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Abstract

The growth of the Web 2.0 has brought to a widespread use of social media

systems and to an increasing number of active users. This phenomenon

implies that each user interacts with too many users and is overwhelmed

by a huge amount of content, leading to the well know “social interac-

tion overload” problem. In order to address this problem several research

communities study Social Recommender Systems, which are information

filtering systems that operate in the social media domain and aim at sug-

gesting to the users items that are supposed to be interesting for them.

Social Recommender Systems usually filter content by exploiting the social

graph or by mining the user content. Since the social domain is character-

ized by a continuous and quick growth of the the amount of content and

users, both these approaches face some problems to produce accurate and

up-to-date recommendations.

This PhD thesis proposes some social recommendation approaches

based on the mining of the user behavior, i.e., on the exploitation of the
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activity of the users in social environments, in order to produce accurate

and up-to-date recommendations.
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Chapter 1

Introduction

I am a little tired this period, so I need to make a holiday in a relaxed

resort, surrounded by the nature, where I can run away from the chaos

of the city and from the stress of the work. During my holidays I would

like to make some excursions, visit interesting natural places and, in

the evening, just relax listening good jazz music. But...which is the

best holiday to satisfy my needs? I would need someone or something

to help me make these decisions.

Everyday people have to make some choices and decisions, for instance

which movie to rent, which smartphone to buy, etc. Until some years

ago, in order to make right decisions, they asked for suggestions to other

people, like friends or family. Nowadays, people usually spend several

time reading up on the web before making a decision about something. To
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this purpose the World Wide Web (WWW) is a useful tool but, at the same

time the coming of the web 2.0 applications, brought to a quick growth in

the amount of available data. In some cases, this produced the opposite

e↵ect, i.e. confusing the user and leading to scarcity of attention and to the

well know ”information overload“ problem (i.e. with a large amount of

available choices, it becomes di�cult for a user to identify the item that best

fit her/his needs) [Ricci et al., 2011]. The scarcity of attention and the social

interaction overload problem are strongly related to each other, given that

with the social interaction overload each user has too many potential users

and items to interact with and this does not allow the user to focus on users

or items that might be interesting for her/him.

This phenomenon is addressed by Recommender Systems (RSs), which

are information filtering systems that aim at suggesting to the users items

that are supposed to be interesting for them. As proposed in [Burke, 2007],

RSs may be classified into six di↵erent categories: Content-based, Collabo-

rative Filtering, Demographic, Knowledge-based, Social Recommender System,

Hybrid Recommender System. In this work particular attention is put on So-

cial Recommender Systems, which target the social media domain. These

systems, also known as “Community-based”, deal with the information

overload over social media users, by recommending the most interesting

and relevant content [Guy and Carmel, 2011]. Given an active user, they

produce recommendations based on the preferences of the other users that

are linked to the active one.
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Social media systems are internet based applications, built on the ide-

ological and technological foundation of Web 2.0, that allow the creation

and exchange of user generated content [Kaplan and Haenlein, 2010].

This type of systems are characterized by a rapid and continuous con-

tent evolution and growth, so users are overwhelmed by content and by

interactions with other users.

Moreover, these type of systems are often not specific for a given topic

or for a limited number of users, but are systems opened to every topic

and to everyone, so it becomes di�cult to understand which content are

rumors and which are trusted or to understand which users are trusted

or which are malicious. ”Social Recommender Systems“ try to address

users only to interesting and trusted content (or users) in the social media

domain. Recommender systems and social media applications mutually

benefit each other, because recommender systems have a relevant weight

in the success of social media applications, helping users to find the items

that best fit their needs, while social media applications introduce new

data like tags, vote, likes, social relationship, etc which can be used by

recommender systems [Guy and Carmel, 2011].

There are di↵erent areas that are covered by social recommender sys-

tems: content recommendation, tags recommendation, user recommenda-

tion, community recommendation, etc.

Social Recommender Systems can filter content in two main manners:

by exploiting the social graph or by mining the user content. It is known
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that the mining of the graph su↵ers from scalability issues [Gupta et al., 2013],

while the approaches that mine the user content in order to build a user pro-

file, usually are based on complex algorithms (for example systems based

on TF-IDF [Chen et al., 2009]). Since the social domain is characterized

by an ever growing amount of content and users, these approaches might

face some problems to update the user preferences in order to produce

interesting recommendations.

In order to overcome the previously mentioned problems, this PhD

thesis proposes approaches based on the mining of the user behavior, i.e.,

on the exploitation of the activity of the users in social environments, in

order to:

• produce friend recommendations;

• produce tag recommendations;

• study how social media systems can be used as “persuasive technolo-

gies” (in other words the motivational aspect of social media systems

is studied).

By mining how users interact with the content, instead of mining content

itself or the social graph, this work aims at developing accurate approaches,

designed to operate in social environments.

The rest of the chapter is organized as follows: paragraph 1.1 presents

an introduction to the user recommendation topic; paragraph 1.2 intro-
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duces tag recommender systems; paragraph 1.3 makes an introduction of

the social motivation aspect in the Human-Computer interaction domain,

while in paragraph 1.4 the contributions of this work are discussed

1.1 User Recommendation

The main goal of user recommender systems in the social domain is to sug-

gest friends (i.e, recommendations are produced for pairs of users that are

supposed to be interested at each other’s content) or people to follow (i.e.,

recommendations are produced for a user, in order to suggest users that

might be interesting for him/her) [Guy et al., 2013]. The recommendation

of a friend involves mutual interests, so the list of recommended friends

and the list of recommended people to follow may be di↵erent. In fact,

given two users ui and uj , ui might be interested in uj content but not vice

versa. This means that uj would be recommended to ui as a user to follow,

but not as a friend.

So the design of a friend recommender system is di↵erent from the

design of a people to follow recommender system, since they involve

di↵erent notions of users similarity.

User recommender systems can be classified into three main areas:

• Systems based on the exploration of social graphs, which analyze the

set of users that interact with the considered user, in order to pro-

duce recommendations. These systems usually recommend either
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the closest users in the graph, like friends of friends and followees

of followees (the most famous example of this type of systems is

Facebook1), or can run a random walk algorithm on the social graph

to produce recommendations based on the set of users that have the

highest probability to be crossed [Gupta et al., 2013].

• Systems that analyze how the user interacts with the content of the

system (tags, likes, shares, posts on news, bookmarks, pictures, etc.)

to exploit the interests of the users. These systems usually use com-

plex algorithms, for example, some approaches build a user pro-

file using TF-IDF vectors based on each content the user interacts

with [Chen et al., 2009]. Once a profile for each user is built, recom-

mendations are produced by identifying users with similar profiles.

• Hybrid systems, which explore both the social graph and the in-

teractions of the users with the content (an example is represented

by [Hannon et al., 2010]). The use of di↵erent sources of data to build

the recommendations usually leads to an improvement of the recom-

mendation quality but at the same time it increases the complexity

of these systems.

1http://blog.facebook.com/blog.php?post=15610312130
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1.2 Tag Recommendation

In this paragraph tag recommender systems, which are a type of social

recommender systems that operate in a tagging system, are introduced.

Precisely, tagging systems are social media application that allows users

to add keywords (so called tags) to classify resources [Zhou et al., 2012].

Real world examples of tagging systems are Del.icio.us2, Flickr3, Last.fm34,

CitULike5. These systems are characterized by some well-known linguistic

limitations. For example if a user classifies a resource with tag ”kiwi”,

it may be ambiguous, because kiwi is a fruit, a software, a bird and a

plant, so this can lead to incorrect relations between tags and resources.

Moreover, people can use di↵erent keywords to classify the same resources,

for example a picture about a pizza may be tagged with di↵erent tags like

“pizza”, “italian food”, “delicious”, etc. So, tagging systems have the

advantage to allow users to freely choose which tags to use to classify

the resources of the system but, on the other hand, this freedom may

complicate the search activity of the users within the tag space. In fact,

given that users may use di↵erent tags for the same resource, a user might

search a resource using a query that contains a set of tags di↵erent from the

ones used to classify the resource, without finding it. So, in order to find a

2http://delicious.com/
3http://www.flickr.com
4http://last.fm
5http://www.citeulike.org
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resource, it might be needed to search several times using di↵erent tags and

people should evaluate the relevance of the retrieved resources. In order

to support users in their search activity and in their tag activity and thus

addressing people to interesting content, tag recommender systems have

been developed. Many of them are based on approaches that group tags in

order to help the identification of a context, which would avoid polysemy

and synonymy thus making resources retrieval easier [Bielenberg, 2005].

1.3 Social Motivation

As already mentioned, in recent years the Social Web experienced an ex-

ponential growth; another area that grows proportionally with the Social

Web is the Human-Computer interaction (HCI) area.

Human-Computer interaction is defined as “a discipline concerned

with the design, evaluation, and implementation of interactive computing

systems for human use and with the study of major phenomena surround-

ing them” [ACM SIGCHI, 1992]. The Social Web, instead, is defined as

a set of relationships that link together people over the Web and a set of

applications built on top of these relationships [Appelquist et al., 2010].

Nowadays, researches are conducting some studies about how the

two disciplines mentioned above can work together. In fact, it is well

known that HCI and the Social Web can benefit each other, for example,

Human-Computer interaction application could be developed in the Social
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Web scenario, in order to improve relationships among people. Moreover,

some features still have not been explored in the Web 2.0; for example,

in [Turetken and Olfman, 2013], authors state that, at now, the “any time,

any place” nature of HCI has not been widely studied in the Social Web.

At the state of the art, several studies, that exploit the social interactions

between users in order to motivate people to exercise more, have been pre-

sented [Consolvo et al., 2006, Virzi, 1992, Buttussi et al., 2006, de Oliveira and Oliver, 2008].

In order to study the social motivation aspect, in this work a web appli-

cation, based on two Android applications that try to motivate people in

their exercising activity, is presented. The first Android application, named

EveryWhere Run [Mulas et al., 2011, Mulas et al., 2013a], allows users to get

a workout plan from a personal trainer, while the latter, named EveryWhere

Race [Mulas et al., 2012], is based on the concept of virtual competitions

(races).

The interaction between users and personal trainers and the capabil-

ity to interact in real-time with other users implemented in the Android

applications highlighted great improvements in the motivation of users to

exercise regularly.

The web application presented in this thesis includes some features

(e.g., the creation, the subscription or the participation to a race), previ-

ously available only in the Android application and implements some new

features creating an artificial cognitive system able to enhance the users

experience and stimulating them to exercise more.
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The social aspect added to the web application allows users to have

an improved awareness of their performances, thanks to the feature that

allows to share the user experience with their Facebook friends.

Moreover, the use of the Android applications allows users to stimulate

the attention, motor, visual, and spatial processing capabilities or to know

how well the other users in a race are doing.

At the state of the art, there are several applications that guide the users

during their physical activity and that provide a web community (e.g.,

Endomondo, Runtastic, Nike+, etc.), but the web application presented in

this work has been designed in order to favor also the social interactions

before a user workout. The objective of this feature is to encourage people

to partecipate in a race and not only allowing to share the results of a work

out when the user has already completed her/his activity.

The interactions of the users with Facebook social network is a cru-

cial aspect, because it leads to the phenomenon of the “social influence”

(a widely known concept in sociology and viral marketing) in the social

network domain [Cha et al., 2010]. The idea behind the “social influence”

is that the enhancements of a user in her/his exercising activity can encour-

age and motivate other users to improve their performances exercising

regularly.

The presented web application focuses mainly on the organization of

races, since a race involves more than a user, so this is the ideal scenario to

link Human-Computer interaction with Web 2.0 applications.
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1.4 Contributions of the thesis

In the following some limitations of the state-of-the-art are pointed out,

then the proposed systems are introduced.

Recommender systems usually suggest items that have a strong match

with the user profile of the target user, consequently she/he always receives

recommendations for items too similar to those that she/he already consid-

ered and never receives suggestions for unexpected, surprising and novel

items. This approach is able to produce very accurate recommendations,

but it does not means that the recommendations are also useful; this lack

of diversity in the recommendations, known in literature as “serendipity

problem” or “over-specialization problem”, worsen the user experience

and does not give the users the opportunity to explore new items and to

discover items she/he might like [Abbassi et al., 2009]. To face the serendip-

ity problem, the produced recommendations should be accurate but, at the

same time, also novel (in some cases also serendipitous).

In relation to the user recommendation topic, in this PhD thesis a friend

recommender system that operates in the social bookmarking domain is

presented. In [Gupta et al., 2013], authors highlight that Twitter is an “in-

terest graph”, rather than a “social graph”; this definition of interest graph

can also be extended to social bookmarking systems, since a user can add

as a friend or follow another user, in order to receive her/his newly added

bookmarks. In [Gupta et al., 2013], authors highlight that recommender
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systems that exploit the interest graphs su↵er from scalability issues and,

in order to reduce the complexity of the recommender system, it is better to

avoid the use of the user profile information in the recommendation activ-

ity. Furthermore, in social media domain, applications are characterized

by a huge amount of data that evolve rapidly and continuously, so it is

essential to reduce the complexity of the system in order to infer the users

interests changes and produce updated recommendations.

In relation to the tag recommendation topic, recently, several approaches

have been proposed to cluster tags in order to face the problems related to

tagging systems. One limitation of the state of the art works is that they do

not monitor the users search activity performed into the system in order

to use the behavior of the user like a source of information. These sys-

tems create associations between tag and resources only when a resource

is loaded into the system but then they do not update in any way these

associations, so if a resource has been associated to a misleading tag this

ambiguity a↵ect the performances of the systems. Another problem that

may a↵ect a tagging systems is the well known Cold Start Problem, i.e., if a

user is new or a resource is not similar to any of the existing resources, no

tag can be recommended to the user.

Regarding the social motivation area, none of the other HCI applica-

tions that operate in the sport environment focus on the social influence,

i.e., on how the objectives of an application can be achieved and how

performances can be improved thanks to the interaction with the social
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media.

For each area explored in this thesis, this work dealt with the following

research questions:

Research questions:

• What information should be used in order to produce accurate, novel

and serendipitous friend recommendations?

• How can the available information be exploited in order to update

the user preferences and other information useful to produce tag

recommendations?

• How can the use of the social media be exploited in order to encour-

age users to adopt specific behaviors?

In this thesis two di↵erent recommender systems and a study about the

motivational aspect of the social medias are presented. The first system be-

longs to the user recommendation field (precisely friend recommendation),

while the other one belongs to the tag recommendation field.

The former is a friend recommender system for a Social Bookmarking

System, experimented on Delicious. This system exploits the user interests,

in order to recommend other users interested to the same topics. Since in

literature it is known that the methods that analyze graphs cannot exploit
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interests and are not scalable [Gupta et al., 2013], the proposed system

makes a selective use of available information with the intent to use as

less information as possible so it does not need to many computational

resources.

Furthermore, the friend recommender system presented in this work

does not su↵er from the “serendipity problem”, in fact, it is able to produce

accurate recommendations that are also novel and serendipitous. Until

now, research communities have developed some approaches of user rec-

ommendations [Zhou et al., 2010] but there are no approaches in literature

that build friend recommendations in the Social Bookmarking Systems

domain, so the presented system put the bases on a research area not yet

explored in this application domain.

The presented system has been compared with state of the art algo-

rithms, in order to evaluate the quality of the recommendation but not

only in terms of accuracy. In fact, usually, recommender system are eval-

uated only in terms of accuracy of the recommendations with standard

information retrieval metrics like MAE (Mean Absolute Error), Precision

(fraction of retrieved instances that are relevant), Recall (fraction of relevant

instances that are retrieved), etc. [Baeza-Yates and Ribeiro-Neto, 1999].

In [Ricci et al., 2011], authors highlight that in this domain there are

other aspects to consider in order to evaluate a recommender system.

Some examples are:
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• Trust. May be trust about other users or trust about recommenda-

tions;

• Explanation. Each recommendation may be explained therefore a

user can understand the reason of a given recommendation;

• Persuasiveness. People are likely to accept recommendations given by

trusted and credible sources than recommendations given by anony-

mous sources;

• Novelty. How many recommended items were unknown for the

target user that receives the recommendations;

• Serendipity. How surprising the successful recommendations are.

Given the serendipity problem above introduced and given that the

accuracy of the recommendations is not enough to guarantee a good user

experience, this work focuses about some aspects that allow to evaluate

the quality of a recommender system from di↵erent perspectives.

Precisely, the precision of the system has been evaluated but novelty

and serendipity have also been measured. In fact when the system build a

friend recommendation, indirectly it is also recommending the content of

the users; so, the content of the recommended users is analyzed, in order to

find out which recommendations are novel, in other words, recommenda-

tions for unknown content for the user that receives the recommendation.
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On the other hand serendipity measures how surprising the successful

recommendations are [Shani and Gunawardana, 2011].

The other recommender system, named (RATC - Robust Automated Tag

Clustering- ), is based on tag clustering and monitors the users behavior

to exploit implicit feedbacks left by users in order to improve the perfor-

mances of the system. Monitoring the user behavior makes the system

able to create and continuously update tag-resource associations and tag-

tag associations, rewarding the real semantic relations among tags and

penalizing the misleading ones. Moreover, RATC is able to produce rec-

ommendations without using neither the user profile nor the content of the

resources, so it is not a↵ect by the cold start problem and the complexity of

the system is reduced. The proposed tag recommender system produces

novel tag recommendations, since it does not consider the tags already

used by the target user. On the other hand, the recommended tags are

not serendipitous since they are in the same cluster of the tags used by the

user. In this case, serendipitous recommendations would be a problem,

because they could lead to misleading tag-resources associations or could

complicate the search activity of the users.

In the study dealing with the motivational aspect in social media sys-

tems, two Android applications and a persuasive web application, which

aims to help and motivate people to do more physical activity and to do

it better, have been developed. The applications, based on the concept of

virtual personal trainer and virtual race, allow users to interact with the Face-
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book social network. The conducted studies on these applications show

how these interactions create a link between the Human-Computer Inter-

action (HCI) domain and the social web domain, improving the motivation

of users to conduct a more active lifestyle.

So, the contribution of the thesis can be recapped as follows:

• In the field of friend recommendation, the presented work is the

first approach able to recommend friends in a Social Bookmarking

System; recommendations are produced, without using any graph,

by exploiting users interests in a selective way in order to reduce

the complexity of the system and to not have scalability problems.

Since [Lops et al., 2011] highlights that there is no an universal def-

inition of novelty and serendipity and in the literature there is no

other work previous to this that recommends friends in the social

bookmarking domain, a new definitions of novelty and serendipity

in this context are proposed;

• In the field of tag recommendation, our approach is the first social rec-

ommender system that uses clustering to produce novel tag recom-

mendations; in a social domain, where everything evolves quickly,

a form of classification that does not require supervision like clus-

tering is an extremely simple and strongly e↵ective way to produce

associations between similar tags that are used then to produce rec-

ommendations.



18 Chapter 1. Introduction

• About the study on the motivational aspect of social media systems,

the proposed web application is the first that exploits virtual races

to improve people motivation, and allows to challenge Facebook

friends in real time encouraging, in this way, people to exercise more.

The rest of the thesis is organized as follows: Chapter 2 presents related

work for the di↵erent domains discussed in this PhD thesis; Chapter 3

presents the friend recommender system and the related study; in Chapter

4 the tag recommender system based on tag clustering is presented and

discussed; Chapter 5 presents a study of how the social aspect can be used

as persuasive technology and in Chapter 6 the conclusions and future

developments of this Phd thesis are discussed.



Chapter 2

Related Work

As already mentioned in the Introduction, di↵erent topics that belong to

the Social Recommender Systems domain are studied. In particular, tag

recommendation and user recommendation are the main aspects consid-

ered on this work. For this reason in the following some works about social

recommender systems in general are first presented and then in paragraph

2.2 the state of the art on tag recommendation is discussed, while in para-

graph 2.1 the state of the art in user recommendation domain is presented.

Also in the HCI field the social factors play an essential role; for exam-

ple many mobile applications try to motivate people to do more physical

activity using technique based on social influence theory. Others applica-

tions allow users to share their activity performances with their contacts,

on di↵erent social network sites, often receiving feedbacks that could be
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seen as a kind of recommendations.

In 2.3 some works, that aim to encourage people to do more physical

activity, or to do it best, by means of mobile applications that often include

also social aspects, are presented.

2.1 User Recommender Systems

Accordingly to the classification of the user recommender system done in

the Introduction, in this paragraph the main approaches developed at the

state of the art are presented.

2.1.1 Systems Based on the Analysis of Social Graphs

In [Gupta et al., 2013] authors present Twitter’s user recommendation ser-

vice, which allows to daily create a huge amount of connections between

users that share common interests, connections and other factors. The pro-

posed system suggests people to follow based on shared interest and on the

social graph that is fitted in memory on a single machine. In order to per-

form the recommendations authors build a Twitter graph in which vertices

represent users and the directed edges represent the ”follow“ relationship.

The graph is stored in a graph database called FlockDB, which is based

on mysql and then data are processed with Cassovary, which is an open

source in-memory graph processing engine. Finally, the system builds

the recommendations by means of a user recommendation algorithm for
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directed graphs based on SALSA. The algorithm proposed in this work dif-

fers on several aspects; first of all, the proposed system produces friends

recommendations, furthermore it uses just a restricted set of available in-

formation, without considering the social graph. In fact, as highlighted

in [Gupta et al., 2013] the analysis of a social graph su↵ers from scalability

issues and, in order to limit the complexity of the recommender system,

no user profile information could be used to build the recommendations.

In [Liben-Nowell and Kleinberg, 2003] authors model the user recom-

mendation problem as a link prediction problem. They develop several

approaches, that analyze the proximity of nodes in the graph of a social

network, in order to infer the probability of new connections among users.

Experiments show that the network topology is a good tool to predict

future interactions.

2.1.2 Systems based on the Interactions with the Content

Quercia et al. [Quercia and Capra, 2009] describe a user recommender sys-

tem based on collocation. The proposed framework, called FriendSensing,

recommends friends by analyzing collocation data. In particular, it uses

short-range connections like Bluetooth, mobile phones “sense” and records

which other mobile devices are in proximity. FriendSensing then processes

those records and suggests to users people they may know. In order to

produce the recommendations, it uses geographical proximity and link
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prediction theories. FriendSensing mainly operates in two steps: first, it

uses short range radio technologies of modern mobile phones to build a

log which contains information about how many times two devices have

met and how much time they stayed in touch; then relevant encounters are

inferred from the log records and arranged in a weighted social network.

This network is used to produce personalized lists of people each user may

know. The algorithm presented in this thesis cannot be compared with the

one proposed in [Quercia and Capra, 2009] because it does not have such

type of information deriving from mobile phones.

In [Brzozowski and Romero, 2011], researchers present a study that

considers di↵erent features in a user profile, behavior and network in or-

der to explore the e↵ect of homophily on user recommendations. They use

the Dice coe�cient on two users sets of tags and they find that similar tags

do not represent a useful source of information for link prediction, while

mutual followers are more useful for this purpose. As previously high-

lighted, the presented friend recommender system focuses on producing

friend recommendation based on users’ content (tag, bookmarks, etc.).

2.1.3 Hybrid Systems

In [Zhou et al., 2010] authors propose a framework of user recommen-

dation, based on users’ interests and tested on Yahoo! Delicious. The

proposed framework operates in two main steps: first, it models the users’
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interests by means of tag graph based community detection and represents

them with a discrete topic distribution; then, it uses the Kullback-Leibler

divergence function to compute the similarity between users’ topic distri-

bution and the similarity values are used to produce interest based user

recommendation. Di↵erently from this framework, the aim of the ap-

proach proposed in this thesis is to produce friend recommendations (i.e.,

bidirectional connections) and not user recommendations, which are uni-

directional.

Chen et al. [Chen et al., 2009] present a people recommender system in

an enterprise social network called Beehive, designed to help users to find

known, o✏ine contacts and discover new friends on social networking

sites. Authors conducted two separate experiments, i.e., a personalized

survey and a controlled field study. In the former, authors select 500 active

users that were randomly chosen from all users satisfying several criteria

and present them 12 recommendations (3 for each algorithm); then each

user is asked to answer some questions related to their friending behavior,

and to rate personalized recommendations created from each algorithm.

In the latter experiment authors deployed the four di↵erent recommender

algorithms as a feature of the site involving 3000 users randomly selected

from all users that satisfy several criteria. The 3000 users were randomly

divided into 5 groups; four were experimental groups, each one getting

recommendations from a single algorithm only, while the remaining group

was a control group that did not get any recommendations. Recommen-
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dations were presented in a widget, in which users could respond to the

recommendation by choosing one of three actions: connect to the person,

ask to be introduced, and decline by choosing ”not good for me“. With the

proposed study, authors demonstrate that algorithms that use similarity

of user-created content were stronger in discovering new friends, while al-

gorithms based on social network information were able to produce better

recommendations. The system presented in this thesis cannot be compared

to those proposed in [Chen et al., 2009] since it is applied to a delimited

enterprise social network domain.

In [Hannon et al., 2010], authors propose a user recommender system

(called Twittomender) that, for each user, builds a user profile based on

user’s recent Twitter activity and user’s social graph. The proposed sys-

tem operates in two di↵erent manners; in the former mode the user puts

a query and the system retrieves a ranking list of users, while in the latter

mode the query is automatically generated by the system and it is mined by

the user profile of the target user (the target user is the user that receives the

recommendations). The work presented in this thesis does not use the so-

cial graph or any connection information between users and, furthermore,

in building recommendations it considers the friendship relationship and

not the ”user to follow“ relationship.

In [Guy et al., 2009] authors present a recommender system for the

IBM Fringe social network, based on aggregated enterprise information

(like org chart relationships, paper and patent co-authorship, project co-
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membership, etc.) retrieved using SONAR, which is a system that allows

to collect and aggregate these kinds of information. The proposed system

di↵ers from other works in literature, because it does not use only the social

network information but also information about other systems. Authors

deployed the people recommender system as a feature of the social network

site for a period of four months and the results showed a highly significant

impact on the number of connections on the site, as well as on the number

of users who invite others to connect. The proposed study is based on

specific enterprise data, so for this reason it is hard to make a comparison

with the friend recommender system presented in this work.

2.2 Tag Recommender Systems

As highlighted in the Introduction, the presented tag recommender sys-

tem is based on tag clustering. Many works have been proposed in the

literature, which aim to cluster tags or to recommend tags; for this reason

related work about tag clustering is first presented and then related work

on tag recommendation is presented.

2.2.1 Tag Clustering

In [Specia and Motta, 2007], authors present an approach that allows to

infer the semantics behind a tag space in a social tagging system, so that this

collaborative organization can emerge in the form of groups of concepts
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and partial ontologies. This approach is a combination of shallow pre-

processing strategies, and statistical methods together with knowledge

provided by ontologies available on the semantic web. The algorithm can

be recapped in three main steps:

• Pre-processing: The pre-processing consisted on filtering out unusual

tags, by following the rule that a tag must start with a letter followed

by any number of letters, numbers, and symbols like dash, dot, un-

derscore, etc. Tags morphologically similar are grouped, by using

the Levenshtein similarity metric and filtering out infrequent and

isolated tags.

• Clustering: the algorithm performs a statistical analysis of the tag

space, in order to identify clusters related tags. Clustering is based

on the similarity among tags given by their co-occurrence.

• Concept and Relation Identification: the algorithm uses knowledge pro-

vided by di↵erent sources, like Wikipedia and Google, to infer pos-

sible relationships between tags in each cluster and, if they exist,

categorize them.

The presented approach di↵ers from the one proposed in [Specia and Motta, 2007]

because it does not pre-process the tag space. Furthermore, the presented

approach is able to remove the noise by monitoring the user behavior.
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In [Hamasaki et al., 2007], authors proposed an approach called HAMA,

which tries to integrate a social network with collaborative tagging, in or-

der to extract ontologies. They analyze a case study, using the model for

emergent ontologies in academic conferences. HAMA is based on the Mika

model [Mika, 2007], which is a state of the art model that describes the re-

lation between social networks and ontologies by using actors, concepts

and instances, and illustrating ontology emergence by actor-concept and

concept-instance relation. The proposed approach adds a third dimension,

i.e., the actor-actor relation, in order to face data sparsity and polysemy

problems. The actors-concepts interactions are used to build groups of

concepts and keyword associations. RATC, di↵erently, does not create ex-

plicit users-resources associations but considers users interaction just to

build tag-resources associations.

Wu et al. [Wu et al., 2006] propose a probabilistic approach to model

the user tagging process, in order to automatically derive the emergent

semantic of the tags. After a preliminary study, authors found that: (i) tags

are usually semantically related to each other if they are used to tag the

related resources for many times, (ii) users may have similar interests if

their annotations share many semantically related tags and (iii) resources

are usually semantically related if they are tagged by many users with

similar interests. Starting from these points, they make some statistical

studies about the co-occurences of tags, resources and users. The model

represents each entity as a multidimensional vector �!v = {v1, v2, ..., vm} in



28 Chapter 2. Related Work

a multidimensional space called conceptual space, where each dimension is

a category of knowledge. Hence, if one entity relates to the category of

knowledge i, the corresponding dimension vi of its vector has a high score.

The proposed probabilistic model performs the following steps:

• Dimensions: it chooses a dimension to represent a category of knowl-

edge;

• User-Dimension relativity: it measures the relativity between the

interest of user ui and a given dimension;

• Resource-Dimension relativity: it measures the relativity between the

semantic of the resource ri and the chosen dimension;

• Tag-Dimension relativity: it measures the relativity between the se-

mantics of a tag tk and the chosen dimension.

The presented approach di↵ers from that proposed in [Wu et al., 2006],

because it does not use any probabilistic model.

In [Giannakidou et al., 2008], authors present a co-clustering approach

that considers both social and semantic aspects of the tags, in order to

cluster items (tag and resources) of di↵erent datasets. In order to perform

the clustering activity, the proposed approach represents each resource

through the set of tags that have been used for its annotation and use

a similarity metric based on tag co-occurences. Furthermore, in order

to estimate the semantic similarity between tags, the approach proposed
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in [Wu and Palmer, 1994] is used; this one allows to use external resources

like web ontologies, thesauri, etc., and to map tags and resource’s concepts.

RATC performs the clustering considering only tags, without inferring new

knowledge from external sources.

Baeza-Yates [Baeza-Yates, 2005] analyzes query logs in order to create

clusters of related queries, which are then used to recommend queries to

search engine users. The proposed approach represents each query as

an aggregation of term-weight vectors of the documents selected in the

answers of the considered query. The weight of each term is computed

according to the number of occurrences and the number of clicks of the

documents in which the term appears. Once each query is represented

as a vector, the clustering process is performed by an implementation of

K-means algorithm. The advantage to represent queries by vectors based

on selected documents is that they may be clustered and manipulated

similarly to traditional document vectors, so it is possible to compute

query-document similarity in order to perform query recommendations.

RATC uses queries di↵erently, since associations between tags are inferred

by taking into account the resources that they classify and not by building

clusters of queries.

In [Begelman et al., 2006], authors implement a clustering technique

that aims at grouping strongly related tags, in order to improve the user

experience of tagging services and to avoid the limitations of such types of

systems. The presented technique performs two main steps: first, it finds
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strongly related tags and then it applies a clustering algorithm. In order to

execute the first step, it builds a sparse matrix that represents tags, in which

the value of each element is the similarity of the two tags. The similarity

among tags is based on counting the number of co-occurrences (i.e., tags

that are used for the same page) of any pair of tags and computing a cut-o↵

point, which allows to decide when the co-occurrence count is significant

enough. The clustering step is performed by means of an algorithm based

on spectral bisection and by using the modularity function to evaluate the

quality of the computed clusters. Clusters are then used to select the top

N similar tags to a tag ti that is frequent enough in the tag space.

2.2.2 Tag Recommendation

In [Symeonidis et al., 2008] Symeonidis et al. present a tag recommender

system, whose main steps can be recapped as follows:

• The algorithm models the entities of the social tagging systems, users,

items and tags by a 3-order tensor;

• a Higher Order Singular Value Decomposition algorithm is applied

in 3-order tensors to reveal the latent semantic associations between

users, resources and tags in order to perform the recommendations;

• a comparison with two state of the art algorithms is performed [Xu et al., 2006,

Hotho et al., 2006b]
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The experimental results show significant improvements with respect to

the state of the art algorithm in terms of e↵ectiveness measured through

precision and recall. The proposed approach di↵ers from the one just

described because it does not consider which items the users interact with.

In [Rendle and Schmidt-Thieme, 2010], authors describe a tag recom-

mendation system based on PITF model (Pairwise Interaction Tensor Fac-

torization), which is a particular case of the Tucker Decomposition (TD)

model with linear runtime, both for learning and prediction. The advan-

tage of this model is that the complexity of the model equation is linear in

the number of factorization dimensions, which makes it feasible for high

dimensions. The proposed system operates in two steps: first, the system

models interaction between users, items and tags, then it uses a Bayesian

Personalized Ranking criterion to produce the recommendations. The ap-

proach of tag recommendation proposed in this thesis does not use any

probabilistic model.

In [Carmel et al., 2010], authors present a framework for social book-

mark weighting, which allows to estimate the e↵ectiveness of each of the

bookmarks individually for several Information Retrieval (IR) tasks. They

consider each bookmark as an indivisible triplet (document, user, tag) and

each bookmark is weighted by the framework, according to its predicted

e↵ectiveness in describing the content of the document it is associated

with, given that it was annotated by a specific user with a specific tag. This

framework is able to perform tag recommendations, user recommenda-
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tions, and document recommendations. The tag recommendation process

is done by computing the similarity between each tag and other tags previ-

ously used by the user and between each tag and the documents that have

to be tagged. The study proposed in this thesis does not consider neither

the tags previously used by the users, nor the similarity between tags and

documents; in fact this system does not su↵er from cold start problem.

Inspired by the PageRank algorithm [Brin and Page, 1998], Hotho et

al. present FolkRank algorithm [Hotho et al., 2006a]. The basic idea of this

algorithm is that a resource tagged by important users with important

tags is important itself. In this work authors represent the system through

a undirected graph (while, in the PageRank algorithm, the edges of the

graph have a direction), where the nodes represent users, resources, and

tags and the edges represent the connection between tags and users, users

and resources or tags and resources. In order to assign a weight to each

node, the algorithm executes a random walk algorithm on the graph and

recommendations are built by choosing the top ranked tags associated to

a given tag. RATC di↵ers from this approach because it does not use a

random walk algorithm to make associations between tags and resources

and, moreover, the work proposed in this thesis updates these associations

continuously and not only when new resources are added to the system.

In [Givon and Lavrenko, 2009], authors describe a system that recom-

mends tags for full text books. They use a dataset composed only by books

written in English, and that belong to the fiction/literature domains, which
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are split into a training set and a test set. Furthermore, they collect a set

of social tags, which they pre-process by means of a stemming task, dupli-

cate removing task. Then, each book is represented as a TF-IDF vector and

each tag is associated to a given book by using a Relevance Model, which

is a method adopted from Information Retrieval to match documents to a

given query. Through Relevance Model, the system selects a set of tags to

recommend for each book.

In [Sigurbjörnsson and van Zwol, 2008], authors present an approach

to support the user during the tagging process of a photo in Flickr. Given

a photo with user-defined tags, a set of candidate tags is derived for each

of the user-defined tags, by using a “promotion function” based on tag

co-occurrence. The lists of candidate tags are then used as input for tag

aggregation and ranking, which ultimately produces the ranked list of n

recommended tags. Tag co-occurrence identification is a crucial task in

the presented tag recommendation approach. Co-occurrences between

two tags is defined as the number of photos in the system for which

both tags are used in the same annotation. It is common to normalize

the co-occurrence count with the overall frequency of the tag. Once the

lists of candidate tags for each of the user defined tags are built, a tag

aggregation step is needed to merge the lists into a single ranking of tags to

recommend. Even if co-occurrences of tags in resources are considered (like

RATC does), the proposed system continuously and implicitly monitors

the tagging behavior of users. Similarity between tags is not calculated
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using a promotion function, which is built with an observation of the

tagging system at a certain time, but considering the use of the tags at the

moment in which similarities are calculated.

2.3 Social Motivation

In recent years, many studies have been conducted in order to increase

physical activity motivation. In [Toscos et al., 2006], authors propose a

mobile application, called Chick clique, that tries to encourage teenage

girls to adopt a correct lifestyle. Authors targeted teenager girls because

other studies demonstrated that they are more likely to become less active

throughout adolescence, with respect to their male counterparts. The soft-

ware provides information about food calories and the necessary amount

of steps needed to burn them; furthermore, users can invite their friends

and share their achievements and their walking activity with them. The

social factor is very important, in fact the enhancement of a user can in-

spire other users to do best or if some users see that one of their friends is

bringing down, they can encourage that user.

In [Consolvo et al., 2006] a mobile application for Symbian, called Hous-

ton, is presented. The proposed system uses a pedometer to count the

number of steps done by users and allows them to share daily statistics

with a set of friends. Experiments, performed on data collected through the

use of Houston, show that: (i) users expected to have detailed measures,
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(ii) they prefer to use long term statistical report in order to have a detailed

overview of the walking activity, (iii) the social aspect helps users to im-

prove their performances and that (iv) users consider more comfortable

to use an all-in-one device rather than to use external additional devices.

Experiments have been conducted on a homogeneous sample composed

by 13 participants (female friends aged 28-42) that were divided into three

groups and the study ran for about three weeks. All participants wanted to

increase their levels of physical activity and the results have been studied

by means of questionaries and interviews.

Battussi et al. [Buttussi et al., 2006] present a PocketPC application,

called MOPET, that aims at supporting the physical activity. MOPET uses

a GPS devices to monitor user positions during their physical activity in

an outdoor fitness trail situated in a public park. It provides navigation

assistance by using a fitness trail map and giving speech directions, moti-

vation support and exercise demonstrations by using an embodied virtual

trainer, called Evita. Evita shows how to correctly perform the exercises

along the trail with 3D animations and encourages the user. The proposed

application has been tested with 12 users. In order to test the navigation

support, the following variables have been measured: how many times the

user followed paths that led away from the trail, how many meters have

been run out of the trail, how many meters of the trail the user skipped,

percentage of time the user spent on other paths. A questionnaire was

administered to each user, in order to infer to the usefulness of the fitness
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trail maps. In order to test the motivation support, authors administered a

questionnaire in which they asked the users how much MOPET motivated

them and whether they would come more frequently to the fitness trail

if they could use the proposed system. Finally, in order to test the train-

ing support, authors filmed users from a distance during exercises and,

moreover, they asked users to rate the usefulness of the embodied virtual

trainer. MOPET got good results for all the di↵erent types of supports.

In [de Oliveira and Oliver, 2008], authors present TripleBeat, a mobile

phone application that uses ECG and an accelerometer, in order to sup-

port runners to reach their goals, particularly in terms of heart rate. The

application assists the user by using musical feedbacks and persuasive

techniques, like an interface and a virtual competition. In order to test

the application, researches conducted a user study with 10 runners and

compared TripleBeat with another previously implemented application,

named MPTrain. The comparison has been made in terms of runners e�-

cacy and enjoyment in achieving predefined workout goals. Results show

that TripleBeat is more e�cient and more enjoyable than the older applica-

tion and that the virtual competition and the interface are two key factors

to significantly improve the user experience.

Nike + Gps 1 is an mobile application that supports and encourages

users during their physical activity, particularly during the walking and the

1Nike+ gps. http://nikerunning.nike.com.
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running activity. The proposed application makes an intensive use of social

networks, like Facebook and Twitter, to share results and to receive real

time feedbacks from a user’s contacts. Moreover it uses vocal feedbacks

to inform the user about his performances. The project also include a

web community, where users can organize trainings and share their own

training experiences.

In [Jayant and Saponas, 2005] authors present MarioFit, which is an

application that aims at taking advantage of the widespread use of video

games among young people, to encourage them to do more physical activ-

ity. In fact authors propose a new way of gaming, in which users have an

active role, by physically interacting with the game. MarioFit allows users

to play the Nintendo game Super Mario Bros on a PDA, using the users

body movements as inputs. Authors study some research accelerometer

and compass data that led to the identification of six human movements

to use as input to the game: jumping, ducking, turning, walking, running,

and throwing. MarioFit also includes a social factor by means of a web

site, where users can compare their Mario scores and performances with

those of their friends.

In [Buttussi and Chittaro, 2010] authors present Monster & Gold, which

is a context-aware and a user-adaptive game for mobile phones that con-

siders several aspects like heart rate, fitness level, age, etc. to support and

motivate users during their outdoor running activity, in order to obtain

the best cardiovascular benefits. The proposed application uses Bluetooth
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pulse oximeter clipped on the user’s ear to get pulse data and the mobile

phone GPS to get the user’s position. Authors finally make two evalu-

ations, by means of some questioner, with two di↵erent groups of users,

each composed by eight males and six females, in order to infer how the

application improve the runners experience.

King et al. [King et al., 2013], starting from the consideration that often

adult people conduct a sedentary lifestyle, propose three behavior change

mobile apps to promote a regular physical activity and reduce sedentary

behavior based on three distinct motivational frames. The first app applied

an analytic motivational frame, based on social cognitive theory and self

regulatory principles of behavior change. The second app considers a social

frame that is based on social influence theory, while the third app is based

on an a↵ective motivational frame drawn from emotional transference to

an avatar, whose movements and behaviors directly reflects the physical

activity and sedentary levels of the user. Finally, another app has been

implemented to provide real time feedback to users of all three behavior

change apps using algorithms based on the national recommendations for

physical activity. The apps have been tested for eight weeks; results show

that the apps were useful to increase the average minutes of walking per

week and the general levels of physical activity and to decrease the average

time spent in front of the television.

In [Hamari and Koivisto, 2013], authors investigate on how social fac-

tors can influence the gamification field (which aims to develop services
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designed to provide game-like experiences to users, commonly with the

end-goal of a↵ecting user behavior). In particular the current study con-

siders data from a gamification application for physical activity called

Fitocracy. This work takes into account social influence, recognition, recip-

rocal benefit, network exposure, attitude and intentions to infer how social

motivations can predict the use of services that belong to gamification

field. The results of the proposed study show that social factors are strong

predictors for how gamification is perceived and whether the user intends

to continue using the service and/or recommending it to other users.

The work presented in this thesis, concerning with the social motivation

in the Human-Computer interaction field, di↵ers from the state-of-the-art

works because it favors also the social interactions before a user workout,

while the other existing applications allow to share the results of a workout

only a the end.
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Chapter 3

User Recommendation

3.1 Overview

Social media systems are “web-based services that allow users to (1) con-

struct a public or semi-public profile within a bounded system, (2) ar-

ticulate a list of other users with whom they share a connection, and

(3) view and traverse their list of connections and those made by others

within the system” [Boyd and Ellison, 2007]. Moreover, in their 2011 tu-

torial [Guy and Carmel, 2011], Guy et. al highlight that a social media

system is characterized by: (1) a user-centered design, (2) user-generated

content (e.g., tags), and (3) social networks and online communities.

Social bookmarking systems are a form of social media that allows users

to use keywords (tags) to describe resources that are of interest for them,
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helping to organize and share these resources with other users in the

network [Farooq et al., 2007]. The most widely-known example of social

bookmarking system is Delicious1.

These systems are characterized by an ever-growing amount of content

and users, that leads to two problems that arise in cascade.

Social interaction overload problem. Social interaction overload [Guy et al., 2013,

Simon, 1971] is a problem related to the huge amount of users and items

that each user can interact with. This leads to the scarcity of attention,

which does not allow to focus on users or items that might be interesting

for a user.

In order to filter information and select only the interesting items, in

the social media systems domain, in the last few years the research on

recommendation has brought to the development of a new class of systems,

named social recommender systems [Ricci et al., 2011]. These systems allow

to face the social interaction overload problem, by suggesting users or

items that users might be interested in.

Serendipity/Over-specialization problem. This problem arises from

the approaches used by recommender systems which usually suggest items

that have a strong match with the user profile; consequently the user al-

ways receives recommendations for items too similar to those that she/he

already considered and never receives suggestions for unexpected, sur-

1http://www.delicious.com
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prising and novel items. This limit of recommender systems, known in

the literature as “serendipity problem” or “over-specialization problem”,

worsens the user experience and does not allow the users to explore new

items and to improve her/his knowledge [Shani and Gunawardana, 2011].

The serendipity problem a↵ects both the content-based recommender sys-

tems [Lops et al., 2011] and the collaborative filtering approaches [Ziegler et al., 2005].

In [Shani and Gunawardana, 2011] authors highlight that:

• in the evaluation of a recommender system, the accuracy is important

but it is not enough. So, other metrics have to be considered to

evaluate a system;

• users should be able to increase their knowledge and to improve their

user experience by discovering new items; so, it is appreciate the in-

troduction of the diversity among recommendations [Lops et al., 2011];

• the design of a recommender system is strongly related to the aspects

that have to be evaluated;

Novelty and serendipity are two metrics that are gaining ever more at-

tention in the evaluation of a recommender system. Novelty measures how

many recommended items the user did not know about, while serendipity

measures how surprising the successful recommendations are; serendip-

ity can be seen as a way to diversify recommendations and to allow users

to discover new items that they did not know they wanted. The main
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di↵erence between a novel recommendation and a serendipitous recom-

mendation is that a recommendation is novel when the user might have

autonomously discovered the recommended item, while a recommenda-

tion is serendipitous when the user receives a recommendation that she/he

might not have discovered [Lops et al., 2011]. Furthermore, authors assert

that the definition of new metrics to evaluate those aspects “constitutes an

interesting and important research topic”.

Contributions. In this chapter a friend recommender system, which

operates in the social bookmarking domain, designed and developed to

face the social interaction and serendipity problems is presented.

In these systems, when a user adds another user as a “friend”, she/he

receives updates anytime a new resource is bookmarked by the friend.

Those resources should be novel, i.e. diverse from those already in her/his

user profile and should be interesting for the user. At the same time, the

accuracy of the friend recommendations is a fundamental property.

Therefore, the proposed system should:

• recommend friends with a high accuracy, i.e. users that are proved to

be interesting for each other;

• recommend friends whose bookmarks are novel and serendipitous,

i.e. bookmarks related to resources that the target user has not al-

ready considered and that are diverse enough from those available

in her/his user profile;
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The proposed solution is based on behavioral mining, i.e., the system

analyzes and exploits the user interaction with the content, in order to

filter and recommend only the users with the same interests. The proposed

form of mining takes into account only the tags and the resources shared

by the users, in order to be able to accurately recommend friends, whose

bookmarks can be novel and serendipitous for the target user.

The scientific contributions brought by this work are the following:

• for the first time ever a formal definition of a friend recommender

system that operates in a social bookmarking system is proposed;

• the first algorithm in literature that recommends friends in the social

bookmarking domain is proposed (other approaches in the literature

recommend people to follow but, as previously highlighted, this is a

di↵erent research topic);

• a study about how to mine content in this context, i.e., what infor-

mation should be used to produce the recommendations and which

importance should the di↵erent types of content have in the recom-

mender system is presented. This is done by observing the behavior

of users in their bookmarking activity.

• since in the literature it is known that there is no universal definition

of novelty and serendipity [Lops et al., 2011] and there is no other

works that recommend friends in the social bookmarking domain,
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a new definition of novelty and serendipity in this context are pro-

posed;

• a set of best practices and a critical discussion of the proposed sys-

tem are presented, in order to support the research community in

the development of a friend recommender system in the considered

domain.

The rest of the Chapter is organized as follows: Paragraph 3.2 presents

a formalization of a social bookmarking system and of the friend rec-

ommendation problem; Paragraph 3.3 describes the details of the friend

recommender algorithm presented in this PhD thesis. Starting from an

analysis of the user behavior in a social bookmarking system, the design of

a friend recommender system is presented with the algorithms that com-

pose it; in Paragraph 3.4 an analysis of novelty and serendipity in their

classic definitions is presented and a definition of novel and serendipitous

recommendation in the social bookmarking domain is proposed; Para-

graph 3.5 illustrates the conducted experiments and outlines main results;

Paragraph 3.6 presents a critical discussion of the proposed approach and

presents a set of best practices to develop a friend recommender system in

the social bookmarking domain; Paragraph 3.7 contains comments, con-

clusions and future work.
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3.2 Friend Recommendation in a Social Bookmarking

Systems

This Paragraph gives a formal definition of a social bookmarking system

and of a friend recommender system in this domain.

Definition 1 A social bookmarking system can be defined as a tuple Q = {U,R,T,A,C},
where:

• U, R, and T are sets of users, resources, and tags;

• A is a ternary relation between the sets of users, resources, and tags, i.e.,

A ✓ U ⇥ R ⇥ T, whose elements are the tag assignments of a user for a

resource;

• C is a binary relation between the users, i.e., C ✓ U ⇥ U, whose elements

expresses the connection among two users. The user social relations of a

user can be represented by means of a graph, in which each node represents

a user u 2 U and each edge c 2 C represents a connection among two users;

this graph will have an undirected edge if the users are connected as friends

and a directed edge if one user follows the other.

Definition 2 A friend recommender system in a social bookmarking is a function

f : U ⇥ U ! C, which allows to define if, given two users u 2 U and m 2 U,

there is a undirected connection c 2 C among them.



48 Chapter 3. User Recommendation

In this work an algorithms able learn the function f , which allows to

produce recommendations among two users is presented.

3.3 Mining User Behavior to Produce Friend Recom-

mendations

This section presents the friend recommender system developed in this

PhD thesis. An analysis of the user behavior in a social bookmarking

system (paragraph 3.3.1), which led to the design of the proposed rec-

ommender system (paragraph 3.3.2) is presented. In conclusion (para-

graph 3.3.3), the algorithms that compose the recommender system, are

presented.

3.3.1 User Behavior in a Social Bookmarking System

In the following, an analysis of the user behavior in a social bookmarking

system, from a friend recommendation point of view, is presented. In

particular, how the bookmarking activity of a user is related to that of the

others has been studied by analyzing a Delicious dataset, distributed for

the HetRec 2011 workshop [Cantador et al., 2011]. The dataset contains:

• 1867 users;

• 69226 URLs;
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• 53388 tags;

• 7668 bi-directional user relations;

• 437593 tag assignments (i.e., tuples [user, tag, URL]);

• 104799 bookmarks (i.e., distinct pairs [user, URL]).

By analyzing user profiles, it emerges that users had an average of

123.697 tags used to bookmark the resources, and an average of 56.132

bookmarked resources.

In order to be able to infer the possible connections among users, which

might lead to friend recommendations in this system, the number of com-

mon tags and resources between the users of the dataset have been com-

puted, obtaining the following results: the average number of common

tags among two users is 7.807, while the average number of common re-

sources among two users is 0.042. In particular, considering only the users

who have at least a common tag, the average number of common tags

for a couple of users increases to 10.417; while considering only the users

who have at least a common bookmarked resource, the average number of

common resources for each couple of users increases to 1.673.

From the conducted analysis is possible to infer some properties related

to the user behavior in a social bookmarking system, recapped below:

• the behavior of two users in a social bookmarking system is related

both by the use of the tags and by the use of the resources;
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• the use of tags represents a stronger form of connection (as also

proved in literature), with respect to the amount of common resources

between two users. This happens because the probability that two

users use the same tags is higher than the one to bookmark the same

resource, since a user classifies a resource with more tags (so in the

system there are more tags than resources) ;

• by comparing the number of common tags and resources with respect

to the number of all tags and resources, it emerges that the number

of common tags and common resources is much smaller than the

number of tags and resources used by each user (more precisely, 10.4

out of 123.7 tags, and 1.7 out of 56.1 resources).

This behavioral analysis has been one of the aspects that characterized

the design of the system, which is presented next.

3.3.2 System Design

The goal of the proposed work is to build a friend recommender system in

the social bookmarking domain. In its design, the following aspects were

considered:

(a) In [Gupta et al., 2013], authors highlight that Twitter is an “interest

graph”, rather than a “social graph”. Authors highlighted that the

analysis of such a graph su↵ers from scalability issues and, in order
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to contain the complexity of the recommender system, no user profile

information could be used to produce the recommendations. Also a

social bookmarking systems can be seen as an interest graph, since a

user can add as a friend or follow another user, in order to receive

her/his newly added bookmarks.

(b) Social media systems grow rapidly. This means that the amount of con-

tent added to a social media system and the user population increase at

a fast rate. A recommender system that operates in this context needs

to build accurate profiles of the users, which have to be up-to-date with

the constantly evolving preferences of the users.

(c) The analysis of the user behavior previously conducted showed that

both the tags and the resources are a form of connection among two

users. In particular, the number of common tags and resources between

users is a small subset of all the tags and resources bookmarked by the

users.

(d) As [Zhou et al., 2010] states, the tagging activity of the users reflects

their interests. Therefore, the tags used by a user are an important

source of information to exploit the interests of a user.

Considering the aspects mentioned above, a recommender system that

operates in the following way has been designed.
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Regarding point (a), in order to avoid the limitations due to the graph

analysis in this domain, the proposed system analyzes only the content of

the users (i.e., the tagged resources). So, the designed system belongs to

the class of recommender systems which analyzes the interactions of the

users with the content of the system.

Regarding point (b), in order to e�ciently and quickly update the

preferences of the users, the system uses algorithms and metrics quickly

computable in order to keep the user profiles up-to-date. Therefore, a

friend recommender system should mine the user behavior (i.e., the inter-

action of the users with the content), more than the content itself. In fact,

the use of metrics like TF-IDF gives a structured form to the resources, but

on the other hand they would significantly increase the complexity of the

system. Since social bookmarking systems grow rapidly and continuously,

content mining would lead to have outdated profiles, so this alternative is

discarded in design and architecture of the proposed system;

Regarding point (c), the proposed work is based on the idea that the

analysis of users with a similar behavior (i.e., users who have a large

amount of common tags and common resources), is a good approach to

produce accurate recommendations. Since from the analysis of the users

behavior emerged that in a user profile there are many tags and many

resources that have not been used by the other users, the produced recom-

mendations lead to novel and serendipitous bookmarks.
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Regarding point (d), the theory that user interest is reflected by the

tagging activity was embraced; furthermore, this theory led to the intuition

that users with similar interests make a similar use of tags and resources.

In the follows, the main steps performed by the system in order to

produce recommendations, are presented.

3.3.3 Algorithms

Figure 3.1 illustrates the architecture of the proposed system. The main

components of the proposed architecture are:

• Tag-based profile learner;

• Resource-based profile learner;

• Tag-based profile association computation;

• Resource-based profile association computation;

• Filtering component;

Given a target user ut 2 U, the system recommends the users with a

high tag-based user similarity and a high percentage of common resources.

Now the main five steps (each of them performed by a component of the

architecture showed in Fig. 3.1) performed by the system are presented:

1. Tag-based user profiling. This step, performed by the Tag-based profile

learner component, builds a user profile based on the tag assignments
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Figure 3.1: Architecture of the friend recommender system
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of each user, i.e. by considering the frequencies of the tags used by a

user.

2. Resource-based user profiling. Given the tag assignments of each user,

this step, performed by the Resource-based profile learner component,

builds a user profile, based on the resources bookmarked by a user.

3. Tag-based similarity computation. The first metric, calculated among

a target user ut and the other users, is based on the tag-based user

profile. Pearson’s correlation is used to derive the similarity.This step

is performed by the Tag-based profile association computation component.

4. User interest computation. The Resource-based profile association compu-

tation component computes the second metric, i.e. the interest of a user

towards another user. This metric is represented by the percentage

of common resources among them.

5. Recommendations selection. This step, performed by the filtering com-

ponent, recommends to ut the users with both a tag-based and a user

interest higher than a threshold value.

The steps previously presented are recapped in Algorithm 1.

In the following, a detailed description of each step is presented.
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Algorithm 1 Friend recommender system
1: Let Q = {U,R,T,A,C} be a social bookmarking system;

2: Let U = {ui}ni=1 be the set of all users;

3: Let S be the candidate set of users to recommend;

4: for i = 1 . . . n do

5: u = U[i] . User 1

6: for j = 1 . . . n do

7: if U[i]! = U[ j] then

8: m = U[ j] . User 2

9: Let �!u1 be the Tag-based user profile for the user u;

10: Let �!m1 be the Tag-based user profile for the user m;

11: Let �!u2 be the Resource-based user profile for the user u;

12: Let �!m2 be the Resource-based user profile for the user m;

13: sim = ts(�!u1,
�!m1) . Eq. 3.3

14: user � interest1 = ui(�!u2,
�!m2) . Eq. 3.5

15: user � interest2 = ui(�!m2,
�!u2) . Eq. 3.6

16: if ((sim > ↵ ) && ((user � interest1 > �)||(user � interest2 > �))) then

17: S.add(u,m) . Eq. 3.7

18: end if

19: end if

20: end for

21: end for
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Tag-based user profiling

This step builds a user profile, based on the tag assignments of a user,

considering the frequency of each used tag. Given the sets defined in

Section 3.2, the tag assignments of a user u can be considered as follows:

Definition 3 Let A(u) ✓ A, be the subset of A, whose elements are the triples

that contain a user u 2 U, i.e., 8r 2 R ^ 8t 2 T, (u, r, t) 2 A) (u, r, t) 2 A(u).

Given a tag t, all the resources bookmarked by the user u with the tag

t are considered:

Definition 4 Let A(u, t) ✓ A(u), be the subset of A(u), whose elements are all

the triples that contain a tag t 2 T used by a user u 2 U, i.e., 8r 2 R, (u, r, t) 2
A(u)) (u, r, t) 2 A(u, t).

A tag based user profile can be built, according to her/his use of the

tags, by considering the relative frequency of each tag, as follows:

vuj =
#A(u, tj)

#A(u)
(3.1)

Equation 3.1 estimates the importance of a tag tj 2 T in the profile of

a user u 2 U, by defining the relative frequency as the number of times tj

was used, normalized with respect to the number of tag assignments of u.

A tag-based user profile can be implemented by representing each user

u 2 U as a vector�!vu = {vu1, vu2, ..., vuk}, where each element vuj is the relative

frequency previously defined and k is the number of tags in the system.
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Resource-based user profiling

This step builds a resource based user profile, i.e. a profile based on the

resources bookmarked by each user. A user can be profiled, according to

her/his bookmarked resources, by considering the fact that she/he book-

marked a resource (i.e., she/he expressed interest in it).

Precisely, this profile can be implemented by representing each user

u 2 U by means of a binary vector �!vu = {vu1, vu2, ..., vun}, which represents

the resources tagged by each user. Each element vuj is defined as follows:

vuj =

8>><>>:
1 if 9t 2 T | (u, rj, t) 2 A(u)

0 otherwise
(3.2)

where n is the number of resources in the system. Equation 3.2 estimates

the interest of a user u in a resource rj with a binary value, equal to 1 in

case rj was bookmarked by u, and 0 otherwise.

Tag-based Similarity Computation

Since in [Zhou et al., 2010] authors highlight that the interests of the users

are reflected in their tagging activities, the proposed system computes the

similarity among two tag-based user profiles with the Pearson’s correlation

coe�cient [Pearson, 1896]. As proved by Breese et al. [Breese et al., 1998],

this metric is the most e↵ective for the similarity assessment among users.



3.3. Mining User Behavior to Produce Friend Recommendations 59

Let (u,m) be a pair of users represented respectively by vectors �!vu and
�!vm. The recommender algorithm computes the tag-based user similarity ts

as defined in Equation 3.3:

ts(u,m) =

P
j⇢Tum(vuj � vu)(vmj � vm)

qP
j⇢Tum

(vuj � vu)2
qP

j⇢Tum
(vmj � vm)2

(3.3)

where Tum represents the set of tags used by both users u and m and

values vu and vm represent, respectively, the mean of the frequencies of

user u and user m. The tag-based similarity compares the frequencies of

all the tags used by the considered users. The similarity values range from

1.0, that indicates complete similarity, to �1.0, that indicates complete

dissimilarity. Herlocker et al. [Herlocker et al., 1999] demonstrated that

negative similarities are not significant to evaluate the correlation among

users, so in the proposed algorithm only positive values are considered.

User interest computation

Given a pair of users (u,m), in this step, two metrics based on the resources

tagged by users are computed. The former, ui(u,m), represents the interest

of the user u towards user m, while the latter, ui(m,u), represents the interest

of the user m toward the user u.

The set of resources bookmarked by each user can be defined as follows:
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Definition 5 Let R(u) ✓ R be the subset of resources used by a user u 2 U, i.e.,

8r 2 R, (u, r, t) 2 A(u)) r 2 R(u).

While the resources in common among two users can be defined as

follows:

Definition 6 Let D(u,m) = R(u) \ R(m) be the subset of resources bookmarked

by both user u and user m.

Given the above definitions, the user interest of a user u in a user m can

be estimated as:

ui(u,m) =
#D(u,m)

#R(u)
(3.4)

As highlight in 3.5, the level of interest of a user u in a user m is estimated

as the number of resources bookmarked by both the users, divided by the

number of resources bookmarked by user u. This means that the interest

of the user m in user u depends on the number of resources bookmarked

by m (i.e., when calculating ui(m,u), the denominator would be #R(m)).

User interest ui previously defined, can be implemented, by using the

two resource-based user profiles �!vu and �!vm, as follows:

ui(u,m) =

Pn
j=1 vujvmj
Pn

j=1 vuj
⇤ 100 (3.5)
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ui(m,u) =

Pn
j=1 vujvmj
Pn

j=1 vmj
⇤ 100 (3.6)

where n is the total number of resources of the system.

Recommendations selection

Once the tag-based similarities and the user interests have been computed

for each pair of users, the recommender system choses the candidate set

S(ut), i.e. a set of users to recommend to the target user ut by selecting:

• the ones that have a tag-based user similarity higher than a threshold

value ↵ (i.e., ts > ↵);

• the ones that have a user interest (at least one of the two computed)

higher than a threshold value � (i.e., ui > �).

Definition 7 Given a target user ut, the candidate set of users to recommend

S(ut) can be defined as

S(ut) = {ui 2 U |ts(ut,ui) > ↵&& (ui(ut,ui) > �) k (ui(ui,ut) > �)} (3.7)
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3.4 Novelty and Serendipity in a Friend Recommender

System

Novelty and serendipity are two metrics used to evaluate a recommender

systems. Precisely, novelty measures how many recommendations in-

clude items that the user did not know about [Konstan et al., 2006] while

serendipity measures “how surprising the successful recommendations are”

[Shani and Gunawardana, 2011]. Serendipity can be seen as a way to in-

troduce diversification in the recommendation, in order to allow users to

discover new items that they did not know they were interested in and to

improve their knowledge.

A serendipitous recommendation is, by definition, also novel, while the

opposite is not true, i.e. a novel recommendation might not be serendipi-

tous.

As mentioned in the Introduction, the development of new metrics

to evaluate novelty and serendipity represents an interesting research

topic [Lops et al., 2011]. The recommender system presented in Section 3.3

is the first that operates in the social bookmarking domain, consequently

approaches developed in order to evaluate the novelty and the serendipity

of a recommender system in such domain do not exist. Here, a definition of

novelty and serendipity of the resources bookmarked by the recommended

friends is given, and based on those definitions, the metrics that allow to

compute the novelty and the serendipity of a friend recommender system
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are proposed in Section 3.5.

Definition 8 A resource r 2 R can be considered novel for a user u 2 U i↵

r < R(u). Let N(u) be the set of novel resources for the user u.

At the state of the art, several studies proved that the serendipity of

a resource can be computed by measuring its distance from the items previ-

ously considered by the target user [Lops et al., 2011, Shani and Gunawardana, 2011,

Iaquinta et al., 2008, Zhang and Hurley, 2008]. As already mentioned, the

proposed system is able to produce recommendations by mining user

behavior. When a user is recommended as a friend, it is possible to deter-

mine if a resource she/he bookmarked is serendipitous for the target user,

by computing the distance between the resource and the user behavior. So,

the distance between a recommended resource and the resources already

bookmarked by the target user is based on the tags used to bookmark the

resources.

In order to define the concept of serendipitous resource for a given user,

first the set T(r) of tags used for a specific resource r has to be defined:

Definition 9 Let T(r) = {t 2 T|9(u, r, t) 2 A} be the set of tags used for a given

resource r.

Given the above definition, the similarity sim(ri, rj) between two re-

sources ri and rj can be defined as follows:
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sim(ri, rj) =
#(T(ri) \ T(rj))
#((T(ri) [ T(rj))

(3.8)

Where:

• T(ri)\ T(rj) represents the set of common tags used to bookmark the

resources ri and rj;

• T(ri)[T(rj) represents the set that contains all tags used to bookmark

the resources ri and rj;

To better understand the computation of the resource similarity sim(ri, rj),

each resource r can be represented as a k-dimensional binary vector t =

{t1, t2, ..., tk}, where k is the number of tags used in the system and each

value ti of the vector is computed as follows:

ti =

8>>><>>>:
1 if ti 2 T(r)

0 otherwise
(3.9)

Table 3.4 allows to present an example of how the resource similarity

can be calculated. Resource ri was bookmarked with tags t1 and t4, while

resource rj was bookmarked with tags t2 and t4. So, T(ri)\ T(rj) = {t4} (the

cardinality of the set is 1), T(ri)[T(rj) = {t1, t2, t4} (the cardinality of the set

is 3), and sim(ri, rj) = 1
3 .
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t1 t2 t3 t4

T(ri) 1 0 0 1

T(rj) 0 1 0 1

Table 3.1: Example of the vectors used to calculate the resource similarity

Starting from Equation 3.8 a resource r 2 R can be defined as serendip-

itous for a user u 2 U, as follows:

Definition 10 A resource ri 2 R can be considered serendipitous for a user u 2 U

i↵ ri < R(u) ^ 8ru 2 R(u), sim(ri, ru) < 0.5. Let B(u) be the set of serendipitous

resources for the user u.

3.5 Experimental Framework

This paragraph presents the framework used to perform the experiments.

The dataset used and the data preprocessing are first described. Then,

the metrics used for the evaluation are presented. The last part of the

paragraph presents the experimental setup and the obtained results.

3.5.1 Dataset and pre-processing

Experiments were conducted on a Delicious dataset, distributed for the

HetRec 2011 workshop [Cantador et al., 2011], which was presented in the

analysis of the user behavior (paragraph 3.3). In particular, now the content
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of the dataset can be associated to the sets previously defined:

• the set of users is the set U previously defined;

• the set of URLs is the set R previously defined;

• the set of tags is the set T previously defined;

• the set of user relations is the relation C previously defined;

• the set of tag assignments is the relation A previously defined;

• the set of bookmarks is the union of the subsets R(u) previously

defined.

The dataset has been pre-processed, in order to remove the users that were

considered as “inactive”, i.e., the ones that used less than 5 tags or less then

5 URLs.

3.5.2 Metrics

As highlighted throughout all the chapter, the goal of this work was to

develop a system whose accuracy was not the only objective that had to

be pursued. Now the other metrics used for the performance evaluation

of the system are presented.
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Precision

In order to measure the accuracy of the system, the usage of the recom-

mendations (i.e., which recommended friends are actually friends with the

target user) has been evaluated, by measuring its precision.

Definition 11 Let W be the total amount of recommendations produced by the

system, i.e., W = [S(ut),8ut 2 U. This set represents the positive outcomes, i.e.,

the sum of the true positive and the false positive recommendations.

Definition 12 Let Z be the amount of correct recommendations produced by the

system, i.e., Z ✓ W = {(u,m)|(u,m) 2 W ^ (u,m) 2 C}. So, Z represents the

subset of recommendations for which there is a relation (i.e., a friend correlation)

in the dataset. This subset represents the true positive recommendations.

Starting from the previously defined sets W and Z, the precision of the

recommender system can be computed as the number of correct recom-

mendations, divided by the number of recommendations produced:

precision =
true positive

true positive + f alse positive
=

#Z
#W

(3.10)

Percentage of Satisfied Users

This metric evaluates the system from a similar (but di↵erent) point of view

with respect to the precision of the system. In fact, precision measures for
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how many couples of users a correct recommendation was produced, while

the percentage of satisfied users measures for how many individual users a

correct recommendation was produced.

Definition 13 Let X ✓ U be the subset of users for which a recommendation was

produced, i.e., X = {u 2 U|9(u,m) 2W}

Definition 14 Let Y ✓ U be the subset of users for which a correct recommenda-

tion was produced, i.e., Y = {u 2 U|9(u,m) 2 Z}

The percentage of users satisfied by the recommendations can be com-

puted by dividing the set of users for which a correct recommendations

was produced, i.e. Y, by the set of users for which a recommendation was

produced, i.e. X, as follows:

% satis f ied users =
#Y
#X
⇤ 100 (3.11)

Novelty and Serendipity

The friend recommender systems presented is based on a mining of the

user interests. When a friend recommendation is produced, at the same

time also the content of the recommended users is recommended (i.e., their

bookmarks).

The novelty for a set of recommendations can be computed as follows:
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Novelty =
# [N(u)
# [ R(u)

,8u 2 Y (3.12)

As shown in 3.12, the novelty is computed as the sum of novel resources

recommended to each user, divided by the sum of resources recommended

to each user. Novelty values range from 0 (all the recommended resources

were already been considered by target users) to 1 (all the recommended

resources were novel).

The serendipity for a set of recommendations, instead, is computed as

shown in Equation 3.13.

Serendipity =
# [ B(u)
# [ R(u)

,8u 2 Y (3.13)

As Equation 3.13 shows, serendipity is computed as the sum of serendip-

itous recommended resources to each user, divided by the sum of recom-

mended resources to each user. Also serendipity values range from 0 to

1.

To calculate novelty and serendipity only the bookmarks of the recom-

mendations that belong to the set of true positives Z have been considered.

In fact, if the novelty of the bookmarks for all the users were computed(no

matter is the recommendation was correct of not), they might be new, but

also worthless [Shani and Gunawardana, 2011].
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3.5.3 Strategy

In the current study three di↵erent experiments were performed. The first

aims to make an evaluation of the accuracy, by computing the precision of

the system with di↵erent threshold values. The second experiment, makes

an evaluation of the satisfied users in the produced recommendations, given

a precision value. The third experiment is an evaluation of novelty and

serendipity of the bookmarks shared by the friends.

In order to evaluate the accuracy, the state-of-the-art policy proposed

in [Zhou et al., 2010] has been implemented and used as reference system.

Zhou et al. [Zhou et al., 2010] implemented a tag-based user recommen-

dation framework and proved that tags are the most e↵ective source of

information to produce recommendations. The performances of the pre-

sented system with respect to that of the reference one (which uses only

tags i.e., ui = 0), in terms of precision were compared. Supported by the

thesis that the use of only one source of data leads to better performances,

a second reference system, which considers only the user interest (i.e.,

ts = 0), was considered.

During the analysis of the performances, all the values of the parame-

ters ↵ and � between 0 and 1, using a 0.1 interval, were evaluated.

3.5.4 Experiments

The details of each performed experiment and its results are now presented.
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Evaluation of the Accuracy

Given a target user ut, the system builds a candidate set, S(ut), of users

to recommend. For each recommended user ui 2 S(ut), the bi-directional

user relations in the dataset (i.e., if (ut,ui) 2 C) have been analyzed, to

check if there was a connection between the target user ut and the recom-

mended user ui (i.e., if the users are friends). This experiment analyzes the

performances of the system in terms of precision, given di↵erent values of

↵ and �. The main goal of the current experiment is to analyze how the

performances of the system vary as the similarity between users grows.

The obtained results are illustrated in Fig. 3.2 and Fig. 3.3.

Fig. 3.2 shows the trend of the precision values with respect to the

user interest ui. The figure contains a line for each possible value ↵ of

the tag-based user similarity ts. The plot shows that the precision values

grow proportionally to the ui values. This means that the more similar are

the users (both in terms of tag-based similarity and of user interest), the

better the system performs. However, for ui values higher than 0.5 no user

respects the constraints, so no recommendations can be produced. This

characteristic confirms the analysis of the user behavior previously done,

which highlighted that the amount of common resources among two users

is low.

Fig. 3.3 shows the same results from the tag-based user similarity point

of view. The figure presents the precision values, with respect to the tag-
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Figure 3.2: Precision of the system with respect to user interest ui, for each value
of the ts user similarity

based user similarity ts; In this plot, each line shows the results for a given

value �of the user interest ui. The obtained results are similar to those of the

previously presented graph, i.e. also from this perspective, the precision

grows proportionally to ts.

The blue lines in Fig. 3.2 and Fig. 3.3 show the results of the reference

systems, where ts = 0 and ui = 0. From the plotted results, it is clear that

the two metrics combined improve the quality of the recommendations

with respect to the cases where only one is used. These results show that,

even if the analysis of the user behavior previously presented highlighted

that the average number of resource in common among two users is very

small, to consider them through the metric ui is important, in order to

compute accurate friend recommendations.
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Figure 3.3: Precision of the system with respect to tag-based user similarity ts, for
each value of the ui user similarity

Evaluation of the Satisfied Users

The second experiment aims at analyzing the trend of the satisfied users,

with respect to the precision values. So, for each precision value obtained

in the previous experiment, the percentage of satisfied users is computed

as shown in Equation 3.11.

In order to present the results, Fig. 3.4 reports just a subset of precision

values. These values have been selected by dividing the range [0 - 1] of

possible precision values into intervals of 0.1 (i.e, [0 - 0.1), [0.1 - 0.2), ...,

[0.9 - 1]) and assigning each previously computed value of precision to

the right interval. From each interval, the record that corresponds to the

precision value that led to the maximum percentage of satisfied users has

been selected. The reason why there are no values for the intervals [0.2 -
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0.3) and [0.4 - 0.5), is that in the previous experiments there are no values

of ↵ and � that led to precision values inside those intervals.

Fig. 3.4 shows that the percentage of satisfied users grows as the

precision grows. Given that also the previous experiments highlight that

the more similar the users were, the higher the precision was, it is possible

to infer that more similar the users are (both in terms of tag-based similarity

and of user interest), the higher is the likelihood that users are satisfied by

the recommendations.

These results show an interesting property of the presented recom-

mender system. In fact, even if the precision values are split into intervals

that cover the same range (i.e., 0.1), there are two of them (i.e., [0.6 � 0.7)

and [0.8� 0.9)) in which the percentage of individual users satisfied by the

recommendations significantly increases. So, this experiment, by showing

the impact of precision on individual users, is very useful when tuning the

parameters of the system.

Evaluation of Novelty and Serendipity

This experiment aims to evaluate the novelty and serendipity of the pro-

posed recommender system, by using the metrics previously presented.

Also this experiment is conducted on a subset of cases and the evaluation

has been done on the intervals previously considered.

Table 3.2 shows the Novelty and Serendipity computed values. Results
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Figure 3.4: Percentage of satisfied users for di↵erent values of precision

highlight that both Novelty and Serendipity are inversely proportional

to the precision. This means that the number of novel recommended

bookmarks and the number of serendipitous recommended bookmarks

decrease as the precision of the recommendations grows. However, results

show that both novelty and serendipity decrease at a much lower rate,

with respect to the increase of the prediction. So, the proposed system is

able to produce novel and serendipitous recommendations even when its

accuracy is high.
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Table 3.2: Novelty and Serendipity

Interval Precision Novelty Serendipity

[0.0 � 0.1) 0.03 0.96 0.92

[0.1 � 0.2) 0.12 0.93 0.81

[0.2 � 0.3) - - -

[0.3 � 0.4) 0.36 0.90 0.65

[0.4 � 0.5) - - -

[0.5 � 0.6) 0.53 0,89 0,54

[0.6 � 0.7) 0.65 0.83 0,69

[0.7 � 0.8) 0.75 0.74 0.59

[0.8 � 0.9) 0.88 0.79 0.61

[0.9 � 1.0) 0.97 0.79 0.53

[1.0] 1.00 0.67 0.47

3.6 Discussion

Now, a summary of the main results related to the proposed system is

given, in the form of a set of best practices aimed at a researcher or a

software designer involved in real world scenarios where friend recom-

mendations have to be produced in the social bookmarking domain.

Some questions arise when approaching the design of the system:

• given a social bookmarking system, composed by tagged resources
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and a social network/interest graph that connects the users, which

source(s) of information should be exploited when producing the

recommendations?

• if content is exploited, what type of mining should be done on it?

• how can a system be designed to produce recommendations that are

accurate but also novel and serendipitous?

• is there a source of information which is not useful when building

the recommendations?

Some general answers, coming from the results of the experiments, are

the following:

• The state-of-the-art highlighted that the mining of the interest graph

leads to scalability issues (see Sections 2 and 3.3.2). Therefore, friend

recommendations in the discussed domain should be built only by

analyzing which resources each user bookmarked and with which

tags. The experiment presented in 3.5.4 confirms that the mining of

the resources and the tags leads to accurate friend recommendations;

• In the social bookmarking domain it is important to perform a mining

of the behavior. It is known that social bookmarking systems grow

continuously and at a fast rate. So, in order to quickly update user

preferences (hence, the user profile) and follow the interests of the
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users, a friend recommender system that operates in this domain has

to analyze how the users bookmarks the resources (i.e., with which

tags and with which frequency), instead of analyzing its content,

which would strongly increase the complexity of the recommender

system. The results reported in 3.5.4 and 3.5.4 report that this type of

mining is strongly e↵ective when producing friend recommendations

in this context.

• In order to produce friend recommendations that lead to novel and

serendipitous resources for the user, a system should be able to infer

similarities among users, but also endorse, in the filtering, the users

who have a subset of bookmarked resources and tags who are diverse

from those considered by the user. Therefore, a friend recommender

system that operates in this context should mine the common content

among the users, without adopting notions of similarity among tags

or resources. In other words, a mining that recommends a user if

its contents or tags are similar to those of the target user should be

avoided, in order to select only the users with a similar bookmark-

ing behavior. Since in the behavioral analysis conduced in 3.3.1 has

been highlighted that the amount of common tags and resources is

relatively small, but the experiments confirm that accurate recom-

mendation can be produced, the tags and resources not in common

with the other users leave space for the recommendation of novel
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and serendipitous resources.

• In order to produce accurate recommendations, both a behavioral

mining of the use of tags and resources is necessary. Though the

proposed behavioral analysis (see 3.3.1) showed that the amount of

resources in common is very small and the proposed system design

(see 3.3.2) highlighted that in the literature only tags are consid-

ered, the reported experiments confirm that both tags and resources

represent important sources of information when producing friend

recommendations in this domain (see 3.5.4 and 3.5.4).

There would be some cases that worth considering:

• It is known that graph mining might lead to complexity and scal-

ability issues in this context, but it might be useful when a user is

new in the system so she/he has a little amount of resources and tags

in her/his profile. Since the proposed system works with common

resources and tags, it presents limitations in this case.

• If the resources and tags used by a user are di↵erent from those use

by the others, she/he might not receive recommendations. In other

words, the diversity exploited by the proposed system to produce

novel and serendipitous recommendations might become a limita-

tion, if it is not also associated to resources in common with the other
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users. Also in this context, graph mining might be useful to produce

recommendations.

3.7 Contributions and Future Work

This chapter presented a system able to produce friend recommendations

by performing a behavioral mining of the users in a social bookmarking

system. Precisely, the proposed system considers the frequency of the tags

and which resources each user bookmarked, in order to select only the users

with similar profiles. The analysis of the user behavior highlighted that

the amount of common tags and resources between two users is limited

with respect to the amount of tags and resources bookmarked by each

user. The characteristic that, given a user, a large amount of resources was

not considered by the others, allows to design and implement a friend

recommender system able to suggest friends with a high accuracy and that

allowed users to come across novel and serendipitous bookmarks.

Furthermore, in the literature it is known that the definition of metrics

to evaluate novelty and serendipity in a recommender system is an open

research problem. In this chapter, new metrics that could be applied to

considered application domain and to the behavioral mining used to build

the recommendations, were proposed.

The reported experiments evaluated the accuracy in terms of precision

and results highlighted the capability of the system to build recommen-
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dations with an increasing accuracy, as the similarity among users grows.

Moreover, an evaluation of the capability of the system to suggest friends

whose bookmarks are novel and serendipitous is presented and results high-

light that even when a system achieves a high accuracy, it is still able to

producing novel and serendipitous recommendations.

Future work will be focused on adding a graph mining component

to the proposed system, in order to be able to produce recommendations

also in the previously highlighted cases, in which users cannot receive

recommendations.
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Chapter 4

Tag Recommendation

4.1 Overview

The development of the Web 2.0 led to a quick growth in the amount of

data available online and also changed the way people face the WWW.

In fact users have become active, uploading and sharing content of any

type. The huge amounts of data can create some di�culties to classical

techniques to categorize and index data, so researchers realized that it may

be useful to support classical systems with Collaborative Tagging Systems.

These systems are web based applications that allow a community of

users to assign keywords (tags) to a given resource. Tagging does not

require specific skills, so these systems had a rapid di↵usion.

Nowadays, several social media systems are developed as tagging sys-
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tems. Famous examples include Del.icio.us1, Flickr2, Last.fm33, CitULike4.

Users use tags for di↵erent tasks: search, navigation, resource clas-

sification and serendipitous browsing obtaining a immediate benefit. As

highlighted in the Chapter 1, Collaborative Tagging systems can be a↵ected

by some linguistic and semantic limitations like synonymy and polysemy

(same term with di↵erent meanings). In order to limit these problems,

most Collaborative Tagging System include a Tag Recommender System

(TRS) [Guy and Carmel, 2011] that aims to help users finding appropriate

tags, both during the search activity, in order to enhance the chances to find

a given resource, and during the tagging activity in order to limit problems

due to the freedom in the use of tags and consolidate the vocabulary across

users.

The Tag Recommendation problem can be formally described as fol-

lows: let u be a user of the system and let r be a resource, the goal is to predict

the set Tur of tags that u will assign to resource r [Jäschke et al., 2012].

In order to simplify the tag space visualization, many TRSs build clus-

ters of related tags. Recently, several approaches have been proposed to

cluster tags. When a user puts a resource in a tagging system, an association

between the resource and the tags used to classify that resource is created.

If two tags are used to classify the same resource (tags co-occurrence), an

1http://delicious.com/
2http://www.flickr.com
3http://last.fm
4http://www.citeulike.org
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association between those two tags is created. Tags associations are used

to cluster together all the related tags in the tagging system. Other works

in the literature do not exploit the potential source of information coming

from monitoring users search activity performed inside the tagging sys-

tem. Therefore, associations between tags and resources are static, since

they are created only when resources are uploaded. Consequently, if a re-

source is associated to a misleading tag, this misleading association would

a↵ect the performances of the system.

This chapter presents RATC (Robust Automated Tag Clustering), an

extension of the approach described in [Boratto et al., 2009].

Di↵erently from the previous work, the contribution to the social rec-

ommender systems domain and the results of a new set of experiments,

that aims at analyze the structure of each cluster, are presented.

RATC exploits the user behavior, by monitoring the user activity in

the search engine of a tagging system, in order to infer implicit feedbacks

provided by users. Every time that a user finds a relevant resource during

his search activity, a feedback is collected and used to dynamically update

associations between resources and tags. Then, from the tag-resources

associations, the system is able to infer tag-tag associations, by means of

a standard correlation measure, and those associations are used to build

clusters of strongly related tags. This clusters may be used in order to

recommend novel tags to the user in di↵erent phases: when a user put

a new resource into a social web application to help her/him classifying
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that resource, or during the search activity to facilitate the retrieval of the

searched resource. The results obtained have been compared with those of

a classic tag clustering approach [Begelman et al., 2006] and show an im-

provement in the capability to cluster strongly related tags. The proposed

tag recommender system, which operates in social environments, brings

several contributions with respect to the state-of-the-art systems both to the

tag clustering research area and to the tag recommender systems research

area. As already mentioned it is able to update tag-resources associations,

and then tag-tag associations, monitoring the user activity, promoting in

this way the real semantic relations among tags and penalizing the mis-

leading ones. In literature no work in the tag clustering area monitors the

user behavior in order to update associations between tags. The ability to

solve the misleading resource classification problem, make the proposed

system “robust”. In fact, as defined in [O’Mahony et al., 2004], Robust-

ness is the capability of an algorithm to remain stable in presence of fake

information, usually specifically added to influence its quality.

About the social recommender systems area, the existing systems, that

operate with tags, do not use clustering to produce the recommendations

and this is a limitation. In fact, in a social web scenario, where everything

evolves very quickly and the amount of content grows continuously, a

form of unsupervised clustering is a very simple and strongly e↵ective

technique to produce associations between similar items. Moreover, the

proposed system produces recommendations without using neither the
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user profile nor the content of the resource, so it is not a↵ected by the well

known Cold Start Problem, i.e., if a user is new or a resource is not similar

to any of the existing resources, no tag can be recommended to the user.

4.2 Method

As previously mentioned, the proposed approach performs a clustering of

tags in order to produce recommendations. In the following, the meth-

ods adopted for the cluster task and then the methods adopted in the

recommendation task are presented.

The four main steps performed by RATC can be recapped as follows:

• Tag-Resource association creation: When a new resource is up-

loaded in the system, an association between the resource and the

tags used to classify it, is created.

• Dynamic Tag-Resource association evaluation: The activity of the

user in the system is monitored and exploited, in order to update the

existing Tag-Resource associations and to create the new ones.

• Tag-Tag association creation and quantification: Tag-Resource as-

sociations are used to build tag-tag associations. Then, a similarity

between tags is computed by means of the cosine similarity and the

result of this step is a weighted graph, named tag similarity graph, in
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which the nodes represent tags and the edges represent the similarity

between tags.

• Clustering: The algorithm proposed by [van Dongen, 2000] is used

to infer clusters of tags.

4.2.1 Tag-Resource association creation

A tagging system can be defined as a web application that allow users to

classify resources by means of keywords called tags. A tagging system is

represented as a graph composed by:

• a set T of tags t;

• a set R of resources r;

• a set E : (T ⇥ R) of weighted edges that represent the Tag-Resource

associations. The weight of an edge is proportional to the number of

times that a given tag has been used to classify a given resource.

When a user uploads a resource in the Tagging System, she/he classifies

it with tags, so tag-resource associations are created.

4.2.2 Dynamic Tag-Resource association evaluation

When a user performs a search in a classical tagging system, this one

usually retrieves a ranked list of resources, related to the search tags, based
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Figure 4.1: An example of a tagging system
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on tag-resources associations. A limit of many state of the art tagging

systems is that they create Tag-Resource associations only on upload time,

i.e., when the resources are uploaded in the system, while updating this

type of information can improve the performances of the system. In this

work an algorithm that exploits the user feedbacks, in order to di↵erentiate

correct associations from noisy associations is adopted. Precisely, each Tag-

Resource association has a counter (a weight) that indicates how many

times a tag has been used to classify a resource; when a user, after a

tag-search task, selects a given resource, the counter of the considered Tag-

Resource association is incremented. Naturally, several resources may be

related to the same tag; the strength of the associations between tags and

resources depends on the behavior of the users. With this approaches all

the noisy associations between misleading tags and resources will receive

a poor attention. All Tags-Resources associations (i.e., the weights) can be

represented in a matrix W = {wrt}, where wrt is the weight between the

resource r and the tag t.

For example, given a tagging system like that represented in Figure

4.1, where rectangular nodes represent tags and round nodes represent

resources and the connections between rectangular nodes and round nodes

represent the weighted edges, the respective matrix W will be like that

represented in Figure 4.2. Given the represented matrix, suppose that a

user performs a tag based search operation using the tag “shot”; the system

retrieves as search results the resources “Kart crash” and “Archery”. At
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Goal Goal Goal Kart Archery

action of action of action of Crash

player 1 player 2 player 3

soccer 3 3 2 0 0

goal 1 3 2 2 0

shot 0 0 0 2 2

arrow 0 0 0 0 2

arc 0 0 0 0 2

Figure 4.2: Tag-Resource Matrix W

this moment, if the user selected the ”Archery“ resource, the correspondent

association would be updated to the value 3.

4.2.3 Tag-Tag association creation and quantification

Let vi be the vector that represents the associations among a tag i and its

related resources (represented by a row of the table in Figure 4.2) and vj

the vector of associations among a tag j and its related resources. The

similarity Sij between the tag i and the tag j can be computed by means of

the cosine similarity:

sij = cos(vi, vj) =
vi · vj

kvik ⇥ kvjk
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The similarities among tags are then represented with a directed weighted

graph, called tag similarity graph. An example of this graph based on the

previous tagging system and Tag-Resource Matrix examples (Figure 4.1

and Figure 4.2) is reported in Figure 4.3 (note that the values of the asso-

ciations in the figure have been calculated considering the whole tagging

system).

Figure 4.3: Tag similarities graph

4.2.4 Clustering

The tag clustering task adopts the MCL (Markow Clustering algorithm)

algorithm [van Dongen, 2000], a community detection algorithm that con-

siders the similarity between vertex in a simple graph, in order to build

clusters. The basic idea of the algorithm is that the longest path between

nodes that belong to the same cluster is relatively short, while the longest

path between nodes that belong to di↵erent clusters is high. Consequently,
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using a random walk algorithm a movement intra-cluster is more di�cult

with respect to a movement inter cluster. The MCL algorithm runs a ran-

dom walk through the graph so, if a hypothetical random walker is in a

node i at time t, the algorithm selects the node j where the random walker

will be at moment t + 1, by computing a probability proportional to the

weight of the the edge between node i and node j. The random walk al-

gorithm computes the probabilities using two operators, named expansion,

which computes the power of the matrix, and inflation, which computes the

Hadamard-Schur product of the matrix combined with a diagonal scaling.

The two operators are subsequently applied by the algorithm, which con-

verges quadratically in the neighborhood of doubly idempotent stochastic

matrices, i.e., matrices that do not change under the action of the two oper-

ators. The result of the algorithm is a matrix that represents a disconnected

graph, in which each component contains nodes that belong to the same

cluster. The obtained clusters can be see to perform tag recommendation.

4.2.5 Novelty and Serendipity in Tag Recommendation

As already mentioned, the main goal of a tag recommender system is to

recommend keywords, named tags, to users in order to help and support

them both during the classification of the resources and during the search

activity. Given the nature of the discussed domain, it is important to rec-

ommend novel tags, i.e. tags that the user has not already considered in
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the classification of a given resource. On the other hand, it is as much

important to recommend tags that are strongly related to those already

used by the users; in fact a not related tag recommended in the classifi-

cation process could create misleading tag-resource associations, while a

not related tag recommended during the search activity could drastically

decrease the odds to find the desired resource. So, in this kind of systems it

is essential to have novel recommendations but it is also necessary to avoid

serendipitous recommendations, i.e. recommendations for tags unrelated

to the ones used by the user.

The tag clustering allows to reach the goal mentioned above. In

fact, the objective of the clustering is to maximize the Inter-cluster dis-

tances between items and to minimize the Intra-cluster distances between

items [Tan et al., 2005]. So, when a user u uses a tag t, the system suggests

to u some tags ti that are in the same cluster of the tag t; in this way the

system is able to recommend novel tags that are definitely related to those

used by the user. In conclusion all tags recommended by the proposed

system are novel, given that it does not consider tags already used by the

target user, and are related to those used by the user so those tags are not

serendipitous.
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4.3 Experiments

In order to evaluate the performance of the algorithm, a tagging system,

presented in [Carta et al., 2008] (that also includes a search engine), has

been used to make a comparison with the classical tag clustering approach

presented in [Begelman et al., 2006], named ATC. The main objectives were

to evaluate the quality of the clustering, i.e. to evaluate the capability of RATC

(ATC) to produce significant clusters of the tags, and to make an analysis of

the clusters, i.e. to evaluate how correlated are the tags in each cluster.

4.3.1 Dataset collection and Pre-processing

10 volunteers whose main goals were to perform two main steps were

recruited. The performed steps are the population of the tagging system

(resources acquisition step) and the performing of search operations in the

tagging system (feedback collection step).

Resources acquisition step

During the first step, volunteers were asked to choose some videos from

YouTube 5, that belong to the “sport” concept domain, and put them into

the tagging system. Each video had to be classified with at least four

pertinent tags and with two unrelated (noisy) tags. Such noise is useful to

simulate the classical noise of non-sperimental system, in order to study
5http://www.youtube.com
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how the correlation between noisy tags and resource decreases during the

system activity, to observe how the structure of the clusters changes and

to evaluate the quality of the clusters.

At the end of this step the tagging system contained 406 videos, 1021

tags and 2597 video-tag correlations. The set of tags was pre-processed

in order to remove all tags that express feelings and emotions (it does not

make sense to cluster and/or recommend tags like “good”, “beautiful”,

etc.); after the pre-processing the set of tags contained 964 tags.

Feedback collection step

In the second phase of the dataset collection, which started only when

the Resources acquisition step was completed, the volunteers were asked to

perform some search operations in the tagging system. This step allows

RACT to monitor the user behavior and to improve its performances. When

a user performs a search operation, the system retrieves a list of resources

(videos) with their original description, so that the user can select the

video. More in detail, each volunteer performed 300 search operations, by

entering a list of tags as query, and then selecting the most related video

from the retrieved list, providing, in this way, a feedback to the system.

Each time a user selects a video from the retrieved list the system updates

the tag-resources counters.
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4.3.2 Strategy and Evaluation Metrics

As already mentioned, in order to evaluate the approach a comparison

with a state of the art approach, named ATC, proposed by Begelman et

al. [Begelman et al., 2006] was made. The main goal of ATC is to build

clusters of tags to improve the user experience in the use of a tagging

system and to minimize classical linguistic limitations. The work, which

has been tested on Delicious 6, uses an algorithm that allows them to find

strongly related tags by counting the number of tag co-occurrences (tags

used for the same page) used for a page (a URL on Delicious) and defining

a cut-o↵ point, to establish when a counter makes sense. The co-occurences

between tags are then represented in a sparse matrix, in which each element

is a similarity between two tags. Then, a graph based on these similarities is

built. Finally, tags are clustered by means of a graph clustering algorithm,

based on the spectral bisection. Authors measure the quality of the clus-

tering with the “modularity function” [Newman and Girvan, 2004], which

measures the quality of a particular clustering of nodes in a graph. The

main steps performed by ATC can be recapped as follows:

• Take as input the connected undirected graph of tag similarities.

• Use spectral bisection to split the similarities graph into two clusters.

• Compare the value Q0 of the modularity function of the original

6https://delicious.com



98 Chapter 4. Tag Recommendation

graph with the value Q1 of the modularity function of the partitioned

graph. If Q1 > Q0 the partitioning is accepted otherwise it is rejected.

• Repeat recursively the previous described steps on each accepted

partition.

Experiments were performed to study how RACT improve its perfor-

mances by monitoring the activity of the users; for this reason the “state” of

the tagging system (i.e., the current values of each tag-resource association)

was saved every 50 feedbacks, obtaining 6 di↵erent sessions that allow to

compare the RACT and the ATC tag clusterings. After the first session, a

set of tags that could have been suggested to the user was already avail-

able, but it was decided to not do so because, as already mentioned, an

objective of the proposed work was to evaluate how RATC would perform

in presence of noise, without having the results biased by the fact that the

tags collected were suggested by the system itself. The inflation parameter

(introduced in 4.2.4), needed for the clustering algorithm, had been set to

3.0. In order to analyze the influence of the noise in the performances of

the algorithms, the experiments were repeated also adding noisy tags to

the tagging system.

In the following the two sets of experiments performed to evaluate the

quality of the clustering and to make an analysis of the clusters are described.



4.3. Experiments 99

Quality of the Clustering

The objective of the first set of experiments was to compare the capability

of RATC and ATC to create significant clusters of tags. First of all, a domain

engineer clustered the involved tags, by grouping together those that refer

to the same topic. Then, the clusters created by the domain engineer were

compared with those created by the RATC and ATC algorithms. Each

cluster of RATC and ATC has been compared with the cluster created by

the domain engineer that contained the highest number of corresponding

tags. So, let T be the cluster of tags created with RATC or ATC and let D be

the cluster of tags created by the domain engineer, the following sets were

defined:

• True positive tags (TP) = T
T

D = {ti|ti 2 T
V

ti 2 D} is the set of tags

that belong both to the set T and to the set D;

• True negative tags (TN) = {ti|ti < T
V

ti < D} is the set of tags that do

not belong neither to the set T nor to the set D;

• False positive tags (FP) = {ti|ti 2 T
V

ti < D} is the set of tags that belong

to the set T but do not belong to the set D;

• False negative tags (FN) = {ti|ti < T
V

ti 2 D} is the set of tags that do

not belong to the set T but appear in the set D;

To evaluate the clustering algorithms, some classical information re-

trieval metrics were used: the micro- and macro-averaging precision and
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micro- and macro-averaging recall [Sebastiani, 2002]:

• Microaveraging precision and recall are obtained by summing over all

individual values:

⇡µ =
TP

TP + FP
=

Pm
i=1 TPiPm

i=1(TPi + FPi)
; ⇢µ =

TP
TP + FN

=

Pm
i=1 TPiPm

i=1(TPi + FNi)
(4.1)

where the “µ” superscript stands for microaveraging.

• Macroaveraging precision and recall are first evaluated “locally” for

each category, and then “globally”, by averaging over the results of

the di↵erent categories:

⇡M =

P
i=1 m⇡i

m
; ⇢M =

P
i=1 m⇢i

m
(4.2)

where the “M” superscript stands for macroaveraging.

Analysis of the clusters

In this set of experiments, the clusters created by the domain engineer were

not considered, but a comparison between the clusters created by RACT
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and those created by ATC was made. Precisely, the engineer, identified

a topic for each cluster and computed the percentage of meaningful tags

belonging to the cluster itself. For example, let C be a cluster built by RATC

or ATC for which the domain engineer identify the topic “basketball”; let

M ✓ C the set of meaningful tags (that belong to the topic basketball), the

percentage of meaningful tags MT was calculated as:

MT =
#M
#C
⇤ 100 (4.3)

Where #M and #C represent respectively the cardinality of the sets M

and C.

4.4 Results

In this section the results of the previously presented experiments are

presented.

4.4.1 Quality of the clustering

In order to evaluate the quality of the clustering, a comparison between

between the clusters created by RATC, ATC and the domain engineering

has been done. The clustering of RATC and ATC di↵ers from the one

performed by the domain engineer for the number of created clusters and
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Figure 4.4: Macro-averaging precision Figure 4.5: Macro-averaging recall

for the number of elements in each cluster. In fact, the number of clusters

obtained with the two algorithms was higher than the number of clusters

created by the domain engineer. For example, at the end of the last session,

RATC without noise involved 266 clusters versus 148 clusters created by

the domain engineer.

Fig. 4.4 and Fig. 4.5 present the comparison between the clustering

of RATC and ATC algorithms in terms of macro-averaging precision and

macro-averaging recall, while Fig. 4.6 and Fig. 4.7 show the results of

the tested algorithms in terms of micro-averaging precision and recall.



4.4. Results 103

Figure 4.6: Micro-averaging precision Figure 4.7: Micro-averaging recall

These plots consider both cases, with and without noise. The results

show that RATC always perform better with respect to ATC. Furthermore,

plots highlight how RATC improve its performances session by sessions;

this is due to the capability of RATC to update tag-resources and tag-tag

associations by learning from the users feedbacks.

Fig. 4.8 shows an example of clusters created by the two algorithms and

by the domain engineer. In this case the topic of the clusters is the olympic

games of the 1988 in which Mike Powell won the gold medal in the 100

meter race because Ben Johnson was disqualified doping reasons. These

clusters highlight that in the set created by ATC there are some unrelated
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Figure 4.8: An example of cluster created respectively by the RATC, domain
engineer and ATC

tags, like “mennea” for example, that lead ATC to create weak associations

that not allow the clustering algorithm to create good partitions of tags.

4.4.2 Analysis of the clusters

In Fig. 4.9 a comparison between the percentage of meaningful tags

achieved by the proposed algorithm with respect to those achieved by ATC

algorithm, using the dataset without noise, is presented. As highlighted

in the plot, RATC is able to reach a higher percentage of meaningful tags

and, furthermore, it is able to improve its performances session by session

by updating the tag-resource associations and tag-tag associations.

In the first session, the tag-resource associations have the same values
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Figure 4.9: Meaningful tags in the
dataset without noisy tags

Figure 4.10: Meaningful tags in the
dataset without noisy tags

for both the approaches, as no search activity was done in the system, but

RATC get better results. So, it means that cosine similarity represents a

better metric to measure associations between tags.

Also Fig. 4.10 shows the percentage of meaningful tags achieved by the

two algorithms, but in this case the dataset with noise has been considered.

The obtained results are similar to those previously presented; in fact also

in this case the approach proposed in this work achieves better results and

its performances improve session by session.
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4.5 Contribution

This chapter presented RATC, an approach able to cluster tags in a tagging

system, which can be used to produce tag recommendations that facilitate

the exploration of a tagging system. Furthermore, RATC has the capability

to dynamically improve its performances by monitoring users behavior

and exploiting implicit feedbacks left by users during their search activity.

RATC brings several contributions both to the tag clustering research

area and to the social recommender systems that recommend tags. In

fact, the proposed approach is able to dynamically update tag-resource

associations and tag-tag-associations in order to limit misleading semantic

relations. None of the existing works in tag clustering is able to dynam-

ically update associations between tags during the system activity and

none of the existing social recommender systems that operate with tags

uses clustering to produce the recommendations.

Moreover, thanks to the lack of super visioning during the classification

step, this approach lends itself very well to operate in a real web scenario

where everything evolves very quickly.
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Social Media Motivation

5.1 Overview

One of the several aspects that lead to a rapid growth of social media sys-

tems is that they are among the most persuasive technologies [Fogg and Iizawa, 2008,

Weiksner et al., 2008]. In fact usually the behavior of a user in a social net-

work can motivate other users to adopt the same or similar behavior. This

phenomenon, known as “Social Influence”, occurs when the opinions and

behavior of a person influences those of the other ones.

So, starting from the main topic of this thesis, i.e. the social web, some

interest was also put in the motivational domain, performing some studies,

in order to infer how to motivate people to do something by using social

media tools. In fact, motivating one person to do something can be seen
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as a form of suggestion. Therefore the motivation domain intersects with

the recommendation domain presented in previous chapters.

In order to study the motivational aspect in the social environment,

some Human-Computer Interaction (HCI) applications to support and

motivate users to do more physical activity were developed. This work

was followed by the design and implementation of a web application

which allows users to interact with Facebook, in order to study how the

social aspect can influence the motivational one. To be more precise, two

Android applications, based on a persuasive technology, that aims at mo-

tivate people to practice running activity have been developed: Every-

whereRun [Mulas et al., 2011, Mulas et al., 2013a], that allows users to get a

workout plan from a personal trainer and EverywhereRace that allows users

to create virtual competitions (races) with people anywhere in the world.

These two application will be soon merged in a unique application.

The reason why this type of applications are gaining always more im-

portance is that many people are facing health’s problem due to a sedentary

lifestyle. In fact, it is known that a sedentary lifestyle is the cause of several

serious illnesses like obesity, diabetes, hypertension and so on. The main

reason for which people do not practice any physical activity are moti-

vational lack, time constrains, di�culties to start, gym membership fees,

equipment costs and so on.

The idea behind this study is that HCI and Social web can benefit each

other; for example, a Human-Computer Interaction application could be
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developed in the Social Web scenario, in order to study and improve re-

lationships among people. Furthermore, many researches demonstrate

that the inclusion of social interactions in HCI applications motivate peo-

ple to practice more physical activity [Consolvo et al., 2006, Virzi, 1992,

Buttussi et al., 2006, de Oliveira and Oliver, 2008].

Like other computer science domains, recently, Human-Computer In-

teraction (HCI) has had an exponential and rapid growth. In [ACM SIGCHI, 1992],

authors define Human-Computer Interaction as “a discipline concerned

with the design, evaluation and implementation of interactive computing

systems for human use and with the study of major phenomena surround-

ing them”.

In this chapter a web application, that implements some race manage-

ment features (e.g., the creation, the subscription or the participation to a

race), previously available only in the Android mobile application is pre-

sented. Particularly, in the web application some new innovative social

features by means of the Facebook social network are implemented, in

order to allow users to share their workout experience with their friends.

The social aspect, through the interaction with Facebook, allows to en-

hance the social engagement that, as previously mentioned, is a key aspect

in a motivation scenario. In fact, the interaction with a social network leads

to the phenomenon of the “social influence” (a widely known concept in

sociology and viral marketing) [Cha et al., 2010], for which the enhance-

ments of a user in her/his exercising activity can inspire and motivate other
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users to improve their performances. So, the availability of the features

to manage the races on more devices and the capability to interact with a

social network, should improve the motivation to exercise regularly. The

choice to develop a web application that focuses on the organization of

races, was made because a race involves more than a user, so this scenario

lends itself well to link Human-Computer Interaction with the Social Web.

The contribution brought by the study presented in this chapter concern

both to the Human-Computer Interaction and the Social Web research

areas, precisely:

• exploit virtual races to motivate people;

• the use of a web application, which introduces some functionalities

of the already existing Android application, allows to manage the

races not only from small devices, like mobile phones and tablets.

This simplifies the access to the functionalities and improves the

user experience, in order to motivate people to organize more races

and to exercise more;

• using the web application, users can create new races and challenge

their friends in real time;

• by mining the behavior of the users with respect to the Facebook

social network, it is possible to study how social media can act on

the motivational aspect of the users.
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In the following, the two developed Android applications (as already

stated they soon will become one unique application that will include all the

above characteristics) are presented, then the web application is described,

by presenting its architecture and functionalities and finally conclusions

and future work are discussed.

5.2 Improving motivation to practice physical activity

In current paragraph the two Android applications, developed in order to

help and motivate people to practice more physical activity and to practice

it in a better way, are presented.

5.2.1 Everywhere Run!

Everywhere Run!1 [Mulas et al., 2011, Mulas et al., 2013a] is an Android mo-

bile application that aims to support people during their running routines.

In fact, through this application, users can design their own regimes or get

a tailored ones directly from a real personal trainer inside the application.

Figure 5.1 presents the screen used by users to create a workout, which

allows users to plan relatively complex workouts, (for example, the figure

shows a workout named “Monday”). A training is organized into “ses-

sions”, called “traits”, which are described by a distance and a pace to

keep. A user that wants to follow the “Trait 1” represented in Fig. 5.1, has
1http://www.everywhererun.com/
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Figure 5.1: Work-
out creation menu

Figure 5.2: Per-
sonal trainer
screen

to run 2km following a speed of 5 minutes per kilometer. While the “Trait

1” of the same figure indicates to the user that she/he has to run 10km at a

pace of 4:20 minutes. The main aspect of the application is the definition

of “Virtual personal trainer”. In fact, this features, based on workout set-

tings, support the runner during all workout, motivating him to speed up

or to slow down, in order to reach the predefined goal. This characteristic

is represented in Figure 5.2, which represents an ongoing workout where

the runner has to speed up to reach the predefined objectives. Precisely

Figure 5.2 is composed by 3 main parts: an horizontal bar, which contains

an overview of the whole workout and information about the position of

the user with respect to that of the virtual personal trainer, a dashboard
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Figure 5.3: User workouts statistics

containing information about the speeds, times, etc, and the other part

contains a graphic representation of the delay or the lead that the user has

with respect to the virtual personal trainer.

Figure 5.3 represents a dashboard that recaps some statics about all user

workouts. In particular, that figure shows that since the 1st november 2012

the considered user ran 350 km in 30 hours and, furthermore, information

about the fastest workout, the slowest workout and the peace average are
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reported.

From the preliminary experiments conducted on EverywhereRun the

application led to an improvement on the motivational aspect of the run-

ners.

More details on the presented approach and on the experiments, have

been described in [Mulas et al., 2011, Mulas et al., 2013a] and are presented

in appendix A.

5.2.2 Motivation in Races

The other Android application that it is going to be described is Every-

where Race!2 [Mulas et al., 2012]. This application introduces the concept

of “virtual competition”, based on social interaction. In fact, by means of

the application it is possible to create and to perform a virtual competition

with other users that are any where the world. Competition can concern

running, cycling and any other sport that take into account the concept of

“speed”.

In Fig. 5.4, when the application starts, it presents a main menu, which

allows the user to create a new race, to perform a search (based on some

parameters like sport, distance, etc.) of an existing race or to perform a

search based on the friends subscription to the races. If a user is enrolled

for a given race, this screen shows always the remaining time to that race.

2http://www.everywhererace.com/
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Figure 5.4: Main menu of Everywhere Race!

In the showed example, the next race of the considered user will be after

one day and seven hour more or less.

Fig. 5.5 and Fig. 5.6 show how the application allows the user to mon-

itor her/his position with respect to those of his/her opponents and other

statistical data, during a race and at the end of the race.

The conducted experiments highlight the strengths of the social aspect

to motivate people during races.

More details on this approach and the experiments are reported in [Mulas et al., 2012]

and are presented in appendix A.
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Figure 5.5: On-
going race

Figure 5.6: Race
results

5.3 A Web Application to Support Social Interaction

The web application discussed in this paragraph, at the moment works

with Everywhere Race! but soon it will work with the unique application

that will include both Everywhere Run and Everywhere Race!. This web

application introduces several advantages, like all functionalities already

available in the mobile version, plus the possibility to interact with the

Facebook social network.

5.3.1 Architecture of the Web Application

Fig. 5.7 shows the architecture of the entire project, which includes both

the web application and the Android application. The web application is
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Figure 5.7: Architecture of the project

now described in detail.

As represented in the figure, the application is a client-server appli-

cation. The user, at the client side (by means of a browser) makes some

requests to the server through a remote procedure call (RPC). A request

may have di↵erent goals like create a race, show existing races etc. The

server elaborates the request and, depending on the request, uses a web

service to store data in a database, to read data from it, etc.

5.3.2 Features O↵ered by the Web Application

The proposed web application is composed by three main sections; each

of them appears each time that the “Races button”, the “Friends button”
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or the “My Diary button” are clicked (see Fig. 5.8). In the following, the

content of each screen is described:

• Races screen: the dashboard recaps data that belong to all the users of

the application;

• Friends screen: the dashboard shows the data concerning the Facebook

friends of the logged user;

• My Diary screen: the dashboard shows all data of the logged user,

allowing her/him to have a summary of his racing activity.

Moreover, in the top right part of Fig. 5.8 there are several social buttons

developed by AddThis3, which is a free service that allows to interact with

several social networks and a Facebook button to execute a Facebook login

and logout.

In addition to the previously described dashboard, the proposed web

application o↵ers other functionalities represented in Fig. 5.9 and Fig. 5.10.

Figure 5.9 shows a feature that allows users to search a race, by means of

several parameters like sports, date, etc. As a result of a search task, a list

of races and related status (i.e., ongoing, finished or future) is retrieved.

The application, in addition, allows the users to publish a Facebook post

regarding each race; this functionality is very important for the presented

study and its details will be presented later. This screen allows also the
3http://support.addthis.com
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Figure 5.8: Top of the web application (Dashboard and login features)

user to create a new race by filling a form. Each race is composed of

several fields like date, start time, distance, sport name, maximum number

of participants, race, place, description, etc.

Each race is associated to a specific URL, which allows to show the

detail of a race in specific screen (see Fig. 5.10). The details of a race are

composed by three main parts:

• Details, which contains all the data of a race (i.e., name, description,

date, place and distance) and the list of Facebook friends that already

joined the race;

• Rank, which contains data about ongoing and finished races. Pre-

cisely, it contains the list of participants to a race and its related data

(i.e., some personal data, position, etc.).
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Figure 5.9: The list of races shown by the web application

• Graphic, shows a plot which represents the evolution of the race.

5.3.3 Social Interaction

During the development of the web application particular focus was put

on the social aspect, since the interaction with the social media domain

(precisely with the Facebook social network in this work) leads to the

phenomenon of the “social influence” (a widely known concept in sociol-

ogy and viral marketing) in the social network domain [Cha et al., 2010].

Through these phenomena, the performances of a user in her/his exercis-

ing activity can inspire and motivate other users to improve their own.

Furthermore, by sharing the results of a race, a user can receive sugges-

tions or feedbacks from her/his friends through Facebook’s comments and
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Figure 5.10: The details of a race shown by the web application

likes, which can motivate to do best and to exercise regularly. In order to

implement what was just mentioned, the web application gives the user

the possibility to publish posts on Facebook. The type of post that the user

can share depends on the state of the race (ongoing, finished or future).

Table 5.1 presents an example of the six possible Facebook posts, while

Fig. 5.11 shows an example of the dialog window of a post.

5.4 Experimental Results

Some experiments about the usability and the social influence of the sys-

tems are now presented.

About the usability test, a standard System Usability Scale (SUS) ques-

tionnaire [Brooke, 1996] has been submitted in order to investigate how
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Table 5.1: Facebook posts
Participant Not participant

Finished

I just finished this race:

Final position: 1

Distance: 10km

Date: 06/01/2014

Sport: Running

Time: 1:30:00

Medium speed: 10km/h

Medium pace:10km/h

This race is finished:

Distance: 10km

Date: 06/01/2014

Name: Charity Marathon

Description: Charity Marathon

Ongoing

I’m participating to this race:

Temporary position: 1

Distance: 10km

Date: 13/08/2013

Sport: Running

Time: 1:30:00

Medium speed: 10km/h

Medium pace:10km/h

This race is ongoing:

Distance: 10km

Date: 13/08/2013

Name: Charity Marathon

Description: Charity Marathon

Future

I’ll participate this the race:

Distance: 10km

Date: 06/01/2014

Name: Charity Marathon

Description: Charity Marathon

There will be this race:

Distance: 10km

Date: 06/01/2014

Name: Charity Marathon

Description: Charity Marathon
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Figure 5.11: Dialog window of a Facebook post

users evaluate the overall usability of the system. 20 volunteer users (6

males and 14 females with an average age of 24.5 years and standard devi-

ation of 5.56 years), that used EWRace supported by the web platform for

at least one month, were recruited.

The evaluation of the SUS questionnaires returns a mean value of 76.25

with standard deviation equal to 14.50. In order to obtain a more meaning-

ful estimate for the mean value, a 95% t-confidence interval has been com-

puted, obtaining the following estimates: 69.47 and 83.35 [Sampaio, 2013].

In this way, there is a confidence of 95% that the real score is between 69.47

and 83.35. Even if the value of estimate 69.47 is considered, the result is a

percentile rank of 53%; this means that the proposed web platform is more

usable than 53% of products in [Sauro, 2011].
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In order to evaluate the social aspect of the proposed system, the av-

erage number of races created per week over a period of eight weeks has

been monitored. During the first four weeks the users did not have the

web application available and each user created an average of 1.4 races per

week. The average number of races created per week growth to 1.8 (+28%)

when allowing the users to use the web application. Moreover, users were

asked to evaluate, with a scale that ranges from 0 to 5, how much their

performances have been influenced by the social pressure provided by the

real time competitions. The obtained final result has been of 3.7 out of 5.

In conclusion, the users evaluation suggests that the preliminary design of

the platform has an acceptable usability. Moreover, the results also high-

light how social aspect is a key element to support users in their physical

activity.

5.5 Conclusions

In the current chapter a web application that include the functionalities of

Everywhere Race! and extends it, by allowing users to interact also with

a Facebook social network is presented. In fact, in the last years the way

people face the information drastically changed, due to the introduction of

social medias with the web 2.0; moreover, is known that social networks are

among the most persuasive technologies. These changes are the reasons

that motivated to strongly consider the social aspect in the design of a
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novel web application. The co-operation of the social web domain and the

HCI domain allowed to study how the social interaction can motivate the

user and change his habits. In fact, preliminary studies highlight how the

interaction of the users with Facebook led to a greater participation of the

users to the system improving also the user motivation to exercise.
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Chapter 6

Conclusions and future works

This PhD Thesis focuses on social media and social recommender systems.

It has been discussed like the ever growing amount of data available in the

web 2.0 applications might decrease the users attention leading to the well

known “social interaction overload” problem. To face this problem sev-

eral social recommender systems have been studied at the-state-of-the-art.

In this work some limitations of the existing social recommender systems

have been highlighted: the analysis of a social graph, in order to produce

recommendations, su↵ers from scalability issues and, in order to limit the

complexity of the recommender system, no user profile information could

be used to build the recommendations [Gupta et al., 2013]; another limita-

tion is that many social recommender systems focus on produce accurate

recommendations without considering that it is not enough to guarantee
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a good user experience. In fact, often, social recommender systems su↵er

form “over specialization” (or “serendipity problem”) problem, i.e. the

recommended items are too similar to those already considered by the tar-

get user which never receives suggestions for unexpected, surprising and

novel items [Ziegler et al., 2005]. The mentioned limitations highlight the

importance to take into account also other metrics in the evaluation of a rec-

ommender system (and not only accuracy), like novelty and serendipity. In

this work two social recommender systems have been presented: a friend

recommender system and a tag recommender system (named RATC). In

order to overcome the limitations mentioned above, these systems do not

use the social graph but make a selective use of the available information

in order to produce accurate, novel and serendipitous recommendations.

This PhD thesis brings several contribution with respect to the state-of-

the-art works. The presented tag recommender system is the first, in the

tag clustering domain, that monitors the user activity in order to solve

the misleading tags problem. Furthermore, this system uses a unsuper-

vised clustering (a very strong technique to produce associations between

similar items in a very dynamic domain) without using the user profile,

to produce accurate and, at the same time, novel tag recommendations.

RATC, since it does not use neither the user profile nor the content of the

resource, is able to overwhelm also the cold start problem.

The friend recommender system, presented in Chapter 3 is the first

friend recommender system designed in the social bookmarking domain.
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It is able to produce accurate recommendations, just exploiting the users

content without considering the social graph. Furthermore experimental

results show that the system produces recommendations that are not only

accurate but, at the same time novel and serendipitous, allowing users to

improve their knowledge.

The tag system presented in Chapter 4 appears in:

• [Boratto et al., 2013] Ludovico Boratto, Salvatore Carta, Matteo Manca,

Fabrizio Mulas, Paolo Pilloni, G Michele Pinna, Eloisa Vargiu A Clus-

tering Approach for Tag Recommendation in Social Environments

presented in International Journal of E-Business Development.

The friend recommender system described in Chapter 3 appears in:

• [Manca et al., 2013] Matteo Manca, Ludovico Boratto, Salvatore Carta

Producing Friend Recommendations in a Social Bookmarking Sys-

tem by Mining Users Content, presented in IMMM 2013, The Third

International Conference on Advances in Information Mining and

Management (best paper award);

• [Manca et al., 2014b] Matteo Manca, Ludovico Boratto, Salvatore Carta

Design and Architecture of a Friend Recommender System in the

Social Bookmarking Domain, Science and Information Conference

2014 SAI2014;

• [Manca et al., 2014c] Matteo Manca, Ludovico Boratto, Salvatore Carta
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Mining User Behavior in a Social Bookmarking System: a Deli-

cious Friend Recommender System, submitted to 8th International

Conference on Autonomous Infrastructure, Management and Secu-

rity AIMS 2014;

• [Manca et al., 2014a] Matteo Manca, Ludovico Boratto, Salvatore Carta

Behavioral Mining to Produce Novel and Serendipitous Friend

Recommendations in a Social Bookmarking System: a Delicious

Case-Study, submitted to Performance Evaluation Journal.

Another aspect that has been considered in this work is how the so-

cial aspect can be used as persuasive technology in order to encourage

users to adopt specific behaviors. To this purpose two Android applica-

tions, that aim at support and encourage users to do more physical activ-

ity, have been developed: EverywhereRun, presented in [Mulas et al., 2011,

Mulas et al., 2013a], and Everywhere Race!1, presented in [Mulas et al., 2012].

Once these two mobile applications have been developed, a web applica-

tion, that implements some race managements and some new innovative

social features by means of the Facebook social network, has been designed.

By means of this web application it has been studied as the social aspect

through the “social influence” can inspire and motivate other users to im-

prove their performances. The results of the conducted study highlighted

that the social aspect is a very useful tool also in the Human-Computer

1http://www.everywhererace.com/
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interaction domain to encourage and support people to adopt given be-

haviors. The study presented in Chapter 5 appears in:

• [Mulas et al., 2013c] Fabrizio Mulas, Paolo Pilloni, Matteo Manca,

Ludovico Boratto, Salvatore Carta Linking Human-Computer Inter-

action with the Social Web: a Web Application to Improve Motiva-

tion in the Exercising Activity of Users presented in CogInfoCom

2013 - 4th IEEE International Conference on Cognitive Infocommu-

nications;

• [Mulas et al., 2013b] Fabrizio Mulas, Paolo Pilloni, Matteo Manca,

Ludovico Boratto, Salvatore Carta Using New Communication Tech-

nologies and Social Media Interaction to Improve the Motivation

of Users to Exercise presented in FGCT 2013 - 2nd International

Conference on Future Generation Communication Technologies.

Moreover, the contributions introduced by Everywhere Run mobile ap-

plication (before the development of the web application) appear in:

• [Mulas et al., 2011] Mulas Fabrizio, Carta Salvatore, Pilloni Paolo and

Manca Matteo Everywhere run: a virtual personal trainer for sup-

porting people in their running activity. presented in ACE11 - 8th

International Conference on Advances in Computer Entertainment

Technology
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Future works will focus on evaluating the proposed recommender sys-

tems also with other datasets and in di↵erent domains. Furthermore, also

other mentioned metrics, like Trust and Persuasiveness will be tested in the

evaluation of the recommender systems.

Moreover, regarding the presented friend recommender, future work

will focus on the implementation of a graph mining component to use

in those cases in which users cannot receive recommendations for the

previously mentioned reasons (for example when the user has a small

amount of used tags and resources).



Appendix A

Experiments on the Android

Mobile applications

Before introducing the social features, some experiments that allowed to

test the capability of the applications introduced in Chapter 5, i.e. Every-

where Run and Everywhere Race, to motivate users had to be conducted.

This appendix presents the experiments and the results obtained.

A.1 Everywhere Run: Experimental Results

In order to evaluate the application capabilities, a survey to a group of ten

runners that tested Everywhere Run was submitted. The group of runners

was composed of five males and five females with an average age of about
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28.3 and only four users practiced physical activity regularly. Users were

asked to rate the application, with regard to some features, with a rate

that ranged from 0, meaning “strongly disagree”, to a maximum of 5,

meaning “strongly agree”. Figure A.1 shows the evaluated features and

the obtained results. The average rating obtained by the application has

been 3.8; in fact users stated that Everywhere Run had been a very useful

tool to support their workouts. Particularly, users appreciated audio cues

because they consider them more handier with respect to visual advise.

The rate given by users for the motivational aspect reaches 3.8, they stated

that performing a workout with predefined goals helps to reach them.

whole application visual advices vocal advices motivation enhancement
0

1

2

3

4

5
User Ratings

Figure A.1: User ratings
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Usability Tests

Another considered aspect is the software usability. In order to test the ap-

plication usability, five users are su�cient [Nielsen and Landauer, 1993] [Virzi, 1992].

So, in order to test the usability of the Everywhere Run five users, aged be-

tween 20 and 35, were enrolled. Two of these users were expert runners

while others were just occasionally joggers and all of them had some ex-

perience in the daily use of smartphones.

The users were shown the application without giving them any expla-

nation about its usage and then, users were asked to use some features

in order to create a workout, modify it, etc.. The interactions of the users

with the application allow to fix some trouble. The testers evaluate posi-

tively the application, in fact using the same scale adopted in the previous

experiment the application scored an average rating of 3.8.

The inexperienced users face some di�culties in the use of the applica-

tion, for example during the work out creation. This troubles were due to

the unit of measurement, in fact, they did not know that runners usually

indicate the speed as time to run one kilometer (or mile) so they create

a incorrect workout. The two expert runners, instead, did not face any

problem. In order to help inexperienced users to overcome the problems

due to the unit of measurement the km/h or mi/h measurement has be set

as the default one.



136 Appendix A. Experiments on the Android Mobile applications

A.2 Everywhere Race: Experimental Results

During the development of the presented web application, Mulas et al.

performed some experiments in order to evaluate the Android application

proposed in [Mulas et al., 2012]. In the following the performed experi-

ments and the results obtained by Mulas et al are reported.

In order to evaluate the e↵ectiveness of the proposed Android applica-

tions, 35 volunteers were asked to use Everywhere Race! for 30 days and

to perform a test. The group of volunteers users were composed of 25 male

and 10 female aged between 19 and 40 and ten users regularly practiced

sport.

Among the ten active users, four exercised about four times a week,

while the others from two to one times a week and the average time of

each session was 30 minutes. Twenty seven users had never used before

any application during their physical activity, while the others already did.

The goal of the evaluation test was to investigate about the influence of the

proposed application on users motivation in order to both validate current

application features and improve the application for future developments.

In order to evaluate EveryWhere Race! the Exercise Motivations Inven-

tory - 2 (EMI-2), developed by Markland et al. [Markland and Ingledew, 1997]

has been chosen. EMI-2 consists of 51 items that belong to14 scales. Users

are asked to rate each item on a five-point scale ranging from 0 (“not at all

true for me”) to 5 (“very true for me”). In order to obtain the scale scores
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the means for each item belonging to the appropriate scale are computed.

Figure A.2 shows the obtained results.

Figure A.2: EMI-2 Results

Figure A.2 shows all the scales received good scores so, the application

is a valid tool to help people to start working out. Users were submitted

also another questionnaire in order to better investigate the e↵ects of the

application on users sport habits. Also in this case, testers were asked to

rate using the same scale (ranging from 0 to 5) used to rate the EMI-2 items.

The proposed questions were:
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1. “Did EWR help you to improve performances?”

2. “Were social features important to improve your performances?”

3. “Did EWR change your sport habits?”

4. “Will you continue to use EWR in the future?”

Preliminary results showed in Fig. A.3 highlight that users think that

the proposed application is a valid tool to help users to reach predefined

sport goals and to increase the motivation.

The average results put in evidence that the majority of users perceive

the application as a valid tool that helps to achieve sport goals in a more

enjoyable and regular manner. As it is possible to see, despite the limited

sample of test users, encouraging preliminary results have been obtained.

The positive trend emerging from the tests shows that the application may

help to increase motivational factors through this new engaging and social

way of active gaming.

A.3 Conclusions

The experiments previously presented allowed to validate the capability

of both Everywhere Run and Everywhere Race to motivate users. Thanks

to the results previously presented, the social features could be added, in

order to analyze the impact of the interactions with a social network in the

motivation of a user.
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Figure A.3: Questionnaire Results
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