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Abstract

In this Thesis, the problem of controlling and Observing some classes of dis-

tributed parameter systems is addressed. The particularity of this work is to con-

sider partial differential equations (PDE) under the effect of external unknown

disturbances. We consider generalized forms of two popular parabolic and hyper-

bolic infinite dimensional dynamics, the heat and wave equations. Sliding-mode

control is used to achieve the control goals,exploiting the robustness properties of

this robust control technique against persistent disturbances and parameter uncer-

tainties.
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Chapter 1

Introduction

This introductory Chapter presents the motivations which lead us to the develop-

ment of this Thesis first,then in the second section, a summary of the Thesis is

given, showing how it is structured in different Chapters. Finally, a list of papers

and other activities derived from the present work is presented.

1.1 Motivations

There are many kind of systems whose dynamical behaviors are described by

Partial Differential Equations (PDE), Curtain and Zwart (1995), Schiesser and

Griffiths (2009). In the last decades, this field has broadened considerably as

more realistic models have been introduced and investigated in different areas

such as thermodynamics, elastic structures, fluid dynamics and biological sys-

tems, to name a few Imanuilov et al. (2005), Mondaini and Pardalos (2008). PDE

control theory, consists of a wealth of mathematically impressive results that solve

stabilization and optimal control problems. Two of the main driving principles in

this development have been generality and the aim of extending the existing finite

dimensional results. The latter objective has led to extending(at least) two of the

basic control theoretic results to PDEs: pole placement and optimal/robust con-

trol. While these efforts have been successful, by following the extremely general

finite-dimensional path (ẋ = Ax + Bu where A and B can be any matrices),

they have diverted the attention from structure-specific opportunities that exist in

PDEs. Such opportunities have recently started to be capitalized on in the elegant

work on distributed control of spatially invariant systems by Bamieh et al. (2002).

In spite of the fact that optimization and control of systems governed by PDE is

a very active field of research, no much have been developed for observer design.

A main result in this field is described in Krstic and Smyshlyaev (2008), Krstic

and Smyshlyaev (2005). Krstic and Smyshlyaev (2004) introduces backstepping

5



1.2 Summary 6

as a structure-specific paradigm for parabolic PDEs (at least within the class con-

sidered) and demonstrates its capability to incorporate optimality in addition to

stabilization.

1.2 Summary

The first three chapters of the Thesis recall some fundamentals which are exploited

in the PDE contest in the sequel. Then in the second part is described the design of

an Unknown Input Observer for diffusion PDE and an estimator of the unknown

input based on second order sliding-mode. The third part of the Thesis addresses

the Lyapunov-based design of second order sliding mode controllers (2-SMC)

in the domain of distributed-parameters systems with uncertainties and unknown

disturbances.

A summary of each Chapter is reported in the following list:

• Chapter 2. An introduction to Partial Derivative Equations is illustrated. In

particular are described here the heat and the wave equation, and two ways

to solve the them.

• Chapter 3. A brief survey on Variable Structure Control Systems with

Sliding Modes.

• Chapter 4. The concept of strong observability for multi-variable linear

systems and the design of an Unknown Input Observer are explained. At

least an estimator of the unknown input, based on second order sliding-

mode algorithm ”Super-Twisting” is proposed.

• Chapter 5. The methodologies described in the previous Chapter are ap-

plied to diffusion processes, where the unknown input to estimate is a non

measurable disturbance or a fault in the process.

• Chapter 6. Lyapunov-based design of second order sliding mode con-

trollers for PDE is described here, both diffusion and wave equations are

used.

• Chapter 7. The Boundary control for the uncertain diffusion equation with

unknown disturbance on the actuation is illustrated.

• Chapter 8. Conclusions and recommendations for future work are given.
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1.3 Author’s Publications
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Chapter 2

Partial Derivative Equations (PDE)

In this Chapter an introduction to Partial Derivative Equations is illustrated. After

a general explanation we focus on the equations that are analyzed in the Thesis,

the wave and the diffusion equation. At the end we describe two kind of solutions

applied for the Thesis, the modal expansion and the numerical solution by finite-

differences.

2.1 Introduction

Partial differential equations (PDEs) are often used to construct models describing

many basic phenomena in physics and engineering. Solving ordinary differential

equations involves finding a function (or a set of functions ) of one independent

variable but partial differential equations involve functions of two or more vari-

ables.

Here are typical examples of the most common types of linear homogeneous

PDEs, for the simplest case of just two independent variables. The wave, heat and

Laplace equations are the typical representatives of three fundamental genres of

partial differential equations.

• The wave equation: utt − c2uxx = 0, hyperbolic,

• The heat equation: ut − γ2uxx = 0, parabolic,

• Laplace’s equation: uxx − uyy = 0, elliptic.

The last column indicates the equation’s type, each genre has distinctive analytical

features, physical manifestations, and even numerical solution schemes. Equa-

tions governing vibrations, such as the wave equation, are typical hyperbolic.

Equations modeling diffusion, such as the heat equation, are parabolic. Hyper-

bolic and parabolic equations both typically represent dynamical processes, and so

8



2.1 Introduction 9

one of the independent variables is identified as time. On the other hand, equations

modeling equilibrium phenomena, including the Laplace and Poisson equations,

are usually elliptic, and only involves spatial variables. Elliptic partial differential

equations are associated with boundary value problems, whereas parabolic and

hyperbolic equations involve initial and initial-boundary value problems.

While this tripartite classification into hyperbolic, parabolic, and elliptic equa-

tions initially appears in the bivariate context, the terminology, underlying proper-

ties, and associated physical models carry over to second order partial differential

equations in higher dimensions. Most of the partial differential equations arising

in applications fall into one of these three categories, and it is fair to say that the

field of partial differential equation splits into three distinct subfields. Or, rather

four subfields, the last containing all the equations, including higher order equa-

tions, that do not fit into the preceding categorization.

The full classification of real, linear, second order partial differential equations

for scalar-valued function u(x, y) depending on two variables proceeds as follows.

The most general such equation has the form

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G, (2.1.1)

where the coefficients A,B,C,D,E, F are all allowed to be functions of (x,y), as

is the inhomogeneity or forcing function G(x, y). The equation is homogeneous

if and only if G ≡ 0. We assume that at least one of the leading coefficients

A,B,C is not identically zero, as otherwise the equation degenerates to a first

order equation. The key quantity that determines the type of such a partial differ-

ential equation is its discriminant

∆ = B2 − 4AC. (2.1.2)

This should remind the reader of the discriminant of the quadratic equation

Q(ξ, η) = Aξ2 +Bξη + Cη2 +Dξ + Eη + F = 0. (2.1.3)

Its solution trace out a plane curve in a conic section. In the non-degenerate cases,

the discriminant (2.1.2) fixes its geometrical type:

• a hyperbola when ∆ > 0,

• a parabola when ∆ = 0, or

• an ellipse when ∆ < 0.

This classification provides the underlying rationale for the choice of terminology

used to classify second order partial differential equations.
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DEFINITION 2.1.1 At a point (x,y), the linear, second order partial differential

equation (2.1.1) is called

• hyperbolic ∆(x, y) > 0,

• parabolic if and only if ∆(x, y) = 0, but A2 +B2 + C2 6= 0,

• elliptic ∆(x, y) < 0,

• singular A = B = C = 0.

In particular

- The wave equation uxx − uyy = 0 has discriminant ∆ = 4, and is hyperbolic.

- The heat equation uxx − uy = 0 has discriminant ∆ = 0, and is parabolic.

- The Poisson equation uxx+uyy = −f has discriminant ∆ = −4, and is elliptic.

2.2 The Diffusion equation

Let us start with a physical derivation of the heat equation from first principles.

Consider a bar, a thin heat-conducting body. “Thin” means that we can regard the

bar as a one-dimensional continuum with no significant transverse temperature

variation. We will assume that the bar is fully insulated along its length, and so

heat can only enter (or leave) through its un-insulated endpoints. We use t to

represent time, and a ≤ x ≤ b to denote spatial position along the bar, which

occupies the interval [a,b]. Our goal is to find the temperature u(t, x) of the bar

at position x and time t. The dynamical equations governing the temperature are

based on three fundamental physical principles. First is the Law of Conservation

of Heat Energy. This conservation law takes the form

∂ε

∂t
+
∂w

∂x
= 0, (2.2.1)

in which ε(t, x) represent the thermal energy density at time t and position x, while

w(t, x) denotes the heat flux, i.e., the rate of flow of thermal energy along the bar.

Our sign convention is that w(t, x) > 0 at points where heat energy flows in the

direction of increasing x. The integrated form of the conservation law, namely

d

dt

∫ b

a

ε(t, x) dx = w(t, a)− w(t, b), (2.2.2)

states that the rate of change in thermal energy within the bar is equal to the

total heat flux passing through its un-insulated ends. The signs of the boundary
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terms confirm that heat flux into the bar results in an increase in temperature.

The second ingredient is a constitutive assumption concerning the bar’s material

properties. It has been observed that, under reasonable conditions, thermal energy

is proportional to temperature

ε(t, x) = σ(x)u(t, x). (2.2.3)

The factor

σ(t, x) = ρ(x)Ξ(x).

is the product of the density ρ of the material and its specific heat Ξ, which is

the amount of heat energy required to raise the temperature of a unit mass of the

material by one degree. Note that we are assuming the medium is not changing

in time, and so physical quantities such as density and specific heat depend only

on position x. We also assume, perhaps with less physical justification, that its

material properties do not depend upon the temperature; otherwise, we would

be forced to deal with a much thornier nonlinear diffusion equation. The third

physical principle relates heat flux and temperature. Physical experiments show

that the heat energy moves from hot to cold at a rate that is in direct proportion

to the temperature gradient which, in the one dimension case, means its derivative

∂u\∂x. The resulting relation

w(t, x) = −k(x)∂u
∂x

(2.2.4)

is known as Fourier’s Law of Cooling. The proportionality factor k(x) > 0 is the

thermal conductivity of the bar at position x, and the minus sign reflects the every-

day observation that heat energy moves from hot to cold. A good heat conductor,

e.g., silver, will have high conductivity, while a poor conductor, e.g., glass, will

have low conductivity. Combining the three laws (??,2.2.3,2.2.4) produces the

linear diffusion equation

∂

∂t
(σ(x)u) =

∂

∂x

(

k(x)
∂u

∂x

)

, a < x < b, (2.2.5)

governing the thermodynamics of a one-dimensional medium. It is also used to

model a wide variety of diffusive processes, including chemical diffusion, diffu-

sion of contaminants in liquids and gases, population dispersion, and the spread

of infectious diseases. If there is an external heat source along the length of the

bar, then the diffusion equation acquires an additional inhomogeneous term:

∂

∂t
(σ(x)u) =

∂

∂x

(

k(x)
∂u

∂x

)

+ h(t, x), a < x < b, (2.2.6)
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2.2.1 Initial and boundary conditions

In order to uniquely prescribe the solution u(t, x), we need to specify an initial

temperature distribution

u(t0, x) = f(x), a ≤ x ≤ b. (2.2.7)

In addiction, we must impose a suitable boundary condition at each end of the bar.

There are three common types.

The first is a Dirichlet boundary condition, where the end is held at prescribed

temperature. For example,

u(t, a) = α(t) (2.2.8)

fixes the temperature (possibly time-varying) at the left end.

Alternatively, the Neumann boundary condition

∂u

∂x
(t, a) = µ(t) (2.2.9)

prescribes the heat flux w(t, a) = −k(a)ux(t, a) there. In particular, a homoge-

neous Neumann condition, ux(t, a) = 0, models an insulated end that prevents

heat energy flowing in or out. The Robin boundary condition

∂u

∂x
(t, a) + ku(t, a) = τ(t), (2.2.10)

with k > 0, models the heat exchange resulting from the end of the bar being

placed in a reservoir at temperature τ(t).
Each end of the bar is required to satisfy one of these boundary conditions.

For example, a bar with both ends having prescribed temperature is governed by

the pair of Dirichlet boundary conditions

u(t, a) = α(t), u(t, b) = β(t), (2.2.11)

whereas a bar with two insulated ends requires two homogeneous Neumann bound-

ary conditions
∂u

∂x
(t, a) = 0,

∂u

∂x
(t, b) = 0. (2.2.12)

Mixed boundary conditions, with one end at a fixed temperature and the other

insulated, are similarly formulated, e.g.,

u(t, a) = α(t),
∂u

∂x
(t, b) = 0. (2.2.13)

Finally, the periodic boundary conditions

u(t, a) = u(t, b),
∂u

∂x
(t, a) =

∂u

∂x
(t, b), (2.2.14)
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correspond to a circular ring obtained by joining the two ends of the bar. As

before, we are assuming the heat is only allowed to flow around the ring where

insulation prevents the radiation of heat from one side of the ring affecting the

other side.

2.3 The Wave Equation

Newtons Second Law, states that force equals mass times acceleration, is the

bedrock underlying the derivation of mathematical models describing all of classi-

cal dynamics. When applied to a one-dimensional medium, such as the transverse

displacements of a guitar string, or the longitudinal motions of an elastic bar, the

resulting model governing small vibrations is the second order partial differential

equation

ρ(x)
∂2u

∂t2
=

∂

∂x

(

k(x)
∂u

∂x

)

. (2.3.1)

Here u(t, x) represents the displacement of the string or bar at time t and

position x, while ρ(x) > 0 denotes its density and k(x) > 0 its stiffness or tension,

both of which are assumed to not vary with t. The right hand side of the equation

represents the restoring force due to a (small) displacement of the medium from its

equilibrium, whereas the left hand side is the product of mass per unit length times

acceleration. We will simplify the general model by assuming that the underlying

medium is homogeneous, and so both its density and stiffness are constant. Then

(2.3.1) reduces to the one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, where c =

√

k

ρ
> 0 (2.3.2)

is known as the wave speed.

In general, to uniquely specify the solution to any dynamical system arising

from Newtons Second Law, including the wave equation (2.3.2), and the more

general vibration equation (2.3.1), one must fix both its initial position and initial

velocity. Thus, the initial conditions take the form

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), (2.3.3)

where, for simplicity, we set the initial time t0 = 0. The initial value problem

seeks the corresponding C2 function u(t, x) that solves the wave equation (2.3.2)

and has the required initial values (2.3.3). The boundary conditions are the same

as for the diffusion equation.
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2.4 Modal Expansion

A general method for attempting to solve PDEs is to suppose that the solution

function u(t, x) is a product of functions, each one depending on one only of the

independent variables. This converts the PDE into two (or more) ODEs which

may be solvable. For simplicity in this section we consider the heat equation with

the bar composed of a uniform material, and so its density ρ, conductivity k, and

specific heat Ξ are all positive constants. We also considering that the bar remains

insulated along its entire length. Under this assumptions, the general diffusion

equation (2.2.5) reduces to the homogeneous heat equation

∂u

∂t
= γ

∂2u

∂x2
(2.4.1)

for the temperature u(t, x) at time t and position x. The constant

γ =
k

ρΞ
(2.4.2)

is called the thermal diffusivity, and incorporates all of the bar’s relevant physical

properties. The solution u(t, x) will be uniquely prescribed once we specify initial

conditions (2.2.7) and a suitable boundary condition at both of its endpoints.

Is well known Curtain and Zwart (1995) that the separable solutions to the

heat equation are based on the exponential form

u(t, x) = e−λtv(x), (2.4.3)

where v(x) depends only on the spatial variable. Functions of this form, which

”separate” into a product of a function of t times a function of x, are known as

separable solutions. Substituting (2.4.3) into (5.1.1) and erasing the common

exponential factors, we find that v(x) must solve the second order linear ordinary

differential equation

− γ
d2v

dx2
= λv. (2.4.4)

Each nontrivial solution v(x) 6= 0 is an eigenfunction, with eigenvalue λ, for the

linear differential operator L[v] = −γv′′(x). With the separable eigen-solutions

(2.4.3) in hand, we will then be able to reconstruct the desired solution u(t, x) as

a linear combination, or, rather, infinite series thereof.

Consider the simple case of a uniform, insulated bar of length l that is held

at zero temperature at both ends. We specify its initial temperature f(x) at time

t0 = 0, and so the relevant initial and boundary conditions are

u(t, 0) = 0, u(t, l) = 0, t ≥ 0,

u(0, x) = f(x), 0 ≤ x ≤ l.
(2.4.5)
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The eigensolution (2.4.3) are found by solving the Dirichlet boundary value prob-

lem

− γ
d2v

dx2
− λv = 0, v(0) = 0, v(l) = 0. (2.4.6)

We find that if λ is either complex, or real and ≤ 0, then the only solution to the

boundary value problem (2.4.6) is the trivial solution v(x) ≡ 0. Hence, all the

eigenvalues must necessarily be real and positive. In fact, the reality and posi-

tivity of the eigenvalues does need not be explicitly checked, but, rather, follows

from very general properties of positive definite boundary value problem, of which

(2.4.6) is a particular case.

When λ > 0, the general solution to the differential equation is a trigonometric

function

v(x) = a coswx+ b sinwx, where w =
√

λ\γ, (2.4.7)

and a and b are arbitrary constants. The first boundary condition requires v(0) =
a = 0. Using this to eliminate the cosine term, the second boundary condition

requires

v(l) = b sinwl = 0. (2.4.8)

Therefore, since b 6= 0 the solution is trivial and does not qualify as an eigenfunc-

tion and wl must be an integer multiple of π, and so

w =
π

l
,

2π

l
,

3π

l
, ... . (2.4.9)

We conclude that the eigenvalues and eigenfunction of the boundary value prob-

lem (2.4.6) are

λn = −γ
(nπ

l

)2

, vn(x) = sin
nπx

l
, n = 1, 2, 3, ... . (2.4.10)

The corresponding eigensolutions (2.4.3) are

un(t, x) = exp

(

−γn
2π2t

l2

)

sin
nπx

l
, n = 1, 2, 3, ... . (2.4.11)

Each represents a trigonometrically oscillating temperature profile that maintains

its form while decaying to zero at an exponentially fast rate.

To solve the general initial value problem, we assemble the eigensolutions into

an infinite series,

u(t, x) =
∞
∑

n=1

bnun(t, x) =
∞
∑

n=1

bn exp

(

−γn
2π2t

l2

)

sin
nπx

l
, (2.4.12)
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whose coefficients bn are to be fixed by the initial conditions. Indeed, assuming

that the series converges, the initial temperature profile is

u(0, x) =
∞
∑

n=1

bn sin
nπx

l
= f(x). (2.4.13)

This has the form of a Fourier sine series on the interval [0, l]. Thus, the coeffi-

cients are so determined by the Fourier formulae

bn =
2

l

∫ l

0

f(x) sin
nπx

l
dx n = 1, 2, 3, ... . (2.4.14)

The resulting formula (2.4.12) describes the Fourier sine series for the temperature

u(t, x) of the bar at each later time t ≥ 0. However, because we are unable to sum

the series in closed form, this solution is much less satisfying than a direct, explicit

formula. Nevertheless, there are important qualitative and quantitative features of

the solution that can be easily gleaned from such series expansions.

If the initial data f(x) is integrable (e.g., piecewise continuous), then its Fourier

coefficients are uniformly bounded; indeed, for any n ≥ 1,

|bn| ≤
2

l

∫ l

0

∣

∣

∣
f(x) sin

nπx

l

∣

∣

∣
dx ≤ 2

l

∫ l

0

|f(x)| dx ≡M. (2.4.15)

This property holds even for quite irregular data. Under these conditions, each

term in the series solution (2.4.12) is bounded by an exponentially decaying func-

tion
∣

∣

∣

∣

bn exp

(

−γn
2π2

l2
t

)

sin
nπx

l

∣

∣

∣

∣

≤M exp

(

−γn
2π2

l2
t

)

. (2.4.16)

This means that, as soon as t > 0, most of the high frequency terms, n ≫ 0, will

be extremely small. Only the first few terms will be at all noticeable, and so the

solution essentially degenerates into a finite sum over the first few Fourier modes.

As time increases, more and more of the Fourier modes will become negligible,

and the sum further degenerates into progressively fewer significant terms. Even-

tually, as t → ∞, all of the Fourier modes will decay to zero. Therefore, the so-

lution will converge exponentially fast to a zero temperature profile: u(t, x) → 0
as t → ∞, representing the bar in its final uniform thermal equilibrium. The fact

that its equilibrium temperature is zero is the result of holding both ends of the bar

fixed at zero temperature, and any initial heat energy will eventually be dissipated

away through the ends. The last term to disappear is the one with the slowest

decay, namely

u(t, x) ≈ b1 exp

(

−γπ
2

l2
t

)

sin
πx

l
, where b1 =

1

π

∫ π

0

f(x) sin x dx.

(2.4.17)
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Generically, b1 6= 0, and the solution approaches thermal equilibrium exponen-

tially fast with rate equal to the smallest eigenvalue, λ1 = γπ2\l2, which is pro-

portional to the thermal diffusivity divided by the square of the length of the bar.

The longer the bar, or the smaller the diffusivity, the longer it takes for the effect

of holding the ends at zero temperature to propagate along the entire bar. In ex-

ceptional situations, namely when b1 = 0, the solution decays even faster, at a rate

equal to the eigenvalue λk = γk2π2\l2 corresponding to the first nonzero term,

bk 6= 0, in the series; its asymptotic shape now oscillates k times over the interval.

The heat equations smoothing effect on irregular initial data by fast damping

of the high frequency modes underlies its effectiveness for smoothing out and

denoising signals. We take the initial data u(0, x) = f(x) to be a noisy signal, and

then evolve the heat equation forward to a prescribed time t∗ > 0. The resulting

function g(x) = u(t∗, x) will be a smoothed version of the original signal f(x)
in which most of the high frequency noise has been eliminated. Of course, if

we run the heat flow for too long, all of the low frequency features will be also

smoothed out and the result will be a uniform, constant signal. Thus, the choice

of stopping time t∗ is crucial to the success of this method. Another, closely

related observation is that, for any fixed time t > 0 after the initial moment, the

coefficients in the Fourier series (2.4.12) decay exponentially fast as n → ∞. the

solution u(t, x) is a very smooth, infinitely differentiable function of x at each

positive time t, no matter how un-smooth the initial temperature profile. We have

discovered the basic smoothing property of heat flow.

THEOREM 2.4.1 If u(t, x) is a solution to the heat equation with piecewise contin-

uous initial data f(x) = u(0, x), or, more generally, initial data satisfying (2.4.15),

then, for any t > 0, the solution u(t, x) is an infinitely differentiable function of

x.

After even a very short amount of time, the heat equation smoothes out most,

and, eventually, all of the fluctuations in the initial temperature profile. As a con-

sequence, it becomes impossible to reconstruct the initial temperature u(0, x) =
f(x) by measuring the temperature distribution h(x) = u(t, x) at a later time

t > 0. Diffusion is irreversible and we cannot run the heat equation backwards

in time. Indeed, if the initial data u(0, x) = f(x) is not smooth, there is no func-

tion u(t, x) for t < 0 that could possibly yield such an initial distribution because

all corners and singularities are smoothed out by the diffusion process as t goes

forward. Or, to put it another way, the Fourier coefficients (2.4.14) of any pur-

ported solution will be exponentially growing when t < 0, and so high frequency

noise will completely overwhelm the solution. For this reason, the backwards heat

equation is said to be ill-posed.

REMARK 2.4.1 The irreversibility of the heat equation points out a crucial dis-
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tinction between partial differential equations and ordinary differential equations.

Ordinary differential equations are always reversible and unlike the heat equation,

existence, uniqueness and continuous dependence properties of solutions are all

equally valid in reverse time (although the detailed qualitative and quantitative

properties of solutions can very well depend up on whether time is running for-

wards or backwards). The irreversibility of partial differential equations modeling

the diffusive processes in our universe may well be why, in our experience, Times

Arrow points exclusively to the future.

2.5 Numerical Method of Finite Differences

Most differential equations are too much complicated to be solved analytically.

Thus, to obtain quantitative results, one is forced to construct a sufficiently accu-

rate numerical approximation to the solution. Even in cases, such as the heat and

wave equations, where explicit solution formulas (either closed form or infinite

series) exist, numerical methods still can be profitably employed. Moreover, jus-

tification of a numerical algorithm is facilitated by the possibility of comparing

it with an exact solution. Moreover, the lessons learned in the design of numer-

ical algorithms for already analytically solved problems prove to be of immense

value when one is confronted with more complicated problems for which solution

formulas no longer exist.

In general, to approximate the derivative of a function at a point, say f ′(x) or

f ′′(x), one constructs a suitable combination of sampled function values at nearby

points. The underlying formalism used to construct these approximation formulae

is known as the calculus of finite differences. Its development has a long and

influent history, dating back to Newton. The resulting finite difference numerical

methods for solving differential equations have extremely broad applicability, and

can, with proper care, be adapted to most problems that arise in mathematics and

its many applications.

The simplest finite differences approximation is the ordinary difference quo-

tient
u(x+ h)− u(x)

h
≈ u′(x), (2.5.1)

used to approximate the first derivative of the function u(x). Indeed, if u is dif-

ferentiable at x, then u′(x) is, by definition, the limit, as h → 0 of the finite

difference quotients. Geometrically, the difference quotient equals the slope of

the secant line through the two points (x, u(x)) and (x+h, u(x+h)) on the graph

of the function. For small h, this should be a reasonably good approximation to

the slope of the tangent line u′(x). To see how close is an approximation to the dif-

ference quotient we assume that u(x) is at least twice continuously differentiable,



2.5 Numerical Method of Finite Differences 19

and examine the first order Taylor expansion

u(x+ h) = u(x) + u′(x)h+
1

2
u′′(ξ)h2, (2.5.2)

where ξ represents some point lying between x and x+ h. The error or difference

between the finite difference formula and the derivative being approximated is

given by
u(x+ h)− u(x)

h
− u′(x) =

1

2
u′′(ξ)h. (2.5.3)

Since the error is proportional to h, we say that the finite difference quotient

(2.5.1) is a first order approximation. When the precise formula for the error

is not so important, we will write

u′(x) =
u(x+ h)− u(x)

h
+O(h). (2.5.4)

The O(h) refers to a term that is proportional to h, or, more rigorously, bounded

by a constant multiple of h as h→ 0.

To approximate higher order derivatives, we need to evaluate the function at

more than two points. In general, an approximation to the nth order derivative

u(n)(x) requires at least n + 1 distinct sample points. For example, let us try to

approximate u′′(x) by sampling u at the particular points x, x + h and x − h.

Which combination of the function values u(x − h) , u(x) , u(x + h) should be

used? The answer to such a question can be found by consideration of the relevant

Taylor expansions

u(x+ h) = u(x) + u′(x)h+ u′′(x)
h2

2
+ u′′′(x)

h3

6
+O(h4),

u(x− h) = u(x)− u′(x)h+ u′′(x)
h2

2
− u′′′(x)

h3

6
+O(h4),

(2.5.5)

where the error terms are proportional to h4. Adding the two formulae together

gives

u(x+ h)− u(x− h) = 2u(x) + u′′(x)h2 +O(h4). (2.5.6)

Rearranging terms, we conclude that

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2). (2.5.7)

The result is known as the centered finite difference approximation to the second

derivative of a function. Since the error is proportional to h2, this is a second

order approximation. A way to improve the order of accuracy of finite difference
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Figure 2.1: Finite Difference Approximations.

approximations is to employ more sample points. For instance, if the first order

approximation (2.5.4) to the first derivative based on the two points x and x+h is

not sufficiently accurate, one can try combining the function values at three points

x, x+h and x−h. To find the appropriate combination of u(x−h), u(x) , u(x+h)
, we return to the Taylor expansions (2.5.5). To solve for u′(x) , we subtract the

two formulae, and so

u(x+ h)− u(x− h) = 2u′(x)h+
h3

3
+O(h4). (2.5.8)

Rearranging the terms, we are led to the well-known centered difference formula

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2), (2.5.9)

which is a second order approximation to the first derivative. Geometrically, the

centered difference quotient represents the slope of the secant line through the

two points (x − h, u(x − h)) and x + h, u(x + h) on the graph of u centered

symmetrically about the point x. Figure 2.1 illustrates the two approximations;

the advantages in accuracy in the centered version are graphically evident. Higher

order approximations can be found by evaluating the function at yet more sample

points.

Many additional finite difference approximations can be constructed by simi-

lar manipulations of Taylor expansions, but these few very basic ones will suffice

for our subsequent purposes. Now we apply the finite difference formulae to de-

velop numerical solution schemes for the heat equation.

heat equation

For simplicity we will describe the case where σ and k are constant and k\σ =
1.We will assume that the function u(x, t) is defined for 0 ≤ x ≤ 1 and t ≥ 0,
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which solve the simple heat equation

∂u

∂t
=
∂2u

∂x2
(2.5.10)

subject to the boundary conditions u(0, t) = u(1, t) = 0 and the initial condition

u(x, 0) = h(x), where h(x) is a given function, representing the initial tempera-

ture.

Here we discretize only the spatial domain obtaining a finite-dimensional Eu-

clidean space Rn−1, in practice we reduce the partial differential equation to

a system of ordinary differential equations. This correspond to utilizing a dis-

crete model for heat flow rather than a continuous one.

For 0 ≤ i ≤ n, let xi = i/n and

ui(t) = u(xi, t) = temperature in xi at time t.

Sice u0(t) = 0 = un(t) by the boundary conditions, the temperature at time t is

specified by

u(t) =









u1(t)
u2(t)
·

un−1(t)









(2.5.11)

a vector-valued function of one variable. The initial condition becomes

u(0) = h, where h(t) =









h(x1)
h(x2)
·

h(xn−1)









. (2.5.12)

We can approximate the first-order partial derivative by a difference quotient:

∂u

∂x

(

xi + xi+1

2
, t

)

.
=
ui+1(t)− ui(t)

xi+1 − xi
=

[ui+1(t)− ui(t)]

1/n
= n [ui+1(t)− ui(t)] .

(2.5.13)

Similarly, we can approximate the second-order partial derivative:

∂2u

∂x2
(xi, t)

.
=

∂u
∂x

(xi+xi+1

2
, t
)

− ∂u
∂x

(xi+xi−1

2
, t
)

1/n
.
= n2 [ui−1(t)− 2ui(t) + ui+1(t)] .

(2.5.14)

Thus the (2.5.10) can be approximated by a system of ordinary differential equa-

tions

dui

dt
= n2Au, where A =













−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · ·
· · · · · · ·
0 0 · · · · −2













(2.5.15)



Chapter 3

Sliding Mode Control

This Chapter presents a brief survey on Variable Structure Control Systems with

Sliding Modes. Starting from a general case of sliding modes in dynamical sys-

tems with discontinuous right-hand side, classic approaches to sliding mode con-

trol systems are considered. The Chapter is based on Pisano and Usai (2011c)

where the proofs of the presented theorems are shown.

Sliding-mode control has long been recognized as a powerful control method

to counteract non-vanishing external disturbances and un-modeled dynamics Utkin

(1992). This method is based on the deliberate introduction of sliding motions

into the control system, and, since the motion along the sliding manifold proves to

be uncorrupted by matched disturbances, the closed-loop system is guaranteed to

exhibit strong properties of robustness against significant classes of disturbances

and model uncertainties. Due to these advantages and simplicity of implemen-

tation, sliding-mode controllers have widely been used in various applications

Young and Kwatny (1982). On the other hand, many important systems and

industrial processes, such as flexible manipulators and chemical reactors, are gov-

erned by partial differential equations and are often described by models with a

significant degree of uncertainties.

3.1 Sliding modes in discontinuous control systems

Consider a general nonlinear system

ẋ(t) = f(x(t),u(t), t), (3.1.1)

where x ∈ R
n is the state vector, u ∈ R

q is the control input vector, t is time, and

f : Rn × R
q × R

+ → R
n is a vector field in the state space.

Assume that the state space is divided into 2q subspaces Sk (k = 1, 2, . . . , 2q)
by the guard

22
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G = {x : σ(x) = 0}, (3.1.2)

where σ : Rn → R
q is a sufficiently smooth vector function. Its ε–vicinity is

defined as follows

Vε = {x ∈ R
n : ‖σ(x)‖ 6 ε; ε > 0}. (3.1.3)

Define the control vector by a state feedback law such that

u(t) = uk(x) if x ∈ Sk, k ∈ {1, 2, . . . , 2q}, (3.1.4)

then the following theorem holds.

THEOREM 3.1.1 Consider the nonlinear dynamics (3.1.1); if a proper ε defining

(3.1.3) exists such that the control vector (3.1.4) satisfies the conditions

sign (Jσ
x(x(t)) · f(x(t),u(t), t)) = −sign(σ), ∀x ∈ Vε, (3.1.5)

then the guard G is an invariant set in the state space and a sliding mode occurs on

it.

Proof. Consider the q-dimensional vector

s = σ(x), (3.1.6)

usually named sliding variables vector, and define the positive definite function

V (s) =
1

2
sT s. (3.1.7)

The total time derivative of V is

V̇ (s) = sT ṡ = sTdiag{sign(ṡi)}|ṡ|. (3.1.8)

Taking into account the implicit function theorem, (3.1.1), (3.1.4) and (3.1.5) then

(3.1.8) results into

V̇ (s) = −sTdiag{sign(si)}|ṡ| = −|s|T |ṡ| < 0. (3.1.9)

Therefore V (s) is a Lyapunov function and the origin of the q-dimensional space

of variables s is an asymptotically stable equilibrium point. �

From a geometrical point of view, condition (3.1.5) implies that within the

neighborhood Vε of G the vector field defining the state dynamics (3.1.1) is always

directed towards G itself. Furthermore, if the magnitude of the control vector u

components is sufficiently large so that |ṡi| > η (i = 1, . . . , q), condition (3.1.9)

satisfies the classical well-known reaching condition (that also make s = 0 an
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invariant set) 1
2

d
dt
‖s‖2 ≤ −η‖s‖ Utkin (1992). Therefore, the invariant set G is

reached in a finite time Tr ≤ t0 +
‖s(t0)‖

η
Utkin (1992), Slotine and Li (1991).

s(t0) (‖s(t0)‖ ≤ ξ(ε) < ε) is the sliding variables vector at initial time t0.
From the definition of control u in (3.1.4), and taking into account condi-

tion (3.1.5), it is apparent that the vector field f defining the system dynamics

(3.1.1) is discontinuous across the boundaries of the guard G. Therefore, function

f(x(t),u(t), t) has to be Lebesgue integrable on time and solution of (3.1.1) exists

in the Filippov sense, Filippov (1988). Control u switches at infinite frequency

when the system performs a sliding mode on G, which is usually named sliding

surface Utkin (1992).

The number of sets Sk partitioning the state space can be less than 2q if a

(q + 1)–dimensional control vector u = [u1, . . . , uq+1]
T , ui > 0, is available. In

fact the sliding variable space can be partitioned into (q + 1) sets Sk, ∩Sk = ∅,

defining a simplex.

It is interesting to analyze the state trajectory when system (3.1.1) is con-

strained on G. A simple approach to the problem is to consider the variable s

defined by (3.1.6) as the output of the dynamical system (3.1.1), in which func-

tion σ : Rn → R
q represents the so-called output transformation. In classic sliding

mode control usually condition (3.1.5) is assured by a proper choice of the con-

trol variables u so that matrix ∂ṡ
∂u

has full rank in Vε. Then the overall system

dynamics can be split into the input-output dynamics

ṡ(t) = Jσ
x(x(t)) · f(x(t),u(t), t) = ϕ(x(t),u(t), t), (3.1.10)

and the internal dynamics

ẇ(t) = ψ(w(t), s(t), t), (3.1.11)

where w ∈ R
n−q is named internal state and ψ : Rn×R

+ → R
n−q is a sufficiently

smooth vector function.

The relationship between the vector state x and the new state variables s and

w is defined by a diffeomorphism Φ : Rn → R
n preserving the origin and defined

as follows in a vicinity of the guard G Isidori (1995), Slotine and Li (1991):

[sT ,wT ]T = Φ(x) 0 = Φ(0) ∀x ∈ Vε. (3.1.12)

THEOREM 3.1.2 Assume that the diffeomorphic transformation (3.1.12) holds in

the vicinity Vε of the sliding manifold. Then system (3.1.1), (3.1.6) is stabilizable

if a unique control u exists such that conditions of Theorem 1 are satisfied, the

internal dynamics (3.1.11) is Bounded–Input Bounded–State (BIBS) stable and

the zero dynamics

ẇ(t) = ψ(w(t),0, t) (3.1.13)
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is stable in the Lyapunov sense.

Proof. The proof straightforwardly derives from results of Theorem 1 and the

stability of the internal dynamics when the system is constrained onto G. �

When the state is constrained onto the sliding surface G, the system behavior

is completely defined by the zero dynamics (3.1.13) Isidori (1995), taking into

account the invertible relationship (3.1.12). That is, only a reduced order dynam-

ics has to be considered during the sliding motion Utkin (1992). This “order

reduction” property is a peculiar phenomenon in variable structure systems with

sliding modes.

3.1.1 First order sliding mode control

Finding a feedback control (3.1.4) such that Theorem 1 holds is quite hard in

the general case. Therefore, Sliding Mode Control (SMC) of uncertain systems

usually refers to systems whose dynamics is affine with respect to control Utkin

(1992), Edwards and purgeon (1998) i.e.,

ẋ(t) = A(x(t), t) +B(x(t), t)u(t), (3.1.14)

where A : R
n × R

+ → R
n is the a vector field in the state space, possibly

uncertain, and B is a (n× q) matrix of functions bij(x(t), t) : R
n × R

+ → R.

When the SMC approach is implemented, the first step of the design procedure

is to define a proper system output s, as in (3.1.6), such that the resulting internal

dynamics is BIBS stable and, possibly, its zero dynamics is asymptotically stable.

Then the control u is designed such that ‖s‖ → 0 in a finite time in spite of

possible uncertainties.

THEOREM 3.1.3 Consider system (3.1.14), (3.1.6). Assume that the correspond-

ing internal dynamics is BIBS stable, that the norm of its uncertain drift term

A(x(t), t) is upper bounded by a known function F : Rn → R
+, i.e.,

‖A(x, t)‖ ≤ F (x), (3.1.15)

and that the known square matrix G(x, t) ≡ Jσ
x(x)·B(x, t) ∈ R

q×q is non singular

∀x ∈ Vε, uniformly in time. Then, the set G in (3.1.2) is made finite time stable

by means of the control law

u(t) = −(F (x)‖Jσ
x‖+ η)[G(x, t)]−1sign(s), η > 0. (3.1.16)

Proof.

The input-output dynamics of system (3.1.14), (3.1.6) is

ṡ(t) = Jσ
x(x) ·A(x, t) +G(x, t)u(t), (3.1.17)
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Consider the positive definite function (3.1.7). Considering the time derivative

of V along the trajectories of system (3.1.17), and taking into account (3.1.16),

(3.1.8) yields

V̇ (s) = sT · (Jσ
x(x) ·A(x, t)− (F (x)‖Jσ

x(x)‖+ η)sign(s)) ≤
≤ −ηsT · sign(s) = −η‖s‖1 < −η‖s‖2 < 0.

(3.1.18)

�

When the system control gain matrix B(x, t) is uncertain, a similar theorem

can be proved if some condition about B is met.

THEOREM 3.1.4 Consider system (3.1.14), (3.1.6) satisfying (3.1.15). Assume

that the corresponding internal dynamics is BIBS stable, that the uncertain gain

matrix B(x, t) and the guard G are such that the square matrix G(x, t) ≡ Jσ
x(x) ·

B(x, t) is positive definite and a known bound Λm > 0 exists such that

Λm ≤ min{λGi (x, t); i = 1, . . . , q} ∀x ∈ Vε, ∀t (3.1.19)

where λGi (x, t) (i = 1, . . . , q) are the eigenvalues of matrix G(x, t). Then, the set

G in (3.1.2) is made finite time stable by means of the control law

u(t) = −F (x)‖Jσ
x(x)‖+ η

Λm

s

‖s‖2
, η > 0. (3.1.20)

Proof. The proof follows the same steps than previous Theorem 3.1.3. Define

function V (s) as in (3.1.7) and consider (3.1.17) and (3.1.20) into its time deriva-

tive (3.1.8). By (3.1.19) it results

V̇ (s) = sT (Jσ
x(x)A(x, t)− F (x)‖Jσ

x
(x)‖+η

Λm
G(x, t) s

‖s‖2
) ≤

≤ − η
Λm‖s‖2

sTG(x, t)s ≤ −η‖s‖2 < 0.
(3.1.21)

�

To counteract the uncertainty in the system model the magnitude of the control

vector components has to be sufficiently large. The positive parameter η > 0 is

a design parameter guaranteeing that the previously defined reaching condition is

met. Several design methods can be found in the technical literature Utkin (1992),

Edwards and purgeon (1998), Young and Kwatny (1982), Bartolini et al. (2008).

When the system exhibits a sliding-mode behavior, the discontinuous control

(3.1.16), or (3.1.20), undergoes infinite-frequency switchings. The effect of the

discontinuous and infinite-frequency switching control on the system dynamics

is the same as that of the continuous control which allows the state trajectory to

remain on the sliding surface Filippov (1988), Utkin (1992). Considering the non

linear system (3.1.1) with a scalar input (i.e., q = 1), in Filippov (1988) it was
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shown that such a continuous dynamics is a convex combination of the two vector

fields f1 = f(x, u1, t) and f2 = f(x, u2, t) defined on S1 and S2 respectively, i.e.,

ẋ(t) = f0(x, t),
f0 = αf1 + (1− α)f2,
α = ∇σ·f2

∇σ·(f2−f1)
.

(3.1.22)

The above approach to regularize differential equations with discontinuous

right–end side is called the Filippov’s continuation method. In the case of multi–

input control (3.1.4) the continuous vector field f0 allowing the continuation of

the state trajectory on G is still a convex combination of the 2q vector fields fk =
f(x, uk, t) (k = 1, 2, . . . , 2q), i.e.,

ẋ(t) = f0(x, t),

f0 =
∑2q

k=1 αkfk,
∑2q

k=1 αk = 1.

(3.1.23)

If the discontinuous right–hand–side of the differential equation defining the

system dynamics satisfies some geometric conditions, the Filippov’s continuation

method can be unambiguously defined on G.

Utkin (1992) introduced the concept of equivalent control as the continuous

control input ueq which is able to maintain the sliding-mode behaviour by nulli-

fying ṡ, i.e., it is the solution of

ẋ(t) = f(x,ueq, t),
ṡ = ∂σ

∂x
(x(t),ueq(t), t) · f(x(t),ueq(t), t) = 0.

(3.1.24)

With reference to affine systems (3.1.14), ṡ takes the simplified expression

reported in (3.1.17) thus the equivalent control turns out to be defined as follows

ueq = − [G(x, t)]−1
Jσ
x(x) ·A(x, t). (3.1.25)

The Filippov’s continuation method and the Utkin’s equivalent control meth-

ods give the same continuous control law only for affine scalar control Utkin

(1992) and for a limited class of systems nonlinear in the control.

The non singularity condition for the q–dimensional square matrix G(x, t) im-

plies that the control u appears explicitly in the first derivative of the sliding vari-

able vector s fulfilling a kind of controllability condition, i.e., the vector relative

degree Isidori (1995) between the sliding and the input variables is [1, 1, . . . , 1]T .

Such a condition could be not satisfied and then the input would not appear in

the first total derivative of the sliding variable vector affecting, instead, its higher

derivatives; in this case a higher-order sliding mode (HOSM) can appear.
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3.2 Higher-order sliding mode control

A second order sliding mode appears when the differential inclusion V (x, t) defin-

ing the closed loop dynamics (3.1.1), (3.1.4) belongs to the tangential space of the

sliding manifold G defined as in (3.1.2), i.e. Levant (1993), Fridman and Levant

(1996),

G2 = {x : σ̇(x) = σ(x) = 0.}. (3.2.1)

This definition can be extended to higher–order sliding manifolds as follows

Levant (1993):

Gr = {x :
dk

dtk
σ(x) = 0, k = 0, 1, . . . , r − 1}, (3.2.2)

where σ : Rn → R
q is, again, a sufficiently smooth vector function and r (r =

1, 2, . . .) represents the order of the so–called sliding set. A rth–order sliding mode

(r-SM) appears on the sliding manifold G when the state trajectory is confined on

(3.2.2).

DEFINITION 3.2.1 Levant (1993) Let the r-sliding set (3.2.2) be non-empty and

assume that it is locally an integral set in Filippov’s sense (i.e. it consists of Filip-

pov’s trajectories of the discontinuous dynamic system). Then the corresponding

motion satisfying (3.2.2) is called r-sliding mode (r-SM) with respect to the con-

straint function σ.

A Higher–Order Sliding Mode Control (HOSMC) system is implemented when

the control u is able to constrain the system state onto (3.2.2) starting from any

point in a ε-vicinity of Gr.

HOSMC systems are difficult to design with respect to the general nonlinear

dynamics (3.1.1) since it is not possible to trivially extend the definition of the

sliding manifold (3.1.2) by using (3.2.2). In fact only q control variables are avail-

able and condition (3.1.5) cannot be guaranteed with respect to the resulting rq
variables s, ṡ, . . . , s(r).

An affine time–independent structure for the nonlinear dynamics can be ob-

tained by considering an augmented dynamics in which the control u is part of an

augmented vector state and its time derivative v = u̇ is the actual control to be

designed:









ẋ

ż
u̇
˙̂x









=









x̂

1
0

∂f
∂xn+1

(x,u, z) + ∂f
∂x
(x,u, z) · x̂









+









0
0
1

∂f
∂u
(x,u, z)









· v, (3.2.3)
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in which ∂f
∂u

is a full–rank matrix Levant (1993). Therefore, when considering

HOSMC, it is usual to refer to affine stationary nonlinear systems

ẋ(t) = f(x) + g(x)u(t), (3.2.4)

where x ∈ R
n is the state vector (possibly augmented), u ∈ R

q is the control

vector, possibly the time derivative of the plant input, f : Rn → R
n and g : Rn →

R
n ×R

q are sufficiently smooth vector fields and matrix, respectively, in the state

space.

PROPOSITION 3.2.1 Given the system dynamics (3.2.4), a r–SMC on the man-

ifold (3.1.2) can be designed if n ≥ rq, LgL
k
f σ = 0 (k = 1, 2, . . . , r − 2 and

LgL
r−1
f σ has full rank. �

3.2.1 A Second-Order sliding mode controller: the Super Twist-

ing

During the thesis was mainly used the so-called Super–Twisting algorithm. This

is a second order sliding-mode control algoritm that ensures the continuity of the

control, and it’s used for systems with relative degree equal one.

The Super–Twisting algorithm is conceptually different from the other 2–SMC

algorithms, for two reasons: first, it depends only on the actual value of the sliding

variable, while the others have more information demand. Second, it is effective

only for chattering attenuation purposes as far as relative degree one constraints

are dealt with.

It is defined by the following dynamic controller Levant (1993):

u(t) = v(t)− λ|s(t)|1/2sign(s(t)),
v̇(t) = −αsign(s(t)). (3.2.5)

where u(t) ∈ R is the input of system (3.2.4) with q = 1 and s(t) ∈ R is the

sliding variable (i.e., the system output) (3.1.6) measuring the distance of the sys-

tem from the sliding surface G in (3.1.2). The Super-Twisting controller can be

considered as a nonlinear implementation of a classic PI controller with better

robustness properties.

Recent findings about the Super–Twisting algorithm were obtained by Moreno

and Osorio (2008). The authors obtained for the Super–Twisting algorithm a

strong Lyapunov function for the first time. The introduction of a Lyapunov func-

tion allows not only to study more deeply the known properties of finite time con-

vergence and robustness to strong perturbations, but also to improve the perfor-

mance by adding linear correction terms to the algorithm. Consider the following
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perturbed version of (3.2.5)

ẋ1 = −k1|x1|1/2sign(x1) + x2 + ̺1,
ẋ2 = −k3sign(x1) + ̺1.

(3.2.6)

where xi are the scalar state variables, ki are gains to be designed, and ̺i are per-

turbation terms. The Lyapunov function that ensure the convergence in finite time

of all trajectories of this system to zero, when the gains are adequately selected,

and for some kinds of perturbations is (Moreno and Osorio (2008)):

V (x) = 2k3|x1|+
1

2
x22 +

1

2

(

k1|x1|1/2sign(x1)− x2
)2
. (3.2.7)

THEOREM 3.2.1 Suppose that the perturbation terms of the system (3.2.7) are

globally bounded by

|̺1| ≤ δ1|x1|1/2, |̺2| ≤ δ2, (3.2.8)

for some constants δ1, δ2 ≥ 0. Then the origin x = 0 is an equilibrium point that

is strongly globally asymptotically stable if the gains satisfy

k1 > 2δ1

k3 > k1
5δ1k1 + 6δ2 + 4(δ1 + δ2/k1)

2

2(k1 − 2δ1)

(3.2.9)

Moreover, all trajectories converge in finite time to the origin, upperbounded by
2V 1/2(x0)

γ̄
, where x0 is the initial state and γ̄ is a constant depending on the gains

k1, k3 and the perturbation coefficients δ1, δ2.

For the proof please refer to the cited article Moreno and Osorio (2008).



Chapter 4

Unknown Input Observer(UIO) and

estimation

In this chapter we show a brief survey of the concept of strong observability Hau-

tus (1983), Molinari (1976) for multi-variable linear systems and the design of an

Unknown Input Observer. In the last section an estimator of the unknown input,

based on second order sliding-mode algorithm ”Super-Twisting” Levant (1993),

Moreno and Osorio (2008) is proposed.

4.1 Strong observability

The notion of strong observability has been introduced more than thirty years

ago Molinari (1976); Hautus (1983) in the framework of the unknown-input

observers theory. Recently it has been exploited to design robust observers based

on the high-order sliding mode approach Bejarano et al. (2007). Consider the

linear time invariant system Σ

ẋ = Ax+Gu+ Fw(t)
y = Cx

(4.1.1)

where x(t) ∈ R
n and y(t) ∈ R

p are the state and output variables, u(t) ∈ R
h is a

known input to the system, w(t) ∈ R
m is an unknown input term, and A,G, F, C

are known constant matrices of appropriate dimension.

It’s well known that (4.1.1) is observable if and only if for each initial state

x0 = x(0), this status value can be determined on the basis of observation of the

evolution for a finite time tf ≥ 0.

The system Σ is called strongly observable if this property holds when we

use an arbitrary input function:

31
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DEFINITION 4.1.1 Molinari (1976) Σ is called strongly observable if for all x0 ∈
X and for every input function u, the following holds: yu(t, x0) = 0 for all t ≥ 0
implies x0 = 0.

It’s possible to connect strong observability of Σ with properties of its system

matrix PΣ. The system matrix of Σ is defined as the real polynomial matrix

Associated with this system, let us introduce the following system matrix

PΣ(s) =

(

sI − A −F
C 0

)

. (4.1.2)

The system Σ is degenerate if the rank of S is strictly less than the minimum

of [n+ rank(F ), n+ rank(C)] for all values of s ∈ C.

DEFINITION 4.1.2 Invariant zeros are those values of s that result in rank of S
becoming less than the minimum of [n+ rank(F ), n+ rank(C)].

It has been shown in Molinari (1976) that the following property holds

The triplet (A,F, C) is strongly observable if and only if it has no invariant

zeros.

4.2 system decoupling and UIO design

Let us make the following assumptions:

A1. The matrix triplet (A,F, C) is strongly observable

A2. rank (CF ) = rank F = m.

If conditions A1 and A2 are both satisfied then it can be systematically found a

state coordinates transformation together with an output coordinates change which

decouple the unknown input ξ from a certain subsystem in the new coordinates.

Such a transformation is outlined below.

For the generic matrix J ∈ R
nr×nc with rankJ = r, we define J⊥ ∈ R

nr−r×nr

as a matrix such that J⊥J = 0 and rankJ⊥ = nr − r. Matrix J⊥ always exists

and, furthermore, it is not unique 1. Let Γ+ = [ΓTΓ]−1ΓT denote the left pseudo-

inverse of Γ such that Γ+Γ = Inc , with Inc being the identity matrix of order

nc.

Consider the following transformation matrices T and U :

T =

[

F⊥

(CF )+C

]

=

[

T1
T2

]

, U =

[

(CF )⊥

(CF )+

]

=

[

U1

U2

]

. (4.2.1)

1A Matlab instruction for computing Mb = M⊥ for a generic matrix M is Mb = null(M′)′
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and the transformed state and output vectors

x̄ = Tx =

[

T1x
T2x

]

=

[

x̄1
x̄2

]

, x̄1 ∈ Rn−m x̄2 ∈ Rm (4.2.2)

ȳ = Uy =

[

U1y
U2y

]

=

[

ȳ1
ȳ2

]

, ȳ1 ∈ Rp−m ȳ2 ∈ Rm (4.2.3)

The subcomponents of the transformed vectors take the form

x̄1 = F⊥x, x̄2 = (CF )+Cx (4.2.4)

ȳ1 = (CF )⊥ y ȳ2 = (CF )+ y (4.2.5)

After simple algebraic manipulations the transformed dynamics in the new

coordinates take the form:

˙̄x1 = Ā11x̄1 + Ā12x̄2 + F⊥Gu
˙̄x2 = Ā21x̄1 + Ā22x̄2 + (CF )+CGu+ w(t)
ȳ1 = C̄1x̄1
ȳ2 = x̄2

(4.2.6)

with the matrices Ā11, ..., Ā22, C̄1 such that

[

Ā11 Ā11

Ā21 Ā22

]

= TAT−1, C̄1 = (CF )⊥CT̃1. (4.2.7)

It turns out that the triple (A,C, F ) is strongly observable if, and only if, the

pair (Ā11, C̄1) is observable Molinari (1976); Hautus (1983). In light of the

Assumption A1, this property, that can be also understood in terms of a simplified

algebraic test to check the strong detectability of a matrix triple, and its satisfac-

tion opens the route to design stable observers for the state of the transformed

dynamics (4.2.6).

The peculiarity of the transformed system (4.2.6) is that x̄2 is available for

measurements since it constitutes a part of the transformed output vector ȳ. Hence,

state observation for system (4.2.6) can be accomplished by estimating x̄1
only, whose dynamics is not affected by the unknown input vector.

The observability of the (Ā11, C̄1) pair permits the implementation of the fol-

lowing Luenberger observer for the x̄1 subsystem of (4.2.6):

˙̄̂x1 = Ā11 ˆ̄x1 + Ā12ȳ2 + F⊥Gu+ L(ȳ1 − C̄1 ˆ̄x1) (4.2.8)

which gives rise to the error dynamics

ė1 = (A− LC)e1, e1 = ˆ̄x1 − x̄1 (4.2.9)
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whose eigenvalues can be arbitrarily located by a proper selection of the matrix

L. Therefore, with properly chosen L we have that

ˆ̄x1 → x̄1 as t→ ∞ (4.2.10)

which implies that the overall system state can be reconstructed by the following

relationships

x̂ = T−1

[

ˆ̄x1
ȳ2

]

(4.2.11)

Note that the convergence of ˆ̄x1 to x̄1 is exponential and can be made as fast

as desired. Remarkably, the above estimation is correct in spite of the presence of

unmeasurable, possibly very large, external inputs.

4.3 Reconstruction of the unknown inputs

An estimator can be designed which gives an exponentially converging estimate

of the unknown input. Consider the following estimator dynamics

˙̄̂x2 = Ā21 ˆ̄x1 + Ā22ȳ2 + v(t) (4.3.1)

with the estimator injection input v(t) yet to be specified. The next assumption is

fulfilled:

A3. It can be found a constant wd such that: |ẇ(t)| ≤ wd.

Define

σ(t) = ˆ̄x2 − x̄2 (4.3.2)

The time derivative of σ(t) is

σ̇ = ˙̄̂x2 − ˙̄x2 = Ā21e1(t) + v(t)− w(t) (4.3.3)

Define the output injection v(t) as follows

v(t) = k1 |σ|
1

2 signσ − k2σ + α(t)

α̇(t) = −k3signσ − k4σ
(4.3.4)

Considering (4.3.3) into (4.3.4) yields:

σ̇ = Ā21e1(t)− w(t)− k1 |σ|
1

2 signσ − k2σ + α(t) (4.3.5)

To simplify the notation define

Γ(t) = Ā21e1(t) + α(t)− w(t) (4.3.6)
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The derivative of Γ(t) is

Γ̇ = Ā21ė1 + α̇− ẇ = ψ − k3signσ − k4σ (4.3.7)

where

ψ = Ā21ė1 − ẇ = Ā21(Ā11 − LC1)e1 − ẇ (4.3.8)

The error dynamics in σ − Γ coordinates is:

σ̇ = Γ− k1 |σ|
1

2 signσ − k2σ

Γ̇ = ψ − k3signσ − k4σ
(4.3.9)

Let the tuning parameters be chosen according to the next inequalities

k1, k3 > 0; k2, k4 ≥ 0; min

{

k1
2
,
k1k3
1 + k1

, k3

}

> M (4.3.10)

where M is any constant such that

M ≥ wd + ρ2, ρ 6= 0. (4.3.11)

Considering (4.3.9)-(4.3.11), the condition e1(t) → 0, derived from (4.2.10),

guarantees that the next condition (4.3.12) holds starting from a finite time instant

T̄ .

|ψ| ≤M, t ≥ T̄ . (4.3.12)

The stability of (4.3.9) can be demonstrated by means of the Lyapunov function

Moreno and Osorio (2008)

V (σ,Γ) = 2k3|σ|+ k4σ
2 +

1

2
Γ2 +

1

2
s2(σ,Γ) (4.3.13)

where

s(σ,Γ) = Γ− k1|σ|
1

2 signσ (4.3.14)

Differentiating the Lyapunov function (4.3.13) along the trajectory of the system

(4.3.9) gives

V̇ ≤ −|σ|− 1

2W (σ, s) (4.3.15)

where

W (σ, s) = [k2s
2|σ| 12 + (

k1
2

−M)s2 + k1k2]+

+ (k2k3 −Mk2)|σ|
3

2 + (k1k3 −M(1− k1))|σ|+
+ k2k4|σ|

5

2 ≥ γV (σ,Γ)

(4.3.16)

for some γ > 0 and for all σ, Γ, s ∈ R. By taking advantage of (4.2.10) it can

be easily shown that |v(t) − w(t)| → 0 as t → ∞. Then, under the conditions

(4.3.10), the estimator (4.3.1), (4.3.9) allows one to reconstruct the unknown input

w(t) acting on the original system (4.1.1).



Chapter 5

Unknown input estimator for

Diffusion processes

Here the methodologies described in the previous Chapter are applied to diffusion

processes, where the unknown input to estimate is a non measurable disturbance

or a fault in the process. The first example in section 2 considers a problem of

state and disturbance estimation for a perturbed version of the diffusion PDE with

collocated measurement sensors. It is assumed that the system model is corrupted

by an in-domain uncertain, distributed, disturbance. The third section illustrates

an approach to actuator fault detection in industrial furnaces.

5.1 Unknown disturbance estimator for the diffu-

sion equation

Topics in this section have been published by the author in Pisano et al. (2010). It

is assumed that the diffusion model is corrupted by an in-domain uncertain, dis-

tributed, disturbance. Related investigation were made in Demetriou and Rosen

(2005) where an Unknown Input Observer (UIO) was proposed for a class of

PDEs in abstract form with a concrete example developed for the perturbed diffusion-

convection equation. Demetriou and Rosen (2005) basically extends to Dis-

tributed Parameter Systems (DPS) the finite dimensional results of UIO design

Chen et al. (1996), Edwards et al. (2000). The key point of the design method

in Demetriou and Rosen (2005) was that of selecting the sensor type and loca-

tion in such a way that the resulting measurement operator fulfills certain operator

equations. After deriving the finite-dimensional modal expansion of the involved

PDE, here we follow a similar idea but we develop our design conditions for the

approximate finite dimensional model directly.

36
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5.1.1 Formulation of the problem

Consider a physical phenomenon represented by the space and time varying scalar

field z(x, t), where 0 ≤ x ≤ l is the mono-dimensional (1D) spatial variable and

t > 0 is the time variable. Let the scalar field behavior be governed by a perturbed

diffusion (PDE).

zt(x, t) = θzxx(x, t) + ψ(x, t) (5.1.1)

where θ is the positive coefficient called diffusivity, zt(x, t) denotes the partial time

derivative and zxx(x, t) denotes the second order spatial derivative. The vector

field ψ(x, t) represent an uncertain source term. We consider an uncertain source

term of the type

ψ(x, t) = f(x)w(t) (5.1.2)

where f(x) is a known function, and w(t) is uncertain. The initial conditions

(ICs) are:

z(x, 0) = z0(x), z0(x) ∈ L2[0, l] (5.1.3)

We consider two types of boundaries conditions (BCs), namely, homogenous Neu-

mann BCs

Neumann-type zx(0, t) = zx(l, t) = 0 (5.1.4)

or homogenous Dirichlet BCs

Dirichlet-type z(0, t) = z(l, t) = 0. (5.1.5)

The available measurements are the p-dimensional vector y = [y1 y2...yp] where:

yk(t) =

∫ l

0

sk(x)z(x, t)dx, k = 1, ..., p (5.1.6)

sk(x) ∈ L2(0, l) is a square integrable function which is determined by the loca-

tion and type of the measurement sensors. In particular we consider point-wise

measurements along the spatial domain hence

sk = δ(x− xks) (5.1.7)

where δ(·) is the Dirac Function and xks is the location of the kth measurement

sensor. Then by (5.1.6) and (5.1.7)

yk(t) = z(xks , t), k = 1, ..., p (5.1.8)

The aim of this work is to provide the approximate reconstruction of the state

z(x, t) and of the unknown disturbance signal w(t).
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5.1.2 modal representation

Now there will be shown the modal expansion of the (5.1.1), that is generally

described in the Chapter 2. In the end we achieve a common state-variable form tat

is used to develop the UIO and sliding-mode estimator described in the previous

Chapter.

By expanding the solution of the equation (5.1.1) in an infinite series in terms

of eigenfunctions (modal expansion) it is possible to express the solution as

z(x, t) =
∞
∑

n=1

qn(t)φn(x) (5.1.9)

where φn(x) are the eigenfunctions corresponding to the the boundary conditions

(5.1.5) or (5.1.4) and qn(t) are appropriate functions to be determined. Substi-

tuting the modal expansion for the solution z(x, t) into the system we obtain an

infinite-dimensional system of ODE qn(t)

q̇n = λnqn + fn
q w(t), n = 1, ...,∞.

yk =
∞
∑

n=1

qn(t)c
n
k , k = 1, ..., p.

(5.1.10)

where λn are the eigenvalues and:

qn(0) =

∫ l

0
z0(x)φn(x)dx
∫ l

0
φ2
n(x)dx

, fn
q =

∫ l

0
f(x)φn(x)dx
∫ l

0
φ2
n(x)dx

cnk =

∫ l

0

sk(x)φn(x)dx = φn(x
k
s)

(5.1.11)

We consider a finite number N of modes, yielding the finite dimensional approx-

imation of (5.1.11):







q̇1
...

q̇N






=







−λ21 0 0

0
. . . 0

0 0 −λ2N













q1
...

qN






+







f 1
q
...

fN
q






w(t) (5.1.12)

with the output equation







y1
...

yp






=





c11 · · · cN1
· · · · · · · · ·
c1p · · · cNp











q1
...

qN






(5.1.13)
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Finally we can rewrite (5.1.12) and (5.1.13) in compact form:

q̇ (t) = Amdq (t) + Fmdw (t)

y (t) = Cmdq (t)
(5.1.14)

where q = [q1 q2 ... qN ] and

Amd =







−λ21 0 0

0
. . . 0

0 0 −λ2N






, Cmd =





c11 · · · cN1
· · · · · · · · ·
c1p · · · cNp



 , Fmd =







f 1
q
...

fN
q






(5.1.15)

5.1.3 Numerical simulations of the Disturbance estimator

Consider the perturbed heat equation.

zt = 0.5zxx + f(x)w(t) (5.1.16)

with homogeneous Dirichlet BCs (5.1.5) where f(x) = 2+6 sin(4πx) andw(t) =
2(10+sin(4t)). The initial conditions are set to z0(x) = sin(πx) and the location

of the two sensors are: x1c = 0.1 and x2c = 0.7. The corresponding eigenvalues

and eigenfunctions are

λn = (nπ)
√
0.5, φn(x) = sin(nπx), n = 1, ...,∞. (5.1.17)

To generate the measurements and the “true” states accurately, the equation (5.1.16)

has been simulated using N = 50 modes. Figure 5.1 shows the actual state evo-

lution. In TEST 1 the UIO and the disturbance estimator are implemented with

N = 5 modes. The next matrices are obtained for the original system:

A =













−4.934 0 0 0 0
0 −19.739 0 0 0
0 0 −44.413 0 0
0 0 0 −78.956 0
0 0 0 0 −123.370













F =













2.546
0

0.888
6

0.509













, C =

[

0.338 0.637 0.860 0.982 0.987
0.827 −0.929 0.218 0.684 −0.987

]

(5.1.18)
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Figure 5.1: TEST 1: actual state z(x, t), the BCs are not plotted.

The transformation matrices (4.2.1) described in the previous Chapter are

U =

[

−0.737 1
0.081 0.059

]

T =













0 1 0 0 0
−0.333 0 1 0 0
−2.356 0 0 1 0
−0.200 0 0 0 1
0.076 −0.003 0.082 0.120 0.021













(5.1.19)
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and the transformed system is characterized by the following matrices

Ā11 =









−19.739 0 0 0
−0.132 −41.638 4.039 0.703
−1.750 36.772 −25.424 9.318
−0.237 4.994 7.270 −122.104









Ā12 =









0
−33.510
−444.132
−60.318









Ā21 =
[

−0.168 1.498 −1.982 −1.276
]

Ā22 = −62.507

C1 =
[

−1.400 −0.417 −0.040 −1.716
]

(5.1.20)

It can be checked that Ā11 and C1 is an observable pair which confirms that the

conditions A1 and A2 hold, system is strongly observable and hence we can im-

plement the Luenberger observer (4.2.8) with the following L matrix

L =









1834
−1955
−10639
−836









(5.1.21)

which assign all eigenvalues of the error matrix [∆̄11−LC1] the same value: −80.

The variable ˆ̄q1 generated by the Luenberger observer is used to implement the

disturbance estimator (4.3.1) and the estimator control signal v(t) is obtained by

setting the super-twisting gains (4.3.9) as follows: k1 = 44, k2 = 0, k3 = 10, k4 =
0.

Fig. 5.2 shows the spatio-temporal profile of the state estimation error E(x, t) =
z(x, t)− ẑ(x, t) where

ẑ(x, t) =
5
∑

n=1

q̂n(t)φn(x)

while Fig. 5.3 depicts the corresponding L2 error norm. Fig. 5.4 show the actual

and estimated profile of the disturbance w(t) which confirms the good perfor-

mance of the suggested estimator. In TEST 2 the observer is built considering

N = 20 modes. The actual and estimated profiles of the disturbance are shown in

Fig. 5.5. The final test (TEST 3) considers homogeneous Neumann BCs (5.1.4)

instead of (5.1.5) and an observer implemented with N = 5 modes. Fig. 5.6, Fig.

5.7 and Fig. 5.8 show the corresponding results.
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Figure 5.2: Observation error E(x, t) for N=5 (TEST 1).

Figure 5.3: The L2 norm of the observation error ||E(·, t)||2 for N=5 (TEST 1).
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Figure 5.4: Unknown disturbance reconstruction for N=5 (TEST 1).

Figure 5.5: Unknown disturbance reconstruction for N=20 (TEST 2).
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Figure 5.6: Actual state in the TEST 3 (Neumann BCs).

Figure 5.7: The L2 norm of the observation error ||E(·, t)||2 in TEST 3.
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Figure 5.8: Unknown disturbance reconstruction in TEST 3.

By means of a simulation example, it is checked that both the modal approx-

imations of the diffusion equation solution fulfills the property of strong observ-

ability when two point-wise measurements are located in the solution spatial do-

main. The property of Strong observability depend on the number of measure-

ments and their location on the spatial domain, but computational problems for

high order system (N > 10) make the Strong Observability difficult to check.

5.2 Robust actuator FDI

for thermal treatment processes

This section illustrates an approach to actuator fault detection in industrial fur-

naces P.R.O.D.I. (2011). The method is based on unknown input observation and

sliding-mode techniques described in the previous chapters.

Faults occurring in the heaters of a furnace are detected and isolated by means

of a scheme that combines a linear unknown-input observer and a nonlinear,

sliding mode based, disturbance estimator, along with a simple, static threshold

based, residual evaluation logic. The implementation tests of the model-based

FDI observer have considered a specific industrial furnace manufactured by BO-

SIO (”UNIOR” furnace) with near 50kW of nominal power, see Figure 5.9.
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Figure 5.9: UNIOR furnace.

Particularly, the presented activities started from a high-fidelity furnace built

by the BOSIO research group using a commercial software package (ComsolTM )

that provides user-friendly graphical model-building functionalities and accurate

1D, 2D and 3D PDE solvers. Comsol has the important feature that it can automat-

ically export in the Matlab environment the matrices of a LTI finite dimensional

approximation of the underlying PDE. Additionally, Comsol features an addi-

tional useful functionality that certain simulation parameters (e.g. the boundary

conditions) can be assigned the role of ”external inputs”, which can be gener-

ated within a Simulink model and sent in real time, during the simulation run, to

Comsol, that will automatically adjust the current value of the corresponding vari-

able(s). Again, the matrices of the LTI finite dimensional (modal) approximation

having such ”external inputs” as input variables and arbitrary user-selectable out-

puts (e.g., the temperature at given points (x, y, z) of interest) are automatically

exported in Matlab-Simulink environment. This additional important functional-

ity is exploited to develop a fully automated design procedure of the observer, with

the model parameters being generated automatically by Comsol. The approach is

detailed in the next Sections.

5.2.1 Comsol furnace model

The next Figure 5.10 shows a particular of the ”graphical” aspect of the Com-

sol simulation model. According to the specifications of the UNIOR furnace, a
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Figure 5.10: Drawing of the considered domain in Comsol.

domain with rectangular shape is considered, with an inner chamber of the same

shape and six heaters (three each side). The furnace is 4m long. A belt is located

in the interior of the furnace, by means of which the parts subject to the thermal

treatment are transported inside the furnace with a belt velocity between 1m/h
and 4m/h. The effect of those objects, and their motion, on the overall tempera-

ture field is negligible as far as severe faults in the heating system are wanted to

be detected and no accurate evaluation of the temperature field is required. The

main phenomenon of thermal diffusion is modeled, with appropriate boundary

conditions of Neumann type. In order to keep relatively low the order of the gen-

erated finite-dimensional models, while preserving their accuracy, more complex

phenomena like convection and turbulence have been not modeled. As a matter

of fact it is the task of this activity to develop a scheme for detecting faults in

the heating system, which justify neglecting those complex effects that contribute

only marginally to the overall ”average” temperature behavior inside the furnace.

The next Figure 5.11 reports the steady state temperature profile corresponding to

a constant heating power of about 8kW per heater.

Figure 5.11 shows a maximum temperature inside the furnace over 500K with

such a ”constant-heating power” configuration. In real furnaces, the heating power

is not constant, while it is adjusted by proper feedback temperature loops that use

three thermocouples suitably located under the belt. To model this fact within

Comsol, as previously said, the heating power released to the furnace by the three

heater pairs is assigned to be an external input variables, that can be adjusted by
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Figure 5.11: Steady-state temperature field at prescribed sections with constant

heating.

feedback as time goes on. According to industrial practice the three pairs of oppo-

site heaters (Right heaters: R1/R2; Central heaters: C1/C2; Left heaters: L1/L2,

see Figure 5.10 are driven pair-wise, by three command signals, one for the right

heaters R1/R2, one for the central heaters C1/C2, and one for the left heaters

L1/L2. In other words, heaters R1 and R2 will be commanded by a unique ref-

erence command signal, and the same for the pairs C1/C2 and L1/L2. Overall,

six temperature measurements at prescribed ”probing points” have been assigned

as output variables of the Comsol model. Those six points, along with some

additional ones (that are NOT used by the suggested FDI observer) have been

placed in the model graphical representation (see Figure 5.10) In the location of

those above-mentioned six ”probing points”, thermocouples shall be inserted in

the real furnace to ”feed” the FDI algorithm during its real-time execution. Three

of the selected probing points, out of the six, correspond to the locations of the

thermocouples already installed in the real furnace and used for closing the tem-

perature loops. Those sensors are thus already available in the current design of

the furnace. Three additional sensors need then to be inserted in order to make the

present approach applicable in the real furnaces, which are located in the upper

region of the furnace. This procedure is technically easy and cheap and does not

substantially impact the cost and the reliability of the furnace. On the other hand

the fault detection capabilities of the scheme that is going to be illustrated will en-

hance the safety of operation significantly. Faults of the heating system are going

to be detected and insulated.
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Figure 5.12: Drawing of the considered domain in Comsol.

5.2.2 Comsol state-space export

Comsol implements appropriate PDE solvers that, at the very end, lead to a finite

dimensional approximating dynamics (derived by modal expansion techniques)

which is a MIMO linear and time invariant system of the form

M
dx

dt
=MAx+MBu

y = Cx+Du
(5.2.1)

It has been set up the Comsol model in such a way that the input vector u
contain the three ”command signals” for the three L/C/R heater pairs

u = [PL PC PR] (5.2.2)

and the output vector y contains the six temperature profiles at the probing

points previously mentioned.

y = [TDL TDC TDR TUL TUC TUR] (5.2.3)

with the subscript DL denotes the measurement in the Down-Left probing

point, subscript UC denotes the measurement in the Upper-Central probing point,

etc. As previously mentioned, the matrices of model (5.2.1) can be exported in

Matlab by means of an automatic tool available in Comsol. Next Figures 6 show

the two submenus of the ”Export State Space Model” configuration window.
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Figure 5.13: Submenus of the ”Export State Space Model” configuration window

and their setting.

Two models with different dimension have been generated and exported in

Matlab. Note that the number of eigenmodes (that sets the order of the result-

ing LTI model (5.2.1)) can be selected in the corresponding ”General” submenu

shown in the Figure 5.13-left. The first model has been generated of order 100
(i.e., with 100 eigenmodes, see the figure 5.13-left). It will be used in Matlab

as the ”high accuracy model” devoted to generates the measurement signals pro-

cessed by the FDI observer. Around this high accuracy model, the three temper-

ature control loops are closed that generate the (command values for the) input

vector u (the three heating powers of the left-L, central-C and right-R heating

stages). Figure 5.14 report an overview of the Simulink model implementing the

high-accuracy model of the furnace, with the corresponding Temperature Loops,

and the FDI observer.

A closer look at the temperature loops (see Figure 5.15) shows that the same

set-point, 280C , is used for the Left (L), Central (C) and Right (R) temperature

loops.

The considered controllers are simple saturated PIs.

Inside the FDI observer, the sliding-mode based UIO has been implemented

by using, as the plant mathematical model, a reduced-order model with 20 eigen-

modes, only. The mathematical detail of the FDI observer is illustrated in the

Chapter 4.

5.2.3 Fault detection in the furnace heaters

The considered faults are:

• FAULT 1: In the left heaters, an 80% loss of the effectiveness occur at

t = 4000
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Figure 5.14: Submenus of the ”Export State Space Model” configuration window

and their setting

Figure 5.15: Detail of the Temperature Loops
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• FAULT 2: In the central heaters, starting from the moment t = 5000, they

begin to deliver twice the set-point power value commanded by the associate

PI controller.

Basically, using the suggested FDI-UIO (4.7)-(4.11) in section 4 the actual in-

put vector u(t) of the original plant is reconstructed, by means of the output y(t)

measurement only, in accordance with (4.12). The FDI/UIO has been discretized

(by fixed step Euler method) by using a sampling period of 0.01 seconds. If the

reconstruction (4.12) is accurate enough, the difference between the command in-

put vector values u = [PLPCPR] (output by the three temperature loops) and their

actual, reconstructed, values is, then, a valid residual for FDI purposes concerning

the status of the heaters. It is worth to stress that the dynamics of the reduced-

order model are not the same as those of the original system, hence an error in the

reconstruction of u will occur.

Some Simulation results are illustrated. The proportional and integral gain of

the PIs are set to 400 and 0.02, respectively. The upper saturation of the controller

output is set to 22kW , the maximal available heating power at every heater. Lower

saturation value is set to 1kW . The three regulators have all the same parameters,

and the reference temperature is 280C for all the loops. The next Figure 5.16

shows the temperature time history at the three points under the belt that are used

to close the corresponding temperature loops. It can be seen a slight performance

deterioration after that FAULT 1 occurs at t = 4000, and FAULT 2 then occurs at

t = 5000. The robustness properties of the feedback controller partially compen-

sate for the actuator faults. Correctly, FAULT 1 makes the inspected temperatures

to decrease, while FAULT 2 makes them to grow.

We now analyze the residual signals associated to FAULT 1 and FAULT 2.

The figure 5.17 reports the corresponding profiles along with the static threshold

used for FDI. The same threshold value (9000) proved to be effective for both

Faults. The residuals are sensitive to both faults, but their correct isolation is

clearly feasible by using the suggested threshold value. The two Figures 5.18

show the actual and reconstructed status (0: healty/1:faulty) of the left heaters.

It is seen in Figure 5.18-down that FAULT 1 is detected after about 25 seconds

from its occurrence. Figure 5.19 shows the corresponding plots for the detection

of the FAULT 2. The transient is much faster than before (about 5 seconds).

Overall, the suggested method for actuator FDI has shown satisfactory perfor-

mance and good fault detection capabilities.
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Figure 5.16: Temperature in the three thermocouples used in the feedback loops.

Figure 5.17: The residual signals and the detection threshold.
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Figure 5.18: actual and estimated state of the left heaters (0: Healty 1:Faulty).

Upper plot: long term behavior. Down plot: zoom across the time of FAULT 1

occurrence.
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Figure 5.19: The actual and estimated state of the centrl heaters (0: Healty

1:Faulty). Upper plot: long term behavior. Down plot: zoom across the time

of FAULT 1 occurrence.



Chapter 6

Distributed Sliding Mode Control

design

Topics in this Chapter have been published by the author in Orlov et al. (2012a)

and Orlov et al. (2011b). In this Chapter we consider generalized uncertain forms

of the heat and wave equations, under the effect of an external smooth disturbance.

In some recent authors publications (see Orlov et al. (2010); Pisano et al. (2011a);

Orlov et al. (2011a)) two finite dimensional robust control algorithms, namely, the

“Super-Twisting” and “Twisting” second-order sliding-mode (2-SM) controllers

(see Fridman and Levant (1996); Levant (1993)) for details on these controllers)

have been generalized to the infinite-dimensional setting and applied for control-

ling heat and wave processes, respectively. The mentioned 2-SM controllers are of

special interest because in the finite dimensional setting they significantly improve

the performance of sliding-mode control systems, in terms of accuracy and chat-

tering avoidance, as compared to the standard “first-order” sliding mode control

techniques (see Bartolini et al. (2002)).

The discontinuous control synthesis in the infinite-dimensional setting is well

documented (see Levaggi (2002); Orlov and Utkin (1987); Orlov (2000); Orlov

et al. (2004); Orlov (2009)) and it is generally shown to retain the main robust-

ness features as those possessed by its finite-dimensional counterpart. Other ro-

bust control paradigms have been fruitfully applied in the infinite dimensional

setting such as adaptive and model-reference control (see Krstic and Smyshlyaev

(2008a); Demetriou et al. (2009)), geometric and Lyapunov-based design (see

Christofides (2001)),H∞ and LMI-based design (see Fridman and Orlov (2009)).

It should be noted that the latter paradigms are capable of attenuating vanishing

disturbances only, whereas the former discontinuous control is additionally capa-

ble of rejecting persistent disturbances with an a priori known bound on their L2

norm.

Here we enlarge the class of controlled dynamics as compared to existing pub-

56
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lications (cfr. Orlov et al. (2010); Pisano et al. (2011a); Orlov et al. (2011a)), by

considering generalized forms of the heat and wave equations. More precisely, we

consider the presence of some additional terms in the plant equation (dispersion

and damping terms) and, furthermore, we let all the system parameters (diffusivity

and dispersion coefficients, for the heat equation, and the wave velocity, the damp-

ing coefficient and the dispersion coefficient, for the wave equation) to be spatially

varying and uncertain. We additionally put the constraint that the distributed con-

trol input must be a continuous (although possibly non-smooth) function of the

space and time variables.

6.1 Supertwisting Synthesis of

Reaction-Diffusion Processes

Consider the space- and time-varying scalar field Q(ξ, t) evolving in a Hilbert

space L2(0, 1), where ξ ∈ [0, 1] is the monodimensional (1D) space variable and

t ≥ 0 is time. Let it be governed by the following perturbed Reaction-Diffusion

Equation with spatially-varying parameters

Qt(ξ, t) = [θ1(ξ)Qξ(ξ, t)]ξ + θ2(ξ)Q(ξ, t) + u(ξ, t) + ψ(ξ, t), (6.1.1)

where θ1(·) ∈ C1(0, 1) is a positive-definite spatially-varying parameter called

thermal conductivity (or, more generally, diffusivity), θ2(·) ∈ C(0, 1) is another

spatially-varying parameter called dispersion (or reaction constant), u(ξ, t) is the

modifiable source term (the distributed control input), and ψ(ξ, t) represents a

distributed uncertain disturbance source term. This uncertain term is supposed to

satisfy the following conditions

ψ(ξ, t) ∈ L2(0, 1), ψt(ξ, t) ∈ W 1,2(0, 1) (6.1.2)

The spatially-varying diffusivity and dispersion coefficients θ1(ξ) and θ2(ξ) are

supposed to be uncertain, too. We consider non-homogeneous mixed boundary

conditions (BCs)

Q(0, t)− α0Qξ(0, t) = Q0(t) ∈ W 1,2(0,∞), (6.1.3)

Q(1, t) + α1Qξ(1, t) = Q1(t) ∈ W 1,2(0,∞), (6.1.4)

with some positive uncertain constants α0, α1. The initial conditions (ICs)

Q(ξ, 0) = ω0(ξ) ∈ W 2,2(0, 1) (6.1.5)

are assumed to meet the same BCs. Since nonhomogeneous BCs are in force, a

solution of the above boundary-value problem is defined in the mild sense (see
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Curtain and Zwart (1995)) as that of the corresponding integral equation, written

in terms of the strongly continuous semigroup, generated by the infinitesimal plant

operator.

The control task is to make the scalar field Q(ξ, t) to track a given reference

Qr(ξ, t) ∈ W 2,2(0, 1) which should be selected in accordance with the BCs (7.2.4)

and which also satisfies the following condition

Qr
t ∈ W 3,2(0, 1). (6.1.6)

6.1.1 Robust Control of the Reaction-Diffusion Process

Consider the deviation variable

x(ξ, t) = Q(ξ, t)−Qr(ξ, t) (6.1.7)

whose L2 norm will be driven to zero by the designed feedback control. The

dynamics of the error variable (6.1.7) are easily derived as

xt(ξ, t) = [θ1(ξ)xξ(ξ, t)]ξ + θ2(ξ)x(ξ, t) + u(ξ, t)−Qr
t (ξ, t) + η(ξ, t), (6.1.8)

with the “augmented” disturbance

η(ξ, t) = [θ1(ξ)Q
r
ξ(ξ, t)]ξ + θ2(ξ)Q

r(ξ, t) + ψ(ξ, t), (6.1.9)

and the next ICs and homogeneous mixed BCs

x(ξ, 0) = ω0(ξ)−Qr(ξ, 0) ∈ W 2,2(0, 1) (6.1.10)

x(0, t)− α0xξ(0, t) = x(1, t) + α1xξ(1, t) = 0. (6.1.11)

Assume what follows:

ASSUMPTION 6.1.1 There exist a priori known constants Θ1m, Θ1M and Θ2M

such that

0 < Θ1m ≤ θ1(ξ) ≤ Θ1M , |θ2(ξ)| ≤ Θ2M for all ξ ∈ [0, 1]. (6.1.12)

ASSUMPTION 6.1.2 There exist a priori known constants H0, ..., H3, Ψ0 and Ψ1

such that the following inequalities hold for all t ≥ 0

‖θ2(·)Qr
t (·, t)‖2 ≤ H0, ‖[θ2(ξ)Qr

t (·, t)]ξ‖2 ≤ H1, (6.1.13)

‖[θ1(ξ)Qr
ξ(·, t)]ξ t‖2 ≤ H2, ‖[θ1(ξ)Qr

ξ(·, t)]ξξ t‖2 ≤ H3, (6.1.14)

‖ψt(·, t)‖2 ≤ Ψ0, ‖ψtξ(·, t)‖2 ≤ Ψ1 (6.1.15)
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By the Assumption 6.1.2, it follows that the L2 norm of the augmented dis-

turbance time derivative ηt(ξ, t), and that of its spatial derivative, fulfill the next

conditions

‖ηt(·, t)‖2 ≤M, ‖ηtξ(·, t)‖2 ≤Mξ, ∀t ≥ 0 (6.1.16)

with

M = H2 +H0 +Ψ0, Mξ = H3 +H1 +Ψ1 (6.1.17)

The class of admissible “augmented” disturbances is further specified by the

following additional restriction, being introduced in Pisano et al. (2011a):

ASSUMPTION 6.1.3 There exist a priori known constantMx such that the follow-

ing restriction holds uniformly beyond the origin ‖x(·, t)‖2 = 0 in the state space

L2(0, 1):

|ηt(ξ, t)| ≤Mx
|x(ξ, t)|
‖x(·, t)‖2

, ∀t ≥ 0, ∀ξ ∈ [0, 1] (6.1.18)

It is worth noticing that according to the Assumption 6.1.3 an admissible dis-

turbance has a time derivative which is not necessarily vanishing as ‖x(·, t)‖2 → 0
because the norm of the right-hand side of the disturbance restriction (6.1.18) re-

mains unit according to relation

∥

∥

∥

|x(·,t)|
‖x(·,t)‖2

∥

∥

∥

2
= 1. Particularly, with Mx ≤ M a

finite-dimensional counterpart of (6.1.18) would not impose any further restric-

tions on admissible disturbances in addition to the first relation of (6.1.16).

It should also be noted that the assumptions on the ICs and BCs, made above,

allow us to deal with strong, sufficiently smooth solutions of the uncertain error

dynamics (6.1.8)-(6.1.11) in the open-loop when no control input is applied.

In order to stabilize the error dynamics it is proposed a dynamical distributed

controller defined as follows

u(ξ, t) = Qr
t (ξ, t)− λ1

√

|x(ξ, t)| sign(x(ξ, t))− λ2x(ξ, t) + v(ξ, t)

vt(ξ, t) = −W1
x(ξ, t)

‖x(·, t)‖2
−W2x(ξ, t), v(ξ, 0) = 0

(6.1.19)

which can be seen as a distributed version of the finite-dimensional “Super-Twisting”

second-order sliding-mode controller (see Fridman and Levant (1996); Levant

(1993)) complemented by a feed-forward term Qr
t (ξ, t) and by the two additional

proportional and integral linear terms −λ2x(ξ, t) and −W2x(ξ, t). For ease of

reference, the combined Distributed Super-Twisting/PI controller (6.1.19) will be

abbreviated as DSTPI.

The non-smooth nature of the DSTPI controller (6.1.19), that undergoes dis-

continuities on the manifold x = 0 due to the discontinous term
x(ξ,t)

‖x(·,t)‖2
, requires
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appropriate analysis about the meaning of the corresponding solutions for the re-

sulting discontinuous feedback system. The precise meaning of the solutions of

(6.1.8), (6.1.10), (6.1.11) with the piece-wise continuously differentiable control

input (6.1.19) can be defined in a generalized sense (see (Orlov (2009))) as a

limiting result obtained through a certain regularization procedure, similar to that

proposed for finite-dimensional systems (see Filippov (1988); Utkin (1992)).

According to this procedure, the strong solutions of the boundary-value problem

are only considered whenever they are beyond the discontinuity manifold x = 0
whereas in a vicinity of these manifolds the original system is replaced by a related

system, which takes into account all possible imperfections (e.g., delay, hystere-

sis, saturation, etc.) in the new input function uδ(x, ξ, t), for which there exists

a strong solution xδ(ξ, t) of the corresponding boundary-value problem with the

smoothed input uδ(x, ξ, t). In particular, a relevant approximation occurs when

the discontinous term U(x) = x(ξ,t)
‖x(·,t)‖2

is substituted by the smooth approximation

U δ(x) = x(ξ,t)
δ+‖x(·,t)‖2

. A generalized solution of the system in question is then ob-

tained through the limiting procedure by diminishing δ to zero, thereby making

the characteristics of the new system approach those of the original one. As in the

finite-dimensional case, a motion along the discontinuity manifold is referred to

as a “sliding mode”.

REMARK 6.1.1 The existence of generalized solutions, thus defined, has been

established within the abstract framework of Hilbert space-valued dynamic sys-

tems (cf., e.g., (Orlov , 2009, Theorem 2.4)) whereas the uniqueness and well-

posedness appear to follow from the fact that in the system in question, no sliding

mode occurs but in the origin x = 0. While being well-recognized for second or-

der sliding mode control algorithms if confined to the finite-dimensional setting,

this fact, however, remains beyond the scope of the present investigation.

The performance of the closed-loop system is analyzed in the next theorem.

THEOREM 6.1.1 Consider the perturbed diffusion/dispersion equation (6.1.1) along

with the boundary conditions (6.1.4) and with the system parameters, reference

trajectory and uncertain disturbance satisfying the Assumptions 6.1.1-6.1.3. Then,

the distributed control strategy (6.1.19) with the parameters λ1, λ2,W1 andW2 se-

lected according to

λ2 ≥ Θ2M , W1 ≥ max

{

M +
Θ1MMξ

2(λ2 −Θ2M)
,
1

2

Θ1M

Θ1m

Mξ, 2Mx

}

,

λ1 ≥ max

{

2M,
2Mx

W1

}

, W2 ≥ 0,

(6.1.20)

guarantees that the L2-norm ‖x(·, t)‖2 of the tracking error tends to zero as t tends

to infinity.
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Proof of Theorem 6.1.1. Let us define the auxiliary variable

δ(ξ, t) = v(ξ, t) + η(ξ, t) (6.1.21)

System (6.1.8) with the control law (6.1.19) yields the following closed-loop

dynamics in the new x− δ coordinates

xt(ξ, t) =[θ1(ξ)xξ(ξ, t)]ξ − λ1
√

|x(ξ, t)| sign(x(ξ, t))
− (λ2 − θ2(ξ))x(ξ, t) + δ(ξ, t),

(6.1.22)

δt(ξ, t) = −W1
x(ξ, t)

‖x(·, t)‖2
−W2x(ξ, t) + ηt(ξ, t). (6.1.23)

In order to simplify the notation, the dependence of the system coordinates from

the space and time variables (ξ, t) is omitted from this point on. Consider the

following Lyapunov functional

V1(t) = 2W1‖x‖2 +W2‖x‖22 +
1

2
‖δ‖22 +

1

2
‖s‖22 (6.1.24)

inspired from the finite-dimensional treatment (see Moreno and Osorio (2008)),

where

s = xt = [θ1(ξ)xξ]ξ − λ1
√

|x| sign(x)− [λ2 − θ2(ξ)]x+ δ. (6.1.25)

The time derivative of V1(t) is given by

V̇1(t) =
2W1

‖x‖2

∫ 1

0

xsdξ + 2W2

∫ 1

0

xsdξ

+

∫ 1

0

δδtdξ +

∫ 1

0

sstdξ

(6.1.26)

Let us evaluate the time derivative of the auxiliary signal s along the strong solu-

tions of (6.1.22)-(6.1.23)

st =[θ1(ξ)sξ]ξ −
1

2
λ1

s
√

|x|
− [λ2 − θ2(ξ)]s

−W1
x

‖x‖2
−W2x+ ηt

(6.1.27)

Substituting (6.1.23) and (6.1.27) into (6.1.26) and rearranging it yields

V̇1(t) =
2W1

‖x‖2

∫ 1

0

xsdξ + 2W2

∫ 1

0

xsdξ − W1

‖x‖2

∫ 1

0

δxdξ

− W2

∫ 1

0

δxdξ +

∫ 1

0

δηtdξ +

∫ 1

0

s[θ1(ξ)sξ]ξdξ −
1

2
λ1

∫ 1

0

s2dξ
√

|x|

−
∫ 1

0

[λ2 − θ2(ξ)]s
2dξ − W1

‖x‖2

∫ 1

0

xsdξ −W2

∫ 1

0

xsdξ +

∫ 1

0

sηtdξ

(6.1.28)
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which can be manipulated as follows by virtue of Assumption 6.1.1

V̇1(t) ≤ − W1

‖x‖2

∫ 1

0

x(δ − s)dξ −W2

∫ 1

0

x(δ − s)dξ +

∫ 1

0

s[θ1(ξ)sξ]ξdξ −

− 1

2
λ1

∫ 1

0

s2dξ
√

|x|
− [λ2 −Θ2M ]

∫ 1

0

s2dξ +

∫ 1

0

(δ + s)ηtdξ (6.1.29)

By (6.1.25), one has

δ − s = λ1
√

|x| sign(x) + [λ2 − θ2(ξ)]x− [θ1(ξ)xξ]ξ (6.1.30)

δ + s = 2s+ λ1
√

|x| sign(x) + [λ2 − θ2(ξ)]x− [θ1(ξ)xξ]ξ. (6.1.31)

Due to this, and considering once more the Assumption 6.1.1, (6.1.29) can further

be manipulated as

V̇1(t) ≤ −W1λ1
‖x‖2

∫ 1

0

x
√

|x| sign(x)dξ − W1[λ2 −Θ2M ]

‖x‖2

∫ 1

0

x2dξ +

∫ 1

0

sηtdξ

+
W1

‖x‖2

∫ 1

0

x[θ1(ξ)xξ]ξdξ −W2λ1

∫ 1

0

x
√

|x| sign(x)dξ − 1

2
λ1

∫ 1

0

s2dξ
√

|x|

−W2[λ2 −Θ2M ]

∫ 1

0

x2dξ +W2

∫ 1

0

x[θ1(ξ)xξ]ξdξ −
∫ 1

0

[θ1(ξ)xξ]ξηtdξ

+

∫ 1

0

s[θ1(ξ)sξ]ξdξ + λ1

∫ 1

0

√

|x| sign(x)ηtdξ

− [λ2 −Θ2M ]

∫ 1

0

s2dξ2− [λ2 −Θ2M ]

∫ 1

0

xηtdξ.

(6.1.32)

By taking into account the BCs (6.1.11) and their time derivatives, standard inte-

gration by parts yields
∫ 1

0

x[θ1(ξ)xξ]ξdξ =

−
∫ 1

0

θ1(ξ)x
2
ξdξ + θ1(1)x(1, t)xξ(1, t)− θ1(0)x(0, t)xξ(0, t)

≤ −Θ1m‖xξ‖22 − θ1(1)
x2(1, t)

α1

− θ1(0)
x2(0, t)

α0

,

(6.1.33)

∫ 1

0

s[θ1(ξ)sξ]ξdξ =

−
∫ 1

0

θ1(ξ)s
2
ξdξ + θ1(1)s(1, t)sξ(1, t)− θ1(0)s(0, t)sξ(0, t)

≤ −Θ1m‖sξ‖22 − θ1(1)
s2(1, t)

α1

− θ1(0)
s2(0, t)

α0

,

(6.1.34)
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∫ 1

0

[θ1(ξ)xξ]ξηtdξ =

−
∫ 1

0

θ1(ξ)xξηtξdξ + θ1(1)ηt(1, t)xξ(1, t)− θ1(0)ηt(0, t)xξ(0, t)

= −
∫ 1

0

θ1(ξ)xξηtξdξ − θ1(1)ηt(1, t)
x(1, t)

α1

− θ1(0)ηt(0, t)
x(0, t)

α0

.

(6.1.35)

Additional straightforward manipulations of (6.1.32) taking into account (6.1.33)

and (6.1.34) yield

V̇1(t) ≤ −W1[λ2 −Θ2M ]‖x‖2 −W2[λ2 −Θ2M ]‖x‖22 −W1Θ1m
‖xξ‖22
‖x‖2

− W1

‖x‖2
θ1(1)

x2(1, t)

α1

− W1

‖x‖2
θ1(0)

x2(0, t)

α0

−W2Θ1m‖xξ‖22

−W2θ1(1)
x2(1, t)

α1

−W2θ1(0)
x2(0, t)

α0

− [λ2 −Θ2M ]‖s‖22

−Θ1m‖sξ‖22 − θ1(1)
s2(1, t)

α1

− θ1(0)
s2(0, t)

α0

+ 2

∫ 1

0

sηtdξ

−W2λ1

∫ 1

0

|x|3/2dξ − 1

2
λ1

∫ 1

0

s2dξ
√

|x|
− W1λ1

‖x‖2

∫ 1

0

√

|x||x|dξ

+ λ1

∫ 1

0

√

|x| sign(x)ηtdξ + [λ2 −Θ2M ]

∫ 1

0

xηtdξ

+

∫ 1

0

θ1(ξ)xξηtξdξ + θ1(1)ηt(1, t)
x(1, t)

α1

+ θ1(0)ηt(0, t)
x(0, t)

α0

.

(6.1.36)

It is worth noting that by virtue of the tuning inequality λ2 > Θ2M in (6.1.20)

all terms appearing in the right hand side of (6.1.36) are negative definite except

those depending on the augmented disturbance term ηt and its spatial derivative.

Some estimations involving those sign-indefinite terms are now derived by simple

application of the Cauchy-Schwartz and Young’s inequalities and by consider-

ing the Assumptions 6.1.1 and 6.1.2, the BCs (6.1.11) and the derived conditions

(6.1.16)-(6.1.17):

2

∣

∣

∣

∣

∫ 1

0

sηtdξ

∣

∣

∣

∣

≤ 2

∫ 1

0

|s||ηt|dξ = 2

∫ 1

0

|s|
√

|ηt|
√

|ηt|
√

|x|
√

|x|
dξ

≤
∫ 1

0

|ηt|s2 + |ηt||x|
√

|x|
dξ ≤M

∫ 1

0

s2
√

|x|
dξ +

∫ 1

0

ηt
√

|x|dξ,

(6.1.37)

∣

∣

∣

∣

∫ 1

0

xηtdξ

∣

∣

∣

∣

≤
[∫ 1

0

x2dξ

]1/2 [∫ 1

0

η2t dξ

]1/2

≤M‖x‖2, (6.1.38)
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∣

∣

∣

∣

∫ 1

0

θ1(ξ)xξηtξdξ

∣

∣

∣

∣

≤ Θ1M

∫ 1

0

|xξ||ηtξ|dξ = Θ1M

∫ 1

0

|xξ|
√

|ηtξ|
√

|ηtξ|‖x‖2
‖x‖2

dξ

≤ 1

2
Θ1M

∫ 1

0

x2ξ |ηtξ|+ |ηtξ|‖x‖22
‖x‖2

dξ

≤ 1

2
Θ1MMξ

‖xξ‖22
‖x‖2

+
1

2
Θ1MMξ‖x‖2.

(6.1.39)

Taking into account (6.1.37)-(6.1.39), the right-hand side of (6.1.36) can be esti-

mated as

V̇1(t) ≤ −(λ2 −Θ2M)

[

W1 −M − Θ1MMξ

2(λ2 −Θ2M)

]

‖x‖2 −W2(λ2 −Θ2M)‖x‖22

−
[

W1Θ1m − 1

2
Θ1MMξ

] ‖xξ‖22
‖x‖2

−W2Θ1m‖xξ‖22 − (λ2 −Θ2M)‖s‖22

−Θ1m‖sξ‖22 −W2λ1

∫ 1

0

|x|3/2dξ − 1

2
(λ1 − 2M)

∫ 1

0

s2dξ
√

|x|

−
∫ 1

0

√

|x|
[

W1λ1
2‖x‖2

|x| − ηt

]

dξ − λ1

∫ 1

0

√

|x|
[

W1

2‖x‖2
|x| − ηt

]

dξ

− θ1(1)
|x(1, t)|
α1

[

W1

‖x‖2
|x(1, t)| − ηt(1, t)

]

− θ1(0)
|x(0, t)|
α0

[

W1

‖x‖2
|x(0, t)| − ηt(0, t)

]

−W2θ1(1)
x2(1, t)

α1

−W2θ1(0)
x2(0, t)

α0

− θ1(1)
s2(1, t)

α1

− θ1(0)
s2(0, t)

α0

.

(6.1.40)

By virtue of Assumption 6.1.3, the next inequalities guarantee that all terms in the

right hand side of (6.1.40) are negative definite

λ2 > Θ2M , W1 > M +
Θ1MMξ

2(λ2 −Θ2M)
, W2 > 0, W1 >

1

2

Θ1M

Θ1m

Mξ,

(6.1.41)

λ1 > 2M, W1λ1 > 2Mx, W1 > 2Mx, W1 > Mx (6.1.42)

The above inequalities collected together form the tuning conditions (6.1.20). To

complete the proof it remains to demonstrate that

‖x(·, t)‖2 → 0 as t→ ∞. (6.1.43)

For this purpose, let us integrate the relation

˙̃V (t) ≤ −(λ2 −Θ2M)

[

W1 −M − Θ1MMξ

2(λ2 −Θ2M)

]

‖x‖2, (6.1.44)
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straightforwardly resulting from the negative definiteness of all terms in the right

hand side of (6.1.40), to conclude that

∫ ∞

0

‖x(·, t)‖2dt <∞ (6.1.45)

The inequality V̇1(t) ≤ 0, which is readily concluded from (6.1.40) and (6.1.41)-

(6.1.42) in light of the Assumption 6.1.3, guarantees that V1(t) ≤ V1(0) for any

t ≥ 0. From this, and considering (6.1.24), one can conclude that the L2 norm of

s = xt fulfills the estimation

‖xt‖22 ≤ 2V1(0), ∀t ≥ 0 (6.1.46)

Thus, the integrand ω(t) = ‖x(·, t)‖2 of (6.1.45) possesses a uniformly bounded

time derivative

ω̇(t) =

∫ 1

0
xxtdξ

‖x‖2
≤ ‖xt‖2 ≤

√
2R (6.1.47)

on the semi-infinite time interval t ∈ [0,∞), whereR is any positive constant such

that R ≥ V1(0). Convergence (6.1.43) is then verified by applying the Barbalat

lemma (see Khalil (2002)). Since the Lyapunov functional (6.1.24) is radially un-

bounded the global asymptotic stability of the closed-loop system (6.1.8)-(6.1.11)

is thus established in the L2 space. Theorem 6.1.1 is proved. �

REMARK 6.1.2 If the spatially-varying profiles θ1(ξ), θ2(ξ) of the system parame-

ters are known, then a trivial modification of the suggested controller can be made

in order to ensure the same convergence property (6.1.43) with a time dependent

reference Qr(ξ, t) ∈ W 2,2, too. The corresponding modified controller is

u(ξ, t) = uff (ξ, t)− λ1
√

|x(ξ, t)| sign(x(ξ, t))− λ2x(ξ, t) + v(ξ, t),

vt(ξ, t) = −W1
x(ξ, t)

‖x(·, t)‖2
−W2x(ξ, t), v(ξ, 0) = 0, (6.1.48)

with the control parameters subject to the same tuning conditions (6.1.20) and the

additional feed-forward term

uff (ξ, t) = Qr
t (ξ, t)− [θ1(ξ)Q

r
ξ(ξ)]ξ − θ2(ξ)Q

r(ξ). (6.1.49)

The proof can be easily developed by observing that the resulting external dis-

turbance, affecting the corresponding error system, remains time-independent so

that the line of reasoning used in the proof of Theorem 6.1.1 is applicable here as

well. The detailed proof is thus omitted for brevity.
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6.2 Twisting Synthesis of Perturbed Wave Processes

We consider a class of uncertain infinite-dimensional systems whose (y, yt) solu-

tion is defined in the Hilbert space L2(0, 1)×L2(0, 1) and is governed by the next

hyperbolic PDE with spatially varying parameters

ytt(ξ, t) =
[

ν2(ξ)yξ
]

ξ
+ θ1(ξ)y(ξ, t) + θ2(ξ)yt(ξ, t) + u(ξ, t) + ψ(ξ, t) (6.2.1)

where y ∈ L2(0, 1) and yt ∈ L2(0, 1) are the state variables, ξ ∈ [0, 1] is the

monodimensional (1D) spatial variable, and t ≥ 0 is time. The spatially varying

coefficients ν2(·) ∈ C1(0, 1) represents the squared value of the wave velocity,

and θ1(·) ∈ C1(0, 1), θ2(·) ∈ C1(0, 1) are referred to, respectively, as the disper-

sion and damping coefficients, respectively. u(ξ, t) ∈ L2(0, 1) is the modifiable

source term (the distributed control input), and ψ(ξ, t) ∈ L2(0, 1) represents a

distributed uncertain disturbance source term. The spatially varying parameters

are supposed to be uncertain, too, and satisfying the next Assumption:

ASSUMPTION 6.2.1 There exist a priori known constants Υm, ΥM , Θ1 and Θ2

such that

0 < Υm ≤ ν2(ξ) ≤ ΥM , |θ1(ξ)| ≤ Θ1, |θ2(ξ)| ≤ Θ2, ∀ξ ∈ [0, 1].
(6.2.2)

We consider non-homogeneous mixed boundary conditions (BCs)

y(0, t)− β0yξ(0, t) = Y0(t) ∈ W 1,2(0,∞), (6.2.3)

y(1, t) + β1yξ(1, t) = Y1(t) ∈ W 1,2(0,∞), (6.2.4)

with some positive uncertain constants β0, β1 and functions Y0(t), Y1(t) ∈ C1(0,∞).
The initial conditions (ICs)

y(ξ, 0) = ϕ0(ξ) ∈ W 2,2(0, 1), yt(ξ, 0) = ϕ1(ξ) ∈ W 2,2(0, 1) (6.2.5)

where ϕ0(·), ϕ1(·) ∈ C1(0, 1) are also assumed to meet the boundary conditions

(BCs) imposed on the system. As in the diffusion equation case, nonhomogeneous

BCs are in general admitted, which is why a solution of the above boundary-value

problem is defined in the mild sense (see Curtain and Zwart (1995)) as that of

the corresponding integral equation, written in terms of the strongly continuous

semigroup, generated by the infinitesimal plant operator. The control task is

to make the position y(ξ, t) and the velocity yt(ξ, t) to exponentially track an

a priori given reference signal yr(ξ, t) and, respectively, its velocity yrt (ξ, t) in

the L2 space, regardless of whichever admissible disturbance ψ(ξ, t) affects the
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system. It is assumed throughout that the reference signal yr(ξ, t) and its time

derivatives are smooth enough in the sense that

yr(·, t) ∈ W 2,2(0, 1), yrt (·, t) ∈ W 2,2(0, 1), yrtt(·, t) ∈ L2(0, 1), ∀t ≥ 0
(6.2.6)

Apart from this, the reference signal is assumed to meet the actual BCs (6.2.3)-

(6.2.4).

The deviation variables

ỹ(ξ, t) = y(ξ, t)− yr(ξ, t), ỹt(ξ, t) = yt(ξ, t)− yrt (ξ, t) (6.2.7)

are to eventually be driven to zero in L2 norm by the controller to be designed. By

differentiating (6.2.7) and making appropriate substitutions an manipulations one

derives the next PDE governing the corresponding error dynamics

ỹtt(ξ, t) =
[

ν2(ξ)ỹξ
]

ξ
+ θ1(ξ)ỹ(ξ, t) + θ2(ξ)ỹt(ξ, t) + u(ξ, t)

+ ψ(ξ, t)− yrtt(ξ, t) +
[

ν2(ξ)ỹrξ
]

ξ
+ θ1(ξ)y

r(ξ, t) + θ2(ξ)y
r
t (ξ, t)

(6.2.8)

with the ICs

ỹ(ξ, 0) = ϕ0(ξ)−ϕr
0(ξ) ∈ W 2,2(0, 1), ỹt(ξ, 0) = ϕ1(ξ)−ϕr

1(ξ) ∈ W 2,2(0, 1)
(6.2.9)

and homogeneous BCs

ỹ(0, t)− β0ỹξ(0, t) = ỹ(1, t) + β1ỹξ(1, t) = 0. (6.2.10)

The assumptions on the ICs and BCs, made above, allow us to deal with

strong, sufficiently smooth solutions of the uncertain error dynamics (6.2.8)-(6.2.10)

in the open-loop when no control input is applied. Just in case, the open-loop sys-

tem locally possesses a unique (twice differentiable in time) strong solution ỹ(ξ, t)
which is defined in a standard manner (see Curtain and Zwart (1995)) as an abso-

lutely continuous function, almost everywhere satisfying the corresponding PDE

rather than its integral counterpart.

The class of reference signals and admissible disturbances is specified in the

next Assumptions.

ASSUMPTION 6.2.2 There exist a priori known constants H0, ..., H4 such that

the reference trajectory yr(ξ, t) and its spatial and temporal derivatives meet the

following inequalities for all t ≥ 0

‖yr(·, t)‖2 ≤ H0, ‖yrt (·, t)‖2 ≤ H1, ‖yrtt(·, t)‖2 ≤ H2, (6.2.11)

‖[ν2(ξ)yrξ(·, t)]ξ‖2 ≤ H3, ‖[ν2(ξ)yrtξ(·, t)]ξ‖2 ≤ H4 (6.2.12)
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ASSUMPTION 6.2.3 There exist a priori known constants Ψ0, Ψ1 such that the

disturbance ψ(ξ, t) and its temporal derivative meet the following inequalities for

all t ≥ 0
‖ψ(·, t)‖2 ≤ Ψ0 ‖ψt(·, t)‖2 ≤ Ψ1 ∀t ≥ 0 (6.2.13)

6.2.1 Distributed Sliding Manifold Design

Define the distributed sliding variable σ ∈ L2(0, 1) as follows

σ(ξ, t) = ỹt(ξ, t) + cỹ(ξ, t), c > 0 (6.2.14)

The motion of the system constrained on the sliding manifold σ(ξ, t) = 0 is

governed by the corresponding simple first-order ordinary differential equation

ỹt(ξ, t) + cỹ(ξ, t) = 0 with the spatial variable ξ to be viewed as a parameter,

whose solution ỹ(ξ, t) norm along with its time derivative exponentially tend to

zero in L2(0, 1). Hence the control task can be reduced to the simplified problem

of steering to zero the L2 norm of the distributed sliding variable.

In order to simplify the notation, the dependence of the system signals from the

space and time variables (ξ, t) will be generally omitted from this point on. Con-

sider the first- and second-order time derivatives of the above defined distributed

sliding variable σ

σt = ỹtt + cỹt, σtt = ỹttt + cỹtt (6.2.15)

Differentiating the error dynamics (6.2.8) yields

ỹttt =
[

ν2(ξ)ỹtξ
]

ξ
+ θ1(ξ)ỹt + θ2(ξ)ỹtt

+ ut + ψt − yrttt + [ν2(ξ)yrtξ]ξ + θ1(ξ)y
r
t + θ2(ξ)y

r
tt,

(6.2.16)

and now substituting (6.2.8) and (6.2.16) into the second of (6.2.15) results after

simple manipulations in

σtt =
[

ν2(ξ)(ỹtξ + cỹξ)
]

ξ
+ θ1(ξ) [ỹt + cỹ]

+ θ2(ξ) [ỹtt + cỹt] + ut + cu− yrttt − cyrtt + ψ
(6.2.17)

where

ψ = ψt + cψ+ [ν2(ξ)(yrtξ + cyrξ)]ξ + θ1(ξ)(y
r
t + cyr) + θ2(ξ)(y

r
tt + cyrt ) (6.2.18)

is an uncertain “augmented” disturbance depending on both the disturbance ψ and

the reference trajectory yr, and their derivatives. By exploiting the Assumptions
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6.2.1, 6.2.2 and 6.2.3, it follows that the next restriction on the L2 norm of the

augmented disturbance ψ holds for all t ≥ 0

‖ψ(·, t)‖2 ≤M ≡ Ψ1 + cΨ0 + (H4 + cH3) + Θ1(H1 + cH0) + Θ2(H2 + cH1)
(6.2.19)

After simple additional manipulations one obtains that the sliding variable σ
is governed by a PDE which is formally equivalent to the original wave equation

(6.2.1) with a new fictitious control variable v which dynamically depends on the

input u, according to

σtt = [ν2(ξ)σξ]ξ + θ1(ξ)σ + θ2(ξ)σt + v − yrttt − cyrtt + ψ (6.2.20)

v = ut + cu. (6.2.21)

equipped with the appropriate ICs and the homogeneous BCs

σ(0, t)− β0σξ(0, t) = σ(1, t) + β1σξ(1, t) = 0. (6.2.22)

6.2.2 Combined PD/Sliding-Mode Control of the Wave Process

In order to stabilize the uncertain dynamics (6.2.20), (6.2.22) the following dis-

tributed controller

v = yrttt + cyrtt −W1σ −W2σt − λ1
σ

‖σ(·, t)‖2
− λ2

σt
‖σt(·, t)‖2

(6.2.23)

is proposed for generating the fictitious control v. Controller (6.2.23) can be

viewed as a mixed linear/sliding mode control algorithm, with a feed-forward

term, a linear PD-type feedback term, and with the discontinuous feedback term

being a distributed version of the finite-dimensional “Twisting” controller, which

belongs to the class of so-called “second-order sliding-mode” controllers (2-SMCs)

(see Levant (1993)).

It is worth to discuss how the actual control input u(ξ, t) should be recovered

from v(ξ, t) once the latter has been computed according to (6.2.23). In relation

(6.2.21) the spatial variable ξ can be viewed as a fixed parameter. By virtue of

this fact, (6.2.21) can be interpreted as a continuum of first-order ODEs whose

parameterized solutions give rise to the actual control input to be applied to the

wave equation. The transfer function block 1
s+c

(with s being the Laplace variable

and c being the positive constant in (6.2.14)) can effectively represent the relation

between signals v(ξ, t) (considered as the block input) and u(ξ, t) (considered as

the block output). The plant control u(ξ, t), obtained at the output of a dynamical

filter driven by the discontinuous control v(ξ, t), will be therefore a continuous

signal with a discontinuus time derivative ut(ξ, t) = v(ξ, t)− cu(ξ, t).
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The solution concept of the wave process (6.2.20)-(6.2.22) subject to the con-

trol strategy (6.2.23) is defined in the same manner as that of the diffusion process

dealt with in the Section 2.

The exponential stability of the generalized wave equation subject to the con-

trol strategy (6.2.23), (7.2.10), (6.2.14) is demonstrated in Theorem 6.2.1, given

below.

THEOREM 6.2.1 Consider the generalized wave equation (6.2.1) along with the

initial and boundary conditions (6.2.5) and (6.2.3), and whose parameters, ref-

erence trajectory and external disturbance satisfy the Assumptions 6.2.1, 6.2.2

and 6.2.3. Consider the associated error variable (6.2.7) and the sliding vari-

able (6.2.14). Then, the distributed control strategy (6.2.23) with the parameters

W1,W2, λ1 and λ2 such that

W1 > Θ1, W2 > Θ2, λ2 > M, λ1 > λ2 +M, (6.2.24)

guarantees the exponential decay of the L2 norms ‖ỹ(·, t)‖2 and ‖ỹt(·, t)‖2 of the

solutions of 6.2.20 - 6.2.22 .

Proof of Theorem 6.2.1

Let us refer to the sliding variable dynamics (6.2.20) along with the boundary

conditions (6.2.22). The closed-loop sliding variable dynamics is easily obtained

by substituting (6.2.23) into (6.2.20), which yields

σtt = [ν2(ξ)σξ]ξ − (W1 − θ1(ξ))σ − (W2 − θ2(ξ))σt−
λ1

σ

‖σ(·, t)‖2
− λ2

σt
‖σt(·, t)‖2

+ ψ
(6.2.25)

By the first and the second tuning inequality 6.2.24, conditions W1 − θ1(ξ) >
0 and W2 − θ2(ξ) > 0 hold for any admissible value of θ1(ξ) and θ2 for ξ ∈
[0, 1](in accordance with the Assumption 6.2.2). Consider the following Lyapunov

functional Ṽ (t)

Ṽ (t) =
1

2
‖
√

W1 − θ1(ξ) σ‖22 + λ1‖σ‖2 +
1

2
‖σt‖22+

1

2
‖ν(ξ)σξ‖22 +

1

2

ν2(0)

β0
σ2(0, t) +

1

2

ν2(1)

β1
σ2(1, t)

(6.2.26)

The time derivative of Ṽ (t) is given by

˙̃V (t) =

∫ 1

0

(W1 − θ1(ξ)) σσtdξ +
λ1

‖σ‖2

∫ 1

0

σσtdξ +

∫ 1

0

σtσttdξ

+

∫ 1

0

ν2(ξ)σξσξtdξ +
ν2(0)

β0
σ(0, t)σt(0, t) +

ν2(1)

β1
σ(1, t)σt(1, t)

(6.2.27)
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By evaluating (6.2.27) along the solutions of (6.2.25), it turns out that

˙̃V (t) =−
∫ 1

0

(W2 − θ2(ξ))σσtdξ − λ2‖σt‖2 +
∫ 1

0

σtψdξ

+
ν2(0)

β0
σ(0, t)σt(0, t) +

ν2(1)

β1
σ(1, t)σt(1, t)

+

∫ 1

0

[ν2(ξ)σξ]ξσtdξ +

∫ 1

0

ν2(ξ)σξσξtdξ.

(6.2.28)

The last term in the right hand side of (6.2.28) can be integrated by parts, and

taking into account the homogeneous boundary conditions (6.2.22) it yields

∫ 1

0

ν2(ξ)σξσξtdξ =

[ν2(1)σξ(1, t)σt(1, t)− ν2(0)σξ(0, t)σt(0, t)]−
∫ 1

0

[ν2(ξ)σξ]ξσtdξ =

− ν2(1)

β1
σ(1, t)σt(1, t)−

ν2(0)

β0
σ(0, t)σt(0, t)−

∫ 1

0

[ν2(ξ)σξ]ξσtdξ

(6.2.29)

which leads to the simplified form of
˙̃V (t):

˙̃V (t) = −
∫ 1

0

(W2 − θ2(ξ))σσtdξ − λ2‖σt‖2 +
∫ 1

0

σtψdξ (6.2.30)

By employing the Cauchy-Schwartz inequality (see Krstic and Smyshlyaev (2008))

and taking into account (6.2.19), one derives that

∣

∣

∣

∣

∫ 1

0

σtψdξ

∣

∣

∣

∣

≤
∫ 1

0

|σtψ|dξ ≤ ‖σt‖2‖ψ‖2 ≤M‖σt‖2 (6.2.31)

Then by (6.2.30) and (6.2.31) it follows that

˙̃V (t) ≤ −(W2 −Θ2)‖σt‖22 − (λ2 −M)‖σt‖2 (6.2.32)

which implies, considering 6.2.24, that the Lyapunov functional V (t) is a non-

increasing function of time, i.e.

Ṽ (t2) ≤ Ṽ (t1) ∀t2 ≥ t1 ≥ 0, (6.2.33)

Denote

DR =
{

(σ, σt) ∈ L2(0, 1)× L2(0, 1) : Ṽ (σ, σt) ≤ R
}

(6.2.34)
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Clearly, by virtue of (6.2.33), taking any R ≥ V (0) the resulting domain DR

will be invariant for the error system trajectories. Our subsequent analysis will

take into account that the states (σ, σt) belong to the domain DR starting from the

initial time t = 0 on. Note that the knowledge of the constant R is not required

(see also the Remark 2).

We now demonstrate a simple Lemma that will be used along the proof.

Lemma 1. If the states (σ, σt) belong to the domain DR (6.2.34) then the

following estimates hold:

‖σt‖22 ≤
√
2R‖σt‖2 (6.2.35)

∫ 1

0

σσt dξ ≥ −1

2

[

R

λ1
‖σ‖2 + ‖σt‖22

]

(6.2.36)

Proof of Lemma 1.

Equation (6.2.35) comes from the following trivial chain of implications

Ṽ (t) ≤ R ⇒ 1

2
‖σt‖22 ≤ R ⇒ ‖σt‖2 ≤

√
2R ⇒ ‖σt‖22 ≤

√
2R‖σt‖2

(6.2.37)

A similar procedure results in

Ṽ (t) ≤ R ⇒ λ1‖σ‖2 ≤ R ⇒ ‖σ‖2 ≤
R

λ1
(6.2.38)

By applying the well-known inequality ab ≥ −1
2
(a2 + b2) it follows that

∫ 1

0

σσt dξ ≥ −1

2

[

‖σ‖22 + ‖σt‖22
]

= −1

2

[

‖σ‖2‖σ‖2 + ‖σt‖22
]

(6.2.39)

Being coupled together, relations (6.2.37)-(6.2.39) yield (6.2.36), which proves

the Lemma. �

Now consider the “augmented” functional

VR(t) = Ṽ (t) + κR

∫ 1

0

σσt dξ +
1

2
κR‖

√

W2 − θ2(ξ) σ‖22 =

=
1

2
‖
√

W1 − θ1(ξ) σ‖22 + λ1‖σ‖2 +
1

2
‖σt‖22 +

1

2
‖ν(ξ)σξ‖22

+
1

2

ν2(0)

β0
σ2(0, t) +

1

2

ν2(1)

β1
σ2(1, t)

+ κR

∫ 1

0

σσt dξ +
1

2
κR‖

√

W2 − θ2(ξ) σ‖22

(6.2.40)
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where κR is a positive constant. In light of the Lemma 1, function VR(t) can be

estimated as

VR(t) ≥
1

2
(W1 −Θ1 + κR(W2 −Θ2)) ‖σ‖22 +

(

λ1 −
κRR

2λ1

)

‖σ‖2

+
1

2
(1− κR)‖σt‖22 +

1

2
‖ν(ξ)σξ‖22 +

1

2

ν2(0)

β0
σ2(0, t) +

1

2

ν2(1)

β1
σ2(1, t)

(6.2.41)

Since W1 − Θ1 > 0 and W2 − Θ2 > 0, as previously noticed, then, provided

that the positive coefficient κR is selected sufficiently small according to

0 < κR ≤ min

{

2λ21
R
, 1

}

, (6.2.42)

the augmented functional (6.2.40) is thus proved to be positive definite within the

invariant domain DR, and it can be then used as a candidate Lyapunov functional

to analyze the stability of the error dynamics. Let us compute the time derivative

of VR(t) along the solutions of (6.2.25). Simple manipulations yield

V̇R(t) = −‖
√

W2 − θ2(ξ) σt‖22 − λ2‖σt‖2 +
∫ 1

0

σtψdξ

+ κR‖σt‖22 + κR

∫ 1

0

[ν2(ξ)σξ]ξσdξ − κR‖
√

W1 − θ1(ξ) σ‖22

− κRλ1‖σ‖2 −
κRλ2
‖σt‖2

∫ 1

0

σσtdξ + κR

∫ 1

0

σψdξ.

(6.2.43)

Let us compute upperbounds to the sign-indefinite terms of (6.2.43). Equation

(6.2.31) has previously been derived, which is rewritten in a similar form with the

signal σ replacing σt:

κR

∣

∣

∣

∣

∫ 1

0

σψdξ

∣

∣

∣

∣

≤ κR

∫ 1

0

|σψ|dξ ≤ κRM‖σ‖2 (6.2.44)

Apart from this, the next inequality can readily be derived by employing the

Couchy-Schwartz inequality (see Krstic and Smyshlyaev (2008)):

κRλ2
‖σt‖2

∣

∣

∣

∣

∫ 1

0

σσtdξ

∣

∣

∣

∣

≤ κRλ2
‖σt‖2

∫ 1

0

|σσt| dξ

≤ κRλ2
‖σt‖2

√

∫ 1

0

σ2dξ

√

∫ 1

0

σ2
t dξ = κRλ2‖σ‖2

(6.2.45)
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Then, the following estimate can be written by substituting (6.2.44) and (6.2.45)

into (6.2.43), considering the Assumption 6.2.1, and noticing that the equality

κR

∫ 1

0

[ν2(ξ)σξ]ξ σdξ = −ν
2(1)

β1
σ2(1, t)− ν2(0)

β0
σ2(0, t)−‖ν2(ξ)σξ‖22 (6.2.46)

holds due to the BCs (6.2.22):

V̇R(t) ≤ −(W2 −Θ2)‖σt‖22 − ρ‖σt‖2 − κR(λ1 − λ2 −M)‖σ‖2

− κR(W1 −Θ1)‖σ‖22 − κRΥm‖σξ‖22 −
ν2(1)

β1
σ2(1, t)− ν2(0)

β0
σ2(0, t),

(6.2.47)

ρ =
(

λ2 −M − κR
√
2R
)

, (6.2.48)

Therefore, employing the parameter tuning conditions (6.2.24) and introduc-

ing one more restriction

κR ≤ min

{

2λ21
R
, 1,

λ2 −M√
2R

}

(6.2.49)

about the coefficient κR beyond (6.2.42), it readily follows that all terms appearing

in the right-hand side of (6.2.47) are negative definite. It can be then concluded

that

V̇R(t) ≤ −cR
(

‖σ‖2 + ‖σ‖22 + ‖σt‖2 + ‖σt‖22 + ‖σξ‖22 + σ2(1, t) + σ2(0, t)
)

,
(6.2.50)

where

cR = min

{

W2 −Θ2, ρ, κR(W1 −Θ1), κR(λ1 − λ2 −M), κRΥm,
Υm

β1
,
Υm

β0

}

(6.2.51)

Applying the Cauchy-Schwartz integral inequality and considering (6.2.38)

yields
∣

∣

∣

∣

∫ 1

0

σσt dξ

∣

∣

∣

∣

≤ ‖σσt‖1 ≤ ‖σ‖2‖‖σt‖2 ≤
R

λ1
‖σt‖2 (6.2.52)

Now substituting (6.2.52) into (6.2.40) and upper-estimating further the result-

ing right-hand side in light of the Assumption 6.2.1 yields the next estimation

VR(t) ≤ wR

(

‖σ‖22 + ‖σ‖2 + ‖σt‖22 + ‖σt‖2 + ‖σξ‖22 + σ2(1, t) + σ2(0, t)
)

(6.2.53)

wR = max

{

1

2
(W1 −Θ1 + κR(W2 −Θ2)) , λ1,

1

2
, κR

R

λ1
,
1

2
ΥM ,

ΥM

β1
,
ΥM

β0

}

(6.2.54)
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Hence, the following differential inequality holds

V̇R(t) ≤ −c1VR(t), c1 =
cR
wR

(6.2.55)

thereby ensuring the exponential convergence of ‖σ‖2, ‖σt‖2, and ‖σξ‖2 to zero

as t → ∞. It remains to prove that the L2 norm of the tracking error ỹ(ξ, t) and

that of its derivative tend exponentially to zero. Indeed, the inequality

‖σ(·, t)‖2 ≤ c2VR(t), c2 =
2λ1

2λ21 − κRR
, (6.2.56)

is straightforwardly derived from (6.2.41) whereas by (6.2.14), the spatiotemporal

evolution of ỹ(ξ, t) is governed by

ỹt(ξ, t) = −cỹ(ξ, t) + σ(ξ, t), c > 0. (6.2.57)

In (6.2.57), the sliding variable σ(ξ, t) can be viewed as an external driving input,

exponentially decaying in L2 norm according to (6.2.56). Then computing the

time derivative of the Lyapunov functional W (t) = ‖ỹ‖2 along dynamics (6.2.57)

yields

Ẇ (t) = −cW (t) +
1

W (t)

∫ 1

0

ỹσdξ (6.2.58)

Since
∣

∣

∣

∣

∫ 1

0

ỹσdξ

∣

∣

∣

∣

≤ ‖ỹ‖2‖σ‖2 ≤ W (t)‖σ‖2 (6.2.59)

by combining (6.2.56), (6.2.58) and (6.2.59) it follows that

Ẇ (t) ≤ −cW (t) + ‖σ‖2 ≤ −cW (t) + c2VR(t). (6.2.60)

It is now clear that relations (6.2.55)-(6.2.57), and (6.2.60), coupled together, en-

sure the exponential decay of ‖ỹ(·, t)‖2 and ‖ỹt(·, t)‖2. Theorem 1 is thus proved.

�

6.3 Numerical Simulations

For solving the PDEs governing the closed-loop systems, standard finite-difference

approximation method is used by discretizing the spatial solution domain ξ ∈
[0, 1] into a finite number of N uniformly spaced solution nodes ξi = ih, h =
1/(N + 1), i = 1, 2, ..., N . The value N = 100 has been used in the present sim-

ulations. The resulting 100-th order discretized system is implemented in Matlab-

Simulink and solved by fixed-step Euler integration method with constant step

Ts = 10−4s.
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6.3.1 Reaction-Diffusion equation

Consider the perturbed Reaction-Diffusion equation (7.2.1) with the spatially vary-

ing parameters given by

θ1(ξ) = 0.1 + 0.02 sin(1.3πξ), (6.3.1)

θ2(ξ) = 1 + 0.1 sin(3.5πξ), (6.3.2)

mixed-type BCs

Q(0, t)− α0Qξ(0, t) = Q(1, t) + α1Qξ(1, t) = 20− 5π, (6.3.3)

and ICs

Q(ξ, 0) = 20 + 10sin(6πξ). (6.3.4)

We choose the next spatially varying reference profile

Qr(ξ, t) = 20 + 5sin(πξ), (6.3.5)

which meets the actual BCs. A spatially varying disturbance term is considered

in the form

ψ(ξ) = 5sin(2.5πξ). (6.3.6)

By (6.3.2), the bound Θ2M in (7.2.8)can be readily overestimated by any Θ2M >
1.1 Then, the controller gains are set in accordance with (6.1.20) to the values

W1 = 20, λ1 = 20, W2 = 20, λ2 = 20. (6.3.7)

The left plot in Figure 6.1 depicts the solution Q(ξ, t), which converges to the

given reference profile as confirmed by the contractive evolution of the tracking

error L2 norm ‖x(·, t)‖2 shown n the Figure 6.1-right. Figure 6.2 depicts the

control input u(ξ, t) which, as expected, appears to be a smooth function of both

time and space. The attained results confirm the validity of the presented analysis.

6.3.2 Generalized wave equation

Consider the perturbed equation (6.2.1) with spatially-varying parameters:

ν2(ξ) = 0.1 + 0.02 sin(2πξ), (6.3.8)

θ1(ξ) = −(1 + sin(1.2πξ)), (6.3.9)

θ2(ξ) = −(5 + 3 sin(3πξ)), (6.3.10)
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Figure 6.1: The solution Q(ξ, t) (top plot) and the tracking error L2 norm (bottom

plot) for the controlled reaction-diffusion equation
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Figure 6.2: Distributed control input u(ξ, t) of the controlled reaction-diffusion

equation.

and mixed BC’s

y(0, t)− yξ(0, t) = y(1, t) + yξ(1, t) = 0. (6.3.11)

The bounds Θ1 = 2, Θ2 = 8 to the uncertain system parameters (see the Assump-

tion 3.1) are taken into account for the controller tuning. The initial conditions in

(6.2.5) are set to ϕ0(ξ) = 10 sin(6πξ), ϕ1(ξ) = 0. The reference profile is set to

yr(ξ, t) = 2 sin(πξ) sin(πt). The bounds H0 = 2 , H1 = 6, H2 = 20, H3 = 3,

H4 = 96 to the norms of its derivatives as in (6.2.11)-(6.2.12) are considered. The

disturbance is set to ψ(ξ, t) = 10 sin(5πξ) sin(2πt). The upperbounds Ψ0 = 10 ,

Ψ1 = 63, are considered in the restrictions (6.2.13). The distributed sliding man-

ifold σ(ξ, t) has been implemented with the parameter c = 2. Parameter M in

(6.2.19) is chosen as M = 400. The controller parameters are set in accordance

with (6.2.24) as W1 = 2,W2 = 10, λ2 = 500 and λ1 = 1000. Figure 6.3.2 re-

ports two different views of the solution y(ξ, t). Figures 6.3.2 and 6.5 show the

corresponding plots of the distributed control u(ξ, t) and of the tracking error L2

norm ‖ỹ(·, t)‖2. Good performance of the proposed control algorithm is con-

cluded from the graphics that confirm the theoretical properties of the proposed

distributed controller. The continuity of the applied distributed control input par-

ticularly follows from the inspection of Figure 6.3.2.
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Figure 6.3: Different views of the solution y(ξ, t) of the controlled generalized

wave equation.



6.3 Numerical Simulations 80

Figure 6.4: Generalized wave equation test: distributed control u(ξ, t).

Figure 6.5: Generalized wave equation test: Tracking error L2 norm ‖ỹ(·, t)‖2.



Chapter 7

Boundary Sliding Mode control

design

In this chapter the Boundary control for the uncertain diffusion equation with un-

known disturbance on the actuation is illustrated. At first section we develop the

Boundary control stabilization problem of a one-dimensional uncertain reaction-

diffusion process powered with a Dirichlet type actuator from one of the bound-

aries. The heat flux at the controlled boundary is the only measured signal, the

uncertain diffusion and reaction parameters are admitted to be spatially varying,

and the system is also affected by a sufficiently smooth boundary disturbance,

which is not available for measurements and can be also unbounded in magni-

tude. The proposed robust synthesis is based on a dynamic input extension, and

it is formed by the relay control algorithm and a linear term, suitably combined.

A continuous stabilizing boundary control law is suggested to achieve exponen-

tial stability under some restrictions on the uncertain parameters spatial profiles

characterstics.

In the second section the heat process is governed by an uncertain parabolic

partial differential equation (PDE) with mixed boundary conditions. The process

exhibits an unknown spatially varying diffusivity parameter, and is affected by a

smooth uncertain boundary disturbance which is, possibly, unbounded in magni-

tude. The proposed robust synthesis is formed by the linear feedback design and

by the “Twisting” second-order sliding-mode control algorithm, suitably com-

bined and re-worked in the infinite-dimensional setting.

A non-standard Lyapunov functional is invoked to prove the global asymptotic

stability of the resulting closed-loop systems in a suitable Sobolev space. The

proofs are accompanied by a set of simple tuning rules for the controller parame-

ters. The effectiveness of the developed controls scheme are always supported by

simulation results.
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7.1 Boundary Sliding-mode Control of

Uncertain Reaction-Diffusion Processes

Topics in this section have been published by the author in Orlov et al. (2012b).

We address the stabilization problem for a class of reaction-diffusion processes

with spatially varying uncertain coefficients and subject to an external boundary

disturbance. Dirichlet-type boundary actuation is assumed, and the heat flux in

the controlled boundary is the only required sensing. The proposed controller,

whose effectiveness requires some restrictions on the spatial profiles of the uncer-

tain parameters, provides for the global exponential stability of the system in the

space W 1,2(0, 1). With respect to the closely related work Cheng et al. (2011),

where a constant-parameters reaction-diffusion was studied, we allow the system

parameters to be spatially varying and, furthermore, we achieve exponential sta-

bility in a larger Sobolev space involving spatial derivatives up to the first order

In Cheng et al. (2011) only constant parameters were taken into account, and sta-

bility was only assured in the standard L2(0, 1) space. It is worth to mention that

in the above publication unstable reaction processes were dealt with by means of

a backstepping transformation (see Krstic and Smyshlyaev (2008)) requiring the

distributed measurement of the state variable over the entire spatial domain. In

this paper we limit the scope of our investigations to control systems based on

boundary control and sensing, only, which makes it impossible, or at least very

challenging, to cover the unstable case. The main contribution of this paper is,

thus, the asymptotic rejection of a possibly unbounded disturbance by means of

a continuous control action rather than the boundary stabilization of an internally

unstable reaction-diffusion process which was achieved in Cheng et al. (2011)

under more restrictive conditions on the plant equations and assuming the avail-

ability of distributed sensing.

7.1.1 Problem statement

Consider the space- and time-varying scalar field w(x, t) evolving in a Sobolev

space W 1,2(0, 1) where x ∈ [0, 1] is the monodimensional spatial variable and

t ≥ 0 is the time variable. Let it be governed by the following reaction-diffusion

equation with spatially-varying parameters

wt(x, t) = [θ(x)wx(x, t)]x − c(x)w(x, t) (7.1.1)

where θ(·) ∈ C1(0, 1) is the positive-definite spatially-varying diffusivity param-

eter and c(·) ∈ C1(0, 1) is the spatially-varying reaction parameter. The initial

condition (IC) is

w(x, 0) = w0(x) ∈ W 2,2(0, 1). (7.1.2)
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Throughout, we consider controlled and perturbed Dirichlet-type BC’s of the

form

w(0, t) = 0, w(1, t) = u(t) + ψ(t), (7.1.3)

where u(t) ∈ R is a modifiable source term (boundary control input) and ψ(t) ∈ R

is an uncertain and sufficiently smooth disturbance.

The heat flux wx(1, t) at the controlled boundary is the only measured signal.

The class of initial functions and admissible disturbances is specified by the

following assumption.

ASSUMPTION 7.1.1 The initial function (7.1.2) is compatible to the next per-

turbed BC’s

w0(0) = 0, w0(1) = ψ(0) (7.1.4)

whereas the disturbance ψ(t) is twice continuously differentiable, and there exists

a constant M such that

|ψt(t)| ≤M, t ≥ 0 (7.1.5)

The spatially varying parameters of the system are supposed to satisfy the next

restrictions

ASSUMPTION 7.1.2 There exist constants Θm, ΘM1, Cm, CM1, Θx and Cx such

that

0 < Θm ≤ θ(x), ∀x ∈ [0, 1]

θ(1) < ΘM1

Cm ≤ c(x), ∀x ∈ [0, 1]

|c(1)| ≤ CM1

|θx(x)| ≤ Θx ∀x ∈ [0, 1].

|cx(x)| ≤ Cx ∀x ∈ [0, 1].

(7.1.6)

The task is that of guaranteeing the global asymptotic stability of the system

trajectories in the space W 1,2(0, 1) despite the uncertainty in the system parame-

ters and the effects of the boundary disturbance.

Note that the sign of constant Cm in (7.1.6) is unspecified. If it is negative,

then the resulting system may be open loop unstable.

ASSUMPTION 7.1.3 The constantsM , ΘM1, and CM1 are a-priori known, and the

following restrictions are further assumed on the system parameters:

Θx ≤ 2Θm (7.1.7)
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Θm + 2Cm ≥ Cx +
Θx +ΘM1 + CM1

2
(7.1.8)

The proposed dynamic controller is

ut(t) = −λ1wx(1, t) − λ2 sign wx(1, t), u(0) = 0 (7.1.9)

where λ1, λ2, are constant tuning parameters, is currently under study, where,

according to (7.1.4), the initial control value u(0) is set to zero to verify the com-

patibility1 w0(1) = u(0) + ψ(0) to the BC’s (7.1.3) The time derivative of the

control (7.1.9) is composed of a continuous linear part (the first member) and a

discontinuous part. The actual plant control u(t), calculated by integrating the

discontinuous derivative (7.1.9), will be therefore a continuous function of time.

7.1.2 Main result

To achieve the control goal, the system state is augmented through a dynamic

input extension by inserting an integrator at the plant input. The performance of

the closed-loop system is analyzed in the next theorem.

THEOREM 7.1.1 Consider the reaction-diffusion equation (7.1.1) along with the

initial and boundary conditions (7.1.2), (7.1.3), and with the system parame-

ters and uncertain disturbance satisfying the Assumptions 7.1.1, 7.1.2, and 7.1.3.

Then, the dynamical boundary control strategy (7.1.9) with the parameters λ1, λ2
selected according to the inequalities

λ1 >
ΘM1 + CM1

2
, λ2 > M, (7.1.10)

guarantees the global asymptotic stability of the closed-loop system in the space

W 1,2(0, 1).

Proof of Theorem 7.1.1. We take the next Lyapunov function

V (t) =
1

2
||w(·, t)||21,2 =

1

2
||w(·, t)||22 +

1

2
||wx(·, t)||22 (7.1.11)

whose time derivative is

V̇ (t) =

∫ 1

0

w(ξ, t)wt(ξ, t) dξ

+

∫ 1

0

wx(ξ, t)wxt(ξ, t) dξ

(7.1.12)

1See, e.g., Vazquez and Krstic (2007) for the need of certain compatibility conditions in the

dynamic boundary control synthesis.
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Let us evaluate the two integral terms in (7.1.12) along the solutions of (7.1.1)-

(7.1.4) with the boundary control (7.1.9), (7.1.10). The first integral is manipu-

lated as
∫ 1

0

w(ξ, t)wt(ξ, t) dξ

=

∫ 1

0

w(ξ, t) [[θ(ξ)wx(ξ, t)]x − c(ξ)w(ξ, t)] dξ

=

∫ 1

0

w(ξ, t) [θ(ξ)wx(ξ, t)]x dξ −
∫ 1

0

c(ξ)w2(ξ, t) dξ

(7.1.13)

The first term in the right hand side of (7.1.13) can be integrated by parts, and

further manipulated by taking account (7.1.6) and the BCs (7.1.3) as

∫ 1

0

w(ξ, t) [θ(ξ)wx(ξ, t)]x dξ = θ(1)w(1, t)wx(1, t)

− θ(0)w(0, t)wx(0, t)−
∫ 1

0

θ(ξ)w2
x(ξ, t) dξ

≤ θ(1)w(1, t)wx(1, t)−Θm||wx(·, t)||22

(7.1.14)

Concerning the term
∫ 1

0
c(ξ)w2(ξ, t) dξ, by (7.1.6) it can be estimated as

−
∫ 1

0

c(ξ)w2(ξ, t) dξ ≤ −Cm||w(·, t)||22 (7.1.15)

If Cm is negative then the estimation (7.1.15) implies a destabilizing effect as

it adds a positive contribution into the right hand side of (7.1.12).

The second integral term in (7.1.12) can be integrated by parts and then eval-

uated along the solutions of (7.1.1)-(7.1.4), yielding

∫ 1

0

wx(ξ, t)wξt(ξ, t) dξ = wt(1, t)wx(1, t)

− wt(0, t)wx(0, t)−
∫ 1

0

wt(ξ, t)wxx(ξ, t) dξ

= wt(1, t)wx(1, t)−
∫ 1

0

wxx(ξ, t)[θ(ξ)wx(ξ, t)]x dξ

+

∫ 1

0

c(ξ)w(ξ, t)wxx(ξ, t) dξ

(7.1.16)

Substituting the dynamic controller (7.1.9) into the first term of (7.1.16) we get

wt(1, t)wx(1, t) = wx(1, t)[ut(t) + ψt(t)]

= −λ1w2
x(1, t)− λ2wx(1, t)sign wx(1) + ψt(t)wx(1, t)

(7.1.17)
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Let us resolve and manipulate separately the two integral terms of (7.1.16).

One obtains

−
∫ 1

0

wxx(ξ, t)[θ(ξ)wx(ξ, t)]x dξ

= −
∫ 1

0

wxx(ξ, t)[θx(ξ)wx(ξ, t) + θ(ξ)wxx(ξ, t)] dξ

= −
∫ 1

0

θx(ξ)wx(ξ, t)wxx(ξ, t) dξ −
∫ 1

0

θ(ξ)w2
xx(ξ, t) dξ

≤ −
∫ 1

0

θx(ξ)wx(ξ, t)wxx(ξ, t) dξ −Θm||wxx(·, t)||22

(7.1.18)

The sign-indefinite term
∫ 1

0
θx(ξ)wx(ξ, t)wxx(ξ, t) dξ can be estimated by means

of the triangle inequality as

∣

∣

∣

∣

∫ 1

0

θx(ξ)wx(ξ, t)wxx(ξ, t) dξ

∣

∣

∣

∣

≤ Θx

∫ 1

0

|wx(ξ, t)wxx(ξ, t)| dξ

≤ Θx

2
||wx(·, t)||22 +

Θx

2
||wxx(·, t)||22

(7.1.19)

By considering (7.1.19) into (7.1.18) it yields

−
∫ 1

0

wxx(ξ, t)[θ(ξ)wx(ξ, t)]x dξ

≤ −
[

Θm − Θx

2

]

||wxx(·, t)||22 +
Θx

2
||wx(·, t)||22

(7.1.20)

Integrating by parts the last term in (7.1.16), and considering the BCs (7.1.3), one

obtains

∫ 1

0

c(ξ)w(ξ, t)wxx(ξ, t) dξ

= c(1)w(1, t)wx(1, t)−
∫ 1

0

cx(ξ)w(ξ, t)wx(ξ, t) dξ

−
∫ 1

0

c(ξ)w2
x(ξ, t) dξ

(7.1.21)

Let us estimate the integral terms appearing in the right hand side of (7.1.21).

Considering (7.1.6), and by applying the triangle inequality, the sign-indefinite
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integral
∫ 1

0
cx(ξ)w(ξ, t)wx(ξ, t) dξ can be estimated as

∣

∣

∣

∣

∫ 1

0

cx(ξ)w(ξ, t)wx(ξ, t) dξ

∣

∣

∣

∣

≤ Cx

∫ 1

0

|w(ξ, t)wx(ξ, t)| dξ

≤ Cx

2
||w(·, t)||22 +

Cx

2
||wx(·, t)||22

(7.1.22)

Concerning the term
∫ 1

0
c(ξ)w2

x(ξ, t) dξ , by (7.1.6) it can be estimated as

−
∫ 1

0

c(ξ)w2
x(ξ, t) dξ ≤ −Cm‖wx(·, t)‖22 (7.1.23)

If Cm is negative then the estimation (7.1.23) implies a destabilizing effect as

it adds a positive contribution into the right hand side of (7.1.12).

By collecting together the above derived relationships (7.1.13)-(7.1.23) it can

be further manipulated (7.1.12) as

V̇ (t) ≤ θ(1)w(1, t)wx(1, t)−Θm||wx(·, t)||22
− Cm||w(·, t)||22 − λ1w

2
x(1, t)− λ2|wx(1, t)|+ ψt(t)wx(1, t)

−
[

Θm − Θx

2

]

||wxx(·, t)||22 +
Θx

2
||wx(·, t)||22

+ c(1)w(1, t)wx(1, t) +
Cx

2
||w(·, t)||22 +

Cx

2
||wx(·, t)||22

− Cm‖wx(·, t)‖22 ≤ −
[

Θm + Cm − Θx

2
− Cx

2

]

||wx(·, t)||22
− Cm||w(·, t)||22 − λ1w

2
x(1, t)− (λ2 −M)|wx(1, t)|

−
[

Θm − Θx

2

]

||wxx(·, t)||22 +
Cx

2
||w(·, t)||22

+ (θ(1) + c(1))w(1, t)wx(1, t)

(7.1.24)

By (7.1.6), and by applying Young’s inequality, one can derive the next esti-

mation

|(θ(1) + c(1))w(1, t)wx(1, t)| ≤
ΘM1 + CM1

2
w2(1, t)

+
ΘM1 + CM1

2
w2

x(1, t)

(7.1.25)

By (7.1.3), the next relation holds

w(1, t) =

∫ 1

0

wx(ξ, t) dξ, (7.1.26)
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Squaring both sides of (7.1.26), and successively applying simple estimations tak-

ing into account relation (A.0.3), it yields

w2(1, t) =

[∫ 1

0

wx(ξ, t) dξ

]2

≤
[∫ 1

0

|wx(ξ, t)| dξ
]2

= ||wx(·, t)||21 ≤ ||wx(·, t)||22,
(7.1.27)

Thus by considering (7.1.27) into (7.1.25) we get

|(θ(1) + c(1))w(1, t)wx(1, t)| ≤
ΘM1 + CM1

2
||wx(·, t)||22

+
ΘM1 + CM1

2
w2

x(1, t)

(7.1.28)

By considering (7.1.28) into (7.1.24) one further obtains

V̇ (t) ≤ −
[

Θm + Cm − Θx + Cx +ΘM1 + CM1

2

]

||wx(·, t)||22

−
[

λ1 −
ΘM1 + CM1

2

]

w2
x(1, t)− (λ2 −M)|wx(1, t)|

−
[

Θm − Θx

2

]

||wxx(·, t)||22 +
[

Cx

2
− Cm

]

||w(·, t)||22

(7.1.29)

The last term in (7.1.29) can be bounded by exploiting the relation

||w(·, t)||22 < ||wξ(·, t)||22 (7.1.30)

that holds due to the BCs (7.1.3). It yields

[

Cx

2
− Cm

]

||w(·, t)||22 ≤
[

Cx

2
− Cm

]

||wx(·, t)||22 (7.1.31)

Thus it can be manipulated (7.1.29) as

V̇ (t) ≤

−
[

Θm + 2Cm − Cx −
Θx +ΘM1 + CM1

2

]

||wx(·, t)||22

−
[

λ1 −
ΘM1 + CM1

2

]

w2
x(1, t)− (λ2 −M)|wx(1, t)|

−
[

Θm − Θx

2

]

||wxx(·, t)||22

(7.1.32)
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Due to the relations (7.1.8), (7.1.7), and the tuning conditions (7.1.10), all

terms in the right hand side of (7.1.32) are negative definite. Let

ρ =

[

Θm + 2Cm − Cx −
Θx +ΘM1 + CM1

2

]

(7.1.33)

which is strictly positive due to (7.1.8). The next chain of inequalities can be

derived by (7.1.32) and (7.1.30)

V̇ (t) ≤ −ρ||wx(·, t)||22 = −1

2
ρ||wx(·, t)||22 −

1

2
ρ||wx(·, t)||22

≤ −1

2
ρ||w(·, t)||22 −

1

2
ρ||wx(·, t)||22 = ρV (t)

(7.1.34)

relation (7.1.34) proves the global asymptotic stability of the closed-loop sys-

tem in the space W 1,2(0, 1). The Theorem is proven, �.

7.1.3 Simulation results

Consider the perturbed heat equation (7.1.1)-(7.1.3) with the next spatially varying

diffusivity and reaction coefficient:

θ(x) = 2 + 0.2 sin(0.5πx), (7.1.35)

c(x) = −0.1 sin(πx), (7.1.36)

The disturbance ψ(t) is set to

ψ(t) = cos(2πt) + t. (7.1.37)

The initial conditions have been set to

w0(x) = 2 sin(πx). (7.1.38)

The magnitude of the disturbance time derivative ψt can be easily upper-estimated

as M = 7.5. The constants in (7.1.2) are easily estimated as well according to:

Θm = 2, ΘM1 = 2, Θx = 0.4,

Cm = −0.1, CM1 = 0, Cx = 0.4.
(7.1.39)

The restrictions (7.1.7)-(7.1.8) are satisfied and the controller (7.1.9) has been im-

plemented with the parameters λ1 = 1, λ2 = 8, which are selected in accordance

with (7.1.10).

For solving the PDE, governing the closed-loop system behaviour, a standard

finite-difference approximation method is used by discretizing the spatial solution
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domain ξ ∈ [0, 1] into a finite number of N uniformly spaced solution nodes

ξi = ih, h = 1/(N + 1), i = 1, 2, ..., N . The boundary nodes ξ0 = 0 and ξN+1

are not included in the state vector of the discretized system. The value N = 80
has been used in the presented simulations. The resulting 80-th order discretized

system is solved by fixed-step Euler method with step Ts = 0.001s. The Figure

7.1 shows the open loop solution w(x, t) with no feedback control (u(t)=0). The

unbounded growth of the state is due to the selected external dusturbance (7.2.76),

which grows unbluded and is not compensated by the boundary feedback control

which is set to zero in this first test. Figures 7.2 and 7.3 show the solution w(x, t)
in the “controlled” test, and the corresponding applied boundary control u(t). The

figure 7.2 confirms the satisfactory performance of the control system, in terms of

state stabilization, while figure 7.3 shows that, as expected, the applied boundary

control is a continuous signal.

Figure 7.1: The w(x, t) solution in the open-loop test (u(t) = 0).

Using a sliding mode control algorithm with a linear term, the problem of the

boundary global asymptotic stabilization of an uncertain heat process is solved

in the presence of a persistent smooth disturbance, which is generally speacking

with an arbitrary shape. The proposed control law is synthesized by passing a cer-

tain discontinuous output through an integrator, it is therefore continuous, and the

chattering phenomenon is thus attenuated. Along with this, the proposed infinite-

dimensional treatment retains robustness features against non-vanishing matched

disturbances similar to those possessed by its finite-dimensional counterpart.
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Figure 7.2: The w(x, t) solution with the suggested feedback control.

Figure 7.3: The boundary control u(t).
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7.2 Boundary second-order sliding-mode control

The topics of this section are based on Orlov et al. (2011c).

The primary concern of the section is the regulation of an uncertain heat pro-

cess with collocated boundary sensing and actuation. The boundary control prob-

lem for heat processes was studied, e.g., in Boskovic et al. (2001); Fridman and

Orlov (2009); Krstic and Smyshlyaev (2008b) under more strict assumptions

on the admitted uncertainties and perturbations compared to those made in the

present work. Here we address the boundary control problem for an uncertain

heat process, governed by a parabolic partial differential equation (PDE) with

a scalar spatial variable ξ ∈ [0, 1] and with Robin’s boundary conditions (i.e.,

mixed boundary conditions are admitted in contrast to that of Pisano and Orlov

(2011b) where only Neumann’s ones were under study). An appropriate exten-

sion of second-order sliding mode (2-SM) control techniques Fridman and Levant

(1996); Orlov (2009) allows us to address the following main features:

• The diffusivity parameter is admitted to be uncertain

• Only collocated boundary sensing and actuation are assumed to be avail-

able.

• The proposed controller is simple to implement and to tune, and rejects a

class of non-vanishing matched perturbations of arbitrary shape, possibly

unbounded in magnitude, requiring just the knowledge of a constant upper

bound to the magnitude of the disturbance time derivative.

• The plant input is continuous, whereas its first-order time derivative is dis-

continuous.

• The global asymptotic stability of the error system is achieved in the Sobolev

space W 2,2(0, 1).

In the closely related recent publication Chen et al. (1996) a similar problem

has been studied by combining an integral-type first-order sliding mode controller

and a backstepping transformation (see Krstic and Smyshlyaev (2008)). A sim-

ilar dynamics as that considered in the present paper, with Dirichlet (instead of

Robin’s) BCs, has been dealt with in the above work. However, the controller

tuning inequalities resulting from the presented Lyapunov analysis depend on the

spatiotemporal derivatives of the solution, which are, normally, not available for

feedback in practice, thereby making the result presented in Chen et al. (1996) of

local nature. The main advances we achieve in the present work as compared to

Pisano and Orlov (2011b) are listed:
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• The positive diffusivity parameter is admitted to have an uncertain spatially-

varying profile, whereas it was assumed constant in Pisano and Orlov

(2011b)

• Mixed BCs are considered here, whereas just Neumann BCs were consid-

ered in Pisano and Orlov (2011b)

• A space varying reference is considered in the present work whereas a con-

stant (i.e., time- and spatially-invariant) reference was taken into account in

Pisano and Orlov (2011b).

In the resulting closed-loop system, the discontinuous 2-SM controller is con-

nected to the plant input through a dynamical filter (an integrator) thereby aug-

menting the system state with its time derivative. While passing through the fil-

ter, the discontinuous signal is smoothed out, and the so-called chattering phe-

nomenon, extremely undesired in practice, is thus attenuated. Due to such a dy-

namic input extension, the global asymptotic stabilization of the underlying un-

certain heat process is achieved in a stronger norm of a Sobolev space, involving

spatial state derivatives up to the second order. The stability proof is based on

a non-smooth Lyapunov functional construction and it leads to a set of simple

tuning rules for the controller parameters.

7.2.1 Problem formulation

Consider the space- and time-varying scalar field Q(ξ, t) with the monodimen-

sional spatial variable ξ ∈ [0, 1] and time variable t ≥ 0. Let it be governed by

a perturbed version of the parabolic PDE which is commonly referred to as the

“Heat Equation”:

Qt(ξ, t) = [θ(ξ)Qξ(ξ, t)]ξ (7.2.1)

where Qt and Qξξ denote temporal and second-order spatial derivatives, respec-

tively, and θ(·) ∈ C1(0, 1) is a positive-definite spatially-varying parameter called

thermal conductivity (or, more generally, diffusivity). The initial condition (IC) is

given by

Q(ξ, 0) = Q0(ξ) ∈ W 2,2(0, 1). (7.2.2)

Throughout, we assume controlled and perturbed Robin’s (i.e., mixed) bound-

ary conditions (BCs) of the form

Qξ(0, t) = α0Q(0, t) + β0 (7.2.3)

Qξ(1, t) = −α1Q(1, t) + β1 + u(t) + ψ(t), (7.2.4)
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where αi and βi (i = 0, 1), are proper constants such that α0 ≥ 0 and α1 ≥ 0,

u(t) ∈ R is a modifiable source term (boundary control input) and ψ(t) ∈ R

represents an uncertain sufficiently smooth disturbance.

We consider the time-independent and spatially varying referenceQr(ξ) which

satisfies the boundary value problem

[θ(ξ)Qr
ξ(ξ)]ξ = 0 (7.2.5)

Qr
ξ(0) = α0Q

r(0) + β0 (7.2.6)

Qr(1) = Qr
1 (7.2.7)

for an arbitrary, user-selectable, constant Qr
1.

The class of admissible disturbances is specified by the following restriction

on their time derivative.

ASSUMPTION 7.2.1 The disturbance ψ(t) is differentiable and there exists an a

priori known constant M such that

|ψt(t)| ≤M (7.2.8)

for almost all t ≥ 0.

The spatially varying diffusivity is supposed to satisfy the next restriction

ASSUMPTION 7.2.2 There exist a priori known constants Θm, ΘM such that

0 < Θm ≤ θ(ξ) ≤ ΘM , ∀ξ ∈ [0, 1]. (7.2.9)

With the assumptions above the evolution of the considered heat process is

studied in the Sobolev space W 2,2(0, 1) and the control objective is to steer the

W 2,2-norm of the deviation

x(ξ, t) = Q(ξ, t)−Qr(ξ) (7.2.10)

of the scalar field Q(ξ, t) from the a priori given reference to zero, despite the

presence of an uncertain, arbitrarily shaped, smooth boundary disturbance ψ(t)
fulfilling the Assumption 1. Boundary sensing at ξ = 1 of the deviation x(ξ, t)
and of its time derivative xt(ξ, t) is assumed to be the only available information

on the state of the system. The deviation variable x(ξ, t) is governed by the heat

equation

xt(ξ, t) = [θ(ξ)xξ(ξ, t)]ξ (7.2.11)

subject to the next Robin-type BCs

xξ(0, t)− α0x(0, t) = 0 (7.2.12)

xξ(1, t) + α1x(1, t) = u(t) + ψ(t) + γ1, (7.2.13)
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with the constant

γ1 = β1 −Qr
ξ(1)− α1Q

r
1, (7.2.14)

which can be derived by considering (7.2.10), and its spatial derivative xξ(ξ, t) =
Qξ(ξ, t)−Qr

ξ(ξ), along with the conditions (7.2.4) and (7.2.7). The corresponding

ICs are

x(ξ, 0) = x0(ξ), x0(ξ) = Q0(ξ)−Qr(ξ) (7.2.15)

It is worth noticing that the disturbance-free system (7.2.11)-(7.2.15) in open-loop

is only stable, rather than asymptotically stable. Thus, the modifiable control vari-

able u(t) should be designed in order to make the zero solution x(ξ, t) = 0 of the

closed-loop system (7.2.11)-(7.2.15) globally asymptotically stable in the W 2,2-

space despite the presence of an unknown disturbance ψ(t) affecting the state of

the system through its boundary. Since non-homogeneous boundary conditions

are in force, the meaning of the boundary-value problem (7.2.11)-(7.2.15) is sub-

sequently viewed in the mild sense.

The mild solutions, if any, coincide with those of the following PDE in distri-

butions

xt(ξ, t) = [θ(ξ)xξ(ξ, t)]ξ + θ(1)[u(t) + ψ(t) + γ1]δ(ξ − 1) (7.2.16)

subject to the homogeneous Robin BCs

xξ(0, t)− α0x(0, t) = 0 (7.2.17)

xξ(1, t) + α1x(1, t) = 0, (7.2.18)

and to the ICs (7.2.15). Indeed, (weak) solutions of the boundary-value prob-

lem (7.2.16)-(7.2.18) are defined by means of the corresponding Green function,

yielding the same integral equation

7.2.2 Main result

To achieve the control goal, the system state is augmented through a dynamic

input extension by inserting an integrator at the plant input. The control derivative

ut(t) is then regarded as a fictitious control variable to be generated by a suitable

feedback mechanism.

The following dynamic controller

ut(t) = −λ1sign x(1, t)− λ2sign xt(1, t)−W1x(1, t)

− W2xt(1, t) u(0) = 0 (7.2.19)

is currently under study, where the initial condition u(0) is set to zero for certainty.

In the above relation, λ1, λ2, W1 and W2 are constant parameters subject to the
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inequalities

λ2 > M, λ1 > λ2 +M, W1 >
1

2

ΘM

Θm

, W2 > 0, (7.2.20)

The time derivative (7.2.19) of the control input contains a discontinuous part

(the first two terms) and a continuous linear part. The discontinuous components

implement the well-known “Twisting” 2-SMC algorithm Levant (1993). The

combined use of the Twisting and linear feedback was suggested in Orlov (2009).

The main novelty here is the application of this algorithm to regulate an infinite

dimensional system from its boundary.

REMARK 7.2.1 Since the dynamic control input is governed by the ordinary dif-

ferential equation (7.2.19) with discontinuous (multi-valued) right-hand side, the

precise meaning of the solutions of the distributed parameter system (7.2.11)-

(7.2.15), driven by the discontinuous dynamic controller (7.2.19), is then speci-

fied in the sense of Filippov (1988). Extension of the Filippov concept towards

the infinite-dimensional setting may be found in Levaggi (2002); Orlov (2009).

As in the finite-dimensional case, a motion along the discontinuity manifold is

referred to as a sliding mode.

The proposed dynamic controller makes explicit use ofQ(1, t) andQt(1, t) for

feedback. Despite the state derivative is normally not permitted to use in the syn-

thesis (as it generally induces algebraic loops) its use becomes acceptable when a

dynamic input extension is performed, similar to that of the present paper where

the input signal passes through an integrator. By virtue of this, the system state

is augmented by Qt being viewed as a component of the augmented state vector

(Q,Qt). We simply assume the following.

ASSUMPTION 7.2.3 The closed-loop system (7.2.16)-(7.2.19) possesses a unique

mild solution x(·, t) ∈ W 2,2(0, 1) whose time derivative xt(·, t) ∈ W 2,2(0, 1−)2

constitutes a (weak) solution of the distribution boundary-value problem

xtt(ξ, t) = [θ(ξ)xtξ(ξ, t)]ξ + θ(1){ut[y](t) + ψt(t)}δ(ξ − 1) (7.2.21)

xtξ(0, t)− α0xt(0, t) = 0,

xtξ(1, t) + α1xt(1, t) = 0. (7.2.22)

with respect to xt(ξ, t), which is formally obtained by differentiating (7.2.16)-

(7.2.18) in the time variable.

2This inclusion means (see the Notation Subsection 1.1 for the meaning of W 2,2(0, 1−)) that

at any time instant xt(·, t) ∈ W 2,2(0, 1− ε) for any ε ∈ (0, 1), i.e., xt, along with a regular com-

ponent of class W 2,2(0, 1), may contain an impulsive (Dirac) function, atomized at the boundary

ξ = 1.
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Since relation (7.2.16), coupled to Assumption 2, ensures that xt(·, t) ∈ W l,2(0, 1−
ε) for l = 0, 1, 2 and any ε ∈ (0, 1), whereas ‖xt(·, t)‖W l,2(0,1+ε) escapes to infinity

for an arbitrarily small positive ε, it becomes reasonable to define the W l,2-norm

of xt(·, t) on the interval (0, 1) as follows

‖xt‖l,2 = lim
ε↓0

‖xt‖W l,2(0,1−ε), l = 0, 1, 2. (7.2.23)

Clearly, given xt ∈ W l,2(0, 1), l = 0, 1, 2 (that occurs if u + ψ ≡ 0), the

above norm coincides with the standard W l,2-norm. Behind this, relation (7.2.23)

extends the W l,2-norm concept to those distributions xt, which are regular within

the interval (0, 1) and singular components of which are atomized at the bound-

ary ξ = 1. The above definitions of the W l,2-norms (with l = 0, 1, 2) of the

time derivative of the mild solutions in question apply throughout. The following

relation

‖xt‖2 = ‖[θ(ξ)xξ(ξ, t)]ξ‖2 (7.2.24)

being valid on the mild solutions, is particularly concluded from (7.2.16) and

(7.2.23) with l = 0.

Along with the technical lemmas of the next subsection, relation (7.2.24) will

be instrumental in our further derivation. We are now in a position to state our

main result.

THEOREM 7.2.1 Consider the perturbed heat process (7.2.1)-(7.2.4) subject to

the dynamic control strategy (7.2.19), (7.2.20). Let Assumptions 1 and 2 be sat-

isfied. Then the solutions (x, xt) of the resulting error boundary-value problem

(7.2.21)-(7.2.22) are globally asymptotically stable in the space W 2,2(0, 1) ×
L2(0, 1−) .

Instrumental Lemmas

We now present several technical lemmas that will be instrumental in the subse-

quent proof of Theorem 7.2.1.

LEMMA 7.2.1 Let z(ξ) ∈ L2(0, 1). Then, the following inequality holds:

‖z(·)‖1 ≤ ‖z(·)‖2 (7.2.25)

Proof of Lemma 7.2.1: Given z(ξ), h(ξ) ∈ L2(0, 1), the Cauchy-Schwartz

inequality states that

∫ 1

0

|z(ξ)h(ξ)|dξ ≤
√

∫ 1

0

z2(ξ)dξ

√

∫ 1

0

h2(ξ)dξ. (7.2.26)
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Setting h(ξ) = 1 straightforwardly specifies (7.2.26) to relation (7.2.25). Lemma

7.2.1 is proved. �

LEMMA 7.2.2 Let z(ξ) ∈ W 1,2(0, 1). Then, the following inequality holds:

‖z(·)‖22 ≤ 2(z2(i) + ‖zξ(·)‖22), i = 0, 1. (7.2.27)

Proof of Lemma 7.2.2: Given z(ξ) ∈ W 1,2(0, 1), it is absolutely continuous

and therefore,

z(ξ) = z(0) +

∫ ξ

0

zξ(η)dη, for any ξ ∈ [0, 1]. (7.2.28)

which, considering Lemma 1, can be estimated as

|z(ξ)| ≤ |z(0)|+
∫ ξ

0

|zξ(η)|dη ≤ |z(0)|+
∫ 1

0

|zξ(η)|dη

= |z(0)|+ ‖zξ(·)‖1 ≤ |z(0)|+ ‖zξ(·)‖2 (7.2.29)

Now squaring both sides of (7.2.29), applying the well-known inequality 2ab <
a2+b2, and integrating both sides over the spatial domain ξ ∈ [0, 1], yield (7.2.27)

with i = 0. The proof of (7.2.27) with i = 1 becomes identical under the change

of coordinate ζ = 1− ξ. Lemma 7.2.2 is proved. �

LEMMA 7.2.3 The functional

Ṽ (x, xt) = λ1θ(1)|x(1, t)|+
1

2
θ(1)W1x

2(1, t)

+
1

2
‖xt(·, t)‖22, (7.2.30)

being computed on the mild solutions (x, xt) of the boundary-value problem (7.2.21)-

(7.2.22), upper estimates the weighted W 2,2(0, 1) × L2(0, 1−)-norm of these so-

lutions in the sense that

α(‖x(·, t)‖22,2,θ + ‖xt(·, t)‖22) ≤ Ṽ (x, xt) (7.2.31)

for at an arbitrary time instant t ≥ 0 and some positive constant α

Proof of Lemma 7.2.3: Successively applying relation (7.2.27) with i = 1 to a

mild solution z = x(ξ, t) and then to the term z = θ(ξ)xξ(ξ, t) yields

‖x(·, t)‖22 ≤ 2(x2(1, t) + ‖xξ(·, t)‖22), (7.2.32)

‖θ(·)xξ(·, t)‖22 ≤ 2(θ2(1)x2ξ(1, t) + ‖[θ(·)xξ(·, t)]ξ‖22). (7.2.33)
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By exploiting the next relation

Θ2
m‖xξ(·, t)‖22 ≤ ‖θ(·)xξ(·, t)‖22 ≤ Θ2

M‖xξ(·, t)‖22, (7.2.34)

which is a trivial consequence of (7.2.9), it can be further manipulated (7.2.33) so

as to obtain

‖xξ(·, t)‖22 ≤ 2

Θ2
m

(Θ2
Mx

2
ξ(1, t) + ‖[θ(·)xξ(·, t)]ξ‖22) =

= ρ1x
2
ξ(1, t) + ρ2‖[θ(·)xξ(·, t)]ξ‖22 (7.2.35)

with the positive constants ρ1 and ρ2 beng implicitly defined. By taking into

account the BC (7.2.18), the above relations (7.2.32) and (7.2.35) can be rewritten

in the form

‖x(·, t)‖22 ≤ 2x2(1, t) + 2ρ1α
2
1x

2(1, t)

+2ρ2‖[θ(·)xξ(·, t)]ξ‖22 (7.2.36)

‖xξ(·, t)‖22 ≤ ρ1α
2
1x

2(1, t) + ρ2‖[θ(·)xξ(·, t)]ξ‖22. (7.2.37)

Employing relation (7.2.24), it follows from (7.2.36)-(7.2.37) that

‖x(·, t)‖22,2,θ = ‖x(·, t)‖22 + ‖xξ(·, t)‖22 + ‖[θ(·)xξ(·, t)]ξ‖22
≤ (2 + 3ρ1α

2
1)x

2(1, t) + (3ρ2 + 1)‖[θ(·)xξ(·, t)]ξ‖22
= (2 + 3ρ1α

2
1)x

2(1, t) + (3ρ2 + 1)‖xt(·, t)‖22

and taking into account (7.2.30), the validity of (7.2.31) is thus concluded for all

t ≥ 0 and for some positive α. Lemma 7.2.3 is proved. �

LEMMA 7.2.4 Let a set

DṼ
R = {(z(ξ), h(ξ)) ∈ W 2,2(0, 1)× L2(0, 1−) :

Ṽ (z, h) ≤ R} (7.2.38)

be determined by means of functional (7.2.30) and be specified with some positive

R. Then the following conditions

∫ 1

0

z(1)h(ξ) dξ ≥ −1

2

[

R

λ1Θm

|z(1)|+ ‖h‖22
]

(7.2.39)

‖h‖22 ≤ 2R, ‖h‖2 ≤
√
2R, ‖h‖22 ≤

√
2R‖h‖2 (7.2.40)

hold for an arbitrary (z(ξ), h(ξ)) ∈ DṼ
R .
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Proof of Lemma 7.2.4: The following implications hold in light of the inequal-

ities (7.2.9):

Ṽ (z, h) = θ(1)λ1|z(1)|+
1

2
θ(1)W1z

2(1) +
1

2
‖h‖22 ≤ R

⇒ θ(1)λ1|z(1)| ≤ R

⇒ |z(1)| ≤ R

λ1θ(1)
≤ R

λ1Θm

(7.2.41)

Furthermore, applying the well-known inequality ab ≥ −1
2
(a2 + b2) yields:

∫ 1

0

z(1)h(ξ) dξ ≥ −1

2
(z2(1) + ||h||22)

= −1

2
(|z(1)||z(1)|+ ||h||22).

(7.2.42)

Being coupled together, (7.2.41) and (7.2.42) immediately result in (7.2.39). In

turn, the relations (7.2.40) follow from the trivial chain of implications (that con-

sider the positive definiteness of θ(1)):

Ṽ (z, h) = θ(1)λ1|z(1)|+
1

2
θ(1)W1z

2(1) +
1

2
‖h‖22 ≤ R

⇒ 1

2
‖h‖22 ≤ R ⇒ ‖h‖2 ≤

√
2R ⇒

⇒ ‖h‖22 ≤
√
2R‖h‖2. (7.2.43)

Lemma 7.2.4 is thus proved. �

proof of Theorem 7.2.1

By Lemma 7.2.3, functional (7.2.30) is positive definite along the mild solutions

(x, xt) of the boundary-value problem (7.2.21)-(7.2.22). The time derivative of

(7.2.30) along such solutions is

˙̃V (t) = λ1θ(1)xt(1, t)sign(x(1, t))

+ W1θ(1)x(1, t)xt(1, t) +

∫ 1

0

xtxttdξ

= λ1θ(1)xt(1, t)sign(x(1, t)) +W1θ(1)x(1, t)xt(1, t)

+

∫ 1

0

xt ([θ(ξ)xtξ(ξ, t)]ξ + θ(1)[ut(t) + ψt(t)]δ(x− 1)) dξ

= λ1θ(1)xt(1, t)sign(x(1, t)) +W1θ(1)x(1, t)xt(1, t)

+

∫ 1

0

xt[θ(ξ)xtξ(ξ, t)]ξdξ + θ(1)xt(1, t)[ut(t) + ψt(t)]. (7.2.44)
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The integral term in the right hand side of (7.2.44), being integrated by parts by

taking into account the homogeneous BC’s (7.2.22), yields

∫ 1

0

xt[θ(ξ)xtξ(ξ, t)]ξdξ = θ(1)xt(1, t)xtξ(1, t)

−θ(0)xt(0, t)xtξ(0, t)−
∫ 1

0

θ(ξ)x2tξdξ =

−θ(1)α1x
2
t (1, t)− θ(0)α0x

2
t (0, t)−

∫ 1

0

θ(ξ)x2tξdξ (7.2.45)

By substituting (7.2.19) into the last term of (7.2.44) one obtains

θ(1)xt(1, t)[ut(t) + ψt(t)] = θ(1)xt(1, t)ut(t)

+θ(1)xt(1, t)ψt(t) = −θ(1)λ1 xt(1, t)sign x(1, t)
−θ(1)λ2xt(1, t)sign xt(1, t)− θ(1)W1xt(1, t)x(1, t)

−θ(1)W2x
2
t (1, t) + θ(1)xt(1, t)ψt(t)

and the next simplification

˙̃V (t) = −λ2θ(1)|xt(1, t)| − θ(1)(W2 + α1)x
2
t (1, t)

−
∫ 1

0

θ(ξ)x2tξdξ − θ(0)α0x
2
t (0, t)

+ θ(1)xt(1, t)ψt(t) (7.2.46)

of the time derivative (7.2.44) of the Lyapunov functional (7.2.30) is then ob-

tained. Due to the upper bound (7.2.8) on the time derivative of the boundary

disturbance, one obtains

|θ(1)xt(1, t)ψt(t)| ≤ θ(1)M |xt(1, t)|, (7.2.47)

By (7.2.47), and considering as well the inequality (7.2.9), relation (7.2.46) is

further manipulated to

˙̃V (t) ≤ −Θm(λ2 −M)|xt(1, t)| −Θm(W2 + α1)x
2
t (1, t)

− Θmα0x
2
t (0, t)−Θm‖xtξ‖22.

(7.2.48)

Due to (7.2.20) and (7.2.48), the Lyapunov functional Ṽ (t), being computed along

the mild solutions of the closed-loop system, is a non-increasing function of time:

Ṽ (t2) ≤ Ṽ (t1) ∀t2 ≥ t1 ≥ 0. (7.2.49)
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Clearly, by virtue of (7.2.49), the domain DṼ
R , given by (7.2.38) with an arbitrary

R ≥ Ṽ (0), is invariant for the system trajectories. Thus, the subsequent analysis

will take into account that the mild solutions (x, xt) stay in the domain DṼ
R forever.

Now consider the augmented functional

ṼR(t) = Ṽ (t) +
1

2
κRθ(1)(W2 + α1)x

2(1, t)

+ κR

∫ 1

0

x(1, t)xt(ξ, t) dξ (7.2.50)

where κR is a sufficiently small positive constant to subsequently be specified.

Note that the integral term in the right-hand side of (7.2.50) is sign-indefinite, and

therefore, the positive-definiteness of the Lyapunov functional (7.2.50) has to be

analyzed.

By Lemma 7.2.4 specified with z = x and h = xt, and considering the in-

equality (7.2.9), in the domain DṼ
R function ṼR can be lower estimated as

ṼR(x, xt) ≥ λ1Θm|x(1, t)|
+
1

2
Θm[W1 + κR(W2 + α1)]x

2(1, t)

+
1

2
‖xt‖22 −

κR
2

[

R

λ1Θm

|x(1, t)|+ ‖xt‖22
]

=

(

λ1Θm − κRR

2λ1Θm

)

|x(1, t)|+ 1

2
(1− κR)‖xt‖22

+
1

2
Θm(W1 + κR(W2 + α1))x

2(1, t)

(7.2.51)

Let us specify κR > 0 such that

κR < min

{

2λ21Θ
2
m

R
, 1

}

. (7.2.52)

Then, it follows from (7.2.51), (7.2.52) that the augmented functional (7.2.50) is

lower estimated by functional (7.2.30) as

ṼR (x, xt) ≥ µṼ (x, xt) (7.2.53)

provided that

µ = min

{

1− κRR

2λ21Θ
2
m

,
W1 + κR(W2 + α1)

W1

, (1− κR)

}

(7.2.54)
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It means that along with (7.2.30), the functional ṼR is positive definite on the

mild solutions (x, xt) of the boundary-value problem (7.2.21)-(7.2.22) within the

invariant set DṼ
R .

Let us now evaluate the time derivative of ṼR(t):

˙̃VR = ˙̃V + κRθ(1)(W2 + α1)x(1, t)xt(1, t)

+κR

∫ 1

0

xt(1, t)xt(ξ, t)dξ + κR

∫ 1

0

x(1, t)xtt(ξ, t)ξ. (7.2.55)

By utilizing the first inequality of (7.2.40) specified with h = xt and applying

Lemma 7.2.1, the magnitude of the first integral term in the right hand side of

(7.2.55) is upper-estimated by

∣

∣

∣

∣

κR

∫ 1

0

xt(1, t)xt(ξ, t)dξ

∣

∣

∣

∣

≤ κR|xt(1, t)|
∫ 1

0

|xt(ξ, t)|dξ

≤ κR|xt(1, t)|‖xt‖2 ≤
√
2RκR|xt(1, t)|. (7.2.56)

By straightforward integration one finds that the last integral term in (7.2.55)

can be manipulated as follows

κRx(1, t)

∫ 1

0

xtt(ξ, t)dξ

= κRx(1, t)

×
∫ 1

0

([θ(ξ)xtξ(ξ, t)]ξ + θ(1)[ut(t) + ψt(t)]δ(x− 1)) dξ

= κRx(1, t)[θ(1)xtξ(1, t)− θ(0)xtξ(0, t)]

+κRx(1, t)θ(1)(ut(t) + ψt(t)) (7.2.57)

Considering the BCs (7.2.22), the terms in the right hand side of (7.2.57) can

be further elaborated as

κRx(1, t)[θ(1)xtξ(1, t)− θ(0)xtξ(0, t)] =

−κRθ(1)α1x(1, t)xt(1, t)− κRθ(0)α0x(1, t)xt(0, t) (7.2.58)

κRθ(1)x(1, t)(ut(t) + ψt(t)) = −κRθ(1)λ1|x(1, t)|
−κRθ(1)λ2x(1, t)sign xt(1, t)− κRθ(1)W1x

2(1, t)

−κRθ(1)W2x(1, t)xt(1, t) + κRθ(1)x(1, t)ψt(t). (7.2.59)

The next relation follows by applying the Young’s inequality

|κRθ(0)α0x(1, t)xt(0, t)| ≤ κRθ(0)

(

1

2
x2(1, t) +

1

2
α2
0x

2
t (0, t)

)

,
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and the following estimates

|κRθ(1)λ2x(1, t)sign xt(1, t)| ≤ κRθ(1)λ2|x(1, t)| (7.2.60)

|κRθ(1)x(1, t)ψt(t)| ≤ κRθ(1)M |x(1, t)| (7.2.61)

hold for the corresponding terms in (7.2.59) by virtue of Assumption 1. Em-

ploying (7.2.46)-(7.2.48), (7.2.56)-(7.2.61), and the inequality (7.2.9), the time

derivative (7.2.55) is finally manipulated to

˙̃VR(t) ≤ −Θm

(

λ2 −M − κR
√
2R

Θm

)

|xt(1, t)|

− Θm(W2 + α1)x
2
t (1, t)

− 1

2
Θmα0 (2− κRα0) x

2
t (0, t)

− Θm‖xtξ‖22 − κRΘm[(λ1 − λ2)−M ]|x(1, t)|

− κR

(

W1Θm − 1

2
ΘM

)

x2(1, t). (7.2.62)

It is clear that all the terms appearing in the right-hand side of (7.2.62) are non-

positive provided that the tuning condition (7.2.20), imposed on the controller

parameters, hold and, in place of (7.2.52), the next more restrictive condition on

the coefficient κR is additionally satisfied:

κR < min

{

2λ21Θ
2
m

R
, 1,

Θm(λ2 −M)√
2R

,
2

α0

}

. (7.2.63)

By Lemma 7.2.2, specialized with z = x, the mild solutions x(ξ, t) ∈ W 2,2(0, 1)
satisfy the estimate (7.2.27). Moreover, its spatial and temporal derivatives xξ(ξ, t) ∈
W 1,2(0, 1) and xt(ξ, t) ∈ W 1,2(0, 1) satisfy the next estimates

‖zξ(·, t)‖22 ≤ 2(z2ξ (i, t) + ‖zξξ(·, t)‖22) (7.2.64)

‖zt(·, t)‖22 ≤ 2(z2t (i, t) + ‖ztξ(·, t)‖22) (7.2.65)

for i = 0, 1 and for almost all t ≥ 0, which result from (7.2.27) by substituting

xξ(ξ, t) and xt(ξ, t) for z(ξ, t), respectively. By (7.2.65) with i = 1 it yields

x2t (1, t) + ‖xtξ‖22 ≥
1

2
‖xt‖22 (7.2.66)

In light of the above, the next estimate can be made

−Θm(W2 + α1)x
2
t (1, t)−Θm‖xtξ‖22 ≤ −Θmγ1‖xt‖22 (7.2.67)
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γ1 =
1

2
min{W2 + α1, 1}. (7.2.68)

Relation (7.2.62) can further be manipulated to

˙̃VR(t) ≤ −Θm

(

λ2 −M − κR
√
2R

Θm

)

|xt(1, t)|

− Θmγ1‖xt‖22 −
1

2
Θmα0 (2− κRα0) x

2
t (0, t)

− κRΘm[(λ1 − λ2)−M ]|x(1, t)|

− κR

(

W1Θm − 1

2
ΘM

)

x2(1, t)

≤ −γ2(|x(1, t)|+ x2(1, t) + ‖xt‖22) (7.2.69)

γ2 = Θm min{κR[(λ1 − λ2)−M ], κR

(

W1 −
1

2

ΘM

Θm

)

, γ1}. (7.2.70)

On the other hand, (7.2.51) is readily estimated as

ṼR(t) ≥ γ3(|x(1, t)|+ x2(1, t) + ‖xt‖22) (7.2.71)

with positive

γ3 = min

{(

λ1Θm − κRR

2λ1Θm

)

,
1

2
Θm(W1 + κR(W2 + α1))

,
1

2
(1− κR)

}

. (7.2.72)

Relations (7.2.69) and (7.2.71), coupled together, result in

˙̃VR(t) ≤ −γ2
γ3
ṼR(t) (7.2.73)

that establishes the exponential convergence of ṼR(t), initialized within (7.2.38),

to zero as t→ ∞.

To complete the proof it remains to note that due to the upper estimate (7.2.53)

of the functional Ṽ (t) by the functional ṼR(t), it follows that Ṽ (t), being com-

puted on the mild solutions (x, xt) of the boundary-value problem (7.2.21)-(7.2.22),

converges to zero, too:

Ṽ (t) → 0 as t→ ∞,

and by virtue of Lemma 7.2.3, the local asymptotic stability of (7.2.21)-(7.2.22)

with the augmented state (x, xt) in theW 2,2(0, 1)×L2(0, 1−)-space is established

with the initial set (7.2.38). Since the initial set (7.2.38) can be specified with

an arbitrarily large R > 0 the global asymptotic stability in the W 2,2(0, 1) ×
L2(0, 1−)-space is then concluded. Theorem 7.2.1 is thus proved. �
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7.2.3 Simulations results

Consider the perturbed heat equation (7.2.1) with constant diffusivity θ = 1. The

parameters of the uncontrolled Robin’s BC (7.2.3) are set as α0 = 1 and β0 = −5.

The boundary value problem (7.2.5)-(7.2.7) specialized for a constant diffu-

sivity has a solution which linearly depends on the spatial variable

Qr(ξ) = Qr
0 + ξ(Qr

1 −Qr
0), (7.2.74)

where the reference boundary value Qr(1) = Qr
1 is arbitrarily selected as Qr

1 =
15, and the resulting value for Qr

0 derives from the other parameters according to

Qr
0 =

Qr
1 − β0
1 + α0

= 10 (7.2.75)

which is obtained by imposing the BC (7.2.3) on the solution (7.2.74). β1 is

arbitrarily set to the value β1 = 1. The disturbance ψ(t) is set to

ψ(t) = 4cos(0.5πt). (7.2.76)

The magnitude of the disturbance time derivative ψt can be easily upper-

estimated as M = 6.5, as required by (7.2.8). The initial conditions have been

set to Q0(ξ) = 3 + 2sin(4πξ).
Controller (7.2.19) has been implemented with the parameters λ1 = 15, λ2 =

7, W1 = W2 = 1 which are selected in accordance with (7.2.20).

For solving the PDE, governing the closed-loop system behaviour, a standard

finite-difference approximation method is used by discretizing the spatial solution

domain ξ ∈ [0, 1] into a finite number of N uniformly spaced solution nodes

ξi = ih, h = 1/(N +1), i = 1, 2, ..., N . The boundary nodes ξ0 = 0 and ξN+1 are

not included in the state vector of the discretized system. The value N = 40 has

been used in the first simulations. The resulting 40-th order discretized system is

solved by fixed-step Euler method with step Ts = 0.001s. The Figures 7.4 and 7.5

show the solution Q(ξ, t) and the applied boundary control u(t). It can be seen

that the solution converges to the linear reference (7.2.74)along the entire solution

domain, and that the applied boundary control is a continuous function.

Using a dynamic version of a second-order sliding mode control algorithm,

the problem of the boundary global asymptotic stabilization of an uncertain heat

process is solved in the presence of a persistent smooth disturbance, which is gen-

erally speaking unbounded and with an arbitrary shape. The proposed control

law is synthesized by passing a certain discontinuous output through an integra-

tor, it is therefore continuous, and the chattering phenomenon is thus attenuated.

Along with this, the proposed infinite-dimensional treatment retains robustness

features against non-vanishing matched disturbances similar to those possessed
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Figure 7.4: The solution Q(ξ, t).

Figure 7.5: The boundary control u(, t)
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by its finite-dimensional counterpart. Finite-time convergence of the proposed al-

gorithm, which would be the case if confined to a finite dimensional treatment,

cannot be proved using the proposed Lyapunov functional, and it remains among

other actual problems to be tackled in the future within the present framework.



Chapter 8

Conclusions

In this Thesis has been addressed the problem of controlling and Observing some

classes of distributed parameter (PDE) systems under the effect of external un-

known disturbances. Sliding-mode control algorithms, and in particular the Super–

Twisting algorithm, are used to achieve the control goals.

Numerical simulations show the applicability of the suggested approaches to

the considered classes of PDE, Matlab and simulinc are used as the calculation

tools.

As regards the Observation achievements an Unknown Input Observer and its

estimator for diffusion equation are proposed. The observer/estimator design is

carried out by making reference to a finite dimensional modal decomposition of

the solution, and Point-wise measurements are considered to observe the system.

A combined state and output transformation is applied to the resulting finite di-

mensional approximation, yielding a special form for the transformed system that

allows the implementation of a linear observer for reconstructing the system state

and a sliding mode observer for reconstructing the unknown input. The property

of Strong observability depend on the number of measurements and their loca-

tion on the spatial domain, but computational problems for high order system

(N > 10) make the Strong Observability difficult to check. Future developments

could find better approaches to check this property, for example using the system

matrix 4.1.2. Another future objective, very challenging, is to find an Unknown

input and estimator for PDEs without reducing the equation to a finite dimensional

system.

As regards the Distributed control of PDE the Super-Twisting and the Twist-

ing 2-SMC algorithms have been used in conjunction with linear PI and PD con-

trollers. The two resulting schemes have been applied to solve the tracking control

problems for heat and wave processes subject to persistent disturbances of arbi-

trary shapes and with spatially varying uncertain plant parameters. In the end

the problem of Boundary global asymptotic stabilization is addressed, where a

109
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dynamical sliding mode control algorithm with a linear term and a dynamic ver-

sion of a second-order sliding mode control algorithm the stabilization are used

to achieve the stabilization goal in the presence of a persistent smooth distur-

bance. The proposed control laws are synthesized by passing a certain discontin-

uous output through an integrator, it is therefore continuous, and the chattering

phenomenon is thus attenuated.

For distributed and boundary control algorithms the stability of the resulting

error dynamics are proven by means of appropriate ad-hoc Lyapunov functionals,

in appropriate Sobolev spaces. Along with this, the proposed infinite-dimensional

treatments retain robustness features against non-vanishing matching disturbances

similar to those possessed by their finite-dimensional counterparts. Finite-time

convergence of the proposed algorithms, which would be the case if confined

to a finite dimensional treatment, cannot be proved using the proposed Lyapunov

functionals, and it remains among other actual problems to be tackled in the future

within the present framework. Future development could be the integration of this

algorithms with backstepping methodology Krstic and Smyshlyaev (2008) both

for control and for observation problems. Future research could be deal with the

application of the proposed algorithms to more complicated PDEs, such as Navier

Stokes, Maxwell or Burgers equations.



Appendix A

Notation

The notation used throughout is fairly standard. L2(0, 1) stands for the Hilbert

space of square integrable functions z(ζ), ζ ∈ (0, 1), whose L2-norm is given by

‖z(·)‖2 =
√

∫ 1

0

z2(ζ)dζ. (A.0.1)

Define

‖z(·)‖1 =
√

∫ 1

0

|z(ζ)|dζ. (A.0.2)

and note that the next well known relation holds for all z ∈ L2(0, 1)

‖z(·)‖1 ≤ ‖z(·)‖2 (A.0.3)

W l,2(a, b) denotes the Sobolev space of absolutely continuous scalar functions

z(ζ), ζ ∈ [a, b] with square integrable derivatives z(i)(ζ) up to the order l ≥ 1.
In particular W 0,2(0, 1) denotes the Hilbert space L2(0, 1). W

1,2(0, 1) denotes

the Sobolev space of absolutely continuous scalar functions z(ζ) on (0, 1) with

square integrable derivative zζ(ζ) and the norm

‖z(·)‖1,2 =
√

‖z(·)‖22 + ‖zζ(·)‖22 (A.0.4)
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