labelled
by T1 indicate the time needed to transfer the correction file. Cells labelled by
U1 indicate the time needed to update the mesh by applying the correction. Cells
whose value is “–” indicate that the corresponding service has not been invoked
because the operation precondition did not hold. A modified version of the Hole
Filling algorithm has been run to process “2.5D” geospatial data (*) in order to
preserve their largest boundary.

To summarize, our tests show that the concurrent mesh transfer protocol
considerably reduces the amount of data transferred among the servers, and
thus the total elaboration time. As previously mentioned, if the output mesh
produced by a Web service is smaller than the correction file, then such an
output is forwarded to the subsequent servers that simply replace their local
copy of the mesh. In an ideal system, the time needed to apply the correction
should be taken into account as well before choosing whether to forward the
whole mesh or the correction file. Unfortunately the update time depends
on too many factors (i.e. architecture of the host server, current workload,
...) to be accurately guessed, but we argue that this is not a real issue

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Mesh Transfer Protocol 47

because this case appears to be unlikely to happen in practice. Regarding
the tasks that globally modify the mesh, such as the Laplacian Smoothing,
we suspect that a clever analysis combined with coordinate quantization
can provide a much more compact representation of the correction file.

Mesh IB AV G NI LS TN UN Total Benefits

Sicily 30,4 7,4 (4) 12,8 (3)
5,4 (3) 14,2 (3) 157,2

30%35,1 (3) 203,7

Rome 20,4 4,7 (4) 8,4 (3)
3,6 (3) 9,4 (3) 103,4

31%23,6 (3) 135,2

Dolomiti 15,8 4,2 (6) 7,3 (5)
4,1 (5) 8,3 (5) 139,5

29%20,5 (5) 180,0

Isidore 33,0 6,3 (4) 12,7 (3)
20,1 (3) 7,1 (3) 177,9

26%42,8 (3) 224,7

Nicolo 31,2 5,4 (4) 10,7 (3)
17,8 (3) 6,3 (3) 157,2

22%35,7 (3) 192,0

Neptune 63,8 11,2 (5) 19,2 (4)
24,8 (4) 11,7 (4) 342,6

32%64,3 (4) 453,8

Ramesses 28,0 5,4 (5) 9,8 (4)
14,7 (4) 5,7 (4) 175,8

28%32,7 (4) 225,0

Raptor 26,7 6,3 (5) 11,5 (4)
19,3 (4) 7,1 (4) 209,5

5%29,1 (4) 220,7

Dancers 26,3 4,5 (4) 8,5 (3)
13,3 (3) 5,3 (3) 125,6

28%30,48 (3) 161,3

Table 4.5: Elaboration times (in seconds). The test has been run on our dataset
after the artificially addition of noise. Acronyms indicate Input Broadcast (IB),
Laplacian Smoothing (LS) and Check Average Normal Instability (AVG NI). Cells
labelled by TN indicate the time needed to transfer the correction file. Cells labelled
by UN indicate the time needed to update the mesh by applying the correction.
Each elaboration time is related to a single workflow step. The number between
parenthesis indicates how many times the workflow step is run during loop execu-
tion. Note that the precondition check is run once more, the last time it returns
false and breaks the loop.

Finally, we recognize that some algorithms that completely rebuild the
mesh (e.g. from an intermediate representation such as in [Ju04]) can hardly
be reproduced in a compact way through our current set of local editing
operations (Table B.1). In these cases our mesh transfer protocol does not
provide any advantage and the whole output mesh should be transmitted.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

48 Mesh Transfer Protocol

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Workflow Formalization 49

5

Workflow Formalization

“A process definition normally comprises a number of discrete
activity steps, with associated computer and/or human operations
and rules governing the progression of the process through the var-
ious activity steps. The process definition may be expressed in
textual or graphical form or in a formal language notation.”

– D. Hollingsworth, [Hol95]

Our system allows to create geometry processing workflows and to store
them as abstract pipelines that can be eventually turned into actual mesh
elaborations. To provide such functionalities, the system includes a special-
ized module responsible of storing workflows according to a formal repre-
sentation and of supporting browsing and retrieval activities (Figure 5.1).
Specifically, such a module is the interface between the graphical user in-
terface and the workflow engine.

In more details, a syntactical tool turns the user-defined workflow speci-
fications to a machine-readable form. The list of geometric operations and
possible input parameters are stored in a file according to a specific XML
format that takes into account the requirements of geometry processing.
When an existing workflow is selected to be re-executed, the engine reads
the corresponding XML file and re-builds the list of involved Web services.

Besides the list of geometric operations, additional information may be
associated to a geometric workflow, such as a description and a purpose.
A semantically-enriched workflow representation is exploited to store such
an information and to support the retrieval of specific workflows. Thus,

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

50 Workflow Formalization

a specialized ontology is provided. The system is able to reason on the
data stored in the ontology and to retrieve workflows that satisfy the user-
provided requirements. Thanks to the workflow ontology, users are allowed
to retrieve existing workflows suitable for their purpose by simply providing
the desired requirements through the graphical interface.

Figure 5.1: The “Workflow Formalization” interface in the system architecture.
Both a syntactical and a semantic tool are included. The former is responsible of
storing workflows as XML files, while the latter supports the semantic search and
retrieval of pre-defined workflows.

5.1 The Workflow XML Language

Currently, each workflow system comes with its own workflow language
designed to satisfy the needs of its specific target community. Based on
existing workflow definition languages [FQH05] [PMP11] [vdAtH05] used in
life science WFM systems, we defined a simple XML-based workflow rep-
resentation format where the specific requirements of geometry processing
are taken into account.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Workflow Formalization 51

Workflow Language Definition

Constraints on the structure of a document representing any ge-
ometric workflow are formally defined through a XML-Schema.

XML Parsers

The Java Architecture for XML Binding (JAXB) [jax03] has
been exploited to implement the modules responsible for reading
and writing XML documents respectively. The former turns the
user-defined workflow into a file, while the latter receives the
identification of an existing workflow and turns it into a list of
executable operations.

Such a formalization defines a workflow as an execution body that com-
prises an ordered list of tasks. Both atomic and conditional tasks (if-then-
else) can be included in the workflow body, as well as sequential loops
(while). The reference to a specific input model can be optionally included
in the workflow to turn it to a specific elaboration.

Workflow XML File

The structure of a XML file representing a geometric workflow.

<?xml version="1.0" encoding="utf-8"?>

<workflow>

<input> http://... </input>

<body>

<atomic> ... </atomic>

<if> ... </if>

<while> ... </while>

...

</body>

</workflow>

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

52 Workflow Formalization

5.1.1 Atomic Tasks

Each atomic task has a unique name and possibly a list of parameters. The
name is meant to make the user immediately aware of which operation is
performed by the task (e.g. “LaplacianSmoothing”), but it also represents
a unique identifier used by the system to locate the proper Web service that
actually performs the task. Appendix A.1 summarizes the list of currently
supported atomic tasks.

Atomic Task Element

The structure of a XML element representing an atomic task.

<atomic>

<name> ... </name>

<parameters>

<parameter> ... </parameter>

<parameter> ... </parameter>

...

</parameters>

</atomic>

5.1.2 Sequential Loops

Each sequential loop has a condition to be checked and an execution body.
The condition is meant to describe the mesh quality type that must be
satisfied to run all the tasks included in the following body (see Section
5.1.4).

Sequential Loop Element

The structure of a XML element representing a sequential loop.

<while>

<condition> ... </condition>

<body> ... </body>

</while>

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Workflow Formalization 53

5.1.3 Conditional Tasks

Similarly to sequential loops, each conditional task has a condition to be
checked and an execution body. Optionally, an additional body (namely,
else) can be included in such a task to describe a list of operations that
must be executed if the required condition is not satisfied.

Conditional Task Element

The structure of a XML element representing a conditional task.

<if>

<condition> ... </condition>

<body> ... </body>

<else> ... </else>

</if>

5.1.4 Analysis Tasks

Each analysis task has a unique name, a conditional operator and a target
value. The name is meant to make the user immediately aware of which
quality type is checked by the task (e.g. “NumberOfVertices”), but it also
represents a unique identifier used by the system to locate the proper Web
service that actually performs the task. Appendix A.2 summarizes the list
of currently supported analysis tasks.

Condition Element

The structure of a XML element representing a condition.

<condition>

<analysis>

<name> ... </name>

<operator> ... </operator>

<value> ... </value>

</analysis>

</condition>

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

54 Workflow Formalization

5.2 Semantically Enriched Workflows

The aforementioned XML grammar defines a basic vocabulary and a fixed
structure to describe and store a geometric workflow. Such a grammar
allows to encode the list of geometric operations as a textual file that is
both human- and machine-readable. The engine exploits such a XML file
to re-execute an existing workflow, while users are allowed to read the file
contents to improve their technical knowledge about a selected pipeline (eg.
which operations are involved, possible input parameters, ...).

Nevertheless, such an approach does not provide the possibility to store
any semantic information. Existing workflows can be retrieved, but users
are required to manually “analyze” each of them to understand which ones
are suitable for their purposes. Such an operation is often time-consuming
and it is difficult for non-expert users to understand which worklow better
fits with their requirements.

In our reference scenario, the user wants to retrieve existing workflows
that satisfy specific requirements (eg. suitable for a specific purpose). To
achieve the goal, the user should be allowed to access the browsing page
(see Figure 3.3) and to query the system by simply providing semantic
information (Figure 5.2). In the background, the workflow engine should
be able to reason on existing workflows and to return the ones that satisfy
the requirements.

Which workflows

allow to get a

printable version of

my 3D shape?

WF6

WF4

WF3

WF2

WF5

WF1
WF7

WF8

Figure 5.2: Example of our reference scenario. Users should be allowed to query
the system by providing a description of their purposes. The system should be
able to reason on existing workflows and to retrieve the ones that satisfy the user
requirements.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Workflow Formalization 55

5.2.1 Background

Ontologies represent a key element in knowledge management and content-
based systems. Formally, two main definitions of ontology are provided in
the literature.

‘An ontology is an explicit specification of a conceptualiza-
tion.”

– T. Gruber, [Gru93]

‘An ontology is a formal, explicit specification of a shared con-
ceptualisation.”

– R. Studer, [SBF98]

According to such definitions, an ontology is a set of concepts related
to a specific domain that are defined in a structured manner. Designing
an ontology actually means to define a set of semantic categories which
reflect the conceptual organization of a specific domain. Thus, an ontology
enables to express knowledge about the domain of interest by organizing
such a knowledge into semantic entities.

Ontologies provide diverse advantages in terms of:

• Sharing : ontologies allow to share a common understanding by defin-
ing unambiguously the meaning of terms used in a specific domain;

• Re-usability : a knowledge domain defined through an ontology is
reusable and interoperability among applications in such a domain
is improved;

• Reasoning : an ontology allows to retrieve implicit knowledge about
the domain by reasoning on explicitly encoded information

In general, ontologies have been exploited in different research and busi-
ness areas (eg. medicine, biology, engineering, ...) to provide specific
semantic-based information systems. Ontologies have also been exploited
for the definition of specific process pipelines. We refer to [GBCL04] for
a wide overview of the state-of-the-art and a deeper analysis of existing
approaches.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

56 Workflow Formalization

5.2.2 The Workflow Ontology

The Workflow Ontology (WO) [ACG+ed] is the knowledge base that al-
lows to formally describe process pipelines in the Digital Shape Workbench
(DSW) [dsw12]. The ontology is built on the top of the Common Info On-
tology and of the Common Tool Ontology which organize the information
about users and shape processing tools within the infrastructure.

In origin, the main idea behind the development of the WO was just to
formally describe the so-called static workflows, which are a sort of tutori-
al/documental pipelines used for sharing the knowledge of expert persons
in the area of a specific process. In its initial version, the WO was explic-
itly focused on processes for the transition of CAD models to their use in
Virtual Reality.

Thanks to its modular structure, the WO can also be exploited and ex-
tended to conceptualize other shape-oriented workflows with different aims.
Technically, we could achieve such a goal by defining a main class, namely
Workflow, where pipelines coming from any application domain can be in-
stantiated. A specific subclass, namely WorkflowStatic, provides the sup-
port to the main purpose of the ontology and contains the instances of
tutorial/documental workflows.

The Workflow class

The Workflow class has a property, namely WorkflowDomain,
that specifies the purpose of the workflow and its context of
use. Moreover, the following attributes are required to define a
workflow:

• Name: a user-understandable name for the workflow;

• Description: a textual description for the workflow;

• Creator : the registered user who created the workflow;

• Creation Date: date and time of the workflow creation.

Thanks to the aforementioned adaptation, we could extend the Workflow
Ontology to support the user in browsing existing workflows and finding the
ones that satisfy specific requirements. To achieve the goal, we extended
the aforementioned ontology by providing a new subclass of the Workflow

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Workflow Formalization 57

class, namely WorkflowExecutable. Such a subclass contains the instances
of workflows generated through our system that can be remotely executed
by taking advantage of specific Web Services.

Common Info Ontology Common Tool Ontology

…

WorkflowStatic

WorkflowExecutable
Creator

Creation Date

Name

Description
XML File

WorkflowDomain

Thing

Workflow

is a
has a

has a

has a
has a

has a

is a

is a

has a

…

…

 Workflow Ontology

Figure 5.3: The structure the WorkflowExecutable class in the Workflow Ontol-
ogy. Grey boxes represent classes, while green boxes represent textual attributes.
The label on each arrow shows the relationship between the two connected compo-
nents.

Technically, the WorkflowExecutable class inherits the attributes and
properties of the Workflow class. As a consequence, a name and a de-
scription are required to define an executable workflow, as well as the name
of the creator and the creation date. In addition to such an information, an
extra attribute is required to store the name of the XML file generated by
the engine. Figure 5.3 shows the structure of the WorkflowExecutable class.

5.2.3 Workflow Retrieval

The graphical user interface exploits the extended version of the WO to
support both the creation and the browsing activities. When a new workflow
is created (see Figure 3.2), a new instance of the WorkflowExecutable class
is generated. Both the name and the description provided by the user are

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

58 Workflow Formalization

exploited to set up the corresponding attributes, while the creator name
and the creation date are automatically retrieved by the system.

On the other hand, the browsing page (see Figure 3.3) exploits the data
stored in the ontology to retrieve specific workflows. The graphical user
interface allows the user to set a few filter options (i.e. type of workflow,
workflow purpose, input and output data types) for the retrieval of specific
documental and executable workflows. When an executable workflow is
retrieved, the user is allowed to visualize related information (see Figure
3.6) and to execute it on a selected input mesh.

Currently, the WO supports simple queries, such as:

• Which workflows are currently available?

• Which workflows can be actually executed?

• Which workflows allow to achieve a specific purpose?

As an additional example of exploitation of the WO, users are allowed to
visualize all the workflows created by themselves and to potentially remove
some of them (Figure 5.4).

Figure 5.4: Detail of the graphical user interface. The user is allowed to manage
his own workflows and possibly remove one of them.

The WO can be further extended to provide support to more complex
queries. An advanced browsing mechanism for workflows should be able
to reason on the single steps that compose a pipeline and to “understand”
if their combination allows the user to get a shape that satisfies specific
requirements. To achieve the goal, both the main Workflow class and its
subclasses must be provided with more attributes and properties for the

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Workflow Formalization 59

description of each atomic operation. Both the Common Shape Ontology
and the Common Tool Ontology within the DSW infrastructure already
provide some formal conceptualizations of 3D shapes and software tools
(eg. Web services) that can be exploited to extend the WO.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

60 Workflow Formalization

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

61

Part III

Parallelization

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 63

6

Introduction

“Parallelism refers to executing more than one task at the same
time [...] It’s important to distinguish parallelism from distri-
bution. Distributed computing is a specialization of parallel com-
puting where the processors don’t reside in the same computer and
where tasks are distributed to computers over a network.”

– D. Higginbotham, [Hig15]

Our workflow-based framework has been designed to support collabo-
rative research in geometry processing and any other research area where
the generation and elaboration of 3D models is necessary. Expert program-
mers can avoid reimplementing or adapting known algorithms, for which
the available Web services can be used, while they are free to focus on the
development of the actually innovative parts. Conversely, scientists in any
other field can exploit state-of-the-art algorithms and already defined com-
positions of them with no longer need to be skilled programmers or experts
in geometric modelling. The intuitive graphical interface guides the user in
both creating a new pipeline and browsing/reusing existing ones.

The platform is accessible from any operating system through a standard
Web browser with no hardware requirements, and does not need any local
software installation on the user machine. By distributing the workload, the
system can count on considerable computational resources. Each invocable
Web service is hosted by a remote server that makes its hardware and
software configuration available for possible elaborations. Moreover, the
system can be easily extended when a researcher wishes to make its own
algorithm available as a Web service. There is no need to distribute the

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

64 Introduction

source code or executable files to improve the system capabilities, but the
developer is simply asked to communicate to the system the address of its
Web service and possible required input parameters.

6.1 Motivation

Although our system theoretically allows to process any input mesh, remote
servers may not satisfy specific hardware and software requirements (eg.
huge main memory, high computational performance) necessary to store
and process extremely high resolution meshes. We expect that Web server
computers used for research purposes are much more similar to commod-
ity PCs than high-performance servers. Moreover, the algorithm provided
by any hosted Web service may not be designed to efficiently perform the
processing of large inputs.

The limited RAM provided by each available server may not be suffi-
cient to load the entire input into main memory or to host all the support
data structures required for specific elaborations, which are sometimes more
memory-demanding than the model itself. As a consequence, the elabora-
tion may be interrupted by the remote server whose available memory is
not sufficient to perform the task.

It should also be considered that, even if the algorithm provided by the
hosted Web service is suitable for managing large 3D geometric data (eg.
out-of-core and parallel approaches are exploited), the memory available on
the remote server imposes a sequentialization of I/O operations in any case.
Since reading and writing files are time-consuming operations, the remote
server may require a very long time to finish the elaboration.

6.2 Objective

In order to avoid excessively long computations and possible interruptions
due to limited available memory during the runtime workflow execution,
the system should be able to recognise large inputs and properly manage
them. The traditional divide and conquer approach and parallel computing
strategies should be exploited to efficiently process any valid input mesh,
independently from its size.

In our reference scenario, the user wants to process a large mesh by ex-
ploiting the system. To achieve this goal, the user accesses the system
through the graphical interface, uploads the input mesh and selects the de-
sired operations. In the background, the Engine should analyze the size of

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 65

the input mesh and check if the required servers satisfy the requirements to
efficiently perform their tasks. If not, the Engine should be able to partition
a large input mesh into smaller subparts, to distribute them across multiple
available Web services for simultaneous processing, and to merge the pro-
cessed subparts at the end of the elaboration to generate the final output
(Figure 6.1). Both partitioning and merging operations should assure the
possibility to process arbitrarily large inputs.

Figure 6.1: An example of workflow execution where a parallel divide and conquer
approach is exploited to allow the processing of a large dataset. The input mesh is
partitioned into three portions that are simultaneously processed by three services.
Finally, the processed portions are merged together to generate the final output.

6.3 Challenges and Scientific Contributions

Several parallel approaches have been proposed to efficiently process large
datasets. Typically, such methods subdivide a large input into subparts and
elaborate them simultaneously by exploiting multi-core or many-core archi-
tectures (eg. GPUs). Although these approaches speed up the elaboration,
they assume that a fast-access shared memory is available for communi-
cation among concurrent processes. Since such a memory is not available
in distributed environments, these methods are not suitable and innovative
solutions are required.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

66 Introduction

In most of existing parallel methods, the mesh is partitioned using an
in-core algorithm. When the mesh is too large and available memory is not
sufficient to load all the geometric and connectivity information, out-of-core
partitioning is required to produce the subparts. Effective out-of-core tech-
niques have been proposed, but they typically assume that the input mesh is
represented as a list of triangles, each directly encoded by the coordinates of
its three vertices. The high redundancy of such “triangle soups” represents
a severe limitation when even more compact representations (i.e. indexed
meshes) require giga or even terabytes of disk space [LPC+00] [iqm13].

Moreover, after having processed each of the sub-meshes separately, these
partial objects should be merged back into a single mesh. Some algorithms
avoid to modify the sub-mesh boundaries to guarantee an exact match after
the elaboration. Typically, post-processing is performed through in-core
algorithms to enhance the output quality. When the resulting elaboration
is still too large for in-core post-processing, contact borders can either be
kept unprocessed or treated using a sub-optimal approach.

In order to support the distributed processing of large input meshes, an
innovative divide and conquer approach needs to be accurately designed.
Specifically, we propose an innovative out-of-core partitioning method for
large indexed meshes that enables distributed parallel processing. Differ-
ently from the previous published methods, our divide and conquer ap-
proach allows to modify any part of generated submeshes, including their
boundaries, and enables an exact match among them after the elaboration.
Finally, an out-of-core merging algorithm is provided that assures the pos-
sibility to generate arbitrarily large outputs, with no need to perform any
post-processing to enhance the final result.

As a proof-of-concept, we have implemented an innovative distributed
mesh simplification algorithm that exploits our partitioning to distribute
the computational load across multiple servers.

Summarizing, the following chapters aim to demonstrate how it is possible
to efficiently process large meshes in a distributed environment through an
innovative divide and conquer approach. Specifically, the following original
contributions are provided:

• design and implementation of an out-of-core partitioning algorithm
for indexed meshes

• design and implementation of an out-of-core merging algorithm that
enables the generation of the final output, independently of the size
of the processed submeshes

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Introduction 67

• design and implementation of a simplification algorithm that exploits
our divide and conquer approach and proves the benefits provided by
distributed processing

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

68 Introduction

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 69

7

Related Works

“The divide-and-conquer technique is a natural way to express par-
allelism, since it repeatedly divides a problem into two or more
smaller subproblems whose solutions can be computed simultane-
ously and independently.”

– A. Zorat, [Zor79]

The well-known divide and conquer paradigm is often used in many
application areas to efficiently solve conceptually difficult problems. The
main idea is to break the problem into sub-problems, solve each of them and
combine the results to generate the final solution. As underlined in [Zor79],
the divide and conquer approach is “a natural one when a parallel processor
is envisioned because each pair of recursive calls generate subproblems that
can be solved in parallel”.

In computer graphics and geometry processing, such an approach has of-
ten been exploited to allow the processing of large datasets. Specifically,
the input mesh is partitioned into submeshes, each small enough to be pro-
cessed with a traditional incore algorithm. Finally, when all the submeshes
have been processed, they are merged together to generate the final out-
put. To support the processing of input meshes that do not fit into main
memory, the design of a divide and conquer algorithm should include the
exploitation of out-of-core techniques. Moreover, parallel approaches may
be used to assure efficiency and reduce the overall elaboration time.

The state-of-the-art includes several different solutions for processing large
datasets. Mainly, the existing approaches include cutting the mesh into

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

70 Related Works

pieces, clustering mesh vertices, using external memory data structures, and
processing stream data. The following sections describe the most relevant
existing techniques. Most algorithms focus on mesh simplification, whereas
other methods exist as a solution of specific problems, such as out-of-core
mesh compression [HLK01] [IG03] and remeshing [AGL06]. For a compre-
hensive survey of existing out-of-core approaches used in visualization and
computer graphics, we refer to [SCC+02].

7.1 Sequential Processing

Out-of-core approaches assume that the input does not need to be entirely
kept in memory, and the computation operates on the loaded parts at each
time.

Processing sequences are used in [ILGS03]. A processing sequence repre-
sents a mesh as a particular interleaved ordering of indexed triangles and
vertices. This representation allows streaming very large meshes through
main memory while maintaining information about the visitation status of
edges and vertices. At any time, only a small portion of the mesh is kept
in-core, with the bulk of the mesh data residing on disk (Figure 7.1). Mesh
access is restricted to a fixed traversal order, but full connectivity and ge-
ometry information is available for the active elements of the traversal.

Figure 7.1: Example of
simplification using process-
ing sequences. This snap-
shot shows the yet unpro-
cessed part of the input
data (grey), the current
in-core portion (pink) and
the already decimated out-
put (gold). Courtesy of
[ILGS03]

Conversely, streaming meshes are exploited in [WK03] and [IL05]. These
algorithms read the input from a data stream in a single pass and write
the output to another stream while using only an in-core buffer (Figure
7.2). Since the stream algorithms use an in-core buffer of limited size, they
assume that the geometry stream is approximately pre-sorted. When this
mild sorting requirement is not satisfied, an out-of-core pre-sorting step is
required before the processing [LS01].

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 71

Figure 7.2: Example of simpli-
fication using streaming meshes.
This snapshot shows the yet un-
processed part of the input data
(left), the current in-core por-
tion (middle) and the already dec-
imated output (right). The data
in the original file happened to
be pre-sorted from right to left.
Courtesy of [WK03]

A different approach is proposed in [CMRS03], where a smart hierarchi-
cal external memory data structure is proposed. It provides support for the
management of generic processing on large meshes, under the constraint of
limited core memory. Specifically, only the hierarchical structure is main-
tained in main memory, while only a small portion of the whole mesh is
loaded in each instant of time.

The aforementioned approaches are very elegant and assure the possibility
to manage arbitrary large datasets. However, conversion to appropriate pro-
cessing sequences, mesh pre-sorting operations and generation of external
memory data structures are non-trivial processes that require a significant
time [IG03]. Moreover, since these methods are based on the idea of repeat-
edly loading parts of the input mesh, they are not suitable for a distributed
setting.

7.2 Parallel Processing

To speed up the elaboration, parallel approaches are often exploited. Typi-
cally, existing parallel methods involve a “master” processor that partitions
the input mesh and distributes the portions across different “slave” pro-
cessors that perform the partial elaborations simultaneously (Figure 7.3).
Multi-core technologies are exploited since they provide the possibility to
process different subparts of the input simultaneously.

As an example, the many slave processors available in modern GPU-based
architectures are exploited in [SN13], while multi-core CPUs are exploited in
[TPB08]. Such methods assume that the available memory is shared among
the current processes. For this reason, they are not suitable for distributed
environments and a sequentialization of I/O operations is required in any
case. Conversely, [TJL07] can operate without any shared memory and is
designed for distributed environments, but input meshes are required to be
small enough to be loaded into main memory.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

72 Related Works

Figure 7.3: The pro-
cessing flow of a generic
divide and conquer ap-
proach with parallel elab-
oration. In this example,
the input mesh is subdi-
vided into three portions
and each of them is pro-
cess by a different slave.

 Master Slaves Master

7.3 Input Partitioning

Although the existing parallel methods are designed according to the general
schema described above, the initial mesh partitioning can be performed
through different approaches. Based on the mesh representation format and
the input size, the appropriate partitioning algorithm needs to be exploited.

In [DLR00] [FS00] [TJL07], the mesh is partitioned using an incore al-
gorithm: this is appropriate when memory is sufficient to store the entire
mesh. In these cases, the mesh is partitioned by accumulating vertices and
faces in subsets when travelling through the model. Typically, a starting
vertex is chosen; then, the accumulation process is performed by selecting
the neighbors of the starting vertex, and the neighbors of the neighbors,
until the subset has reached the required size.

Conversely, when the plain mesh is too large, out-of-core partitioning
is required to produce the submeshes. Effective out-of-core partitioning
techniques are described in [Lin00] [LS01] [BP02]. These methods typically
require their input to come as a triangle soup, that is a list of triangles, each
directly encoded by the coordinates of its three vertices. In these cases, the
bounding box for the input mesh is subdivided into cells and partitioning
is performed according to vertex coordinates. Both in [Lin00] and [LS01],
a vertex clustering approach is used, while in [BP02] each triangle is read
from the input file and directly assigned to a specific cell according to its
vertex coordinates.

The most diffused formats employ an indexed mesh representation: a first
block in the file represents the vertex coordinates, whereas a second block
represents each triangle as a triplet of indexes referred to the first block.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Related Works 73

Before an indexed mesh can be used by the aforementioned partitioning
methods, it needs to be converted into a triangle soup. This additional
step is time-consuming and requires significant storage resources, since tri-
angle indexes must be dereferenced using out-of-core techniques [CSS98].
Conversely, the method proposed in [SG01] is able to work with indexed
representations by relying on memory-mapped I/O managed by the operat-
ing system; however, if the face set is described without locality in the file,
the same information is repeatedly read from disk and thrashing is likely to
occur.

7.4 Output Generation

Divide and conquer approaches typically produce the final output by merg-
ing the processed submeshes into a single mesh. Again, this operation can be
performed according to different approaches, based on the kind of outputs
returned by each partial elaboration.

When the resulting elaborations are comprehensively small enough to fit
in memory, in-core methods can be exploited to merge and polish the fi-
nal result. Processes responsible of running partial elaborations are often
required to keep the sub-mesh boundaries unchanged [TJL07]. Such a re-
striction guarantees an exact match among contact regions of neighbor sub-
meshes after the elaboration. The final output is then generated by unifying
processed mesh portions in an in-core merging phase. If necessary, the qual-
ity of such a generated mesh is enhanced by exploiting traditional in-core
algorithms in a final post-processing step. Conversely, when the resulting
elaboration is still too large for in-core post-processing, contact borders can
either be kept unchanged or enhanced using sub-optimal methods.

Differently, the smart octree-based external memory data structure pro-
posed in [CMRS03] allows to keep the boundaries consistent at each iter-
ation. Specifically, the data structure allows to dynamically load in main
memory the selected portion to be processed and all its neighbors. During
the elaboration, both inner and boundary elements in the selected portion
may be modified, while the boundary of each neighbor is kept consistent.
Unfortunately, as already mentioned above, the approach is not suitable for
a distributed setting.

Depending on the specific type of elaboration, different approaches may
be exploited to guarantee the boundary coherence. Vertex clustering is just
an example used in mesh simplification, but such a method has often a cost
in terms of output quality (see Section 9.2).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

74 Related Works

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Out-of-core Processing 75

8

Out-of-core Processing

“But requiring all data to fit in memory means that if you have a
dataset larger than your installed RAM, you’re out of luck.”

– A. Jacobs, [Jac09]

To support the process of large input meshes and avoid exceeding the
memory capacity during execution, our workflow engine is able to partition a
large input mesh into smaller subparts and to merge the processed subparts
at the end of the elaboration to generate the final output. Both partitioning
and merging operations are performed through out-of-core approaches.

Definitions From now on, we assume that the input mesh is encoded
as an indexed mesh, since the most diffused file formats are based on this
representation. Thus, the input mesh M is defined as a pair 〈V, T 〉, where
V is a list of vertices and T is a set of triangles. Each vertex vi in V is
encoded by its three coordinates, whereas each triangle ti in T is encoded
by three integer indexes: an index k identifies the k’th vertex in the list
V . An analogous encoding is used to describe each submesh Mi = 〈Vi, Ti〉.
Also, when dealing with submeshes we distinguish between local indexes
and global indexes: a local index k in a submesh Mi = 〈Vi, Ti〉 identifies the
k’th vertex in the list Vi, whereas a global index j identifies the j’th vertex
in the overall V . In analogy with previous work on parallel processing, we
considered our workflow engine as a “master”, while the available servers
as “slaves”. For the sake of simplicity, our exposition assumes that all the
servers have an equally-size memory and comparable speed.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

76 Out-of-core Processing

8.1 Mesh Partitioning

Our solution requires two integer parameters: the number of vertices Nv

that we wish to assign to each submesh (based on the memory available on
each of the slaves) and the number of available slaves Ns that will run the
partial mesh processing.

First, the mesh bounding box B(M) is computed by reading once the
coordinates of all the vertices V . At the same time, a representative vertex
down-sampling V ′ is computed and saved to a file (one vertex out of 1000
is randomly picked from V in our implementation). Starting from B(M),
an in-core binary space partition (BSP) is built by iteratively subdividing
the cell with the greatest number of V ′ points. Each cell is split along its
largest side. The root of the BSP refers to the whole downsampling file V ′.
For each subdivision, each vertex in the parent cell is assigned to one of the
two children according to its spatial location. If the vertex falls exactly on
the splitting plane, it is assigned to the cell having the lowest barycenter in
lexicographical order. The process is stopped when the number of vertices
assigned to each BSP cell is at most equal to a given threshold, based on
the available memory on each of the slaves and the ratio between M and
the subsample size (Nv/1000 in our implementation).

Figure 8.1: Partitioning of vertices. For each BSP cell, a corresponding file is
created. Vertices are read one by one and assigned based on their spatial location.
Global indexes are shown on the left of the original V , while local indexes are on
the left of each Vi. Global indexes and coordinates are written on each Vi. Vfile

stores, for each vertex, the ID of the corresponding BSP cell.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Out-of-core Processing 77

Once the BSP is built based on V ′ as described above, all the vertices V
and triangles T of the original M need to be assigned to the appropriate
BSP cell. Vertices are read one by one and assigned based on their spatial
location as above. Then, for each BSP cell Ci, a corresponding file Vi is
created where both the global index and the coordinates of all the assigned
vertices are stored (see Figure 8.1). Simultaneously, a global vector file Vfile
is created where, for each vertex, the ID of the corresponding BSP cell is
stored. Then, the partitioner assigns to each BSP cell the corresponding
inner triangles. For each BSP cell, a corresponding file Ti is created where
triplets of global indexes are stored for all the triangles assigned to that
cell. Triangles are read one by one from T and assigned depending on their
vertex position as follows:

1. All the three triangle vertices belong to the same BSP cell CA (Fig.
3a). The triangle is assigned to that same cell, that is, its three global
indexes are written to TA.

2. Two vertices belong to cell CA while the third vertex belongs to cell
CB (Fig. 3b). The triangle is assigned to cell CA along with a copy
of the third vertex. Namely, the three global indexes are written to
TA, and a pair 〈global index, coordinates〉 is added to VA to represent
the third vertex.

3. The three vertices belong to three different cells CA, CB , and CC (Fig.
3c). The triangle is assigned to the cell having the smallest barycenter
in lexicographical order (let it be CA), and a copy of each vertex
belonging to the other two cells is created. Thus, the three global
indexes are written to TA, and two pairs 〈global index, coordinates〉
are added to VA to represent the other two vertices.

(a) (b) (c)

Figure 8.2: Triangle Assignment. (a) The triangle is assigned to CA, that is,
its three global indexes are written to TA (b) The triangle is assigned to cell CA

along with a copy of v3. (c) The triangle is assigned to the cell having the smallest
barycenter in lexicographical order (CA), and a copy of v2 and v3 is created.

To compute the cell containing each triangle vertex, the partitioner takes
advantage of Vfile.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

78 Out-of-core Processing

Retrieving Vertex Coordinates

When a triangle is not completely included into a single BSP
cell (e.g. one or two vertices are assigned to neighbor cells),
coordinates of its vertices must be retrieved and assigned to the
corresponding BSP cell to properly rebuild the face geometry
(Figure 8.2b–8.2c).

In order to solve the issue, during B(M) computation the engine
creates a file Vbinary that represents the original vertex list in
binary format. Thanks to the constant size of vertices, Vbinary
can be randomly accessed to deference these few vertices (i.e.
O(
√
N) out of a total of N vertices in M).

Note that Vbinary is created only when the input mesh is en-
coded as a textual file. Conversely, when a binary file is pro-
vided as an input, it can be randomly accessed to deference the
required vertices and no other support file needs to be created.

Loading Vfile

Since Vfile may be too large to be completely loaded, the engine
is able to load it portion by portion.

Let maxv be the maximum size of Vfile that the engine is able
to load in memory. Thus, the partitioner keeps in main memory
a sub-portion of it of size maxv. For each triangle vertex, if the
corresponding index is in the loaded sub-portion, the ID of the
corresponding BSP cell is retrieved; if not, the partitioner loads
the sub-portion centered around the vertex index.

In practice, coherence among vertex IDs is usually satisfied, that
is, most pairs of connected vertices have similar global indexes;
thus, the engine needs to load a different sub-portion of Vfile
just a few times.

Also, the number of cells is usually small enough to assure that
corresponding IDs can be encoded in 2 bytes. This means that
two billion vertices may be indexed within a 4GB Vfile. Based
on this observation, we can affirm that the problem of loading
Vfile portion by portion is strictly limited to extreme cases (e.g.
processing of huge meshes on very low memory engines).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Out-of-core Processing 79

At the end of the triangle classification, the BSP leaf cells represent a
triangle-based partition of the input mesh geometry. Each sub-mesh is
stored as a pair of files representing its vertices and triangles. Note that
global indexes still need to be converted to local indexes, but this operation
is delegated to the slaves that can undertake it in parallel. Also, an addi-
tional file Bi is created where the submesh boundary is described as a list
of vertices, each encoded as its local index and the list of cells sharing it.
This information will be reused during simplification for keeping boundary
consistence among neighbors.

Opening and Closing Files

Since opening and closing files are time-consuming operations,
the engine should avoid closing a file if not strictly necessary.

Let maxf be the maximum number of files that the operating
system is able to open simultaneously. Thus, when the num-
ber of BSP cells is larger than maxf , an intelligent file access
scheduling is necessary to efficiently create the submeshes.

In our implementation, a list of open files is maintained. Before
any operation on a specific file, the engine checks if it is open; if
not and if maxf files are already open, the list is browsed, the
file whose last modification is oldest is closed and the required
one is open.

8.2 Independent Sets

When a divide and conquer approach is exploited and subparts of the orig-
inal input are processed in parallel, explicit communication and synchro-
nization among processes is often required. Typical multi-core methods
communicate based on a fast-access shared memory which is not available
in a standard distributed environment. We propose a method to support
distributed elaborations involving processes that require only local infor-
mation (eg. elements that are inside or on the boundary of the considered
submesh), but are allowed to modify any part of the submesh, including
its boundary. Specifically, we exploited the concept of independent sets to
reduce communication among servers.

During partitioning, the generated submeshes are also grouped into inde-
pendent sets so that submeshes in the same group do not share any vertex.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

80 Out-of-core Processing

Clearly, each independent set must be composed by at most Ns sub-meshes,
thus our ISs are not necessarily maximal. An adjacency graph for the sub-
meshes is defined where each node represents a BSP cell, and an arc exists
between two nodes if their corresponding BSP cells are “mesh-adjacent”
(Figure 8.3a). Two cells are considered to be mesh-adjacent if their corre-
sponding submeshes share at least one vertex, that is, at least one triangle
is intersected by the splitting plane between the two cells. Based on this
observation, the adjacency graph is built during triangle partitioning and
kept updated at each assignment. For each triangle whose vertices are as-
signed to different BSP cells (Figures (8.2b) and (8.2c)), corresponding arcs
are added to the graph.

(a) (b)

Figure 8.3: The input mesh subdivided into independent sets of submeshes. (a)
Adjacency graph. (b) Independent sets. Submeshes colored with the same color
belong to the same set.

The problem of grouping together submeshes that are independent (e.g.
no arc exists between the corresponding nodes) is solved by applying a
greedy graph coloring algorithm [HKK14]. The maximum number of nodes
included in the same group (Figure 8.3b) is limited by Ns.

The final output of the partitioning step is a list of groups of sub-meshes
where each group contains independent sub-models.

8.3 Output Merging

When all the sub-meshes have been processed, the engine is responsible
of merging them and generating the output indexed mesh. Since the final

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Out-of-core Processing 81

output may be too large to fit into memory, the output merging is performed
based on an out-of-core approach.

To allow the engine to achieve its goal, each processing service is required
to return both the output submesh M ′

i and an extra file B′
i where the list of

boundary vertices of M ′
i is saved, sorted by their local index. Specifically,

M ′
i must be represented as an indexed mesh, while each boundary vertex

in B′
i must be described as a pair 〈local index, global index〉 (Figure 8.4).

Figure 8.4: Merging vertices. First, vertices in M ′
1 are read one by one and

coordinates are added to Vf . For each boundary vertex in M ′
1, its global index is

saved in Map. Map is sorted by global indexes (gl0 < gl3 < gl4 < gl6). Then,
vertices in M ′

2 are read and coordinates are added to Vf . Vertex 1 in M ′
2 is not

added to Vf since it is on the boundary and its reference is already in Map, that
is, its coordinates are already written in Vf .

Two temporary files (Vf and Tf for vertices and triangles respectively)
are incrementally built to represent the overall mesh M ′. A counter Vc is
initialized to 0 and used to store the number of vertices written in Vf . Also,
an in-core map Map is used to store, for each boundary vertex already
written to Vf , a mapping between its global index and its position in Vf
(i.e. final index).

Iteratively, each M ′
i is handled. First, an additional in-core vector V (M ′

i)
is allocated to host the final index of each vertex in M ′

i . Then, the first pair
〈l, g〉 in B′

i is loaded into main memory and the list of vertices in M ′
i and

B′
i are read “in parallel” as follows. For each vertex v in M ′

i , corresponding

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

82 Out-of-core Processing

coordinates are read. If the local index of v is not equal to l, v is an inner
vertex of M ′

i . In this case, its coordinates are added to Vf , V (M ′
i) is updated

by storing Vc as final index of v and Vc is incremented. This procedure is
followed until a boundary vertex is found. When it happens (i.e. when
v’s local index is l), the engine checks if v is already in Vf . This check is
performed by searching the global index g of v in Map. Since Map is sorted
by global index, this search requires logn operations, where n is the number
of boundary vertices already added to Vf . If it is found, the final index of
v is retrieved from Map and used to update V (M ′

i). If not, coordinates of
v are added to Vf , V (M ′

i) is updated by storing Vc as final index of v, the
mapping between the global index of v and its final index Vc is added to
Map, and Vc is increased. When the boundary vertex v has been handled,
the next pair in B′

i is read and loaded into memory.

V (M ′
i) is exploited to rebuild triplets representing triangle vertices of M ′

i

according to the final indexing. Each triangle t in M ′
i is represented as a

triplet (v1, v2, v3), where v1, v2 and v3 are local indexes of its vertices. To
redefine t according to the final indexing, positions v1, v2 and v3 in V (M ′

i)
are directly accessed, and final indexes v′1, v′2 and v′3 are retrieved and added
to Tf . M ′

i and B′
i files are closed as soon as they are completely scanned

and V (M ′
i) is deleted to free occupied memory.

When all submeshes have been handled, Vf represents the list of vertices
in M ′, while the list of triangles is saved in Tf . A final file M ′

f representing
the entire M ′ is built just appending an information header, Vf , and Tf in
this order.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Out-of-core Processing 83

Out-of-Core Merge Algorithm

The following pseudocode shows the procedure to merge n sub-
meshes M ′

i into a single file M ′
f .

1: procedure Merge(M ′
1, ...,M

′
n, B

′
1, ..., B

′
n)

2: Create Vf and Tf files
3: Create empty Map
4: Vc ← 0
5: for each pair 〈M ′

i , B
′
i〉 do

6: 〈l, g〉 ← first pair in Bi

7: Allocate V (M ′
i)

8: for each v ∈M ′
i do

9: lv ← local index of v
10: if lv 6= l then . v is an inner vertex
11: Write v coordinates in Vf
12: V (M ′

i)[lv]← Vc
13: Vc ← Vc + 1
14: else . v is a boundary vertex
15: fv ←Map.find(g)
16: if g is not found then . v is not in Vf
17: Write v coordinates in Vf
18: V (M ′

i)[lv]← Vc
19: Map.add(〈g, Vc〉)
20: Vc ← Vc + 1
21: else . v is already in Vf
22: V (M ′

i)[lv]← fv

23: 〈l, g〉 ← next pair in B′
i

24: for each t := (v1, v2, v3) ∈M ′
i do

25: v′1 ← V (M ′
i)[v1]

26: v′2 ← V (M ′
i)[v2]

27: v′3 ← V (M ′
i)[v3]

28: Write v′1, v′2 and v′3 in Tf

29: Delete V (M ′
i)

30: Create final file M ′
f

31: Write header information in M ′
f

32: Append Vf and Tf to M ′
f

33: return M ′
f

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

84 Out-of-core Processing

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 85

9

Distributed Mesh
Simplification

“Data matures like wine, applications like fish.”

– J. Governor, [Gov07]

As a proof-of-concept, a distributed simplification algorithm has been im-
plemented that exploits our divide and conquer approach. Our algorithm
allows to simplify arbitrarily large triangle meshes while leveraging the com-
puting power of modern distributed environments. Our method combines
the flexibility of out-of-core techniques with the quality of accurate in-core
algorithms, while representing a particularly fast approach thanks to the
concurrent use of several available servers. When compared with existing
parallel algorithms, the simplifications produced by our method exhibit a
significantly higher accuracy.

9.1 Objective

In our reference scenario, the user wants to simplify a large mesh by exploit-
ing the system. To achieve this goal, the workflow engine should exploit the
divide and conquer approach proposed in Chapter 8. Therefore, the engine
should allow the processing of a large mesh by partitioning it through the
previously described method (Section 8.1). Moreover, efficiency should be
guaranteed by enabling parallel processing, that is, by invoking available
Web services to simultaneously simplify the generated submeshes.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

86 Distributed Mesh Simplification

On its turn, each Web service should be able to load the received sub-
mesh and to simplify it by preserving the original appearance of the shape.
To achieve this goal, an adaptive approach should be exploited, that is,
flat areas should be strongly decimated, while shape features in morpho-
logical rich areas should be maintained. Moreover, boundaries of adjacent
submeshes should be guaranteed to exactly match, so that the previously
described merging method (Section 8.3) might be exploited to generate the
final output.

To summarize, the following aspects should be taken into account when
designing a distributed simplification algorithm for large meshes:

• Out-of-core initial partitioning;

• Out-of-core final merging/post-processing;

• High quality of the simplification/ adaptivity;

• Efficiency and distributable load.

9.2 Background

In the last decades, the evolution of 3D acquisition technologies called for
methods to simplify meshes that have become large and larger. Earlier
simplification algorithms [GH97] [HG97] required the whole mesh to be
loaded into main memory and could focus on efficiency and accuracy only.
Mainly, such methods exploit two different approaches, namely edge collapse
and vertex clustering.

Typically, standard iterative edge-collapse approaches aim to preserve the
appearance of the original shape. In this methods, every edge is assigned a
“cost” that represents the geometric error introduced should it be collapsed.
On each iteration, the lowest-cost edge is actually collapsed, and the costs
of neighboring edges are updated. Today we know that methods based on
iterative edge collapses driven by quadric error metrics are both efficient
and, under certain conditions, provably optimal [HG99]. In such methods,
a quadric matrix associated with each vertex represents a set of planes. This
set is initially made by the planes of triangles that meet at the vertex. After
an edge collapse, the resulting representative vertex v is associated with the
sum of the quadric matrices of the original endpoints. In other words, the
quadric Q at v represents the union of all the planes meeting at the original
endpoints, and the error (i.e. the edge cost) at v is:

e(v) = vTQv =

Np∑
i=0

d(v, πi)
2 (9.1)

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 87

where d(v, πi) is the distance from v to plane πi and Np is the cumulative
number of planes.

Conversely, methods based on vertex clustering were originally proposed
to handle meshes of arbitrary topological structure [RB93]. In these meth-
ods, a bounding box is placed around the mesh and subdivided into a 3D
grid. Then, all the vertices in a given grid cell are clustered to the position
of the most representative point. The algorithm is extremely efficient and
simple to implement. However, vertex clustering can drastically alter the
topology of the input mesh, and does not produce very faithful geometric
approximations, especially when simplifying meshes with fair morphological
variations.

Soon, however, too large meshes appeared that could not fit in main
memory, and existing algorithms needed to be redesigned to account for an
appropriate out-of-core elaboration. In most of these methods the mesh is
partitioned in several sub-meshes, each small enough to be processed with
traditional algorithms (see Chapter 7).

As an example, the vertex clustering approach by Rossignac and Borrel
[RB93] is often exploited to perform out-of-core simplification [LS01] [SG01].
Such an approach guarantees that adjacent mesh portions have coherent
common boundaries, but the output quality may be damaged. In [Lin00],
the vertex clustering approach is modified to use a quadric error metric to
compute the representative vertex. With respect to [RB93], this choice im-
proves the quality of the resulting mesh. The adaptive clustering employed
in [SG01] leads to an even higher quality result, but is still not comparable
with traditional methods based on global priority queues [GH97].

On the other hand, [CMRS03] provides high quality simplifications by
exploiting the traditional edge collapse approach, but is not suitable for a
distributed setting. In [BP02] this possibility to exploit distributed environ-
ments is considered but, due to the use of a shared memory, the approach
proposed is appropriate only on high-end clusters where local nodes are in-
terconnected with particularly fast protocols. To the best of our knowledge,
the only existing technique that can operate without any shared memory is
described in [TJL07], but out-of-core partitioning/merging is not supported.

9.3 The Algorithm

The distributed simplification algorithm works as shown in Figure 9.1. In
the first step, the engine partitions the mesh into a set of submeshes using
the previously described algorithm (Sec. 8.1). Submeshes are then grouped

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

88 Distributed Mesh Simplification

into independent sets. Each independent set is guaranteed to contain at
most Ns submeshes to be simultaneously sent to the services for simpli-
fication. In the first iteration, each submesh is simplified in all its parts
according to the target accuracy. Besides the simplified mesh, each service
is required to produce an additional file identifying which vertices on the
submesh boundary were removed during simplification. This information
is appended to adjacent submeshes and used as a constraint during their
own simplification. When all the independent sets are been processed, the
engine employs our out-of-core algorithm (Sec. 8.3) to join the simplified
submeshes along their boundaries, which are guaranteed to match exactly.

 (a) (b) (c)

 (d) (e) (f)

Figure 9.1: Distributed simplification. (a) Input mesh. (b) Independent sets of
submeshes. (c)(d)(e) Simplification steps. (f) Merged final output.

9.3.1 Adaptivity

Each submesh is simplified through a standard iterative edge-collapse ap-
proach based on quadric error metric [GH97]. In order to preserve the
appearance of the original shape and support adaptivity, the simplification
algorithm applied by each server stops when a maximum error maxE is
reached. Specifically, each server stops the simplification when the rooted
mean square distance d(v) from a vertex v to its planes exceeds maxE . In
our implementation,

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 89

d(v) =

√
e(v)

Np
(9.2)

where Np is the cumulative number of planes.

Thanks to this approach, flat submeshes are strongly decimated, while
shape features are fairly maintained in morphologically rich submeshes.

Loading A Submesh

Each server i receives its own submesh Mi represented as pair
of binary files, storing vertices and triangles respectively. Each
vertex is represented as a pair 〈global index, coordinates〉, while
a triangle is a triplet of global indexes. Each server loads incore
the list of nv submesh vertices, sorted by global index. For each
triangle in the submesh, its triplet of vertices is dereferenced by
searching their global indexes in the sorted list. This operation
requires O(lognv

) operations for each triangle. Note that since
M ′

i is sufficiently small, standard data structures can be used
to represent it incore.

Edge Collapses

Edge collapses are performed exploiting three different ap-
proaches, according to the position of the selected edge with re-
spect to the submesh boundary. Half edge collapse is performed
when one or both endpoints are on the border. In the former
case, the edge collapses to its boundary vertex, while in the
latter it collapses to the endpoint whose associated error is the
lowest. Full edge collapse with optimal point placement [GH97]
is performed otherwise.

9.3.2 Boundary Coherence

During the simplification of a submesh, elements that fall on its boundary
are also reduced, both on the original boundary of the input mesh M (if
any) and on the boundaries of submeshes. On the other hand, vertices

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

90 Distributed Mesh Simplification

shared among three or more submeshes are constrained and never removed
to preserve the original topology.

In order to keep the boundary of the n neighbor submeshes consistent,
each server is required to:

• check if some part of the boundary were previously simplified by some
neighbor and, if so, reapply the same modifications before starting the
simplification

• create a set of n files {Remk | k = 1, ..., n}, each containing the
list of boundary vertices shared with the unprocessed neighbor k and
removed during the simplification process

At the end of each iteration, the master receives some files from each
server: the simplified submesh M ′

i , the corresponding set of Rem files, and
an additional file B′

i storing the global index of all the remaining (i.e. un-
simplified) boundary vertices of M ′

i . During the simplification of a single
IS, no direct communication among the servers takes place. At subsequent
iterations, the master is responsible of forwarding Remk to the server that
will process the adjacent submesh k.

Boundary Information

Besides geometry and connectivity information, each server also
receives one more file Bi that describes the submesh boundary
and the (possibly empty) set of Rem files. The boundary Bi

is described as a list of vertices sorted by their local index,
while deleted vertices in each Remk are identified by their global
indexes.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 91

Boundary Update

Each vertex v inMi shared with previously simplified submeshes
is considered. For each v, if it was deleted by a neighbor, a half
edge collapse is performed to delete the same vertex in Mi too,
independently of the quadric error associated to v in Mi; other-
wise, v is constrained and not deleted during the simplification
of Mi.

9.4 Results

We performed our tests on a lab network of PCs, each equipped with
Windows 7 64bit, an Intel i7 3.5 GHz processor, 4GB Ram and 1T hard
disk. Connection among machines is provided through a 100 Mbps Ethernet.
One machine plays the part of master, while the others are considered as
servers.

Our dataset (Table 9.1) includes large meshes extracted from the Stanford
online repository [sta96], from the Digital Michelangelo Project [mic09] and
from the IQmulus Project [iqm13]. Some small meshes have been included
in our dataset to evaluate and compare the error generated by the simpli-
fication by exploiting dedicated tools (Metro [CRS98]) used in previously
published works.

For each input model, we run several tests by varying the number of
servers and the maximum error threshold. We fixed the number Nv of
vertices that should be assigned to each submesh to 1M for very large input
meshes. Even if servers can manage more data, lower thresholding were used
for the smaller meshes to provide a fair comparison with existing work. The
initial vertex down-sampling is always performed with ratio 1:1000, since
we empirically found that it provides a sufficiently representative subset.

Our experiments aimed to evaluate both elaboration times and quality of
output meshes. Also, an analysis of the required memory space is provided,
in terms of both main and secondary memory.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

92 Distributed Mesh Simplification

9.4.1 Elaboration Time

For each execution, our algorithm performs the following steps and the
total elapsed time is the sum of times required to run each of them:

1. Computation of B(M) and V ′

2. Computation of the N cells of the BSP

3. Vertex classification

4. Triangle classification

5. Calculation of the independent sets

6. Delivery of first IS to the servers

7. Simplification of first IS and delivery of second IS

8. Simplification of second IS, delivery of third IS, and return of first
simplified IS
...
...

9. Merge

Steps 1–5 are required to perform input partitioning. The time spent
to undertake each step depends on the hardware performances and strictly
depends on the number of I/O operations. The original list of vertices is
read twice (step 1 and 3) and split into N files (step 3), while triangles are
read and written once (step 4). Step 5 is performed in-core and does not
require any I/O operation.

Steps 6–8 are required to send submeshes to servers, perform simplifi-
cation and return decimated models to the master. Time spent for slot
6 depends on the network speed. A mesh made of 1M triangles occupies
≈10 Mbytes which can be transferred in about 0.8 seconds on a typical lab
network (100 Mbps). Such a mesh takes approximately 10 seconds to be
simplified on a commodity PC. Processing incore data and transferring disk
data exploit different hardware resources, which means that these two du-
ties can be undertaken in parallel. Hence, in time slots 7 and 8 the time to
tranfer data can be neglected, as it is shorter than the processing time. This
means that the only overhead due to the use of a limited network speed is
represented by time slot 6.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 93

During the last step the master merges the simplified submeshes into a
single final output. Time required to perform this operation is proportional
to the final output size.

In order to evaluate execution time, we run distributed simplification
on large models. Results are shown in Table 9.1. Total elaboration times
refer to the entire processing, including partitioning, simplification and final
merge. Each server exploits the incore simplification algorithm proposed
in [fas14], slightly modified to stop whenmaxE is reached and to return both
M ′

i and B′
i. For each dataset, we evaluate the sequential runtime by using

a single server and by summing the time required to process each submesh.
Then, some experiments are performed by increasing the number of available
servers and computing simplification time as sum of time required to process
each IS. The achieved speedup Si is also shown, computed as Si = Time1

Timei
,

where Time1 is the sequential time and Timei is the time required to run
the simplification on i servers. As expected, speedups are higher when the
number of available servers increases. More noticeably, speedup increases
as the input size grows.

It should be considered that, in a theoretical scenario where infinite
servers are available, the best performance is achieved by getting rid of
the maximum number of submeshes in an independent set and exploiting a
number of servers equal to the number of submodels in the largest group.
In this case, the four colors theorem [Wil02] guarantees that four ISs can
be computed in the worst case for any input mesh.

As a summarizing achievement, our method could simplify the 25GB OFF
file representing the “Atlas” model (≈ 0.5 billion triangles) in ≈ 25 minutes.
As a matter of comparison, the master’s operating system takes more than
8 minutes to perform a simple local copy of the same OFF file.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

94 Distributed Mesh Simplification

In
p

u
t

#
I
S
s

#
O

u
tp

u
t

T
im

e
s

S
p

e
e
d

u
p

M
e
sh

N
v

m
a
x
E

N
s

S
te

p
1
–
5

S
te

p
6
–
8

S
te

p
9

T
o
ta

l
(#

v
e
r
ti

c
e
s)

V
e
r
ti

c
e
s

B
u

n
n
y

5
0
0
0

0
.0

0
0
2
5

1
1
0

4
5
6
3

0
.2

5
0
.3

3
0
.2

5
0
.8

3
–

(3
5
9
4
7
)

2
5

4
4
5
6

0
.2

0
0
.7

0
1
.1

9
3

4
4
5
3
3

0
.1

8
0
.6

8
1
.2

2

D
ra

g
o
n

1
0
0
0
0

0
.0

0
0
2
7

1
7
5

8
8
3
9

3
.5

2
.7

3

0
.5

6
.7

3
–

2
3
8

8
8
4
4

1
.7

3
5
.7

3
1
.1

7
(4

3
7
6
9
5
)

3
2
6

8
8
3
7

1
.2

8
5
.2

8
1
.2

7
4

1
9

8
8
3
4

0
.9

5
4
.9

5
1
.3

6

L
u

cy
1
0
0
0
0
0
0

1
.9

2
3
5
5

1
2
5

9
4
5
3

5
0
.5

5
6
.4

0
0
.5

1
0
7
.4

0
–

(1
4
0
2
7
8
7
2
)

3
9

9
4
7
4

2
8
.4

0
7
9
.4

0
1
.3

5
5

6
9
4
6
9

2
0
.2

5
7
1
.2

5
1
.5

1

T
er

ra
in

1
0
0
0
0
0
0

0
.0

0
0
0
6

1
1
1
7

1
2
1
6
6

4
9
7

3
0
2

1
8
0
0

–

(6
7
8
7
3
4
9
9
)

1
0

1
3

1
1
6
9
7

6
4
.4

5
5
6
2
.4

5
1
.4

2
2
5

6
1
1
6
6
0

1
3
.3

7
5
1
1
.3

7
1
.5

6

S
t.

M
a
tt

h
ew

1
0
0
0
0
0
0

3
.0

1
7
1
6

1
2
8
5

1
1
9
1
2
1

1
2
2
5
.5

8
0
5
.6

5
2
.5

2
0
3
3
.6

5
–

(1
8
6
8
3
6
6
7
0
)

1
0

2
9

1
1
9
0
3
5

1
0
4
.0

5
1
3
3
2
.0

5
1
.5

3
2
5

1
3

1
1
9
3
0
8

4
7
.6

5
1
2
7
5
.6

5
1
.5

9

A
tl

a
s

1
0
0
0
0
0
0

3
.3

5
3
5
0

1
3
9
5

2
3
4
0
8
4

1
4
4
1

1
4
8
1
.2

5
4
.5

2
9
2
6
.7

5
–

(2
4
5
8
3
7
0
2
7
)

1
0

4
2

2
3
4
0
8
1

1
5
7
.0

5
1
6
0
2
.5

5
1
.8

3
2
5

1
8

2
3
4
0
9
1

7
2
.9

5
1
5
1
8
.4

5
1
.9

3

T
a
b
le

9
.1
:

E
xe

cu
ti

o
n

ti
m

es
(i

n
se

co
n

d
s)

.
T

h
e

sp
ee

d
u

p
in

cr
ea

se
s

w
it

h
th

e
in

p
u

t
si

ze
.

C
o

lu
m

n
la

be
ls

:
N

v
is

th
e

n
u

m
be

r
o

f
ve

rt
ic

es
pe

r-
se

rv
er

,
m
a
x
E

is
th

e
th

re
sh

o
ld

er
ro

r
(o

n
e

th
o

u
sa

n
d

th
o

f
th

e
bo

u
n

d
in

g
bo

x
d

ia
go

n
a

l
o

f
th

e
in

p
u

t
in

a
ll

th
es

e
ex

pe
ri

m
en

ts
)

ex
p

re
ss

ed
in

a
bs

o
lu

te
va

lu
es

,
N

s
is

th
e

n
u

m
be

r
o

f
a

va
il

a
bl

e
se

rv
er

s,
#
I
S
s

is
th

e
n

u
m

be
r

o
f

ge
n

er
a

te
d

in
d

ep
en

d
en

t
se

ts
,

“
S

te
p

1
-5

”
re

fe
rs

to
in

p
u

t
pa

rt
it

io
n

in
g,

“
S

te
p

6
-8

”
re

fe
rs

to
si

m
p

li
fi

ca
ti

o
n

,
“

S
te

p
9

”
re

fe
rs

to
o

u
tp

u
t

m
er

gi
n

g.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 95

9.4.2 Quality

To test the quality of output meshes produced by our algorithm, we used
Metro [CRS98] to measure the mean error between some small meshes and
their simplifications. Table 9.2 shows the mean error of the Dragon model
simplified with different parameter settings (i.e. with different threshold
errors and different number of servers). Results show that the number of
servers does not significantly affect the quality of the output.

maxE
Servers

1 2 3

0.00053
0.060 0.060 0.059
(4864) (4891) (4923)

0.00027
0.027 0.027 0.027
(8839) (8844) (8837)

0.00013
0.012 0.012 0.012

(18422) (18421) (18502)

Table 9.2: Approximation mean error of Dragon model. For each experiment, the
first line reports the mean error (in bold), while the second line shows the number
of output vertices. Mean errors are expressed as a percentage of the bounding box
diagonal. Cells labelled with maxE indicate the threshold errors (0.002, 0.001,
and 0.0005 of the bounding box diagonal) expressed in absolute values.

Table 9.3 shows a comparison of our evaluations with results reported
in [TJL07] and [BP02]. Since our simplification stops on a threshold error,
we tuned this parameter to generate output meshes whose vertex number is
comparable with both works. Also, we compared with the traditional incore
method based on global priority queue provided by the QSlim software
[GH97]. Results show that the quality of our simplified meshes is higher
than previous works providing parallel simplification. Also, Table 9.3 shows
that the quality of our output is close to the quality obtained by QSlim and,
in same cases, even better.

#v [TJL07] [BP02] Ours #v [GH97]
5000 0.348 0.067 0.060 4864 0.051
10000 0.187 0.042 0.027 8834 0.030
20000 0.130 0.026 0.012 18422 0.015

Table 9.3: Comparison of mean error on the Dragon model, simplified on 4
servers with different threshold errors (0.002, 0.001, and 0.0005 of the bounding
box diagonal). The first three columns show mean errors on outputs of previous
works, while the last three show mean errors on our results and the comparison
with the incore method provided by the QSlim software [GH97]. Mean errors (in
bold) are expressed as a percentage of the bounding box diagonal. Columns labelled
with #v report the number of vertices in the evaluated simplified mesh.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

96 Distributed Mesh Simplification

For larger models, Metro cannot be used and quality can be assessed
based on a visual inspection only. Figures 9.2, 9.3, 9.4, and 9.5 show that
high quality is preserved in any case and that increasing the number of
involved servers does not sensibly affect the output size and quality.

Figure 9.2: Details of Atlas model simplified by exploiting 25 available servers
(234091 vertices). The flat area is strongly decimated, while shape features are
fairly maintained.

Figure 9.3: Detail of St. Matthew model simplified by exploiting 1, 10 and 25
available services (original: ≈ 187M vertices, simplified: ≈ 119K vertices).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 97

Figure 9.4: Detail of Lucy model. The underside flat area is strongly decimated,
while all the tiny features are preserved elsewhere. Methods based on vertex clus-
tering cannot reach this level of adaptivity.

Figure 9.5: Detail of Terrain model. Nearly height fields are naturally supported
(original: ≈ 68M vertices, simplified: ≈ 11.5K vertices).

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

98 Distributed Mesh Simplification

9.4.3 Memory Space Evaluation

To evaluate the total amount of memory space required, both main (RAM)
and secondary (disk space) memory must be considered. Our memory esti-
mation is based on standard IEEE 32-bit integers and 32-bit floating point
values.

During mesh partitioning, main memory is exploited to store the BSP
structure, while geometric and connectivity information associated to each
cell is stored on disk. Regarding the BSP, each cell includes an ID (16 bits),
two vertices representing the bounding box (6 · 32 bits), three references to
file storing corresponding vertices, triangles and boundary description, and
the list of IDs referring to neighbor cells (16 bits for each neighbor). We
empirically found that each cell has 6 neighbors in average. Therefore, ≈ 50
bytes are sufficient to represent a single BSP cell and ≈ 25 MB are sufficient
to store the entire BSP in our worst case.

During triangle classification a sub-portion of Vfile is kept in main mem-
ory at any time. It is worth noticing that, in all our experiments, Vfile is
sufficiently small to be completely loaded into main memory by exploiting
16-bit representation for each cell ID. In our worst case where the partition-
ing of 250M vertices is made of 400 cells, Vfile occupies ≈ 470 MB.

Secondary memory is exploited to store, besides the original input, three
files for each BSP cell, representing corresponding vertices, triangles and
boundary description Bi respectively. Since the sum of files associated with
BSP structure represents the same geometric and connectivity information
as the input data, roughly twice the input size is required. The boundary
information associated with each cell (e.g. the list of cell IDs sharing each
boundary vertex) can be efficiently encoded in a few bits for each boundary
vertex and we empirically found that the total memory required to store
this information can be neglected (less than 1% of input size in average).

Each server exploits its main and secondary memory to run its own sim-
plification. Main memory is used to load geometric and connectivity in-
formation of corresponding submesh, to store and update quadric matrices
and to store the priority queue of edges to be collapsed. This lead to an
overall consumption of ≈ 630 Mb for 1M vertices. Secondary memory is
exploited to save the input submesh, its simplified version and boundary
information concerning input and output. As for the master, this latter in-
formation requires negligible space. Therefore, we can affirm that required
memory space on servers is upper bounded by twice the submesh size, but
in practice this limit is never touched.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Distributed Mesh Simplification 99

At the end, the master receives simplified indexed submeshes and corre-
sponding boundary information, that are saved on disk. Also, disk space
must be sufficient to host the final output. During this step, required sec-
ondary space is almost twice the final output size. Main memory is used
to store the Map structure and the V (M ′

i) vector. Each entry in Map is
a pair of indexes and occupies 64-bit (32 bits for each index). Since Map
stores only boundary vertices, its final size is O(

√
N) for N vertices in the

input mesh. Also, a single V (M ′
i) is stored at each step and requires n · 32

bits of space, where n is the number of vertices in the current M ′
i .

To summarize, distributed simplification exploits secondary memory as
mush as possible and sensibly reduces the required main memory. Since
modern architectures provide huge hard disks and the cost of increasing
their performance is much lower than providing larger main memories, our
solution is suitable to be run on any commodity PC.

9.4.4 Summary of the features

Table 9.4 summarizes our achievements in terms of non-quantitative results
and provides a comparison with previously publish work. This analysis
shows that our algorithm is a winning proposal for efficiently processing
very large indexed meshes by exploiting distributed environments, both in
the case of full 3D models and in the case of height fields such as terrains
(Figure 9.5).

[LS01] [TJL07] [BP02] Ours
Out–Of–Core Input 3 7 3 3

Out–of–Core Output 3 7 7 3

Adaptivity 7 3 3 3

Distributable 3 3 7 3

Indexed Mesh support 7 3 3 3

Table 9.4: Feature-based comparison with the state of the art.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

100 Distributed Mesh Simplification

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

101

Part IV

Conclusions and
Discussion

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Conclusions 103

10

Conclusions

’Big data is a nebulous term with many different definitions. The
key thing to remember is that in this day and age, big data is
distributed data. This means the data is so massive it cannot be
stored or processed by a single node.”

– R. Sobers, [Sob12]

We provided an innovative workflow management system to remotely
perform complex geometry processing on large triangle meshes. Nothing
more than a standard Web browser needs to be installed on the client ma-
chine hosting the input mesh, while a distributed network of servers provides
both the software and hardware necessary to undertake the computations.
The user interface allows to build complex pipelines by stacking geometric
algorithms and by controlling their execution through conditions and cy-
cles, while the overall execution is managed by a central engine that both
invokes appropriate Web services and handles the data transmission.

10.1 Technological and Scientific Innovation

Our system represents a practical example of how it is possible to process
arbitrarily large geometric data by exploiting existing distributed archi-
tectures. Differently from previously published works that allow remote
geometry processing, our platform also enables the possibility to combine
available algorithms to build complex pipelines and to customize each oper-
ation by setting possible parameters. Geometric issues such as the analysis
and evaluation of mesh qualities are enabled thanks to specific Web services.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

104 Conclusions

Currently, the system provides some “in-house” geometry processing algo-
rithms and some workflows representing traditional mesh repairing pipelines,
but the architecture is open and fully extensible. The list of available algo-
rithms can be enriched by any developer without the need to distribute the
source code or executable files. Furthermore, new complex pipelines can be
easily defined through the user interface and stored on the system. Such a
feature allows scientists in any field to perform complex elaborations with
no longer need to be skilled programmers or experts in geometric modelling.

Besides the technological contribution, scientific innovative solutions are
provided that enable the processing of large input meshes. First, the op-
timized mesh transfer protocol efficiently manages the data transmission
across scattered servers and avoids possible bottlenecks. Second, efficiency
and effectiveness are guaranteed thanks to the novel divide and conquer
approach that the engine exploits to partition large meshes into smaller
pieces, each delivered to a dedicated server for parallel processing. Thanks
to such approaches, we demonstrated that the computing power of a net-
work of PCs can be exploited to significantly speed up the elaboration of
large triangle meshes. Sure enough, we proved that the overhead due to
data transmission is negligible, as it is much lower than the gain provided
by parallel processing.

Furthermore, the proposed distributed approach supports collaborative
environments in efficiently sharing output results. Instead of storing 3D
models explicitly, an online repository endowed with our system allows to
generate meshes on demand without struggling with software installations,
compatibility issues, or hardware requirements. Moreover, geometric work-
flows are available for any researcher who wants to reproduce exactly the
same result. Such a repository requires significantly less storage resources,
but at the cost of a more intensive computation that can be easily dis-
tributed among available servers.

Consistently with the Lohr’s statement [Loh13] provided as an introduc-
tion to this dissertation, the threefold contribution of our work can be sum-
marized as follows:

• It is a bundle of technologies: the integration of geometric algo-
rithms, Web browsers, Web service technologies, and workflow-based
frameworks allows to efficiently process large geometric data with a
significant flexibility, scalability and speed;

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Conclusions 105

• It is a revolution of measurement: as big geometric data can be
continuously measured and updated, explicit results of elaborations
on these datasets are subject to obsolescence. By replacing such ex-
plicit results with dynamic and efficient processing workflows, we can
guarantee that the elaborations are always up-to-date and consider
the new measurements;

• It is a point of view of how decisions should be made in the
future: distributed environments are efficient, scalable, and fault-
tolerant. Hence they can be exploited to perform elaboration of large
geometric datasets for critical decision-making processes such as, e.g.
disaster management.

10.2 Limitations

Although workflows provide a popular means for preserving scientific meth-
ods by explicitly encoding their process, they may be subject to a de-
cay in their ability to be re-executed or reproduce the same results over
time, largely due to the volatility of the resources required for executions
[ZGPB+12]. Workflows generated through our system suffer of such a de-
cay, that is experiments can be reproduced only as long as the involved
Web services are available and are not modified by their providers. To re-
duce the possibility of workflow decay, a certain level of redundancy would
be required, for example by uploading the same Web service on different
machines, but in this case contributors should either distribute the code to
someone else or directly take care of such a duplication.

Our system provides the possibility to easily process a variety of datasets
using a fixed sequence of operations. Completely automatic pipelines can
be executed by simply uploading the user-selected inputs. Currently, our
system does not support semi-automatic pipelines, that is with user in-
teraction. Such a functionality would require the engine to interrupt the
execution waiting for the user intervention.

10.3 Work in progress

Currently, the system supports the elaboration of triangle meshes only. Al-
though such a shape representation is a de facto standard in computer
graphics and geometry processing, acquired 3D data coming from diverse
industrial and research areas (eg. geology, archaeology, medicine, ...) are
often represented as points sets. Motivated by this, we consider worthwhile
to improve the capabilities of our system in order to enable the elabora-
tion of large-size point clouds. We are now investigating the possibility to

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

106 Conclusions

exploit a distributed environment to perform surface reconstruction from
large point sets.

As a reference scenario, we consider a “server” (i.e. our engine) storing
a very large point cloud representing a 3D object, and a user who wishes
to analyze the 3D model on a standard “client” PC. The user must be able
to select a Region Of Interest (ROI) on the model, and the client must be
able to reconstruct a surface on the fly whose overall resolution adapts to
both the client hardware capabilities and the specified ROI. In other words,
the area selected by the user should be reconstructed at very high level of
detail, while all the others should be reconstructed at lower resolution.

Figure 10.1: Example of adaptive-resolution surface reconstruction (on the right)
given an input point cloud (on the left). The selected area (in red) is reconstructed
at very high level of detail, while all the others could be reconstructed at lower
resolution.

Our idea is to make the server able to subdivide a large point cloud. At
an abstract level, our hierarchical data structure could be designed as a
tree, where the root represents the whole input point cloud and each leaf
represents a single point. Each middle node in the structure is a subset
of parent points that satisfies a specific requirement (i.e. it can be easily
approximated by a planar polygon in the 3D space). In practice, the original
point cloud should be subdivided into files, each of them representing a
subset of points that is “coherent with the shape surface”. Moreover, an
extra file should be provided that describes the data structure in order
to allow to access specific areas in an efficient way. Such a data structure
could be used by the client to reconstruct the surface at different resolutions,
according to the area of interest selected by the user.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Conclusions 107

10.4 Future Developments

Future works are also addressed to improve the system and provide new
functionalities. As an example, the usability of the system should be en-
hanced by providing the possibility to graphically show and edit existing
workflows. The user should be allowed to visualize a workflow through a
flow representation and analyze each single operation. Editing operations
should be allowed on such a representation in order to generate new similar
workflows.

Furthermore, the user is required to install specific standalone applica-
tions on its local machine to visualize the received output. As already un-
derlined, such an operation may be time-consuming, due to hardware and
software compatibility issues. An innovative 3D visualization tool should
allow to visualize the output meshes through the Web browser and directly
interact with it [PCV+13] [Mes15].

Finally, the platform currently provides only a small set of geometry
processing operations. These operations have been sufficient to demonstrate
the effectiveness of the system, but many more operations would be required
to actually exploit our solution for real research purposes. Thus, future
efforts should be addressed to provide a more complete set of Web services
to improve the capabilities of the system and allow to run traditional mesh
editing and repairing pipelines. Furthermore, some efforts should be done
to support the processing of 3D models having additional properties (eg.
texture coordinates, normals, ...), but such an upgrade would impact both
on the transfer protocol and on the partitioning/merging approach.

10.5 Future Research

The distributed approach presented in this dissertation provides several
directions for future research, both in terms of improvement of the platform
capabilities and enrichment of available geometry processing operations.

Editing Operations Each algorithm provided as a Web service must be
enriched with proper code to stream each editing operation and to return
both the output mesh and the applied corrections. To further simplify the
work of potential contributors, the engine should be able to automatically
compute the list of editing operations by simply comparing the input and
output of each Web service. A possible solution should be inspired on
existing algorithms [DP13], but requiring less computational complexity so
that no degradation is introduced in the system performance.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

108 Conclusions

Input Formats Our system can load a single indexed mesh and produces
a single file. Part of future plans include the study of methods to efficiently
represent big meshes through several files that can be hosted on different
machines. Moreover, some effort should be done to support other standard
formats used in specific application areas.

Workflow Formalization The formalization of geometry processing work-
flows is at a very preliminary step and mainly consists of a XML file de-
scribing the workflow and an instance of the ontology that simply links to
such a file. A deeper formalization process represents an idea for a further
development of the Workflow Ontology. Such a formalization could be ex-
ploited to improve the browsing mechanism and allow the system to resolve
queries that involve both geometric and semantic information.

Technology Exploitation Our workflow engine currently stores input
and output data on its own disk and exploits HTTP protocol to distribute
3D models through the net. The possibility to extend the architecture
by exploiting a distributed file system (eg. HDFS [SKRC10]) or an on-
line database should be taken into account to optimize the data storage
and allow Web services to directly access the data. Although such tech-
nologies already provide support for partitioning large data sets of small
unstructured records (eg. Map-Reduce [DG08]), they are not suitable for
managing 3D models that have a specific geometric structure.

10.6 Published As

Parts of this dissertation have been published before. The list of accepted
papers is provided below.

Journal Papers

• D. Cabiddu and M. Attene. Large mesh simplification for distributed
environments. Computers & Graphics - Special Issue: Shape Modeling
International, 51:81 – 89, 2015

• M. Attene, D. Cabiddu, S. Gagliardo, F. Giannini, and M. Monti.
A web repository to describe and execute shape oriented workflows.
Computer Aided Design and Applications (CAD), To be appeared

Conference Proceedings

• D. Cabiddu and M. Attene. Distributed triangle mesh processing. In
Proceedings of the 22nd International Conference in Central Europe

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Conclusions 109

on Computer Graphics, Visualization and Computer Vision (WSCG),
Plzen, Czech Republic, 2014

• M. Attene, D. Cabiddu, S. Gagliardo, F. Giannini, and M. Monti. A
web-based system to describe and execute shape processing workflows.
In Proceedings of Computer Aided Design and Applications (CAD),
London, UK, July 2015

• D. Cabiddu and M. Attene. Distributed processing of large polygon
meshes. In Proceedings of Smart Tools and Apps in Computer Graph-
ics (STAG), Verona, Italy, October 2015

Extended Abstracts

• D. Cabiddu and M. Attene. A web-based distributed system to process
large geometric models. In IQmulus Workshop for Big Data Process-
ing, Cardiff, Wales, July 2014

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

110 Conclusions

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Available Web Services 111

Appendix A

Available Web Services

Currently, our system provides a set of “in-house” Web services, able to
perform atomic tasks and analysis operations on triangle meshes. All the
provided Web services are designed to receive the address of the input mesh
and to download it locally. Also, possible input parameters may be required
in order to allow the service to perform its task. The list of available Web
services is listed in the following sections.

A.1 Atomic Tasks

Each atomic task aims to perform a specific geometry processing operation.
The result of such an operation is stored locally and made available through
the Internet through a public address. Available Web services are listed in
Table A.1.

Web service Parameters

Smallest Component Removal –
Degenerate Triangles Removal –
Noise Addition Error Threshold
Laplacian Smoothing # iterations
Hole Filling –
Mesh Simplification Error Threshold

Table A.1: Available Web service that perform a geometry processing operation.
Cells whose value is “–” indicate that no input parameter is required.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

112 Available Web Services

Smallest Components Removal It keeps the largest connected compo-
nent of the mesh while removing all the others [AF06]. No input parameters
required.

(a) Input (b) Output

Figure A.1: An example of smallest component removal.

Degenerate Triangles Removal It applies local mesh modifications to
remove zero-area triangles [BK01]. No input parameters required.

Noise Addition It displaces each vertex along its normal direction by
a random distance. It requires the maximum distance to be provided as
an input parameter. The user is required to specify such a distance as a
percentage of the mesh bounding box.

(a) Input (b) Output

Figure A.2: An example of noise addition.

Laplacian Smoothing It moves each vertex to the center of mass of its
neighbors. By default, the Web service applies the algorithm once. A differ-

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Available Web Services 113

ent configuration can be set by providing the desired number of iterations
as an input parameter.

(a) Input (b) Output

Figure A.3: An example of laplacian smoothing (2 iterations applied).

Hole Filling It patches all the boundary loops [Lie03]. Such a Web ser-
vice assumes that the input mesh represents a full 3D object. No input
parameters required.
A modified version of such a Web service is also provided to support height
fields (eg. terrain reconstructions) as inputs. It patches all the boundary
loop, but the largest one is preserved.

(a) Input (b) Output

Figure A.4: An example of hole filling.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

114 Available Web Services

Mesh Simplification It simplifies the input by reducing the number of
its vertices [GH97]. It requires the maximum desired error to be provided
as an input parameter. The user is required to specify such an error as a
percentage of the mesh bounding box (see Chapter 9).

A.2 Analysis Tasks

Conditional tasks and loops are supported by specific Web services that
check mesh qualities. Differently from atomic tasks, no output mesh is
generated, but a boolean value is returned.

Each Web service receives the condition to be checked as an input. Such a
condition includes a comparison operator and a reference value (see Section
5.1.4). Based on the set of the values that the mesh quality Q can assume,
both the comparison operator and the reference value in the input condition
are required to be set accurately. Specifically, the reference value must be
of the same type of Q, while the list of supported comparison operators is
provided in Table A.2.

Operator Symbol XML Syntax

Equal To = EQ
Not Equal To 6= NEQ
Greater Than > GT
Less Than < LT
Greater Than or ≥ GEQ
Equal To
Less Than or ≤ LEQ
Equal To

Table A.2: The list of supported comparison operators.

The list of currently supported mesh qualities is provided below, subdi-
vided according to the type of Q.

• Natural Numbers (Q ∈ N)

All the comparison operators are supported. By default, the operator
is set to EQ and the reference value is set to 0.

– Number of vertices

– Number of triangles

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Available Web Services 115

– Number of edges

– Number of boundary loops

– Number of disconnected components

• Real Numbers (Q ∈ R)

All the comparison operators are supported. By default, the operator
is set to EQ and the reference value is set to 0.

– Minimum triangle angle

– Maximum triangle angle

– Average edge length

– Total surface area

– Enclosed volume

– Average normal instability : the amount of noise in a mesh [Att13]

• Boolean Values (Q ∈ {true, false})
Only the EQ and NEQ operators are supported. By default, the
operator is set to EQ and the reference value is set to true.

– Manifoldness

– Orientation

– Orientability

– Watertightness

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

116 Available Web Services

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

Editing Operations 117

Appendix B

Editing Operations

Our system requires each Web service to keep track of all the mesh modifi-
cations in terms of added/removed/modified simplexes. We implemented a
C++ library providing functions to stream all the operations listed in Ta-
ble B.1. For each of them, the third table column shows how the operation
is encoded. For the purpose of reducing the correction file size as much as
possible, we define some complex operations that group atomic changes (eg.
split triangle) and we omit operation parameters when they can be easily
recomputed during correction phase (eg. the split point if it is the center of
the triangle).

Simplex Operation Encoding

Triangles

Add T A v1 v2 v3
Remove T id R
Split (center) T id SPC
Split (generic point) T id SP x y z

Vertices
Add V A x y z
Move V id M x y z
Move All V MA

x1 y1 z1
x2 y2 z2
. . .

Edges

Add E A v1 v2
Swap E id SW
Collapse E id C
Split (midpoint) E id SP
Split (generic point) E id SP x y z

All Clear All CLEAR

Table B.1: Supported editing operations. Italic labels in the encodings indicate
either simplex identifiers (i.e. indexes) or vertex coordinates.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

118 Editing Operations

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

BIBLIOGRAPHY 119

Bibliography

[ACG+15] M. Attene, D. Cabiddu, S. Gagliardo, F. Giannini, and
M. Monti. A web-based system to describe and execute shape
processing workflows. In Proceedings of Computer Aided De-
sign and Applications (CAD), London, UK, July 2015.

[ACG+ed] M. Attene, D. Cabiddu, S. Gagliardo, F. Giannini, and
M. Monti. A web repository to describe and execute shape
oriented workflows. Computer Aided Design and Applications
(CAD), To be appeared.

[ACK13] M. Attene, M. Campen, and L. Kobbelt. Polygon mesh re-
pairing: An application perspective. ACM Comput. Surv.,
45(2):15:1–15:33, March 2013.

[AF06] M. Attene and B. Falcidieno. Remesh: An interactive envi-
ronment to edit and repair triangle meshes. In Proceedings
of the IEEE International Conference on Shape Modeling and
Applications 2006 (SMI’06), page 41. IEEE Computer Society,
2006.

[AGL06] M. Ahn, I. Guskov, and S. Lee. Out-of-core remeshing of
large polygonal meshes. IEEE Trans. Vis. Comput. Graph.,
12(5):1221–1228, 2006.

[Aim04] AIM@SHAPE. EU FP6 IST project n. 506766.
http://www.aimatshape.net, 2004.

[Att10] M. Attene. A lightweight approach to repairing digitized poly-
gon meshes. The Visual Computer, 26(11):1393–1406, 2010.

[Att13] M. Attene. Surface mesh qualities. In GRAPP/IVAPP, pages
79–85, 2013.

[Att14] M. Attene. Direct repair of self-intersecting meshes. Graphical
Models, 76(6):658–668, 2014.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

120 BIBLIOGRAPHY

[BK01] M. Botsch and L. Kobbelt. A robust procedure to eliminate
degenerate faces from triangle meshes. In Vision, Modeling and
Visualization, pages 283–290, 2001.

[BP02] D. Brodsky and J. B. Pedersen. Parallel model simplification of
very large polygonal meshes. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques
and Applications - Volume 3, PDPTA ’02, pages 1207–1215.
CSREA Press, 2002.

[BPK+07] M. Botsch, M. Pauly, L. Kobbelt, P. Alliez, B. Lévy, S. Bischoff,
and C. Rössl. Geometric modeling based on polygonal meshes
video files associated with this course are available from the
citation page. In ACM SIGGRAPH 2007 Courses, SIGGRAPH
’07, New York, NY, USA, 2007. ACM.

[CA14a] D. Cabiddu and M. Attene. Distributed triangle mesh pro-
cessing. In Proceedings of the 22nd International Conference
in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG), Plzen, Czech Republic, 2014.

[CA14b] D. Cabiddu and M. Attene. A web-based distributed system
to process large geometric models. In IQmulus Workshop for
Big Data Processing, Cardiff, Wales, July 2014.

[CA15a] D. Cabiddu and M. Attene. Large mesh simplification for dis-
tributed environments. Computers & Graphics - Special Issue:
Shape Modeling International, 51:81 – 89, 2015.

[CA15b] D. Cabiddu and M. Attene. Distributed processing of large
polygon meshes. In Proceedings of Smart Tools and Apps in
Computer Graphics (STAG), Verona, Italy, October 2015.

[cad01] 3D CAD browser. http://www.3dcadbrowser.com, 2001.

[Cam] M. Campen. WebBSP 0.3 beta. http://www.graphics.rwth-
aachen.de/webbsp.

[CCR08] P. Cignoni, M. Corsini, and G. Ranzuglia. Meshlab: an open-
source 3d mesh processing system. ERCIM News, (73):45–46,
April 2008.

[CMRS03] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. Ex-
ternal memory management and simplification of huge meshes.
IEEE Transactions on Visualization and Computer Graphics,
9(4):525–537, oct 2003.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

BIBLIOGRAPHY 121

[CRS98] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring
error on simplified surfaces. Comput. Graph. Forum, 17(2):167–
174, 1998.

[CSS98] Y. J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-
of-core isosurface extraction. In IEEE Visualization’98, pages
167–174, 1998.

[DG08] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1):107–113, Jan-
uary 2008.

[DLR00] F. Dehne, C. Langis, and G. Roth. Mesh simplification in
parallel. In Proceedings of the 4th International Conference
on Algorithms and Architectures for Parallel Processing, Hong
Kong, ICA3PP 2000, pages 281–290, 2000.

[DP13] J. D. Denning and F. Pellacini. Meshgit: Diffing and merg-
ing meshes for polygonal modeling. ACM Trans. Graph.,
32(4):35:1–35:10, July 2013.

[dsw12] DSW v5.0 - visualization virtual services.
http://visionair.ge.imati.cnr.it, 2012.

[fas14] Voxel Game Engine Development – quadric mesh simplification
with source code. http://voxels.blogspot.jp/2014/05/quadric-
mesh-simplification-with-source.html, 2014.

[FCF+08] G. Foucault, J. C. Cuillière, V. François, J. C. Léon, and
R. Maranzana. Adaptation of CAD model topology for finite el-
ement analysis. Computer-Aided Design, 40(2):176–196, 2008.

[Fea07] T. G. Farr and et al. The shuttle radar topography mission.
Rev. Geophys., 45, 2007.

[FQH05] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid
workflow applications with agwl: an abstract grid workflow
language. In CCGRID, pages 676–685. IEEE Computer Soci-
ety, 2005.

[FS00] M. Franc and V. Skala. Parallel triangular mesh reduction. In
Proceedings of the Conference on Scientific Computing (AL-
GORITMY 2000), ALGORITMY 2000, pages 357–367, 2000.

[GBA+10] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank,
D. T. Michaelides, D. R. Newman, M. Borkum, S. Bechhofer,
M. Roos, P. Li, and D. D. Roure. myexperiment: a repository
and social network for the sharing of bioinformatics workflows.
Nucleic Acids Research, 38(Web-Server-Issue):677–682, 2010.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

122 BIBLIOGRAPHY

[GBCL04] A. Gangemi, S. Borgo, C. Catenacci, and J. Lehmann. Task
taxonomies for knowledge content d07. Technical report,
Metokis Project, 2004.

[GH97] M. Garland and P. S. Heckbert. Surface simplification us-
ing quadric error metrics. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’97, pages 209–216, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

[GNTT10] J. Goecks, A. Nekrutenko, J. Taylor, and The Galaxy Team.
Galaxy: a comprehensive approach for supporting accessible,
reproducible, and transparent computational research in the
life sciences. Genome Biology, 11(8):R86, August 2010.

[Gol09] B. Golden. The skinny straw: Cloud com-
puting’s bottleneck and how to address it.
http://www.cio.com/article/2425754/virtualization/the-
skinny-straw–cloud-computing-s-bottleneck-and-how-to-
address-it.html, 2009.

[Gov07] J. Governor. Why applications are like fish and data
is like wine. http://redmonk.com/jgovernor/2007/04/05/why-
applications-are-like-fish-and-data-is-like-wine/, 2007.

[Gru93] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge acquisition, 5(2):199–220, 1993.

[HG97] P. S. Heckbert and M. Garland. Survey of polygonal surface
simplification algorithms. Technical report, CS Department,
Carnegie Mellon, 1997.

[HG99] Paul S. Heckbert and Michael Garland. Optimal triangulation
and quadric-based surface simplification. Journal of Compu-
tational Geometry: Theory and Applications, 14(1–3):49–65,
1999.

[Hig15] D. Higginbotham. Clojure for the brave and true. learn
the ultimate language and become a better programmer.
http://www.braveclojure.com/concurrency/, 2015.

[HKK14] M. Hutter, M. Knuth, and A. Kuijper. Mesh partitioning for
parallel garment simulation. In Proceedings of the 22nd Inter-
national Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision’2014 (WSCG 2014), 2014.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

BIBLIOGRAPHY 123

[HLK01] J. Ho, Kuang-Chih Lee, and D. Kriegman. Compressing large
polygonal models. In Visualization, 2001. VIS ’01. Proceedings,
pages 357–573, Oct 2001.

[Hol95] D. Hollingsworth. Workflow management coalition - the work-
flow reference model. Technical report, Workflow Management
Coalition, January 1995.

[HSK04] D. Hollingsworth, Fujitsu Services, and United Kingdom. The
workflow reference model: 10 years on. In Fujitsu Services, UK;
Technical Committee Chair of WfMC, pages 295–312, 2004.

[IG03] M. Isenburg and S. Gumhold. Out-of-core compression for gi-
gantic polygon meshes. In ACM SIGGRAPH 2003 Papers,
SIGGRAPH ’03, pages 935–942, New York, NY, USA, 2003.
ACM.

[IL05] M. Isenburg and P. Lindstrom. Streaming meshes. In Procs.
of Visualization’05, pages 231–238, 2005.

[ILGS03] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink.
Large mesh simplification using processing sequences. In Vi-
sualization, 2003. VIS 2003. IEEE, pages 465–472, October
2003.

[iqm13] Iqmulus: A High-volume Fusion and Analysis Platform for
Geospatial Point Clouds, Coverages and Volumetric Data Sets.
http://www.iqmulus.eu, 2013.

[Jac09] A. Jacobs. The pathologies of big data. Commun. ACM,
52(8):36–44, August 2009.

[jax03] JAXB Reference Implementation. https://jaxb.java.net/, 2003.

[JKIR06] S. Jayanti, Y. Kalyanaraman, N. Iyer, and K. Ramani. De-
veloping an engineering shape benchmark for {CAD} models.
Computer-Aided Design, 38(9):939–953, 2006.

[Ju04] T. Ju. Robust repair of polygonal models. ACM Transactions
on Graphics (Proc. SIGGRAPH), 23(3):888–895, 2004.

[LAB+06] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow
management and the kepler system: Research articles. Con-
curr. Comput. : Pract. Exper., 18(10):1039–1065, August 2006.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

124 BIBLIOGRAPHY

[Lie03] P. Liepa. Filling holes in meshes. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing, SGP ’03, pages 200–205, Aachen, Germany, 2003. Eu-
rographics Association.

[Lin00] P. Lindstrom. Out-of-core simplification of large polygo-
nal models. In Proceedings of the 27th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’00, pages 259–262, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[Loh13] S. Lohr. Sizing up big data, broadening beyond the inter-
net. http://bits.blogs.nytimes.com/2013/06/19/sizing- up-big-
data-broadening-beyond-the-internet/, 2013.

[LPC+00] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project: 3d
scanning of large statues. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’00, pages 131–144, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[LS01] P. Lindstrom and C. T. Silva. A memory insensitive technique
for large model simplification. In Thomas Ertl, Kenneth I.
Joy, and Amitabh Varshney, editors, IEEE Visualization. IEEE
Computer Society, 2001.

[LSVT15] M. Livesu, A. Sheffer, N. Vining, and M. Tarini. Practical hex-
mesh optimization via edge-cone rectification - web application.
http://polyhexweb.cs.ubc.ca:8090/untangler, 2015.

[Mes15] Meshlabjs. http://www.meshlabjs.net/, 2015.

[mic09] The Digital Michelangelo Project.
http://graphics.stanford.edu/projects/mich/, 2009.

[MK12] J. Möbius and L. Kobbelt. Openflipper: An open source geom-
etry processing and rendering framework. In J.-D. Boissonnat,
P. Chenin, A. Cohen, C. Gout, T. Lyche, M.-L. Mazure, and
L. Schumaker, editors, Curves and Surfaces, volume 6920 of
Lecture Notes in Computer Science, pages 488–500. Springer
Berlin Heidelberg, 2012.

[NCH+11] P. Nowakowski, E. Ciepiela, D. Harezlak, J. Kocot, M. Kasztel-
nik, T. Bartynski, J. Meizner, G. Dyk, and M. Malawski. The

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

BIBLIOGRAPHY 125

collage authoring environment. In Mitsuhisa Sato, Satoshi Mat-
suoka, Peter M. A. Sloot, G. Dick van Albada, and Jack Don-
garra, editors, ICCS, volume 4 of Procedia Computer Science,
pages 608–617. Elsevier, 2011.

[PCV+13] P. Parascandolo, L. Cesario, L. Vosilla, M. Pitikakis, and
G. Viano. Smart brush: a real time segmentation tool for 3d
medical images. In 8th International Symposium on Image and
Signal Processing and Analysis, 2013.

[Pit10] M. Pitikakis. A Semantic Based Approach For Knowledge Man-
agement, Discovery and Service Composition Applied To 3D
Scientif Objects. PhD thesis, University of Thessaly, School
of Engineering, Department of Computer and Communication
Engineering, 2010.

[PMP11] K. Plankensteiner, J. Montagnat, and R. Prodan. Iwir: a lan-
guage enabling portability across grid workflow systems. In
Proceedings of the 6th workshop on Workflows in support of
large-scale science, WORKS ’11, pages 97–106, New York, NY,
USA, 2011. ACM.

[RB93] J. Rossignac and P. Borrel. Multi-resolution 3d approximations
for rendering complex scenes. In Bianca Falcidieno and Tosiya-
suL. Kunii, editors, Modeling in Computer Graphics, IFIP Se-
ries on Computer Graphics, pages 455–465. Springer Berlin
Heidelberg, 1993.

[RCW+06] A. Raposo, E. T. L. Corseuil, G. N. Wagner, I. H. F. dos San-
tos, and M. Gattass. Towards the use of cad models in vr
applications. In Proceedings of the 2006 ACM International
Conference on Virtual Reality Continuum and Its Applications,
VRCIA ’06, pages 67–74, New York, NY, USA, 2006. ACM.

[Sai02] A. Said. Introduction to arithmetic coding - theory and prac-
tice. In Lossless Compression Handbook, pages 101–152. Aca-
demic Press, 2002.

[SBF98] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engi-
neering: principles and methods. Data & knowledge engineer-
ing, 25(1):161–197, 1998.

[SCC+02] C. Silva, Y. Chiang, W. Correa, J. El-sana, and P. Lindstrom.
Out-of-core algorithms for scientific visualization and computer
graphics. In In Visualization’02 Course Notes, 2002.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

126 BIBLIOGRAPHY

[SG01] E. Shaffer and M. Garland. Efficient adaptive simplification
of massive meshes. In Proceedings of the Conference on Visu-
alization ’01, VIS ’01, pages 127–134, Washington, DC, USA,
2001. IEEE Computer Society.

[SKRC10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST), MSST ’10, pages 1–10, Washington, DC, USA,
2010. IEEE Computer Society.

[SMKF04] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The
princeton shape benchmark. In SMI ’04: Proceedings of the
Shape Modeling International 2004 (SMI’04), pages 167–178,
Washington, DC, USA, 2004. IEEE Computer Society.

[SN13] S. M. Shontz and D. M. Nistor. CPU-GPU algorithms for tri-
angular surface mesh simplification. In Springer, editor, Proc.
21st International Meshing Roundtable, pages 475–492, Berlin,
Germany, 2013.

[Sob12] R. Sobers. 5 things you should know about big data.
http://blog.varonis.com/5-things-you-should-know-about-big-
data/, 2012.

[sta96] The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3dscanrep, 1996.

[TG98] C. Touma and C. Gotsman. Triangle mesh compression. In
Wayne A. Davis, Kellogg S. Booth, and Alain Fournier, editors,
Graphics Interface, pages 26–34. Canadian Human-Computer
Communications Society, 1998.

[TJL07] X. Tang, S. Jia, and B. Li. Simplification algorithm for large
polygonal model in distributed environment. In De-Shuang
Huang, Laurent Heutte, and Marco Loog, editors, Advanced In-
telligent Computing Theories and Applications. With Aspects of
Theoretical and Methodological Issues, volume 4681 of Lecture
Notes in Computer Science, pages 960–969. Springer Berlin
Heidelberg, 2007.

[TPB08] B. Thomaszewski, S. Pabst, and W. Blochinger. Parallel tech-
niques for physically based simulation on multi-core processor
architectures. Computers & Graphics, 32(1):25–40, 2008.

[TS06] A. S. Tanenbaum and M. van Steen. Distributed Systems: Prin-
ciples and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2006.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

BIBLIOGRAPHY 127

[TS07] A. Tiwari and A. K. T. Sekhar. Workflow based framework for
life science informatics. Computational Biology and Chemistry,
(5-6):305–319, 2007.

[vdAtH05] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl:
yet another workflow language. Inf. Syst., 30(4):245–275, June
2005.

[Vis12] VISIONAIR. vision advanced infrastructure for research. EU
FP7 project n. 262044. http://www.infra-visionair.eu, 2012.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson. Web Services Platform Architecture: SOAP, WSDL,
WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messag-
ing and More. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2005.

[WHF+13] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. With-
ers, S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic,
P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty,
A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and
C. Goble. The Taverna workflow suite: designing and exe-
cuting workflows of Web Services on the desktop, web or in
the cloud. Nucleic acids research, 41(Web Server issue):W557–
W561, July 2013.

[Wil02] R. Wilson. Four colors Suffice. Penguin Books, London, 2002.

[WK03] J. Wu and L. Kobbelt. A stream algorithm for the decimation
of massive meshes. In Procs. of Graphics Interface 2003, pages
185–192, 2003.

[ZGPB+12] J. Zhao, J. M. GómezPérez, K. Belhajjame, G. Klyne,
E. GarćıaCuesta, A. Garrido, K. M. Hettne, M. Roos, D. D.
Roure, and C. A. Goble. Why workflows break understanding
and combating decay in taverna workflows. In eScience, pages
1–9. IEEE Computer Society, 2012.

[Zor79] A. Zorat. A Divide–and–Conquer Computer. PhD thesis, Uni-
versity of Southern California, The Graduate School of Com-
puter Science, 1979.

Daniela Cabiddu Distributed Processing of Large Triangle Meshes

	I Introduction
	Introduction
	Motivation
	Objective
	Impact and Applications
	Challenges and Scientific Contributions
	Thesis Structure
	Reading Guidelines

	II Distributed Environments
	Related Works
	Offline Workflows
	Online Workflows
	Workflows and Model Repositories
	Applications

	The Framework
	The Architecture
	The Graphical User Interface
	Web Services
	The Workflow Engine

	Technical Aspects

	Mesh Transfer Protocol
	Background
	Concurrent Mesh Transfer
	Technical Aspects
	The Download and Update Module
	Correction Encoding

	Results

	Workflow Formalization
	The Workflow xml Language
	Atomic Tasks
	Sequential Loops
	Conditional Tasks
	Analysis Tasks

	Semantically Enriched Workflows
	Background
	The Workflow Ontology
	Workflow Retrieval

	III Parallelization
	Introduction
	Motivation
	Objective
	Challenges and Scientific Contributions

	Related Works
	Sequential Processing
	Parallel Processing
	Input Partitioning
	Output Generation

	Out-of-core Processing
	Mesh Partitioning
	Independent Sets
	Output Merging

	Distributed Mesh Simplification
	Objective
	Background
	The Algorithm
	Adaptivity
	Boundary Coherence

	Results
	Elaboration Time
	Quality
	Memory Space Evaluation
	Summary of the features

	IV Conclusions and Discussion
	Conclusions
	Technological and Scientific Innovation
	Limitations
	Work in progress
	Future Developments
	Future Research
	Published As

	Available Web Services
	Atomic Tasks
	Analysis Tasks

	Editing Operations

