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Introduction

A group of people decides to dine together. In order to choose the

restaurant in which the group should go, each participant expresses

his/her preferences about different types of food. Such preferences

have to be combined, in order to choose a restaurant that maximizes

the group satisfaction (i.e., a restaurant that has a type of food that

satisfies most of the group).

Group recommendation is a type of recommendation designed for con-

texts in which more than a person is involved in the recommendation

process [Jameson and Smyth, 2007a]. While the objective of a classic rec-

ommender system is to produce personalized content for users, in the

form of suggestion of items that users might like [Ricci et al., 2011], group

recommender systems suggest items that a group might like, by combin-

ing individual models that contain a user’s preferences [Masthoff, 2011].

At the time when the work for this PhD thesis started, Group Recom-

mendation was highlighted as a challenge in the recommendation re-
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search [Jameson and Smyth, 2007a].

A company decides to print recommendation flyers that present

suggested products. Even if the data to produce a flyer that contains

individual recommendations for each customer is available, the pro-

cess of printing a different flyer for everyone would be technically too

hard to accomplish and costs would be too high. A possible solution

would be to set a number of different flyers to print, such that the

printing process can be affordable in terms of costs and the recipients

of the same flyer are interested by its content.

With respect to classic group recommendation, the first step that such

systems have to compute is the detection of groups of people with similar

preferences, in order to respect the constraint on the number of recommen-

dations that can be produced and maximize users’ satisfaction.

This PhD thesis presents ART (Automatic Recommendation Technologies),

a set of group recommendation algorithms that detect groups of users with

similar preferences.

Formally, the problem of group recommendation with automatically

detected groups can be stated as follows: let U = {u1,u2, ...,un} be a set of

users, I = {u1,u2, ...,um} be a set of items and R be a totally ordered set that

expresses the possible values for a rating (e.g., R = [1, 5] or R = {like, dislike}).

A rating indicates how a particular user liked a specific item. Given a value

k, that denotes the maximum number of group recommendations that can
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be generated, for each q ∈ {1, ..., k}, set the group Gq to be the set of users in

U, such that each user in the group is more similar to the users in its group

than to any user in another group1. The objective is to find a function

f : Gq × I→ R that measures the usefulness of an item i for the users in Gq.

According to [Jameson and Smyth, 2007a], a system can generate group

recommendations using three different approaches to aggregate individual

preferences:

• prediction of the ratings for the items not rated by each user and

merging of the individual recommendations made for the members

of a group;

• aggregation of individual preferences into group preferences;

• construction of group preference models and prediction of the miss-

ing ratings for each group using the model.

This PhD thesis will analyze these approaches in the previously described

domain.

Masthoff presented several studies [Masthoff, 2002, Masthoff, 2004, Masthoff, 2005,

Masthoff, 2011] related to group modeling, i.e., the process used to combine

multiple user models into a group model. Group modeling allows to merge

1The metrics that define how similar two users are and how users should be grouped

are defined by the clustering algorithm chosen to create the partition. Clustering algorithms

will be presented in Chapter 3.
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the preferences of the individual members of a group and derive a group

preference for each item, by using different strategies. As highlighted

in [Pizzutilo et al., 2005a], “there is no strategy useful in every context in-

dependently from the environment” and the choice of the strategy that

best models the group should be made after a deep analysis of the context

in which the group is modeled. In every algorithm proposed, different

strategies to model the groups will be analyzed.

Classic group recommender systems work with different types of groups,

that are either established (i.e., people explicitly choose to be a part of a

group, because of shared, long-term interests), occasional (i.e., a number

of persons who do something occasionally together, like visiting a mu-

seum, and have a common aim in a particular moment), or random (i.e.,

a number of persons who share an environment in a particular moment,

without explicit interests that link them). The properties of such groups,

like for example the heterogeneity of an occasional group (in terms of age

and interests) are managed by the systems, in order to produce the group

recommendations. The question that arises with automatically detected

groups is: which properties of this type of groups affect the quality of the

system? A study is conducted, in order to study the per-group effectiveness

of a group recommender system.

When a group recommender system deals with the suggestion of items

like movies, a peculiar issue arises, i.e., novelty of the recommended items.

In fact, if an item was already evaluated by a great part of the group, the sys-
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tem should limit its recommendation, since users who already considered

the item would be bored to watch/read/listen to it often and it wouldn’t

be a real recommendation for them. A study that shows how novelty of

the recommended items affect the performances of a system is presented

in this thesis.

Developing the work on group recommendation, two studies which

aimed at finding additional information about the detected groups were

conducted. All the studies focus on finding the features that characterize

a group.

The first study is a related to market segmentation, i.e., the process that

leads to an identification of groups of people with similar interests in terms

of products or services. Such groups are usually called market segments.

This thesis presents a technique to automatically identify market segments

and classify users using query logs.

The second approach is a tag clustering technique that groups related

tags in a tagging system, by monitoring the activity of the users in its search

engine. This allows to define sets of related tags that help the identification

of a context that would make resources retrieval easier.

Specifically, the contribution of this PhD thesis are summarized as

follows.

• Study of the approaches to aggregate individual preferences and gen-

erate group recommendations and identification of the approach the
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works best in a scenario in which groups are automatically detected.

• Study of the strategies to model groups, in order to find the strategy

that works best with automatically detected groups.

• Study of the per-group effectiveness of an algorithm, in order to

understand which properties of a group affect the quality of a group

recommendation algorithm.

• Study of how the novelty of the recommended content affects the

quality of a group recommendation algorithm.

• A technique to automatically segment markets based on query logs.

• A tag clustering technique to simplify the exploration of a tagging

system.

The thesis is organized as follows: Chapter 1 presents recommender

systems; Chapter 2 presents the state-of-the-art on group recommender

systems; Chapter 3 presents the different algorithms for group recom-

mendation with detection of groups proposed in the thesis; Chapter 4

illustrates the experiments conducted on the algorithms and shows the

obtained results; Chapter 5 presents the study conducted on the novelty of

the recommended content; Chapter 6 presents a technique to automatically

identify market segments and classify users using query logs; Chapter 7

presents a technique to group tags in a tagging systems; Chapter 8 contains

comments, conclusions and future work.



Chapter 1

Recommender Systems

The development of the World Wide Web and its explosive diffusion in

the 1990s, caused a sudden growth in the amount of data available, over-

reaching the capacity of users to handle it. A new problem, usually known

as information overload, cropped up. To overcome this limit, techniques to

process data and transform it into knowledge were developed.

Recommender systems are a type of technology designed to deal with in-

formation overload and, since their appearance in the mid-1990s [Hill et al., 1995,

Resnick et al., 1994, Shardanand and Maes, 1995], the interest in this field

has constantly increased [Ricci et al., 2011].

This chapter introduces recommender systems, presents a survey of

the state-of-the-art and the current challenges in this research area.
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1.1 What is a recommender system?

Recommender systems are “a personalized information filtering technology

used to either predict whether a particular user will like a particular item

(prediction problem) or to identify a set of N items that will be of interest to a

certain user (top-N recommendation problem)” [Bigdeli and Bahmani, 2008]”.

So, recommender systems aim at finding items that are likely of interest to

a user, by exploiting different types of information sources related to both

the users and the items.

Formally, the recommendation problem can be stated as follows: let

U = {u1,u2, ...,un} be a set of users, I = {u1,u2, ...,um} be a set of items and R

be a totally ordered set that expresses the possible values for a rating (e.g.,

R = [1, 5] or R = {like, dislike}).

The recommendation problem is a classification problem, whose ob-

jective is the learning of a function f : U × I → R, that predicts the rating

pui = f (u, i) of a user u for an item i that the user has not rated yet1.

So, recommender systems are directed towards users who lack in expe-

rience or cannot evaluate the huge number of alternative items that a Web

site contains [Resnick and Varian, 1997]. Therefore, recommender systems

are largely diffused on popular Web sites, in order to help users find what

1Note that a predicted rating for a user u and an item i is indicated by pui, to have

a different annotation with respect to the preferences expressed by users in the form of

ratings, indicated by rui.
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they might be interested on. The most famous example is the website ama-

zon.com, that employs a recommender system [Linden et al., 2003] that

analyze the activity of users (item purchased, rated or liked) to personalize

the store for each user.

1.2 Types of Recommender Systems

Recently [Burke, 2007, Ricci et al., 2011], a partitioning of the different types

of recommender systems into six classes has been made. The recommen-

dation techniques considered in this classification are the following.

Collaborative filtering. It is the most widely used type of recommenda-

tion and also the first developed. It works assuming that two people

who had similar preferences in the past will also have similar pref-

erences in the future. In its most simple formulation, collaborative

filtering algorithms consider the preferences expressed by users in

order to derive similarities between users (i.e., users are considered

similar if they have similar ratings for a set of items).

Content based. Content-based recommender systems predict ratings con-

sidering how similar two items are, based on the features associated

to each item. In order to predict a rating for an item not yet con-

sidered by the active user, a content-based algorithm looks for items

similar to those the active user likes.
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Demographic. Demographic recommendation predicts ratings consider-

ing the demographic attributes associated to a user. Like Collabora-

tive filtering, these algorithms calculate “user-to-user correlations”

but in this case correlations are not built considering the preferences

expressed by users, but their personal attributes (i.e., the recommen-

dation process is based on demographic classes).

Knowledge-based. Knowledge-based systems, similarly to how Utility-

based recommendation works, try to suggest items based on a user’s

needs and preferences. The input of these algorithms is a description

of what the active user is interested in (e.g., a query typed in a search

engine). The user’s need is then compared with the features of the

items, in order to find a relationship between the user’s need and an

item to recommend.

Community-based. This type of systems base their recommendation con-

sidering the preferences of the friend of the users. Community-based

algorithm consider the fact that a user tends to trust more in the

recommendations made by friends than on recommendations built

considering similar but anonymous users. Such systems consider

both user profiles and relationships between users.

Hybrid recommender systems. These systems combine the techniques pre-

viously mentioned. This is done in order to avoid the limitations that
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each type of recommendation has and produce a recommendation

using an hybrid system, that involves different recommendation ap-

proaches.
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Chapter 2

State of the Art on Group

Recommendation

This chapter describes the first challenge presented in the previous chapter:

group recommendation.

The different domains of application in which group recommender sys-

tems are used are described in detail and the state-of-the-art for this class of

algorithms is described. This survey was also presented in [Boratto and Carta, 2010a].

2.1 Introduction

Recommender systems aim to provide information items (web pages,

books, movies, music, etc.) that are of potential interest to a user. To
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predict the items to suggest, the systems use different sources of data, like

preferences or characteristics of users.

However, there are contexts and domains where classic recommender

systems cannot be used, because people operate in groups. Here are some

examples of such contexts:

• a system has to provide recommendations to an established group of

people who share the same interests and do something together;

• recommendations are provided to an heterogeneous group of people

who has a common, specific aim and shares the system on a particular

occasion;

• a system tries to recommend items in an environment shared by peo-

ple who do not have anything in common (e.g., background music

in a room);

• when a limitation in the number of available recommendations to be

provided is given, individuals with similar preferences have to be

grouped.

To manage such cases, group recommendation was introduced. These

systems aim to provide recommendations to groups, considering the pref-

erences and the characteristics of more than a user. But what is a group?

As we can see from the list above, there are at least four different notions

of group:
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1. Established group: a number of persons who explicitly choose to be

a part of a group, because of shared, long-term interests;

2. Occasional group: a number of persons who do something occasion-

ally together, like visiting a museum. Its members have a common

aim in a particular moment;

3. Random group: a number of persons who share an environment in

a particular moment, without explicit interests that link them;

4. Automatically detected group: groups that are automatically de-

tected considering the preferences of the users and/or the resources

available, in order to face the limitations imposed by a system for the

recommendation process.

Of course the way a group is formed affects the way it is modeled

and how recommendations are predicted. The next sections introduce

related work on group recommendation and the different types of group

recommendation.

2.2 State-of-the-art in group recommendation

This section will present a survey of the state-of-the-art in group recom-

mendation. A few years ago [Jameson and Smyth, 2007b] presented a

state-of-the-art survey too, dividing the group recommendation process
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into four subtasks and describing how each system handles each subtask.

Here we will try to describe the existing approaches, focusing on the differ-

ent notions of group and how the type of group affects the way the system

works.

The rest of the section is organized as follows: section 2.2.1 describes

approaches that consider groups with an a priori known structure; section

2.2.4 considers systems that automatically detect groups.

2.2.1 Group recommendation for groups with an a priori known

structure

Systems that consider established groups

An established group is formed by people who share common interests for

a long period of time. According to [O’Connor et al., 2001] established

groups have the property to be persistent and users actively join the group.

As Table ?? shows, group recommender systems that aim to established

groups are designed for domains of recommendation like:

• entertainment/cultural items (books, music and movies);

• documents (web pages and conferences documents).

Group recommender systems for entertainment/cultural items GRec OC

(Group Recommender for Online Communities) [Kim et al., 2009] is a

book recommender system for online communities (i.e., people with
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similar interests that share information). The system aims to improve

satisfaction of individual users.

The approach works in two phases. Since the system aims to estab-

lished groups, the first phase uses a classic Collaborative Filtering

(CF) method to build a group profile, by merging the profiles of its

members. Each group’s nearest neighbors are found and a “candi-

date recommendation set” is formed by selecting the top-n items. To

achieve satisfaction of each member, the second phase evaluates the

relevance of the books in the candidate recommendation set for each

member. Items not preferred by any member are eliminated and a

list of books is recommended to the group.

Jukola [O’Hara et al., 2004] and PartyVote [Sprague et al., 2008] are

two systems able to provide music to an established social group

of people attending a party/social event.

The type of group and the context in which the systems are used,

make these systems work without any user profiles. In fact, in order

to select the music to play, each user is allowed to express preferences

(like the selection of a song, album, artist or genre) in a digital musical

collection. The rest of the group votes for the available selections and

a weight/percentage is associated to each song (i.e., the probability
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for the song to be played). The song with the highest vote is selected

to be played.

The system proposed in [Recio-Garcı́a et al., 2009] aims to produce

personality aware group recommendations, i.e., recommendations

that consider the personality of its members (“group personality

composition”) and how conflicts affect the recommendation process.

To measure the behaviors of people in conflicts, each user completes

a test and a profile is built computing a measure called Conflict Mode

Weight (CMW). Recommendations are calculated using three classic

recommendation algorithms, integrated with the CMWs of the group

members.

Group recommender systems for documents I-SPY [Smyth et al., 2005, Smyth and Balfe, 2006,

Smyth et al., 2003a, Smyth et al., 2003c, Briggs and Smyth, 2005, Freyne and Smyth, 2006,

Coyle and Smyth, 2005] is a search engine that personalizes the re-

sults of a web search, using the preferences of a community of like-

minded users.

When a user expresses interest in a search result by clicking on it, I-

SPY populates a hit matrix that contains relations between the query

and the results pages (each community populates its own matrix).

Relations in the hit matrix are used to re-rank the search results to
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improve search accuracy.

Glue [Carta et al., 2008] is a collaborative retrieval algorithm that

monitors the activity of a community of users in a search engine,

in order to exploit implicit feedbacks.

A feedback is collected each time a user finds a relevant resource

during a search in the system. The algorithm uses the feedback to

dynamically strengthen associations between the resource indicated

by the user and the keywords used in the search string. Retrieval is

based on feedbacks, so it is not just dependent on the resource’s con-

tent, making it possible for the system to retrieve even non-textual

resources and update its performances dynamically (i.e., the com-

munity of users decides the keywords that describe a resource).

CAPS (Context Aware Proxy based System) [Sharon et al., 2003] is an

agent that recommends pages and annotates links, based on their

popularity among a user’s colleagues and the user’s profile. The sys-

tem focuses on two aspects: page enhancement, with symbols that

indicate its popularity, and search queries augmentation, with the

addition of relevant links for a query. Since the system was designed
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to enhance the search activity of a user considering the experience of

a user’s colleagues, a CF approach and a zero-input interface (able to

gather implicit information) were used.

The approach proposed in [Baskin and Krishnamurthi, 2009] was de-

veloped to help a group of conference committees selecting the most

suitable items in a large set of candidates.

The approach is based on the relative preference of each reviewer,

i.e., a rank of the preferred items, with no numeric score given to

express the preferences. All the preferences ordering of the reviewers

are aggregated through a variable neighborhood search algorithm

improved by the authors for the recommendation purpose.

2.2.2 Systems that consider occasional groups with a particular

aim

There are lots of contexts in which a group of people is not established

but might be interested in getting together for a common aim. This is

for example the case of people traveling together: they might not know

each other, but they share interest for a common place. In such cases, a

group recommender system could be useful, since it would be able to put

together the preferences of an heterogeneous group, in order to achieve the
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common aim. As mentioned in Table ??, group recommender systems that

work for occasional groups were developed for the following domains:

• movies;

• tourist destinations;

• TV programs;

Group recommender systems for TV programs consider occasional

groups that get together for a specific aim (watch TV together) and ran-

domly share an environment (approaches for random groups are described

next). Since the approaches focus on the group’s aim, this category of sys-

tems was placed in this subsection.

Group recommendation for movies PolyLens [O’Connor et al., 2001] is a

system built to produce recommendations for groups of users who

want to see a movie.

To produce recommendations for each user of the group a CF algo-

rithm is used. In order to model the group, a “least misery” strategy

is used: the rating used to recommended a movie to a group is the

lowest predicted rating for that movie, to ensure that every member

is satisfied.
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The system proposed in [Chen et al., 2008] considers interactions

among group members, assuming that in a group recommender sys-

tem ratings are not given just by individuals, but also by subgroups.

If a group G is composed of members u1, u2 and u3, ratings might be

given by both individuals and subgroups (e.g., {u1,u2} and {u1,u3}).

The system learns the ratings of a group using a Genetic Algorithm

(GA), that uses the ratings of both individuals and subgroups to learn

how users interact. For example, if an item is rated by users u1 and

u2 as 1 and 5 but as a whole they rate the item as 4, it is possible to

derive that u2 plays a more influential role in the group.

The group recommendation methodology used by the system com-

bines an item-based CF algorithm and the GA, to improve the quality

of the system.

In [Amer-Yahia et al., 2009] an approach to compute group recom-

mendation that introduces disagreement between group members as

an important aspect to efficiently compute group recommendations

is presented. The authors introduce a consensus function, which com-

bines relevance of the items for a user and disagreement between mem-

bers. After the consensus function is built, an algorithm to compute

group recommendation (based on the class of Threshold algorithms)
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is proposed.

The system proposed in [de Campos et al., 2007, de Campos et al., 2009]

presents a group recommendation approach based on Bayesian Net-

works (BN). The system was developed to help a group of people

making decisions that involve the whole group (like seeing a movie)

or in situations where individuals must make decisions for the group

(like buying a company gift). The system was empirically tested in

the movie recommendation domain.

To represent users and their preferences a BN is built. The authors

assume that the composition of the groups is a priori known and

model the group as a new node in the network that has the group

members as parents. A collaborative recommender system is used

to predict the votes of the group members. A posteriori probabilities

are calculated to combine the predicted votes and build the group

recommendation.

Group recommendation for tourist destinations In [McCarthy et al., 2007,

McCarthy et al., 2006a, McCarthy et al., 2006b, Mccarthy et al., 2006,

McCarthy et al., 2006] a group recommender system called CATS

(Collaborative Advisory Travel System) is presented. The aim of the

system is to help a group of friends plan and arrange ski holidays.
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To achieve the objective, users are positioned around a device called

“DiamondTouch table-top” [Dietz and Leigh, 2001] and the interac-

tions between them (since they physically share the device) help the

development of the recommendations.

To produce the recommendations, the system collects critiques, which

are feedbacks left by users while browsing the recommended desti-

nations (e.g., a user might specify that he/she is looking for a cheaper

hotel, by critiquing the price feature).

Interactions with the DiamondTouch device are used to build an

individual personal model (IM) and a group user model (GUM). In-

dividual recommendations are built using both the IM and the GUM

to maximize satisfaction of the group, whereas group recommenda-

tions are based on the critiques contained in the GUM.

INTRIGUE (INteractive TouRist Information GUidE) [Ardissono et al., 2003,

Ardissono et al., 2005] is a system that recommends sightseeing des-

tinations using the preferences of the group members.

Heterogeneity of a group is considered in several ways. Each group

is subdivided into homogeneous subgroups of similar members that

fit a stereotype (e.g., children). Recommendations are predicted for

each subgroup and an overall preference is built considering some
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subgroups more influential (e.g., disabled people).

Travel Decision Forum [Jameson et al., 2003, Jameson, 2004, Jameson et al., 2004]

is a system that helps groups of people plan a vacation. Since the

system aims to find an agreement between the members of a group,

asynchronous communication is possible and, through a web inter-

face, a member can view (and also copy) other members’ preferences.

Recommendations are made using a simple aggregation (the median)

of the individual preferences.

In [Lorenzi et al., 2008] a multiagent system in which agents work

on behalf of a group of customers, in order to produce group recom-

mendations, is presented. A formalism, named DCOP (Distributed

Constraint Optimization Problem), is proposed to find the best rec-

ommendation considering the preferences of the users.

The system works with two types of agents: a user agent (UA), who

works on behalf of a user and knows his preferences, and a rec-

ommender agent (RA), who works on behalf of suppliers of travel

services. An optimization function is proposed to handle the agents’

interactions and find the best recommendation.
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e-Tourism [Garcia et al., 2009] is a system that plans tourist tours for

groups of people. The system considers different aspects, like a group

tastes, its demographic classification and places previously visited.

A taxonomy-driven recommendation tool called GRSK (Generalist

Recommender System Kernel), provides individual recommendations

using three techniques: demographic, content-based and preference-

based filtering. For each technique group preferences are computed

using aggregation, intersection and incremental intersection meth-

ods and a list of recommended items is filtered.

Pocket RestaurantFinder [McCarthy, 2002] is a system that suggests

restaurants to groups of people who want to dine together. The sys-

tem was designed for contexts like conferences, where an occasional

group of attendees decides upon a restaurant to visit.

Each user fills a profile with preferences about restaurants, like the

price range or the type of cuisine they like (or don’t like). Once the

group composition is known, the system estimates a user’s individ-

ual preference for each restaurant and averages those values to build

a group preference and produce a list of recommendations.
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Group recommendation for TV programs FIT (Family Interactive TV Sys-

tem) [Goren-Bar and Glinansky, 2004] is a recommender system that

aims to filter TV programs considering the preferences of the viewers.

The only input required by the system is a stereotype user represen-

tation (i.e., a class of viewers that would suit the user, like women,

businessmen, students, etc.), along with the user preferred watching

time. The system automatically updates a profile, by collecting im-

plicit feedbacks from the watching habits of the user.

When someone starts watching TV, the system looks at the probability

of each family member to watch TV in that time slot and predicts who

there might be watching TV. Programs are recommended through an

algorithm that combines such probabilities and users’ preferences.

The system proposed in [Vildjiounaite et al., 2009] recommends TV

programs to a family.

To protect the privacy of each user and avoid the sharing of infor-

mation, the system observes the habits of a user and adds contextual

information about what is monitored. By observing indicators like

the amount of time a TV program has been watched, a user’s prefer-

ences are exploited and a profile is built.

To estimate the interests of the users in different aspects, the system
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trains on each family history three Support Vector Machine (SVM)

models for program name, genre and viewing history. After the

models are trained, recommendation is performed with a Case-Based

Reasoning (CBR) technique.

TV4M [Yu et al., 2006] is a TV programs recommender system for

multiple viewers.

To identify who is watching TV, the system provides a login feature.

To build a group profile that satisfies most of its members, all the

current viewers’ profiles are merged, by doing a total distance mini-

mization of the features available (e.g., genre, actor, etc.). According

to the built profile, programs are recommended to the group.

2.2.3 Systems that consider random groups who share an envi-

ronment

A random group is formed by people who share an environment without

a specific purpose. Its nature is heterogeneous and its members might not

share interests.

Group recommender systems that work with random groups calculate

the list of predicted items frequently, as people might join or leave the en-

vironment at any moment. This section will describe group recommender
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systems that work with random groups. Two main recommendation do-

mains are related to this type of systems:

• multimedia items (e.g., music) broadcast in a shared environment;

• information items (e.g., news or web pages).

Group recommendation for broadcast multimedia items Adaptive Radio [Chao et al., 2005]

is a system that broadcasts songs to a group of people who share an

environment. The approach tries to improve satisfaction of the users

by focusing on negative preferences, i.e., it keeps track of which songs

a user does not like and avoids playing them. Moreover, the songs

similar to the ones rejected by a user are reject too (the system consid-

ers two songs similar if they belong to the same album). The highest

rated between the remaining songs is automatically played.

In-Vehicle Multimedia Recommender [Zhiwen et al., 2005] is a system

that aims to select multimedia items for a group of people traveling

together.

The system aggregates the profiles of the passengers and merges

them using a notion of distance between the profiles. Once the pro-

files are merged, a content-based recommender system is used to

compare multimedia items and group preferences.
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Flytrap [Crossen et al., 2002] is a group recommender system that

selects music to be played in a public room. Since people in a room

(i.e., the group members) change frequently, the system was designed

to predict the song to play considering the preferences of the users

present in the room at the moment of the song selection.

A ‘virtual DJ’ agent is used to automatically decide the song to play.

To build a model of the preferences of each user the agent analyzes

the MP3 files played by a user in his/her computer and considers the

information available about the music (like similar genres, artists,

etc.). The song is selected through a voting system in which an agent

represents each user in the room and rates the candidate tracks.

MusicFX [McCarthy and Anagnost, 2000] is a system that recom-

mends music to members of a fitness center, etting them influence

(but not control) the music selected.

Since the group structure (i.e., the people in the room) varies contin-

uously, the system gives the users working out in the fitness center

the possibility to login. To let users express their preferences about

a particular genre, the system has a database of music genres. The
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music to play is selected considering the preferences of each user in

a summation formula.

Group recommendation for information items Let’s Browse [Lieberman et al., 1999]

is a system that recommends pages to people browsing the web to-

gether. Since the group is random (a user might join or leave the

group at any time), the system uses an electronic badge to detect the

presence of a user.

The system builds a user profile analyzing the words present in

his/her homepage. The group is modeled by a linear combination of

the individual profiles and the system analyzes the words that occur

in the pages browsed by the group.

The system recommends pages that contain keywords present in the

user profile. Such keywords are listed in the recommended page.

GAIN (Group Adapted Interaction for News) [Pizzutilo et al., 2005b,

Carolis and Pizzutilo, 2009] is a system that selects background in-

formation to display in a public shared environment.

The authors assumed that the group of users may be totally unknown,

partially or completely known. The group is modeled by splitting it

in two subgroups: the known subgroup (i.e., people that are certainly

near the display for a period of time) and the unknown subgroup
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(i.e., people not recognized by the system). Recommendations are

predicted using a statistical dataset built from the group modeling.

2.2.4 Group recommendation with automatic group detection

As shown in Table ??, aside from the contribution developed for this thesis,

there is just a group recommender system that automatically detects groups

of users. Such an approach is interesting for various reasons: (I) people

change their mind frequently, so a user membership in a group might

not be long-term, or (II) technological constraints might allow the system

to handle only a certain number of groups (or a maximum number of

members per group).

Group recommendation with Communities of Interest detection

The approach proposed in [Cantador et al., 2008] aims to automatically dis-

cover Communities of Interest (CoI) (i.e., a group of individuals who share

and exchange ideas about a given interest) and produce recommendations

for them.

CoI are identified exploiting the preferences expressed by users in per-

sonal ontology-based profiles. Each profile measures the interest of a user

in concepts of the ontology. The interest expressed by users is used to

cluster the concepts.

User profiles are then split into subsets of interests, to link the prefer-
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ences of each user with a specific cluster of concepts. Hence it is possible to

define relations among users at different levels, obtaining a multilayered

interest network that allows to find multiple CoI. Recommendations are

built using a content-based CF approach.
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Chapter 3

Algorithms

3.1 Overview

This chapter presents ART (Automatic Recommendation Technologies), i.e.,

a set of group recommendation algorithms, able to produce suggestions

respecting a constraint on the number of recommendations that can be

generated. In order to consider the preferences of each user and respect

the constraint, groups of users with similar preferences have to be detected.

Individual preferences should then be combined, in order to derive a group

model that allows to predict group preferences.

ART identifies five algorithms, that implement in different ways all the

different approaches to generate recommendations for a group.

The first part of the chapter describes the methods used by each task
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performed by a group recommendation algorithm developed for this the-

sis. In particular, Section 3.2 presents an overview of clustering algorithms,

Section 3.8 presents the group modeling strategies implemented for this

work and Section 3.4 presents an overview of the families of approaches

to generate group predictions.

Then, the algorithms that compose ART are described in detail. Sec-

tion 3.5 describes the algorithms based on the construction of group mod-

els, Section 3.6 describes the algorithm that merges individual recommen-

dations and Section 3.7 describes the algorithms based on the aggregation

of individual preferences.

3.2 Clustering

Clustering, also known as data classification, unsupervised learning or un-

supervised classification [Kleinberg and Tardos, 2002], is the partitioning

of unlabeled data into groups (named clusters), such that objects in a cluster

are very similar and objects that belong to different clusters are highly dis-

similar. That means that data is classified into two or more classes, without

a priori knowledge of its structure and based on a distance function that

allows to capture how similar objects are.

Note that in this section only the aspects of clustering related to the

studies conducted for this PhD thesis will be considered.

In particular two important classes of clustering algorithms are consid-
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ered.

Clustering in a metric space. A set of data and a distance function that

satisfies the property of a metric are determined, in order to measure

the similarity between objects and divide data into homogeneous

groups.

Graph clustering. The objective is to divide the points of a graph into

clusters, considering the edges between the points. The partitioning

is such that there are many edges within each cluster and a few

between the clusters.

Reader should refer to [Xu and II, 2005] for a survey on algorithms that

cluster on a metric space and to [Schaeffer, 2007] for a deep analysis of

graph clustering algorithms.

3.2.1 Clustering in a metric space

A metric space (X, ρ) consists of a set of data X and a distance function

ρ : X × X→ R that satisfies the three properties of a metric:

1. Reflexivity: ρ(x, y) ≥ 0, with ρ(x, y) = 0 iff x = y

2. Symmetry: ρ(x, y) = ρ(y, x)

3. Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)
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One of the most used and popular algorithms that cluster in a metric space

is k-means [MacQueen, 1967]. A brief description of the algorithm is now

presented.

The k-means clustering algorithm

The k-means clustering algorithm partitions a set of data points into cluster.

Let X = {x1, x2, ..., xn} be a set of points in Rd. Using a set of k centers

c1, c2, ...ck in Rd, the algorith works as follows.

1. For each i ∈ 1, ..., k, let Ci be the set of points in X closer to ci than they

are to any other center.

2. For each i ∈ 1, ..., k, set ci as the new center for Ci, calculated as follows:

ci = 1
|ci|

∑
x j∈Ci

x j.

3. Repeat steps 1 and 2 until neither ci nor Ci change. If that happens,

return the clusters Ci.

3.2.2 Clustering a graph

Graph clustering algorithms inspect the structure of a graph, in order to

find a group of points in which the number of links inside the group is much

higher than the links between the groups. A cluster in a graph is called

community and graph clustering is also known as Community Detection
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[Fortunato, 2009]. Next, two widely used graph clustering algorithms are

presented.

Louvain method

Louvain algorithm [Blondel et al., 2008] was developed to be very fast and

be capable to cluster very large networks in linear time (the analysis of

a network of 2 million nodes takes two minutes on a PC). The method

generates a hierarchical structure of communities. It is one of the most

widely used method for detecting communities in large networks.

The algorithm is based on the optimization of a function called mod-

ularity [Newman and Girvan, 2004], defined as the number of edges that

are within groups minus the expected number in an equivalent random

network.

The algorithm is divided into two steps, iteratively repeated. At first

each node of the graph is assigned to a different community (i.e., there’s

a community for each node). For each node i, each neighbor j is consid-

ered and i is moved to the community j that allows to have a positive

and maximum gain of modularity (if that is not possible, i remains in its

community). This step is repeat until an improvement in modularity is

possible.

The next step considers each detected community as a new node in the

network. Nodes are linked with a weight equal to the sum of the edges of
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the nodes of the two communities.

MCL

Markov Clustering (MCL) [van Dongen, 2000] is an algorithm based on

a bootstrapping procedure applied to a stochastic matrix (also known as

Markov matrix), derived from the adjacency matrix of the graph. The

approach is based on the intuition that if nodes belong to the same cluster,

the longest path between them is relatively short. On the contrary, for

nodes that belong to different clusters, its value is relatively high. That

means that it should be difficult to move from one cluster to another with

a random walk.

To explain how a random walk on a weighted graph works, suppose

that a random walker is, at a certain instant, in a node i. Node j, where

he/she will be at the following instant, is chosen among the first neighbors

of i, with a probability proportional to the weight of the edge between i

and j. In such a way it is possible to create a transition matrix M of size

N ×N, in which each element is as follows:

Mi j =
ai j∑
m aim

(3.1)

It can be trivially verified that M is a stochastic matrix. A matrix is stocastic

if the following requirements are satisfied:
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• it is squared;

• all its elements belong to interval [0, 1];

• the sum of all the elements of each column is equal to 1.

As previously mentioned, the algorithm is based on a bootstrapping pro-

cedure, i.e., the probability of random walks in the graph is calculated

iteratively using two sets of operators, named operators of expansion and

in f lation and applied to the stochastic matrices.

The expansion operator computes the square of the matrix (the product

of that matrix with itself). Inflation operator is the entry-wise Hadamard-

Schur product of the matrix combined with a diagonal scaling, to allow

the resulting matrix to be a stochastic matrix.

Formally, let M ∈ Rk×k be a stochastic matrix and r > 0 a real number.

Inflation operator Γr : Rk×k
→ Rk×k acts on M as follows:

(ΓrM)pq =
(Mpq)r∑k

i=1 Mr
iq

(3.2)

The algorithm consists on the subsequent application of the inflation

operator and the expansion operator and converges quadratically in the

neighborhood of doubly idempotent stochastic matrices, i.e., matrices that

do not change under the action of the two operators. The obtained matrix
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returns a disconnected graph, in which each component contains nodes

that belong to the same cluster. The inflation operator ?? depends from

a parameter r, known as granularity. By incrementing this operator, the

strength of the inflation operator and causes a higher number of clusters.

3.3 Group modeling

In order to manage the information related to a group and provide recom-

mendations, it is necessary to first model the group. A group is composed

of individuals that get together for a particular aim. Group modeling is the

process used to combine multiple user models into a group model. So,

the first aspect to consider when modeling a group is an individual user

model, made of the user’s interest for a set of items. A group model can

be considered as a “synthesis” of the user models, built by combining the

preferences of the group members.

In group recommendation, building a group model is strongly related

to the idea of collective choice, i.e., making a choice for a group taking

into account the opinions of the users that belong to it. The aggregation of

individual preferences is made using a particular strategy and, as stated in

the Introduction and highlighted in [Pizzutilo et al., 2005a], the usefulness

of a strategy has be evaluated in the environment in which the modeling

is done and no strategy can be used in every context. In fact there are

different aspects that have to be evaluated when modeling a group, like its
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size and the members that belong to it, in order to combine the individual

ratings properly. For example, there are strategies that work best with

small groups or strategies that consider some categories of users as more

important than others (like children or disabled people).

In the domain of application presented in this thesis, the choice of

the right group modeling strategy is particularly important, since a group

modeling strategy should be able to level the preferences of groups of

possibly very different sizes (given a set of users, the size of each group

is related to both the number of groups and their preferences). Moreover,

the users in a group do not interact with each other.

This section presents the group modeling strategies evaluated in the

algorithms developed for this PhD thesis. We considered all the strategies

presented in [Masthoff, 2004] and implemented all the ones that could

be applied to our domain. In fact there are some voting strategies that

do not produce an explicit rating, but just a ranked list of the items eval-

uated by the group (i.e., the Plurality Voting, Copeland Rule and Fairness

strategies), and there is a strategy (Most Respected Person) where just the

ratings of the most respected person are considered (the idea of a “most

respected person” is not meaningful in a context where a group of people

is automatically detected).

Even though the Multiplicative Utilitarian strategy, that produces a

group preference by multiplying all the ratings for an item, was imple-

mented, it could not be tested. This is because of the limit on the maximum
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number that can be calculated by a computer1. Therefore, the strategy is

not even presented in this section.

After the description of each strategy, an example of how individual

ratings are combined is presented. In the examples, three users (u1, u2 and

u3) rate ten items with a rating from 1 to 10.

3.3.1 Additive Utilitarian Strategy

Individual ratings for each item are summed and a list of the group ratings

is produced. The ranked group list of items is exactly the same that would

be produced when averaging the individual ratings, so this strategy is also

called ‘Average strategy’.

A B C D E F G H I J

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 20 31 21 25 26 28 22 15 14 23

3.3.2 Borda Count

Each item gets a number of points, according to the position in the list

of each user. The least favorite item gets 0 points and a point is added

1A 64 bits machine cannot calculate numbers higher than 252. That would mean that

even if the strategy was tested with a very small dataset of 55 users and they all gave a

very small rating for an item, like 2, an overflow would occur.
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each time the next item in the list is considered. If a user gave the same

rating to more items, points are distributed. So, for example, items H and I

were rated by user u2 with the lowest rating and should “share” the lowest

positions with 0 and 1 points, so both the items get (0+1)/2=0.5 points. A

group preference is obtained by adding the individual points of an item.

A B C D E F G H I J

u1 4.5 8 3 8 6 4.5 8 1.5 0 1.5

u2 3.5 7.5 2 6.5 5 7.5 6.5 0.5 0.5 3.5

u3 2.5 0 5 3 6 7.5 1 2.5 4 7.5

Group 10.5 15.5 10 17 17 19.5 15.5 4.5 4.5 12.5

3.3.3 Approval Voting

Each user can vote for as many items as the want. To show how the strategy

works, we are going to suppose that each user votes for all the items with a

rating above a certain treshold (let’s say 5). A group preference is obtained

by adding the individual points of an item.

A B C D E F G H I J

u1 1 1 1 1 1 1 1 1 1

u2 1 1 1 1 1 1 1 1

u3 1 1 1 1 1 1

Group 2 2 3 3 3 3 2 1 1 3
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3.3.4 Least Misery Strategy

The rating assigned to an item for a group is the lowest rating expressed for

that item by a member of the group. This strategy is usually used to model

small groups, to make sure that every member is satisfied. A drawback

of this strategy is that if the majority of the group really likes something,

but one person doesn’t, the item will not to be recommended to the group.

This is what happens in the example for items B and G.

A B C D E F G H I J

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 5 1 6 6 8 8 3 4 3 6

3.3.5 Most Pleasure Strategy

The rating assigned to an item for a group is the highest rating expressed

for that item by a member of the group.

A B C D E F G H I J

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 8 10 8 10 9 10 10 6 7 10
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3.3.6 Average Without Misery Strategy

The rating assigned to an item for a group is the average of the ratings

assigned by each user for that item. All the items that were evaluated with

a rating under a certain threshold are not considered (in the example the

threshold rating is 4).

A B C D E F G H I J

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 20 - 21 25 26 28 - 15 - 23

3.4 Families of approaches for the group recommen-

dation process

Given a set of individual preferences, group preferences can be generated

using one of three families of approaches [Jameson and Smyth, 2007a]: (a)

generation of a group model that combines individual preferences, (b)

merging of recommendations built for individual users, or (c) aggregation

of individual preferences.
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3.4.1 Construction of Group Preference Models

This approach builds a group model using the preferences expressed by

each user, then predicts a rating for the items not rated by the group using

that model.

Description of the approach

1. Construct a model Mg for a group g, that represents the preferences

of the whole group.

2. For each item i not rated by the group, use Mg to predict a rating pgi.

3.4.2 Merging of Recommendations Made for Individuals

The approach presents to a group a set of items, that is the merging of the

items preferred by each member of the group.

Description of the approach

1. For each member of the group u:

• For each item i not rated by the user, predict a rating pui.

• Select the set Ci of items with the highest predicted ratings pui

for ui

2. For each group produce
⋃

i Ci, the union of the sets of items with the

highest predicted rating of each member.
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3.4.3 Aggregation of Individual Preferences

The approach first predicts individual preferences for all the items not

rated by each user, then aggregates individual preferences for an item to

derive a group preference.

Description of the approach

1. For each item i:

• For each member u of the group g that did not rate i, predict a

rating pui.

• Calculate an aggregate rating rgi from the set {rui}.

3.5 Algorithms Based on Group Models Construction

3.5.1 MART (Model-based Automatic Recommendation Tech-

nology)

MART (Model-based Automatic Recommendation Technology) is an algorithm

that detects groups of similar users, models each group using the pref-

erences of its members and predicts group preferences, according to the

approach presented in 3.4.1.

The algorithm works in four steps:
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1. In order to create groups of users, the algorithm takes as input the

ratings expressed by each user and evaluates through a standard

metric (i.e., cosine similarity) how similar the preferences of two

users are. The result is a weighted graph where nodes represent

users and each weighted edge represents the similarity value of the

users it connects. A post-processing technique is then introduced to

remove noise from the network and reduce its complexity.

2. To identify intrinsic communities of users, a Community Detection

algorithm proposed by [Blondel et al., 2008] is applied to the graph

that contains the similarities between users and partitions of different

granularities are generated.

3. Once groups have been detected, a group model is built for each

group g, using one of the modeling strategies presented in 3.8.

4. A rating is predicted for each item not rated by a group, using the

model that contains its preferences.

Each step will now be described in detail.

Users’ Similarities Graph

A graph that describes the connections between users in terms of similarity

can be built considering the individual preferences expressed by each user

for the items.
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Similarity between two users can be measured by calculating the cosine

similarity between them. The metric compares the ratings of all the items

rated by both the two considered users (corated items). Cosine similarity

between a user u and a user v is given in Equation 3.3. CRu,v is the set of

corated items between u and v.

userSim(u, v) =

∑
i⊂CRu,v

rui × rvi√∑
i⊂CRu,v

(rui)2 ×

√∑
i⊂CRu,v

(rvi)2
(3.3)

The resulting graph (users’ similarities graph) links each couple of asso-

ciated users with a weighted edge.

As highlighted by [Gfeller et al., 2005], in graph like this, edges have

intrinsic weights and no information is given about the real associations

between the nodes. Edges are usually affected by noise, which leads to

ambiguities in the detection of the groups. Moreover, the weights of the

edges in the graph are calculated considering the ratings and it is well

known that people have different rating tendencies, i.e., some users tend

to express their opinion using just the end of the scales, expressing if

they loved or hated an item. In order to eliminate noise from the graph

and reduce its complexity by removing weak edges, a parameter called

noise was set in the algorithm. The parameter indicates the weight that is

subtracted by every edge of the graph.
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Groups Detection

This step of the algorithm has the goal of finding groups of users with sim-

ilar preferences, accepting as input the weighted users’ similarities graph

that was built in the previous step. In 2004 a new optimization function

has been introduced, the modularity, that measures for a generic partition

of the set of nodes in the network, the number of internal (in each partition)

edges respect to the random case. The optimization of this function gives,

without a previous assessment of the number and size of the partitions

[Fortunato and Castellano, 2007], the natural community structure of the

network. Moreover it is not necessary to embed the network in a metric

space like in the k-means algorithm. A notion of distance or link weight

can be introduced but in a pure topological fashion [Newman, 2004].

Recently a very efficient algorithm has been proposed, based on the

optimization of the weighted modularity, that is able to easily handle net-

works with millions of nodes, generating also a dendrogram; a community

structure at various network resolutions [Blondel et al., 2008]. Since the

algorithm had all the characteristics we were looking for, it was chosen to

create the groups of users used by our group recommendation algorithm.

Group Modeling

To create a model that represents the preferences of a group g, the strategies

previously described are taken into account. As can be noticed in the
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examples, the group ratings produced by each strategy are in completely

different scales of representation (in the examples individual preferences

are expressed with a rating between 1 and 10, while individual ratings

can be much higher than 10). In order to evaluate how each group rating

reflects the individual preferences, it is necessary that both individual and

group ratings are in the same domain of ratings. This can be obtained with

a simple reduction:

group rating : max group rating = new group rating : max rating (3.4)

where:

group rating is the rating produced by a modeling strategy;

max group rating is the maximum rating that a user can express for an

item;

max rating is the maximum value of group rating that can be obtained for

an item.

So a new group rating can be obtained calculating:

new group rating =
group rating ·max rating

max group rating
(3.5)
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The formula is not necessary for all the considered strategies or has to

be adapted for some of them. Below there is a description of the particular

cases.

• Least Misery and Most Pleasure strategies already produce a rating that

belongs to the same domain of the original ratings, so the reduction

is not necessar.

• Additive Utilitarian and Average without Misery strategies sum the

individual ratings. The reduction previously presented can be also

rewritten as:

new group rating =
group rating ·max rating
num ratings ·max rating

=
group rating
num ratings

(3.6)

which is the arithmetic mean of the ratings.

• Considering the ratings produced by the Borda Count and Approval

Voting strategies it is clear that the value of max group rating has to

be evaluated each time a rating is produced.

After a group has been modeled, in order to calculate meaningful rat-

ings for a group g, an aggregate rating rgi is a part of the model only if

a consistent part of the group has rated item i. This is done by setting a
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parameter, named coratings, which expresses the minimum percentage of

group members who have to rate an item, in order to include the rating in

the model.

Prediction of the Missing Ratings Using a Group Model

In the models created by the previous step, for a subset of items there

is no preference, because the item is rated by a small part of the group

and cannot be considered representative of the preferences of the group

as a whole. In order to estimate such preferences, a rating pgi for an

item i not rated by a group g is predicted through the model that contains a

group’s preferences. This is done by using an Item-Based Nearest Neighbor

Collaborative Filtering Algorithm. The algorithm predicts a rating pgi for

each item i that was not evaluated by a group g, considering the rating

rgj of the most similar items rated by the group. Equation 3.7 gives the

formula used to predict the ratings:

pgi =

∑
j∈topItems(g) itemSim(i, j) · rgj∑

j∈topItems(g) itemSim(i, j)
(3.7)

Similarity itemSim() between two items is calculated using the cosine

similarity. The metric is computed considering all users who rated both

item i and item j. Equation 3.8 gives the formula for the similarity (note

that RBi, j is the set of users that rated both item i and j).
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itemSim(i, j) =

∑
u⊂RBi, j

rui × ruj√∑
u⊂RBi, j

(rui)2 ×
√∑

u⊂RBi, j
(ruj)2

(3.8)

In order to compute the similarity between items, the original ratings

given by the individual users are considered (i.e., the metric is not com-

puted considering the aggregate group preferences).

The topItems list is a selection of the most similar items to the one for

which the algorithm predicts the rating. A parameter, called top, indicates

how many similarities the algorithm considers to predict the ratings.

An example of how the top similar items are selected is shown in Fig-

ure 3.1. The algorithm needs to predict a rating for Item 1. The most similar

items are shown in the list. For each similar item j, the table indicates the

similarity with Item 1 (column t1 j) and the rating expressed by the group

(column r j). In the example, the top parameter is set to 3 and items with

similarity 0.95, 0.88 and 0.71 are selected.

The choice of using an Item-based Collaborative Filtering approach is

because the algorithm deals with group models. Since groups might be

very large, a group model might put together a lot preferences and it would

not be significant to make a prediction with a User-based approach, that

would look for “similar groups” 2.

2Think of an example with 6000 users and 10 groups. If groups were homogeneous,
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Item j t1 j r j

Item 2 0.95 3.5

Item 3 0.95 4.2

Item 4 0.88 2.8

Item 5 0.71 2.6

Item 6 0.71 3.9

Item 7 0.71 4.3

Item 8 0.63 1.2

Item 9 0.55 3.2

Figure 3.1: Top similar items of an unrated item

To make meaningful predictions, it would be useful to evaluate how

“reliable” the calculated predictions are. This is done by calculating the

mean of the top similarities and by setting a trust parameter. The parameter

indicates the minimum value the mean of the similarities has to get, in order

to be considered reliable and consider the predicted rating. The mean of

the similarities in the previous example is 0.85 so, to consider the predicted

rating, the trust parameter has to be lower than 0.85.

there would be around 600 users per group. If a User-based approach was used, when

looking for neighbors, the algorithm would look for a two similar models, that represent

600 users each.
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3.5.2 SMART (State-of-the-art Model-based Automatic Recom-

mendation Technology)

The previously proposed algorithm, MART presents several aspects that

can be improved, listed below.

• It was recently highlighted [Amatriain et al., 2011] that in literature

the k-means clustering algorithm [MacQueen, 1967] is by far the most

used clustering algorithm in recommender systems, producing im-

provements on various aspects. Moreover, according to the authors,

alternative to the k-means algorithm are rarely used in the recom-

mendation research.

• If a graph clustering algorithm does not allow to set a fixed number

of groups and generates a hierarchical structure that contains the

natural partitioning of the users, like the one previously used, it

might be impossible to repeat the experiments multiple times under

the same conditions, in order to do a k-fold cross validation and

conduct statistical tests to validate the results.

• When calculating similarities between items (like the MART algo-

rithm does when predicting group ratings), Adjusted-cosine sim-

ilarity is the most popular measure and believed to be the most

accurate [Schafer et al., 2007].

• In literature [Schafer et al., 2007], the items used for the prediction in
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an Item-based Nearest Neighbors algorithm are all the items rated

by a user. Therefor, there is no need to use a parameter to select the

most similar items.

In order to overcome this limitation, an updated version of MART,

called SMART (State-of-the-art Model-based Automatic Recommendation Tech-

nology), was developed. As the name says, the algorithm uses the state-

of-the-art approaches previously mentioned to predict preferences using a

group model.

The algorithm works in three steps:

1. Using a set of individual preferences, groups of users with simi-

lar preferences are detected through the k-means clustering algo-

rithm [MacQueen, 1967].

2. Once groups have been detected, a group model is built for each

group g, using one of the modeling strategies presented in 3.8.

3. A rating is predicted for each item not rated by a group, using the

model that contains its preferences.

Ratings expressed by the users for the evaluated items will be used

by the k-means clustering algorithm [MacQueen, 1967] to detect groups of

users with similar preferences. Groups will be modeled in the same way

MART does, therefore this step will not be described. The step that predicts

group ratings using the model is described next.
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Prediction of the Missing Ratings Using a Group Model

A rating pgi is predicted with an Item-Based Nearest Neighbor Collabora-

tive Filtering Algorithm presented in [Schafer et al., 2007]. The algorithm

predicts a rating pgi for each item i that was not evaluated by a group g, con-

sidering the rating rgj of each similar item j rated by the group. Equation

3.9 gives the formula used to predict the ratings:

pgi =

∑
j∈ratedItems(g) itemSim(i, j) · rgj∑

j∈ratedItems(g) itemSim(i, j)
(3.9)

According to [Schafer et al., 2007], some authors do not consider all the

items rated by a group in the model, but just the top n, correlations. This

is the approach used also for this algorithm.

As previously mentioned, in order to compute similarity between

items, adjusted-cosine similarity will be used. The metric is computed

considering all users who rated both item i and item j. Equation 3.10 gives

the formula for the similarity (note that RBi, j is the set of users that rated

both item i and j).

itemSim(i, j) =

∑
u⊂RBi, j

(rui − ru)(ruj − ru)√∑
u⊂RBi, j

(rui − ru)2
√∑

i⊂RBui, j
(ruj − ru)2

(3.10)
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3.6 Algorithm Based on Merging Individual Recom-

mendations

3.6.1 APART (Aggregated Preferences-based Adaptive Recom-

mendation Technology)

The algorithm named APART (Aggregated Preferences-based Adaptive Recom-

mendation Technology), detects groups of similar users, predicts individual

preferences and selects the items with the highest predicted ratings for

each user, using the approach presented in 3.4.2.

The algorithm works in three steps:

1. Using individual preferences, groups of similar users are detected

through the k-means clustering algorithm.

2. Individual predictions are calculated for each user with a User-Based

Collaborative Filtering Approach.

3. A list of items that contains the set of items with the highest predicted

rating for each user is produced.

Detection of the Groups

The first step uses the same approach previously presented for the SMART

algorithm, i.e. the k-means clustering algorithm.
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Prediction of the Missing Ratings

Ratings for a group’s members can be predicted using a classic User-

Based Nearest Neighbor Collaborative Filtering Algorithm, presented in

[Schafer et al., 2007]. The algorithm predicts a rating pui for each item i that

was not evaluated by a user u, considering the rating rni of each similar

user n for the item i. A user n similar to u is called a neighbor of u. Equation

3.11 gives the formula used to predict the ratings:

pui = ru +

∑
n⊂neighbors(u) userSim(u,n) · (rni − rn)∑

n⊂neighbors(u) userSim(u,n)
(3.11)

Values ru and rn represent, respectively, the mean of the ratings ex-

pressed by user u and user n. Similarity userSim() between two users is

calculated using the Pearson’ correlation, a coefficient that compares the

ratings of all the items rated by both the target user and the neighbor

(corated items). Pearson’ correlation between a user u and a neighbor n is

given in Equation 3.12. CRu,n is the set of corated items between u and n.

userSim(u,n) =

∑
i⊂CRu,n

(rui − ru)(rni − rn)√∑
i⊂CRu,n

(rui − ru)2
√∑

i⊂CRu,n
(rni − rn)2

(3.12)

The values of the metric range from 1.0 (that indicates complete sim-

ilarity) and -1.0 (that indicates complete dissimilarity). As highlighted
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in [Herlocker et al., 1999], negative correlations do not help increasing the

prediction accuracy and can be discarded.

Generation of the Group Predictions

For each user, the items for which a rating is predicted are ranked in

descending order based on the ratings, then the top-n items are selected.

The union of the individual lists that contain the items preferred by each

user is then produced. Note that if an item appears in the list of more

members of the same group, the average of the of the predicted ratings for

that item is calculated, in order to derive the preference of that group for

the item.

3.7 Algorithms Based on Individual Preferences’ Ag-

gregation

3.7.1 BART (Baseline Adaptive Recommendation Technology)

BART (Baseline Adaptive Recommendation Technology), is an algorithm built

to detect groups of similar users, predict individual preferences and ag-

gregate the preferences expressed for each item into a group preference,

according to the approach presented in 3.4.3.

The algorithm works in three steps:
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1. Using a set of individual preferences, groups of users with similar

preferences are detected through the k-means clustering algorithm.

2. Individual predictions are calculated for each user with a User-Based

Collaborative Filtering Approach.

3. A group preference is computed by aggregating the preferences of

the individual users.

The first two steps use the same algorithms previously presented, i.e.,

the k-means clustering algorithm and the User-Based Collaborative Filter-

ing algorithm. Therefore only the details of the approach used to aggregate

individual preferences will now be described.

Aggregation of the Individual Preferences

This step combines the preferences of each user that belongs to a group for

an item.

The same modeling strategies used for MART and SMART can be ex-

ploited by the algorithm. The only difference is that this algorithm models

individual predictions. Since a prediction is calculated for all the items not

rated by a user, there is a rating for every item and every user of the group

and there is no need to remove any group prediction from the model.
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3.7.2 HEART (Highly Enhanced Adaptive Recommendation Tech-

nology)

BART detects groups of similar users using the preferences expressed by

users for the evaluated items.

However, the number of items rated by users is much lower than the

number of available items. This leads to the sparsity problem that is

common in clustering.

HEART (Highly Enhanced Adaptive Recommendation Technology) was con-

ceived to improve the quality of the clustering step of BART3. HEART

detects groups giving as input to the k-means algorithm not the original

ratings explicitly expressed by users, but also the predicted values of the

unrated items for each user.

In order to do so, the individual predictions are predicted by HEART at

the beginning of the computation. Using more values as input for the clus-

tering, the algorithm should be able to identify better groups, i.e., groups

composed by users having more correlated preferences. This should lead

to a higher overall quality of the group recommendations.

In conclusion, HEART performs the same steps performed by BART but

computes individual recommendations before clustering the users. This al-

3The adverb “highly” should be intended both as an intention to make great improve-

ments with respect to the previous algorithm and as a synonym of “favourably”, to intend

that the enhancement suggests a good outcome.
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lows to cluster the users using more preferences and identify better groups.

The preferences expressed by users and the individual recommendations

are also used to model the group.

3.8 Contribution

All the algorithms previously presented present several scientific contri-

butions, listed below.

• None of the existing approaches in the group recommendation liter-

ature works with automatically detected groups and is able to adapt

to constraints imposed by the systems.

• The algorithms explore the different ways to produce group rec-

ommendations in such a context, by using the different families of

approaches to produce the recommendation presented in 3.4. This

allows to discover the best way to build a recommendation for a

group for automatically detected groups.

• Different classes of clustering algorithms and dinstance metrics are

considered (BART and SMART build groups in completely different

ways), in order to find the best way to group similar users.

• All the existing strategies to model a group and presented in will be

deeply studied, in order to find the best way to model automatically

detected groups and the properties that characterize them.
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3.9 Conclusions
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Chapter 4

Experimental Evaluation

This chapter presents the experiments conducted to evaluate the algo-

rithms previously proposed. The first objective of this study is to find the

best configuration for each algorithm, by properly setting its parameters.

Then all the proposed algorithms will be compared, in order to find the

best way to produce group recommendations for automatically detected

groups. The last part of the chapter presents a study on the property of the

groups that characterize the quality of the obtained results.

4.1 Experimental framework

This section presents the framework used to conduct the experiments. The

dataset used and the preprocessing made on the data are first described.
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Then the metrics used to make the evaluations is presented. After, the

strategy and aims that drove our experiments are described.

4.1.1 Dataset

The dataset used to conduct the experiments is MovieLens-1M1, which is

composed of 1 million ratings, expressed by 6040 users for 3900 movies.

For this framework, only the file ratings.dat that contains the actual

ratings given by users is considered (the other files available in the dataset

contain features that describe the users and the movies). The file contains

four features: UserID, that contains user IDs in a range between 1 and 6040,

MovieID, that contains IDs of the movies in a range between 0 and 3592,

Rating, that contains values in a scale between 1 and 5 and Timestamp, that

contains a timestamp of the moment in which a user rated an item. Each

user rated at least 20 movies.

4.1.2 Preprocessing

The file ratings.dat was preprocessed for the experimentation. Out of

all the features available, just the first three features were selected (i.e.,

UserID, MovieID and Rating), since none of the presented algorithms uses

a timestamp. The feature UserID was mapped in a new set of IDs between

0 and 6039, to facilitate the computation using data structures.

1http://www.grouplens.org/
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In order to conduct statistical tests to validate the obtained results,

experiments were repeated five times with a 5-fold cross-validation. In

this approach, each rating available in the dataset is used four times for

training and once for the testing. In order to do so, the dataset is split

into five subsets with a random sampling technique (each subset contains

20% of the ratings). During each run of experiments, one of the subsets

becomes test set and the rest is used for training.

4.1.3 Metrics

The quality of the predicted ratings was measured through the Root Mean

Squared Error (RMSE). The metric compares the test set with the predicted

ratings, by comparing each rating rui expressed by a user u for an item i

with the rating pgi predicted for the item i for the group in which user u is.

The formula is shown below:

RMSE =

√∑n
i=0(rui − pgi)2

n

where n is the number of ratings available in the test set. The metric

was chosen because, as the organizers of the Netflix prize highlight2, it

is well-known and widely used, it allows to evaluate a system through a

single number and it emphasizes the presence of large errors (both false

2http://www.netflixprize.com/faq
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positive and false negatives). These are important properties, useful in the

evaluation of a recommender system.

In order to evaluate the properties of a clustering that affect the quality

of group recommendations, four properties of each cluster were analyzed.

These properties are described in the list below:

• sparsity, i.e., the average of the number of ratings per user of a group;

• size, i.e., the number of users per group;

• diameter, i.e., the maximum distance between two users in a group,

calculated with the Euclidian distance between the ratings;

• average distortion, i.e., mean of the distances of each user from the

centroid of the group. Each distance is calculated with the Euclidian

distance.

4.2 Overall effectiveness

This section describes the evaluation of each group recommendation al-

gorithm proposed. For each algorithm, experiments to set the parameters

and find the best configuration are conducted.

In order to evaluate the quality of the predicted ratings for different

numbers of groups, in each experiment four different clusterings of the

users in 20, 50, 200 and 500 groups were created, apart for MART, that uses
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a clustering algorithm that does not allow to set the number of clusters

produced.

Moreover, we compared the results obtained with the previously men-

tioned four clusterings, with the results obtained considering a single

group with all the users (predictions are calculated considering all the

preferences collected for an item), and the results obtained by the system

that calculates individual predictions for each user.

To generate the clusterings with k-means, a testbed program called

KMlocal [Kanungo et al., 2002] was considered. The program contained

a variant of the k-means algorithm, called EZ Hybrid, developed by the

authors. The k-means algorithm minimizes the average distortion, i.e., the

mean squared distance from each data point to its nearest center. With the

data used for the experiments EZ Hybrid is the algorithm that returned the

lowest distortion and therefor the one used to cluster the users.

4.2.1 MART (Model-based Automatic Recommendation Tech-

nology)

As previously mentioned, MART is an algorithm designed to produce

group recommendations using a model that contains the preferences of

each group.

In order to properly evaluate the algorithm, the following aspects have

to be set:
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• parameter noise, that allows to reduce the complexity of the users’

similarity graph;

• the strategy used to model a group’s preferences;

• parameter coratings, used to decide which ratings have to be included

in a group model;

• parameter top used to select the items considered in the prediction of

group ratings;

• parameter trust, that allows to evaluate how reliable a group predic-

tion is.

In order do so, five experiments have been conducted. Each experiment

evaluates the performances of the algorithm for different values of the

parameter or strategy considered.

As previously mentioned, the step of the algorithm that detects the

groups does not allow to set a fixed number of groups, so it was impossible

to repeat the experiments multiple times and conduct statistical tests to

validate the results. That means that for each experiment, the value of a

parameter that allows to obtain the lowest RMSE is considered.

MART: setting the noise parameter and detecting the groups

The noise parameter is used to subtract weight from the edges of the users’

similarities graph and remove weak links between users.
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Experiments are not presented, since with even with small values like

0.1, the graph would become disconnected and a subset of users could

not be clustered. So, groups were detected with a value 0.0 for the noise

parameter and the step that detects the groups returned returned three

partitions in 4, 13 and 40 groups.

MART: modeling the groups

In order to build a model that contains a group’s preferences, individual

preferences have to be combined.

In this set of experiments, groups are modeled according to each strat-

egy previously presented, in order to evaluate the one that best models the

groups. If a strategy presents a threshold value (i.e., Approval Voting and

Average Without Misery), all the possible values are tested.

The other parameters that have yet to be tested are set with a fixed value,

i.e., parameter coratings is set to 10% (if coratings was set to 0, it wouldn’t

be possible to predict ratings, since all the items would be evaluated in

the model), parameter top is set to 2 (in order to avoid the possibility of

predicting a rating considering just one neighbor) and parameter trust is

set to 0.0.

Figure 4.1 shows the trend of the RMSE values for each modeling

strategy and each partition of the users in groups.

An important aspect to consider when analyzing these results is that
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the groups formed are very large (in fact, 6040 users partitioned into 40

homogeneous groups would generate groups with 151 users each).

Note that results obtained for the Average Without Misery Strategy

have been omitted, since a very small portion of the test set could be

considered (less than 10%) and results were not reliable. In fact, the strategy

discards a group prediction if at least a person has evaluated an item with

a rating lower than the threshold value. It is clear that even with a small

threshold value, like 2, the vast majority of the items is not modeled by the

strategy in such a context.

For the rest of the strategies instead, it can be noticed that as the number

of groups is higher, the quality of the recommendations improves. This

phenomenon will be extensively studied later in the chapter and the expla-

nation of this result will be omitted in this and next experiments conducted

to set the parameters.

The attention can be focused on the different modeling strategies. As it

can be noticed, in every partition Additive Utilitarian is the strategy that

best models the groups. As previously mentioned, this corresponds to a

modeling with an average of the ratings collected for an item.

Since the system deals with large groups, this is why an average, that

is a single value that is meant to typify a set of different values, is best way

to put together the ratings in this context.

This explanation is also strengthened by the fact that Least Misery (i.e.,

the strategy that assigns to the group the lowest value assigned by a user
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to an item) is the strategy the performs worse. In fact, in such a context, a

group would be modeled just with very low ratings.

So, the strategy chosen to model the groups generated by MART is

Additive Utilitarian.

Figure 4.1: RMSE values for the different modeling strategies

MART: setting the coratings parameter

Since a model should reflect the preferences of the group, an aggregate

rating produced by the modeling is considered only if a percentage of the

group has rated the item. In order to do so, a coratings parameter should

be set to a suitable value. The next experiment presents the values of
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RMSE obtained by the algorithm for different values of the parameter. The

modeling strategy used is Additive Utilitarian and the other parameters

not yet tested keep the same values (top=2, trust = 0.0).

Figure 4.2: RMSE values for the different values of the coratings parameter

Figure 4.2 clearly shows that for every partition the initial value of

coratings, i.e., 10%, is the one that allows to achieve better results. That

means that as the higher is the value of coratings, the more ratings are

eliminated for the model and the harder it is for the system to predict

ratings for a group. Therefor, a 10% value will be used also for the next

experiments.

The next experiment conducted is to evaluate the quality of recom-
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mendations for different values of the top parameter, i.e., the number of

similarities considered to select the nearest neighbors of an item. The

results won’t be presented, since the results show that the quality of rec-

ommendations does not depend from this parameter and RMSE does not

change. The initial value of 2 was kept to conduct the next experiment.

MART: setting the trust parameter

Parameter trust is used at the end of the computation, to evaluate if a

group prediction can be considered. If the mean of the similarities of the

items used to compute the prediction is higher than the value of trust, the

prediction is considered.

An experiment is conducted to evaluate the performances of the system

for different values of trust. Figure 4.3 illustrates the performances of the

system for increasing values of the parameter. Performances improve for

higher values of trust, i.e. when the ratings predicted can be considered

more “reliable”. However, the higher is the value of trust, the more pre-

dicted values are discarded. That means that for values of the parameter

higher than 0.2, less than 50% of the ratings is considered in the test set

(i.e., each RMSE value is calculated not considering more than half of the

preferences). This is why experiments stopped and 0.2 is the chosen value

for the parameter.
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MART: conclusions

All the parameters used by MART have been tested and the algorithm will

be next compared with the other presented, with the following configura-

tion.

• parameter noise has been set to 0.0 (no edges were removed from the

graph)

• Additive Utilitarian is the strategy selected to model a group’s prefer-

ences;

• parameter coratings is set to 10%;

• parameter top is set to 2;

• parameter trust, is set to 0.2.

4.2.2 SMART (State-of-the-art Model-based Automatic Recom-

mendation Technology)

SMART is an improvement of the model-based algorithm previously tested,

that uses state-of-the-art algorithms and approaches. A few aspects, listed

below, have to be set in order to run the algorithm.

• the strategy used to model a group’s preferences;
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Figure 4.3: RMSE values for the different values of the trust parameter
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• parameter coratings, used to decide which ratings have to be included

in a group model;

• parameter n used to select the most similar items considered in the

prediction of group ratings;

Three experiments allow to evaluate all the parameters and strategies

that have to be set in the algorithm.

SMART: modeling the groups

In this experiment SMART models groups using different strategies, to

evaluate the strategy that best models the preferences explicitly expressed

by members of the groups created with the k-means algorithm. Again,

if a strategy presents a threshold value (i.e., Approval Voting and Average

Without Misery), all the possible values are tested and the other parameters

re set with a fixed value, i.e., parameter coratings is set to 10% and parameter

n is set to 10.

Figure 4.4 shows the trend of the RMSE values for each modeling

strategy and each partition of the users in groups.

Results for the Average Without Misery Strategy are not presented, for

the reason previously given (less than 10% of the test set is considered).

Again, Average Utilitarian is the modeling strategy that allows to

achieve the best results. Once again, the modeling groups with Least

Misery takes to the worst results.
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Independent t-tests were conducted to compare the results obtained by

SMART with each couple of modeling strategy. All the tests returned that

there is a significant difference in the values obtained with each modeling

strategy. For readability reasons, just the comparison between Additive

Utilitarian will be reported.

For one group, there is a significant difference in the RMSE values for

Additive Utilitarian (M = 1.059626, SD = 0.00) and Borda Count (M =

1.070556, SD = 0.00); t(7.92) = 5.72, p = 0.0.

The same happens for 20 groups, comparing the RMSE values for

Additive Utilitarian (M = 1.040172, SD = 0.00) and Borda Count (M =

1.053482, SD = 0.00); t(6.92) = 6.28, p = 0.0.

For 50 groups, the test returned a complete statistical difference between

the values obtained for Additive Utilitarian (M = 1.033472, SD = 0.00) and

Borda Count (M = 1.053122, SD = 0.00); t(7.44) = 15.22, p = 0.0.

For 200 groups, the same happens when comparing the RMSE obtained

for Additive Utilitarian (M = 1.026542, SD = 0.00) and Borda Count (M =

1.050044, SD = 0.00); t(4.28) = 24.61, p = 0.0.

Finally, even with 500 groups there is a significant difference in the

RMSE values for Additive Utilitarian (M = 1.026246, SD = 0.00) and Borda

Count (M = 1.054678, SD = 0.00); t(7.68) = 0.24, p = 0.0.

These results suggest modeling ratings averaging the preferences of

the users in a group does lead to improvement with respect to the other

strategies.



78 Chapter 4. Experimental Evaluation

So, the strategy chosen to model the groups generated by SMART is

Additive Utilitarian.

Figure 4.4: RMSE values for the different modeling strategies

SMART: setting the coratings parameter

The coratings parameter, which allows to consider in the model only the

ratings rated by a certain part of the group has to be set. An experiment

to evaluate a suitable value for the parameter is conducted. The modeling

strategy used is Additive Utilitarian and parameter n is set to 10.

Figure 4.5 shows the same behaviour of the coratings parameter ob-

tained with MART, i.e., for increasing values of coratings RMSE worsens,
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because an increasing number of aggregate ratings are eliminated from the

model.

Figure 4.5: RMSE values for the different values of the coratings parameter

Again, independent-samples t-tests have been conducted to compare

the results for different values of coratings in each clustering. All the tests

returned that there is a significant difference in the values obtained with

different values of the coratings parameter. The results obtained to compare

the results obtained considering 10% and 15% of the group are presented

next.

Considering 1 group, there is a significant difference in the RMSE values

for coratings = 10% (M = 1.070556, SD = 0.00) and coratings = 15% (M =
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1.108634, SD = 0.00); t(7.85) = 20.26, p = 0.0.

For 20 groups, the difference is also significant when comparing the

RMSE values for coratings = 10% (M = 1.04019, SD = 0.00) and coratings =

15% (M = 1.069618, SD = 0.00); t(9.96) = 9.24, p = 0.0.

The test conducted for 50 groups returned a significant difference be-

tween coratings = 10% (M = 1.033476, SD = 0.00) and coratings = 15%

(M = 1.06113, SD = 0.00); t(7.11) = 15.24, p = 0.0.

With 200 groups, the obtained results are coratings = 10% (M = 1.026542,

SD = 0.00) and coratings = 15% (M = 1.047102, SD = 0.00); t(7.88) = 14.60,

p = 0.0.

For 500 groups, there is a significant difference in the RMSE values for

coratings = 10% (M = 1.026246, SD = 0.00) and coratings = 15% (M =

1.042848, SD = 0.00); t(7.68) = 13.80, p = 0.0.

The results suggest that lowering the coratings value allows to substan-

tially improve the results. Specifically, these results suggest that the less

ratings are removed from the model, the better the algorithm predicts the

ratings for a group.

SMART: setting parameter n

In order to predict a rating for the group, the items most similar to the

one currently predicted have to be selected. In order to do so, the right

number of neighbors has to be selected when computing a prediction.
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This is done with a parameter called n, tested in this set of experiments.

The aspects previously tested are set as previously mentioned, i.e., the

modeling strategy is Additive Utilitarian and coratings = 10%.

Figure 4.6 shows the performances of the algorithm for different values

of n, i.e., considering the selection of a different number of similar items.

Figure 4.6: RMSE values for the different values of the n parameter

Unfortunately, results are not clear and it is impossible to see the value

that allowed to obtain the best results. Therefor the figure has been zoomed,

considering the part between 20 and 500 groups (Figure 4.7).

As the results show, there is an improvement up to n = 20, then results

start worsening again (Figure 4.7 shows very similar results for n = 10, rep-



82 Chapter 4. Experimental Evaluation

Figure 4.7: Detail of the experiment to study parameter n
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resented by the red line, and n = 30, represented by the violet line). How-

ever RMSE value are very close, so it is important to conduct independent-

samples t-tests to evaluate the difference between the results. In particular,

the tests conducted to compare 20 and 30 groups are now presented.

Considering 1 group, there is a difference in the RMSE values for n = 20

(M = 1.070534, SD = 0.00) and n = 30 (M = 1.07217, SD = 0.00); t(9.92) =

0.87, p = 0.41.

For 20 groups, there is difference for the results obtained with n = 20

(M = 1.039798, SD = 0.00) and n = 30 (M = 1.040968, SD = 0.00); t(7.17) =

0.40, p = 0.70.

The test conducted for 50 groups returned a difference between n = 20

(M = 1.03344, SD = 0.00) and n = 30 (M = 1.033898, SD = 0.00); t(7.36) =

0.49, p = 0.63.

With 200 groups, there is a difference between the RMSE values ob-

tained with n = 20 (M = 1.026698, SD = 0.00) and n = 30 (M = 1.026764,

SD = 0.00); t(7.31) = 0.74, p = 0.48.

For 500 groups, the test returned a difference between n = 20 (M =

1.02493, SD = 0.00) and n = 30 (M = 1.025626, SD = 0.00); t(7.94) = 0.67,

p = 0.52.

As it can be noticed, the results of the t-tests show that there is not

enough confidence to reject the null hipotesys that the values obtained

for n = 20 and n = 30 are different. However, the results obtained with

n = 20 are always better in terms of RMSE and the t-tests returned that the
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probability that there is a difference for n = 20 ranges between 30% and

59%. Therefor, the value of n used to select the items similar to the one

considered is 20.

SMART: conclusions

All the parameters used by SMART have been tested and the algorithm will

be next compared with the other presented algorithm, with the following

configuration.

• Additive Utilitarian is the strategy selected to model a group’s prefer-

ences;

• parameter coratings is set to 10%;

• parameter n is set to 20.

4.2.3 APART (Aggregated Preferences-based Automatic Recom-

mendation Technology)

As previously described, APART recommends to a group the top-n items

that were predicted for each user of the group. In order to evaluate the

algorithm, two parameters have to be set:

• parameter neighbors, used by the algorithm that calculates individual

predictions;
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• parameter n, that selects the number of items recommended to each

user (top-n items).

APART: selecting the number of neighbors

In order to predict a rating for a user, the users most similar to the one

currently considered have to be selected. In order to do so, the right

number of neighbors has to be selected when computing a prediction. This

is done with a parameter called neighbors, tested in this set of experiments.

Since we have to evaluate the number of neighbors for an algorithm

that predicts individual ratings, this evaluation is done out of the group

recommendation context. In other words, the RMSE values of the individ-

ual predictions for different values of neighbors are presented.

Figure 4.8 shows the RMSE values for increasing values of neighbors.

As highlighted in [Desrosiers and Karypis, 2011] this is the common way

to choose the value. Moreover, our results reflect the trend described by

the authors, i.e., for low values of the parameter, great improvement can be

noticed. As expected, RMSE takes the form of a convex function (Figure 4.9

shows a particular of Figure 4.8), that indicates that after a certain value

improvement stops. In these experiment that value is 100.

Independent-samples t-tests can be conducted evaluate the difference

between the results obtained between 100 and the other numbers of neigh-

bors are now presented.
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Figure 4.8: RMSE values for increasing number of neighbors
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Figure 4.9: RMSE takes the form of a convex function.
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There is a significant difference in the RMSE values for 1 neighbor

(M = 1.304622, SD = 0.00) and 100 neighbors (M = 0.911785, SD = 0.00);

t(7.59) = 450.02, p = 0.00.

There is a also a significant difference in the RMSE values for 10

neighbors (M = 0.961122, SD = 0.00) and 100 neighbors (M = 0.911785,

SD = 0.00); t(7.41) = 54.44, p = 0.00.

A significant difference is also present in the RMSE values for 50

neighbors (M = 0.916725, SD = 0.00) and 100 neighbors (M = 0.911785,

SD = 0.00); t(7.97) = 6.02, p = 0.00.

The RMSE values present a difference for 100 neighbors (M = 0.911785,

SD = 0.00) and 200 neighbors (M = 0.911968, SD = 0.00); t(7.99) = 0.24,

p = 0.82.

There is a also a difference in the RMSE values for 100 neighbors (M =

0.911785, SD = 0.00) and 300 neighbors (M = 0.912803, SD = 0.00); t(7.97) =

1.06, p = 0.33.

There is a significant difference in the RMSE values for 100 neighbors

(M = 0.911785, SD = 0.00) and 6040 neighbors (M = 0.916022, SD = 0.03);

t(7.99) = 1.27, p = 0.24.

As it can be noticed, for values of neighbors higher than 100, the proba-

bility that there is a difference between the values obtained for 100, 200 and

300 neighbors is between 18% and 67%. In particular, there seems to be no

difference between choosing 100 and 200 neighbors. Since neighbors = 100

returned the best results and it is fast to compute predictions considering
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100 neighbors instead of 200, this is the value chosen for the algorithm.

APART: choosing the top-n items

APART works combining recommendations made for individual users,

in the form of the items that received the higher predicted rating (top-n

items). This set of experiments allows to evaluate how big n should be,

i.e., how many items should be selected from the predictions.

Figure 4.10 shows that selecting the top-5 out of all the predicted ratings

allows to achieve the best results.

Figure 4.10: RMSE values for increasing values of n
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Independent-samples t-tests have been conducted, in order to evaluate

if there is a significant difference between the values obtained for the

different values of n and different numbers of groups. Such a difference

exists and the results of the tests that compare n = 5 and n = 10 are now

presented.

Considering 1 group, there is a significant difference between n = 5

(M=1.266718, SD=0.00) and n = 10 (M=1.294696, SD=0.00); t(7.74) = 3.39,

p = 0.01.

For 20 groups, there is a difference between n = 5 (M=1.220748, SD=0.00)

and n = 10 (M=1.243682, SD=0.00); t(7.99) = 1.46, p = 0.18.

When 50 groups are considered, there is also a difference between n = 5

(M=1.207548, SD=0.00) and n = 10 (M=1.223508, SD=0.00); t(7.98) = 0.65,

p = 0.53.

For 200 groups, there is also a difference between n = 5 (M=1.16532,

SD=0.00) and n = 10 (M=1.176224, SD=0.00); t(7.99) = 0.54, p = 0.60.

With 500 groups, there is a difference between n = 5 (M=1.146128,

SD=0.00) and n = 10 (M=1.159176, SD=0.00); t(7.45) = 0.65, p = 0.54.

Results show that when the number of groups increases, the signifi-

cance of the difference between the value decreases. However, since for

n = 5 the results are always lower and the lowest probability that the values

are not different is 40%, the value was chosen for the algorithm.
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APART: conclusions

All the parameters used by APART have been tested and the algorithm will

be next compared with the other algorithms presented, with the following

configuration.

• Additive Utilitarian is the strategy selected to model a group’s prefer-

ences;

• parameter neighbors is set to 100;

• parameter n is set to 5.

4.2.4 BART (Baseline Automatic Recommendation Technology)

BART is a simple group recommendation algorithm that automatically

detects groups according to the constrains imposed by the system, predicts

individual ratings and models the groups.

Since the clustering algorithm uses the preferences explicitly expressed

by users and the algorithm that predicts individual ratings is the same

used by APART and was previously test, the only set of experiments that

have to be conducted is the one that allows to decide with which strategy

the groups should be modeled.

Figure 4.11 shows the obtained results with each modeling strategy.

As it can be noticed, unfortunately a few modeling strategy could not be

evaluated. This is the case of Average Without Misery (that could also not
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be tested previously for reasons already explained) and Approval Voting

with threshold values 3 and 4, because considering only items with a high

rating (i.e., with a rating above 3), too many ratings were discarded from

the model and a low percentage of comparisons with the test set was done.

Once again, Additive Utilitarian is the strategy that best models the

groups.

Figure 4.11: RMSE values for different group modeling strategies

Independent-samples t-test have been conducted, in order to compare

the results obtained with each couple of modeling strategies. For read-

ability reasons, just the tests that involve the strategy closer to Additive

Utilitarian, i.e., Borda Count, are presented.
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Considering 1 group, there is a significant difference between Addi-

tive Utilitarian (M=0.9894706, SD=0.00) and Borda Count (M=1.272588,

SD=0.00); t(5.56) = 559.80, p = 0.00.

For 20 groups, there is a significant difference between Additive Utili-

tarian (M=0.9872284, SD=0.00) and Borda Count (M=1.263502, SD=0.00);

t(5.46)165.03 =, p = 0.00.

When 50 groups are considered, there is a significant difference between

Additive Utilitarian (M=0.9857, SD=0.00) and Borda Count (M=1.261276,

SD=0.00); t(5.55) = 320.60, p = 0.00.

For 200 groups, there is a significant difference between Additive Util-

itarian (M=0.9836828, SD=0.00) and Borda Count (M=1.250402, SD=0.00);

t(6.59) = 274.73, p = 0.00.

With 500 groups, there is a significant difference between Additive Util-

itarian (M=0.983241, SD=0.00) and Borda Count (M=1.24804, SD=0.00);

t(5.62) = 237.40, p = 0.00.

Results clearly suggest that Additive Utilitarian is the best strategy to

model groups, i.e., averaging individual ratings leads to produce the best

group predictions with this algorithm.

BART: conclusions

Only one additional set of experiments was required to configure BART,

which uses the same algorithm used by APART to produce individual
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predictions. All the group modeling strategies were tested and Additive

Utilitarian was the one selected. The algorithm will be later compared

with the other proposed algorithms.

4.2.5 HEART (Highly Enhanced Automatic recommendation Tech-

nology

HEART is an variant of the algorithm previously proposed, that clusters

users considering individual predictions, in addition to the ratings ex-

plicitly expressed. So the clustering was repeated considering also the

individual predictions calculated with neighbors = 100 and the modeling

strategies were tested in a set of experiments.

Figure 4.12 shows the RMSE values obtained by each modeling strategy

for different numbers of groups. The same modeling strategies that could

not be evaluated with BART, i.e., Average Without Misery and Approval

Voting with threshold values 3 and 4, could not be evaluated with this

algorithm for the same reasons.

Results show that Additive Utilitarian is the strategy that allows to

achieve the best results.

As always, independent-samples t-test have been conducted, in order

to compare the results obtained with each couple of modeling strategies.

For readability reasons, just the tests that involve the strategy closer to

Additive Utilitarian, i.e., Borda Count, are presented.
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Figure 4.12: RMSE values for different group modeling strategies
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Considering 1 group, there is a significant difference between Addi-

tive Utilitarian (M=0.989471, SD=0.00) and Borda Count (M=1.076738,

SD=0.00); t(6.91) = 230.75, p = 0.00.

For 20 groups, there is a significant difference between Additive Util-

itarian (M=0.955438, SD=0.00) and Borda Count (M=1.066654, SD=0.00);

t(7.03) = 55.53, p = 0.00.

When 50 groups are considered, there is a significant difference between

Additive Utilitarian (M=0.943494, SD=0.00) and Borda Count (M=1.062368,

SD=0.00); t(5.04) = 139.27, p = 0.00.

For 200 groups, there is a significant difference between Additive Util-

itarian (M=0.939531, SD=0.00) and Borda Count (M=1.059622, SD=0.00);

t(7.54) = 192.73, p = 0.00.

With 500 groups, there is a significant difference between Additive Util-

itarian (M=0.938527, SD=0.00) and Borda Count (M=1.056988, SD=0.00);

t(7.98) = 225.65, p = 0.00.

Results clearly suggest that even for HEART Additive Utilitarian is the

best strategy to model groups, i.e., averaging individual ratings leads to

produce the best group predictions with the algorithm.

4.2.6 Comparing the algorithms

Once that all the parameters for each algorithm have been tested and the

strategy that best models the groups has been selected, the performances
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of each proposed algorithm can be compared.

Figure 4.13 reports the results obtained by each algorithm with its best

configuration.

An important aspect, not previously considered in the previous exper-

iments, is that for all the algorithms, as the number of groups grows, the

quality of the results improves (RMSE values get lower). This result will be

deeply analyzed next, in order to understand which properties of a group

cause this improvement.

As it can be noticed, the three families of approaches to produces group

recommendation are clearly separated in the results.

Figure 4.13: RMSE values obtained by each algorithm
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In fact the approach that merges individual recommendations (APART)

achieves the worst results. This is the sign that with large and automatically

detected groups, if a user preferences are expressed just with a small subset

of items (in this case five), a group recommendation algorithm is not able

to properly satisfy users.

The approaches based on a group model (MART and SMART) lay in

the middle. As depicted, the refinements introduced in SMART lead to

great improvements in the quality of a model-based algorithm.

At the bottom of the figure, achieving the best results, are the algorithms

that merge individual preferences (BART and HEART). Moreover, the

performances of HEART are much better than the performances of BART

and this proves that enhancing the clustering with individual predictions

leads to great improvements in the quality of the predicted results.

Independent-samples t-tests, conducted to compare the results, confirm

that there is a significant difference between the RMSE values obtained by

HEART and the ones obtained.

4.3 Per-group effectiveness

The comparison of the algorithms previously presented illustrated an im-

portant results, i.e., that the more groups the system can handle, the more

accurate predictions are. A question that arises when considering this

aspect is: why does that happen? Is it because groups get smaller and
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the system has to put together the preferences of a small amount of users,

making individual satisfaction easier to achieve? Is it because groups are

cohesive? Is it because there are no users that do no fit with the group?

This aspects will be analyzed in a set of experiments that evaluates the

different properties of a group, in order to analyze the factors that affect the

quality of a group recommendation algorithm that automatically detects

groups.

The algorithm used for this analysis is HEART, because it is the one

that achieved the best results.

For each group, its RMSE was measured and compared with one or

more of the factors of quality previously mentioned, i.e., sparsity, size,

diameter, average distortion.

Results will be reported in a figure that reports all the groups of all

the clusterings considered, in order to analyze if there is a clear trend that

characterizes the considered aspect.

4.3.1 Sparsity

Sparsity is considered to be the average of the number of ratings per user

of a group.

Figure 4.14 compares the RMSE values obtained for different values of

sparsity. Moreover, a Linear Regression line of RMSE was added, in order

to capture the trend of data.
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Figure 4.14: Effect of sparsity on the quality of the results
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Results show that as sparsity grows (i.e., as the number of ratings per

group grows), the quality of the predictions for that group improves. This

results is pretty straightforward and indicates that if the system has more

data to produce the recommendations, its performances improve.

4.3.2 Group size distribution

Size, i.e., the number of users per group, is the second aspect considered.

Figure 4.15 compares the RMSE values obtained for different values of

size of the groups. Again, a Linear Regression line of RMSE was added, in

order to capture the trend of data.

Figure 4.15: Effect of size on the quality of the results
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Results indicate an unexpected trend. In fact one would expect that the

overall quality of the results improve when the number of groups handled

by the system is higher, because groups get smaller and it is easier for the

system to put together a small amount of preferences.

However, results show that this is not what happens in this context and

further experiments will be presented to understand the role of size.

4.3.3 Group diameter distribution

Diameter is the maximum distance between two users in a group.

Figure 4.16 compares the RMSE values obtained for different values of

size of the groups and a Linear Regression line of RMSE is added, in order

to capture the trend of data.

Results show that the higher is the diameter, the higher is RMSE. In

other words, the higher is the distance between the two furthest users, the

worse are the performances of the algorithm.

Distance between users has been investigated even more specifically.

The next experiment will measure how distant users are from the center of

the group and how that property affects the quality of the algorithm.

4.3.4 Average distortion distribution

Average distortion, i.e., the distance of each user from the centroid of the

group, is the next aspect considered. Before analyzing the results of the



4.3. Per-group effectiveness 103

Figure 4.16: Effect of diameter on the quality of the results
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experiment, reader should note that the higher is distortion, the less “co-

hesive” is the group.

Figure 4.17 compares the RMSE values obtained for different values

of distortion and a Linear Regression line of RMSE is added, in order to

capture the trend of data.

Figure 4.17: Effect of distortion on the quality of the results

Distortion is clearly the property that affects the most the performances

of the algorithm. In fact, for higher values of distortion, RMSE worsens.

So, the less cohesive is the group, the harder it is for the algorithm to predict

for that group.

This result allows to understand why Additive Utilitarian is the strat-
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egy that works best to model the groups. In fact if a group has a low

average distortion, its users are closer to the centroid. But the centroid is

represented by the average of the ratings of the users. So, if users are closer

to the centroids, their ratings are closer to the average and their RMSE is

lower.

Now that the property the influences the most the quality of a group

recommender system that automatically detects groups has emerged, it is

important to understand what role does size play. In fact, it seems strange

that for larger groups the system can actually improve its performances.

This is why average distortion has been combined with size, in order to

analyze how size affects the quality of a system.

4.3.5 Combining distortion and size

In order to understand how size affects the quality of a group recom-

mendation algorithm, this experiment combines average distortion and

size through their product and measures the resulting RMSE, in order to

evaluate the distribution of the points.

Figure 4.18 shows that size does actually affect the performances of the

system.

In order to inspect these results and understand how distortion and

size affect the performances, all the cases in which more than a group had

the same average distortion and all the cases in which more than a group
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Figure 4.18: Combining distortion and size
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had the same size were compared and the resulting RMSE values were

analyzed. An example of each case is reported in Tables 4.1 and 4.2.

Average distortion Size RMSE

25.36 10 0.92725

34.37 10 1.013870

Table 4.1: Two groups with same size and different average distortion

Average distortion Size RMSE

30.85 3 1.00193

30.85 108 0.913884

Table 4.2: Two groups with same average distortion and different sizes

Table 4.1 shows that if two groups have the same size, the one with

lower average distortion is the one for which better results can be achieved.

Table 4.2 shows a very interesting result, i.e., that if two groups have the

same distortion, the one with larger size is the one that allows to achieve

the best results. That means that if two groups have the same level of

cohesion, it is easier for the system to build predictions for the larger one,

since it can exploit more preferences.
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4.4 Conclusions

This chapter presented a deep evaluation of all the proposed algorithms.

All the algorithms have been test in order to find the configuration that

allows that allows to achieve better performances.

All the algorithms have then been compared and experimental results

showed that the family of algorithms that combines individual prefer-

ences is the one that works best with automatically detected. In particular

HEART is the algorithm that performs best, indicating that the integration

of the clustering input with individual predictions leads to improvements

in the quality of the clustering and of the group recommendations.

Moreover, a set of factors of quality was inspected, in order to un-

derstand which properties affect a group recommendation algorithm that

works with automatically detected groups. Per-group effectiveness was

compared with these factors and average distortion of a group is the prop-

erty that affects the quality of an algorithm. Moreover, the role of the

size of a group was studied, in order to understand how it affects the

performances.

Next chapter will present a study related to the novelty of the recom-

mended content in a group recommender system.
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Effect on Novelty

This chapter presents a study conducted to evaluate how novelty of the

recommended content affects the quality of group recommendations.

5.1 Introduction

A group recommendation approach that recommends the same content

previously evaluated by users would be useful for content that is always

renewed and ever-changing, like news items or TV series episodes. Users

preferences for such types of content can be used to recommend items of

the same type (e.g., news about the same topic or new episodes of the same

series).

On the contrary, when a system produces group recommendations for
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types of content like movies, a new issue arises: novelty of the recom-

mended items. In fact, if an item was already evaluated by a great part of

the group, the system should limit its recommendation: users who already

considered the item would be bored to watch/read/listen to it often and it

wouldn’t be a real recommendation for them.

This chapter presents a study that shows how novelty of the recom-

mended content affects the quality of group recommendations. Recom-

mending novel content creates a trade-off that involves an improvement

in satisfaction of the users and a loss in the quality of the predicted ratings.

Since groups of different sizes are automatically detected by the system we

used, this study would allow a content provider to explore such a trade-off,

considering also the level of personalization of the recommended content.

5.2 Experimental framework

This study will be conducted on the algorithm HEART, which as illustrated

in the previous chapter, is the one that works best with automatically

detected groups.

The main objective of the experiments is to measure how much novelty

of the recommended content affects the quality of group recommendations,

considering different partitions of the users in groups. To make the study,

the MovieLens1-1M dataset was used. The dataset was pre-processed in

1http://www.grouplens.org/



5.2. Experimental framework 111

the same way as previously explained and experiments were repeated mul-

tiple times, in order to conduct a k-fold cross-validation and independent

samples t-tests.

Experimental methodology and setup

For each partition of the users in groups, ratings were predicted and the

quality of the predictions was evaluated through the Root Mean Squared

Error (RMSE). As previously described, the metric compares the test set

with the predicted ratings: each rating rui expressed by a user u for an item

i is compared with the rating pgi predicted for the item i for the group in

which user u is.

To evaluate the obtained RMSE values, the quality of the system that

produces individual predictions for each user and the quality of the predic-

tions made for a single group that contains all the users were considered.

Inside that range it is reasonable to compare the different partitions, con-

sidering that recommendations predicted for a single user are the best

result that can be obtained (predictions are tailored to a user’s preferences)

and a broadcast recommendation for a single group with no novelty of the

content is still acceptable.

In each experiment the system performances were evaluated consider-

ing different values of a novelty parameter, i.e., the minimum percentage

of users in a group that didn’t previously rate an item, in order for it to
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be recommended. For example, if novelty was set to 50% and an item was

rated by 60% of the group, the predicted rating for that item would be

discarded, since the recommended item would not be novel just for 40%

of the group.

Experimental results

Figure 5.1 shows RMSE for different values of content novelty for a set of

groups, considering the same partitions of the users in 20, 50, 200 and 500

groups.

Result show that up to 30% it is hard to notice a worsening of the

performances. This is because the groups handled by the algorithm are

very large. In fact, it can be noticed that performances of 1 group do not

vary until novelty > 60%.

In general performances start worsening when novelty > 30%. It can

be noticed that, for higher numbers of groups (e.g., 200 and 500 groups),

worsening of the results is faster, i.e., small groups are more affected by

novelty and it is harder to recommend new items to a small groups.

5.3 Conclusions

This chapter presented a study on the novelty of the recommended content

in group recommendation.
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Figure 5.1: Performances for different values of novelty

Experimental results show that if the system tries to recommend novel

content for more than 30% of the group, the performances start decreasing.

Moreover, small groups are more affected by novelty.
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Chapter 6

Market Segmentation

Market segmentation is the process that leads to an identification of groups

of people with similar interests in terms of products or services. Such

groups are usually called market segments. This chapter presents a tech-

nique to automatically identify market segments and classify users using

query logs. Experimental results show that even observing just a few

queries in a user’s search history it is possible to classify users, detecting

the market segments to which a user belongs.

6.1 Introduction

Web is in constant evolution and new content is reached by millions of

users in a very little time.
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With such a wide target of users it is hard to make effective advertising

by targeting users that might be interested in a product. Market segmen-

tation is the process that divides a large market into subsets, usually called

market segments, that have common needs or have similar preferences. Mar-

ket segments generally receive the same marketing campaigns, targeted on

the preferences/needs of the segment.

Market segmentation techniques rely on several sources of data and

require work of domain experts to detect the market segments. The result

is usually a very complex classification of the users, that can be difficult to

use for an advertiser.

Moreover, an effective classification of such a type way would be very

hard for the web, because the amount of users is both big and ever-

changing. No team of domain experts could actually analyze the pref-

erences of web users and follow the trends in order to build an effective

market segmentation.

In such a complex scenario, it would be useful to have a market seg-

mentation that is automatically built and simple to analyze for advertisers.

In this section a technique to segment markets based on query logs is

proposed. The search history of a user is analyzed and product queries are

detected, in order to exploit the preferences of a user for certain product

categories. A subset of this preferences is used to cluster users and identify

market segments. Demographic and behavioral features are then used to

classify users.
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Experimental results show that even monitoring just a few product

queries of the users can lead to the detection of the correct segment to

which the user belongs.

The scientific contribution of the proposed technique is the capability

to automatically detect market segments using implicit data that comes

from query logs. Moreover, the approach is able to find a small number

of segments, allowing advertisers to easily analyze how the market is

composed and find the segments to reach.

6.2 Experimental framework

In order to build an automatic market segmentation, information about

the interests of users have to be acquired. To do so, the queries typed on

the US Yahoo! search engine from June 5th 2009 to June 7th 2010 were

collected.

The subset of queries typed by registered users from the US was se-

lected. Moreover, queries were ordered by decreasing popularity and only

the top million queries were selected.

Out of all the data available for each query, only some information was

selected. In particular, the query and the demographic information about

the user who typed that query were kept.

For each query typed by a user, this was the considered data:

user id year o f birth ZIP gender query
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where user id is a completely anonymous string of characters.

Since the approach aims to build an automatic market segmentation,

we are interested in queries related to products. From now on such queries

will be called product queries. From the market segmentation point of view,

product queries are the only ones interesting, so they were the only ones

considered. Product queries can be detected using Yahoo! categories, that

allow also to derive the category to which each product belongs.

In order to classify users properly, enough information about a user’s

interests was needed. So we considered only users who typed at least 20

product queries. At this stage, the number of considered users was 588916

and the number of product categories was 100.

Knowing the number of product queries a user typed and the category

of products associated to each product query, it is possible to derive the

level of interest of a user u for a product category c:

iuc =
pquc

pqu
(6.1)

where pquc is the number of product queries typed by a user u for a

product category c and pqu is the number of product queries typed by user

u.

In the data considered for each query, the ZIP code of the user who

typed the query was available. From the ZIP code it is possible to have some
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more demographic information about a user. In particular, the information

available in the US Census 20001 was used. So the information available

in a query about a user was augmented with the US Census 2000 data.

Each user can now be represented by a vast set of features, that also

describe the characteristics of the area in which a user lives. The list of

features is listed below:

user id year o f birth ZIP gender population

average household size mean travel time

% non − english language people % people bachelors degree

% people below poverty per − capita income % white people

% black people % asian people % hispanic people

Merging demographic data with the US Census allowed us to process

the data once more. In fact we were able to check the ZIP entered by each

user and select only users who typed a real ZIP code. The number of

considered users was reduced to 557766.

6.2.1 Behavioral features

Considering the interest of each user for a product category, it is possible to

make a representation of the user considering behavioral features. Given

n product categories, a user can be represented with behavioral features

by:

1http://factfinder.census.gov/
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user id iu1 iu2 ... iun

where iu1 ... iun represents the interest of a user u for each product

category.

6.3 Clustering based on behavioral features

The clustering part of the approach is based on behavioral features. In fact

the interest of each user for product categories was used as input for the

clustering. Since behavioral features are interesting to consider for both the

clustering and the classification, the input for the clustering algorithm was

the set of behavioral features, built considering the queries a user typed

after the tenth query.

The algorithm chosen to cluster users is k-means. In particular, we used

a variant of the algorithm, called EZ Hybrid, developed inside a testbed

program called KMlocal [Kanungo et al., 2002].

As mentioned in the Introduction, one of the objectives of this approach

is to have a segmentation that can be easily inspected by humans. So the

number of clusters cannot be too high. Considering a number of clusters

between 2 and 20, an important aspect to consider is the choice of the right

number of clusters. In fact the partition of users in clusters has to reflect

the actual market segmentation.

To decide the number of clusters, different evaluations were done.
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Size of each cluster. Having clusters of too different sizes would not be

helpful, since too large clusters would be hard to inspect (i.e., the

preferences of the users in it might not be clear). It would optimal to

have a clustering where the size of each cluster is similar.

Features that characterize a cluster. For each cluster the number of dis-

criminative features (i.e., the features that characterize a cluster) is

considered. If a cluster has a high number of elevated features, the

preferences of the users in it are not well-defined. If that happens in

a lot of clusters, we can assume that the considered clustering is not

a good partitioning of the users.

Elbow method. For each clustering in k clusters, its distortion is measured

(i.e., the sum of squared distances for the centroids). If there is a drop

of distortion for a value of k, that means that the true partition of the

users is in k clusters.

After considering the aspects previously mentioned, we chose a clus-

tering in 13 clusters.

6.4 Users classification

After users are clustered, they can be classified into segments. To classify

users using the available data, three different choices could be made:

- Classification of the users considering only demographic data
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- Classification of the users considering only behavioral data

- Classification of the users considering both demographic and behav-

ioral data

Since the clustering step considered all the queries a user typed after

the tenth, the classifications that consider behavioral data can be done

considering the first ten typed queries. Moreover, the classification can be

repeated ten times, starting from the first typed query and considering one

more query at a time. Seeing how accuracy of the classification changes

considering different subsets of queries can be useful to inspect how having

more information about a user’s interests affects the results.

The third classification can be also useful to understand how demo-

graphic and behavioral data affect the classification accuracy.

The classification was done using Weka with the Naive Bayes algorithm

and a 10-fold cross-validation.

6.4.1 Classification based on demographic features

To classify users considering demographic data, the users representation

with the demographic features was considered and the cluster to which a

user belongs was added as the true class.

Accuracy of the classifier, knowing just the demographic data, was

12.37%.
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6.4.2 Classification based on behavioral features

To classify users considering behavioral data, the users representation with

the behavioral features was considered and the cluster to which a user

belongs was added as the true class.

Since the first ten queries typed by each user were not considered for

the clustering, it is now possible to use them to classify users. Moreover, it

is possible to evaluate how accuracy changes classifying users considering

always one more query, in respect to the previous classification. In the

initial evaluation we calculate accuracy of the classifier considering just the

first query, then the first two queries, and so on. These are the preliminary

results of the classifier:

Behavioral (First query) 18.27%

Behavioral (First 5 queries) 30.77%

Behavioral (First 10 queries) 45.03%

As predictable, having more information about a user leads to great

improvements in the classification accuracy.

6.4.3 Classification based on demographic and behavioral fea-

tures

To classify users considering both demographic and behavioral data, the

users representations with the demographic and behavioral features were
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merged and the cluster to which a user belongs was added as the true class.

One again users were classified adding one query at a time, to monitor

how accuracy improves.

Demographic + Behavioral (First query) 19.34%

Demographic + Behavioral (First 5 queries) 30.62%

Demographic + Behavioral (First 10 queries) 42.45%

Once again, having more information about a user’s interest leads to

great improvements in the accuracy of the classifier.

Comparing the results

Here the obtained results will be put together, in order to evaluate how

demographic and behavioral data affect the accuracy of the classifier.

Demographic 12.37%

Behavioral (First query) 18.27%

Demographic + Behavioral (First query) 19.34%

Behavioral (First 5 queries) 30.77%

Demographic + Behavioral (First 5 queries) 30.62%

Behavioral (First 10 queries) 45.03%

Demographic + Behavioral (First 10 queries) 42.45%

As it can be noticed, in order to improve accuracy of the classification,
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demographic information is useful just when little information about a

user’s behavior is known. When a user typed even just 5 queries, demo-

graphic information not only becomes useless but it also is misleading and

accuracy of the classifier worsens.

6.5 Conclusions
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Chapter 7

Tag Clustering

This chapter presents an approach to cluster tags of a tagging system,

in order to facilitate the exploration of a tagging systems. The system

outperforms the existing state-of-the-art techniques.

7.1 Introduction

The development of Web 2.0 applications, like blogs and wikis, led to a

continuous growth of information sources, with daily uploaded resources

shared by many users. Besides traditional techniques to categorize and

index data, new approaches based on collaborative tagging have been

effectively proposed and adopted. The success of those approaches is due

to the fact that tagging does not require specific skills and seems a natural
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way for people to classify any kind of resource.

A set of tags (tagspace) can be explored in several ways and many tag-

ging systems usually define sets of related tags, called tag clouds, that help

the tagspace visualization. However, as highlighted in [Golder and Huberman, 2006],

there are some well-known linguistic limitations that can inhibit informa-

tion retrieval in those systems. In particular, the meaning or semantics of

a tag is usually unknown. For instance, tag “orange” might refer either

to a fruit or a color. Moreover, people use several tags to select the same

resources. For example, a resource related to a pasta dish could be tagged

as “Italian food”, “spaghetti”, “first course”, etc. On the one hand, user can

freely choose which tags classify resources in a useful way; on the other

hand, the searching activity of other users within the tagspace could be

limited. In fact, to find a resource it might be necessary to search several

times using different keywords, and people should evaluate the relevance

of the retrieved documents.

Grouping related tags together would avoid such limitations and sim-

plify the exploration of a tagging system [Bielenberg and Zacher, 2005]. In

fact, the definition of sets of related tags would help the identification of a

context that would make resources retrieval easier.

In this section, RATC (Robust Automated Tag Clustering), a technique

that monitors users activity in the search engine of a tagging system in

order to exploit implicit feedbacks provided by users, is presented. A

feedback is collected each time a user finds a relevant resource during a
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search in a tagging system. The algorithm uses the feedback to dynamically

strengthen associations between the resource indicated by the user and the

tags used in the search string. Tag-resource associations are then used

to infer tag-tag associations by adopting a standard correlation measure.

Tag-tag associations allow to cluster tags in order to find strongly related

tag sets. Results have been compared with the ones obtained by adopting

the state-of-the-art approach proposed in [Begelman et al., 2006] showing

an improvement in the presence of strongly related tags in a cluster.

The main contribution of the proposed approach is that, by supervising

users activity in a tagging system and monitoring their searches, we can

progressively create and update tag-resource associations and tag-tag asso-

ciations, rewarding the real semantic relations among tags and penalizing

the misleading ones.

The rest of the section is organized as follows: in 7.2 the state-of-the-art

in tag clustering is presented; 7.3 describes in detail the steps we followed

to build the technique; in 7.4 the performed experiments are described and

main results are outlined.

7.2 Related Work

In the literature, several techniques, aimed at grouping tags by adopting

different clustering algorithms and heuristics, have been presented.

In [Specia and Motta, 2007], an approach that tries to infer the seman-
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tics behind a tag space is proposed. The corresponding collaborative tag-

ging can help in finding groups of concepts and partial ontologies. This

is achieved by using a combination of shallow pre-processing strategies

and statistical techniques together with knowledge provided by ontolo-

gies available on the semantic web. This technique starts pre-processing

the data and cleaning up the tag space, then, evaluating co-occurrences,

it finds tag-tag associations and clusters them. Semantic relations are ex-

tracted from the clusters and the results consist of groups of highly related

tags that conceptualize specific facets of knowledge and correspond to el-

ements in ontologies. This approach differs from the one proposed in this

chapter since the proposed technique does not pre-process the tagspace.

The approach, in fact, is able to adaptively remove noisy tags by monitoring

user interactions.

In [Hamasaki et al., 2008], being aimed at extracting ontologies, au-

thors proposed a way to integrate a social network with collaborative

tagging. The usual tripartite models of ontologies based on users, tags

and instances, are integrated with user-user relations. Concepts in each

community (called p-concepts) are considered different and this model was

used to resolve the polysemy/homonymy problem. This technique aims to

group p-concepts and find keywords associations by using an algorithm

that considers the interactions among users and p-concepts. This approach

differs in the sense that RATC considers users interaction just to link re-

sources to tags, without creating explicit associations among users and
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resources.

In [Wu et al., 2006], an approach aimed at generating groups of se-

mantically related tags through a probabilistic model is presented. The

technique is based on evaluating co-occurrence of tags, resources, and

users. The approach proposed here differs because it does not rely on a

probabilistic model and it does not consider users.

In [Giannakidou et al., 2008], a co-clustering approach, based on the

one proposed in [Dhillon, 2001], is employed. In this approach, tags and

resources belonging to different datasets are clustered together. The clus-

tering activity is based on a similarity metric that uses tag co-occurrences

and semantic knowledge about the tags. The relations among the ele-

ments are used to enrich ontologies and to train multimedia processing

algorithms. On the contrary, in this approach, the clustering activity is

based just on tags and new knowledge is inferred by clustering elements

of the same dataset.

In [Smyth et al., 2003b], a technique to exploit information from queries

is presented. Associations between the keywords used in a query and the

relevant resources retrieved by a search engine are exploited in order to

rank search results based on the past users activity. The technique proposed

creates associations also between a resource and the tags used to classify it

when uploaded.

In [Baeza-Yates, 2005], an approach to create clusters of queries is pre-

sented. Related queries are clustered together, in order to recommend a
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better query to users. This is achieved by finding the most descriptive

words in a cluster and recommending better queries to users. In this

approach, queries are used in a different way. Associations among tags

clustering queries are not inferred, but tags associations are derived con-

sidering the resources that they classify.

In [Begelman et al., 2006], a technique to cluster strongly related tags

is presented. The algorithm is based on counting the number of co-

occurrences (tags that are used for the same resource) of any pair of tags

and a cut-off point is determined to decide if the co-occurrence count is

significant enough to be used. Tags are clustered with an algorithm that

is based on the spectral bisection and uses the modularity function to

measure the quality of a partitioning. Related tags are then automatically

discovered by incrementing a counter for each pair of tags that belong to

the same cluster. Although the approach presented is quite similar, the

main difference is that tag-resource associations are continuously updated

during the use of the system.

7.3 RATC: Robust Automated Tag Clustering

RATC, which stands for Robust Automated Tag Clustering, monitors users

activity in the search engine of a tagging system. The technique has been

defined “robust” to put into evidence its ability to overwhelm the mis-

leading resource classification problem. Robustness is the capability of an
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algorithm to remain stable in presence of fake information, usually added

on purpose to influence its quality [?].

7.3.1 Top Level View of the Approach

RATC encompasses four main steps:

Tag-resource associations creation. As in any tagging system, each time

a new resource is put into the system, a tag-resource association is

created among that resource and the tags used to describe it.

Dynamic tag-resource associations evaluation. Users activity in the tag-

ging system search engine is monitored and exploited in order to

update existing tag-resource associations and to create new ones.

Tag-tag associations creation and quantification Dynamic tag-resource as-

sociations are exploited to create associations among tags (tag-tag as-

sociations). A standard cosine similarity measure [Baeza-Yates and Ribeiro-Neto, 1999]

is used to evaluate the similarity among tags. The result of this pro-

cess is a weighted graph (tag similarity graph) in which each node rep-

resents a tag and each weighted arc represents the similarity value of

the tags it connects.

Clustering. The community detection algorithm proposed by [van Dongen, 2000]

is applied to the tag similarity graph in order to detect the intrinsic

communities of tags.
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7.3.2 Representation of a Tagging System

A tagging system is a community driven tool that allows users to classify

resources by using tags. It can be represented as a bipartite graph that

contains:

- a set T of tags t;

- a set R of resources r;

- a set A : (T × R) of weighted arcs t − r, representing tag-resource

associations. The weight of the tag-resource associations represents

the number of times that a tag has been associated to a resource by

users.

As depicted in Figure7.1, a tagging system is composed by a set of tags

(rectangular nodes) linked by a weighted arc to a subset of resources (round

nodes). In the example in figure there are three resources concerning with

“goal actions” in a soccer game 1. All of those resources has been classified

with the tags soccer and goal and the weight of each arc represents the

strength of the association between a tag and a resource. Each tag has

some outgoing dotted arcs, which indicate that there are other resources

linked to those tags, not depicted in the example.

As a final remark, this approach does not take into account different

meaning associated to a same word (i.e. polysemy). For instance, in the

example in Figure7.1, tag goal is used either as a successful attempt at

1Resources represent multimedia documents, like videos or pictures.
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scoring in a soccer game or as the place designed at the end of a race.

7.3.3 Tag-Resource Associations Quantification

The standard search paradigm provided by tagging services is based on

query strings containing one (or more) tag. The search returns a list of

resources associated to these tags. To provide such list, a ranking of the

results is derived according to the tag-resource associations available in

the tagging system that can be considered as the strength of the association

between a resource and each tag used to describe it. While tagging systems

usually associate tags and resources at upload time, implicit user feedback,

coming from its search activity, can be exploited to improve tag-resource

associations.

To represent the strength of tag-resource associations we adopted an

algorithm based on counters. The algorithm exploits users feedback to

discover and emphasize correct associations strength, while making negli-

gible the contribution of “noisy” associations. The strength of each associ-

ation evolves according to an extremely simple and effective mechanism.

A tag-resource association is created each time a resource is added to the

system by a user. After a search operation based on a tag, each time the user

selects a resource, the counter of the tag-resource association is increased

(an example of tag-resource associations is shown in Figure7.1). Although

a huge number of resources may be related to a single tag, their relevance
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will depend on the feedbacks provided by the community of users. In

such a way the association of a misleading tag to a resource will give a

negligible contribution.

In order to contain the counters relative to tag-resource associations, a

matrix W = {wrt} is defined, where wrt is the association between resource

r and tag t (an example is depicted in Figure7.2).

Initial values are assigned when a new resource is uploaded and values

are updated either when a user adds a tag already present in the database

or when a feedback is given 2. When a new resource is uploaded to the

tagging system together with some tags, the corresponding tag-resource

counter is set to 1. If such association is already present in the system,

the corresponding wi j is incremented. The matrix is also updated when

a user performs a search in the tagging system and selects one of the

results as relevant. At this stage, after the user selection took place, the

counters between the selected resource and all the tags in the query list are

incremented, namely wrt = wrt + 1.

The tagging system shown in Figure7.1 has been built using the tag-

resource counters described above. Let us stress the fact that the strength

of the relation between a tag and a resource in our tagging system is

based on the feedbacks left by the users during the use of the system. For

example, tag soccer has been used three times to classify and search the

2The initial values are just a starting point that evolve as the feedbacks are collected.
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second resource concerning with the goal action of a player.

7.3.4 Tag-Tag Associations Quantification

Let vi be the vector of associations among a tag i and its related resources

and v j be the vector of associations among a tag j and its related resources.

The association ai j between tag i and tag j can be measured by the cosine

similarity between the vectors as follows:

ai j = cos(vi, v j) =
vi · v j

‖vi‖2 × ‖v j‖2
=

vi1 · v j1 + ... + vik · v jk

‖vi‖2 × ‖v j‖2

These associations can be represented in a graph, called tag similarity

graph, which links each couple of associated tags with a weighted arc. An

example, built using the associations among tags and the resources shown

in Figure7.1, is represented in Figure7.2 3.

7.3.5 Clustering

To perform clustering MCL (Markov Clustering Algorithm) [van Dongen, 2000]

was adopted. MCL is a Community Detection [Porter et al., 2009] algo-

rithm, built to find cluster structure in simple graphs, considering the

similarity between vertexes. The MCL algorithm tries to simulate the flow

within a graph, considering just the part where the flow is strong and

3The values of the associations in the figure have been calculated considering the whole

tagging system.
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removing weak connections. If natural groups are in the graph, the links

between the groups disappear, leaving the cluster structure.

The flow is simulated by a transformation of the graph into a Markov

graph (a graph where for all nodes the sum of the weights of outgoing arcs

is 1) and is expanded by computing powers of the associated stochastic

(Markov) matrix.

Since these operations are not enough and do not reveal the clus-

ters in the graph, a new operator (inflation) is inserted. Flow inflation

[van Dongen, 2000] is the entry-wise Hadamard-Schur product of the ma-

trix combined with a diagonal scaling, while flow expansion is represented

by the usual matrix product. The inflation operator has been introduced to

strengthen and weaken the flow, and the expansion operator is responsible

for allowing flow to connect different regions of the graph.

As the MCL algorithm basically consists of alternation of two different

operators on matrices, followed by interpretation of the resulting limit, its

formulation is quite simple. It is also possible to find clusters of different

granularities, by varying its parameters.

A more detailed description of this algorithm is beyond the scope of

this thesis. The interested reader could refer to [van Dongen, 2000] for

further details.
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7.4 Experiments and Results

To evaluate the proposed approach, first, a tagging system with an in-

ternal experimental search engine [Carta et al., 2008] was adopted, and

then, the performances were compared with a state-of-the-art approach

[Begelman et al., 2006].

Several aspects have been taken into account while performing com-

parisons regarding the robustness of the two approaches. In particular, to

analyze the impact of noise in the performances, noisy tags were suitably

added to the tagging system. The quality of the obtained clusters have

been evaluated comparing results with the ones provided by a domain

engineer in terms of precision and recall. The adaptive capability of our

approach (i.e., the users activity monitoring and their feedback) has been

evaluated measuring the temporal evolution of clusters quality.

7.4.1 Setting Up the Experiments

To conduct the experiments 10 volunteers populated a tagging system

[Carta et al., 2008] (resource acquisition step). They were asked to select as

many videos as they wanted from YouTube 4 and add them to the tagging

system. The application domain was limited to “sport” as specific topic,

which can be considered a concept domain. Each video was classified with

four tags related to the resource and two tags (the noisy tags) not related

4http://www.youtube.com
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to the resource. Noisy tags were added to simulate the noise that typically

occurs in practice.

Once the tagging systems was populated, volunteers were asked to

perform normal searches in the tagging system (feedback collection step).

During this step, RATC improves its performances monitoring users search

activity. Videos are chosen based on a preview shown to the user and their

original description. This step started as soon as the resource acquisition

step was completed. The reason was to neatly separate the initial values of

the correlations from their evolutions caused by the feedbacks of the users.

Resources Acquisition

Each time a volunteer added a new video to the application, she/he had

to create two sets of tags. The former is devoted to contain (at least) four

characteristic tags, strongly related to the video; the latter is devoted to

contain two tags not related to the video but in the same domain (in this

experiments, “sport”). This tag set is required to create some verifiable

noise and it has been used to monitor the progressive decreasing of their

correlation with the video they had been initially introduced with. Such

noise is useful to evaluate the clustering algorithm. In particular, in this

way we are able to monitor how the clusters structure changes and to

evaluate the quality of the clusters.

The tagging system was populated with a total of 406 videos, 1021 tags,



7.4. Experiments and Results 141

2597 video-tag correlations. Although in [Golder and Huberman, 2006]

authors show that tags that identify qualities or characteristics can be

effective in recommendation systems, being interested in clustering tags

according to their meaning, we disregarded such kind of tags (i.e., those

that express emotions or feelings). At the end of this step, the system

involves 964 tags.

Feedback Collection

During this step, each volunteer performed 300 searches in the tagging

systems. For each search, each volunteer: (i) entered a list of tags as query

for the search; and (ii) selected, from the videos in the results list, the video

most related with the query.

A feedback is then collected each time a user performed a search and

consequently tag-resource counters are incremented. After entering a list

of tags, she/he was free to analyze the videos resulting from the search

(during this phase the user could also play all the videos to help her/his

choice). At the end of this activity, the user had to pick a video from the

output list providing a feedback. This emulates a real world scenario in

which a user, after the result of a search is displayed, selects the resources

she/he is interested in.
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7.4.2 Benchmark algorithm description

The technique selected for comparison with RATC, i.e., the one proposed

by [Begelman et al., 2006], hereinafter ATC.

ATC is aimed at clustering tags to improve user experience in the use

of a tagging system and minimize the classical linguistic limitations. The

approach defines an algorithm to find strongly related tags counting the

number of tag co-occurrences used for a page. A cut-off point is determined

to evaluate when a counter is useful. A spars matrix is produced and its

elements are the similarities among tags.

A graph representation of the similarities is defined and the tags are

grouped with a graph clustering algorithm based on the spectral bisection.

The quality of the partitioning is measured with the “modularity function”

Q [Newman and Girvan, 2004]. ATC performs the following steps: (i) it

uses spectral bisection to split the graph into two clusters; (ii) it compares

the value of the modularity function Q0 of the original unpartitioned graph

to the value of the modularity function Q1 of the partitioned graph, if

Q1 > Q0 accepts the partitioning, otherwise rejects the partitioning; and

(iii) it proceeds recursively on each accepted partition.

A similarity counter is increased for each pair of tags that belong to the

same cluster and the top similar pairs of tags are extracted.

The choice to compare RATC with this approach is motivated by the

fact that both approaches use tag-resource counters to define associations
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among tags. Let us also note that the main difference is on the way the

counter is incremented. In fact, as previously explained, RATC counter is

incremented also during the search activity.

7.4.3 Evaluation Measures

To assess the ability of RATC to learn from users activity monitoring, the

state of the tagging system (i.e. the current values of each tag-resource

association) has been saved and used to evaluate clusters quality each 50

feedbacks. In this way, 6 tagging system sessions, which can be used

to compare the two tag clustering approaches, are available. As already

pointed out, a subset of known tags was added to the tagging system

to create some verifiable noise. To evaluate the quality of the clusters

created by each algorithm in presence of noise we conducted experiments

considering both the original dataset and a dataset in which we removed

the noisy tags. The only parameter that had to be set is the inflation value

in the clustering step (set to 3.0).

To make fair comparisons, first, a domain engineer clustered the in-

volved tags. Each cluster was created considering tags that refer to the

same concept, i.e. a particular event or a clear ‘topic’ that groups tags.

Subsequently, the tag clustering obtained by the domain engineer is com-

pared with the clusters automatically generated by using RATC and the

ones obtained by applying ATC. Each cluster produced by both RATC and
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ATC was evaluated considering the most related cluster generated by the

domain engineer and producing the following sets:

- true positive tags (TP): tags that appear both in a cluster generated by

RATC (ATC) and in the cluster of the domain engineer partition.

- true negative tags (TN): tags that do not appear both in a cluster

generated by RATC (ATC) and in the cluster of the domain engineer

partition.

- false positive tags (FP): tags that appear in a cluster generated by

RATC (ATC) and do not appear in the cluster of the domain engineer

partition.

- false negative tags (FN): tags that do not appear in a cluster generated

by RATC (ATC), but appear in the cluster of the domain engineer

partition.

To validate the approach, we resort to classical information retrieval

measures, such as micro- and macro-averaging of precision and recall

[Sebastiani, 2002]. Let us recall here that micro- and macro-averaging are

aimed at obtaining estimates of π and ρ relative to the whole category set.

In particular, micro-averaging evaluates the overall π and ρ by globally

summing over all individual decisions. In symbols:

πµ =
TP

TP + FP
; ρµ =

TP
TP + FN

=

∑m
i=1 TPi∑m

i=1(TPi + FNi)
(7.1)

where the “µ” superscript stands for microaveraging. On the other hand,



7.4. Experiments and Results 145

macro-averaging first evaluates π and ρ “locally” for each category, and

then “globally” by averaging over the results of the different categories. In

symbols:

πM =

∑
i=1 mPi

m
; rhoM =

∑
i=1 mPi

m
(7.2)

where the “M” superscript stands for macroaveraging.

7.4.4 Results

Fig. 7.3 compares the results in terms of macro-averaging precision (Fig.

7.3-a) and recall (Fig. 7.3-b) obtained by adopting RATC and ATC with

and without noisy tags. Fig. 7.4 compares the results in terms of micro-

averaging precision (Fig. 7.4-a) and recall (Fig. 7.4-b) obtained by adopting

RATC and ATC with and without noisy tags. Results show that RATC

performs always better than ATC, and that such performances improve

session by session, due to the fact that tag-resource associations and tag-

tag associations get better with the use of the system (i.e., by applying the

feedback mechanism).

It is worth to put into evidence that, in the first session, the tag-resource

associations have the same values for both algorithms, as no search activity

was done in the system. Considering that RATC achieves better results

even in this session, it can be stated that cosine similarity represents a better

way to measure associations among tags.
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In order to measure the robustness of each system, i.e., the degree

to which it can function correctly in presence of noise, the worsening of

micro- and macro-averaging of precision and recall are measured. Micro-

averaging worsening for RATC is between 7% and 9%, while worsening

for ATC is 29.19%. Macro-averaging worsening for RATC is always around

8%, while worsening for RATC is 22.57%. That means that RATC is more

robust thsan ATC, since it is less affected by the presence of noise.

7.5 Conclusions

This chapter presented a technique able to cluster tags in a tagging sys-

tem, with the ability to dynamically improve its performances while the

tagging system is being used. The algorithm monitors users activity and

exploits implicit feedbacks left by users. Experimental results highlight

the effectiveness of the approach in the presence of strongly related tags in

a cluster.
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Figure 7.1: A tagging system example
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Figure 7.2: Similarities graph

Figure 7.3: Macro-averaging precision (a) and recall (b)
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Figure 7.4: Micro-averaging precision (a) and recall (b)
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Chapter 8

Conclusions

This PhD thesis focused on group recommendation algorithm that auto-

matically detect groups of users with similar preferences, in contexts in

which the number of recommendations that can be provided is limited.

8.1 Contributions

Specifically, the contribution of this PhD thesis are summarized as follows.

• Study of the approaches to aggregate individual preferences and gen-

erate group recommendations and identification of the approach the

works best in a scenario in which groups are automatically detected.

• Study of the strategies to model groups, in order to find the strategy

that works best with automatically detected groups.
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• Study of the per-group effectiveness of an algorithm, in order to

understand which properties of a group affect the quality of a group

recommendation algorithm.

• Study of how the novelty of the recommended content affects the

quality of a group recommendation algorithm.

• A technique to automatically segment markets based on query logs.

• A tag clustering technique to simplify the exploration of a tagging

system.

Chapter 3 appeared in [Boratto and Carta, 2010b]. The algorithm pre-

sented in Chapter 3 as MART was presented in [Boratto et al., 2009a]. The

algorithms presented as BART and HEART in Chapter 3 were proposed

in [Boratto et al., 2010b].

Chapter 5 appeared in [Boratto et al., 2010a] and Chapter 7 in [Boratto et al., 2009b].

Algorithms SMART and APART, the vast majority of the experiments in

Chapter 4 and the technique proposed in Chapter 6 are all novel contribu-

tions developed for this thesis.
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