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Abstract

The thesis is structured into two main parts. The first and major part is

concerned with the skew-normal distribution, introduced by Azzalini (1985)

[6], while the second one is connected with the scoring rules. In part one

the problem of finding confidence intervals for the skewness parameter of the

skew-normal distribution is addressed. Two new five-parameter continuous

distributions which generalize the skew-normal distribution as well as some

other well-known distributions are proposed and studied. Some mathematical

properties of both distributions are derived. Part two is focused on the

extension of the theorem of characterization of scoring rules, due to McCarthy

(1956) ([16] of part 2), in two directions: for countable infinite sample spaces,

but with bounded score and for finite sample spaces, but with unbounded

score.
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Introduction

This thesis focuses on two important topics of the mathematical statis-

tics: the first one is related to the skew-normal distribution, the second one

concerns the fundamental characterization of proper scoring rules, given by

McCarthy (1956) [16].

The study of the first issue has led to the writing of two articles [45], [48]

and two manuscripts [46], [47] on which the first part of this thesis is based.

Part I (chapters from 1 to 4) deals with the skew-normal distribution (SN ),

introduced by Azzalini (1985) [6], which has been studied and generalized

extensively. This model is a class of distributions that extends the Gaussian

family by including a skewness parameter (λ ). Despite its nice properties,

this family presents some inferential problems linked to the estimation of the

skewness parameter. In particular, its maximum likelihood estimate can be

infinite especially for moderate sample sizes and is not clear how to calculate

confidence intervals for this parameter. The objective of the first part of the

thesis is twofold. Firstly, it aims to present how these inferential problems

can be solved in a particular situation. More specifically, we are interested in

the distribution of the maximum or minimum of two random variables which

have a bivariate normal distribution. Order statistics of correlated normal

variables appear in statistical applications. In a number of situations, es-

pecially in medical and the environmental contexts, even if observations are

vii
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taken in pairs, interest centres on the maximum or minimum value of the

observations. Loperfido (2002) [43] shows that the minimum or maximum

of two random variables with same mean and variance, whose distribution

is jointly normal, is skew-normal with skewness parameter that can be ex-

pressed as a function of the correlation coefficient between the two initial

variables. In this specific case we use the MLE of the correlation coefficient

between the two initial variables to find the MLE of the corresponding skew-

ness parameter of the skew-normal. Using the Fisher transformation ([37],

[38]) we approximate the distribution of the skewness parameter λ and we

are able to test hypotheses and to compute confidence intervals for λ . These

theoretical intervals are then compared with parametric bootstrap intervals

by means of a simulation study.

Secondly, it presents two new families of distributions which generalize the

skew-normal one: the Beta skew-normal (BSN ) and the Kumaraswamy skew-

normal (KwSN ) distributions. The BSN, which is flexible enough to support

both unimodal and bimodal shape, arises naturally when we consider the

distributions of order statistics of the skew-normal distribution. The Beta

skew-normal can also be obtained as a special case of the Beta-generated

distribution introduced by Jones (2004) [35]. The idea of Beta-generated

family of distributions stemmed from the paper of Eugene et al. (2002) [23],

wherein the Beta-normal distribution was introduced and its properties were

studied. Some other Beta-generated families of distributions have also been

discussed in the literature. For example, the Beta half-normal distribution

has been defined and studied by Pescim et al. (2010) [52]. Kong et al. (2007)

[39] presented results on the Beta-gamma distribution. All these works lead

to some mathematical difficulties because the Beta distribution is not fairly

tractable and, in particular, its cumulative distribution function involves the
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incomplete Beta ratio. Following the idea of the class of Beta-generated dis-

tributions [35], Cordeiro and de Castro (2011) [17] proposed a new family of

generalized distributions, called Kumaraswamy generalized family, by means

of the Kumaraswamy distribution [40]. Some mathematical properties of the

Kumaraswamy generalized family, derived by Cordeiro and de Castro (2011)

[17], are usually much simpler than those properties of the Beta-generated

class. In the same paper, they introduced some generalized distributions

among these the Kumaraswamy-normal and the Kumaraswamy-gamma dis-

tributions. The Kumaraswamy generalized half-normal distribution has been

defined and studied by Cordeiro et al. (2012) [19].

We use the cited generator approach suggested by Cordeiro and de Castro

(2011) [17] to define a new model, called the Kumaraswamy skew-normal

distribution, which extends the skew-normal one. We provide a comprehen-

sive mathematical treatment of the new distribution and provide expansions

for its distribution and density functions. Further we pay attention to three

other generalizations of the skew-normal distribution: the Balakrishnan skew-

normal (SNB) (Balakrishnan (2002) [10] as discussant of Arnold and Beaver

(2002) [5], Gupta and Gupta (2004) [31], Sharafi and Behboodian (2008)

[57]), the generalized Balakrishnan skew-normal (GBSN ) (Yadegari et al.

(2008) [59]) and a two-parameter generalization of the Balakrishnan skew-

normal (TBSN ) (Bahrami et al. (2009) [9]). The above three extensions are

related to the Beta skew-normal and the Kumaraswamy skew-normal distri-

butions for particular values of the parameters.

Given a random sample X1, · · · ,Xn from a distribution F(x), in general the

distribution of the related order statistics does not belong to the family of

F(x). In this thesis we show that the maximum between the Xi’s from a Bal-

akrishnan skew-normal with parameters m and 1, denoted by Xi ∼ SNBm(1),
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is still a Balakrishnan skew-normal with parameters k and 1, where k is a

function of m and n. Motivated by the well-known bounds for the moments

[30], [33], and the variance of the order statistics [51], we study the problem

of finding bounds for the moments and the variance of the Beta-generated

family.

We obtain, inspired by the paper of Gupta and Nadarajah (2005) [32], general

expressions for the moments of the Beta skew-normal and the Kumaraswamy

skew-normal distributions. We introduce a bivariate Kumaraswamy skew-

normal distribution (BKwSN ) whose marginals are Kumaraswamy skew-

normal distributions. This new distribution has been obtained from Frank’s

copula. The open-source software R is used extensively in implementing our

results.

Part II (chapter 5) is dedicated to the scoring rules, which have been stud-

ied widely in statistical decision theory. They provide summary measures

for the evaluation of probabilistic forecasts, by assigning a numerical score

based on the forecast and on the event or value that materializes. More

formally, a scoring rule S(x,Q) is a loss function measuring the quality of a

quoted distribution Q, for an uncertain quantity X , when the realized value

of X is x. It is proper if it encourages honesty in the sense that the expected

score EX∼PS(x,Q), where X has distribution P, is minimized by the choice

Q = P. McCarthy (1956) [16] fully characterizes the proper scoring rules, on

finite sample spaces, as super-gradient of concave functions. This is formally

proved in Hendrickson and Buehler (1971) [13].

Our main purpose is to generalize McCarthy’s theorem for infinite countable

spaces with bounded score and for finite spaces with infinite score. There

are several other works generalizing, in one way or other, the classical Mc-

Carthy’s theorem, as for instance Fang et al. (2010) [7], Hendrickson and
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Buehler (1971) [13], Gneiting and Raftery (2007) [10].

The thesis is divided into six chapters and one appendix. The organization is

as follows. In chapter 1 we remind several theoretical concepts used through-

out the first part of the thesis. Note that only the most important definitions

and properties are stated. In the first section of chapter 1 we describe briefly

the skew-normal distribution and we list their most important properties.

In the second one some generalizations of the skew-normal distribution are

given. In the third one we remember the family of the Beta-generated distri-

butions and also some particular cases of this family. In section 4 we present

the Kumaraswamy generalized family and some special distributions of this

class. Finally, the family of generalized Beta-generated distributions is illus-

trated and some examples are provided in the last section.

In chapter 2 the problem of finding the confidence intervals for the skew-

ness parameter is addressed. In section 1 we utilize Fisher’s transformation

to construct test and confidence intervals for the skewness parameter. Sec-

tion 2 is devoted to the construction of confidence intervals for the skewness

parameter using the parametric bootstrap. In section 3 the results of a sim-

ulation study, which we conducted to compare confidence intervals obtained

using both methods, are summarized. In section 4 we apply the proposed

methodology to find approximate and bootstrap confidence intervals for the

skewness parameter using data from a monitoring survey in Cagliari (Italy)

and from a follow-up dataset of patients operated for a renal cancer in Stras-

bourg (France).

In the first section of chapter 3 we define the Beta skew-normal distribution,

we present its properties and some special cases. In particular, the BSN con-

tains the Beta half-normal distribution (Pescim et al. (2010) [52]) as limiting

case. Besides, we investigate its shape properties. We give miscellaneous



xii

results about bimodality properties of the Beta skew-normal distribution.

We derive its moment generating function and we also compute numerically

the first moment, the variance, the skewness and the kurtosis. We present

two different methods which allow to simulate a BSN distribution. We show

that the distributions of order statistics from the skew-normal distribution

are Beta skew-normal and are log-concave. Furthermore, in the second sec-

tion of this chapter we give some results concerning the SNB distribution.

In particular, we derive the exact distributions of the largest order statistic

from SNBm(1) and the shortest order statistic from SNBm(−1). Moreover, we

explore the relationships between the BSN distribution and the other gener-

alizations of the skew-normal. In section 4 we find bounds for the moments

and the variance of the Beta-generated family. The special case of the Beta

skew-normal distribution is treated in more detail. A maximum likelihood

estimation is addressed in the last section.

Chapter 4 deals with the Kumaraswamy skew-normal distribution. In sec-

tion 1 its properties and some special cases are presented. The first moment,

the variance, the skewness and the kurtosis are numerically computed. Two

different methods to simulate a KwSN distribution are given. The second sec-

tion is devoted to miscellaneous results on the Kumaraswamy skew-normal,

among these an interesting theorem which relates the KwSN and the normal

distributions. The parameters of the new model are estimated by maximum

likelihood in the third section. In the fourth section we considered the bi-

variate Kumaraswamy skew-normal distribution BKwSN whose marginals are

Kumaraswamy skew-normal distributions. We have established several prop-

erties of the proposed bivariate distribution using the properties of Frank’s

copula. In the last section we propose a generalization which nests both the

Beta skew-normal and the Kumaraswamy skew-normal distributions.
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The first section of chapter 5 is devoted to important definitions, properties

and theorems issued from convex analysis, which are intensively used in the

rest of the thesis. In the second section the most valuable and interesting

features of scoring rules are mentioned. The concept of entropy related to a

specific decision problem and the discrepancy function are introduced. Fur-

thermore, we state McCarthy’s theorem [16] as presented by Dawid et al.

(2011) [4]. In the third section we remind two important characterization

theorems, due to Grünwald and Dawid [11], the first one deals with bounded

loss functions, while the second one is referred to unbounded loss. Finally,

the last section focuses on two variants of McCarthy’s theorem. In the final

chapter our most important findings are summarized. Appendix contains a

short description of the Lambert W function. The Bibliography appears at

the end of each part.
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Chapter 1

Literature Review

In this chapter we present some definitions and results known in the liter-

ature that will be useful later. In section 1 we introduce the definition and the

main features of the skew-normal distribution. In section 2 we present some

generalizations of the skew-normal distribution and list their key properties.

The family of the Beta-generated distributions is introduced in section 3.

Furthermore, in this section some models of this family are treated in detail.

Section 4 presents the Kumaraswamy generalized family and provides some

special models. Finally, in the last section we describe the class of the gen-

eralized Beta-generated distributions and include some examples.

Since most of the results are well-known in literature on this subject, we will

not provide proofs. Throughout the thesis the notation ∼ means “follows” or

“has the distribution”, the notation
d
= indicates “equivalent in distribution”.

Let us denote by pdf and cdf the density and the distribution function, re-

spectively. The notation N(0,1) is used to denote the normal distribution.

3



4 1. Literature Review

1.1 The skew-normal density

The skew-normal distribution refers to a parametric class of probability

distributions which includes the standard normal as a special case. A random

variable Z is said to be skew-normal with parameter λ , if its density function

is

φ(z;λ ) = 2φ(z)Φ(λ z), with λ , z ∈ R, (1.1)

where φ(·) and Φ(·) are the standard normal density and distribution, respec-

tively. We denote a random variable Z with the above density by Z ∼ SN(λ ).

The parameter λ controls skewness. The standard normal distribution is a

skew-normal distribution with λ = 0.

We remind some properties of the SN distribution.

Properties of SN(λ ):

a. As λ → ∞, φ(z;λ ) tends to the half-normal density.

b. If Z is a SN(λ ) random variable, then −Z is a SN(−λ ) random variable.

c. If Z ∼ SN(λ ), then Z2 ∼ χ2(1).

d. The density (1.1) is strongly unimodal, i.e. logφ(z;λ ) is a concave

function of z.

The corresponding distribution function is

Φ(z;λ ) = 2
∫ z

−∞

∫
λ t

−∞

φ(t)φ(u)dudt = Φ(z)−2T (z;λ ), (1.2)

where T (z;λ ) is Owen’s function. The properties of this function are:

1. −T (z;λ ) = T (z;−λ );

2. T (−z;λ ) = T (z;λ );
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3. 2T (z;1) = Φ(z)Φ(−z);

4. T (0;λ ) = 1
2π

arctan(λ ).

Using the properties of Owen’s function, we have immediately the following

ones:

Property 1. 1−Φ(−z;λ ) = Φ(z;−λ ).

Property 2. Φ(z;1) = Φ(z)2.

Property 3. Φ(z;λ )+Φ(z;−λ ) = 2Φ(z).

Property 4. Φ(0;λ ) = 1
2 −

1
π

arctan(λ ).

The moment generating function of a random variable Z with skew-normal

distribution is

M(t) = 2exp
{

t2

2

}
Φ(δ t), where δ =

λ√
1+λ 2

. (1.3)

After some algebra, it is easy to obtain the following expressions:

E(Z) = dδ , var(Z) = 1− (dδ )2,

γ1(Z) =
1
2
(4−π)sign(λ )

(
E(Z)2

var(Z)

) 3
2

, γ2(Z) = 2(π−3)
(

E(Z)2

var(Z)

)2

,

where d =
√

2
π

, and γ1, γ2 denote the third and fourth standardized cumu-

lants, respectively.

The maximum value of γ1 is about 0.995, while for γ2 it is 0.869.
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The following proposition, due to Chiogna (1998) [14], generalizes the

well known lemma:

Lemma 1. If W is a normal random variable, then E(Φ(hW +k))=Φ

(
k√

1+h2

)
,

for any real h, k.

Proposition 1.

1. If Z has distribution SN(λ ), then the random variable

Y = Φ(hZ + k) has first moment:

EZ (Φ(hZ + k)) = Φ

(
k√

1+h2
; µ(h,λ )

)
,

where µ(h,λ ) =− hλ√
1+h2+λ 2 .

2. Analogously, if W has distribution N(0,1), then the random variable

Y = Φ(hW + k;λ ) has first moment:

EW (Φ(hW + k;λ )) = Φ

(
k√

1+h2
; µ(h,λ )

)
,

where µ(h,λ ) = λ√
1+h2(1+λ 2)

.

Remark 1. Lemma 1 can be used to prove that the skew-normal density

function is a proper density and to derive the moment generating function

(1.3).

The class of skew-normal distributions can be generalized by the inclusion

of the location and scale parameters which we identify as ξ and ψ > 0. Thus

if X ∼ SN(λ ), then Y = ξ +ψX is a skew-normal variable with parameters

ξ , ψ and λ . We denote Y by Y ∼ SN(ξ ,ψ,λ ).

Plots of the skew-normal density function are illustrated in figure 1.1 for se-

lected values of λ .
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Figure 1.1: The SN(λ ) for different values of λ

Let us remind a result obtained by Loperfido (2008) [44], which will be

useful in the second chapter. In [44] he has shown that any weighted average

of the extremes of an exchangeable and bivariate normal random vector is

skew-normal. More specifically, the following result holds:

Theorem 1. Let X and Y be two random variables whose joint distribution

is bivariate normal with µX = µY = ξ , σ2
X = σ2

Y = ψ2 and Cov(X ,Y ) = ρψ2.

Then for any two constants h and k 6=−h the distribution of

hmin(X ,Y )+ k max(X ,Y )

is

SN

[
ξ (h+ k), ψ

√
(h2 + k2 +2ρhk), λ =

k−h
|k+h|

√
1−ρ

1+ρ

]
.
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In particular, for the choice k = 0 and h = 1, we find that the distribution

of min(X ,Y ) is

SN

[
ξ , ψ, λ =−

√
1−ρ

1+ρ

]
, (1.4)

while, for h = 0 and k = 1, we have that the distribution of max(X ,Y ) is

SN

[
ξ , ψ, λ =

√
1−ρ

1+ρ

]
. (1.5)

A proof of theorem 1 can be found in Loperfido (2002) [43] for ξ = 0 and

ψ = 1, and in the more general case in Loperfido (2008) [44].

Despite the nice properties of the SN, inferential problems arise in the esti-

mation of the skewness parameter. More specifically, its maximum likelihood

estimator (MLE) can take infinite values with positive probability, especially

for small or moderate sample sizes. In addition, it is not clear how to cal-

culate confidence intervals for this parameter. Furthermore, the method of

moments can give even worse results. Several solutions have been proposed to

solve these problems, using numerical approximation methods, in both a clas-

sical and a Bayesian approach. Azzalini and Capitanio (1999) [7] suggested

stopping the log-likelihood maximization procedure when the log-likelihood

function reaches a value not significantly lower than the maximum. Another

solution was proposed by Sartori (2005) [54], who developed a method based

on a second-order modification of the likelihood equation that never produces

boundary estimates. Liseo and Loperfido (2006) [42] use a Bayesian approach

which modifies the likelihood function with a Jeffreys prior for the skewness

parameter. They also prove that such prior is proper.
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1.2 Skew-normal generalizations

Several modifications of the original skew-normal density have been de-

veloped in literature. Among these we mention the Balakrishnan skew-

normal (SNB), the generalized Balakrishnan skew-normal (GBSN ) and the

two-parameter Balakrishnan skew-normal (TBSN ). These generalizations are

briefly presented in this section.

Balakrishnan (2002) [10] proposed a generalization of the standard skew-

normal distribution as follows:

Definition 1. A random variable X has Balakrishnan skew-normal distri-

bution, denoted by SNBn(λ ), if it has the following density function, with

n ∈ N,

fn(x;λ ) = cn(λ )φ(x)Φ(λx)n, x ∈ R, λ ∈ R. (1.6)

The coefficient cn(λ ), which is a function of n and the parameter λ , is given

by

cn(λ ) =
1∫

∞

−∞
φ(x)Φ(λx)ndx

=
1

E (Φ(λU)n)
, (1.7)

where U ∼ N(0,1).

For n = 0 and n = 1, the above density reduces to the standard normal

and the skew-normal distributions, respectively.

We denote a random variable X with density (1.6) in the special case n = 2

by X ∼ NSN(λ ) (Sharafi and Behboodian (2006) [56]).

Sharafi et al. (2008) [57] give the following theorems.

Theorem 2. If U,U1,U2, · · · ,Un are i.i.d. N(0,1), then

U |(max(U1,U2, · · · ,Un)≤ λU)∼ SNBn(λ ). (1.8)

Theorem 3. If Y ∼ N(0,1) and W ∼ SNBn−1(λ ) are independent, then con-

ditionally W |(λW > Y )∼ SNBn(λ ).
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Theorem 4. The moment generating function of X ∼ SNBn(λ ) is

MX(t) = cn(λ )e
t2
2 an(t,λ ), (1.9)

where

an(t,λ ) = E (Φn(λV )) , V ∼ N(t,1). (1.10)

From the previous theorem it is easy to find the following recursion for-

mula:

E(Xk) = (k−1)E
(

Xk−2
)
+

n√
2π

λ

(1+λ 2)
k
2

cn(λ )

cn−1

(
λ√

1+λ 2

)E(W k−1), (1.11)

where W ∼ SNBn−1

(
λ√

1+λ 2

)
.

The following formulae are useful in the sequel:

• 1
c1(λ )

= 1
2 ;

• 1
c2(λ )

= 1
4 +

1
2π

arcsin(ρ) = 1
π

arctan
(√

1+ρ

1−ρ

)
;

• 1
c3(λ )

= 1
8 +

3
4π

arcsin(ρ);

where ρ = λ 2

1+λ 2 .

For n≥ 4, there is no closed form for cn(λ ).

The class of Balakrishnan skew-normal distributions can be generalized by

the inclusion of the location and scale parameters which we identify as µ and

σ > 0. Thus if X ∼ SNBn(λ ), then Y = µ+σX is a Balakrishnan skew-normal

variable with parameters µ, σ and λ . We denote Y by Y ∼ SNBn(µ,σ ,λ ).

Remark 2. Sharafi and Behboodian (2008) [57] have shown that for λ = 1,

(1.6) is the density function of the (n+ 1)− th order statistic X(n+1) in a

sample of size n+1 from N(0,1). Moreover, for λ =−1, (1.6) is the density

function of the first order statistic X(1) in a sample of size n+1 from N(0,1).
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Graphical illustrations of (1.6) are shown in figure 1.2.
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Figure 1.2: The SNBn(λ ) for different values of n and λ = 1

Recently, Yadegari et al. (2008) [59] introduced the following general-

ization of the Balakrishnan skew-normal distribution and explained some

important properties of this distribution.

Definition 2. A random variable X is said to have a generalized Balakr-

ishnan skew-normal distribution, denoted by GBSNn,m(λ ), with parameters

n, m ∈ N and λ ∈ R, if its density function has the following form:

fn,m(x;λ ) =
1

Cn,m(λ )
φ(x)Φ(λx)n (1−Φ(λx))m , x ∈ R, (1.12)



12 1. Literature Review

where

Cn,m(λ ) =
m

∑
i=0

(
m
i

)
(−1)i

∫
∞

−∞

φ(x)Φ(λx)n+idx. (1.13)

For m = 0, this density reduces to the Balakrishnan skew-normal.

Remark 3. Let X1, · · · ,Xn be a random sample from a N(0,1). Then the

j− th order statistic is a GBSN j−1,n− j(1), with j = 1, · · · ,n. In this case we

have that

C j−1,n− j(1) =
n− j

∑
i=0

(
n− j

i

)
(−1)i

∫
∞

−∞

φ(x)Φ(x) j−1+idx =
n!

( j−1)!(n− j)!
.

(1.14)

We recall some properties of this distribution, which have been studied

by Yadegari et al. (2008) [59].

Property 5. GBSNn,m(λ )
d
=GBSNm,n(−λ ) and GBSNn,m(−λ )

d
=GBSNm,n(λ ).

Property 6. If X ∼ GBSNn,m(λ ), then −X ∼ GBSNn,m(−λ ). Moreover, for

any λ 6= 0, X d
=−X if and only if n = m.

Property 7. Let X ∼ GBSNn,m(λ ) be independent of a random sample Y1,

Y2, · · · , Yk from a normal distribution. Then (Y(k) ≤ λX) ∼ GBSNn+k,m(λ )

and X |(Y(1) ≥ X)∼GBSNn,m+k(λ ), where Y(k) and Y(1) are the largest and the

smallest order statistics, respectively.

Several generalized Balakrishnan skew-normal densities are illustrated in

figure 1.3.
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Figure 1.3: The GBSNn,m(λ ) for different values of n, m and λ = 1

Bahrami et al. (2009) [9] discussed a two-parameter generalized skew-

normal distribution which includes the skew-normal, the Balakrishnan skew-

normal and the generalized Balakrishnan skew-normal as special cases.

Definition 3. A random variable Z has a two-parameter Balakrishnan skew-

normal distribution with parameters λ1, λ2 ∈R, denoted by Tn,m(λ1,λ2), if its

pdf is

fn,m(z;λ1,λ2) =
1

cn,m(λ1,λ2)
φ(z)Φ(λ1z)n

Φ(λ2z)m, z ∈ R, (1.15)

and n, m are non-negative integer numbers. The coefficient cn,m(λ1,λ2), which
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is a function of the parameters n, m, λ1 and λ2, is given by

cn,m(λ1,λ2) = E (Φ(λ1X)n
Φ(λ2X)m) , where X ∼ N(0,1). (1.16)

The following properties are direct consequences of definition 3.

Properties of Tn,m(λ1,λ2):

1. T BSN1,1(λ1,0) = SN(λ1) and T BSN1,1(0,λ2) = SN(λ2);

2. T BSNn,m(λ ,λ ) = SNBn+m(λ );

3. T BSNn,m(λ1,0) = SNBn(λ1) and T BSNn,m(0,λ2) = SNBm(λ2);

4. T BSNn,m(λ ,−λ ) = GBSNn,m(λ ) and T BSNn,m(−λ ,λ ) = GBSNm,n(λ );

5. T BSNn,m(0,0) = T BSN0,0(λ1,λ2) = N(0,1).

Remark 4. Let Z1, · · · ,Zn be i.i.d. N(0,1) and Z(1) ≤ Z(2) ≤ ·· · ≤ Z(n) be the

corresponding order statistics, then Z(i) ∼ T BSNi−1,n−i(1,−1).

Theorem 5. (Representation theorem) If X ,V1, · · · ,Vn,U1, · · · ,Um are i.i.d.

N(0,1) and let V(n) = max(V1, · · · ,Vn) and U(m) = max(U1, · · · ,Um), then

X |(V(n) < λ1X ,U(m) < λ2X)∼ T BSNn,m(λ1,λ2).

Theorem 6. If Z ∼ T BSNn−1,m−1(λ1,λ2) and Y1, Y2 i.i.d. N(0,1) are inde-

pendent, then Z|(Y1 < λ1Z,Y2 < λ2Z)∼ T BSNn,m(λ1,λ2).

The location-scale two-parameter Balakrishnan skew-normal distribution is

defined as the distribution of Y = µ+σX , where X ∼ T BSNn,m(λ1,λ2). Hence,

µ ∈ R and σ > 0 are the location and scale parameters, respectively. We

denote Y by Y ∼ T BSNn,m(µ,σ ,λ1,λ2).

Figure 1.4 illustrates some of the possible shapes of T BSNn,m(λ1,λ2) density

function.
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Figure 1.4: The T BSNn,m(λ1,λ2) for different values of n, m, λ1 = 1 and

λ2 =−1

In the rest of the thesis we denote by φ(·;λ ) and Φ(·;λ ) the density

and the distribution functions of the SN(λ ) distribution, respectively. The

density function of T BSNn,m(λ1,λ2) will be indicated by fn,m(·;λ1,λ2).

1.3 The class of the Beta-generated distribu-

tions

In this section the class of the Beta-generated distributions is described.
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1.3.1 Definition of the family

The Beta distribution in its standard form (Beta(a,b)) is specified by its

density function

f (x;a,b) =
xa−1(1− x)b−1

B(a,b)
, for 0 < x < 1, a > 0 and b > 0. (1.17)

Starting from the Beta distribution, Jones (2004) [35] defined a new class

of probability distributions, called Beta-generated family. Following the no-

tation of Jones, the class of the Beta-generated distributions is defined as

follows.

Definition 4. Let F(·) be a continuous distribution function with density

function f (·). The univariate family of distributions generated by F(·), called

Beta-generated family (Beta-F), with parameters a > 0 and b > 0, has pdf

gB
F(x)(x;a,b) =

1
B(a,b)

(F(x))a−1(1−F(x))b−1 f (x), x ∈ R, (1.18)

where B(a,b) is the complete Beta function.

Thus, this family of distributions has distribution function given by:

GB
F(x)(x;a,b) = IF(x)(a,b), a, b > 0, (1.19)

where the function IF(x) denotes the incomplete Beta ratio defined by

Iy(a,b) =
By(a,b)
B(a,b)

, (1.20)

where

By(a,b) =
∫ y

0
za−1(1− z)b−1dz, 0 < y≤ 1, (1.21)

is the incomplete Beta function. Replacing (1.20) and (1.21) in (1.19), we

get that this family of distributions has distribution function

GB
F(x)(x;a,b) =

1
B(a,b)

∫ F(x)

0
za−1(1− z)b−1dz. (1.22)
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Remark 5. Let f (·) be unimodal and continuously differentiable, if a ≥ 1

and b ≥ 1 then gB
F(·)(·;a,b) is also unimodal. The strong unimodality, i.e.

log-concavity, of f (·) implies strong unimodality of gB
F(·)(·;a,b).

The density gB
F(·)(·;a,b) will be more tractable when both functions F(·)

and f (·) have simple analytic expressions.

1.3.2 Expansion for the density function

Cordeiro and Lemonte (2011) [18] derived some properties of the Beta−F

family using an important expansion for the density (1.18).

For b > 0 real non-integer,

(1− z)b−1 =
∞

∑
i=0

(−1)iΓ(b)
Γ(b− i)i!

zi (1.23)

is defined for |z| < 1. Replacing the above expansion into equation (1.22) if

b is real non-integer, we have

GB
F(x;a,b) =

∞

∑
i=0

Γ(b)
B(a,b)

∫ F(x)

0

(−1)i

i!Γ(b− i)
za+i−1dz =

=
∞

∑
i=0

Γ(b)
B(a,b)

(−1)i

i!Γ(b− i)
F(x)a+i

a+ i
=

=
∞

∑
i=0

wi(a,b)F(x)a+i, (1.24)

where wi(a,b) =
Γ(b)

B(a,b)
(−1)i

i!Γ(b−i)
1

a+i .

If b is an integer, the index i in the previous sum stops at b−1. If a is a real
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non-integer, using (1.23) twice, F(x)a+i can be expressed as

F(x)a+i = (1− (1−F(x)))a+i =
∞

∑
k=0

(−1)kΓ(a+ i)
Γ(a+ i− k)k!

(1−F(x))k =

=
∞

∑
k=0

(−1)kΓ(a+ i)
Γ(a+ i− k)k!

k

∑
j=0

(−1) j
(

k
j

)
F(x) j =

=
∞

∑
j=0

∞

∑
k= j

(−1)k+ jΓ(a+ i)
Γ(a+ i− k)k!

(
k
j

)
F(x) j =

=
∞

∑
j=0

s j(a+ i)F(x) j, (1.25)

where s j(a+ i) = ∑
∞
k= j

(−1)k+ jΓ(a+i)
Γ(a+i−k)k!

(k
j

)
. Consequently, the distribution func-

tion (1.24) becomes

GB
F(x)(x;a,b) =

∞

∑
i=0

wi(a,b)
∞

∑
j=0

s j(a+ i)F(x) j =

=
∞

∑
j=0

∞

∑
i=0

wi(a,b)s j(a+ i)F(x) j =
∞

∑
j=0

t j(a,b)F(x) j, (1.26)

where t j(a,b) = ∑
∞
i=0 wi(a,b)s j(a+ i).

Expansions for the Beta-generated density function can be obtained by simple

differentiation of (1.24) for a integer and of (1.26) for a real non-integer.

1.3.3 Some special cases

We now present some special cases of the class of the Beta-generated

distributions.

The Beta-normal distribution

When in (1.18) F(x) is the normal distribution function with parameters

µ and σ , we have the Beta-normal family, introduced by Eugene et al. [23],

whose distribution function is given by

GB
Φ( x−µ

σ
)
(x;a,b,µ,σ) =

1
B(a,b)

∫
Φ( x−µ

σ
)

0
za−1(1− z)b−1dz, x ∈ R, (1.27)
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and the corresponding probability density function is

gB
Φ( x−µ

σ
)
(x;a,b,µ,σ)=

1
B(a,b)

(
Φ

(
x−µ

σ

))a−1(
1−Φ

(
x−µ

σ

))b−1

σ
−1

φ

(
x−µ

σ

)
,

(1.28)

where σ−1φ

(
x−µ

σ

)
and Φ

(
x−µ

σ

)
are the normal density and distribution

with parameters µ and σ , respectively.

A random variable X with Beta-normal distribution with vector of parame-

ters ξξξ = (0,1,a,b) is denoted by X ∼ BN(a,b).

The following figures plot the density function of the BN distribution for

some values of a and b.
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Figure 1.5: The BN(a,b) for different values of a and b
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Figure 1.6: The BN(a,b) for different values of a and b

Eugene et al. [23] showed that the Beta-normal distribution is symmetric

about µ when a = b. Furthermore, they noted that this distribution can

model both unimodal and bimodal data. Numerically, they found that when

a and b are less than 0.214 the Beta-normal distribution is bimodal.

However if a and b are both larger than 0.214 the distribution is always

unimodal.

Famoye et al. (2004) [24] studied the bimodality properties of the Beta-

normal distribution.

In particular, they proved the following results.
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Proposition 2. A mode of the BN(a,b,µ,σ) is any point x0 = x0(a,b) that

satisfies

x0 = σ

{
(a−1)

φ(x0−µ

σ
)

Φ(x0−µ

σ
)
− (b−1)

φ(x0−µ

σ
)

1−Φ(x0−µ

σ
)

}
+µ. (1.29)

Corollary 1. If a = b and one mode of BN(a,b,µ,σ) is at x0, then the other

mode is at the point 2µ− x0.

Corollary 2. If BN(a,b,µ,σ) has a mode at x0, then BN(b,a,µ,σ) has a

mode at 2µ− x0.

Corollary 3. The modal point x0(a,b) is an increasing function of a and a

decreasing function of b.

Corollary 4. The bimodal property of BN(a,b,µ,σ) is independent of the

parameters µ and σ .

The Beta half-normal distribution

The cdf of the half-normal distribution is F(x) = 2Φ(x)− 1, with x > 0.

By inserting F(x) in (1.18), we obtain the Beta half-normal density function

gB
2Φ(x)−1(x;a,b) =

2b

B(a,b)
(2Φ(x)−1)a−1(1−Φ(x))b−1

φ(x), x > 0, (1.30)

and the relative distribution function

GB
2Φ(x)−1(x;a,b) =

∫ 2Φ(x)−1

0

1
B(a,b)

ta−1(1− t)b−1dt, x > 0. (1.31)

When X is a random variable following the BHN distribution, it is denoted

by X ∼ BHN(a,b).

Remark 6. The Beta half-normal distribution arises as a special case of the

Beta generalized half-normal one studied by Pescim et al. (2010) [52].
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Figure 1.7 plots some shapes of the BHN distribution for some values of

a and b.
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Figure 1.7: The BHN(a,b) for different values of a and b

The Beta-gamma distribution

Let X be a gamma random variable with distribution function

F(x;α,β ) =
γβx(α)

Γ(α)
, x > 0, α, β > 0, (1.32)

where γz(s) =
∫ z

0 ts−1e−tdt is the incomplete gamma function and Γ(·) is the

gamma function.

The Beta-gamma cumulative distribution function is defined by substituting

(1.32) into equation (1.19). Hence, the associated density function with four
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positive parameters a, b, α and β has the form

gB
F(x;α,β )(x;a,b,α,β ) =

β αxα−1e−βx

B(a,b)Γ(α)a+b−1 γβx(α)a−1 (
Γ(α)− γβx(α)

)b−1
,

(1.33)

with x > 0. A random variable Y with density function (1.33) is denoted by

Y ∼ BG(a,b,α,β ).

Some properties of the Beta-gamma distribution are discussed in Kong et

al. (2007) [39]. For α = ν

2 and β = 1
2 , the random variable Y has a Beta

chi-square distribution that we will indicate by Bχ2(a,b,ν).

Figure 1.8 illustrates several of the possible shapes obtained from (1.33) under

various choices of a, b, α and β .
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1.4 The class of Kumaraswamy generalized

distributions

The Kumaraswamy distribution is not very common among statisticians

and has been little studied in the literature. However, in a very recent paper,

Jones (2009) [36] explored it, and he highlighted several advantages of this

distribution over the Beta one. We can remember among them that the Ku-

maraswamy distribution (Kw(a,b)) has very easy cdf and quantile function,

which do not involve any special functions, and imply a simple formula for

random variate generation. Its cumulative distribution function is defined by

F(x;a,b) = 1− (1− xa)b, 0 < x < 1, (1.34)

where a, b > 0 are two additional parameters whose role is to introduce

asymmetry and produce distributions with heavier tails. The probability

density function is

f (x;a,b) = abxa−1(1− xa)b−1. (1.35)

Cordeiro and de Castro (2011) [17] combined the works of Eugene et al.

(2002) [23] and Jones (2004) [35] to construct a new class of distributions,

called the Kumaraswamy generalized family (Kw−F).

From an arbitrary distribution function F(x), the cdf of the Kw−F is defined

by

GK
F(x)(x;a,b) = 1− (1−F(x)a)b, (1.36)

where a, b > 0 are two additional parameters. Correspondingly, the density

function of this family of distributions has a very simple form

gK
F(x)(x;a,b) = ab f (x)F(x)a−1(1−F(x)a)b−1. (1.37)

Some structural properties of the Kw−F distribution derived by Cordeiro and

de Castro (2011) [17] are usually simpler than the corresponding properties of
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the Beta−F distribution. They introduced some of these generalized forms

but not discussed them in detail.

Remark 7. If f (·) is a symmetric density function around 0, then gK
F(·)(·;a,b)

will not be a symmetric even when a = b.

1.4.1 Expansion of the density function

Using the expansion (1.23), the density function gK
F(x)(x;a,b), for b > 0

real non-integer, can be expanded as

gK
F(x)(x;a,b)= f (x)

∞

∑
i=0

(−1)iab
(

b−1
i

)
F(x)a(i+1)−1 = f (x)

∞

∑
i=0

wi(a,b)F(x)a(i+1)−1,

(1.38)

where wi(a,b) = (−1)iab
(b−1

i

)
. If b is an integer, the index i in the previous

sum stops at b−1. If a is real non-integer, F(x)a(i+1)−1 can be expanded as

follows

F(x)a(i+1)−1 = [1− (1−F(x))]a(i+1)−1 =
∞

∑
j=0

(−1) j
(

a(i+1)−1
j

)
(1−F(x)) j ,

(1.39)

and then

F(x)a(i+1)−1 =
∞

∑
j=0

j

∑
r=0

(−1) j+r
(

a(i+1)−1
j

)(
j
r

)
F(x)r. (1.40)

Hence, the density gK
F(x)(x;a,b) can be rewritten in the form

gK
F(x)(x;a,b) = f (x)

∞

∑
i, j=0

j

∑
r=0

(−1)i+ j+rab
(

b−1
i

)(
a(i+1)−1

j

)(
j
r

)
F(x)r.

(1.41)

1.4.2 Some special cases

Two examples, which are highlighted in [17], are the Kumaraswamy-

normal and the Kumaraswamy-gamma distributions.
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The Kumaraswamy-normal distribution

Replacing f (·) and F(·) into (1.37) by the pdf and the cdf of the normal

distribution with parameters µ and σ , we obtain the Kumaraswamy-normal

distribution (KwN) with density function given by

gK
Φ( x−µ

σ
)
(x;a,b,µ,σ)= abφ

(
x−µ

σ

)(
Φ

(
x−µ

σ

))a−1(
1−Φ

a
(

x−µ

σ

))b−1

,

where x ∈ R, a, b, σ > 0, µ ∈ R, and φ(·) and Φ(·) are the density and

the distribution functions of the standard normal distribution, respectively.

For later reference, we denote a random variable X with the above pdf by

KwN(a,b,µ,σ).

The KwN distribution with a = 2 and b = 1 reduces to the skew-normal

distribution with shape parameter equal to one.

Different densities with µ = 0 and σ = 1 are plotted in figure 1.9.
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Figure 1.9: The KwN(a,b) for different values of a and b
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The Kumaraswamy-gamma distribution

Let F(x) be the gamma distribution function with parameters α and

β . The general form for the density of a random variable X following a

Kumaraswamy-gamma distribution, say X ∼ KwGa(a,b,α,β ), can be ex-

pressed as

gK
F(x)(x;a,b,α,β ) = ab

(
Γβx(α)

Γ(α)

)a−1(
1−
(

Γβx(α)

Γ(α)

)a)b−1
β αxα−1e−βx

Γ(α)
, x > 0.

The Kumaraswamy-exponential distribution is obtained setting α = 1. The

KwGa(1,b,1,β ) simplifies to the exponential distribution with parameter bβ .

We will denote the KwGa
(
a,b, ν

2 ,
1
2

)
by Kwχ2(a,b,ν).

Figure 1.10 illustrates some of the possible shapes of the KwGa(a,b,α,β )

density for selected values of a, b, α and β .
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The Kumaraswamy half-normal distribution

Let F(x) be the standard half-normal distribution function. The density

of a random variable X having a Kumaraswamy half-normal distribution with

parameters a and b, denoted by KwHN(a,b), is

gk
F(x)(x;a,b) = 2abφ (x)(2Φ(x)−1)a−1 (1− (2Φ(x)−1)a)b−1 , x > 0,

where φ(·) and Φ(·) represent the density and distribution functions of the

standard normal distribution, respectively.

The half-normal distribution arises as the particular case a = b = 1.

Figure 1.11 plots some densities of the KwHN(a,b,µ,σ) distribution with

µ = 0 and σ = 1.
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Remark 8. We remind that the Kumaraswamy half-normal distribution is

a special case of the Kumaraswamy generalized half-normal distribution, de-

fined by Cordeiro et al. (2012) [19].

1.5 The class of the generalized Beta-generated

distributions

The generalized Beta-generated distribution of the first kind was intro-

duced by McDonald (1984) [49].

Definition 5. A variable X is said to have a generalized Beta-generated dis-

tribution of the first kind with positive parameters a, b and c, say GB(a,b,c),

if its density is given by

g(x;a,b,c) =
cxac−1 (1− xc)b−1

B(a,b)
, with 0 < x < 1. (1.42)

If c = 1 the variable X is a Beta of the first kind with parameters a and

b.

In the special case a = 1, equation (1.42) reduces to the Kumaraswamy dis-

tribution with parameters b and c.

Recently, Alexander et al. (2011) [3] proposed the class of the generalized

Beta-generated distributions which is defined as follows.

For a continuous distribution function F(x) with density f (x), the family of

the generalized Beta-generated distributions (G BG −F) is characterized by

its density:

gG BG
F(x) (x;a,b,c) =

c
B(a,b)

f (x)[F(x)ac−1(1−F(x)c)b−1]. (1.43)

Two important special cases are the Beta-generated distribution (c = 1), and

the Kumaraswamy generalized distribution (a = 1).
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Remark 9. The G BG distribution obtained from F(x) is a standard Beta-

generated distribution generated by F(x)c.

1.5.1 Some special cases

We include two examples of the class of the generalized Beta-generated

distributions given by Alexander et al. (2011) [3]: the generalized Beta-

normal and the generalized Beta-gamma distributions.

Furthermore, we define a new distribution of this family useful for our pur-

poses, called the generalized Beta half-normal distribution.

Generalized Beta-normal distribution

Replacing F(·) and f (·) into (1.43) by the cdf and the pdf of the normal

distribution with parameters µ and σ , we obtain the generalized Beta-normal

distribution (GBN) with density function given by

gG BG
Φ( x−µ

σ
)
(x;a,b,c,µ,σ)=

c
B(a,b)

φ

(
x−µ

σ

)(
Φ

(
x−µ

σ

))ac−1(
1−Φ

c
(

x−µ

σ

))b−1

,

(1.44)

where x ∈R, a, b, c, σ > 0, µ ∈R and φ(·) and Φ(·) are the pdf and the cdf

of the standard normal distribution, respectively.

A random variable X following the GBN distribution is denoted by

X ∼ GBN(a,b,c,µ,σ).

Setting c = 1, (1.44) reduces to the Beta-normal distribution proposed by

Eugene et al. (2002) [23].

When a = 1 the Kumaraswamy-normal is obtained. The GBN distribution

with µ = 0, σ = 1, b = 1 and ac = 2 coincides with the skew-normal distri-

bution with shape parameter equal to one.
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Plots of the GBN density function for selected parameter values are given

in figure 1.12.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

(a=1,b=1,c=2)
(a=0.5,b=0.5,c=3)
(a=1,b=0.5,c=5)

Figure 1.12: The GBN density function for selected parameter values with

µ = 0 and σ = 1

Generalized Beta-gamma distribution

By inserting (1.32) in (1.43), we obtain the generalized Beta-gamma dis-

tribution with five positive parameters a, b, c, α and β , whose density func-

tion is given by

gG BG
F(x;α,β )(x;a,b,c,α,β )=

cβ α

B(a,b+1)Γ(α)
xα−1e−βx

{
γβx(α)

Γ(α)

}ac−1{
1−

γβx(α)

Γ(α)

c}b

,

(1.45)
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where x > 0.

When Y is a random variable following the G BG a distribution, it will be

denoted by Y ∼ G BG a(a,b,c,α,β ).

Figure 1.13 illustrates some possible shapes of the G BG a density function.
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Figure 1.13: The G BG a density function for selected parameter values with

c = 2.5 and β = 1.5

Generalized Beta half-normal distribution

We now introduce the three-parameter generalized Beta half-normal (GBHN)

distribution by taking F(x) in (1.43) to be the cdf of the standard half-normal

distribution. Hence, the density function of GBHN distribution with three
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parameters a, b and c has the form

gG BG
2Φ(x)−1(x;a,b,c) =

2c
B(a,b)

φ(x)(2Φ(x)−1)ac−1 [1− (2Φ(x)−1)c]b−1 , x > 0.

(1.46)

If X is a random variable with density (1.46), we write X ∼ GBHN(a,b,c).

Plots of the density function (1.46) are illustrated in figure 1.14.
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Chapter 2

Large sample confidence

intervals for the skewness

parameter

As evidenced in section 1 of chapter 1, the skew-normal model presents

some inferential problems linked to the estimation of the skewness parame-

ter. In particular, its maximum likelihood estimate can be infinite especially

for moderate sample size and is not clear how to calculate confidence in-

tervals for this parameter. In this chapter we show how these inferential

problems of the skew-normal distribution can be solved if we are interested

in the distribution of extreme statistics of two random variables with joint

normal distribution. Loperfido proved (see theorem 1) that such extreme

statistics have a skew-normal distribution with skewness parameter that can

be expressed as a function of the correlation coefficient between the two ini-

tial variables. It is then possible, using some theoretical results involving

the correlation coefficient, to find approximate confidence intervals for the

parameter of skewness. These theoretical intervals are then compared with

35
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parametric bootstrap intervals by means of a simulation study. Two appli-

cations are given using real data. These results are new and can be found in

[48].

2.1 Approximate Confidence Intervals (ACI)

for skewness parameter

We denote a random vector (X ,Y ) having a bivariate normal distribution

by (X ,Y ) ∼ N2(µX ,µY ,σ
2
X ,σ

2
Y ,ρ), where ρ is the correlation coefficient. Its

density is then

f (x,y)=
1

2πσxσy
√

1−ρ2
exp

{
− 1

2(1−ρ2)

[
(x−µx)

2

σ2
x

−
2ρ(x−µx)(y−µy)

σxσy
+

(y−µy)
2

σ2
y

]}
.

As pointed out in the first section of chapter 1, Loperfido (2008) [44] has

shown that any weighted average of the extremes of an exchangeable and

bivariate normal random vector is skew-normal.

In particular, the distribution of min(X ,Y ) is

SN

[
ξ , ψ, λ =−

√
1−ρ

1+ρ

]
, (2.1)

and the distribution of max(X ,Y ) is

SN

[
ξ , ψ, λ =

√
1−ρ

1+ρ

]
, (2.2)

where ξ = µX = µY and ψ2 = σ2
X = σ2

Y .

Suppose now to be interested in constructing a confidence intervals for λ =
√

1−ρ

1+ρ

on the basis of a random sample of n pairs (X ,Y ).

When all five parameters in θ = (µX ,µY ,σ
2
X ,σ

2
Y ,ρ) are assumed to be un-

known, the MLE of the coefficient of correlation ρ is the sample correlation
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coefficient

R =
∑

n
i=1(Xi− X̄)(Yi− Ȳ )√

∑
n
i=1(Xi− X̄)2

√
∑

n
i=1(Yi− Ȳ )2

.

Using the invariance property of MLE, we know that the statistic Λ̂ =
√

1−R
1+R

is the MLE of λ .

It is customary to base tests concerning ρ on the statistic 1
2 ln
(1+R

1−R

)
. This

is the Fisher transformation of R (see for instance Kendall and Stuart [37],

[38]). It can be shown (see for instance [37], [38]) that the distribution of

this statistic, for n > 50, is approximately normal with mean 1
2 ln
(

1+ρ

1−ρ

)
and

variance 1
n−3 . Then the variable

Z =

1
2 ln
(1+R

1−R

)
− 1

2 ln
(

1+ρ

1−ρ

)
1√
n−3

(2.3)

has approximately standard normal distribution. Using the above approxi-

mation we can calculate 1−α confidence intervals for the parameter λ =
√

1−ρ

1+ρ
.

We have:

P

−z α

2
≤

1
2 ln
(1+R

1−R

)
− 1

2 ln
(

1+ρ

1−ρ

)
1√
n−3

≤ z α

2

≈ 1−α,

which is equivalent to

P
(

exp
( −z α

2√
n−3

− 1
2

ln
(

1+R
1−R

))
≤ λ ≤ exp

( z α

2√
n−3

− 1
2

ln
(

1+R
1−R

)))
≈ 1−α.

Then the random set

C(R) =
[

exp
( −z α

2√
n−3

− 1
2

ln
(

1+R
1−R

))
, exp

( z α

2√
n−3

− 1
2

ln
(

1+R
1−R

))]
(2.4)

is an approximate 1−α confidence interval for λ .

This approximation can also be used to test hypotheses concerning λ =
√

1−ρ

1+ρ
.

If we are interested in testing

H0 : λ = λ0 versus H1 : λ 6= λ0, (2.5)
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we find that an appropriate critical region of size α for testing the null hy-

pothesis against the alternative, is |Z| ≥ z α

2
, where Z is defined as in (2.3)

and z α

2
is defined by P

(
Z ≥ z α

2

)
= α

2 . Then we can write the rejection region

as {
r :

∣∣∣∣∣ 1
2 ln
(1+r

1−r

)
+ ln(λ0)

1√
n−3

∣∣∣∣∣≥ z α

2

}
. (2.6)

The same procedure can be applied to compute the confidence intervals of

level 1−α and the critical region for the hypothesis (2.5) for λ = −
√

1−ρ

1+ρ
.

For instance, an approximate confidence interval is

C(R) =
[
−exp

( z α

2√
n−3

− 1
2

ln
(

1+R
1−R

))
, −exp

( −z α

2√
n−3

− 1
2

ln
(

1+R
1−R

))]
.

Using theorem 1 of chapter 1 and these procedures, we can compute confi-

dence intervals and critical regions for the unknown skewness parameter λ

when the others unknown parameters (means and variances) of the random

variables X and Y are estimated by the corresponding MLEs.

Note that the length of the 1−α confidence interval (2.4)

L(R,n) = exp

(
− 1

2
ln
(

1+R
1−R

))[
exp
( z α

2√
n−3

)
− exp

( −z α

2√
n−3

)]
is a decreasing function of R for fixed n and a decreasing function of n for

fixed values of R. We expect to have shorter intervals for R close to 1 and for

large samples.

2.2 Parametric Bootstrap Confidence Inter-

vals (BCI)

In this section we use the parametric bootstrap method for construct-

ing confidence intervals (see Efron and Tibshirani (1993) [22]). This method
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relies on resampling with replacement from an estimated parametric model

and calculating the required statistic from these repeated samples. The val-

ues of the statistic from the repeated sampling can then be used to generate

standard errors and confidence intervals for the statistic of interest.

In our specific case, we consider a random sample of n pairs Z = (X ,Y ), where

(X ,Y )∼ N2(µX ,µY ,σ
2
X ,σ

2
Y ,ρ).

For the parametric bootstrap, instead of estimating the theoretical distribu-

tion function F by the empirical distribution function, we estimate the five

parameters of the bivariate normal by the corresponding MLEs. We denote

the bivariate normal distribution with these values for the parameters by

F̂norm.

Suppose that our functional of interest is Θ=Θ(F), which we estimate by the

statistic: Θ̂ = Θ̂(Z1, · · · ,Zn). In order to construct a confidence interval for Θ

we introduce the bootstrap random variables Z∗1 , Z∗2 , · · · , Z∗n i.i.d. with dis-

tribution F̂norm. Then we generate B bootstrap samples from Z∗1 , Z∗2 , · · · , Z∗n ,

denoted by z∗1, z∗2, · · · , z∗B, and for each we compute the bootstrap repli-

cation Θ̂∗(b) = Θ̂(z∗b), b = 1, · · · ,B. Let Θ̂
(α)
B be the 100 ·α − th empirical

percentile of the Θ̂∗(b) values, that is the B ·α− th value in the ordered list

of the B replications of Θ̂∗. Likewise, let Θ̂
(1−α)
B be the 100 · (1−α)− th

empirical percentile. The approximate 1−2α percentile interval is[
Θ̂%,lo,Θ̂%,up

]
≈
[
Θ̂
∗(α)
B ,Θ̂

∗(1−α)
B

]
. (2.7)

In our case Θ = λ =±
√

1−ρ

1+ρ
and Θ̂ = Λ̂ =±

√
1−R
1+R .

2.3 Simulation study

Typically, studies of the comparative performance of confidence intervals

rely on simulations.
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In this section we have performed a simulation study to compare coverage

probability and expected length of the ACI and BCI methods, for construct-

ing confidence intervals for λ =
√

1−ρ

1+ρ
(of course a similar study can be

provided for λ =−
√

1−ρ

1+ρ
).

Samples of size n = 15, 30, 40, 50, 80, 100, 500, 1000 were simulated from

the bivariate normal distribution N2(0,0,1,1,ρ) for the values ρ =−0.9, −0.8,

−0.5, −0.2, 0, 0.2, 0.5, 0.8, 0.9 of the correlation coefficient.

For each sample size n and each value of ρ , we generate 1000 ACI and BCI

intervals for the parameter λ and then we compute AVL and AVU, the aver-

age lower and upper confidence bounds, CP, the actual coverage probability

of the two-sided confidence intervals (obtained as the ratio of the number of

intervals containing the true values over the total number of simulations) and

EL, the estimate of the expected length. Then, for these values of n and ρ ,

the bootstrap distribution of Θ̂∗ =
√

1−R
1+R was calculated, based on B = 1000

bootstrap replications.

Partial results of the simulation study are summarized in figure 2.1 and are

reported in tables 2.1 and 2.2.
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Figure 2.1: Results of the simulation study
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ρ = 0.5 λ = 0.5774

n Method AVL AVU EL CP

15 ACI 0.3337 1.0347 0.7010 0.9390

BCI 0.3267 1.0322 0.7055 0.9180

30 ACI 0.3963 0.8427 0.4464 0.944

BCI 0.3965 0.8293 0.4328 0.923

40 ACI 0.4196 0.7992 0.3797 0.952

BCI 0.4176 0.7934 0.3758 0.923

50 ACI 0.4339 0.7687 0.3347 0.9470

BCI 0.4335 0.7619 0.3283 0.9380

80 ACI 0.4646 0.7263 0.2617 0.95

BCI 0.4639 0.7234 0.2595 0.948

100 ACI 0.4732 0.7045 0.2313 0.9540

BCI 0.4725 0.7017 0.2292 0.9410

500 ACI 0.5286 0.6302 0.1016 0.9470

BCI 0.5282 0.6298 0.1017 0.9500

1000 ACI 0.5424 0.6141 0.0717 0.9480

BCI 0.5422 0.6140 0.0718 0.9470

Table 2.1: Results of the simulations with ρ = 0.5

ρ =−0.5 λ = 1.7321

n Method AVL AVU EL CP

15 ACI 1.0574 3.2786 2.2212 0.9490

BCI 1.1078 3.4013 2.2935 0.9150

30 ACI 1.2247 2.6041 1.3794 0.947

BCI 1.2495 2.6192 1.3697 0.922

40 ACI 1.2877 2.4530 1.1653 0.947

BCI 1.3036 2.4604 1.1567 0.929

50 ACI 1.3202 2.3386 1.0184 0.9570

BCI 1.3360 2.3421 1.0061 0.9370

80 ACI 1.4027 2.1927 0.7899 0.955

BCI 1.4115 2.1967 0.7852 0.941

100 ACI 1.4265 2.1238 0.6973 0.9480

BCI 1.4332 2.1260 0.6928 0.9440

500 ACI 1.5850 1.8897 0.3047 0.9560

BCI 1.5855 1.8912 0.3058 0.9560

1000 ACI 1.6299 1.8453 0.2154 0.9530

BCI 1.6301 1.8463 0.2161 0.9540

Table 2.2: Results of the simulations with ρ =−0.5
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A confidence interval with a narrower expected length implies a more ac-

curate estimate of the parameter and thus is always preferred to a longer one.

The actual coverage probability should be near to the nominal coverage 0.95.

Table 2.1, table 2.2 and other data not presented indicate that, for n≥ 50, the

simulation study gives similar results for the two methods and for different

values of ρ , both in terms of coverage probability and expected length. For

small and moderate sample sizes the ACI has actual coverage probabilities

reasonably close to the nominal value of 0.95. In contrast, the intervals based

on the BCI method have poor coverage when n is small or moderate. We

notice that, in general, the bootstrap method has a coverage rate slightly

less than 95%. As expected, with larger sample sizes the confidence intervals

become narrower. For both methods, the expected length becomes larger for

negative values of ρ . This behaviour is particularly evident when ρ is close

to -1 and n is small or moderate. This is not surprising and it is in agreement

with other results in literature. In fact, as ρ →−1, λ → ∞ and estimation

problems can arise. As expected, the simulation study confirms that, for all

sample sizes, the length of the interval decreases as ρ increases.

2.4 Examples

To highlight the applicability of the method presented in section 1 of this

chapter we consider two situations of different nature.

2.4.1 PM10 concentrations

In environmental or epidemiological studies it is relevant to estimate the

distribution of extreme statistics. If you are monitoring the pollution in dif-

ferent areas of a region or a town it is important to model appropriately
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the order statistic maximum and/or minimum or the range. In this example

we analyse data from PM10 concentrations recorded daily between the 1st

of December 2003 and the 1st of February 2005 in two different stations in

Cagliari, Italy. After removing missing values, from each station we have 111

observations. Our interest rests on the natural logarithm of the maximum

value of PM10 concentrations in the two stations. We assume that their joint

distribution is bivariate normal. We standardized the variables using the

MLEs of the unknown means and standard deviations. We are interested

in the distribution of the maximum of such standardized random variables.

The conditions of theorem 1 are satisfied. Then we know that our extreme

statistic has a skew-normal distribution with location parameter equal to 0,

scale parameter equal to 1 and skewness parameter λ equal to −
√

1−ρ

1+ρ
.

To evaluate a confidence interval for λ we apply the procedure described in

section 2.1. In order to check the fit of the bivariate normal distribution to

the data we use the Shapiro-Wilk Multivariate Normality Test (see Shapiro

and Wilk (1965) [55]). This is based on the Shapiro-Wilk statistic defined as

the ratio of two estimates of the variance of a normal distribution based on

a random sample of ordered n observations y1 ≤ y2 ≤ ·· · ≤ yn. Analytically,

W = (∑aiyi)
2

∑(yi−ȳ)2 , where a = (a1, · · · ,an)
T is such that

√
n−1∑aiyi is the best

unbiased estimate of the standard deviation of the yi assuming normality.

The observed value is W = 0.9823 and the corresponding p-value is 0.1474.

The estimated value for R is 0.5145. In table 2.3 (left size) are reported the

estimated value of λ together with an approximate 95% confidence interval.

This confidence interval is then compared with the bootstrap interval con-

structed as described in section 2. ACI provides slightly better results than

BCI.



2.4 Examples 47

2.4.2 Creatinine clearance

In our second example we consider a dataset concerning the follow-up of

145 patients who had an operation for a renal cancer in the University hos-

pital of Strasbourg. The follow-up consists of several medical examinations

(1, 3, 6, 12 and 24 months after the operation) with blood tests and further

investigations. Glomerular filtration rate is a measure of renal function using

the flow rate of filtered fluid through the kidney. Creatinine clearance rate is

the volume of blood plasma that is cleared of creatinine per unit time and is

a common measure for approximating the glomerular filtration rate. When

the patient has his medical consultation six months after operation, the max-

imum of the creatinine clearance rate between the value at 1 month and the

value at 3 months can be considered as the value of his new renal function

after recovery. Statistical tests confirm that the two measures (creatinine

clearance at 1 month and at 3 months) have the same mean and the same

variance. The Shapiro-Wilk test can not reject the hypothesis that the dis-

tribution is joint normal (W = 0.9893 and p-value is 0.3302). The estimated

correlation coefficient is R = 0.9266. Table 2.3 (right side) summarizes the

point estimate of λ and its confidence interval at the 95% level using Fisher’s

transformation and the bootstrap technique. As previously, the length of this

interval is narrower with the theoretical approximate method than with the

bootstrap.

Example 1: λ̂ = 0.5661 Example 2: λ̂ = 0.1951

Method CI Length CI Length

ACI (0.4688,0.6836) 0.2148 (0.1655,0.2300) 0.0645

BCI (0.4401,0.6701) 0.23 (0.1607,0.2352) 0.07454

Table 2.3: ACI and BCI of level 0.95 for λ using data from example 1 and 2





Chapter 3

The Beta skew-normal

distribution

The main task of this chapter is to introduce a new class of distributions,

which we call Beta skew-normal since it is a special case of the Beta-generated

distribution. The moment generating function and some important theorems

about the moments of this distribution are derived in section 1. Furthermore,

we give some bimodality properties. In section 2 we link the distributions

introduced in section 1.2 with the Beta skew-normal. In section 3 we provide

bounds for the moments and the variance of the Beta-generated distribution.

In the last section the estimation of the parameters is investigated by max-

imum likelihood method. The results presented in this chapter are new and

some of these can be found in [45].

49
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3.1 The Beta skew-normal

3.1.1 Definition and simple properties

Replacing in (1.18) F(x) by Φ(x;λ ), we obtain the Beta skew-normal

distribution, with distribution function given by

GB
Φ(x;λ )(x;λ ,a,b) =

1
B(a,b)

∫
Φ(x;λ )

0
za−1(1− z)b−1dz, x ∈ R, (3.1)

and probability density function

gB
Φ(x;λ )(x;λ ,a,b) =

2
B(a,b)

(Φ(x;λ ))a−1(1−Φ(x;λ ))b−1
φ(x)Φ(λx). (3.2)

Throughout this thesis, we denote the Beta skew-normal distribution with

vector of parameters ξξξ = (λ , a, b) by BSN(λ , a, b).

The class of the Beta skew-normal can be generalized by the inclusion of

the location and scale parameters which we identify as µ and σ > 0. Thus

if X ∼ BSN(λ , a, b) then Y = µ +σX is a Beta skew-normal with vector of

parameters ξξξ = (µ,σ ,λ ,a,b). We denote Y by Y ∼ BSN(µ,σ ,λ ,a,b).

We now present some properties concerning the BSN(λ ,a,b).

Properties of BSN(λ ,a,b):

a. gB
Φ(x;λ )(x;λ ,1,1) = φ(x;λ ), for all x ∈ R, i.e. BSN(λ ,1,1) = SN(λ ).

b. gB
Φ(x;0)(x;0,a,b) = gB

Φ(x)(x;a,b), for all x∈R, i.e. BSN(0,a,b) =BN(a,b).

c. gB
Φ(x;0)(x;0,1,1) = φ(x), for all x ∈ R, i.e. BSN(0,1,1) = N(0,1).

d. gB
Φ(x;1)(x;1, 1

2 ,1) = φ(x), for all x ∈ R, i.e. BSN
(
1, 1

2 ,1
)
= N(0,1).

e. gB
Φ(x;−1)(x;−1,1, 1

2) = φ(x), for all x ∈ R, i.e. BSN
(
−1,1, 1

2

)
= N(0,1).

f. If X ∼ BSN(λ ,a,b), then −X ∼ BSN(−λ ,b,a).
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g. If X ∼ BSN(λ ,a,b), then Y = Φ(X ;λ ) is a Beta(a,b).

h. If X ∼ BSN(λ ,a,b), then Y = 1−Φ(X ;λ ) is a Beta(b,a).

i. As λ →+∞, gB
Φ(x;λ )(x;λ ,a,b) tends to the Beta half-normal density.

Remark 10. Properties from a to e establish that the family of BSN(λ ,a,b)

contains the standard normal distribution, the skew-normal distribution and

the Beta-normal distribution as special cases.

Proof. Points from a to h follow directly from (3.2) and from elementary

properties of the skew-normal distribution.

We now show point i. From property a of section 1.1 we have φ(x;λ ) −→
λ→∞

2φ(x),

with x > 0. Then

Φ(x;λ ) =
∫ x

−∞

φ(t;λ )dt =
∫

∞

−∞

H(x− t)φ(t;λ )dt −→
λ→∞

2Φ(x)−1, with x > 0.

(3.3)

This is the distribution function of a variable with half-normal distribution.

Here H is Heaviside’s function defined as

H(x) =

0 if x < 0

1 if x≥ 0.

Then we have

lim
λ→∞

gB
Φ(x;λ )(x;λ ,a,b) =

2
B(a,b)

(2Φ(x)−1)a−1(2(1−Φ(x)))b−1
φ(x). (3.4)

The right side of (3.4) is the density function of a variable with Beta half-

normal distribution.

The BSN distribution is easily simulated using property g as follows: if Y has

a Beta distribution with parameters a and b, then the variable X =Φ−1(Y ;λ )
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has BSN(λ ,a,b) distribution, where Φ−1(·;λ ) is the quantile function of the

skew-normal distribution.

In figure 3.1 are plotted random samples generated by the BSN distribution

for some a, b and λ with the respective curve of the density function obtained

using the R-package “sn” (see Azzalini (2010) [8]).

From this plot we can observe that, for values of a and b close to zero, the

distribution can be bimodal.

From remark 5, we know that, if a≥ 1 and b≥ 1, the density (3.2) is strongly

unimodal, i.e. loggB
Φ(x;λ )(x;λ ,a,b) is a concave function of x (see figure 3.2).

We do not have general results for a < 1 and/or b < 1.

A numerical study has shown that, when at least one of the two parameters a

and b is close to zero (0.10,0.20), the density can be bimodal (see figure 3.3).
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3.1.2 Moment generating function and moments

Now we find the moment generating function of X which has density (3.2).

Property 8. The moment generating function of X ∼ BSN(λ ,a,b) is given

by

MX(t) =
2

B(a,b)
e

t2
2 EZ

(
(Φ(Z;λ ))a−1(1−Φ(Z;λ ))b−1

Φ(λZ)
)
, (3.5)

where Z ∼ N(t,1).

Proof. Using integration by parts, it follows that

MX(t) =
1

B(a,b)

∫
∞

−∞

etx
φ(x;λ )(Φ(x;λ ))a−1(1−Φ(x;λ ))b−1dx =

=
2

B(a,b)

∫
∞

−∞

etx
φ(x)Φ(λx)(Φ(x;λ ))a−1(1−Φ(x;λ ))b−1dx =

=
2e

t2
2

B(a,b)

∫
∞

−∞

φ(x− t)Φ(λx)(Φ(x;λ ))a−1(1−Φ(x;λ ))b−1dx,

and the proof is complete.

We have the following recursion formula:

Property 9. Let k ∈N and k≥ 1. If X ∼ BSN(λ ,a,b), with a > 1 and b > 1,

then

EX(Xk) = (k−1)EX(Xk−2)+λEX

(
Xk−1 φ(λX)

Φ(λX)

)
+

+(a+b−1)EU

(
Uk−1

φ(U ;λ )
)
− (a+b−1)EV

(
V k−1

φ(V ;λ )
)
,

where U ∼ BSN(λ ,a−1,b) and V ∼ BSN(λ ,a,b−1) are independent random

variables.

Proof. The proof follows easily from application of the formula for integration

by parts and by using the well note relation ∂φ(x)
∂x = −xφ(x) (see Arnold et

al. (1992) [4]).
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By property f of BSN we can deduce the following proposition.

Proposition 3. Let X ∼ BSN(λ ,a,b) and Y ∼ BSN(−λ ,b,a). We have the

following statements:

• EX(X) =−EY (Y );

• varX(X) = varY (Y );

• γ1(X) =−γ1(Y );

• γ2(X) = γ2(Y );

with γ1 and γ2 we indicate the skewness and the kurtosis, respectively.

The following lemma is an application to the BSN distribution of lemma

4 of Zografos and Balakrishnan (2009) [60].

Lemma 2. Let X ∼ BSN(λ ,a,b). Then the following sentences hold.

1. EX(Φ(X ;λ )) = a
a+b ;

2. EX(lnΦ(X ;λ )) = ψ(a)−ψ(a+b);

3. EX(1−Φ(X ;λ )) = b
a+b ;

4. EX(ln(1−Φ(X ;λ ))) = ψ(b)−ψ(b+a);

where ψ(t) = dln(Γ(t))
dt is the di-gamma function (called also the logarithmic

derivative of the gamma function).

We refer to [1] for details concerning on the di-gamma function.

The Beta skew-normal density is in general asymmetric (see figures 3.2 and

3.3). We have a partial result concerning symmetry:

Proposition 4. If a = b and BSN(λ ,a,b) is symmetric about 0 then λ = 0.
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Proof. We consider the density of a random variable X ∼ BSN(λ ,a,a):

gB
Φ(x;λ )(−x;λ ,a,a) =

2
B(a,a)

φ(x)Φ(−λx)(1−Φ(x;−λ ))a−1(Φ(x;−λ ))a−1,

this is equal to gB
Φ(x;λ )(x;λ ,a,a) if Φ(λx) = Φ(−λx) and Φ(x;λ ) = Φ(x;−λ ).

However for property 3 we find that Φ(x;λ )=Φ(x) which implies that λ = 0.

Remark 11. Eugene et al. (2002) [23] have shown that the BN(a,b) = BSN(0,a,b)

is symmetric about 0 when a = b.
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Figure 3.3: The BSN(λ ,a,b) for values of a < 1 and b < 1

Moments of the BSN can not be evaluated exactly in closed form. We

have computed them numerically using the software R.

In table 3.1 we have reported the values of the mean µBSN , standard deviation

σBSN , skewness γ1 and kurtosis γ2 for different values of the parameters a, b

and λ . From this numerical study we have noted that:

• for fixed values of a and b the mean µBSN and skewness γ1 are both

increasing function of λ ;
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• for fixed values of b and λ the mean µBSN and skewness γ1 are both

increasing function of a;

• for fixed values of a and λ the mean µBSN is a decreasing function of b.

(a)

a b λ µBSN σBSN γ1 γ2

0.25 0.25 −10 −1.1579 1.4029 −1.1329 3.7648

−1 −0.6501 1.9679 −0.2378 2.7777

0 0 2.3382 −0.0004 2.6217

1 0.6484 1.9649 0.2306 2.1362

10 1.1580 1.4027 1.1329 3.7632

0.25 0.5 −10 −1.5906 1.3469 −0.7185 2.7580

−1 −1.4424 1.6716 −0.3284 3.0202

0 −0.9631 1.9061 −0.0849 2.8029

1 −0.1772 1.5265 0.0938 2.8543

10 0.5446 0.8728 1.5054 5.1988

0.5 0.25 −10 −0.5447 0.8727 −1.5061 5.2003

−1 0.1773 1.5265 −0.0938 2.8541

0 0.9625 1.9051 0.0819 2.7927

1 1.4411 1.6694 0.3203 2.9849

10 1.6339 1.3974 0.8434 3.2655

0.5 0.5 −10 −0.8979 0.8874 −0.9703 3.3176

−1 −0.5882 1.2659 −0.1811 2.9514

0 0 1.5253 0 2.8615

1 0.5882 1.2659 0.1811 2.9514

10 0.9179 0.9153 1.0703 3.7747

0.5 1 −10 −1.3018 0.9148 −0.8262 3.4815

−1 −1.1664 1.0704 −0.3085 3.1159

0 −0.7043 1.2479 −0.1372 2.9831

1 0 0.9999 0 2.9999

10 0.4873 0.5778 1.3199 4.8561

(b)

a b λ µBSN σBSN γ1 γ2

0.5 10 −10 −2.3678 0.7314 −0.7505 3.7967

−1 −2.3617 0.7389 −0.7188 3.7849

0 −2.0809 0.8033 −0.6173 3.5736

1 −1.0893 0.6117 −0.5642 3.4799

10 −0.0182 0.1429 0.3706 3.8635

1 0.5 −10 −0.4873 0.5777 −1.3200 4.8570

−1 0 1 0 3

0 0.7043 1.2479 0.1372 2.9831

1 1.1664 1.0704 0.3086 3.1161

10 1.3018 0.9148 0.8262 3.4814

1 1 −10 −0.7939 0.6080 −0.9556 3.8232

−1 −0.5642 0.8256 −0.1369 3.0617

0 0 1 0 3

1 0.5642 0.8256 0.1369 3.0617

10 0.7939 0.6080 0.9556 3.8232

10 1 −10 −0.0839 0.1364 −0.7082 4.2018

−1 0.6744 0.4536 0.3597 3.2722

0 1.5388 0.5868 0.4099 3.3314

1 1.8675 0.5251 0.5005 3.4685

10 1.8807 0.5124 0.5744 3.5243

1 10 −10 −1.8807 0.5124 −0.5744 3.5243

−1 −1.8675 0.5251 −0.5005 3.4685

0 −1.5388 0.5868 −0.4099 3.3314

1 −0.6744 0.4536 −0.3597 3.2722

10 0.0839 0.1364 0.7082 4.2018

Table 3.1: The first moment, the standard deviation, the skewness and the

kurtosis of BSN(λ ,a,b) for different values of a, b and λ
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3.1.3 Order statistics from the skew-normal distribu-

tion

We now give some results concerning the distribution of order statistics

from a skew-normal distribution:

Proposition 5. Let X1, · · · ,Xn be a random sample from a SN(λ ). Then the

j− th order statistic is a BSN(λ , j,n− j+1), where j = 1, · · · ,n.

Proof. The proof follows easily using the standard formula of the density of

X(i), the i−th order statistic of a random sample of size n from the distribution

SN(λ ).

From proposition 5 follows immediately that the family of BSN contains

the distributions of the order statistics of the skew-normal distribution.

In particular, we have the following corollaries:

Corollary 5. Let X1, · · · ,Xn be a random sample from a SN(1). Then

X(n) = max{X1, · · · ,Xn}

is a BSN(1,n,1).

Corollary 6. Let X1, · · · ,Xn be a random sample from a SN(−1). Then

X(1) = min{X1, · · · ,Xn}

is a BSN(−1,1,n).

Corollary 7. Let X(1) < X(2) < · · ·< X(n) be the order statistics from a sample

of size n from a SN(λ ) distribution. Then X(i), i = 1, · · · ,n, has log-concave

density.
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Proof. From property d of section 1.1 we know that Xi has a log-concave

density. We conclude the proof using the following result due to Gupta

(2004) [31]: Suppose X(1) < X(2) < · · · < X(n) be the order statistics from a

sample of size n from a distribution having a log-concave density function.

Then X(i), i = 1, · · · ,n, has log-concave density.

3.1.4 Some interesting properties

Here, we present some properties of the BSN distribution of general in-

terest.

Theorem 7. Let X ∼BSN(λ ,a,b) be independent of a random sample (Y1, · · · ,Yn)

from SN(λ ), then

i. X |
(
Y(n) ≤ X

)
∼ BSN(λ ,a+n,b),

ii. X |
(
Y(1) ≥ X

)
∼ BSN(λ ,a,b+n),

where Y(n) and Y(1) are the largest and the smallest order statistics, respec-

tively.

Proof. We shall prove point i. If W = X |
(
Y(n) ≤ X

)
, then we have

P(W ≤w)=

∫ w
−∞

(Φ(x;λ ))n 2
B(a,b)φ(x)Φ(λx)(Φ(x;λ ))(a−1) (1−Φ(x;λ ))(b−1) dx

P(Y(n) ≤ X)
.

(3.6)

Also

P(Y(n) ≤ X) = P(Y1 ≤ X , · · · ,Yn ≤ X) =

=
∫

∞

−∞

(Φ(x;λ ))n 2
B(a,b)

φ(x)Φ(λx)(Φ(x;λ ))(a−1) (1−Φ(x;λ ))(b−1) dx =

=
B(a+n,b)

B(a,b)
.
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Taking derivative from (3.6) with respect to w, we obtain the BSN(λ ,a+n,b)

density function.

The proof of point ii is similar.

The following theorem is a generalization of the above one.

Theorem 8. Let X ∼ BSN(λ ,a,b) be independent of Y ∼ BSN(λ ,c,1) and of

Z ∼ BSN(λ ,1,d). Then

i. X |(Y ≤ X)∼ BSN(λ ,a+ c,b),

ii. X |(Z ≥ X)∼ BSN(λ ,a,b+d),

where c and d are positive real numbers.

Theorem 9. If X ∼ BSN(λ ,a,b) is independent of U1, · · · ,Un,V1, · · · ,Vm i.i.d.

random variables having SN(λ ) distribution, then

X |
(
U(n) ≤ X ,V(1) ≥ X

)
∼ BSN(λ ,a+n,b+m), (3.7)

where U(n) = max{U1, · · · ,Un} and V(1) = min{V1, · · · ,Vm}.

Proof. The proof is quite similar to the one of theorem 7.

We can generalize the above theorems for the family of the Beta-generated

distributions in the following way.

Theorem 10. Let X ∼ Beta−F(a,b) be independent of a random sample

(Y1, · · · ,Yn) from F(·) with density function f (·) = F ′(·), then

X |
(
Y(n) ≤ X

)
∼Beta−F(a+n,b) and X |

(
Y(1) ≥ X

)
∼Beta−F(a,b+n), where

Y(n) and Y(1) are the largest and the smallest order statistics, respectively.

Theorem 11. Let X ∼ Beta−F(a,b) be independent of Y ∼ Beta−F(c,1)

and of Z ∼ Beta−F(1,d). Then X |(Y ≤ X)∼ Beta−F(a+ c,b) and

X |(Z ≥ X)∼ Beta−F(a,b+d), where c and d are positive real numbers.
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Theorem 12. If X ∼ Beta−F(a,b) is independent of U1, · · · ,Un,V1, · · · ,Vm

i.i.d. random variables with pdf f (·) = F ′(·), then

X |
(
U(n) ≤ X ,V(1) ≥ X

)
∼ Beta−F(a+n,b+m), (3.8)

where U(n) = max{U1, · · · ,Un} and V(1) = min{V1, · · · ,Vm}.

Theorem 7 can be used to generate X ∼ BSN(λ ,n,1) by extending the

acceptance-rejection technique, due to Azzalini, as follows (see Azzalini (1985)

[6] and Sharafi and Behboodian (2008) [57]): first we generate a random

sample T , U1, U2, · · · , Un−1 from SN(λ ), if max(U1,U2, · · · ,Un−1) ≤ T we

put X = T . Otherwise, we generate a new random sample, until the above

inequality is satisfied.

The same procedure can be used to generate X ∼ Beta−F(n,1).

3.1.5 Bimodal properties

Motivated by the work of Famoye et al. (2004) [24], we prove, in this

section, bimodality properties of the Beta skew-normal.

Theorem 13. The mode(s) of BSN(µ,σ ,λ ,a,b) is any point x0 = x0(λ ,a,b)

that satisfies (satisfy)

x0 = σ

λ

φ

(
λ (x0−µ)

σ

)
Φ

(
λ (x0−µ)

σ

) +(a−1)
φ

(
x0−µ

σ
;λ

)
Φ

(
x0−µ

σ
;λ

) − (b−1)
φ

(
x0−µ

σ
;λ

)
1−Φ

(
x0−µ

σ
;λ

)
+µ.

(3.9)

Proof. Differentiating the density of a random variable with BSN(µ,σ ,λ ,a,b)

distribution with respect to x and setting this derivative equal to zero, and

solving it for x, we obtain the stated result.

Corollary 8. If BSN(µ,σ ,λ ,a,b) has a mode at x0, then BSN(µ,σ ,−λ ,b,a)

has a mode at the point 2µ− x0.
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Proof. It is sufficient to show that equation (3.9) remains the same if x0 is re-

placed with 2µ−x0, a with b and λ with −λ . By making these substitutions,

it follows that

µ−x0 =σ

−λ

φ

(
−λ (µ−x0)

σ

)
Φ

(
−λ (µ−x0)

σ

) +(b−1)
φ

(
(µ−x0)

σ
;−λ

)
Φ

(
(µ−x0)

σ
;−λ

) − (a−1)
φ

(
(µ−x0)

σ
;−λ

)
1−Φ

(
(µ−x0)

σ
;−λ

)
 ,

and, using φ(−x;λ ) = φ(x;−λ ) and 1−Φ(x;λ ) =Φ(−x;λ ), we get the result

in (3.9).

Corollary 9. The modal point x0 is an increasing function of a and a de-

creasing function of b.

Proof. Differentiating the result in (3.9) with respect to a and b, we get

respectively:

∂x0

∂a
= σ

(
φ(x0−µ

σ
;λ )

Φ(x0−µ

σ
;λ )

)
> 0; (3.10)

∂x0

∂b
=−σ

(
φ(x0−µ

σ
;λ )

1−Φ(x0−µ

σ
;λ )

)
< 0. (3.11)

Hence x0 is an increasing function of a and a decreasing function of b.

Corollary 10. The bimodal property of BSN(µ,σ ,λ ,a,b) is independent of

the parameters µ and σ .

Proof. The mode(s) of BSN(µ,σ ,λ ,a,b) is at the point x0 = x0(λ ,a,b) that

satisfies equation (3.9) and can be rewritten in the following way:

x0−µ

σ
=

λ

φ

(
λ (x0−µ)

σ

)
Φ

(
λ (x0−µ)

σ

) +(a−1)
φ

(
x0−µ

σ
;λ

)
Φ(x0−µ

σ
;λ )
− (b−1)

φ

(
x0−µ

σ
;λ

)
1−Φ

(
x0−µ

σ
;λ

)
 ,

(3.12)

so we replace x0−µ

σ
by z0 and we obtain

z0 =

{
λ

φ(λ z0)

Φ(λ z0)
+(a−1)

φ(z0;λ )

Φ(z0;λ )
− (b−1)

φ(z0;λ )

1−Φ(z0;λ )

}
, (3.13)

which is independent of parameters µ and σ .
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3.1.6 Expansion for the density function

Here, we give a simple expansion for the BSN density function.

Application of (1.23) to equation (3.1), if b is real non-integer, gives

GB
Φ(x;λ )(x;a,b) =

∞

∑
i=0

wi(a,b)Φ(x;λ )a+i, (3.14)

where wi(a,b) = 1
B(a,b)(−1)i(b−1

i

) 1
a+i . Correspondingly, the density function

(3.2) can be written as

gB
Φ(x;λ )(x;λ ,a,b) =

∞

∑
i=0

wi(a,b)gB
Φ(x;λ )(x;λ ,a+ i,1), (3.15)

where the weights wi(a,b) are such that ∑
∞
i=0 wi(a,b) = 1.

However, it is clear from the last equation that gB
Φ(x;λ )(x;λ ,a,b) can be

expressed as an infinite mixture of BSN(λ ,a+ i,1) densities with constant

weights wi(a,b). For b integer, the previous sums stop at b− 1. If a is real

non-integer the distribution function takes the following expression

GB
Φ(x;λ )(x;a,b) =

∞

∑
i=0

∞

∑
j=0

s j(a+ i)Φ(x;λ ) j =

=
∞

∑
j=0

∞

∑
i=0

wi(a,b)s j(a+ i)Φ(x;λ ) j =
∞

∑
j=0

t j(a,b)Φ(x;λ ) j, (3.16)

where

s j(a+ i) =
∞

∑
k= j

(−1)k+ j
(

a+ i−1
k

)(
k
j

)
and

t j(a,b) =
∞

∑
i=0

wi(a,b)s j(a+ i).

The density for a real non-integer can be easily obtained from the above

equation by differentiation.
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Remark 12. The density function (1.1) of model SN(λ ) can be represented

in the following way:

φ(z;λ ) = 2φ(z)Φ(λ z) = 2φ(z)Φ(λ z)(1−Φ(z;λ )+Φ(z;λ )) =

= 2φ(z)Φ(λ z)(1−Φ(z;λ ))+2φ(z)Φ(λ z)Φ(z;λ ) =

=
1
2

(
gB

Φ(z;λ )(z;λ ,1,2)+gB
Φ(z;λ )(z;λ ,2,1)

)
. (3.17)

In other words the density function of the skew-normal with parameter λ is

a mixture between a Beta skew-normal density with parameters λ , a = 1 and

b = 2 and a Beta skew-normal density with parameters λ , a = 2 and b = 1,

which are the density function of the smallest and the largest statistic from a

sample of size 2 of a skew-normal distribution with parameter λ , respectively.

In general, we can see the density function of the skew-normal with parameter

λ as mixture of Beta skew-normal distributions with the same parameter λ

in the following way:

φ(x;λ ) =
1
b

gB
Φ(x;λ )(x;λ ,1,b)−

∞

∑
i=1

(−1)i
(

b−1
i

)
1

1+ i
gB

Φ(x;λ )(x;λ ,1+ i,1).

(3.18)

The above formula is obtained setting a = 1 in (3.15) and using the property

a of the BSN.

We use the preceding expansion (3.15) to present a formula for the mo-

ments of the BSN when a and b are integers values.

Theorem 14. Let X ∼ BSN(µ,σ ,λ ,a,b) for integers values of a and b, then

E(Xn) = µ
n +

2µn

B(a,b)

b−1

∑
j=0

(−1) j
(

b−1
j

) n

∑
i=1

(
n
i

)(
σ

µ

)i

∗

∗

{
a+ j−1

∑
k=0

(−1)k
(

a+ j−1
k

)
Ji,k,λ +(−1)iJi,a+ j−1,−λ

}
, (3.19)
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where

Ji,k,λ =
∫

∞

0
zi

φ(z)Φ(λ z)(1−Φ(z;λ ))kdz. (3.20)

Proof. The proof follows the same lines of that of theorem 1 in [32]. The

density of the random variable X can be written as:

gB
Φ(x;λ )(x; µ,σ ,λ ,a,b) =

2
σB(a,b)

b−1

∑
j=0

(−1) j
(

b−1
j

)
h j(x), (3.21)

where

h j(x) = φ

(
x−µ

σ

)
Φ

(
λ (x−µ)

σ

)
Φ

(
x−µ

σ
;λ

)a+ j−1

. (3.22)

It follows that

E(Xn) =
2

σB(a,b)

b−1

∑
j=0

(−1) j
(

b−1
j

)∫
∞

−∞

xnh j(x)dx. (3.23)

Substituting z = x−µ

σ
and using the binomial expansion for (σz+µ)n, we find

that the above integral can be written in this way:∫
∞

−∞

xnh j(x)dx = σ µ
n

n

∑
i=0

(
n
i

)(
σ

µ

)i ∫ ∞

−∞

zi
φ(z)Φ(λ z)Φ(z;λ )a+ j−1dz. (3.24)

The integral term in the above equation can be expressed as∫
∞

−∞

zi
φ(z)Φ(λ z)Φ(z;λ )a+ j−1dz =

∫
∞

0
zi

φ(z)Φ(λ z)Φ(z;λ )a+ j−1dz+

+(−1)i
∫

∞

0
zi

φ(z)Φ(−λ z)(1−Φ(z;−λ ))a+ j−1 dz =

=
a+ j−1

∑
k=0

(−1)k
(

a+ j−1
k

)
Ji,k,λ +(−1)iJi,a+ j−1,−λ .

(3.25)

On substituting (3.24) and (3.25) into (3.23) and rearranging, we obtain

E(Xn) =
2µn

B(a,b)

b−1

∑
j=0

(−1) j
(

b−1
j

) n

∑
i=0

(
σ

µ

)i(n
i

)
∗

∗

{
a+ j−1

∑
k=0

(−1)k
(

a+ j−1
k

)
Ji,k,λ +(−1)iJi,a+ j−1,−λ

}
, (3.26)
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where Ji,k,λ is given by formula (3.20).

At this point, we shall confine attention to the term corresponding to i = 0

and we shall show that it equals µn. Employing (3.1) and (3.2), one obtains

J0,k,λ =
1

2(k+1)

∫
∞

0
(k+1)φ(z;λ )(1−Φ(z;λ ))kdz =

(1−Φ(0;λ ))k+1

2(k+1)
.

So the term inside the brackets in (3.26) for i = 0 reduces to

a+ j−1

∑
k=0

(−1)k
(

a+ j−1
k

)
J0,k,λ + J0,a+ j−1,−λ =

a+ j−1

∑
k=0

(−1)k
(

a+ j−1
k

)
(1−Φ(0;λ ))k+1

2(k+1)
+

+
(1−Φ(0;−λ ))a+ j

2(a+ j)
=

1
2(a+ j)

,

(3.27)

where the last equality follows from lemma 1 of Gupta and Nadarajah (2005)

[32]. On applying lemma 2 in [32], the term corresponding to i = 0 of (3.26)

reduces to

2µn

B(a,b)

b−1

∑
j=0

(−1) j
(

b−1
j

){
1

2(a+ j)

}
=

2µn

B(a,b)
B(a,b)

2
= µ

n. (3.28)

The theorem is proved.

Remark 13. Clearly, this theorem when λ = 0 reduces to theorem 1 in [32].

Furthermore, we can note that the authors, in the cited theorem, defined the

function

Ii,k =
∫

∞

0
zi

φ(z)(1−Φ(z))kdz, (3.29)

which is related to the function Ji,k,λ , when λ = 0, by the following relation:

Ji,k,0 =
1
2

Ii,k. (3.30)
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3.1.7 The BSN(1,n,b)

As previously noted, general expansions for the moment generating func-

tion and the k− th moment of a variable with Beta skew-normal distribution

are difficult to find. Exact closed form expressions for the moments can be

obtained in certain special cases. One of these cases is discussed in this

section.

Theorem 15. The moment generating function of X ∼ B(1,n,b) is

MX(t) =
2

B(n,b)

∞

∑
j=0

(−1) j
(

b−1
j

)
e

t2
2 E(Φ2(n+ j)−1(V )), (3.31)

where V ∼ N(t,1).

Proof. By applying the binomial expansion and property 2 in section 1.1 it

follows that, for t ∈ R, the moment generating function (m.g.f.) of X is

MX(t) =
2

B(n,b)

∞

∑
j=0

(−1) j
(

b−1
j

)∫
∞

−∞

etx
φ(x)Φ(x)Φ(x)2(n+ j−1)dx =

=
2

B(n,b)

∞

∑
j=0

(−1) j

(b−1
j

)
2(n+ j)

∫
∞

−∞

2(n+ j)etx
φ(x)Φ(x)2(n+ j)−1dx =

=
2

B(n,b)

∞

∑
j=0

(−1) j

(b−1
j

)
2(n+ j)

MY (t), (3.32)

where Y is a Balakrishnan skew-normal with parameters 1 and 2(n+ j)−1.

The result in (3.31) then follows by the use of the m.g.f. of the Balakrishnan

skew-normal.

We can obtain the moments of X ∼ B(1,n,b) readily from the derivatives

of MX(t) in (3.32). For example, we get the first moment as

E(X) =
1

B(n,b)

∞

∑
j=0

(−1) j
(

b−1
j

)
1

n+ j
E(Y ) =

=
1

B(n,b)

∞

∑
j=0

(−1) j
(

b−1
j

)
1

n+ j
(2(n+ j)−1)(n+ j)√

π

1

c(2(n+ j)−2)

(
1√
2

) .
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Remark 14. Note that in the special case b = 1 and n = 2, we have

E(X) =
6√
π

[
arctan

(√
2
)]

, (3.33)

which is exactly the mean of the maximum from a sample of size 2 from a

SN(1) obtained by Chiogna (1998) [14].

The following theorem provides a recursion formula for the moments of

the BSN(1,n,b).

Theorem 16. Let X ∼ BSN(1,n,b). Then

E(Xk)=
1

B(n,b)

∞

∑
j=0

(−1) j

(b−1
j

)
(n+ j)

(k−1)E(Y k−2)+
2n+2 j−1

2
k+1

2
√

π

2(n+ j)
c
(2(n+ j)−2)

(
1√
2

)E(W k−1)

 ,

where W ∼ SNB(2(n+ j)−2)

(
1√
2

)
and Y ∼ SNB(2(n+ j)−1)(1).

Proof. The proof follows by combining (1.11) with

E(Xk) =
2

B(n,b)

∞

∑
j=0

(−1) j

(b−1
j

)
2(n+ j)

E(Y k),

where Y ∼ SNB(2(n+ j)−1)(1).

Remark 15. It should be noted that similar results can be provided for the

BSN(−1,b,n) distribution. This is due to the fact that, as previously noted,

if X ∼ BSN(1,n,b) then −X ∼ BSN(−1,b,n).

3.2 Further results

In this section we present some results concerning the SNB distribution

and link the distributions introduced in section 1.2 with the Beta skew-

normal. First we consider two results about the Balakrishnan skew-normal.
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We study the distribution of the largest order statistic from SNBm(1) and

subsequently the distribution of the smallest order statistic from SNBm(−1).

We found that these distributions belong to the family of SNB.

Proposition 6. Let X1, · · · ,Xn be a random sample from a SNBm(1). Then

X(n) = max{X1, · · · ,Xn}

is a SNBk(1), where k = n(m+1)−1.

Proof. The proof follows easily using the standard formula for the density

of X(n), the largest order statistic of a random sample of size n from the

distribution SNBm(1).

In particular, the following corollary holds:

Corollary 11. Let X1, · · · ,Xn be a random sample from a SN(1). Then

X(n) = max{X1, · · · ,Xn}

is a SNB2n−1(1).

Proof. The skew-normal distribution with parameter λ = 1 is a Balakrishnan

skew-normal with parameters λ = 1 and m = 1.

The same result can be established making use of the well-known result for

the density of the largest order statistic from the distribution SN(1) and

property 2. If X ∼ SN(1) then its density function is φ(x;1) = 2φ(x)Φ(x)

and its distribution function is Φ(x;1) = Φ(x)2, for the property 2. The

distribution of X(n) is

FX(n)(x) = (Φ(x;1))n = (Φ(x)2n), (3.34)

and the relative density function is

fX(n)(x) = nφ(x;1)Φ(x;1)n−1 = 2nφ(x)Φ(x)2n−1, (3.35)
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which is the density function of a variable with Balakrishnan skew-normal

distribution with parameters 2n−1 and λ = 1.

Corollary 12. Let X1, · · · , Xn be a random sample from a SNBm(−1). Then

X(1) = min{X1, · · · ,Xn}

is a SNBk(−1), where k = n(m+1)−1.

It follows immediately from corollaries 5, 6, 11 and 12 that the BSN distri-

bution is related to the skew-normal generalizations introduced in section 1.2.

In fact, its density simplifies to the Balakrishnan skew-normal when b = 1,

λ = 1 and a ≥ 1 integer (or a = 1, λ = −1 and b ≥ 1 integer). Further, if

λ = 0 the BSN density reduces to the generalized Balakrishnan skew-normal

when a and b are both integers. These consideration have been summarized

in the following proposition.

Proposition 7. The BSN distribution satisfies the following properties:

• gB
Φ(x;1)(x;1,n,1) = f2n−1,m(x;1,0), for all x ∈ R, i.e.

BSN(1,n,1) = T BSN2n−1,m(1,0);

• gB
Φ(x;−1)(x;−1,1,m) = fn,2m−1(x;0,−1), for all x ∈ R, i.e.

BSN(−1,1,m) = T BSNn,2m−1(0,−1);

• gB
Φ(x;0)(x;0,n,m) = fn−1,m−1(x;1,−1), for all x ∈ R, i.e.

BSN(0,n,m) = T BSNn−1,m−1(1,−1);

where n and m are positive integer numbers.

Given a random variable X ∼ BSN(λ ,a,b) we are interested in construct-

ing a random variable Y with Kumaraswamy distribution. This goal can be

achieved using the below properties which follow easily from properties g and

h of the BSN, respectively.
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Property 10. If X ∼ BSN(λ ,1,b) then Y = (Φ(X ;λ ))
1
a is a Kum(a,b). In

particular, if X ∼ SNB2b−1(−1) then Y =
(
1−Φ(−X)2) 1

a is a Kum(a,b).

Property 11. If X ∼ BSN(λ ,a,1) then Y = (1−Φ(X ;λ ))
1
b is a Kum(b,a).

In particular, if X ∼ SNB2a−1(1) then Y =
(
1−Φ(X)2) 1

b is a Kum(b,a).

We now present a theorem about the BSN(λ ,a,b) distribution.

Theorem 17. If X ∼ BSN(λ ,a,b), then X2 L−→ Bχ2(1,a,b), as λ →∞, where

Bχ2(1,a,b) is a Beta chi-square random variable with parameters 1, a and b.

Proof. Let Y = X2. We can easily check that the density of the random

variable Y is

fY (y) =
φ(
√

y)
B(a,b)

√
y

{
Φ(λ
√

y)(Φ(
√

y;λ ))a−1 (1−Φ(
√

y;λ ))b−1+

+Φ(−λ
√

y)(Φ(−√y;λ ))a−1 (1−Φ(−√y;λ ))b−1
}
=

=
1

B(a,b)
fχ2(1)(y)h(y;λ ,a,b), y > 0,

with

h(y;λ ,a,b) =
{

Φ(λ
√

y)(Φ(
√

y;λ ))a−1 (1−Φ(
√

y;λ ))b−1 +

+ Φ(−λ
√

y)(Φ(−√y;λ ))a−1 (1−Φ(−√y;λ ))b−1
}
,

and fχ2(1)(·) is the chi-square density function. We can note that

h(y;λ ,a,b) λ→∞−→ (2Φ(
√

y)−1)a−1 (2(1−Φ(
√

y)))b−1 =

=Fa−1
χ2(1)(y)

(
1−Fχ2(1)(y)

)b−1
, (3.36)

where Fχ2(1)(·) is the chi-square distribution function. Consequently, the

density fY (·) converges to the density of a Beta chi-square random variable

with parameters 1, a and b as λ → ∞.
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3.2.1 Skewing mechanism

Recently, Ferreira and Steel (2006) [26] have presented a general approach

which allows to generate skew distributions. They show that every univariate

continuous skew distribution can be obtained from a “perturbation” of a

symmetric one as it explained in the following definition:

Definition 6. A distribution S is said to be a skewed version of the symmetric

distribution F(·), generated by the skewing mechanism P, if its pdf is of the

form

s(y| f ,P) = f (y)p(F(y)), y ∈ R, (3.37)

where f (·) and F(·) are the pdf and cdf of a symmetric distribution on the

real line, respectively, and p(·) (P(·)) is the pdf (cdf) of a distribution on

(0,1).

Note that, if F(·) is the standard normal distribution and p(·) on (0,1)

is given by

p(u;λ ,a,b) =
2

B(a,b)
Φ(λΦ

−1(u))
(
Φ(Φ−1(u);λ )

)a−1 (
1−Φ(Φ−1(u);λ )

)b−1
,

(3.38)

formula (3.37) reduces to a Beta skew-normal with parameters λ , a and b.

Then the pdf of a Beta skew-normal with parameters λ , a and b can be seen

as a weighted version of φ(y), with weight function given by p(Φ(y);λ ,a,b).

Abtahi et al. (2011) [2] give the following definition:

Definition 7. A random variable X f ,p is said to have a unified skewed dis-

tribution with functional parameters f and p, if its pdf is of the form (3.37).

We denote a random variable with this unified skewed distribution by

X f ,p ∼USD( f , p).

Here, we recall a proposition given by Abtahi et al. (2011) [2].
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Proposition 8. Let U and V be two independent random variables with pdfs

(cdf) f (F) on the real line and p on (0,1), respectively.

• When W = V −F(U), the conditional distribution of U given (W = 0)

is USD( f , p).

• F(X f ,p)
d
=V , i.e. F(X f ,p) and V have the same distribution p.

The following corollary arises naturally from the above proposition.

Corollary 13. Let U and V be two independent random variables with pdfs

(cdf) φ (Φ) on the real line and p on (0,1) given by equation (3.38), respec-

tively.

• When W = V −Φ(U), the conditional distribution of U given (W = 0)

is BSN(λ ,a,b).

• Let X ∼ BSN(λ ,a,b). Then Φ(X)
d
=V .

3.3 Bounds of the moments and the variance

of the Beta-generated distribution

Several authors have given methods of finding bounds for the moments of

order statistics. One of the earliest result is that derived by Gumbel (1954)

[30] and Hartley and David (1954) [33]. Different methods are required for

the variance of the order statistics. Following the idea of these works, we

apply Hölder’s inequalities and Hoeddfing’s identity to find inequalities for

the moments and the variance of the Beta-generated distribution.
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3.3.1 Bounds of the moments

In this section we assume that X and Y have distributions GB
F(·) and F(·),

respectively.

Theorem 18. Let k > 0, p > 1 and E
(
Y kp)< ∞. Then we have

E
(

Xk
)
≤ 1

B(a,b)

(
E
(

Y kp
)) 1

p
(

B
(

pa−1
p−1

,
pb−1
p−1

))1− 1
p

. (3.39)

Proof. Proof is based on Hölder’s inequality. For an arbitrary distribution

function F(·) the k− th moment of the Beta-generated distribution is given

by the following formula:

E
(

Xk
)
=
∫

∞

−∞

1
B(a,b)

xk (F(x))a−1 (1−F(x))b−1 dx. (3.40)

The latter integral, after the change of variable y = F(x), can be rewritten as

E
(

Xk
)
=
∫ 1

0

1
B(a,b)

(
F−1(y)

)k
ya−1 (1− y)b−1 dy. (3.41)

Now we apply Hölder’s inequality to last formula and obtain the following

expression:

E
(

Xk
)
≤ 1

B(a,b)

(∫ 1

0

(
F−1(y)

)kp
dy
) 1

p
(∫ 1

0
y

p
p−1 (a−1) (1− y)

p
p−1 (b−1)

)1− 1
p

=

=
1

B(a,b)

(
E
(

Y kp
)) 1

p
(

B
(

p(a−1)
p−1

+1,
p(b−1)

p−1
+1
))1− 1

p

=

=
1

B(a,b)

(
E
(

Y kp
)) 1

p
(

B
(

pa−1
p−1

,
pb−1
p−1

))1− 1
p

.

3.3.2 Bounds of the variance of the Beta-generated dis-

tribution

Let X ∼ GB
F(·)(·,a,b), with a > 1 and b > 1. We are interested in finding

a bound for the variance of X in function of the variance of Y ∼ F(·).
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Let us introduce the notations:

G(x) = Ix(a,b), g(x) = G′(x),

t1(x) =
G(x)

x
, t2(y) =

1−G(y)
1− y

,

t(x,y) = t1(x)t2(y), t(x) = t(x,x),

with 0 < x≤ y < 1.

We will need the following lemma which is n trivial extension of lemma 2.1

of Papadatos (1995) [51].

Lemma 3. Let a> 1 and b> 1. Then there exist unique numbers ρ1 = ρ1(a,b),

ρ2 = ρ2(a,b) satisfying

0 < ρ1 <
a−1

a+b−2
< ρ2 < 1, (3.42)

such that, for 0 < x < y < 1:

1. t1(x) strictly increases in (0,ρ2) and strictly decreases in (ρ2,1) and

similarly t2(y) strictly increases in (0,ρ1) and strictly decreases in (ρ1,1).

2. If x≥ ρ1 or y≤ ρ2, then t(x,y)< max{t(x), t(y)}.

3. If x < ρ1 and y > ρ2, then t(x,y)< t(ρ1,ρ2)< max{ρ1,ρ2}.

4. There exists a unique x0 = x0(a,b) ∈ (ρ1,ρ2) such that the function t(x)

strictly increases in (0,x0) and strictly decreases in (x0,1).

Proof. The proof follows the same lines of that given by Papadatos (1995)

[51].

1. The derivative of the function t1(x) is t ′1(x) =
xg(x)−G(x)

x2 . The numerator

of t ′1(x) has derivative xg′(x) which attains its maximum at the unique
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point x = a−1
a+b−2 and by taking account that limx→0+ xg(x)−G(x) = 0,

and limx→1− xg(x)−G(x) =−1, we readily see that xg(x)−G(x) = 0 has

a unique root ρ2 = ρ2(a,b) which lies in
( a−1

a+b−2 ,1
)
.

Then xg(x)−G(x)> 0 for x∈ (0,ρ2), and xg(x)−G(x) < 0 for x ∈ (ρ2,1).

Similar arguments show that t2 strictly increases in (0,ρ1) and strictly

decreases in (ρ1,1). In fact, the derivative of t2(y) is t ′2(y)=
1−G(y)−g(y)(1−y)

(1−y)2 .

The function 1−G(y)−g(y)(1− y) has derivative −g′(y)(1− y) which

is positive if y < a−1
a+b−2 , and negative if y > a−1

a+b−2 . Since

lim
y→0+

1−G(y)−g(y)(1− y) = 1 and lim
y→1−

1−G(y)−g(y)(1− y) = 0,

we deduce that 1−G(y)−g(y)(1−y) = 0 has a unique root ρ1 = ρ1(a,b)

that is on the interval
(
0, a−1

a+b−2

)
. Hence, 1−G(y)−g(y)(1− y)> 0 for

y ∈ (0,ρ1) and 1−G(y)−g(y)(1− y)< 0 if y ∈ (ρ1,1).

2. Let x < y. If ρ1 ≤ x, then t(x,y) = t1(x)t2(y)< t1(x)t2(x) = t(x).

Similarly, if y≤ ρ2, it follows that t(x,y) = t1(x)t2(y)< t1(y)t2(y) = t(y).

3. If x< ρ1 and y< ρ2, we have t(x,y)= t1(x)t2(y)< t1(ρ1)t2(ρ2)= t(ρ1,ρ2).

4. Clearly, limx→0+ t(x) = limx→1− t(x) = 0. Furthermore, the function t(x)

strictly increases in (0,ρ1] and strictly decreases in [ρ2,1). Hence, we

have only to study t(x) in (ρ1,ρ2). To do that we verify the log-

concavity of t1 and t2 in the intervals (0,ρ2) and (ρ1,1), respectively.

We observe that(
log
(

G(x)
x

))′′
=− 1

x2G2(x)

[
x2g(x)2−G2(x)− x2g′(x)G(x)

]
. (3.43)

Furthermore, the function x2g(x)2−G2(x)−x2g′(x)G(x), for x ∈ (0,ρ2),

majorizes the function x2g2(x)− xg(x)G(x)− x2g′(x)G(x), which can be

rewritten as

x2g2(x)− xg(x)G(x)− x2g′(x)G(x) =
xg(x)
1− x

{x(1− x)g(x)− [a− (a+b−1)x]G(x)} .

(3.44)
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The function r(x) = x(1− x)g(x)− [a− (a+b−1)x]G(x) is positive for

all x. In fact, it increases because its derivative is (a+b−1)G(x)−xg(x),

which is a positive and an increasing function for all x, and moreover,

x(1− x)g(x)− (a− (a+b−1)x)G(x)> lim
x→0+

x(1− x)g(x)− (a− (a+b−1)x)G(x) = 0.

(3.45)

Hence,
(

log
(

G(x)
x

))′′
< 0, for 0 < x < ρ2, i.e. t1(x) is strictly log-

concave in (0,ρ2).

In a similar way one can show that t2 is log-concave in (ρ1,1).

First we note that(
log
(

1−G(y)
1− y

))′′
=

−1
(1− y)2(1−G(y))2

[
(1− y)2g(y)2 +

−(1−G(y))2 +(1− y)2g′(y)(1−G(y))
]
,

hence, we observe that, for ρ1 < y < 1, the function inside the brackets

majorizes the function

g2(y)(1− y)2 +g′(y)(1−G(y))(1− y)2− (1− y)(1−G(y))g(y). (3.46)

The following relation holds:

g2(y)(1− y)2 +g′(y)(1−G(y))(1− y)2− (1− y)(1−G(y))g(y) =
g(y)(1− y)

y
∗

∗{y(1− y)g(y)+(1−G(y)) [a−1− (a+b−1)y]} .

It is immediate to verify that the function

f (y) = y(1− y)g(y)+(1−G(y)) [a−1− (a+b−1)y]

decreases because its derivative is g(y)(1− y)− (a+ b− 1)G(y), which

is negative for all y. Obviously,

f (y)> lim
y→1−

f (y) = 0,
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and consequently, f (y) is positive for all y.

Then
(

log
(

1−G(y)
1−y

))′′
< 0, ρ1 < x < 1, that is, t2(x) is strictly log-

concave in (ρ1,1). Hence, t(x) = t1(x)t2(x) is a strictly log-concave

function in (ρ1,ρ2), and the lemma is proved.

Definition 8. The maximum variance function σ2
b (a) is defined by the fol-

lowing relation

σ
2
b (a) = sup

0<x<1

(
G(x)(1−G(x))

x(1− x)

)
, a > 1 and b > 1. (3.47)

Remark 16. It is of interest to point out that σ2
b (a), as σ2

n (k) defined in

[51], does not have a closed form. However, it is possible to identified the

following behaviour of σ2
b (a):

• if a = 1, then σ2
b (a) = b;

• if b = 1, then σ2
b (a) = a;

• if a = b = 1, then σ2
b (a) = 1.

Theorem 19. Let X ∼ GB
F(·)(·;a,b), Y ∼ F(·), a > 1 and b > 1. Then

Var(X)≤ σ
2
b (a)Var(Y ). (3.48)

Proof. The proof proceeds along the same lines as that of theorem 3.1 of

Papadatos at page 189 (see [51]), which is based on Hoeffding’s identity for

the covariance. We remind Hoeffding’s identity for the covariance of two

random variable X and Y :

Cov(X ,Y )≤
∫

∞

−∞

∫
∞

−∞

(H(x,y)−H(x,∞)H(∞,y))dydx, (3.49)

where H is the bivariate distribution function of the random vector (X ,Y ).
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We have carried out a numerical study in order to compare σ2
BSN , the

variance of the variable X ∼ BSN(λ ,a,b), and σ2
b (a)Var(Y ).

The results found are reported in table 3.2. We observe that if the parameter

a takes the value 1 and if b is large then σ2
b (a)Var(Y ) is not close to σ2

BSN .

The same situation occurs when b = 1 and a is large.

Moreover, if λ = 0 then var(Y ) = 1 and the maximum variance coincides with

σ2
b (a).

All computations have been done using the software R.

a b λ σ2
BSN σ2

b (a)Var(Y )

1 1 −10 0.3696834 0.3696834

1 1 0 1 1

1 1 10 0.3696834 0.3696834

1 10 −10 0.2625293 3.696335

1 10 0 0.3443438 9.99865

1 10 10 0.01859684 3.696335

2 10 −10 0.139195 0.8695345

2 10 0 0.2051976 2.352106

2 10 10 0.02108108 0.8695345

10 1 −10 0.01859684 3.696335

10 1 0 0.3443438 9.99865

10 1 10 0.2625293 3.696335

10 10 −10 0.03145790 0.3696834

10 10 0 0.08079098 1

10 10 10 0.03145790 0.3696834

Table 3.2: The variance of the BSN(λ ,a,b) and σ2
b (a)Var(Y ) for different

values of a, b and λ
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3.4 Maximum likelihood estimation

We now determine the maximum likelihood estimates (MLEs) of the pa-

rameters of the BSN distribution. Let x1, · · · ,xN be a random sample of size

N from a BSN(µ,σ ,λ ,a,b) distribution. The log-likelihood function l(ξξξ ) for

the vector of parameters ξξξ = (µ,σ ,λ ,a,b) can be written as

l(ξξξ ) = N log2−N log(σ)−N logB(a,b)+
N

∑
i=1

log
(

φ

(
xi−µ

σ

))
+

+
N

∑
i=1

log
(

Φ

(
λ

(
xi−µ

σ

)))
+(a−1)

N

∑
i=1

log
(

Φ

(
xi−µ

σ
;λ

))
+

+(b−1)
N

∑
i=1

log
(

1−Φ

(
xi−µ

σ
;λ

))
. (3.50)

The components of the score vector U(ξξξ ) are given by

Ua(ξξξ ) =
∂ l(ξξξ )

∂a
=−N (ψ(a)−ψ(a+b))+

N

∑
i=1

logvi;

Ub(ξξξ ) =
∂ l(ξξξ )

∂b
=−N (ψ(b)−ψ(a+b))+

N

∑
i=1

log(1− vi);

Uµ(ξξξ ) =
∂ l(ξξξ )

∂ µ
=

1
σ

N

∑
i=1

zi−
λ

σ

N

∑
i=1

yi−
a−1

σ

N

∑
i=1

wi +
b−1

σ

N

∑
i=1

ti;

Uσ (ξξξ ) =
∂ l(ξξξ )

∂σ
=−N

σ
+

1
σ

N

∑
i=1

z2
i −

λ

σ

N

∑
i=1

ziyi−
a−1

σ

N

∑
i=1

ziwi +
b−1

σ

N

∑
i=1

ziti;

Uλ (ξξξ ) =
∂ l(ξξξ )

∂λ
=

N

∑
i=1

ziyi +(a−1)
N

∑
i=1

∂vi
∂λ

vi
− (b−1)

N

∑
i=1

∂vi
∂λ

1− vi
;

where ψ(t) = dlog(Γ(t))
dt is the di-gamma function and

zi =
xi−µ

σ
; vi = Φ

(
xi−µ

σ
;λ

)
; yi =

φ

(
λ

(
xi−µ

σ

))
Φ

(
λ

(
xi−µ

σ

)) ;

wi =
φ

(
xi−µ

σ
;λ

)
Φ

(
xi−µ

σ
;λ

) ; ti =
φ

(
xi−µ

σ
;λ

)
1−Φ

(
xi−µ

σ
;λ

) .
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We can find the estimates of the unknown parameters by maximum likelihood

method by setting the above expressions equal to zero and solving them

simultaneously.

The elements of the observed information matrix for the vector of parameters

ξξξ = (µ,σ ,λ ,a,b) are

Uaa(ξξξ ) =−N
(
ψ
′(a)−ψ

′(a+b)
)

;

Ubb(ξξξ ) =−N
(
ψ
′(b)−ψ

′(a+b)
)

;

Uab(ξξξ ) = Nψ
′(a+b);

Uaµ(ξξξ ) =−
1
σ

N

∑
i=1

wi;

Ubµ(ξξξ ) =
1
σ

N

∑
i=1

ti;

Uaσ (ξξξ ) =−
1
σ

N

∑
i=1

wizi;

Ubσ (ξξξ ) =
1
σ

N

∑
i=1

tizi;

Uaλ (ξξξ ) =
N

∑
i=1

∂vi
∂λ

vi
;

Ubλ (ξξξ ) =
N

∑
i=1

−∂vi
∂λ

1− vi
;

Uµµ(ξξξ ) =−
N
σ2 −

λ

σ

N

∑
i=1

∂yi

∂ µ
− (a−1)

σ

N

∑
i=1

∂wi

∂ µ
+

b−1
σ

N

∑
i=1

∂ ti
∂ µ

;

Uµσ (ξξξ ) =−
2

σ2

N

∑
i=1

zi +
λ

σ2

N

∑
i=1

yi−
λ

σ

N

∑
i=1

∂yi

∂σ
+

a−1
σ2

N

∑
i=1

wi−
a−1

σ

N

∑
i=1

∂wi

∂σ
+

− b−1
σ2

N

∑
i=1

ti +
b−1

σ

N

∑
i=1

∂ ti
∂σ

;

Uµλ (ξξξ ) =−
1
σ

N

∑
i=1

yi−
λ

σ

N

∑
i=1

∂yi

∂λ
− a−1

σ

N

∑
i=1

∂wi

∂λ
+

b−1
σ

N

∑
i=1

∂ ti
∂λ

;
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Uσσ (ξξξ ) =
N
σ2 −3

N

∑
i=1

(zi)
2 +2

λ

σ2

N

∑
i=1

ziyi−
λ

σ

N

∑
i=1

zi
∂yi

∂σ
+

2(a−1)
σ2

N

∑
i=1

ziwi+

− (a−1)
σ

N

∑
i=1

zi
∂wi

∂σ
− 2(b−1)

σ2

N

∑
i=1

ziti +
(b−1)

σ

N

∑
i=1

zi
∂ ti
∂σ

;

Uσλ (ξξξ ) =−
1
σ

N

∑
i=1

ziyi−
λ

σ

N

∑
i=1

zi
∂yi

∂λ
− (a−1)

σ

N

∑
i=1

zi
∂wi

∂λ
+

(b−1)
σ

N

∑
i=1

zi
∂ ti
∂λ

;

Uλλ (ξξξ ) =
N

∑
i=1

∂yi

∂λ
+(a−1)

N

∑
i=1

 ∂ 2vi
∂λ 2

vi
−

(
∂vi
∂λ

)2

v2
i

− (b−1)
N

∑
i=1

 ∂ 2vi
∂λ 2

1− vi
+

(
∂vi
∂λ

)2

(1− vi)2

 ;

where ψ ′(·) is the derivative of the di-gamma function, which is called tri-

gamma function.
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Chapter 4

The Kumaraswamy

skew-normal distribution

In this chapter we propose another generalization of the skew-normal

distribution, referred to as the Kumaraswamy skew-normal, which is a special

case of the Kumaraswamy generalized distribution. There is some parallelism

between this chapter and chapter 3. In fact, the Kumaraswamy skew-normal

and the Beta skew-normal fulfil similar properties. A range of mathematical

properties of the Kumaraswamy skew-normal distribution is considered in

sections 1 to 2. In section 3 the parameters of the new model are estimated

by maximum likelihood and the observed information matrix is derived. The

bivariate Kumaraswamy skew-normal distribution is introduced and studied

in section 4. In the last section we present the generalized Beta skew-normal

distribution.
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4.1 The Kumaraswamy skew-normal distri-

bution

We start by defining the Kumaraswamy skew-normal distribution and

presenting some of its properties.

4.1.1 Definition and simple properties

Following the procedure of Cordeiro and de Castro (2011) [17] described

in section 1.4, we define a generalization of the skew-normal distribution

which satisfies some of the properties of the Beta skew-normal one.

Replacing in (1.36) F(x) by Φ(x;λ ), we obtain the Kumaraswamy skew-

normal distribution, with distribution function given by

GK
Φ(x;λ )(x;λ ,a,b) = 1− (1−Φ(x;λ )a)b, (4.1)

and probability density function

gK
Φ(x;λ )(x;λ ,a,b) = abφ(x;λ )(Φ(x;λ ))a−1(1−Φ(x;λ )a)b−1. (4.2)

Throughout the chapter, we shall denote the Kumaraswamy skew-normal

distribution with vector of parameters ξξξ = (λ ,a,b) by KwSN(λ ,a,b).

This family can be easily generalized by means of linear transformations to

introduce a location parameter µ and a scale parameter σ > 0. Thus if

X ∼ KwSN(λ ,a,b), then Y = µ +σX is a Kumaraswamy skew-normal with

vector of parameters ξξξ =(µ,σ ,λ ,a,b). We indicate Y by Y ∼KwSN(µ,σ ,λ ,a,b).

However, in the following sections we will concentrate on the standard form

of the distribution.

The properties derived for the KwSN distribution can be easily extended to

the transformed distribution.
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We now mention some simple properties of KwSN(λ ,a,b) density in (4.2):

Properties of KwSN(λ ,a,b):

a. gK
Φ(x;λ )(x;λ ,1,1) = φ(x;λ ), for all x ∈ R, i.e. KwSN(λ ,1,1) = SN(λ ).

b. gK
Φ(x;0)(x;0,a,b)= gK

Φ(x)(x;a,b), for all x∈R, i.e. KwSN(0,a,b)=KwN(a,b).

c. gK
Φ(x;0)(x;0,1,1) = φ(x), for all x ∈ R, i.e. KwSN(0,1,1) = N(0,1).

d. gK
Φ(x;1)(x;1, 1

2 ,1) = φ(x), for all x ∈ R, i.e. KwSN
(
1, 1

2 ,1
)
= N(0,1).

e. gK
Φ(x;−1)(x;−1,1, 1

2) = φ(x), for all x ∈R, i.e. KwSN
(
−1,1, 1

2

)
= N(0,1).

f. If X ∼ KwSN(λ ,a,b), then Y = Φ(X ;λ ) is a Kw(a,b).

f. If X ∼ KwSN(λ ,a,b), then Y = Φ(X ;λ )a is a Kw(1,b).

h. If X ∼ KwSN(λ ,a,b), then Y = 1−Φ(X ;λ )a is a Kw(b,1).

i. As λ → +∞, gK
Φ(x;λ )(x;λ ,a,b) tends to the Kumaraswamy half-normal

density.

Remark 17. We note here that the standard normal, the skew-normal and

the Kumaraswamy-normal laws are included in this class as special cases.

We also observe that item i indicates that as λ →∞ the KwSN density tends

to the Kumaraswamy half-normal one.

Proof. The results follow immediately taking into account expression (4.2)

and the basic properties of the skew-normal distribution.

The KwSN distribution can be easily simulated in two ways:

• because its distribution function has closed form and does not involve

any special functions we can use the transformation integral: if Y has an

uniform distribution then the variable X = Φ−1
((

1− (1−Y )
1
b

) 1
a ;λ

)
has KwSN(λ ,a,b) distribution;
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• if Y has a Kumaraswamy distribution with parameters a and b, then

the variable X = Φ−1(Y ;λ ) has KwSN(λ ,a,b) distribution;

where Φ−1(·;λ ) is the quantile function of the skew-normal distribution.

Plots of the density function (4.2) are illustrated in figure 4.1.
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Figure 4.1: The KwSN(λ ,a,b) for different values of λ , a and b

Numerically, we have noted that the BSN and the KwSN have different

shapes. In fact, those values of the parameters a, b and λ , for which the BSN

is bimodal, make the KwSN unimodal.

4.1.2 Moment generating function and moments

Let us find the moment generating function of KwSN(λ ,a,b).
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Property 12. The moment generating function of X ∼ KwSN(λ ,a,b) is

given by

MX(t) = 2abe
t2
2 EZ

(
(Φ(Z;λ ))a−1(1−Φ(Z;λ )a)b−1

Φ(λZ)
)
, (4.3)

where Z ∼ N(t,1).

We also get a recursive formula for the k− th moment.

Property 13. Let k ∈ N and k ≥ 1. If X ∼ KwSN(λ ,a,b), with a > 1 and

b > 1 then

EX(Xk) = (k−1)EX(Xk−2)+λEX

(
Xk−1 φ(λX)

Φ(λX)

)
+

+aEU

(
Uk−1

φ(U ;λ )
)
− ba2

2a−1
EV

(
V k−1

φ(V ;λ )
)
,

where U ∼ KwSN(λ ,a−1,b) and V ∼ KwSN(λ ,2a−1,b−1) are independent

random variables.

Proof. The statement follows by applying integration by parts and noting

that ∂φ(x)
∂x =−xφ(x) (see Arnold et al. (1992) [4]).

The following proposition follows by simple changes of variables and by

the properties of the Kumaraswamy distribution.

Proposition 9. Let X ∼KwSN(λ ,a,b). Then the following statements hold.

1. EX(1−Φ(X ;λ )a) = b
1+b ;

2. EX(ln(1−Φ(X ;λ )a)) =−1
b ;

3. EX (Φ(X ;λ )) = bB
(
1+ 1

a ,b
)
;

4. EX (ln(Φ(X ;λ ))) =−1
a

(
γ +ψ(b)+ 1

b

)
;

where γ is the Euler-Mascheroni constant and ψ(·) is the di-gamma function.
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We refer to [1] for details on the Euler-Mascheroni constant.

(a)

a b λ µKwSN σKwSN γ1 γ2

0.25 0.25 −10 −0.75703 1.1661 −1.6750 5.9148

−1 −0.0934 1.7790 −0.433 3.2765

0 0.6542 2.1563 −0.1813 2.9391

1 1.1915 1.8483 0.0836 2.9637

10 1.4990 1.4278 0.8594 3.2475

0.25 0.5 −10 −1.3451 1.2995 −1.1236 4.04358

−1 −1.0909 1.6032 −0.4829 3.2765

0 −0.5631 1.8511 −0.2330 2.9385

1 0.1421 1.4962 −0.0435 2.9128

10 0.709 0.9207 1.2445 4.3209

0.5 0.25 −10 −0.4352 0.7881 −1.7257 6.3172

−1 0.3528 1.4585 −0.1240 3.0016

0 1.1775 1.8327 0.0502 2.9051

1 1.624 1.6193 0.2962 3.075

10 1.7707 1.3893 0.7667 3.1913

0.5 0.5 −10 −0.8324 0.8769 −1.2265 4.3886

−1 −0.4696 1.2367 −0.2293 3.0442

0 0.1417 1.4969 −0.0472 2.9225

1 0.7044 1.248 0.1378 2.9856

10 0.9961 0.9305 1.0123 3.752

0.5 1 −10 −1.3018 0.9148 −0.8263 3.4815

−1 −1.1665 1.0704 −0.3086 3.1067

0 −0.7043 1.2479 −0.1372 2.9831

1 0 1 0 3

10 0.4873 0.5777 1.3200 4.8570

(b)

a b λ µKwSN σKwSN γ1 γ2

0.5 10 −10 −2.9068 0.7271 −0.5398 3.48441

−1 −2.9058 0.7297 −0.5421 3.504

0 −2.6716 0.7786 −0.4525 3.3854

1 −1.5388 0.5868 −0.4098 3.3310

10 −0.1181 0.1143 0.1497 3.6289

1 0.5 −10 −0.4873 0.5778 −1.3200 4.857

−1 0 1 0 3

0 0.7043 1.2479 0.1372 2.9831

1 1.1665 1.0703 0.3086 3.1161

10 1.3018 0.9148 0.8262 3.4814

1 1 −10 −0.7939 0.6080 −0.9556 3.8232

−1 −0.5642 0.8256 −0.1369 3.0617

0 0 1 0 3

1 0.5642 0.8256 0.1369 3.0617

10 0.7939 0.6080 0.9556 3.8232

10 1 −10 −0.084 0.1364 −0.7082 4.2018

−1 0.6744 0.4536 0.3597 3.2722

0 1.5388 0.5868 0.4099 3.3314

1 1.8675 0.5251 0.5005 3.4685

10 1.8807 0.5124 0.5744 3.5243

1 10 −10 −1.8807 0.5124 −0.5744 3.5243

−1 −1.8675 0.5251 −0.5005 3.4685

0 −1.5388 0.5868 −0.4099 3.3314

1 −0.6744 0.4536 −0.3597 3.2722

10 0.084 0.1364 0.7082 4.2018

Table 4.1: The first moment, the standard deviation, the skewness and the

kurtosis of KwSN(λ ,a,b) for different values of a, b and λ

As noted for moments of the BSN, moments of the KwSN involve inte-

grals that can not be solved explicitly. For this reason we have performed

a numerical study to compute them numerically using the software R. In

table 4.1 we have reported the values of the mean µKwSN , standard deviation

σKwSN , skewness γ1 and kurtosis γ2 for different values of the parameters a,

b and λ . It should be noted that:
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• for fixed values of a and b the mean µKwSN is an increasing function of

λ ;

• for fixed values of a and λ the mean µKwSN and the skewness γ1 are a

decreasing and an increasing function of b, respectively.

4.1.3 Some interesting properties

In this subsection, we now derive the main properties of the KwSN dis-

tribution.

First we prove the following theorem:

Theorem 20. Let X ∼KwSN(λ ,a,b), Y ∼KwSN(λ ,a,d) be independent then

X |(Y ≥ X)∼ KwSN(λ ,a,b+d).

Proof. Let W = X |(Y ≥ X). The cdf of W is then

P(W ≤w)=
∫ w
−∞

ab(1−Φ(x;λ )a)d
φ(x;λ )(Φ(x;λ ))(a−1) (1−Φ(x;λ )a)(b−1) dx

P(Y ≥ X)
.

(4.4)

Also

P(Y ≥ X) =
∫

∞

−∞

ab(1−Φ(x;λ )a)d
φ(x;λ )(Φ(x;λ ))(a−1) (1−Φ(x;λ )a)(b−1) dx =

=
b

b+d
.

By taking derivative from the above expression with respect to w, we have

fW (w) = a(b+d)φ(w;λ )(Φ(w;λ ))(a−1) (1−Φ(w;λ )a)(b+d−1) , (4.5)

and the proof is complete.

Hence, we can easily derive the following corollary.
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Corollary 14. Let X , Y ∼ KwSN(λ ,a,b) be independent then

X |(Y ≤ X)∼ KwSN(λ ,a,2b).

The proofs of the following theorems are quite similar to that of theorem

(20) and are therefore omitted.

Theorem 21. Let X ∼ KwSN(λ ,a,1) be independent of Y ∼ KwSN(λ ,c,1).

Then X |(Y ≤ X)∼KwSN(λ ,a+c,1), where a and c are positive real numbers.

As a special case of this theorem, we have the following one.

Theorem 22. Let X ∼ KwSN(λ ,a,1) be independent of a random sample

(Y1, · · · ,Yn) from SN(λ ), then X |
(
Y(n) ≤ X

)
∼ KwSN(λ ,a+n,1), where Y(n) is

the largest order statistic.

We immediately get the following theorem.

Theorem 23. Let X ∼ KwSN(λ ,1,b) be independent of a random sample

(Y1, · · · ,Yn) from SN(λ ), then X |
(
X ≤ Y(1)

)
∼ KwSN(λ ,1,b+n), where Y(1) is

the smallest order statistic.

We give a generalization of the above theorem as follows:

Theorem 24. Let X ∼ KwSN(λ ,1,b) be independent of Y ∼ KwSN(λ ,1,d).

Then X |(X ≤Y )∼KwSN(λ ,1,b+d), where b and d are positive real numbers.

Next we extend the previous theorems for the family of the Kumaraswamy

generalized distributions.

Theorem 25. Let X ∼ Kw−F(a,b), Y ∼ Kw−F(a,d) be independent then

X |(Y ≤ X)∼ Kw−F(a,b+d).
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We have in particular the following corollary corresponding to the case

d = b.

Corollary 15. Let X , Y ∼ Kw−F(a,b) be independent then

X |(Y ≤ X)∼ Kw−F(a,2b).

Theorem 26. Let X ∼ Kw− F(a,1) be independent of a random sample

(Y1, · · · ,Yn) from f (·), then X |
(
Y(n) ≤ X

)
∼ Kw−F(a+n,1), where Y(n) is the

largest order statistic.

The next result is an extension of the theorem 26.

Theorem 27. Let X ∼ Kw− F(a,1) be independent of Y ∼ Kw− F(c,1).

Then X |(Y ≤ X)∼ Kw−F(a+c,1), where a and c are positive real numbers.

Theorem 28. Let X ∼ Kw− F(1,b) be independent of a random sample

(Y1, · · · ,Yn) from f (·), then X |
(
X ≤ Y(1)

)
∼ Kw−F(1,b+n), where Y(1) is the

smallest order statistic.

Theorem 28 can be generalized as follows:

Theorem 29. Let X ∼ Kw− F(1,b) be independent of Y ∼ Kw− F(1,d).

Then X |(X ≤Y )∼ Kw−F(1,b+d), where b and d are positive real numbers.

4.1.4 Expansion for the density function

Here, we give a simple expansion for the KwSN density function.

Application of (1.23) to equation (4.1), if b is real non-integer, gives

GK
Φ(x;λ )(x;λ ,a,b) =

∞

∑
i=0

(−1)iab
(

b−1
i

)
Φ(x;λ )a(1+i)−1. (4.6)
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Correspondingly, the density function (4.2) can be written as

gB
Φ(x;λ )(x;λ ,a,b) =

∞

∑
i=0

(−1)i ab
a(1+ i)−1

(
b−1

i

)
gK

Φ(x;λ )(x;λ ,a(1+ i)−1,1).

(4.7)

The density gK
Φ(x;λ )(x;λ ,a,b) can be seen as an infinite mixture of

KwSN(λ ,a(1+ i)−1,1) densities with constant weights (−1)i ab
a(1+i)−1 .

For b integer, the previous sums stop at b− 1. If a is real integer we can

expand Φ(x;λ )a(1+i)−1 as follows

Φ(x;λ )a(1+i)−1 =
∞

∑
j=0

(−1) j
(

a(1+ i)−1
j

)
(1−Φ(x;λ )) j =

=
∞

∑
j=0

j

∑
r=0

(−1) j+r
(

a(1+ i)−1
j

)(
j
r

)
(Φ(x;λ ))r,

and the distribution function takes the following expression

GK
Φ(x;λ )(x;a,b) =

∞

∑
i=0

∞

∑
j=0

j

∑
r=0

(−1)i+ j+rab
(

b−1
i

)(
a(1+ i)−1

j

)(
j
r

)
(Φ(x;λ ))r.

(4.8)

The density for a real non-integer can be easily obtained from the above

equation by differentiation.

Remark 18. The density function (1.1) of model SN(λ ), can be represented

in the following way:

φ(z;λ ) = 2φ(z)Φ(λ z) = 2φ(z)Φ(λ z)(1−Φ(z;λ )+Φ(z;λ )) =

= 2φ(z)Φ(λ z)(1−Φ(z;λ ))+2φ(z)Φ(λ z)Φ(z;λ ) =

=
1
2

(
gK

Φ(z;λ )(z;λ ,1,2)+gK
Φ(z;λ )(z;λ ,2,1)

)
. (4.9)

In other words the density function of the skew-normal with parameter λ is

a mixture between a Kumaraswamy skew-normal density with parameters λ ,

a = 1 and b = 2 and a Kumaraswamy skew-normal density with parameters
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λ , a = 2 and b = 1. The density function of the skew-normal with parameter

λ can be seen as mixture of Kumaraswamy skew-normal distributions with

the same parameter λ in the following way:

φ(x;λ ) =
1
b

gK
Φ(x;λ )(x;λ ,1,b)−

∞

∑
i=1

(−1)i
(

b−1
i

)
gK

Φ(x;λ )(x;λ ,1+ i,1). (4.10)

The above formula is obtained setting a = 1 in (4.7) and using the property a

of the KwSN.

The following theorem is nearly identical to the result obtained for the

moments of the BSN.

Theorem 30. Let X ∼ KwSN(µ,σ ,λ ,a,b) for integers values of a and b,

then

E(Xn) = µ
n +2abµ

n
b−1

∑
j=0

(−1) j
(

b−1
j

) n

∑
i=1

(
n
i

)(
σ

µ

)i

∗

∗

{
a( j+1)−1

∑
k=0

(−1)k
(

a( j+1)−1
k

)
Ii,k,λ +(−1)iIi,a( j+1)−1,−λ

}
, (4.11)

where

Ii,k,λ =
∫

∞

0
zi

φ(z)Φ(λ z)(1−Φ(z;λ ))kdz. (4.12)

Proof. The proof is again analogous to the one given by Gupta and Nadarajah

(2005) [32] for theorem 1. If X has the pdf (4.2), then its n− th moment can

be written as

E(Xn)= 2ab
b−1

∑
j=0

(−1) j
(

b−1
j

)∫
∞

−∞

1
σ

xn
φ

(
x−µ

σ

)
Φ

(
λ
(x−µ)

σ

)[
Φ

(
x−µ

σ
;λ

)]a( j+1)−1

dx.

(4.13)

The change of variable x = σz+µ immediately yields

E(Xn) = 2abµ
n

b−1

∑
j=0

(−1) j
(

b−1
j

) n

∑
i=0

(
n
i

)(
σ

µ

)i ∫ ∞

−∞

zi
φ(z)Φ(λ z)(Φ(z;λ ))a( j+1)−1dz.

(4.14)
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In order to obtain (4.11) we split the above integral into two integrals, i.e.∫
∞

−∞

zi(Φ(z;λ ))a( j+1)−1dz =
∫

∞

0
zi

φ(z)Φ(λ z)(Φ(z;λ ))a( j+1)−1dz+

+(−1)i
∫

∞

0
zi

φ(z)Φ(−λ z)(1−Φ(z;−λ ))a( j+1)−1dz.

(4.15)

The first integral in expression (4.15), on using the series representation

(Φ(z;λ ))a( j+1)−1 =
a( j+1)−1

∑
k=0

(−1)k
(

a( j+1)−1
k

)
(1−Φ(z;λ ))k , (4.16)

becomes

a( j+1)−1

∑
k=0

(−1)k
(

a( j+1)−1
k

)∫
∞

0
zi

φ(z)Φ(λ z)(1−Φ(z;λ ))kdz. (4.17)

By putting together expressions (4.14), (4.15) and (4.17) we conclude that

E(Xn) = 2abµ
n

b−1

∑
j=0

(
b−1

j

)
(−1) j

n

∑
i=0

(
σ

µ

)i(n
i

)
∗

∗

{
a( j+1)−1

∑
k=0

(−1)k
(

a( j+1)−1
k

)
Ii,k,λ +(−1)iIi,a( j+1)−1,−λ

}
. (4.18)

Hence, it follows from lemma 1 of Gupta and Nadarajah (2005) [32] that the

term in the brackets in (4.18) for i = 0 reduces to

a+ j−1

∑
k=0

(−1)k
(

a( j+1)−1
k

)
I0,k,λ + I0,a+ j−1,−λ =

=
a( j+1)−1

∑
k=0

(−1)k
(

a( j+1)−1
k

)
(1−Φ(0;λ ))k+1

2(k+1)
+

(1−Φ(0;−λ ))a+ j

2(a+ j)
=

=
1

2(a( j+1))
. (4.19)

Finally, from lemma 2 in [32] we conclude that the term for i = 0 in (4.18) is

equal to µn. The proof is complete.

Remark 19. The function Ii,k,λ is the same defined in equation (3.20) in

chapter 3.
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4.1.5 The KwSN(1,n,b)

In this section, we will discuss the moment generating function and the

moments of the KwSN(1,n,b) distribution.

Proceeding as in section 3.1.7, we can find the moment generating function of

a skew-normal with parameters λ = 1, a integer and b real using the moment

generating function of a Balakrishnan skew-normal.

Theorem 31. The moment generating function of X ∼ KwSN(1,n,b) is

MX(t) = 2nb
∞

∑
j=0

(−1) j
(

b−1
j

)
e

t2
2 E(Φ2n(1+ j)−1(V )), (4.20)

where V ∼ N(t,1).

Proof. Proceeding as in theorem 15, it follows that

MX(t) = 2nb
∞

∑
j=0

(−1) j
(

b−1
j

)∫
∞

−∞

etx
φ(x)Φ(x)Φ(x)2n(1+ j)−2dx =

= 2nb
∞

∑
j=0

(−1) j

(b−1
j

)
2n( j+1)

∫
∞

−∞

2n(1+ j)etx
φ(x)Φ(x)2n(1+ j)−1dx =

= 2nb
∞

∑
j=0

(−1) j

(b−1
j

)
2n(1+ j)

MY (t), (4.21)

where Y is a Balakrishnan skew-normal with parameters 1 and 2n(1+ j)−1.

Now, the result in (4.20) follows from the moment generating function of the

Balakrishnan skew-normal.

By taking the first derivative of the moment generating function, it can

be easily proven that the mean is given by the following expression

E(X) = b
∞

∑
j=0

(−1) j
(

b−1
j

)
1

1+ j
E(Y ) =

= b
∞

∑
j=0

(−1) j
(

b−1
j

)
1

1+ j
(2n(1+ j)−1)(n(1+ j))√

π

1

c(2n(1+ j)−2)

(
1√
2

) .
The general moments are given by the following recursion formula.
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Theorem 32. Let X ∼ KwSN(1,n,b), then

E
(

Xk
)
= b

∞

∑
j=0

(−1) j

(b−1
j

)
(1+ j)

[
(k−1)E

(
Y k−2

)
+

2n(1+ j)−1

2
k+1

2
√

π

∗

∗ 2n(1+ j)
c(2n(1+ j)−2)(

1√
2
)
E
(

W k−1
)]

,

where W ∼ SNB(2n(1+ j)−2)

(
1√
2

)
.

Proof. The proof follows the same lines as that of theorem 16 given in section

3.1.7.

4.2 Further results

The Kumaraswamy skew-normal density reduces to the Balakrishnan

skew-normal when b = 1, λ = 1 and a ≥ 1 integer (or a = 1, λ = −1 and

b≥ 1 integer). These considerations lead to the following proposition:

Proposition 10. The KwSN distribution satisfies the following properties:

• gK
Φ(x;1)(x;1,n,1) = f2n−1,m(x;1,0), for all x ∈ R, i.e.

KwSN(1,n,1) = T BSN2n−1,m(1,0);

• gK
Φ(x;−1)(x;−1,1,m) = fn,2m−1(x;0,−1), for all x ∈ R, i.e.

KwSN(−1,1,m) = T BSNn,2m−1(0,−1);

where n and m are positive integer numbers.

Following the notations of Ferreira and Steel (2006) [26] given in section

3.2.1, we can notice that the density function of a Kumaraswamy skew-normal

with parameters λ , a and b may be expressed as a weighted version of the

normal density function, with p(·) on (0,1) given by

p(u;λ ,a,b) = abΦ(λΦ
−1(u))

(
Φ(Φ−1(u);λ )

)a−1 (
1−Φ(Φ−1(u);λ )a)b−1

.

(4.22)
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Moreover, the following corollary of proposition 8 holds.

Corollary 16. Let U and V be two independent random variables with pdfs

(cdf) φ (Φ) on the real line and p on (0,1) given by equation (4.22), respec-

tively.

• When W = V −Φ(U), the conditional distribution of U given (W = 0)

is KwSN(λ ,a,b).

• Let X ∼ KwSN(λ ,a,b). Then Φ(X)
d
=V .

Now we present a theorem about the KwSN(λ ,a,b) distribution.

Theorem 33. If X ∼KwSN(λ ,a,b), then X2 L−→Kwχ2(1,a,b), λ→∞, where

Kwχ2(1,a,b) is a Kumaraswamy chi-square random variable with parameters

1, a and b.

Proof. Let Y = X2. The density of Y is

fY (y) = abφ(
√

y)
1
√

y

{
Φ(λ
√

y)(Φ(
√

y;λ ))a−1 (1−Φ(
√

y;λ )a)b−1+

+Φ(−λ
√

y)(Φ(−√y;λ ))a−1 (1−Φ(−√y;λ )a)b−1
}
=

= ab fχ2(1)(y)h(y;λ ,a,b), y > 0,

with

h(y;λ ,a,b) =
{

Φ(λ
√

y)(Φ(
√

y;λ ))a−1 (1−Φ(
√

y;λ )a)b−1 +

+ Φ(−λ
√

y)(Φ(−√y;λ ))a−1 (1−Φ(−√y;λ )a)b−1
}
,

and fχ2(1)(·) is the density function of a chi-square density function. We can

note that

h(y;λ ,a,b) λ→∞−→ (2Φ(
√

y)−1)a−1 (1− (2Φ(
√

y)−1)a)b−1 = (4.23)

=Fa−1
χ2(1)(y)

(
1−Fa

χ2(1)(y)
)b−1

, (4.24)
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where Fχ2(1)(·) is the chi-square distribution function. Therefore, the density

fY (·) converges to the density of a Kumaraswamy chi-square random variable

with parameters 1, a and b as λ → ∞.

4.2.1 An interesting theorem

Theorem 34. Let X ∼ KwSN(λ ,a,b) and ξξξ = (λ ,a,b).

The distribution of X reduces to a normal distribution if and only if one of

the following conditions holds:

1. ξξξ = (0,1,1);

2. ξξξ = (1, 1
2 ,1);

3. ξξξ = (−1,1, 1
2).

Proof. It easy to see that if one of the conditions from 1 to 3 is verified then

X is a normal random variable, as mentioned in the properties from c to e of

the Kumaraswamy skew-normal in the first section of this chapter.

Conversely, since gK
Φ(x;λ )(x;λ ,a,b) is a normal density for fixed λ , a and b it

follows that gK
Φ(x;λ )(x;λ ,a,b) = φ(x), for all x. This implies that

2abΦ(λx)(Φ(x;λ ))a−1 (1−Φ(x;λ )a)b−1 = 1, for all x. (4.25)

We can without loss of generality take x = 0

ab(Φ(0;λ ))a−1 (1−Φ(0;λ )a)b−1 = 1. (4.26)

Now we impose that the distribution function of the Kumaraswamy skew-

normal is equal to the distribution function of the normal distribution:

1− [1− (Φ(x;λ )a)]b = Φ(x), for all x. (4.27)
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For the special case x = 0, it becomes

[1− (Φ(0;λ )a)]b =
1
2
. (4.28)

The first derivative of gK
Φ(x;λ )(x;λ ,a,b) with respect to x is

∂gK
Φ(x;λ )(x;λ ,a,b)

∂x
= gK

Φ(x;λ )(x;λ ,a,b)
{
−x+λ

φ(λx)
Φ(λx)

+(a−1)
φ(x;λ )

Φ(x;λ )
− (b−1)a

φ(x;λ )Φ(x;λ )a−1

1−Φ(x;λ )a

}
,

now we impose that
∂gK

Φ(x;λ )(x;λ ,a,b)
∂x

gK
Φ(x;λ )(x;λ ,a,b)

=−x, (4.29)

and we obtain the following condition:

λ
φ(λx)
Φ(λx)

+(a−1)
φ(x;λ )

Φ(x;λ )
−a(b−1)

φ(x;λ )Φ(x;λ )a−1

1−Φ(x;λ )a = 0, (4.30)

which holds for all x. In particular, for x = 0 we obtain

2λ +
a−1

Φ(0;λ )
− a(b−1)Φ(0;λ )a−1

1−Φ(0;λ )a = 0. (4.31)

Let us denote by y the distribution function of the skew-normal distribution

evaluated at x = 0, i.e. Φ(0;λ ) (see property 4 in section 1.1). Therefore

equations (4.26), (4.28) and (4.31) can be rewritten as follows:

abya−1 (1− ya)b−1 = 1;

(1− ya)b =
1
2

; (4.32)

2tan
(

π

(
1
2
− y
))

+
a−1

y
− a(b−1)ya−1

1− ya = 0.

From the second equation of (4.32) we get

y =

(
1−
(

1
2

) 1
b
) 1

a

. (4.33)

Replacing expression (4.33) in the first equation of (4.32) it follows that

ab

(
1−
(

1
2

) 1
b
) a−1

a (
1
2

) b−1
b

= 1,
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which, after some straightforward algebraical manipulations, one can write

as

1
a

log

(
1−
(

1
2

) 1
b
)

e
1
a log

(
1−( 1

2)
1
b

)
= b

(
1−
(

1
2

) 1
b
)(

1
2

) b−1
b

log

(
1−
(

1
2

) 1
b
)
.

The function

b

(
1−
(

1
2

) 1
b
)(

1
2

) b−1
b

log

(
1−
(

1
2

) 1
b
)

(4.34)

is defined only for positive values of b. The figure 4.2 shows that the above

function is always negative. Numerically, we have noticed that this func-

tion assumes values on the interval
[
−1

e ,0
)

when b belongs to the interval

(0,1.103724877]. Consequently, two explicit expressions for a in terms of b,

using the Lambert W function (see appendix A), are obtained:

a =

log
(

1−
(1

2

) 1
b

)
W0

(
b
(

1−
(1

2

) 1
b

)(1
2

) b−1
b log

(
1−
(1

2

) 1
b

)) , (4.35)

a =

log
(

1−
(1

2

) 1
b

)
W−1

(
b
(

1−
(1

2

) 1
b

)(1
2

) b−1
b log

(
1−
(1

2

) 1
b

)) . (4.36)

Numerically, we have noted that the functions

Wi

(
b
(

1−
(1

2

) 1
b

)(1
2

) b−1
b log

(
1−
(1

2

) 1
b

))
, for i = −1, 0, are negative real

numbers when b lies in the interval (0,1.103724877] (see figures 4.3 and 4.4).

Now we divide the proof into two steps.

The first step consists in replacing (4.35) in the third equation of (4.32). The

resulting equation, which depends only on the variable b, has two real zeros:

b = 1 and b = 1
2 (see figure 4.5).

Substituting b = 1 in the second equation of (4.32), we get

y =
(

1
2

)1/a

, (4.37)
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which replaced in the first equation of (4.32) gives

aya−1 = 1. (4.38)

The solutions of the above equation, obtained using the Lambert W function,

are a =− ln(2)

W0

(
ln(2)

2

) = 1 and a =− ln(2)

W−1

(
− ln(2)

2

) = 1
2 .

Taking successively a= 1 and a= 1
2 on (4.37) we obtain that λ = 0 and λ = 1,

respectively. Replacing b = 1
2 in the second equation of (4.32) it follows that

y =
(

3
4

) 1
a

, (4.39)

and consequently, the first equation of (4.32) becomes

a
(

3
4

)1− 1
a

= 1, (4.40)

which has two solutions: a =
ln( 3

4)
W0( 3

4 ln( 3
4))

= 1 and a =
ln( 3

4)
W−1( 3

4 ln( 3
4))
' 0.12. Set-

ting a = 1 in (4.39) we obtain

y =
3
4
, (4.41)

which implies λ =−1.

Replacing a' 0.12 in (4.39) we get the value λ ' 3.403728.

We note that the last values
(
λ ' 3.403728, a = 0.12 and b = 1

2

)
satisfy the

system but the correspondent density function gK
Φ(x;λ )(x;λ ,a,b) is not a nor-

mal density.

The second step consists in replacing (4.36) in the third equation of (4.32).

The equation obtained, which depends only on the variable b, has a real zero:

b= 1 (see figure 4.6). Consequently, as before we get the same solutions a= 1

and λ = 0, and a = 1
2 and λ = 1.
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Figure 4.2: The function b
(

1−
(1

2

) 1
b

)(1
2

) b−1
b log

(
1−
(1

2

) 1
b

)

Figure 4.3: The function W0

(
b
(

1−
(1

2

) 1
b

)(1
2

) b−1
b log

(
1−
(1

2

) 1
b

))
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Figure 4.4: The function W−1

(
b
(

1−
(1

2

) 1
b

)(1
2

) b−1
b log

(
1−
(1

2

) 1
b

))

Figure 4.5: The univariate function of b obtained replacing (4.35)
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Figure 4.6: The univariate function of b obtained replacing (4.36)

4.3 Maximum likelihood estimation

Differentiating (4.2) with respect to the five parameters a, b, λ , µ and σ ,

a set of five equations is obtained which has to be solved using a numerical

root finding algorithm in order to obtain the maximum likelihood estimates

of the model parameters. The log-likelihood function l(ξξξ ) for the vector of

parameters ξξξ = (µ,σ ,λ ,a,b) can be written as

l(ξξξ ) = N log(2)−N log(σ)+N log(a)+N log(b)+
N

∑
i=1

log
(

φ

(
xi−µ

σ

))
+

+
N

∑
i=1

log
(

Φ

(
λ

(
xi−µ

σ

)))
+(a−1)

N

∑
i=1

log
(

Φ

(
xi−µ

σ
;λ

))
+

+(b−1)
N

∑
i=1

log
(

1−Φ

(
xi−µ

σ
;λ

)a)
.
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The components of the score vector U(ξξξ ) are given by

Ua(ξξξ ) =
∂ l(ξξξ )

∂a
=

N
a
+

N

∑
i=1

log(vi)− (b−1)
N

∑
i=1

va
i log(vi)

1− va
i

;

Ub(ξξξ ) =
∂ l(ξξξ )

∂b
=

N
b
+

N

∑
i=1

log(1− va
i );

Uλ (ξξξ ) =
∂ l(ξξξ )

∂λ
=

N

∑
i=1

ziyi +(a−1)
N

∑
i=1

∂vi
∂λ

vi
− (b−1)a

N

∑
i=1

va−1
i

∂vi
∂λ

1− va
i

;

Uµ(ξξξ ) =
∂ l(ξξξ )

∂ µ
=

1
σ

N

∑
i=1

zi−
λ

σ

N

∑
i=1

yi−
(a−1)

σ

N

∑
i=1

wi +
(b−1)a

σ

N

∑
i=1

va−1
i ti;

Uσ (ξξξ ) =
∂ l(ξξξ )

∂σ
=−N

σ
+

1
σ

N

∑
i=1

z2
i −

λ ∑
N
i=1 ziyi

σ
− (a−1)

σ

N

∑
i=1

ziwi +
(b−1)a

σ

N

∑
i=1

ziva−1
i ti;

where

zi =
xi−µ

σ
; vi = Φ

(
xi−µ

σ
;λ

)
; yi =

φ

(
λ

(
xi−µ

σ

))
Φ

(
λ

(
xi−µ

σ

)) ;

wi =
φ

(
xi−µ

σ
;λ

)
Φ

(
xi−µ

σ
;λ

) ; ti =
φ

(
xi−µ

σ
;λ

)
1−Φ

(
xi−µ

σ
;λ

)a .

The elements of the observed information matrix for the parameters a, b, λ ,

µ and σ are

Uaa(ξξξ ) =−
N
a2 − (b−1)

N

∑
i=1

log(vi)

{
va

i log(vi)(
1− va

i
) +

v2a
i log(vi)(
1− va

i
)2

}
;

Ubb(ξξξ ) =−
N
b2 ;

Uab(ξξξ ) =−
∑

N
i=1 va

i log(vi)

1− va
i

;

Uaµ(ξξξ ) =−
1
σ

N

∑
i=1

wi +
(b−1)

σ

N

∑
i=1

va−1
i (a log(vi)+1) ti +

av2a−1
i log(vi)ti

1− va
i

;

Ubµ(ξξξ ) =
a
σ

N

∑
i=1

va−1
i ti;
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Uaσ (ξξξ ) =−
1
σ

N

∑
i=1

ziwi +
(b−1)

σ

N

∑
i=1

{(
aziva−1

i log(vi)ti + va−1
i ziti

)
(1− va

i )

1− va
i

+

+a
v2a−1

i log(vi)ziti
1− va

i

}
;

Ubσ (ξξξ ) =
a
σ

N

∑
i=1

va−1
i ziti;

Uaλ (ξξξ ) =
N

∑
i=1

∂vi
∂λ

vi
− (b−1)

N

∑
i=1

va−1
i

∂vi
∂λ

1− va
i
−a(b−1)

N

∑
i=1

∂vi

∂λ

{
log(vi)va−1

i
1− va

i
+

+
log(vi)v2a−1

i(
1− va

i
)2

}
;

Ubλ (ξξξ ) =−a
N

∑
i=1

va−1
i

∂vi
∂λ

1− va
i

;

Uµµ(ξξξ ) =−
N
σ2 −

λ

σ

N

∑
i=1

∂yi

∂ µ
− (a−1)

σ

N

∑
i=1

∂wi

∂ µ
+

+
a(b−1)

σ

N

∑
i=1

{
−(a−1)

σ
va−1

i witi + va−1
i

∂ ti
∂ µ

}
;

Uµλ (ξξξ ) =−
N

∑
i=1

yi

σ
− λ

σ

N

∑
i=1

∂yi

∂λ
− (a−1)

σ

N

∑
i=1

∂wi

∂λ
+

+
a(b−1)

σ

N

∑
i=1

{
(a−1)va−2

i

(
∂vi

∂λ

)
ti + va−1

i
∂ ti
∂λ

}
;

Uσσ (ξξξ ) =
N
σ2 −

3
σ2

N

∑
i=1

z2
i +

λ

σ2

N

∑
i=1

ziyi−
λ

σ

N

∑
i=1

{
zi

∂yi

∂σ
− 1

σ
yizi

}
+

+
(a−1)

σ2

N

∑
i=1

ziwi−
(a−1)

σ

N

∑
i=1

{
zi

∂wi

∂σ
− 1

σ
wizi

}
− a(b−1)

σ2

N

∑
i=1

va−1
i ziti+

+
a(b−1)

σ

N

∑
i=1

{
∂ ti
∂σ

ziva−1
i − 1

σ
zitiva−1

i − (a−1)
σ

va−1
i wiz2

i ti

}
;

Uσ µ(ξξξ ) =−
2

σ2

N

∑
i=1

zi−
λ

σ

N

∑
i=

{
zi

∂yi

∂ µ
− yi

σ

}
− (a−1)

σ

N

∑
i=1

{
zi

∂wi

∂ µ
− wi

σ

}
+

+
a(b−1)

σ

{
va−1

i zi
∂ ti
∂ µ
− (a−1)

σ
va−1

i wiziti−
1
σ

va−1
i ti

}
;



4.4 Copulas 109

Uσλ (ξξξ ) =−
1
σ

N

∑
i=1

ziyi−
λ

σ

N

∑
i=1

zi
∂yi

∂λ
− (a−1)

σ

N

∑
i=1

zi
∂wi

∂λ
+

+
a(b−1)

σ

N

∑
i=1

{
va−1

i zi
∂ ti
∂λ

+(a−1)va−2
i ziti

∂vi

∂λ

}
;

Uλλ (ξξξ ) =
N

∑
i=1

zi
∂yi

∂λ
+(a−1)

N

∑
i=1

(
∂ 2vi
∂λ 2

)
vi−

(
∂vi
∂λ

)2

v2
i

+

−a(b−1)
N

∑
i=1

(a−1)va−2
i (1− va

i )
(

∂vi
∂λ

)2
+ va−1

i (1− va
i )
(

∂ 2vi
∂λ 2

)
+av2a−2

i

(
∂vi
∂λ

)2

(
1− va

i
)2 .

4.4 Copulas

The Kumaraswamy skew-normal distribution can be generalized to the

bivariate case using copulas.

Copula functions are a useful tool to construct bivariate distributions as well

as multivariate ones. In fact, their importance in Statistics is described in

Sklar’s theorem [58], which states that any multivariate distribution function

can be represented as a copula function of its marginals. Inspired by the

work of Gupta and Kundu (2012) [41], who used the Clayton copula [15]

to introduce a bivariate power normal distribution, we derive a bivariate

Kumaraswamy skew-normal distribution (BKwSN ) using Frank’s copula [27].

4.4.1 Definitions and basic properties

In this section we refer to [12], [13] and [50] for notations and background

on copulas.

First we remind the definition of the copula function.

Definition 9. A two-dimensional copula C is a real function defined on

[0,1]× [0,1] with range [0,1]. Furthermore, for every element (u,v) in the
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domain,

C(u,0) =C(0,v) = 0, C(u,1) = u, C(1,v) = v.

For every rectangle [u1,u2]× [v1,v2] in the domain such that u1 ≤ u2 and

v1 ≤ v2,

C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,u1)≥ 0.

In other words, a bivariate copula is a bivariate distribution function

with univariate margins. Therefore, properties of copulas are analogous to

properties of joint distributions.

The following theorem is due to Sklar and describes the relationship between

copula and joint distribution function.

Theorem 35. Let F(x,y) be a joint cumulative distribution function with

marginal cumulative distributions F1(x) and F2(y). There exists a copula C

such that, for all real (x,y),

F(x,y) =C(F1(x),F2(y)). (4.42)

If both F1 and F2 are continuous, then the copula is unique; otherwise is

uniquely determined on range(F1) × range(F2). Conversely, if C is a copula

and F1 and F2 are cumulative distribution functions, then F(x,y), as defined

above, is a joint cumulative distribution function with margins F1 and F2.

This theorem allows to construct a bivariate distribution function having

the desired marginal distributions and a given copula.

Let us consider the Frank copula

C(u,v;α)=− 1
α

ln
{

1+
(e−αu−1)(e−αv−1)

e−α −1

}
, where α ∈R\{0}, 0< u, v< 1.

(4.43)

The following result is consequence of (4.43).
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Theorem 36. If (U,V ) has the joint cdf (4.43), then

1. U , V are uniform random variable in the unit interval.

2. The joint pdf of (U,V ), for 0≤ u, v≤ 1, is

fU,V (u,v;α) =− αe−α(u+v)

(e−α −1)
(

1+ (e−αu−1)(e−αv−1)
(e−α−1)

)2 . (4.44)

3. The joint survival function of (U,V ), for 0≤ u, v≤ 1, is

S(u,v;α) = 1−u− v− 1
α

ln
{

1+
(e−αu−1)(e−αv−1)

e−α −1

}
. (4.45)

4. The conditional cdf of U given V = v is

P(U ≤ u|V = v) =
e−αv(e−αu−1)

(e−α −1)
{

1+ (e−αu−1)(e−αv−1)
e−α−1

} . (4.46)

Now we remind some dependence measures related to copulas: the Kendall’s

τ and the Spearman’s ρ indexes and the coefficients of upper and lower tail

dependence.

Definition 10. If (X1,X2) forms a continuous, 2-dimensional random vari-

able with copula C, then

Kendall’s τ = 4
∫ 1

0

∫ 1

0
C(u,v)d(C(u,v))−1, (4.47)

Spearman’s ρ = 12
∫ 1

0

∫ 1

0
C(u,v)dudv−3, (4.48)

where u = F−1
1 (x1) and v = F−1

2 (x2).

Definition 11. Let (X1,X2) be a vector of continuous random variables with

marginals distribution function F1(·) and F2(·), respectively. Let u = F1(x1)
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and v = F2(x2). The coefficient of upper tail dependence of (X1,X2) is defined

as

lim
u→1−

P(X2 > F−1
2 (u)|X1 > F−1

1 (u)) = λU , (4.49)

provided that the limit λU ∈ [0,1] exists. If λU ∈ (0,1], X1 and X2 are said to

be asymptotically dependent in the upper tail; if λU = 0, X1 and X2 are said

to be asymptotically independent in the upper tail.

In the same way, the coefficient of lower tail dependence of (X1,X2) is defined

as

lim
u→0+

P(X2 < F−1
2 (u)|X1 < F−1

1 (u)) = λL, (4.50)

provided that the limit λL ∈ [0,1] exists. If λL ∈ (0,1], X1 and X2 are said to

be asymptotically dependent in the lower tail; if λL = 0, X1 and X2 are said

to be asymptotically independent in the lower tail.

The coefficients of upper and lower tail dependence can be expressed in

terms of the copula C between X1 and X2 as follows:

Definition 12. Let (X1,X2) be a continuous random vector with copula C.

Then the coefficients of upper and lower tail dependence are given by the

following expressions:

λU = lim
u→1−

1−2u+C(u,u)
1−u

, (4.51)

λL = lim
u→0+

C(u,u)
u

, (4.52)

where u = F−1
1 (x1).

All these measures are completely determined by the copula C.
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4.4.2 The bivariate Kumaraswamy skew-normal

Using the Frank copula we define a bivariate Kumaraswamy skew-normal

so that the marginals are univariate Kumaraswamy skew-normal distribu-

tions.

Let (U,V ) be random vector with copula C given in formula (4.43).

Consider the following random variables

X1 = Φ
−1
([

(1− (1−U)
1
b )

1
a

]
;λ

)
, X2 = Φ

−1
([

(1− (1−V )
1
d )

1
c

]
;λ

)
.

(4.53)

Then the joint cdf of X1 and X2 becomes:

FX1,X2(x1,x2) = P(X1 ≤ x1,X2 ≤ x2) =

= P
(

U ≤ GK
Φ(x1;λ )(x1;λ ,a,b),V ≤ GK

Φ(x2;λ )(x2;λ ,c,d)
)
=

=C(GK
Φ(x1;λ )(x1;λ ,a,b),GK

Φ(x2;λ )(x2;λ ,c,d)) =

=− 1
α

ln

1+

[
e−αGK

Φ(x1;λ )(x1;λ ,a,b)−1
][

e−αGK
Φ(x2;λ )(x2;λ ,c,d)−1

]
e−α −1

.

(4.54)

We give the following definition:

Definition 13. A random vector (X1,X2) with joint distribution function

(4.54) is said to have a bivariate Kumaraswamy skew-normal distribution

derived from the Frank copula.

Remark 20. It should point out that for any copula C it is possible to define

a bivariate Kumaraswamy skew-normal. For this reason, we will denote our

bivariate Kumaraswamy skew-normal by BKwSN(α,λ ,a,b,c,d,Fr), where Fr

indicates the copula which has been used.

Using theorem 36 we get the following result.
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Corollary 17. If (X1,X2) follows the BKwSN(α,λ ,a,b,Fr) distribution, then

1. X1 ∼ KwSN(λ ,a,b) and X2 ∼ KwSN(λ ,c,d).

2. The joint pdf of (X1,X2) is

fX1,X2(x1,x2)=−
αgK

Φ(x1;λ )(x1;λ ,a,b)gK
Φ(x2;λ )(x2;λ ,c,d)e

−α

[
GK

Φ(x1;λ )(x1;λ ,a,b)+GK
Φ(x2;λ )(x2;λ ,c,d)

]

(e−α −1)

1+

[
e
−αGK

Φ(x1;λ )(x1;λ ,a,b)
−1

][
e
−αGK

Φ(x2;λ )(x2;λ ,c,d)
−1

]
e−α−1


2 .

3. The joint survival function of (X1,X2) is

SX1,X2(x1,x2) = 1−GK
Φ(x1;λ )(x1;λ ,a,b)−GK

Φ(x2;λ )(x2;λ ,c,d)+

− 1
α

ln

1+

[
e−αGK

Φ(x1;λ )(x1;λ ,a,b)−1
][

e−αGK
Φ(x2;λ )(x2;λ ,c,d)−1

]
e−α −1

.

4. The conditional cdf of X1 given X2 = x2 is

P(X1 ≤ x1|X2 = x2) =

e
−αGK

Φ(x2;λ )(x2;λ ,c,d)
(

e
−αGK

Φ(x1;λ )(x1;λ ,a,b)
−1
)

e−α−1

1+

[
e
−αGK

Φ(x1;λ )(x1;λ ,a,b)
−1
][

e
−αGK

Φ(x2;λ )(x2;λ ,c,d)
−1
]

e−α−1

.

Proof. The proof of point 1 follows directly from elementary probability the-

ory. In fact, from equation (4.53) it follows that U =GΦ(X1;λ )(X1;λ ,a,b) = F1(X1)

and V = GΦ(X2;λ )(X2;λ ,c,d) = F2(X2), so the variables X1 = F−1
1 (U) and

X2 = F−1
2 (V ) are distributed according to Fi, for i = 1,2.

To show point 2 we use the following result:

fX1,X2(x1,x2) =
∂ 2FX1,X2(x1,x2)

∂x1∂x2
=

∂u
∂x1

∂v
∂x2

∂ 2C(u,v)
∂u∂v

=
∂u
∂x1

∂v
∂x2

fU,V (u,v),

(4.55)
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and u = F1(x1), v = F2(x2) and equation (4.44).

Point 3 follows from

SX1,X2(x1,x2) = P(X1 ≥ x1,X2 ≥ x2) =

= P
(

U ≥ GK
Φ(x1;λ )(x1;λ ,a,b),V ≥ GK

Φ(x2;λ )(x2;λ ,c,d)
)
=

= SU,V (GK
Φ(x1;λ )(x1;λ ,a,b),GK

Φ(x2;λ )(x2;λ ,c,d)),

and relation (4.45).

The statement of point 4 is established using the following relation

P(X1 ≤ x1|X2 = x2) = P(U ≤ GK
Φ(x1;λ )|V = GK

Φ(x2;λ )),

and equation (4.46).

The cdf and pdf of the maximum and minimum of the bivariate Ku-

maraswamy skew-normal distribution are given in the following theorem.

Theorem 37. If (X1,X2)∼ BKwSN(λ ,a,b,c,d,Fr), then

1. the cdf and pdf of max(X1,X2) are

Fmax(X1,X2)(x)=−
1
α

ln

1+

[
e−αGK

Φ(x;λ )(x;λ ,a,b)−1
][

e−αGK
Φ(x;λ )(x;λ ,c,d)−1

]
e−α −1

,

fmax(X1,X2)(x) =
gK

Φ(x;λ )(x;λ ,a,b)e−αGK
Φ(x;λ )(x;λ ,a,b)

(
e−αGK

Φ(x;λ )(x;λ ,c,d)−1
)

(e−α −1)

1+

(
e
−αGK

Φ(x;λ )(x;λ ,a,b)
−1
)(

e
−αGK

Φ(x;λ )(x;λ ,c,d)
−1
)

e−α−1


2+

+
gK

Φ(x;λ )(x;λ ,c,d)e−αGK
Φ(x;λ )(x;λ ,c,d)

(
e−αGK

Φ(x;λ )(x;λ ,a,b)−1
)

(e−α −1)

1+

(
e
−αGK

Φ(x;λ )(x;λ ,a,b)
−1
)(

e
−αGK

Φ(x;λ )(x;λ ,c,d)
−1
)

e−α−1


2 ,

respectively;
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2. the cdf and pdf of min(X1,X2) are

Fmin(X1,X2)(x) = GK
Φ(x;λ )(x;λ ,a,b)+GK

Φ(x;λ )(x;λ ,c,d)+

+
1
α

ln

1+

[
e−αGK

Φ(x;λ )(x;λ ,a,b)−1
][

e−αGK
Φ(x;λ )(x;λ ,c,d)−1

]
e−α −1

,

and

fmin(X1,X2)(x) = gK
Φ(x;λ )(x;λ ,a,b)+gK

Φ(x;λ )(x;λ ,c,d)− fmax(X1,X2)(x),

respectively.

Proof. The cdf of the maximum between X1 and X2 can be easily obtained

using

Fmax(X1,X2)(x) =P(X1 ≤ x,X2 ≤ x) = FX1,X2(x,x) =C(F1(x),F2(x)) =

=C
(

GK
Φ(x;λ )(x;λ ,a,b),GK

Φ(x;λ )(x;λ ,c,d)
)
. (4.56)

While the distribution function of the minimum between X1 and X2 can be

found by noting that

Fmin(X1,X2)(x) =1−P(X1 ≥ x,X2 ≥ x) = 1−SX1,X2(F1(x),F2(x)) =

=1−SU,V

(
GK

Φ(x;λ )(x;λ ,a,b),GK
Φ(x;λ )(x;λ ,c,d)

)
. (4.57)

For the bivariate Kumaraswamy skew-normal distribution we get the fol-

lowing results:

Property 14. Let (X1,X2)∼ BKwSN(α,λ ,a,b,c,d,Fr), then Kendall’s τ in-

dex is given by 4
α
(1−D1(−α))−1, where the function D1 is defined as

D1(α) =
1
α

∫
α

0

t
et−1

dt (4.58)

and is called the first Debye function (see for example [1]).
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Proof. If (U,V ) is a random vector with Frank’s copula then Kendall’s τ

index is exactly 4
α
(1−D1(−α))−1 (see for instance [13]). Since Kendall’s τ

index is independent of the margins the result follows.

Property 15. Let (X1,X2) ∼ BKwSN(α,λ ,a,b,c,d,Fr), then Spearman’s ρ

index is given by 12
α
[D2(−α)−D1(−α)]−1, where D1 is the first Debye func-

tion and the function D2 is defined as

D2(α) =
2

α2

∫
α

0

t2

et−1
dt (4.59)

and is known as the second Debye function (see for example [1]).

Proof. Spearman’s ρ index of a random vector (U,V ) with Frank’s copula

is 12
α
[D2(−α)−D1(−α)]− 1 (see for instance [13]). As the Kendall index,

Spearman’s ρ one is completely determined by the copula.

Property 16. Let (X1,X2)∼ BKwSN(α,λ ,a,b,c,d,Fr), then the coefficients

of upper and lower tail dependence of (X1,X2) are null, i.e. X1 and X2 are

asymptotically independent in both upper and lower tails.

Proof. The Frank copula has neither lower nor upper tail dependency. These

two measures, as the previous ones, do not depend on the marginal proba-

bility distributions.

In figure 4.7 and 4.8 are given the surface plots of the joint pdf of (X1,X2)

for different values of the parameters.
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Figure 4.7: The BKwSN(1,1,1,1,1,1) density function

x

−2

−1

0

1

2

y

−3

−2

−1

0

1

z

0.0

0.1

0.2

0.3

0.4

0.5

Density

Figure 4.8: The BKwSN(−1,1,2,4,1,2) density function
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4.5 The generalized Beta skew-normal distri-

bution

We present a new family of distributions that contains the KwSN and

the BSN as special cases. This new distribution is obtained following the

procedure described in the last section of chapter 1.

For the sake of completeness, we briefly discuss results concerning this new

family which are generalizations of the ones given for the KwSN and the BSN.

We now introduce the four-parameter generalized Beta skew-normal density

with parameters λ ∈R, a > 0, b > 0 and c > 0, say GBSN(λ ,a,b,c), by taking

F(x) in (1.43) to be the cdf of the skew-normal. The GBSN density function

can be expressed as

gG BG
Φ(x;λ )(x;λ ,a,b,c) =

c
B(a,b)

φ(x;λ )(Φ(x;λ ))ac−1 (1−Φ(x;λ )c)b−1 . (4.60)

The corresponding cumulative distribution function is given by

GG BG
Φ(x;λ )(x;λ ,a,b,c) = IΦ(x;λ )c(a,b). (4.61)

A random variable X having density (4.60) will be indicated by X ∼GBSN(λ ,a,b,c).

Location and scale parameters may naturally be introduced by setting Y = σX + µ ,

where µ ∈ R and σ > 0.

Thus, we denote the random variable Y by Y ∼ GBSN(µ,σ ,λ ,a,b,c).

We begin by collecting together some easy results.

Properties of GBSN(λ ,a,b,c):

a. gG BG
Φ(x;λ )(x;λ ,1,1,1)= φ(x;λ ), for all x∈R, i.e. GBSN(λ ,1,1,1)= SN(λ ).
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b. gG BG
Φ(x;λ )(x;λ ,a,b,1) = gB

Φ(x;λ )(x;λ ,a,b), for all x ∈ R, i.e.

GBSN(λ ,a,b,1) = BSN(λ ,a,b).

c. gG BG
Φ(x;λ )(x;λ ,1,b,c) = gK

Φ(x;λ )(x;λ ,c,b), for all x ∈ R, i.e.

GBSN(λ ,1,b,c) = KwSN(λ ,c,b).

d. gK
Φ(x;0)(x;0,a,b,c) = gK

Φ(x)(x;a,b,c), for all x ∈ R, i.e.

GBSN(0,a,b,c) = GBN(a,b,c).

e. gK
Φ(x;0)(x;0,1,1,1) = φ(x), for all x ∈ R, i.e.

GBSN(0,1,1,1) = N(0,1).

f. gK
Φ(x;1)

(
x;1, 1

2 ,1,1
)
= φ(x), for all x ∈ R, i.e.

GBSN
(
1, 1

2 ,1,1
)
= N(0,1).

g. gK
Φ(x;−1)

(
x;−1,1, 1

2 ,1
)
= φ(x), for all x ∈ R, i.e.

GBSN
(
−1,1, 1

2 ,1
)
= N(0,1).

h. If X ∼ GBSN(λ ,a,b,c), then Y = Φ(X ;λ ) is a GB(a,b,c).

i. If X ∼ GBSN(λ ,a,b,c), then Y = Φ(X ;λ )c is a Beta(a,b).

j. If X ∼ GBSN(λ ,a,b,c), then Y = 1−Φ(X ;λ )c is a Beta(b,a).

k. As λ → +∞, gK
Φ(x;λ )(x;λ ,a,b,c) tends to the generalized Beta half-

normal density.

Graphical illustrations of (4.60) are shown in figure 4.9 and 4.10.
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Figure 4.9: The GBSN density for different values of a, b, c and λ = 1

−4 −2 0 2 4

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

x

D
en

si
ty

(λ=−0.25,a=0.15,b=0.15,c=1.2)
(λ=0.1,a=0.1,b=0.1,c=1.1)
(λ=0.26,a=0.16,b=0.16,c=1.3)
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The following result is a generalization of theorems 17 and 33.

Theorem 38. If X ∼GBSN(λ ,a,b,c), then X2 L−→GBχ2(1,a,b,c) as λ →∞,

where GBχ2(1,a,b,c) is a generalized Beta chi-square random variable with

parameters 1, a, b and c.

Proof. Let Y = X2. We can easily check that the density of Y is

fY (y) =
c

B(a,b)
φ(
√

y)
1
√

y

{
Φ(λ
√

y)(Φ(
√

y;λ ))ac−1 (1−Φ(
√

y;λ )c)b−1+

+Φ(−λ
√

y)(Φ(−√y;λ ))ac−1 (1−Φ(−√y;λ )c)b−1
}
=

=
c

B(a,b)
fχ2(1)(y)h(y;λ ,a,b,c), y > 0,

where fχ2(1)(·) is the density function of a chi-square density function. We

note that

h(y;λ ,a,b,c) λ→∞−→ (2Φ(
√

y)−1)ac−1 (1− (2Φ(
√

y)−1)c)b−1 = (4.62)

=Fac−1
χ2(1)(y)

(
1−
(

Fχ2(1)(y)
)c)b−1

, (4.63)

where Fχ2(1)(·) is the chi-square distribution function. The density fY (·)

converges to the density of a generalized Beta chi-square with parameters 1,

a, b and c as λ → ∞.

4.5.1 Moment generating function and moments

Let us find the moment generating function of GBSN(λ ,a,b,c).

Property 17. The moment generating function of X ∼ GBSN(λ ,a,b,c) is

given by

MX(t) =
2c

B(a,b)
e

t2
2 EZ

(
(Φ(Z;λ ))ac−1(1−Φ(Z;λ )c)b−1

Φ(λZ)
)
, (4.64)

where Z ∼ N(t,1).
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A recursive formula for the k− th moment is obtained using integration

by parts.

Property 18. Let k ∈ N and k ≥ 1. If X ∼ GBSN(λ ,a,b,c), with a > 1
c and

b > 1, then

EX(Xk) = (k−1)EX(Xk−2)+λEX

(
Xk−1 φ(λX)

Φ(λX)

)
+

+
(ac−1)B(a− 1

c )

B(a,b)
EU

(
Uk−1

φ(U ;λ )
)
−

c(b−1)B
(
a+1− 1

c

)
B(a,b)

EV

(
V k−1

φ(V ;λ )
)
,

where U ∼ GBSN
(
λ ,a− 1

c ,b,c
)

and V ∼ GBSN
(
λ ,a+1− 1

c ,b−1,c
)

are in-

dependent random variables.

4.5.2 New properties of the G BG distribution

We now turn our attention to the G BG −F model and we extend some

of the results, given in section 3.1.4 for the Beta−F and in section 4.1.3 for

the Kw−F distributions.

Definition (1.43) immediately leads to the following theorems, whose proofs

are similar to that of theorem (20) and are therefore omitted.

Theorem 39. Let X ∼ G BG −F(a,b,n) independent of a random sample

Y1,Y2, · · · ,Yn from F. Then X |(Y(n) ≥ X)∼ G BG −F(a,b+1,n).

The following theorem is a generalization of the above one.

Theorem 40. Let X ∼ G BG −F(a,b,c) independent of a random variable

Y ∼ Beta−F(c,1). Then X |(Y ≥ X)∼ G BG −F(a,b+1,c).

Theorem 41. Let X ∼Kw−F(a,b) independent of a random sample Y1,Y2, · · · ,Yn

from F. Then X |(Y(n) ≤ X)∼ G BG −F
(a+n

a ,b,a
)
.

The above result has been improved as follows.
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Theorem 42. Let X ∼Kw−F(a,b) independent of Y ∼ Beta−F(c,1). Then

X |(Y ≤ X)∼ G BG −F
(a+c

a ,b,a
)
.

Theorem 43. Let X ∼ G BG −F(a,b,c) independent of a random sample

Y1,Y2, · · · ,Yn from Beta−F(c,1). Then X |(Y(1) ≥ X)∼ G BG −F(a,b+n,c).

Theorem 44. Let X ∼ G BG −F(a,b,c) independent of a random variable

Y ∼ Kw−F(a,c). Then X |(Y ≥ X)∼ G BG −F(a,b+a,c).

Theorem (44) includes theorem (43) as a special case.
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Chapter 5

Scoring rules

The organization of this chapter is as follows. Section 1 describes the ba-

sics of convex analysis, as well as notions of sub-gradient vectors and Gateaux

differentiability. Furthermore, we review briefly basic notions that we will

borrow from the theory of normed spaces. Section 2 is devoted to the most

important features of the theory of scoring rules, special attention is given

to McCarthy’s characterization theorem. In section 3 we explore two the-

orems, one relative to bounded loss functions, the other one to unbounded

loss functions. In section 4 new generalizations of McCarthy’s theorem, for

unbounded scores and countable infinite sample spaces, are given.

5.1 Basic concepts

The concepts presented in this section are of fundamental importance and

all the subsequent material is based on them.
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5.1.1 Concave functions

We refer to Rockafellar (1970) [17] for notations and background on con-

vex analysis. We shall permit functions to take values on the extended real

line R= [−∞,+∞]. Since arithmetic calculations involving +∞ and −∞ must

be performed, we adopt the following conventions, used in [17]:

α +∞ = ∞+α = ∞, where −∞ < α ≤ ∞;

α−∞ =−∞+α =−∞, where −∞≤ α < ∞;

α(∞) = (∞)α = ∞, α(−∞) = (−∞)α =−∞, where 0 < α ≤ ∞;

α(∞) = (∞)α =−∞, α(−∞) = (−∞)α = ∞, where −∞≤ α < 0;

0(∞) = (∞)0 = ∞, 0(−∞) = (−∞)0 =−∞, −(−∞) = ∞;

inf /0 = ∞ and sup /0 =−∞;

+∞−∞ = ∞.

Let X be a vector space and f : X →R be a function. The hypograph of a

function f , denoted by hyp( f ), consists of all points in X ×R that lie below

the function, i.e.

hyp( f ) := {(x,c) ∈X ×R : c≤ f (x)} . (5.1)

Definition 14. A subset C of X is said to be convex if (1−λ )x+λy ∈C

whenever x, y ∈C and 0 < λ < 1.

Let us recall the definition of concave function.

Definition 15. The function f is called concave if hyp( f ) is a convex set.

A function f is convex if − f is concave.

The effective domain of a convex function f : X → R is the set

dom( f ) = {x ∈X : f (x)< ∞} . (5.2)
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Definition 16. A subset A of X is said to be affine if (1−λ )x+λy ∈ A for

x,y ∈ A and λ ∈R.

Definition 17. A function f : X → R on a vector space is affine if it is of

the form f (v) = l(v)+α for some linear function l ∈X ∗ and some real α.

All affine sets are convex. Convex sets have a lot of important theoretical

properties.

Definition 18. A convex function f is called closed if its epigraph, i.e.,

epi( f ) := {(x,c) ∈X ×R : c≥ f (x)} , (5.3)

is a closed convex set.

Let us now focus on a few operations that preserve convexity of functions.

Using these rules and several elementary convex functions, it is possible to

build more complex convex functions or prove convexity of a given function.

• Let λ > 0 and f be a closed convex function. Then the function

f1(x) = λ f (x) is closed and convex.

• Let f1 and f2 be closed and convex functions. Then the function

f (x) = f1(x)+ f2(x) is closed and convex.

• A weighted combination with positive weights of convex functions is

convex. If wi > 0 and f1, · · · , fn are convex then ∑i wi fi is convex.

• Let the functions { fi(x)}i∈I be closed and convex. Then the function f

defined by f (x) = sup{ fi(x), i ∈ I} is closed and convex, i.e. the point-

wise supremum of an arbitrary collection of convex functions is convex.

Definition 19. A convex function f : X →R is said to be proper if dom( f ) 6= /0,

and f (x)>−∞, for all x ∈X .
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Now, an important theorem may be presented (see for instance [17]).

Theorem 45. A proper closed convex function f is the pointwise supremum

of the collection of all affine functions h such that h≤ f .

Definition 20. Let f : X →R be a concave proper function. The closure of

f is defined as the function f : X → R such that hyp( f ) = hyp( f ).

Remark 21. The closure of a concave proper function exists and is unique.

The closure f of f is closed and concave and is a majorant of f , i.e.,

f (x) ≤ f (x), for all x ∈X . The function f is the smallest closed concave

majorant of f : if φ is any closed concave majorant of f then φ also majorizes

f .

We denote by X ∗ the space of linear functionals on X .

Now we introduce the concept of sub-gradient.

Definition 21. A vector x∗ ∈X ∗ is called a sub-gradient of f at x ∈X if

f (y)≥ f (x)+ x∗(y− x), (5.4)

for all y ∈X .

The set of all sub-gradients of f at x is denoted by ∂ f (x). If ∂ f (x) is not

empty, f is said to be sub-differentiable at x.

Theorem 46. Let X be a linear normed space and f : X → R be a convex

function finite and continuous at x0 ∈X . Then ∂ f (x0) 6= /0, i.e., f is sub-

differentiable at x0.

The following three well known theorems play a key role to prove one of

the main results of this chapter.
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Theorem 47. Let X be a real linear normed space and f : X → R be a

proper functional having at each point of X a sub-gradient. Then f is convex

and weak-lower semi-continuous (over the whole X ).

In particular, Hendrickson and Buehler [13] have proved that

Theorem 48. If f has sub-gradient x∗ at each point x in a convex set D,

then f is convex in D.

Theorem 49. If a convex function f : X → R, with X a normed space

(more general locally convex space), has a neighbourhood of a point x ∈X ,

where f is bounded above by a finite constant, then f is continuous at x.

Let us remind the definition of Gateaux differentiability.

Definition 22. The Gateaux directional derivative of the function f at x in

the direction of y is defined as

f ′G(x;y) = lim
λ→0+

f (x+λy)− f (x)
λ

, (5.5)

if it exists. The function f is Gateaux differentiable at x if it has a Gateaux

derivative at x for all y, and f ′G(x;y) is a linear continuous function of y.

We finish this subsection with some useful definitions, referring to [14] for

an overview of this topic.

Definition 23. A subset A of a metric space X is said to be dense if its

closure A coincides with X .

Definition 24. A subset A of a metric space X is said to be nowhere dense

if its closure A has empty interior.

Definition 25. A subset A of a space is said to be of first category in X

if there exist nowhere dense subsets F1,F2, · · · ,Fn, · · · such that A = ∪∞
i=1Fi.

Otherwise, A is said to be of second category in X .
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Definition 26. A space is said to be separable if it contains a countable

dense subset.

5.1.2 Banach spaces

In this subsection we introduce basics notions and concepts in Banach

space theory. Let us first recall the formal definition of a Banach space.

Definition 27. A Banach space is a normed linear space that is a complete

metric space with respect to the metric derived from its norm.

Definition 28. A basis (or Schauder basis) for a Banach space X is a

sequence (en : n > 1) of members of X which has the property that, for each

x in X , there is exactly one sequence of scalars (xi) for which x = ∑
∞
i=1 xiei

in the sense that limn→∞ ||x−∑
n
i=1 xiei||= 0.

An important class of Banach spaces is given by the spaces lp for 1 ≤ p < ∞,

which is the space of all sequences x = {xi}∞

i=1 for which ∑
∞
i=1 |xi|p is conver-

gent and the norm ||x||p is defined as (∑∞
i=1 |xi|p)

1
p . Let ei be an element of lp

that consists of zeros except for 1 in position i. It easy to show that (ei)
∞
i=1

is a basis for lp. In fact,

||x−
n

∑
i=1

xiei||p =

(
∞

∑
i=n+1

|xi|p
) 1

p

, (5.6)

so limn→∞ ||x−∑
n
i=1 xiei||p = 0.

To end this section we remind the theorem proved by Mazur (1933) [15],

which is useful to obtain one of the most important results of this chapter.

Theorem 50. Let X be a separable real Banach space. Let f be a real-

valued convex continuous function defined on an open convex subset Ω⊂X .

Then there is a subset A ⊂ Ω of the first category such that f is Gateaux

differentiable on Ω\A.
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All of the theory developed up until this point can be analogously applied

to concave functions, with obvious modifications.

5.2 Scoring rules

In this section, we describe briefly relevant concepts from the literature

on scoring rules and state some of the notations that will be used throughout

the chapter. For notations and background on this subject we refer to [2]

and [12].

5.2.1 Decision problems

Consider a statistical decision problem (X ,A ,L), defined in terms of an

outcome space X , an action space A and a loss function L.

Let the loss function be given by L : X ×A → (−∞,∞]. Let P be a convex

class of distributions over X such that L(P,a) := EX∼PL(X ,a) exists for all

a ∈A , and P ∈P. The combination G = (X ,A ,L) is called a basic game.

Consider a Decision Maker (DM) who has to make a decision whose conse-

quences will depend on the outcome of a random variable X defined on X .

More formally, a DM has to take some actions a selected from a given action

space A , after which Nature will reveal the value x ∈X of a quantity X and

DM will then suffer a loss L(x,a) in (−∞,∞].

An act aP ∈ A will be optimal if it minimizes L(P,a) over all a ∈ A . If a

such act aP exists, it will be called a Bayes act against P.

The Bayes loss H(P) ∈ [−∞,∞] of a distribution P ∈P is defined by

H(P) := inf
a∈A

L(P,a). (5.7)

A scoring rule is a loss function measuring the quality of a quoted probability

distribution Q for a random variable X , in the light of the realised outcome
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x of X ; specifically, if the forecaster quotes the predictive distribution Q and

the event x materializes, the loss suffered is S(x,Q).

The function S(x,Q) takes values in (−∞,∞] and the expected value of S(x,Q)

under P is denoted by S(P,Q).

Definition 29. The scoring rule S is proper relative to the class P if

S(P,Q)≥ S(P,P), for all P, Q ∈P. (5.8)

It is strictly proper relative to P if S(P,Q)≥ S(P,P) with equality if and only

if Q = P.

An arbitrary statistical decision problem can be reduced to one based on

a proper scoring rule.

Let L : X ×A → R be a loss function, defined for an outcome space X ,

and an action space A . Let P be a class of distributions over X such that

L(P,a) := EX∼PL(X ,a) exists for all a ∈A , and P ∈P, define for P, Q ∈P,

and x ∈X

S(x,Q) := L(x,aQ), (5.9)

where aP := arg infa∈A L(P,a) is a Bayes act with respect to P. It is not

difficult to see that S is a proper scoring rule, and the associated entropy

function is the Bayes loss H(P) = infa∈A L(P,a).

If S is proper, the function d on P×P defined as d(P,Q) := S(P,Q)−S(P,P),

for P, Q ∈P, is called divergence function. This function is non negative,

and if S is strictly proper then d(P,Q) is strictly positive unless P = Q.

5.2.2 Finite outcomes

In this subsection we restrict our treatment of the score to the case of

a finite sample space X = {x1,x2, · · · ,xN}. Let B be the set of real vectors
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ααα = (αx : x ∈X ), with each αx > 0, and P = {p ∈B : ∑x px = 1} the set of

such vectors corresponding to strictly positive probability distributions on

X . A distribution P over X can be represented by its probability vector

p = (p1, p2, · · · , pN), so we will use P for the distribution determined by p

(similarly Q for q), and generally not distinguish between them.

Consider a game between Forecaster and Nature, where Forecaster quotes a

distribution Q∈P as representing his uncertainty about a quantity X taking

values in X , and Nature then reveals X = x. For P∈P, let S(P,Q) := ∑x pxS(x,q)

be the expected score when Forecaster quotes Q, and Nature generates X from

P. The generalized entropy function, or uncertainty function, H : P → R,

associated with a proper scoring rule S is given by

H(p) := S(p,p) = ∑
x

pxS(x,p), (5.10)

and the corresponding divergence function is defined as

d(p,q) := S(p,q)−H(p) = ∑
x

pxS(x,q)−∑
x

pxS(x,p). (5.11)

5.2.3 Examples of proper scoring rules

A wide variety of proper scoring rules has been proposed. Here we present

two special examples of particular interest, on which the literature has fo-

cused mainly.

• The quadratic score or Brier score is defined by

S(i,p) =
m

∑
j=1

(
δi j− p j

)2
=−2pi +

m

∑
j=1

p2
j +1, (5.12)

where δi j = 1 if i = j, and δi j = 0, otherwise.

Then S(p,q) = ∑ j q2
j − 2∑ j p jq j + 1, which is uniquely minimized

for q = p, so that is a strictly proper scoring rule. The corresponding
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entropy function and divergence function are H(p) = 1−∑
n
j=1 p2

j and

d(p,q) = ∑ j(p j− q j)
2, respectively. This well-known scoring rule was

proposed by Brier (1950) [1].

• The logarithmic scoring rule is S(i,p) = − log(pi). Correspondingly,

the entropy function is H(p) = −∑ j p j log p j, called Shannon entropy,

and the divergence function, called the Kullback-Leibler divergence, is

d(p,q) = ∑ j p jlog
(

q j
p j

)
. This is one of the most interesting example of

unbounded scoring rules and was proposed by Good (1952) [8].

From these strictly proper scoring rules, it is possible to create infinitely many

more strictly proper scoring rules by taking positive affine transformation of

the said rules.

For the simple case X = {0,1}, the Brier and the Shannon entropies are

depicted in figure 5.1 and 5.2, respectively.

Figure 5.1: The Brier entropy
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Figure 5.2: The Shannon entropy

5.2.4 Homogeneous scoring rules

In this section we recall the most important features of homogeneous

functions which will be used in the characterization theorem for scoring rules,

provided by Dawid et al. (2011) [4].

Definition 30. A function f : A → R is called (positive) homogeneous of

order h, or h-homogeneous, if

f (λα) = λ
h f (α), for all λ > 0. (5.13)

If f is differentiable, the above equation will hold if and only if f satisfies

Euler’s equation:

∑
x

αx
∂ f
∂αx

= h f . (5.14)

When f is differentiable at α the super-gradient ∇ f (α) at α coincides with
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the gradient vector
(

∂ f
∂αx

: x ∈X
)

. The following lemma extends Euler’s

equation (5.14) to homogeneous functions with a super-gradient.

Lemma 4. Suppose f is h-homogeneous, and has a super-gradient ∇ f (ααα) at

ααα. Then

ααα
T

∇ f (ααα) = h f (ααα). (5.15)

Corollary 18. Suppose f is 1-homogeneous. Then S is a super-gradient of

f at ααα if and only if

βββ
T S≥ f (βββ ), (5.16)

for all βββ ∈A , with equality when βββ = ααα.

McCarthy (1956) [16] states that a scoring rule S is proper if and only

if it can be expressed as the super-gradient of a concave function which is

homogeneous of degree 1. This theorem was proved by Hendrickson and

Buehler (1971) [13].

In order to conclude this section, we state McCarthy’s theorem in terms of

homogeneous functions as given in Dawid et al. (2011) [4].

Theorem 51. Suppose H : A → R is concave and 1-homogeneous. Let ∇H

be a super-gradient of H, and for x ∈X , p ∈P, define S(x,p) to be the

x-component of the vector S(p) := ∇H(p). Then S is a proper scoring rule,

and the associated entropy at p is H(p).

Theorem 52. Suppose that S(x,ααα) is a 0-homogeneous proper scoring rule.

Define H(ααα) := αααT S(ααα). Then H is 1-homogeneous and concave, and S(ααα)

is a super-gradient of H at ααα.

However, this characterization is limited because it deals only with a

certain subset of scoring rules. In fact, in the simple form stated here the

precedent theorems can not be applied when X is infinite or S assumes
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values not finite. Our purpose is to provide a generalization of these theorems.

Broadly, we show that, under appropriate regularity conditions on the scoring

rules, the previous theorems continue to hold for infinite countable sample

spaces and unbounded scoring rules.

5.3 Conjugacy

In the following we intend to recall the Fenchel conjugate function, our

treatment is based on Rockafellar (1970) [17].

In this section we suppose that the space X is finite.

We indicate by P the set of all probability distributions over X, then P is

in one-to-one correspondence with the unit simplex in Rn, and inherits its

algebraic and topological structure.

We denote by L the set of all bounded functions from X to R, by L +

the set of all functions from X to R+. The expected value of l(·) under P

is denoted by l(P), i.e., l(P) = EX∼P(l(X)) = ∑x∈X pxl(x). The support of

l ∈L + is the set S(l) := {x : l(x)< ∞}. By the support of a we shall mean

the support of L(·,a), i.e. S(a) = {x|L(x,a)< ∞}.

Definition 31. Let H : P → R be concave and closed. The conjugate (or

Legendre transform, or Legendre-Fenchel transform or Fenchel conjugate) of

H is the function H∗ : L → R given by

H∗(l) := inf
P∈P
{l(P)−H(P)} . (5.17)

Geometrically, H∗(l) is the minimum height, over P, of the function l

above the function H.

The conjugate function H∗ is always concave and closed. H∗ is proper if and

only if H is proper.
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In a parallel relationship, H may be defined as

H(P) := inf
l∈L
{l(P)−H∗(l)} . (5.18)

By definition, for any P ∈P and l ∈L we have

H(P)+H∗(l)≤ l(P). (5.19)

Grünwald and Dawid (2003) [11] introduce the function DH on P×L by

DH(P, l) := l(P)−H(P)−H∗(l), (5.20)

the inequality (5.19) can be rewritten in this way

DH(P, l)≥ 0, (5.21)

for all P ∈P, and l ∈L . P ∈P and l ∈L are called conjugate relative to

H if DH(P, l) = 0, and it will be denoted by P↔H l. In this case both H(P)

and H∗(l) are finite.

Since the simplex P is bounded, it follows from Theorem 27.3 in [17] that

for all l ∈L there exists a conjugate P∈P. It further follows from Theorem

23.4 in [17] that whenever P lies in the relative interior of the effective domain

of H there will exist a conjugate l ∈L .

For any l ∈ L , c ∈ R, define lc ∈ L by lc(x) = l(x)− c, all x ∈ X and

lH := lH∗(l). lc is called a translate of l. Since H∗(lc) = H∗(l)− c, it fol-

lows immediately that H∗(lH) = 0, hence, for any c ∈ R,

DH(P, lc) = lc(P)−H(P)−H∗(lc) = l(P)−H∗(l)−H(P) = lH(P)−H(P).

(5.22)

In particular, P↔H l⇔ P↔H lc⇔ P↔H lH .

From (5.21) and (5.22), we see that

lH(P)≥ H(P), (5.23)
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while lH(P) = H(P) if and only if P↔H l. Geometrically, the last two equa-

tions say that lH is a super-gradient or (upper) supporting hyperplane, for

the concave function H on P, and any such super-gradient has the form lH .

In general, DH(P,l) can be interpreted geometrically as the vertical distance,

at P ∈P, of the function H below its unique super-gradient that is a trans-

late of l.

As in Grünwald and Dawid (2004) [12], the generalized entropy function

H G : P → R associated with the game G is defined by

H G (P) := inf
a∈A

L(P,a). (5.24)

Since this definition displays H G (P) as the infimum of a collection of concave

functions on P, it follows easily that H G (P) is itself a concave function

on P. The discrepancy function DG associated with a decision problem

G = (X ,A ,L) is defined by

DG (P,a) := L(P,a)−HG (P). (5.25)

Then DG (P,a)≥ 0, with equality if and only if a is a Bayes act against P in

G .

We define L H = {l ∈L : H∗(l)≥ 0}, L H
i = {l ∈L : H∗(l)> 0}, and

L H
b = {l ∈L : H∗(l) = 0}.

For any of the games having A ⊆L H , and L H
b ⊆A , we have HG ≡H, and

setting a = l ∈L H , L(P,a) = l(P), we get

DG (P, l) = DH(P, l)+H∗(l), (5.26)

DH(P, l) = DG (P, lH). (5.27)

Then DG (P, l)≥ DH(P, l), for all l ∈L H . Further, DG (P, l) = DH(P, l), for all

P ∈P, if and only if l is a Bayes act and DG (P, l) = 0 if and only if l is

Bayes against P (in which case also DH(P, l) = 0). In particular, DG and DH

coincide for the game G = G H
b , for which all acts are Bayes.
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5.3.1 Finite Loss

The results were obtained in [11], and due to its importance for the thesis

we shall present them with its proofs. Here we treat the simple case of finite

loss, and we give the generalization subsequently in the next subsection.

Theorem 53. A function H : P → R is the generalized entropy function

H G arising from a decision problem G with everywhere finite loss if and

only if H is a closed concave function on P.

Proof. First suppose that H is the generalized entropy function H G associ-

ated with some game G = (X ,A ,L) having L everywhere finite. If A = /0,

then by definition of infimum H G =∞, which is the unique improper concave

closed function. Otherwise, as a pointwise infimum of a non empty family of

upper-bounded closed concave functions on P, H is itself an upper-bounded

closed concave function. Conversely, suppose that H is a closed concave

function on P. From theorem 45, H(P) is the pointwise infimum of the col-

lection L H of finite affine functions majorizing H. Let A =L H be the action

space, with loss function L(x,a) := a(x). Then infa∈A L(P,a)≡ H(P), and H

is the generalized entropy function H G of the statistical decision problem

G = (X ,A ,L), which has everywhere finite loss.

5.3.2 Infinite Loss

In this subsection we consider the case when the loss function L is un-

bounded. For any subset Y ⊆ X , letting PY the set of P ∈P having

support S (P) = Y . This is a relatively open convex subset of the simplex

P, and its closure PY is the set of P ∈P, which put probability 1 on Y ,

i.e., with support S (P) ⊆ Y . It is clear that P is the disjoint union of

the collection {PY : Y ⊆X }. Indeed, PY being a face of the simplex P,
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which is the standard representation of a convex set as the disjoint union of

its open faces.

Let H : P → R be concave. For any Y ⊆X , let HY : PY → R be the

closure of the function H when its full domain is restricted to the face PY .

Definition 32. A function H is said to be internally closed if, for each

Y ⊆X :

H(P) = HY (P), for all P ∈PY . (5.28)

A closed concave function is internally closed.

Theorem 54. A function H : P → R+
is the generalized entropy function

from a decision problem G with loss in R if and only if H is concave and

internally closed.

Proof. First suppose that H is the generalized entropy function HG of some

game G = (X , A , L). Then H is concave. For any Y ⊆X , define

A (Y ) := {a ∈A : Y ⊆S (a)}, i.e., the set of actions a such that the loss

L(x,a) is finite, for x ∈ Y . Define a function HY : P → R by

HY (P) := inf
a∈AY

L(P,a). (5.29)

Then by definition of infimum

H(P)≤ HY (P). (5.30)

If its full domain is restricted to the family PY of distribution on Y , HY is

the generalized entropy function for the restricted game GY = (X ,A (Y ),L),

which has everywhere finite loss. From theorem 53, it follows that HY , so

restricted, is a closed concave function; and so for (5.30), HY majorize H.

Hence, if HY denotes the closure of the function H relative to PY , we have:

H(P)≤ HY (P)≤ HY (P), with P ∈PY . (5.31)



152 5. Scoring rules

From inequalities (5.30) and (5.31), we deduce that

H(P) = HY , for P ∈PY , and it follows that H is internally closed. Con-

versely, let H : P → [−∞,∞] be an internally closed concave function. For

any Y ⊆X , define HY to be the closure of H when its full domain is re-

stricted to PY . In particular,

H(P)≤ HY (P), if S (P)⊆ Y . (5.32)

By definition of function internally closed

H(P)≤ HY (P), if S (P) = Y . (5.33)

From theorem 53, it is possible to find an action space AY , and a loss function

LY : Y ×AY → (−∞,∞) such that, for all P ∈PY ,

HY (P) = inf{L(P,a) : a ∈AY } . (5.34)

Let A be the disjoint union
⋃̇
{AY : Y ⊆X } and consider the decision

problem (X ,A ,L) with loss function given by:

L(x,a) =
{

LY (x,a) if x ∈ Ya

∞ otherwise,
(5.35)

where Ya is the unique subset of X such that a ∈AY . We shall then have

S (a) = Ya, and for any P ∈P, the following equalities hold

inf
a∈A

L(P,a) = inf
a∈A :S (P)⊆S (a)

L(P,a) =

= min
Y ⊆X :S (P)⊆Y

(
inf

a∈A :S (a)=Y
L(P,a)

)
=

= min
Y ⊆X :S (P)⊆Y

HY (P). (5.36)
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5.4 New results

We are now in the right position to proceed to our generalisation of the

previous theorems.

5.4.1 Infinite countable sample space

We will now consider the case of an infinite countable sample space, iden-

tified with the positive integers. We use ei to denote the standard basis of

l1. The space l1 is a separable Banach space.

We indicate by P the set of all probability on X . This set is an affine subset

of the space l1, the space of all infinite sequences a = (a1,a2, · · · ,ai, · · ·) such

that ∑
∞
i=1 |ai|< ∞.

Theorem 55. Let Q an open convex subset of l1 contained in P.

Let S(i,p) : X ×Q→R be a proper scoring rule, 0−homogeneous with respect

to p ∈ Q. Suppose that the function S(p,q) := ∑
∞
i=1 piS(i,q) is a bounded

function for all p and q. Then H(p) := S(p,p) is a 1−homogeneous, concave

function and is Gateaux differentiable on Q \A, where A is a subset of first

category.

Proof. First, we easily check that H(p) is a 1−homogeneous function, using

the 0−homogeneity and the linearity of S. By straightforward computation,

we obtain

H(λp) = λ

∞

∑
i=1

piS(i,λp) = λ

∞

∑
i=1

piS(i,p) = λH(p).

By the definition of proper scoring rule, for any q ∈Q, we have that

S(p,q)≥ S(p,p). (5.37)
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Adding the quantity −H(q) side by side in the above relation we get

∞

∑
i=1

piS(i,q)−qiS(i,q)≥ H(p)−H(q), (5.38)

or, equivalently,
∞

∑
i=1

(pi−qi)S(i,q)≥ H(p)−H(q). (5.39)

The last equation shows that S(i,q) is a super-gradient of H at q. Then by

theorems 48 and 49, H is concave and continuous at p. Moreover, by Mazur’s

theorem, there exists a subset of first category A⊂Q such that H is Gateaux

differentiable in Q \A.

Another important result is the following.

Theorem 56. Let Q an open convex subset of l1 contained in P.

Let H : Q→R be 1−homogeneous, concave, Gateaux differentiable function,

bounded for all p ∈Q. Then S(i,p) = H ′G(p;ei) is a 0−homogeneous proper

scoring rule.

Proof. Firstly, we shall show that S is 0−homogeneous. Further computa-

tions, involving the 1−homogeneity of H, lead to

S(i,λp) = lim
µ→0+

H(λp+µei)−H(λp)

µ
= lim

µ→0+

H
(
p+ µ

λ
ei
)
−H(p)

µ

λ

= S(i,p).

Let us prove that S is a proper scoring rule.

It follows from the concavity of H that

H(λ (q−p)+p)−H(p)≥ λ (H(q)−H(p)). (5.40)

Diving by λ > 0, and letting λ → 0+, we obtain that

H ′G(p;q−p)≥ H(q)−H(p). (5.41)
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The 1−homogeneity of H immediately yields

H ′G(p;p) = lim
λ→0+

H(p+λp)−H(p)

λ
= H(p), (5.42)

which together with (5.41) and the linearity of H ′G(p; ·) gives

H ′G(p;q)≥ H(q). (5.43)

Moreover, by the continuity of H ′G(p; ·)

H ′G(p;q) = H ′G

(
p;

∞

∑
i=0

qiei

)
= H ′G

(
p; lim

n→∞

n

∑
i=0

qiei

)
=

= lim
n→∞

H ′G

(
p;

n

∑
i=0

qiei

)
=

∞

∑
i=0

qiH ′G(p;ei) =

=
∞

∑
i=0

qiS(i,p) = S(p,q). (5.44)

Finally, combining (5.42), (5.43) and (5.44) we conclude that S is a proper

scoring rule. The proof is complete.

We remind that Hendrickson and Buehler (1971) [13] and Gneiting and

Raftery (2007) [10] give extensions of McCarthy’s theorem in the continuous

case.

5.4.2 Finite sample space

Using convex analysis tools, we provide an extension of McCarthy’s the-

orem for unbounded scoring rules.

We denote by P the set of all probability distributions over a set X .

Throughout this subsection we shall consider statistical decision problems

such that: the state space X has finite cardinality, the action space is the

space P, which is in one-to-one correspondence with the unit simplex in Rn,
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and the score function S on X ×P can take values in (−∞,∞) or (−∞,∞].

We first treat the important special case that the score function S(x,Q) is

bounded for each Q ∈P.

For any Q ∈P, the affine function P→ S(P,Q) is a bounded closed concave

function on P. Following Grünwald and Dawid (2004) [12], we call

H G (P) := inf
Q∈P

S(P,Q), (5.45)

the generalized entropy associated with the score S; if S is a proper scoring

rule then H G (P) := S(P,P).

Theorem 57. A function H : P → R is the generalized entropy function

H G arising from a decision problem G = (X ,P,S) with everywhere finite

proper score if and only if H is a closed concave function on P.

Proof. The proof follows along the same lines as that of theorem 53.

It follows directly from theorem 53 that if H is the generalized entropy func-

tion of some game G = (X ,P,S) then H is an upper-bounded, closed and

concave function. Conversely, suppose that H is a closed concave function on

P. Then from theorem 45, we conclude that H(P) is the pointwise infimum

of the collection L H of all affine functions majorizing H.

Let P = L H be the action space and S(x,Q) := l(x)−H∗(l) be the score

function, where l and Q are conjugate (since P is bounded for all l ∈ L

there exists a conjugate P ∈P (see section 5.3)). From equation (5.19) we

have that in fQ∈PS(P,Q)≥ H(P), for P, Q ∈P. Since l and Q are conjugate

we can rewrite S(P,Q) as S(P,Q) = l(P)+H(Q)− l(Q) and when Q = P we

have S(P,P) = H(P). This implies that H is the generalized entropy function

H G of the statistical decision problem G = (X ,P,S), whose score function

S is proper and everywhere finite.
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We use the preceding theorem to obtain the following result.

We shall denote by Supp(P) the support of P, i.e., Supp(P)= {x ∈X |p(x)> 0},

and by Supp(SQ) the support of S, i.e., Supp(SQ) = {x ∈X |S(x,Q)< ∞} .

Theorem 58. A function H : P → R is the generalized entropy function

from a decision problem G = (X ,P,S) with score S in R if and only if H is

concave and internally closed.

Proof. The proof proceeds along the same lines as the proof of theorem 54.

It follows directly from theorem 54 that if H : P → R is the generalized

entropy function from a decision problem G = (X ,P,S) then H is concave

and internally closed. Conversely, let H : P→ [−∞,∞] be an internally closed

concave function. For any Y ⊆X , let HY be the closure of H when its full

domain is restricted to PY , i.e.,

H(P)≤ HY (P), if Supp(P)⊆ Y (or equivalently P ∈ P̄Y ). (5.46)

Further, if Supp(P) = Y then

H(P) = HY (P). (5.47)

According to theorem 57, there exist an action space QY , and a proper score

function SY : Y ×QY → (−∞,∞) such that, for all P ∈PY ,

HY (P) = inf
Q∈QY

{S(P,Q)} . (5.48)

Now we shall consider the decision problem (X ,P,S) where P is the disjoint

union
⋃̇
{QY : Y ⊆X }, and S is given by:

S(x,Q) =

{
SY (x,Q) if x ∈ YQ

∞ otherwise,
(5.49)
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where YQ is the unique subset of X such that Q ∈QY , and Supp(SQ) =YQ.

Then we have

inf
Q∈P

S(P,Q) = inf
Q∈P:Supp(P)⊆Supp(SQ)

S(P,Q) =

= min
Y ⊆X :Supp(P)⊆Y

{
inf

Q∈P:Supp(SQ)=Y
S(P,Q)

}
=

= min
Y ⊆X :Supp(P)⊆Y

HY (P). (5.50)

The last term is H(P), and the scoring rule above defined is proper. The

proof is complete.
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Chapter 6

Conclusions

In chapter 1 we have presented some results concerning the skew-normal

distribution and its generalizations. Furthermore, we have introduced Jones’

family of distributions, the generalized Kumaraswamy and the generalized

Beta-generated distributions.

In the second chapter we have shown that, in the specific case described, the

problem of finding the maximum likelihood estimate of the skewness parame-

ter, which in general is not an easy task, can be solved easily using the Fisher

transformation if the parameters of the bivariate normal are supposed to be

all unknown and we fix both means and standard deviations equal to their

MLEs. It is well known that the Fisher transformation is adequate for n > 50

and that this approximation is more accurate, for small n, when ρ is close

to zero [37]. This begs the question as to how well the ACI method perform

when |ρ| is close to 1 and the sample size n is small or moderate. To investi-

gate this dependence we have conducted a simulation study to compare the

ACI with another procedure to construct confidence intervals, the percentile

parametric bootstrap method (BCI). Comparison of the performance of the

confidence intervals is conducted in terms of their: (1) coverage probability,
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(2) length. The simulation study has revealed that ACI performs better in

terms of coverage probability. We see that, for the most part, actual coverage

levels vary but the ACI coverage is little larger and closer to the nominal cov-

erage. The differences between the two methods are particularly important

for small and moderate sample size. For example, for n = 15 and ρ = −0.2

the 95% confidence intervals cover the true value only the 91% of times if we

use the BCI and the 94.2% using the ACI. The two methods are comparable

in terms of expected length. Results provided allow us to adopt the ACI

procedure to compute confidence intervals for λ . The approximation used is

good enough to lead us always to prefer the ACI method. Results are not

satisfactory in terms of expected width when n is small and ρ is closed to

−1.

The main advantages of the ACI method are that it is based on a theoretical

approximation, and it give rapid solutions, even for very large sample sizes

n, whereas the percentile bootstrap can take hours.

Results of both examples are in agreement with the findings of the simulation

study.

The approximate method proposed here could also be applied to other types

of data, for instance to data coming from double measurements with the

same instrument, such as spirometry. Another potential application is epi-

demiological studies on twins (see Roberts (1966) [53]).

The results presented in this chapter has led to the writing of the article [48].

In chapter 3 we have worked with the class of Beta-generated distributions,

introduced recently in the literature.

We have introduced a new class of distributions, referred to as the Beta

skew-normal (BSN ), which extends the skew-normal and the Beta-normal

distributions. For special values of the parameters this distribution also in-
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cludes the Balakrishnan skew-normal (SNB), the generalized Balakrishnan

skew-normal (GBSN ) and a two-parameter generalization of the Balakrish-

nan skew-normal (TBSN ). We have provide a mathematical treatment of the

new distribution. We have derived various properties of the BSN, including

the moment generating function, recurrence relations for moments and two

methods for simulating. Some results presented, for example theorems from

7 to 9, bounds for the moments and for the variance, can be adapted for other

distributions belonging to the family of Beta-generated distribution, such as

the Beta-normal.

The results obtained in this chapter are presented in the article [45] and in

the manuscript [47].

In chapter 4 we have introduced a new distribution which is defined by

means of a Kumaraswamy distribution. This new distribution is called Ku-

maraswamy skew-normal and is an important alternative model to the Beta

skew-normal. The KwSN represents a generalization of several distributions

previously considered in literature such as the Kumaraswamy-normal, the

skew-normal and the normal distributions. Some properties of the proposed

distribution are discussed. These properties include explicit expansions for

the density and the distribution functions, moment generating functions and

relation-ship with other distributions. The estimation of parameters is ap-

proached by the method of maximum likelihood and the elements of the

observed information matrix are derived.

The study of the KwSN distribution has led to the writing of the manuscript

[46].

However, much more work is in order, related to the investigation of the use-

fulness of the proposed models (BSN and KwSN) to analyse real data.

In the last chapter we have reviewed the theory of convex analysis and the
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theory of scoring rules.

A scoring rule is a special kind of loss function that measures the quality

of probabilistic forecasts based on the predictive distribution Q and on the

event that materializes x: S(x,Q).

Any proper scoring rule S has an associated generalized entropy function H.

In 1956 McCarthy ([16] of part 2) characterized scoring rules and their en-

tropy functions when the sample space is finite or the scoring rule takes finite

values. McCarthy’s theorem states that a scoring rule is proper if and only

if it can be expressed as the super-gradient of a concave function.

Subsequently, in 1971 Hendrickson and Buehler ([13] of part 2) proved this

theorem and gave a generalization in the continuous case.

In the this chapter we use convex analysis tools to generalize McCarthy’s

characterization. We have given generalizations of McCarthy’s theorem for

countable infinite sample spaces but with bounded score and for finite sample

spaces but with unbounded scoring rules.



Appendix A

The Lambert W function

In this appendix a brief description of the Lambert W function is pro-

vided. A detailed definition of W as a complex variable function, as well

as some historical background and various applications of it in Mathematics

and Physics, can be found in [20] of part 1, to which we refer.

The Lambert W function is defined to be the multivalued inverse of the func-

tion f (x) = xex, i.e. the function satisfying

W (x)eW (x) = x. (A.1)

This function has two real branches, which are represented in figure A.1. The

branch satisfying W (x)≥−1 is denoted by W0(x) and it is referred to as the

principal real branch of the W function. The other one, satisfying W (x)≤−1

is known as the secondary real branch and is denoted by W−1(x).

As we can see from figure A.1, if x is real in the interval −1
e < x < 0, there

are two real values for W (x): W0(x) and W−1(x). If x≥ 0 there is a single real

value for W (x) which belongs to the principal branch. If x =−1
e then there is

only one negative real value, W0
(
−1

e

)
= W−1

(
−1

e

)
= −1. Finally, if x < −1

e

then there are no real values.
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Figure A.1: The solid line shows W0 and the dashed line W−1

In the following theorem we intend to remind the general solutions of the

equations xnbx = c, which are expressed in terms of the Lambert W function

(see [34] of part 1).

Theorem 59. Let b, c ∈ R, b > 1 and n ∈ Z. The solutions x ∈ R of the

equations xnbx = c are as follows.

• If n is odd and c >−
(

n
e∗ln(b)

)n
or if n is even and c≥ 0,

x =
n

ln(b)
W0

(
ln(b)

n
c

1
n

)
.

• If n is odd and 0 > c >−
(

n
e∗ln(b)

)n
,

x =
n

ln(b)
W−1

(
ln(b)

n
c

1
n

)
.
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• If n is even and 0 < c <
(

n
e∗ln(b)

)n
,

x =
n

ln(b)
W0

(
− ln(b)

n
c

1
n

)
or x =

n
ln(b)

W−1

(
− ln(b)

n
c

1
n

)
.


	Abstract
	Declaration
	Acknowledgements
	Introduction
	List of Figures
	List of Tables
	I 
	Literature Review
	The skew-normal density
	Skew-normal generalizations
	The class of the Beta-generated distributions
	Definition of the family
	Expansion for the density function
	Some special cases

	The class of Kumaraswamy generalized distributions
	Expansion of the density function
	Some special cases

	The class of the generalized Beta-generated distributions
	Some special cases


	Large sample confidence intervals for the skewness parameter
	Approximate Confidence Intervals (ACI) for skewness parameter
	Parametric Bootstrap Confidence Intervals (BCI)
	Simulation study
	Examples
	PM10 concentrations
	Creatinine clearance


	The Beta skew-normal distribution
	The Beta skew-normal
	Definition and simple properties
	Moment generating function and moments
	Order statistics from the skew-normal distribution
	Some interesting properties
	Bimodal properties
	Expansion for the density function
	The BSN(1,n,b)

	Further results
	Skewing mechanism

	Bounds of the moments and the variance of the Beta-generated distribution
	Bounds of the moments
	Bounds of the variance of the Beta-generated distribution

	Maximum likelihood estimation

	The Kumaraswamy skew-normal distribution
	The Kumaraswamy skew-normal distribution
	Definition and simple properties
	Moment generating function and moments
	Some interesting properties
	Expansion for the density function
	The KwSN(1,n,b)

	Further results
	An interesting theorem

	Maximum likelihood estimation
	Copulas
	Definitions and basic properties
	The bivariate Kumaraswamy skew-normal

	The generalized Beta skew-normal distribution
	Moment generating function and moments
	New properties of the GBG distribution


	Bibliography

	II 
	Scoring rules
	Basic concepts
	Concave functions
	Banach spaces

	Scoring rules
	Decision problems
	Finite outcomes
	Examples of proper scoring rules
	Homogeneous scoring rules

	Conjugacy
	Finite Loss
	Infinite Loss

	New results
	Infinite countable sample space
	Finite sample space


	Bibliography

	
	Conclusions
	The Lambert W function


