
Ph.D. in Eletroni and Computer Engineering

Dept. of Eletrial and Eletroni Engineering

University of Cagliari

Power laws in software systems.
Roberto Tonelli

Advisor : Mihele Marhesi

Curriulum: ING-INF/05 Informatia

Cyle XXIV

February 2012

Ph.D. in Eletroni and Computer Engineering

Dept. of Eletrial and Eletroni Engineering

University of Cagliari

Power laws in software systems.
Roberto Tonelli

Advisor : Mihele Marhesi

Curriulum: ING-INF/05 Informatia

Cyle XXIV

February 2012

Dediated to my wife.

Contents

1 Introduction 1

1.1 Thesis overview. 3

2 Software Networks 5

2.1 Literature Overview . 5

2.2 Object-Oriented Systems as Networks 7

2.3 Software Networks . 8

3 Metrics for Software Networks 11

3.1 SNA Metrics. 11

3.2 SNA related works . 13

3.3 Software Networks Fractal Dimension. 14

4 Power Laws in the Tail and Modeling Software Properties. 17

4.1 Related Works . 18

4.2 A More Convenient Representation. 19

4.3 Distribution Functions and Generative Models 20

5 The Yule Process for Modeling Software 25

5.1 The Yule process . 26

5.2 Estimating Yule process parameters 28

5.3 Fitting the power-law distributions 30

5.4 Results . 31

5.4.1 Names of instance variables 32

5.4.2 Names of methods . 35

5.4.3 Number of calls to methods 37

5.4.4 Number of subclasses . 39

5.5 Simulation results . 41

5.6 Discussion . 45

i

ii CONTENTS

6 Bug distribution in OO systems. 51

6.1 Related Works. 51
6.2 Bug distribution and its quantification 52
6.3 Bug distribution . 54
6.4 Discussion . 57
6.5 Conclusions . 62

7 Social Networks Metrics and Object Oriented Software. 65

7.1 Research Questions. 66
7.2 CU Software Networks and CU-CK Metrics. 67
7.3 Issues Extraction. 69
7.4 Empirical results regarding metric distributions 70
7.5 Correlations . 79
7.6 Providing Estimates . 83
7.7 Conclusions . 86

8 Analysis of SNA metrics on the Java Qualitas Corpus. 87

8.1 Related Works. 87
8.2 The Dataset and SNA metrics for the software networks. 89
8.3 PCA and Cluster Analysis . 90
8.4 Statistics of Correlations and Bugs 92

8.4.1 Metrics Size, Ties, Brokerage, effSize. 95
8.4.2 Metrics Closeness and dwReach. 96
8.4.3 Metrics nWeakComp and infoCentrality. 97
8.4.4 Metrics Loc and Fan-out. 97
8.4.5 Metrics in Random Graphs. 99
8.4.6 Correlations with Bugs. 99

8.5 Conclusions . 103

9 Three Algorithms for Analyzing Fractal Software Networks 105

9.1 Related Works. 105
9.2 The Fractal Dimension of Software Networks 106

9.2.1 Fractals. 106
9.2.2 Fractal Dimension of OO Networks 108

9.3 Computing the Network Fractal Dimension 109
9.3.1 Greedy Coloring (GC) . 110
9.3.2 Merge Algorithm . 111
9.3.3 Simulated Annealing(SA) . 112

9.4 Results . 113
9.4.1 Execution speed . 113
9.4.2 Result Quality . 115

CONTENTS iii

9.5 Conclusion . 115

10 Fractal Dimension Metric and Object-Oriented Software Quality 119

10.1 Research Questions . 120
10.2 Evolution of the fractal dimension 121
10.3 Results . 122
10.4 Threats to Validity . 125
10.5 Conclusion . 125

11 Concluding remarks 127

*

iv CONTENTS

List of Figures

2.1 Fig. 2.1. Example of a portion of class graph for Eclipse. Classes,
abstract classes and interfaces, as well as different relationships,
have different colors. 8

3.1 Log-log plot of NB vs. lB for Eclipse 3.2. 15

3.2 Scheme of the construction of the dual network G’, with given box

size lB = 3. The greedy algorithm is used for vertex coloring on G’.

This figure is taken from [69]. 16

5.1 Survival distributions of the names of instance variables for each

version of the analysed systems: Eclipse, Netbeans, JDK, Ant. Solid

and dashed line represent best fits to the data using the methods

described in section 5.3. 33

5.2 Survival distributions of the frequency of a method name for each

analysed system: Eclipse, Netbeans, JDK and Ant. Solid and dashed

line represent best fits to the data using the methods described in

section 5.3. 36

5.3 Survival distributions of the number of method calls for each anal-

ysed system: Eclipse, Netbeans, JDK and Ant. Solid and dashed line

represent best fits to the data using the methods described in section

5.3. 38

5.4 Survival distributions of the number of immediate subclasses for

each system analysed: Eclipse, Netbeans, JDK and Ant. Solid and

dashed line represent best fits to the data using the methods de-

scribed in section 5.3. 40

5.5 Cumulative distributions obtained simulating the four properties

analysed of Eclipse: (a) Names of instance variables, (b) Names of

methods, (c) Number of call to methods, (d) Number of subclasses. 43

v

vi LIST OF FIGURES

5.6 Survival distributions of the differences of methods names frequences

among couples of distribution from simulation data (a) and real

data (b). We plot only few representative couples, toghether with

the survival distributions of two main releases as comparison. . . . 45

6.1 The CCDF of bugs in Eclipse 3.3. Modules with no bugs are dis-
carded in these data, since the Double Pareto and log-normal mod-
els cannot fit zero values. 55

6.2 The Alberg diagram obtained from converting the fitting of the
CCDF representation, for the same data as in Fig. 1. Modules
containing no bugs are excluded. 56

6.3 The CCDF of bugs and its best fitting Yule-Simon CCDF in Eclipse
3.3. This data set includes also modules with zero bugs. 57

6.4 The average number of bugs introduced in the next release in the
modules having bugs from zero to 14 in the current release, for
Eclipse 3.0, 3.1 and 3.2. The line refers to linear interpolation of
the data set “Eclipse 3.0 to 3.1”. 61

7.1 CCDF of SNA metrics for Eclipse 3.4 release. The name of the met-

rics is in the top of the box. The power-law behavior in the tail is

patent for all metrics. 72
7.2 CCDF of SNA metrics for Netbeans 6.0 release. The name of the

metrics is in the top of the box. 73
7.3 CCDF of EffSize and Brokerage metrics for various Eclipse and Net-

beans releases. A very similar behavior is patent for all metrics and

across all releases of the same system. 74
7.4 Empirical CCDFs of various metrics in Eclipse 3.1, with their best-

fit theoretical distributions. Yule-Simon fit is shown separately. . . 75
7.5 Empirical CCDFs of various metrics in Netbeans 3.2, with their

best-fit theoretical distributions. Yule-Simon fit is shown separately. 77
7.6 Empirical CCDFs of Bugs and Issues in Eclipse 3.3, with their best-

fit theoretical distributions. Yule-Simon fit is shown separately. . . 79
7.7 Empirical CCDFs of Bugs and Issues in Netbeans 6.0, with their

best-fit theoretical distributions. Yule-Simon fit is shown separately. 80

8.1 First and second Principal Components for the system Jrefactory.
Different points correspond to different metrics and the same color
stands for metrics belonging to one same group after clustering. . 92

8.2 First and third Principal Components for the system Jrefactory.
Different points correspond to different metrics and the same color
stands for metrics belonging to one same group after clustering. . 93

LIST OF FIGURES vii

8.3 Boxplot of the correlations among Size and the other metrics for
all the Java Qualitas Corpus. 94

8.4 Boxplot of the correlations among Size and the other metrics for
the 23 largest systems. 95

8.5 Boxplot of the correlations among Closeness and the other met-
rics for the 23 largest systems. 96

8.6 Boxplot of the correlations among InofCentrality and the other
metrics for the 23 largest systems. 97

8.7 Boxplot of the correlations among Loc and the other metrics for
the 23 largest systems. 98

8.8 Graph representation of the software system Cobertura. 98
8.9 Graph representation of the software system Drawswf. 99
8.10 Correlations among four SNA metrics in random graphs. 100

9.1 Fig. 9.1: Cantor set with three steps. 106
9.2 Fig. 9.2. Log-log plot of NB vs. lB for JDK 1.5.0. 109
9.3 Fig. 9.3. Log-log plot of NB vs. lB for Eclipse 2.1.3. 109
9.4 Fig. 9.4. Log-log plot of NB vs. lB for VWorks 7.3. 110
9.5 Fig. 9.5: Construction of the dual network G’ for a given box size

(here lB = 3), where two nodes are connected if they are at a dis-
tance l ≥ lB . We use a greedy algorithm for vertex coloring in G’,
which is then used to determine the box covering in G, as shown
in the plot. 111

9.6 Fig. 9.6. Fractal dimension for different versions of the analyzed
systems, as a function of the release version, according to the num-
ber of classes of each version. 114

9.7 Fig. 9.7 Empirical distributions of the values of NB for six values
of lB , for GC algorithm run 1000 times. 115

9.8 Fig. 9.8. Empirical distributions of the values of NB for six values
of lB , for MA algorithm run 1000 times. 116

9.9 Fig. 9.9. Empirical distributions of NB for six values of lB , for SA
algorithm run 50 times. 116

9.10 Fig. 9.10. Standard deviations of the values of NB for eight values
of lB , for MA algorithm run 1000 times. 116

10.1 Log-log plot of NB vs. lB for Eclipse 3.2. 121

*

viii LIST OF FIGURES

List of Tables

5.1 Empirical data computed on each releases for property "Names of

methods". 32

5.2 Empirical data computed on each project for property "Names of

instance variables". 34

5.3 Yule process parameters computed on each project for property "Names

of instance variables". 34

5.4 The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for property "Name

of instance variables". 35

5.5 Yule process parameters computed on each project for property "Names

of methods". 36

5.6 Yule process parameters computed on each project for property "Names

of methods". 37

5.7 The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for property "Name

of methods". 37

5.8 Empirical data computed on each project for property "Number of

call to methods". 38

5.9 Yule process parameters computed on each project for property "Num-

ber of call to methods". 39

5.10 The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for property "Num-

ber of call to methods". 39

5.11 Empirical data computed on each project for property "Number of

subclasses". 40

5.12 Yule process parameters computed on each project for property "Num-

ber of subclasses". 41

5.13 The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for property "Num-

ber of subclasses". 41

ix

x LIST OF TABLES

5.14 Comparison between the parameter m obtained from real data

and simulation results (averaged over 20 runs) for each of the Eclipse

properties examined. Standard errors of simulated parameters are

reported in parenthesis. 42

5.15 Comparison between the parameter c obtained from real data and

simulation results (averaged over 20 runs) for each of the Eclipse

properties examined. Standard errors of simulated parameters are

reported in parenthesis. 43

5.16 The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for all the studied

properties. 44

5.17 Instance variable names with the maximum number of occurrences

for the main version of the examined software systems 48

5.18 Method names with the maximum number of occurrences for the

main version of the examined software systems 48

5.19 Maximum number of occurrences of calls to a method with a given

name for the main version of the examined software systems 49

5.20 Classes with the maximum number of immediate subclasses for

the main version of the examined software systems 49

6.1 Basic statistics of studied Eclipse releases. 54

6.2 R2 coefficient of determination. Modules with no bugs are included

only in the Yule-Simon model. 55

6.3 Average number of bugs hitting modules in release 3.1, for mod-
ules with a number of bugs between 0 and 14 in release 3.0. 60

7.1 Number of CUs of Eclipse for each release 71

7.2 Number of CUs of Netbeans for each release 71

7.3 Determination coefficients for the three distribution functions (Eclipse-
3.1). 76

7.4 Determination coefficients for the three distribution functions (Netbeans-
3.2). 76

7.5 Eclipse 2.1. Pearson correlation among metrics 83

7.6 Eclipse 2.1. Spearman correlation among metrics 83

7.7 Netbeans 3.2. Spearman correlation among metrics 83

7.8 The best fitting parameters for the three different distributions for
the metric Ties. For each version of Eclipse, empirical first and
second moment, number of CU and maximum value are also re-
ported. 84

LIST OF TABLES xi

7.9 Estimates for the extreme values of the metric Ties. In the last col-
umn the two values refer to the estimate obtained using param-
eters from release 2.1, or using parameters from the immediate
previous version, respectively. 84

8.1 Percentages of the variance explained by the first three principal
components (PCs). 91

8.2 Correlation coefficients among metrics and bugs. 101

9.1 Average execution times for dB computation on JDK 1.5 class graph
(8499 nodes and 42048 links). 114

9.2 Average execution times for dB computation on the E. Coli pro-
tein interaction network graph (2859 nodes and 6890 links). 114

10.1 Fractal dimension coefficients for 20 sub-projects of some Eclipse

versions. 122
10.2 Correlation coefficients between some metrics and the fractal di-

mension for all the considered versions of Eclipse. 124
10.3 Correlation coefficients between bugs and fractal dimension for 20

sub-projects of Eclipse 3.2. 124
10.4 Correlation coefficients and p-value between bugs and fractal di-

mension for 20 sub-projects of Eclipse. 125

*

xii LIST OF TABLES

Chapter 1

Introduction

The need for measuring software has become more and more impelling about
two decades ago, with many documents devoted to software measures, both in
the software industry and in the scientific literature [53], [19], [80], [32]. With-
out measurements software management can be very uneffective, since soft-
ware products are extremely complex, and planning, estimations, and control
become unaccurate. Software metrics were created in order to improve the pro-
cess of software development, with the goal of measuring and controlling its
essential parameters. Even if the meaning is (or was) used in a broad sense,
software metrics generally refer to: product, process, resource, or project mea-
surements. We restric our attention on the first meaning, dealing with product
metrics alone, which may be distinguished in size metrics, complexity metrics,
and quality metrics, generally related to each other. A milestone in the defini-
tion of a useful set of software metrics was the work of Kidamber and Kemerer
[19], the first trial in addressing the problem of implementing a new suite of
metrics for Object Oriented (OO) design.

This thesis tackles the problem of measuring software quality in Object Ori-
ented (OO) systems by using such novel approaches and techniques gathered
from all these different disciplines. The paradigm adopted considers modern
OO software systems as complex software networks [78], according to its mod-
ern view derived from Barabasi-Albert [11] work’s for the WWW network. This
paradigm offers the opportunity of introducing software metrics which were
out of the more traditional schemes of software engineering for measuring soft-
ware, and of assessing software quality using new tools. The main reference
points of this thesis for the estimation of software quality will be software de-
fects, which will be considered as pivotal points, with all the other software
metrics rounding around. Barabasi and Albert [10], were the first to investigate
the concept of complex network, giving rise to the modern complex network
theory. In a complex network the probability P(k) that a vertex in the network

1

2 CHAPTER 1. INTRODUCTION

interacts with k other vertices decays as a power law, following P (k) ≃ k−α,
where α is the power law exponent, providing a scale-free topology. This has
been found valid also for the internet [30].

The concept of complex network has been extended to software systems
[76], [56], and to OO software [60], were the network’s nodes were identified
with software components, and the network’s edges with the interactions among
them. As a consequence, power law distributions, scale free and small world
properties and even fractals properties of complex networks [70] are necessar-
ily present in software systems. Despite such amount of recent researches in
this field, the applications to software enginnering, and in particular to the im-
provement of software quality, is largely lacking.

Modern software systems are made by thousands of classes linked by thou-
sands of dependency relationships and by millions of lines of code. Thus the
investigation of their properties by mean of a statistical approach is not only
opportune but is rather a must. Until the recent past, the statistics of software
systems were usually resumed by using metrics averages and standard devia-
tions, or quantiles, in order to characterize the measured software properties.
The complex network perspective shows that such statistics may be meaning-
less, since the empirical distributions of software properties are very well ap-
proximated by power-laws in the tail. An approach which uses the modeling of
statistical ditributions holding such property is thus preferable. Through this
thesis statistical analysis is sistematically executed and statistical distributions
eavy tailed, like power laws, will play a major role for the investigation of soft-
ware properties and for assessing software quality.

Software engineering aims at engineerizing the way software systems are
conceived, organized, assembled and written. With the advent of the Object
Oriented paradigm, software is developed according to schemes where the in-
terconnections among classes play a major role. This picture depicts objects
exchanging messages each other, where each single object plays its own role
(functionalities), and interacts with other software actors. Its natural associa-
tion with a complex network has been depicted by Myers’ work [56], in which
classes are interpreted as nodes and class dependencies as links. Such schematic
view allows immediately to understand how defects can affect software in dif-
ferent proportions: a code defect introduced into a class linked to a very few
classes will probably be less effective than a defect affecting a largely linked
class. The implications of such a simple concept for the software industry can
be very large and can range from software maintainability costs, to defect de-
tection strategies, to resources allocation and so on.

One of the problems of using the information known about the localization
of code defects for improving software quality and for reducing development
and maintenance costs is that defects appear after software is developed, thus

1.1. THESIS OVERVIEW. 3

their measure means the software is already defective. On the contrary the ideal
or hypothetical aim of software engineering is to produce non defective soft-
ware. Software engineering thus must look for metrics which can be measured
during software development and that can provide side information about the
probability of finding defects after coding.

This thesis explores novel metrics that can be of help in assessing where
code defects likely lie, and that can be kept in control during software devel-
opment, in order to reduce the probability of introducing defective code. The
thesis affords these problems first performing an empirical analysis of bench-
mark software systems, in order to recover the empirical distributions of soft-
ware defects and of various software metrics. Then exploiting and building an-
alytical models for explaining the empirical data. Finally proposing novel soft-
ware metrics related to software quality through their relationships with code
defects, all associated to the complex network theory. Last but not least, the
previous concepts have been used to study the role of refactoring for improv-
ing software quality.

1.1 Thesis overview.

The thesis is organized according to this scheme:

• Chapter 2 provides an overview of the concept of complex software net-
work, and a state of the art of related works. In fact, typically, software sys-
tems are built out of many interacting modules and subsystems, at many
levels (functions, classes, interfaces, libraries, source files, packages, etc.).
This modular structure, where software entities interact reciprocally, sug-
gests a graph based representation, where software entities can be repre-
sented as nodes, and all different relationships, like object interactions
and routine calls, can be represented as connections between them.

• Chapter 3 presents the metrics we used through this thesis for under-
standing the structure and properties of software networks. In particular
it describes the Social Network Analysis metrics (SNA metrics) and the
Fractal Dmension for complex networks.

• Chapter 4 discusses the statistical distribution chosen for exploring the
structure of complex networks and the statistics of empirical data mea-
sured in lareg siftware systems. It also presents the generative model as-
sociated to the more important statistical distributions, and describe how
these generative models can be practically applied to large software sys-
tems.

4 CHAPTER 1. INTRODUCTION

• in Chapter 5 we discuss in detail the Yule process, and describe an ap-
plication for modeling the behavior of various software systems written
in Java. It also shows how the evolution of such systems through differnt
releases can be fit very well by this model.

• in Chapter 6 we describe the statistical properties of bugs and present a
generative model for explaining the empirical distributions. In fact, the
distribution of bugs in software systems has been shown to satisfy the
Pareto principle, and typically shows a power-law tail when analyzed as
a rank-frequency plot. We further discuss the subject from a statistical
perspective, using as case studies five versions of Eclipse, to show how
log-normal, Double Pareto and Yule-Simon distributions may fit the bug
distribution at least as well as the Weibull distribution.

• in Chapters 7, 8 we present an analisys of software networks by using the
SNA metrics. We investigate if the new proposed SNA metrics possess the
same statistical properties found for bugs and have similar empirical dis-
tributions. Moreover, study the possible correlations with Bugs and/or
with other metrics and properties. We also investigate if these analytical
distribution functions which may be used to forecast future properties of
the software systems. Next we present the analysis of the software graphs
of 96 systems of the Java Qualitas Corpus, obtained parsing the source
code and identifying the dependencies among classes. For two systems,
Eclipse and Netbeans, we computed also the number of bugs, identi- fy-
ing the bugs affecting each class, and finding that some SNA metrics are
highly correlated with bugs, while others are strongly anticorrelated.

• in Chapter 9 we propose for characterizing software quality the Fractal
Dimension of software networks. In this chapter we present an algorithm
for computing the fractal dimension of a software network, and compare
its performances with two other algorithms.

• in Chapter 10 we analyzed various releases of the publically available Eclipse
software systems, calculating the fractal dimension for twenty sub-projects,
randomly chosen, for every release, as well as for each release as a whole.
Our results display an overall consistency among the sub-projects and
among all the analyzed releases. We found a very good correlation be-
tween the fractal dimension and the number of bugs for Eclipse and for
twenty sub-projects.

Chapter 2

Software Networks

2.1 Literature Overview

Recently, some researchers have started to study the field of software, in the
perspective of finding and studying the associated complex graphs and their
statistical properties. In fact, many software systems have reached such a huge
dimension that it looks sensible to treat them using the stochastic random graph
approach [34]. Typically, software systems are built out of many interacting
modules and subsystems, at many levels (functions, classes, interfaces, libraries,
source files, packages, etc.). This modular structure, where software entities in-
teract reciprocally, suggests a graph based representation, where software enti-
ties can be represented as nodes, and all different relationships, like object in-
teractions and routine calls, can be represented as connections between them.
A recent example of a comprehensive graph-based approach to model object-
oriented designs is the “Big-Bang" Graph Representation proposed by Li [46].
Such graph representation has also the advantage of being useful for analizing
scale-free behavior or power-law distribution of some software properties.

Modern software systems are made of many elementary units (software mod-
ules) interconnected in order to cooperate to perform specific tasks. In partic-
ular, in OO systems the units are the classes, which are in turn interconnected
with each other by relationships like inheritance and dependency. Recently,
it has been shown how these software systems may be analyzed using com-
plex network theory [76] [23] [60]. In software networks, the classes are the
nodes and the relationships among classes are the edges. This property opens
the perspective to analyze software networks using metrics taken from other
disciplines, like Social Network Analysis (SNA) [65]. The SNA metrics can be
used together with more traditional product metrics, like class LOCS, number
of Bugs, or the CK suite, to gain a deeper insight into the properties of software

5

6 CHAPTER 2. SOFTWARE NETWORKS

systems. Recent studies showed the importance of SNA metrics in measuring
the interactions among software modules [87], and in particular how central-
ity measures are useful to identify software hubs, which show higher defect-
proneness.

Considering software systems as graphs is not a new approach, and differ-
ent authors have already investigated some of their properties, like the distri-
bution of Fan-in or Fan-out of network nodes [48], [76], finding features char-
acteristic of complex networks, like for instance the presence of power-laws in
the tail of the distributions of these metrics [23] [13].

An oriented graph can be associated to an OO software system, whose nodes
are classes and interfaces, and whose edges are the relationships between classes,
namely inheritance, composition and dependence. This approach has already
been used in literature. In [78] complex software networks were analyzed with
nodes representing software entities at any level, and links representing syntac-
tical relationships between modules, subprograms, instructions. In [48] soft-
ware is seen as a network of interconnected and cooperating components, choos-
ing modules of varying size and functionalities, where the links connecting the
modules are given by their dependencies. In [87] nodes are binaries, and edges
are dependencies among binaries pieces of code. In [81] inter-class relation-
ships where examined in three Java systems, and in [13] the same analysis was
replicated on the source code of 56 Java applications. Object graphs were ana-
lyzed in [60] in order to reveal scale-free geometry on object oriented programs,
were the objects were the nodes and the the link among objects were the net-
work edges.

Many software systems have reached such a huge dimension that it looks
sensible to treat them as complex networks [34], [56]. The study of real com-
plex networks has revealed that many of them share some fundamental com-
mon properties. One of these properties is related to the degree distribution
for these networks, that often follows a power law [10, 11]. Networks that ex-
hibit this kind of distribution are known as scale-free networks, indicating the
presence of few highly connected nodes (usually called hubs) and a large num-
ber of nodes with small degree. Another important property is the small-world
feature, also known as the generalization of the famous ‘six degree of separa-
tion’[52]. In small-world networks, a very small number of steps is required to
reach a given node starting from any other node. A recent paper [70] has found
that the structure of these networks is often also self-similar, and it is possi-
ble to calculate their fractal dimension. These properties have been found also
for software networks [56], [77]. This is the reason which justifies the assump-
tion that software networks are complex networks, and the motivations to study
them using the same approach.

Object Oriented programming prescribes to assign different roles and re-

2.2. OBJECT-ORIENTED SYSTEMS AS NETWORKS 7

sponsibilities to different classes of a software system, where they interact with
each other through their dependencies. The overall system “behavior” results
from the specificity of each object and from the interactions among such “in-
dividuals”. At source code level, these interactions are identified by the depen-
dencies among classes, and related to the software architecture. It is thus inter-
esting to analyze these software systems as a network of nodes, or individuals,
connected by edges due to relationships among them, representing classes and
their dependencies.

2.2 Object-Oriented Systems as Networks

The basic building block of OO programming is the class, composed of a data
structure and of procedures able to access and process these data. The data
structure is made up of fields (instance or class variables) that represent the
state of an object. A class has also a behavior expressed in terms of methods
that represent the procedures able to access and process the data structure.
Classes may be defined at various levels of complexity, and are related across
different kinds of binary relationships, such as inheri- tance, composition and
dependence, which are well- known properties of OO design. For the software
systems considered in this work, but also in general, there is not unique way for
building a software network. One first difference can be introduced at the ver-
tex level, discriminating among simple classes, abstract classes, or interfaces.
Another difference can exist at the link level, for example distinguishing among
directed or un-directed links. It is also possible to consider only particular kinds
of links, like dependencies alone, and so on. In this thesis we will consider
not only the classes, but when it is convenient, also abstract classes or inter-
faces, and even Compilation Units (CU) as networks nodes, while dependen-
cies and inheritance as binary relationships, namely network links. Analyzing
the source code of an OO system, it is possible to build its class graph -a graph
whose nodes are the classes, and the graph edges represent directed relation-
ships between classes (2.1).

In this graph, the in-degree of a class is the number of edges directed toward
the class, and is related to the usage level of this class in the system, while the
out-degree of a class is the number of edges leaving the class, and represents the
level of usage the class makes of other classes in the system. It has already been
shown that OO software networks exhibit the scale-free and small-world prop-
erties, and thus can be considered complex networks. The in- degree distribu-
tions are power laws with exponent γ≃ 2.5 [48], [22], while the out-degree dis-
tributions are more controversial, and are mainly log-normal or Double-Pareto
distributions [22], [54]. The dispute among log-normal or double Pareto (or

8 CHAPTER 2. SOFTWARE NETWORKS

Figure 2.1: Fig. 2.1. Example of a portion of class graph for Eclipse. Classes,
abstract classes and interfaces, as well as different relationships, have different
colors.

even simple Pareto) is not purely academical. In fact it involves the validity and
the suitability of different models of software process production, and presents
potentially important practical implications on software quality and costs. The
possible paths on the software graph, and thus the distances among nodes, may
be different when considering the out- links or the in-links network. This may
influence the final value of the fractal dimension. Thus, when convenient, we
decided to consider only un-directed links.

2.3 Software Networks

According to the object oriented paradigm, a software system is the abstrac-
tion of a real domain, where objects interact reciprocally sending messages to
each other. The common interface of a family of similar objects is embodied
in the class construct. Different classes can be related through different type of
relationships, such as inheritance, composition, aggregation, association and
dependence. Not only classes and objects, but also many other elements, such
as attributes, methods and interfaces, are defined in an object oriented sys-
tem, representing entities at a different level of granularity and abstraction.
Thus, for any software system built according to the object oriented approach,
it is possible to easily define different kind of networks made of nodes repre-
senting specific software entities and connections representing relationships
between them. For example, it is possible to define the network made of the
run time objects, where two class instances are connected if one sends a mes-
sage to the other; a static class network where a node is the representation of
a class and a connection is the representation of a relationship between them,
such like inheritance or dependence; a more detailed network, where differ-
ent types of node represent different types of entities, such classes, attributes
and methods, and different types of connection are defined to represent spe-

2.3. SOFTWARE NETWORKS 9

cific relationships among them, such as instantiation between classes and at-
tributes, calling between methods, and so on. This thesis will generally focus
on the representation of classes and their relationships, but sometimes we will
extend the concept of software network to Compilation Units (CU – java files
containing one or more classes) and their relationships. Specifically, we will
consider inheritance and dependence relationships. Once defined the graph
model used to capture the structure of the software system under study, a code
analyzer must provided to generate such a graph, starting from the software
system code. With strong typed languages, this would be accomplished by
parsing the source code, recognizing class and variable definitions, and gen-
erating the graph –a graph whose nodes are the classes, and the graph edges
represent directed relationships between classes. The in-degree distributions
are power law like others software properties [75]. The out-degree distribution
are more controversial. Some outhors found power law behaviour [56] whereas
others found a lognormal behavior [23].

Once the network is generated, it is possible to compute on it all the met-
rics that can be associated to a network, including the fractal dimension. Note
that the box-counting algorithm defined in [70] works only for non-directed
graphs, because the distance between two nodes taken as the shortest path be-
tween the nodes would not satisfy the expected commutative property in the
case of directed graphs. For this reason we did not consider link orientation in
the computation of the fractal dimension of the graphs.

10 CHAPTER 2. SOFTWARE NETWORKS

Chapter 3

Metrics for Software Networks

Measuring software to get information about its properties and quality is one of
the main issues in modern software engineering. Limiting ourselves to object-
oriented (OO) software, one of the first works dealing with this problem is the
one by Chidamber and Kemerer (CK), who introduced the popular CK metrics
suite for OO software systems [19]. Other OO metrics have been also proposed,
like MOOD [14] and the Lorenz and Kidd metric suite [47], but the CK suite
remains by far the most widely used. In fact, different empirical studies showed
significant correlations between some of CK metrics and bug-proneness [20]
[12] [71] [37].

3.1 SNA Metrics.

Once the software graph is defined, we can compute on this graph the metrics
used in Social Network Analysis. We restricted ourselves to the subset of SNA
metrics that were found most correlated to software quality [87] [24]. Some of
these metrics are the so-called "EGO metrics". For every node in the graph,
there exists a subgraph composed by the node itself, called "EGO" (from the
Latin word "ego", meaning "I"), and its immediate neighbors. Such subgraph
is called the EGO Network associated to the node. The analysis of the EGO-
networks gives information about the role of the ’EGO’ inside the entire net-
work. In particular, EGO-network metrics provide insights on the extent each
CU is connected to the entire system, and on the flow of information. In the
definition of the EGO network, we considered the graph links as un-directed
links.

Other SNA metrics we considered, not directly related to the EGO network,
are some centrality metrics, determining how important a given node/edge is
relative to other nodes/edges in the network. Overall, we consider the following

11

12 CHAPTER 3. METRICS FOR SOFTWARE NETWORKS

SNA metrics:

• Size. Size of the EGO-network related to the considered node (i.e. Com-
pilation Unit); it is the number of the nodes of the EGO-network.

• Ties. Number of edges of the EGO-network related to the node.

• Brokerage: the number of pairs not directly connected in the EGO net-
work, excluding the EGO node.

• Eff-size. Effective size of the EGO network; the number of nodes in the
EGO network minus one, minus the average number of ties that each
node has to other nodes of the EGO network.

• Nweak-comp. Normalized Number of Weak Components; the number
of disjoint sets of nodes in the EGO network without EGO node and the
edges connected to it, divided by Size.

• Reach-Efficiency; the percentage of nodes within two-step distance from
a node, divided by Size.

• Closeness; the sum of the lengths of the shortest paths from the node to
all other nodes.

• Information Centrality: the harmonic mean of the length of paths starting
from all nodes of the network and ending at the node.

• DwReach; the sum of all nodes of the network that can be reached from
the node, each weighted by the inverse of its geodesic distance. The weights
are thus 1/1, 1/2, 1/3, and so on.

All previous metrics are computed on the class or CU graphs, and are among
those studied in [87]. It is useful to shortly describe how these SNA metrics
may be relevant to software systems, namely what they try to measure. The
first five are strictly EGO metrics, and describe the software neighborhood of
a class. Size measures the class directly connected to a given class while Ties,
measured on such neighborhood, measures how dense are the software con-
nections in this local network. Brokerage measures for how many couples of
classes the given node acts like a broker, bridging the information flow among
couples. Eff-size measures the redundancy of the connections in the EGO net-
work, reducing the class Size by an amount proportional to the local average
Ties. If the average Ties is high, the local network has in fact redundant chan-
nels available for the information flow. The role of the EGO class in the infor-
mation exchange is then reduced. It must be noted that the average Ties refers

3.2. SNA RELATED WORKS 13

only to the local network, and not to the global network, where, as we will see
in the following, the distribution of Ties among all the nodes presents a fat tail.
Nweak-comp measures how much the class is needed to keep connected the
other software units. The remaining are not EGO-metrics, and are all central-
ity metrics. They measure if, in the global software network, the class plays a
peripheral rather than a central role.

3.2 SNA related works

Only recently, SNA has been applied to the study of software systems. Zim-
mermann and Nagappan used SNA metrics to investigate a network of binary
dependencies [87]. With regard to the study of OO software systems, only To-
sun et al., to the authors’ knowledge, applied SNA metrics to OO source code to
assess defect prediction performance of these metrics [74]. In particular, there
are no studies investigating the relationships and the correlations among SNA
metrics, traditional metrics, and Bugs metrics, and the corresponding statisti-
cal distributions. It must be noted that, when the measures are distributed ac-
cording to power-laws, or other leptokurtotic distributions, traditional quanti-
ties like average or standard deviation may lose their meaning, and may be not
characterizing measures anymore [57]. Knowledge of the overall statistical dis-
tribution is needed for characterizing the system properties. In particular, they
are needed in order to obtain estimates of the metrics values for the future soft-
ware releases. In past years, product metrics, extracted by analyzing static code
of software, have been used to build models that relate these metrics to failure-
proneness [51] [71] [20] [12] [37]. Among these, the CK [16] suite is historically
the most adopted and validated to analyze bug-proneness of software systems
[71] [20] [12] [37]. CK suite was adopted by practitioners [20] and is also incor-
porated into several industrial software development tools. Based on the study
of eight medium-sized systems developed by students, Basili et al. [12] were
among the first to find that OO metrics are correlated to defect density. Consid-
ering industry data from software developed in C++ and Java, Subramanyam
and Krishnan [71] showed that CK metrics are significantly associated with de-
fects. Among others, Gimothy et al. [37], studying a Open Source system, vali-
dated the usefulness of these metrics for fault-proneness prediction.
CK metrics are intended to measure the degree of coupling and cohesion of
classes in OO software contexts. However,

The studies done using CK metrics do not consider the amount of “informa-
tion” passing through a given module of the software network. Social Network
Analysis (SNA) fills this gap, providing a set of metrics able to extract a new, dif-
ferent kind of information from software projects. Recently, this ability of SNA

14 CHAPTER 3. METRICS FOR SOFTWARE NETWORKS

metrics was successfully employed to study software systems. Zimmermann
and Nagappan [87] showed that network measures derived from dependency
graphs are able to identify critical binaries of a complex system that are missed
by complexity metrics. However, their results are obtained considering only
one industrial product (Windows Server 2003). Tosun et al. [74] reproduced the
previous work [87] extending the network analysis in order to validate and/or
refute its results. They show that network metrics are important indicators of
defective modules in large and complex systems. On the other hand, they ar-
gue that these metrics do not have significant effects on small scale projects.
Both previous studies [87] [74] did not consider mutual relationships among
SNA metrics and complexity metrics, therefore they did not show if SNA met-
rics carry new information with respect to CK suite. In this thesis, instead, we
compute the correlation matrix among SNA Metrics and CK metrics, consider-
ing also mutual correlations with respect to Issue, Bug, LOC, Fan-out and Fan-
in.

3.3 Software Networks Fractal Dimension.

A recent study [70] found that the structure of complex networks is often also
self-similar, and it is possible to calculate their fractal dimension using the box-
counting method. As we saw, this method consists in covering the entire set, the
network in this case, with the minimum number of boxes NB of linear size (di-
ameter) lB. For a given network G and box size lB, a box is a set of nodes where
all distances li j between any two nodes i and j in the box are smaller than lB . If
the number of boxes scales with the linear size lB following a power law (see eq.
3.1), then dB is the fractal dimension, or box dimension, of the graph [5]: The
computation of the fractal coefficient of a network is thus a two-step one. First,
an assessment of the self-similarity of the network has to be done, com- put-
ing the minimum number of boxes covering the network, varying lB from one
to a given number, usually 10 or 20. This is the most computational intensive
step. Then, one has to check whether NB (lB) is linear in a log-log plot, showing
a power-law behavior. This check is somewhat subjective, though it is possi-
ble to compute confidence intervals to this purpose. Eventually, an estimate of
dB is made fitting the plot with an LMS algorithm. It has been already reported
that OO software networks related to classes of large Smalltalk and Java systems
show a patent self-similar behavior, with frac- tal dimension between 3.7 and
5.1 [22]. So, for OO software networks it is important to have efficient and reli-
able algorithms able to compute their fractal dimension. A general method has
been devised by Song et al. [70].

3.3. SOFTWARE NETWORKS FRACTAL DIMENSION. 15

The method consists in covering the network with NB box of linear size lB .
The number of boxes NB needed to tile the entire network is computed for dif-
ferent values of lB . If the number of boxes scales with the linear size lB following
a power law (see eq. 3.1), then dB is the fractal dimension, or box dimension, of
the graph [31], [70]:

NB (lB) ∼ l
−dB

B
(3.1)

The computation of the fractal dimension of a network is thus a two-step
one. First, we need to compute the minimum number of boxes covering the
network, varying lB from one to lBmax , between 10 and 20. Then, the last step
is somewhat subjective because one has to check whether NB (lB) is linear in a
log-log plot.

The slope of the straight line fitting the log-log plot is the fractal dimension
dB . The fractal dimension has been already reported also for OO software net-
works [22]. In fig. 3.1 we report the box counting analysis of the software net-
work related to Eclipse 3.2. Similar plots are observed also for the other versions
of Eclipse analyzed, and for the Eclipse sub-projects the power law behavior is
patent.

1 1.5 2 2.5 3 3.5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

log
2
(L

B
)

lo
g 2(N

B
/N

)

eclipse−3.2

Data
fit

Figure 3.1: Log-log plot of NB vs. lB for Eclipse 3.2.

The coverage algorithm used to tile the entire network with boxes of size
lB was devised after a comparison between three algorithms, both in terms of
performance and precision [24]. The best compromise between the algorithms
analyzed is the ‘Greedy coloring’algorithm described by Song et al. [69]. They
showed how the box counting problem can be mapped to a graph node coloring
problem, with no edges connecting two nodes of the same color, which is a
NP-hard problem. We evaluate a two-dimensional matrix ci l of size N × lBmax ,
whose values represent the color of node i for a given box of size l = lB . The
steps are as follows:

16 CHAPTER 3. METRICS FOR SOFTWARE NETWORKS

Figure 3.2: Scheme of the construction of the dual network G’, with given box size

lB = 3. The greedy algorithm is used for vertex coloring on G’. This figure is taken

from [69].

a) Assign a unique id from 1 to N to all network nodes, without assigning
any colors yet.

b) For all lB values, assign a color value 0 to the node with id = 1, i.e. ci l = 0.

c) Set the id value i = 2 and repeat the next steps until i = N.

d) Calculate the distance li j from i to all the nodes in the network with id j
less than i.

e) Set lB = 1.

f) Select one of the unused colors c j li j
from all nodes j < i for which li j < lB .

This is the color c j lb
of node i for the given lB value.

g) Increase lB by one and repeat (c) until lB = lBmax

h) Increase i by 1.

i) end.

In Fig 3.2 we illustrate an example with lB = 3, where we build the dual graph
G’ from the graph G connecting two nodes with distance larger than or equal
to lB . With the greedy algorithm we color the vertex in G’ and we go back to the
box-covered G network.

Chapter 4

Power Laws in the Tail and Modeling

Software Properties.

There are in nature, as well as in man-made systems, signatures of properties
distributed according to a power-law distribution. Examples of such signa-
tures occur in proteins and genes families, city sizes, people and firm wealth,
the Internet and the Web, word frequencies, the realm of scientific citations
and others. Sometimes these properties may be organized, in a natural way
or for convenience of representation, according to a complex network struc-
ture. While some of these networks, such as the WWW and the Internet, dis-
play a global power-law shape within the whole degree distribution, many real
networks show the scale-free trend effects only in the tail of the distribution.
A power-law distribution, also called Pareto distribution or Zipf’s law, implies
that small occurrences are extremely common, whereas large instances are very
rare, but can occur with not negligible probability. When data are distributed
according to a power law, it is possible to find samples whose values are as large
as the sum of the values of many (or most) other samples. For example, the
wealth of the richest man in the U.S. is equal to the sum of the wealth of several
tens of million other persons.

There are many possible different mechanisms able to generate power-law
distributions. Among them, the most convincing and widely applicable mech-
anisms is perhaps the Yule process [55] [57]. Let us consider a system made of
generic entities, each with a measurable property. Examples of such systems
are the collection of research papers, the set of actors playing in movies, and
the Web pages. Their properties may be, respectively, the number of citations
received, the number of other actors cast in the same movies, and the number
of hyperlinks to that page from other Web pages. In a Yule process, entities get
random increments of a given property in proportion to their present value of
that property. Thus, the probability of a paper obtaining a new citation is pro-

17

18CHAPTER 4. POWER LAWS IN THE TAIL AND MODELING SOFTWARE PROPERTIES.

portional to the number of citations it already has; the probability that a new
actor is cast with a well-established actor is higher than the probability of her
being cast with a less known actor. Likewise, in a Web page it is more likely
that a link is made to a well-known page which is already well connected, and
so on. This type of rich-get-richer process has been called “the Gibrat princi-
ple" [67],“cumulative advantage" [29], or preferential attachment [10].

Further examples of these properties are the lines of code of a class, a func-
tion or a method; the number of times a function or a method is called in the
system; the number of time a given name is given to a method or a variable,
and so on. Later on we will present a study where the Yule Simon model is used
to clearly represent the empirical data.

4.1 Related Works

Some authors already found significant power-laws in software systems. Kai
and Yin [42] found that the degree distribution of software execution processes
may follow a power-law or display small-world effects. Potanin et al. [60] showed
that the graphs formed by run-time objects, and by the references between
them in object-oriented applications are characterized by a power-law tail in
the distribution of node degrees. Valverde et al. [76][77] found similar prop-
erties studying the graph formed by the classes and their relationships in large
object-oriented projects. They found that software systems are highly hetero-
geneous small world networks with scale-free distributions of the connection
degree. Myers [56] found analogue results on large C and C++ open source sys-
tems, considering the collaborative diagrams of the modules within procedu-
ral projects and of the classes within the OO projects. He also computed the
correlation between some metrics concerning software size and graph topo-
logical measures, revealing that nodes with large output degree tend to evolve
more rapidly than nodes with large input degree. Other authors found power-
laws studying C/C++ source code files, where graph edges are the files, while
the include relationships between them are the links [39], [26]. Tamai and
Nakatani [72], proposed a statistical model to analyze and explain the distri-
butions found for the number of methods per class, and for the lines of code
per method, in a large object-oriented system.

While most of these studies are based on static languages, such like C++ and
Java, Marchesi et al.[49] provide evidence that a similar behavior is displayed
also by dynamic languages such as Smalltalk. Concas et al. found power-law
and log-normal distributions in some properties of Smalltalk and Java soft-
ware systems – the number of times a name is given to a variable or a method,
the number of calls to methods with the same name, the number of imme-

4.2. A MORE CONVENIENT REPRESENTATION. 19

diate subclasses of a given class of five large object-oriented software system
[22], [23]. The Pareto principle is used to describe how faults in large software
systems are distributed over modules [33], [58], [59], [8], [85]. Baxter et al. [18]
found power-law and lognormal distributions in the class relationship in Java
programs. They proposed a simple generative model that reproduces the fea-
tures observed in real software graph degree distributions. Ichii et al. [41] in-
vestigated software component graphs composed of Java classes finding that
in-degree distribution follows the power law distribution and the out-degree
distribution does not follow the power-law. Louridas et al. [48], in a recent
work, show that incoming and outgoing links distributions have in common
long, fat tails at different levels of abstraction, in diverse systems and languages
(C, Java, Perl and Ruby,). They report the impact of their finding on several as-
pects of software engineering: reuse, quality assurance and optimization. Also
Wheeldon and Counsell [81], as well as other researchers, found power-laws for
the distribution of many software properties, like the number of fields, methods
and constructors of classes, the number of interfaces implemented by classes,
the number of subclasses of each class, as well as the number of classes refer-
enced as field variables and the number of classes which contain references to
classes as field variables.

Thus, there is much evidence that power-laws are a general feature of soft-
ware systems. Concas et al. [22], explained the underlying mechanism through
a model based on a single Yule process in place during the software creation
and evolution.

4.2 A More Convenient Representation.

It is common practice to report empirical data statistics by mean of histograms,
which are a rough approximation of a Probability Density Function (PDF). Such
representation however carries many drowbacks, in particular when data are
power-law distributed in the tail. The problems with representing the empirical
PDF are that it is sensitive to the binning of the histogram used to calculate the
frequencies of occurrence, and that bins with very few elements are very sensi-
tive to statistical noise. This causes a noisy spread of the points in the tail of the
distribution, where the most interesting data lie. Furthermore, because of the
binning, the information relative to each single data is lost. All these aspects
make difficult to verify the power-law behavior in the tail. To overcome these
problems we systematically report the experimental CCDF (Complementary
Cumulative Distribution Function) in log-log scale, as well as the best-fitting
curves in many cases. This is convenient because, if the PDF (probability distri-
bution function) has a power-law in the tail, the log-log plot displays a straight

20CHAPTER 4. POWER LAWS IN THE TAIL AND MODELING SOFTWARE PROPERTIES.

line for the raw data. This is a necessary but by no means a sufficient condi-
tion for power-law behavior. Thus we used log-log plots only for convenience
of graphical representation, but all our calculations (CDF, CCDF, best fit pro-
cedures and the same analytical distribution functions we use) are always in
normal scale. With this representation, there is no dependence on the binning,
nor artificial statistical noise added to the tail of the data. If the PDF exhibits a
power-law, so does the CCDF, with an exponent increased by one. Fitting the
tail of the CCDF, or even the entire distribution, results in a major improvement
in the quality of fit. An exhaustive discussion of all these issues may be found
in [57]. This approach has already been proposed in literature to explain the
power-law in the tail of various software properties [23] [48].

The CCDF is defined as 1−C DF , where the CDF (Cumulative Distribution
Function) is the integral of the PDF. Denoting by p(x) the probability distribu-
tion function, by P (x) the CDF, and by G(x) the CCDF, we have:

G(x) = 1−P (x) (4.1)

P (x) = p(X ≤ x) =
∫x

−∞
p(x ′)d x ′ (4.2)

G(x) = p(X ≥ x) =
∫∞

x
p(x ′)d x ′ (4.3)

4.3 Distribution Functions and Generative Models

In this thesis, we used different distribution functions for explaining different
properties of software systems which exhibit power-laws in the tail. In gen-
eral, associated to a statistical ditribution, there is a generative model, which
explains the reason why the empirical data display such particular statistical
distribution, or the evolutionary process generating the empirical distribution.
In this section, we present four distribution functions which are suited to model
sample data presenting leptokurtic behavior, that is with a “fat tail”, which is the
case for many software properties, including “bugs hitting modules” propery
[48]. These distributions were already used for software data. For each distri-
bution, we briefly discuss how it might be linked to a generative process, when
it is possible. Note that the straight power-law distributions, can be treated as
special cases of the “Double Pareto” distribution, as explained below.

The first distribution is the well-known log-normal distribution. If we model
a stochastic process in which new elements are introduced into the system
units in amounts proportional to the actual number of the elements they con-
tain, then the resulting element distribution is log-normal. All the units should
have the same constant chance for being selected for the introduction of new

4.3. DISTRIBUTION FUNCTIONS AND GENERATIVE MODELS 21

elements [57]. This general scheme suits large software systems where, during
software development, new classes are introduced into the system, and new
dependencies –links– among them are created. Or for modeling the process
of bug introduction into software modules. It might be reasonable to assume
that, during development, each module has roughly the same random proba-
bility of being updated, and that bugs (or dependencies leading to the fact that
the file needs to be changed due to the correction of another module) are in-
troduced proportionally to the amount of bugs already existing in that module.
In fact, a module containing bug-prone code, or simply containing more code,
has a higher chance to develop new bugs when updated with respect to a mod-
ule containing better code, or a lesser amount of code. This process, however,
lacks the ability to correctly model the introduction of a bug into a module hav-
ing no bugs yet. The log-normal has also been used to analyze the distribution
of Lines of Code [86]. The log-normal distribution has been also proposed in
literature to explain different software properties ([13], [22], [48]). Mathemati-
cally it is expressed by:

p(x) =
1

p
2πσx

e
−

(

ln(x)−µ
2σ

)2

(4.4)

It exhibits a quasi-power-law behavior for a range of values, and provides
high quality fits for data with power-law distribution with a final cut-off. Since
in real data largest values are always limited and cannot actually tend to infinity,
the log-normal is a very good candidate for fitting power-laws distributed data
with a finite-size effect. Furthermore, it does not diverge for small values of
the variable, and thus may also fit well the bulk of the distribution in the small
values range.

The power-law is mathematically formulated as:

p(x) ≃ x−α (4.5)

where α is the power-law exponent, the only parameter which characterizes
the distribution, besides a normalization factor. Since for α ≥ 1 the function
diverges in the origin, it cannot represent real data for its entire range of values.
A lower cut-off, generally indicated x0, has to be introduced, and the power-
law holds above x0. Thus, when fitting real data, this cut-off acts as a second
parameter to be adjusted for best fitting purposes. Consequently, the data dis-
tribution is said to have a power-law in the tail, namely above x0.

The third distribution is the Double Pareto distribution. It is an extension of
the standard power-law, in which two different power-law regimes exist. There
are different forms of literature for the Double Pareto distribution [54] [63] [64]
[36]. We use the form described in [36] for the CCDF, because it provides a
smoother transition across the two different power-law regimes:

22CHAPTER 4. POWER LAWS IN THE TAIL AND MODELING SOFTWARE PROPERTIES.

P (x) = 1−
[

1+ (m/t)−α

1+ (x/t)−α

]β/α

(4.6)

The Double Pareto distribution is able to fit a power-law tail in the distri-
bution, with the advantage of being more flexible than a single power-law in
fitting also the head of the distribution, where it is very similar to a log-normal.
This distribution was successfully used to model the process of file creation in
a software system, providing the correct distribution of files size [54] [62].

The Double Pareto distribution can be generated by a set of stochastic pro-
cesses, each one of the form described above for the log-normal distribution,
but which are performed in parallel and can be randomly stopped, as in the
Recursive Forest File model by Mitzenmacher [54]. A description of the model
and the implications on bugs insertion into software modules will be given in
the one of the following chapters. Here we briefly discuss how such a process
might be applied to bug generation, considering that a large software system
can be divided into many subsystems that are worked on in parallel, and that
from time to time some of these subsystems can be declared stable, and thus
“frozen”, with no further activity performed on them. This addition model is
clearly more realistic than a single monolithic system whose modules are all
subject to be updated in the same way, as in the generative process associated
with the log-normal distribution.

The fourth distribution we consider is the Weibull distribution, used to ex-
plain the rate of faults in a technical system, due to the failure of single compo-
nents. Its CCDF is given by eq. (4.7):

P (x) = e
−(x

γ)β (4.7)

Weibull distribution is commonly used in reliability engineering, and with shape
parameter β ≃ 2 it was applied for estimation of bug detection rates during
software development and after deployment [82]. A direct application to bug
occurrences in modules in a snapshot of the source code of a system has not
yet been proposed. However, the Weibull distribution is very flexible, and was
found to fit the Alberg diagram of bugs [85] very well, with shape parameter
β< 1.

Finally, we consider the Yule-Simon distribution, introduced to explain the
power-law in the tail of the distribution of genera and species in nature [84],
and of the frequency of words in books [67]. The mechanism behind the gen-
eration of a power-law distribution is called “preferential attachment”.

Let us consider a system made of entities, labeled by i , with a property char-
acterized by a value nt

i
at time step t . As the system evolves new entities are

added with an initial property value h0, that may be null, as in our case, and the

4.3. DISTRIBUTION FUNCTIONS AND GENERATIVE MODELS 23

properties of randomly chosen existing entities are incremented. The preferen-
tial attachment mechanism states that the entity selected for this increment is
chosen with probability proportional to the current value of its property.

Using a master equation it can be demonstrated that the preferential at-
tachment generates a population with a probability distribution function that
can be expressed through the Legendre Beta function – in turn depending on
the Euler Gamma function – depending on two parameters, α and c [57]:

p(x) = p0
B(x + c,α)

B(x,α)
(4.8)

B(a,b) =
Γ(a)Γ(b)

Γ(a +b)
(4.9)

where parameters c and α are derived from the Yule model of the growth of
Genera and Species in nature [84] [57]. It produces a distribution with a power-
law in the tail with exponent α. In the next chapter we’ll develop further the
applications and the details of the Yule model.

24CHAPTER 4. POWER LAWS IN THE TAIL AND MODELING SOFTWARE PROPERTIES.

Chapter 5

The Yule Process for Modeling

Software

We present a model based on the Yule process, able to explain the evolution
of some properties of large object-oriented software systems. We study four
system properties related to code production of four large object-oriented soft-
ware systems - Eclipse, Netbeans, JDK and Ant. The properties analysed, namely
the naming of variables and methods, the call to methods and the inheritance
hierarchies, show a power-law distribution as reported in previous papers for
different systems. We use the simulation approach to verify the goodness of
our model, finding a very good correspondence between empirical data of sub-
sequent software versions, and the prediction of the model presented.

In order to show the suitability of the Yule process for modelling software
systems statistical properties we study the same properties analysed in Concas
et al. [22] [23], which are: i) the names of instance variables ; ii) the names of
methods; iii) the calls of methods from inside other methods; iv) the number of
subclasses of a given class. We choose to investigate these properties not only
because they show a patent power-law behaviour, but also because the former
two are related to design and coding guidelines, while the last one is Chidamber
and Kemerer (CK) NOC metrics [19]. Property iii), on the other hand, can give
hints about coupling between methods, and thus between classes. All these
properties might thus provide information about software quality and adher-
ence to coding standards.

The aim of this chapter is to provide evidence that the Yule process is ac-
tually able to stochastically model in the large some software development ac-
tivities, provided that it is suitably extended. We concentrate our analysis on
some representative properties which unequivocally exhibit power-law behav-
ior, and analyze not only four different large object-oriented software systems,
but also their entire time evolution. While our study is limited to four impor-

25

26 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

tant aspects of software development, namely variable and method naming,
method calls and subclasses, there is evidence that many other properties of
software designs that exhibit a power-law behavior can be modeled with the
same approach. This will be the object of the next chapter.

Since for each system and for each version, considered at the time of release,
a single Yule process may account for the power-law distributions of the ana-
lyzed properties but the Yule parameters may be different among the versions,
we introduce a modified Yule Process which is able to stochastically model the
overall evolution of the properties analyzed among the different releases.

We also analyse the differential statistical distribution, obtained by sub-
tracting, one by one, the number of occurrences of every property among two
main versions (to be made precise later), showing that it is still a power law,
translated downwards with respect to the original distribution. All the data on
the four systems have been collected using public repositories on the net and
from CVS (Control Version System) through a parser.

5.1 The Yule process

The Yule process was first developed by George Udny Yule (1871 -1951) who
used it to study evolutionary models. He was looking for a distribution that
would model the number of evolving species in a genus over time. His mod-
els have since then been widely used to build phylogenetic trees. This Pro-
cess deals with a population of entities, each characterized by a property whose
value is an integer. The development of the population happens in time steps,
ts = 0,1,2, ..., t . At each time step:

1. A new entity is generated with probability a and its property is set to the
integer value k0.

2. With probability 1 − a, a selected entity grows one unit in its property
value. The selection of the entity that grows is done with probability pro-
portional to the property value it already has, plus a constant c 1.

At the beginning (ts = 0), there is just one entity, with property value set at k0. At
time t , let the total number of entities be N , each having a property with integer
value, xi , i = 1, . . . , N .

1The parameter c is introduced in order to preserve the preferential attachment mechanism
when a new entity is created empty (k0 = 0). In this case, the probability of acquiring new
properties for the entity would be zero, being proportional to the properties it already has, and
thus it may be convenient to set the initial property to a non null value c.

5.1. THE YULE PROCESS 27

Let us call m the average number of property value increments in between
the creation of a new entity and the next. m is easily related to a, accordingly to
equation:

m =
1−a

a
. (5.1)

In fact, on average, every m +1 times, the increments of a property value occur
m times, and the creation of a new entity occurs one time. Thus the respective
probabilities are 1−a = m/(m +1) and a = 1/(m +1), which is the same as eq.
(5.1).

For instance, if on average three entities are chosen for incrementing by one
their property values in between the addition of two new entities, m = 3, and
a = 0.25. Being an average value, m is usually a fraction.

The probability distribution in the Yule process, for an entity to have the
value of its property equal to k is given by:

pk =
B(k + c,α)

B(k0 + c,α)
pk0 (5.2)

where B(a,b) is the Beta function which is defined by:

B(a,b) =
Γ(a)Γ(b)

Γ(a +b)
(5.3)

and Γ is the Euler function.
pk0 , the probability that an entity retains its starting value k0, is given by the

equation:

pk0 =
k0 + c +m

(m +1)(k0 + c)+m
(5.4)

The analysis is reported in detail in [57], where α is related to the three pa-
rameters of the process according to the formula:

α= 2+
k0 + c

m
(5.5)

If the number of entities is high enough, the Beta function can be approxi-
mated, B(a,b) ≃ a−b , and the Yule process generates a power-law distribution
with equation:

pk =
k−α

((k0 + c +α−1)B(k0 + c,α))
(5.6)

neglecting the term c, which is small with respect to the values of k in the
tail of the distribution. The Yule process depends only upon the values of these
three parameters: k0, m and c. Note that we used the variable k to represent

28 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

the general distribution (5.6), while we use x when referring to properties of
entities.

The main limitation of the proposed Yule process is that it does not take into
account possible reductions of the value of the properties of some entities, and
possible deletions of entities. For instance, regarding method names, when a
method whose name is X is deleted, the value of the property of the entity X

decreases by one unit. But if there was only one instance of method X in the
system, then also the entity X itself should be deleted.

Luckily, it has been recently demonstrated that it is in any case possible to
extend the Yule process to the case of property value reduction, and entity dele-
tion, without losing its characteristics [83]. We need just to consider an “equiv-
alent growth rate”, given by the difference of the increase and deletion rates.
Consequently, in this work we will not explicitly model deletion of entities or
reduction of properties, but only their addition, considering the addition rate
as an “equivalent growth rate”.

5.2 Estimating Yule process parameters

In order to fit empirical data with a Yule process, we need to estimate the pa-
rameters k0, m and c. The value of k0 is determined by the model itself. Usually,
k0 is set to zero or to one, as we will discuss later for the system properties ana-
lyzed. Also m is determined by the model itself, or by empirical measurements
on the distribution of the values of the entities’s properties. In the latter case,
remember that m is the average number of increments made to existing entities
between the additions of two new entities. So, the value of m can be estimated
on n existing entities by computing the sum of the values xi of the properties
of all entities, subtracting from this sum the amount due to the initial value, k0,
introduced at creation of each entity, that is nk0, and then averaging among all
the existing n entities:

m ≃
∑n

i=1 xi −nk0

n
(5.7)

Having estimated m, we are able to estimate c using another important
quantity of Yule process, the probability pk0 that an entity has a property value
just equal to k0, which is given by eq. 5.4. pk0 can be easily estimated by mea-
suring the fraction of entities having property value equal to k0 with respect
to the total number of entities. Then, applying eq. 5.4, one can compute the
estimated value of c:

c =
m(1−pk0)

(m +1)pk0 −1
−k0 (5.8)

5.2. ESTIMATING YULE PROCESS PARAMETERS 29

As anticipated, we try to model, using the Yule process, the evolution of
some properties of object-oriented software systems. For this reason, the val-
ues of the Yule parameters have been estimated for each version of the projects
studied. The estimates computed using eqs. 5.7 and 5.8 are cumulated val-
ues, i.e. calculated considering the properties and entities from the beginning
of the project until the version under study. We found different values of the
Yule parameters for each version of the studied projects (see Tables 5.3, 5.6, 5.9,
5.12). These results highlight how the versions are not snapshots of the same
Yule process with constant parameters, but seem to be the result of different
Yule processes (with different parameters), one for each version. So, the power-
law distributions found in Concas et al. [22], [23] on the last version of the
systems analysed seem to be the result of a Yule Process where the value of m

and c change at every step, a step corresponding to the time interval between
two versions of the system, or, equivalently, a Yule process varying in time. In
fact, if the same Yule process (with same parameters) were in place from the
beginning, each software release would be characterized always by the same
parameters, irrespective to the system evolution. Our analysis of the software
system development through all the main releases shows instead that a single
Yule process cannot explain the power-laws developed in time by the software
properties analyzed. Nonetheless, all these properties exhibit, release after re-
lease, a patent power-law behavior, that is compatible for each release by a Yule
process. Thus, we deem that a more general Yule process, whose parameters
change during system development through the different main versions, can
be able to model the overall system behavior and its evolution in time.

To further study this subject, we decided to perform a differential analysis,
examining the changes of the properties of the system from one main release to
the next, and as a consequence the changes of the Yule parameters, in the hy-
pothesis that these parameters stay approximately constant between two sys-
tem versions. So, we estimated the values of these parameters between two
consecutive main versions. We define mi and ci as the estimates of m and c

respectively, between versions i− 1 and i, and ni as the number of entities of
version i. The estimate of mi is given by:

mi ≃
(Xi −Xi-1)− (ni −ni-1)k0

ni −ni-1
(5.9)

which is a variation of eq. 5.7 to account for the fact that now we are esti-
mating m just referring to the increment of the system between version i and
the previous version i-1. Here X i = (

∑n
1 xi) i is the sum of all the properties of

the entities for the version i. The estimate of c i is still given by eq. 5.8, which
for the differential notation becomes:

30 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

ci ≃
mi(1−pk0i)

(mi +1)pk0i −1
−k0 (5.10)

Finally we define:

pki
=

k
−αi

i

((k0 + ci +αi −1)B(k0 + ci ,αi))
(5.11)

as the differential probability distribution among two version.
Note that the formula of eq. 5.4 giving pk0 is valid in the limit n → ∞, so

also eqs. 5.8 and 5.10 are approximately valid only for high values of n, and ni
- ni+1, respectively. Consequently, the computation of the differential param-
eters pk0i can be made only for high values of ni - ni+1, that is in the case of a
new version with a number of new entities substantially higher than the previ-
ous version. These parameters are relative to just one version, without taking
into account the previous ones. From now onwards, we call m and c the cumu-
lated parameters, and mi and ci the differential ones.

5.3 Fitting the power-law distributions

Once computed the values of k0, m and c, we proceeded plotting in log-log
scale the survival distribution of the Yule distribution obtained using eq. 5.2
and the empirical data, to evaluate the goodness of the Yule process to model
the generation process of such data.

Another possible verification of the goodness of the model is when the tail
index α given by eq. 5.5 corresponds to the empirical value obtained by opti-
mal fitting of the cumulative distribution of the property values using the max-
imum likelihood estimator (MLE), which, for continuous data, is equivalent to
the well-known “Hill’s estimator” [40] given by the following equation:

α̂= 1+
n

∑n
i=1 ln

xi

xmi n

(5.12)

In this formula, the quantities xi , i = 1. . .n are measured values of the prop-
erty x, and xmi n corresponds to the smallest value for which the power-law
behavior holds. The standard error on α̂ is given by:

σ=
α̂−1
p

n
+O(1/n) (5.13)

where the higher order correction is positive. The MLE for the case where
x is a discrete integer variable (our case) is less straightforward. Seal [66] and,

5.4. RESULTS 31

more recently, Goldstein et al. [38] studied the case of xmi n = 1, showing that
the solution is given by solving the trascendental equation:

ζ′(α̂)

ζ(α̂)
=−

1

n

n
∑

i=1
lnxi (5.14)

where ζ(a) is the Zeta function. When xmi n ≥ 1, the estimator for α is given
by a similar equation with generalized zetas [17], [21]:

ζ′(α̂, xmi n)

ζ(α̂, xmi n)
=−

1

n

n
∑

i=mi n

lnxi (5.15)

In practice, this equation is solved numerically using binary search, or al-
ternatively by numerical maximization of the likelihood function itself, or of its
logarithm.

A simpler equation to estimate α̂ in the discrete case has been calculated by
Clauset et al. [21]:

α̂= 1+
n

∑n
i=1 ln

xi

xmi n− 1
2

(5.16)

which is identical to MLE for the continuous case, except for the factor −1
2

in the denominator. This equation is known to be a good approximation only
for xmi n ≥ 6.

To calculate the lower bound xmi n we used the method proposed by Clauset
et al. [21]. We calculated the maximum distance between the CDFs of the data
and the fitted model using the following equation:

D = max
x≥xmi n

|S(x)−P (x)| (5.17)

where S(x) is the CDF of the data, and P (x) is the CDF for the power-law model
that best fits the data in the region x ≥ xmi n . The estimate of x̂mi n is the value
of xmi n that minimizes2 D .

5.4 Results

In this section, we present in detail the measurements made on the various
software systems, present their statistical distributions, and try to statistically
model their generation using the modified Yule process described above. We
analysed several versions of the following OO software systems: Eclipse [3] (12

2The values of α̂ and xmi n reported in this work are obtained using the matlab scripts made
available on line by Clauset et al. at: www.santafe.edu/ ~aaronc/powerlaws/.

32 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

versions), JDK [5] (11 versions), Netbeans [4] (17 versions), Ant [1] (10 versions).
We distinguish between major and minor versions looking at the total number
of entities, the values of their properties and at the maximum value of the prop-
erty (xmax), as reported in Table 5.1 .

Table 5.1: Empirical data computed on each releases for property "Names of

methods".

Releases Nr. of Entities Nr. of Properties xmax

Eclipse2.0 27022 68041 536

Eclipse2.1 36863 89411 860
Eclipse2.1.1 36932 89549 860
Eclipse2.1.2 36870 89393 860
Eclipse2.1.3 37082 89833 860

Eclipse3.0 50369 124893 1435
Eclipse3.0.1 50386 124919 1435
Eclipse3.0.2 50530 125174 1435

Eclipse3.1 60611 153010 1714
Eclipse3.1.1 60779 153274 1714
Eclipse3.1.2 60725 153185 1714

Eclipse3.2 71557 181887 1854

We consider five different groups of releases for Eclipse and JDK, and six for
Netbeans and Ant, where the number of total entities and properties, as well as
the other statistical properties, remain practically unchanged. We choose the
first version of each group as the representative of the group.

The evolution of these software systems may be easily studied because pro-
grammers use version control systems for the source code, for instance CVS [2]
or Subversion [6]. The source code has been analysed with a parser in order
to extract, for each version, the properties that we found to follow a power-law
distribution. These are: i) the frequency of instance variables names; ii) the fre-
quency of methods names; iii) the number of calls to methods with the same
name; iv) the number of immediate subclasses of a given class.

5.4.1 Names of instance variables

The first property we studied is the distribution of instance variables names
in each class of the system (including static instance variables and excluding
inherited variables). In Fig. 5.1 we plot data for the representative versions of
each group.

All distributions show quite a straight behavior, being JDK the less regular. A
solid line, corresponding to the Yule distribution obtained using eq. 5.2 for the
last version analysed, is shown in the four panes of Fig. 5.1, We reported for the
same version also a dashed line with slope corresponding to the value of the α

exponent estimated using the MLE for discrete case (see section 5.3).

5.4. RESULTS 33

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Eclipse

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Netbeans

3.1
3.2
3.3.1
3.5
5.5
6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

JDK

1.2.2
1.3.1.02
1.4.0
1.5.0
1.6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Ant

1.5.2
1.5.3−1
1.6.0
1.6.1
1.6.5
1.7.0
Disc. MLE
Yule Distr.

Figure 5.1: Survival distributions of the names of instance variables for each ver-

sion of the analysed systems: Eclipse, Netbeans, JDK, Ant. Solid and dashed line

represent best fits to the data using the methods described in section 5.3.

In the modeled Yule process, the entities are the names themselves, while
their properties are the number of instance variables in the system having that
name. In this case, the preferential attachment growth means, for example,
that when a new instance variable is inserted into a class, it is most likely that
the name be the same of an already existing instance variable .In fact, it is good
object-oriented programming style to assign the same name to variables con-
taining the same kind of data. On the other hand, it is also possible that a new
name is used, generating a new entity with its property set to one.

In Table 5.2 we show the number of different names for instance variables
(Entities), and the total number of instance variables (Nr. Properties) for each
main version representative of the systems studied. As you can see, all these
systems include thousands, or tens of thousand, of names and variables, and
can be consequently studied under a statistical perspective.

We estimated the cumulated and differential Yule parameters (m,c,mi, and
ci), for each version and for each property examined using the equations re-
ported in section 5.2. The values of k0, as mentioned above, is determined by
the model itself. In this case k0 = 1 because when a new name is added, it refers

34 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

Table 5.2: Empirical data computed on each project for property "Names of in-

stance variables".

Project Nr. Entities Nr. Properties Project Nr. Entities Nr. Properties
Eclipse2.0 18158 28404 JDK1.2.2 6249 9027
Eclipse2.1 22188 36410 JDK1.3.1-02 6988 10205
Eclipse3.0 29142 49706 JDK1.4.0 12985 22980
Eclipse3.1 50522 75598 JDK1.5.0 20933 37143
Eclipse3.2 59072 89122 JDK1.6.0 21512 38612

Netbeans3.1 4205 7876 Ant1.5.2 2306 3426
Netbeans3.2 11585 21089 Ant1.5.3-1 3433 2310

Netbeans3.3.1 14409 25761 Ant1.6.0 2887 4402
Netbeans3.5 20608 39393 Ant1.6.1 2917 4467
Netbeans5.5 35323 72502 Ant1.6.5 3026 4709
Netbeans6.0 75466 164900 Ant1.7.0 3374 5302

to just one instance variable. In Table 5.3 we report the Yule parameters calcu-
lated for the main versions of each project studied.

Table 5.3: Yule process parameters computed on each project for property

"Names of instance variables".

Project m mi c ci Project m mi c ci
Eclipse2.0 0.564 0.564 -0.617 -0.617 JDK1.2.2 0.445 0.445 -0.676 -0.676
Eclipse2.1 0.641 0.987 0.500 0.458 JDK1.3.1-02 0.460 0.594 -0.692 -1.632
Eclipse3.0 0.706 0.912 -0.514 -0.528 JDK1.4.0 0.770 1.130 -0.626 -3.787
Eclipse3.1 0.496 0.211 -0.702 -0.893 JDK1.5.0 0.774 0.782 -0.630 -2.188
Eclipse3.2 0.509 0.582 -0.709 -0.745 JDK1.6.0 0.795 1.537 -0.644 -2.598

Netbeans3.1 0.873 0.873 -0.635 -0.635 Ant1.5.2 0.488 0.486 -0.505 -0.505
Netbeans3.2 0.820 0.790 -0.598 -0.574 Ant1.5.3-1 0.486 0.750 -0.508 -1.000

Netbeans3.3.1 0.788 0.654 -0.586 -0.517 Ant1.6.0 0.525 0.679 -0.497 -0.435
Netbeans3.5 0.911 1.199 -0.513 -0.308 Ant1.6.1 0.531 1.167 -0.509 -0.877
Netbeans5.5 1.052 1.250 -0.494 -0.459 Ant1.6.5 0.556 1.220 -0.494 0.192
Netbeans6.0 1.185 1.302 -0.531 -0.557 Ant1.7.0 0.571 0.704 -0.568 - 0.882

These results highlight how the Yule parameters change for different ver-
sions, meaning that it is not possible to model the evolution of the project
properties using a Yule process with constant parameters. At the same time,
the value of α calculated under the hypothesis of a Yule process at work is con-
sistent with the power-law exponent extracted from fitting the data. As already
discussed, we introduce a model able to explain the evolution of these systems
based on a Yule process, where the value of m and c change at every step. For
instance, the Eclipse project could be modeled with a Yule process having five
steps (one for each main version examined); for each step, the corresponding
parameters mi and ci are reported in Table 5.3. In order to better investigate
this assumption we used a Yule process simulator with the ability to vary m

and c during the process (see section 5.5).
Table 5.4 reports the α exponent computed using eq. 5.5 (α Yule) and using

5.4. RESULTS 35

eq. 5.15 (α MLE). From the software engineering perspective, these variables
need some interpretation. First, note that the smaller is α, the more spread
is the statistical distribution. Typical values for α are in the range 2-3. This
means that the larger is m the spreader are the distributions. This is reflected
in the software system by a higher reuse of existing names or sub-classes with
respect to the introduction of new variables names, new methods names and
new sub-classes. When comparing the Yule and MLE exponent, there is a very
good agreement for Ant and Netbeans projects. In Eclipse and JDK the agree-
ment is lower, but looking at Fig. 5.1, we may observe that the fit with real data
looks better using the estimated Yule distribution than the fitting obtained us-
ing the exponent computed with the MLE. Note that our fitting uses equation
5.2, which is not a perfect straight line in the log-log plots.

Table 5.4: The scaling parameter α computed using the Yule process and the MLE

method on the last version of each system for property "Name of instance vari-

ables".

Eclipse JDK Netbeans Ant
α (Yule) 2.57 2.45 2.39 2.75
α (MLE) 2.99 2.66 2.47 2.75

xmi n 1 1 1 1

5.4.2 Names of methods

The second property we studied is the distribution of the names of methods of
the system (excluding Java constructors). Note that it is good OOP style to give
the same name to methods performing the same operation, in different classes.

In Fig. 5.2 we show the survival distributions for the main versions of the
four system examined. All distributions show a better straight behavior and fit-
ting to the Yule distribution than the previous ones, being JDK the less regular,
with a more curved slope in the tail. We reported the Yule distribution fitting
(using eq. 5.2) only for the last version, that corresponds to the end of the es-
timated Yule process whose parameters change at every step. The dashed line
represents the best data fit using the MLE estimate for the discrete case.

Table 5.5 shows the number of unique methods names (Nr. of Entities) and
the total number of methods (Nr. of Properties) for each version of the four
systems considered.

Applying to methods names a Yule process similar to that devised for in-
stance variables names, we have again k0 = 1. Using the fitting method de-
scribed in section 5.1, we estimated the values of m and c. In Table 5.6 we re-
port these results and also the values of mi and ci, estimated using eqs. 5.9 and
5.10, for each system studied.

36 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Eclipse

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

P
r(

X
 ≥

 x
)

x

Netbeans

3.1
3.2
3.3.1
3.5
5.5
6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

JDK

1.2.2
1.3.1.02
1.4.0
1.5.0
1.6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Ant

1.5.2
1.5.3−1
1.6.0
1.6.1
1.6.5
1.7.0
Disc. MLE
Yule Distr.

Figure 5.2: Survival distributions of the frequency of a method name for each

analysed system: Eclipse, Netbeans, JDK and Ant. Solid and dashed line represent

best fits to the data using the methods described in section 5.3.

Table 5.5: Yule process parameters computed on each project for property

"Names of methods".

Project Nr. Entities Nr. Properties Project Nr. Entities Nr. Properties
Eclipse2.0 27022 68041 JDK1.2.2 8404 20591
Eclipse2.1 36863 89411 JDK1.3.1-02 9247 23068
Eclipse3.0 50369 124893 JDK1.4.0 16008 43806
Eclipse3.1 60611 153010 JDK1.5.0 25953 72643
Eclipse3.2 71557 181887 JDK1.6.0 28417 78054

Netbeans3.1 10734 27271 Ant1.5.2 3421 6516
Netbeans3.2 14131 36712 Ant1.5.3-1 3426 6524

Netbeans3.3.1 18868 49159 Ant1.6.0 4691 8876
Netbeans3.5 30019 78970 Ant1.6.1 4736 8980
Netbeans5.5 55416 160788 Ant1.6.5 5085 9665
Netbeans6.0 117369 363043 Ant1.7.0 5870 11216

Also in this case the Yule process parameters m and c change with the ver-
sion, but their values are much closer to each other. For this reason, the distri-
butions look to be almost overlapping, their slope being related to the parame-
ters m and c by the equation 5.5.

5.4. RESULTS 37

Table 5.6: Yule process parameters computed on each project for property

"Names of methods".

Project m mi c ci Project m mi c ci
Eclipse2.0 1.518 1.518 -0.314 -0.314 JDK1.2.2 1.450 1.450 -0.340 -0.340
Eclipse2.1 1.425 1.171 -0.397 -0.587 JDK1.3.1-02 1.495 1.938 -0.312 0.030
Eclipse3.0 1.480 1.627 -0.405 -0.423 JDK1.4.0 1.736 2.067 -0.215 -0.059
Eclipse3.1 1.524 1.745 -0.412 -0.434 JDK1.5.0 1.799 1.870 -0.115 0.072
Eclipse3.2 1.542 1.638 -0.419 -0.456 JDK1.6.0 1.747 1.196 -0.121 -0.131

Netbeans3.1 1.541 1.541 -0.308 -0.308 Ant1.5.2 0.905 0.905 -0.575 -0.575
Netbeans3.2 1.598 1.779 -0.401 -0.614 Ant1.5.3-1 0.904 0.600 -0.575 -0.571

Netbeans3.3.1 1.605 1.628 -0.400 -0.396 Ant1.6.0 0.892 0.859 -0.560 -0.513
Netbeans3.5 1.631 1.673 -0.400 -0.400 Ant1.6.1 0.896 1.311 -0.564 -0.826
Netbeans5.5 1.901 2.222 -0.407 -0.407 Ant1.6.5 0.901 0.963 -0.556 -0.443
Netbeans6.0 2.093 2.265 -0.275 -0.136 Ant1.7.0 0.911 0.976 -0.575 -0.678

In all systems there is good agreement between the empirically found values
of α and the values computed using the Yule model, as shown in Table 5.7, for
the last version of the four systems considered.

Table 5.7: The scaling parameter α computed using the Yule process and the MLE

method on the last version of each system for property "Name of methods".

Eclipse JDK Netbeans Ant
α (Yule) 2.38 2.50 2.35 2.47
α (MLE) 2.31 2.29 2.21 2.36

xmi n 1 2 3 2

5.4.3 Number of calls to methods

Another property we studied is the distribution of how many times a method
name is called (excluding the invocation of Java constructors). This is an indi-
cator of how much a set of methods with the same name is used in the system.
The survival distributions for the main versions of the four systems examined
are shown in Fig. 5.3. The distributions show again a quite straight behavior
and a quite good fitting with the Yule distribution obtained using eq. 5.2 with
the value parameters of the last version (solid line). The fitting using the MLE
exponent (dashed line) looks better only for the Ant project.

Table 5.8 shows the total number of names called (Nr. of Entities), the total
number of calls (Nr. of Properties) for each version of the system analysed.

Trying to apply the Yule process to the addition of new method calls, we
first observe that the entities are again the names themselves. In this case, they
do not refer to the call of a specific method, but to the call of the whole family
of methods with the same name. The considered property is the number of

38 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Eclipse

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Netbeans

3.1
3.2
3.3.1
3.5
5.5
6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

JDK

1.2.2
1.3.1.02
1.4.0
1.5.0
1.6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Ant

1.5.2
1.5.3−1
1.6.0
1.6.1
1.6.5
1.7.0
Disc. MLE
Yule Distr.

Figure 5.3: Survival distributions of the number of method calls for each anal-

ysed system: Eclipse, Netbeans, JDK and Ant. Solid and dashed line represent best

fits to the data using the methods described in section 5.3.

Table 5.8: Empirical data computed on each project for property "Number of call

to methods".

Project nr. Entity nr. Property Project nr. Entity nr. Property
Eclipse2.0 20595 168072 JDK1.2.2 6072 41479
Eclipse2.1 26208 241607 JDK1.3.1-02 6728 47079
Eclipse3.0 35514 327145 JDK1.4.0 12043 90145
Eclipse3.1 42151 403713 JDK1.5.0 19284 148490
Eclipse3.2 49365 480202 JDK1.6.0 20237 146730

Netbeans3.1 4052 14691 Ant1.5.2 2014 8959
Netbeans3.2 10516 37968 Ant1.5.3-1 2018 8970

Netbeans3.3.1 13511 52286 Ant1.6.0 2735 13442
Netbeans3.5 20126 88481 Ant1.6.1 2759 13671
Netbeans5.5 37482 194580 Ant1.6.5 2932 14835
Netbeans6.0 77350 440741 Ant1.7.0 3193 17556

times they are called in the system. Setting k0 = 1 for the call of a name that was
never called before and applying the fitting method reported in section 5.1, we
estimated the values of m and c. Table 5.9 shows these values, together with the
values of mi and ci.

We report in the first rows of Table 5.10 the estimated scaling parameters α

5.4. RESULTS 39

Table 5.9: Yule process parameters computed on each project for property "Num-

ber of call to methods".

Project m mi c ci Project m mi c ci
Eclipse2.0 7.161 7.161 0.647 0.647 JDK1.2.2 5.831 5.831 1.096 1.096
Eclipse2.1 8.219 12.101 0.580 0.427 JDK1.3.1-02 5.997 7.537 1.139 1.640
Eclipse3.0 8.212 8.192 0.604 0.673 JDK1.4.0 6.485 7.103 1.119 1.104
Eclipse3.1 8.578 10.54 0.615 0.691 JDK1.5.0 6.700 7.058 0.979 0.779
Eclipse3.2 8.728 9.603 0.653 0.898 JDK1.6.0 6.251 -2.847 1.059 0.197

Netbeans3.1 2.626 2.626 1.900 1.900 Ant1.5.2 3.448 3.448 0.804 0.804
Netbeans3.2 2.610 2.601 1.084 0.736 Ant1.5.3-1 3.445 1.750 0.793 -1.000

Netbeans3.3.1 2.870 3.781 0.978 0.791 Ant1.6.0 3.915 5.237 0.871 1.205
Netbeans3.5 3.396 4.472 1.058 1.361 Ant1.6.1 3.955 8.542 0.885 5.845
Netbeans5.5 4.191 5.113 1.097 1.222 Ant1.6.5 4.060 5.728 0.858 0.594
Netbeans6.0 4.698 5.174 0.843 0.662 Ant1.7.0 4.498 9.425 1.073 33.862

using the Yule process and the discrete MLE method for the last version. The
agreement between the values computed using the Yule model and the empir-
ically found values of α is lower with respect to the other properties analyzed.
We may observe that also in this case the fitting with real data looks better using
the Yule distribution, as we can see in Fig. 5.3, except for the Ant project.

Table 5.10: The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for property "Number of call to

methods".

Eclipse JDK Netbeans Ant
α (Yule) 2.19 2.33 2.39 2.46
α (MLE) 1.89 1.97 2.10 2.16

xmi n 2 4 4 4

5.4.4 Number of subclasses

The last property we studied is the number of immediate subclasses of each
class of the system.

The survival distributions for the main versions of the four systems exam-
ined are reported in Fig. 5.4. All distributions show again a straight behavior,
with irregularities in the extreme tail and a good fitting with the Yule distribu-
tion for the last version.

We report in Table 5.11 the number of classes (Nr. of Entities) and sub-
classes (Nr. of properties) in each system.

Now, let us discuss the Yule process as a possible stochastic mechanism able
to generate these power-laws. Clearly, the key mechanism is related to immedi-
ate subclasses generation, because new classes are usually added to the system

40 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Eclipse

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Netbeans

3.1
3.2
3.3.1
3.5
5.5
6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

JDK

1.2.2
1.3.1.02
1.4.0
1.5.0
1.6.0
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Ant

3.1
3.2
3.3.1
3.5
5.5
6.0
Disc. MLE
Yule Distr.

Figure 5.4: Survival distributions of the number of immediate subclasses for each

system analysed: Eclipse, Netbeans, JDK and Ant. Solid and dashed line represent

best fits to the data using the methods described in section 5.3.

Table 5.11: Empirical data computed on each project for property "Number of

subclasses".

Project nr. Entity nr. Property Project nr. Entity nr. Property
Eclipse2.0 8221 4783 JDK1.2.2 2560 2375
Eclipse2.1 10113 5839 JDK1.3.1-02 2925 2729
Eclipse3.0 14193 7746 JDK1.4.0 5588 5283
Eclipse3.1 17174 9451 JDK1.5.0 8785 7978
Eclipse3.2 20802 11524 JDK1.6.0 9433 8731

Netbeans3.1 4140 1135 Ant1.5.2 913 519
Netbeans3.2 5563 1471 Ant1.5.3-1 915 520

Netbeans3.3.1 7413 2061 Ant1.6.0 1202 704
Netbeans3.5 11478 3274 Ant1.6.1 1208 709
Netbeans5.5 24092 7053 Ant1.6.5 1280 743
Netbeans6.0 51031 16100 Ant1.7.0 1479 893

one by one, as a subclass of an existing class. If a Yule process is assumed,
this should necessarily have k0 = 0, because generally a new added class has
no subclasses 3. We also estimated the values of m and c applying the fitting

3It might happen that in a refactoring operation we extract a common superclass from two

5.5. SIMULATION RESULTS 41

method reported in section 5.1 and the values of mi and ci using eqs. 5.9 and
5.10, respectively.

Table 5.12 shows the results for the four systems studied. Also for this prop-
erty the distributions seem to be almost overlapping because the values of the
Yule parameter m for each version are very similar.

Table 5.12: Yule process parameters computed on each project for property

"Number of subclasses".

Project m mi c ci Project m mi c ci
Eclipse2.0 0.582 0.582 0.244 0.244 JDK1.2.2 0.928 0.928 0.319 0.319
Eclipse2.1 0.577 0.558 0.221 0.136 JDK1.3.1.02 0.933 0.970 0.312 0.266
Eclipse3.0 0.546 0.467 0.229 0.257 JDK1.4.0 0.945 0.959 0.316 0.320
Eclipse3.1 0.550 0.572 0.219 0.175 JDK1.5.0 0.908 0.843 0.279 0.221
Eclipse3.2 0.554 0.571 0.226 0.260 JDK1.6.0 0.926 1.162 0.272 0.193

Netbeans3.1 0.274 0.274 0.214 0.214 Ant1.5.2 0.568 0.568 0.157 0.157
Netbeans3.2 0.264 0.236 0.200 0.163 Ant1.5.3-1 0.568 0.500 0.156 0.000

Netbeans3.3.1 0.278 0.319 0.205 0.220 Ant1.6.0 0.586 0.641 0.150 0.130
Netbeans3.5 0.285 0.298 0.174 0.129 Ant1.6.1 0.587 0.833 0.148 0.000
Netbeans5.5 0.293 0.300 0.146 0.124 Ant1.6.5 0.580 0.472 0.156 0.347
Netbeans6.0 0.315 0.336 0.134 0.125 Ant1.7.0 0.604 0.754 0.173 0.298

The values of α computed using the Yule model and estimated with the
Maximum Likelihood Estimator (MLE) are quite similar in all the four system
studied (see Table 5.13).

Table 5.13: The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for property "Number of sub-

classes".

Eclipse JDK Netbeans Ant
α (Yule) 2.41 2.29 2.42 2.29
α (MLE) 2.32 2.27 2.77 2.19

xmi n 3 2 15 2

The distribution of the number of immediate subclasses in Java systems has
been studied by Wheeldon and Counsell [81], who also report a power-law be-
havior.

5.5 Simulation results

In this section we use the simulation approach to verify our assumptions. More
precisely, we want to assess if a Yule process, whose parameter m and c change

or more existing classes. This operation would yield the introduction of a new class having two
or more subclasses, thus with k0 > 1. In our model, we consider these refactoring activities rare,
and thus neglect them.

42 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

at every step, as we computed from empirical data, is able to statistically model
the power-laws found.

To simulate the Yule process described above, the simulator must be able
to use as input the values empirically found. At the beginning of the process,
there is just one entity, with property value set to k0. At each time step there is
a constant probability a = 1

m+1 that a new entity is created, and a probability
1− a that the value of an existing entity is increased by one. Let us remember
that m is the average number of property increment in between the addition
of two new entities. Consequently, m will be in general a fraction value. We
consider a number of steps equal to the number of main versions of the project
under study. The values of m, c and k0 are kept constant during each step (i.e
until the number of entities generated is equal to the number of entities of the
considered version), and are changed in the next step, except for k0.

For the sake of brevity, in the followings we report the simulation results
only for Eclipse. Similar results have been obtained for all other systems. We
studied five versions (steps) for Eclipse. Tables 5.3, 5.6, 5.9, 5.12, report the Yule
parameters that we used in the simulation. More precisely, we set the param-
eters of the Yule process simulator at the corresponding values of mi and ci
for each of the five steps. At the end of the simulation, in order to evaluate the
goodness of this Yule process for modeling the studied phenomenon, we calcu-
late the cumulated parameters m and c of the five snapshots corresponding to
the five versions of the Eclipse project. Tables 5.14 and 5.15 show the simulation
results of the cumulated parameters m and c, compared with those calculated
from real data.

Table 5.14: Comparison between the parameter m obtained from real data and

simulation results (averaged over 20 runs) for each of the Eclipse properties ex-

amined. Standard errors of simulated parameters are reported in parenthesis.

Variable Names Method Names Calls to Methods Nr. Subclasses

m Real m Sim. m Real m Sim. m Real m Sim. m Real m Sim.
0.564 0.562 (0.002) 1.518 1.521 (0.002) 7.161 7.184 (0.011) 0.582 0.581 (0.002)
0.641 0.639 (0.002) 1.425 1.428 (0.002) 8.219 8.233 (0.012) 0.577 0.576 (0.002)
0.706 0.703 (0.001) 1.480 1.482 (0.002) 8.212 8.215 (0.009) 0.546 0.546 (0.002)
0.496 0.495 (0.001) 1.524 1.527 (0.002) 8.578 8.579 (0.009) 0.550 0.549 (0.002)
0.509 0.508 (0.001) 1.542 1.544 (0.002) 8.728 8.729 (0.007) 0.554 0.553 (0.002)

We found a very good correspondence for m, meaning that the estimate of
m is reliable all over the phases of all examined projects. On the other hand,
parameter c often exhibits a poor correspondence between values estimated
from real data, and the results of a typical simulation, made using parameters
estimated between consecutive versions. Note that m is the more important
parameter, being directly related to the programmers propension to reuse ex-

5.5. SIMULATION RESULTS 43

Table 5.15: Comparison between the parameter c obtained from real data and

simulation results (averaged over 20 runs) for each of the Eclipse properties ex-

amined. Standard errors of simulated parameters are reported in parenthesis.

Variable Names Method Names Calls to Methods Nr. Subclasses

c Real c Sim. c Real c Sim. c Real c Sim. c Real c Sim.
-0.617 -0.619 (0.003) -0.314 -0.313 (0.002) 0.647 0.648 (0.005) 0.244 0.244 (0.017)
-0.500 -0.511 (0.003) -0.397 -0.389 (0.002) 0.580 1.073 (0.005) 0.221 0.225 (0.015)
-0.514 -0.417 (0.003) -0.405 -0.376 (0.001) 0.604 0.797 (0.004) 0.229 0.106 (0.010)
-0.702 -0.662 (0.001) -0.412 -0.364 (0.001) 0.615 0.902 (0.004) 0.219 0.145 (0.010)
-0.709 -0.664 (0.001) -0.419 -0.371 (0.001) 0.653 0.901 (0.005) 0.226 0.179 (0.010)

isting names, calls and superclasses, and hence to adhere to OO best practices.
The fact that the estimate of m throughout the process looks very stable, and
consequently reliable, is positive. The meaning of c parameter is fuzzier, it be-
ing essentially a tool enabling a better fit of real data to Yule model. c tunes the
probability to choose entities with respect to the existing value of their prop-
erty. The high variation of c are not unexpected, given the difficulty to estimate
it.

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

(a)

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b)

P
r(

X
 ≥

 x
)

x

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yulr Distr.

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

(c)

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

(d)

2.0
2.1
3.0
3.1
3.2
Disc. MLE
Yule Distr.

Figure 5.5: Cumulative distributions obtained simulating the four properties

analysed of Eclipse: (a) Names of instance variables, (b) Names of methods, (c)

Number of call to methods, (d) Number of subclasses.

44 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

Note that c is consistently negative in the case of the choice of variable and
method names, meaning that names with just one occurrence in the system are
less likely to be chosen with respect to a “classical” Yule process. In the case of
method calls, c is consistently positive, meaning the opposite, namely a higher
programmers propension to choose to call methods already called just once, or
a few times. In the case of subclasses, c must be positive, because k0 = 0 and if c

was lesser than, or equal to zero, it would be impossible to choose as superclass
a class with no subclasses. The distributions obtained simulating the five ver-
sion of Eclipse for the properties studied are shown in Fig. 5.5. There is a good
correspondence between these distributions and those obtained from empir-
ical data. In fact, the slope in both kind of distributions is very similar. Ob-
viously, the distributions obtained from simulation are more regular and also
the Yule distribution fitting (eq. 5.2) is better. As mentioned above, the irregu-
larities of the real distributions are probably due to the activity of deleting and
refactoring classes.

We report in Table 5.16, for simulation data, the α exponent of the Yule
model described above and that calculated using the methods of maximum
likelihood. The results are quite close to each other, resembling those reported
in section 5.5 for real data. Note that these results are relative to a specific sim-
ulation.

Table 5.16: The scaling parameter α computed using the Yule process and the

MLE method on the last version of each system for all the studied properties.

Variables Names. methods Names Call methods Nr. of Subclasses
α (Yule) 2.65 2.41 2.22 2.40
α (MLE) 2.72 2.27 2.16 2.42

xmi n 3 1 13 9

Finally, we also investigated the distribution of the differences between the
properties of two main consecutive versions, i.e obtained by subtracting, one
by one, the number of occurrences of every property between two main ver-
sions.

In Fig. 5.6 we report the result for the property “name of methods“ in case
of simulation (a) and real data (b). We do not plot the statistical distributions
of the differences among all the possible couples of versions, but only a few
representatives, together with the data for two main releases, to see how the
slope remains the same, within the limits of statistical errors. Comparing the
results of the differential analysis for the simulated model and for real data we
see that the latter shows the same behavior, in the limit of statistical errors.
Similar results are obtained for all other properties and all projects studied.

5.6. DISCUSSION 45

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

(a)

3.2−2.0
3.2−2.1
3.2−3.0
3.1−2.1
2.0
3.2

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

(b)

3.2−2.0
3.2−2.1
3.2−3.0
3.1−2.1
2.0
3.2

Figure 5.6: Survival distributions of the differences of methods names frequences

among couples of distribution from simulation data (a) and real data (b). We

plot only few representative couples, toghether with the survival distributions of

two main releases as comparison.

5.6 Discussion

Each of the properties analyzed show systematically a power-law behavior in
different OO software systems, and through different releases or versions. A
single Yule model, for each software system, cannot take into account for the
overall software evolution process through all the versions, since the Yule pa-
rameters calculated for each release differ from each other, even if this differ-
ence is small. The introduction of a Yule model whose parameters vary with
time, on the other hand, is able to account for all the power-laws exhibited by
the system properties. This can also explain little mismatches from a perfect
power-law behavior shown by empirical data.

Note that the power law exponents for the cumulative distributions provide
themselves with useful information about the software systems, regardless of
the existence of an underlying Yule process. For instance, following, for ex-
ample, the reasoning reported in [48], if some property x is distributed among
entities y according to a power-law of the kind y ≃ x−α, from the knowledge of
α one can easily determine the fraction of entities containing a pre-determined
amount of total properties. Thus, one can rank the entities and select this frac-
tion to recover the desired amount of total properties (see [48] for more details).
Moreover, we know that, if data distribution follow a power-law, an estimate of
the most likely maximum value of a property, xmax , can be inferred from the
total number of entities, n using formula xmax ∝ n1/(α−1) [57]. This property
can be valuable to forecast extreme values, which can be critical in software
development.

The Yule process allows us to infer information about the power-law expo-

46 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

nent without a fitting procedure, starting from the data, and avoiding crtitical
issues related to the fitting. For instance, estimating α through the Hill MLE
procedure introduces a cut-off on the data from the value xmi n , which artifi-
cially becomes a critical parameter itself. We know that any other fitting pro-
cedure introduces similar biases. The assumption of a Yule process varying in
time relates the exponent of the power-laws exhibited by the system properties
to general features of the process of software production, like k0 or m, that can
be easily computed or estimated.

Monitoring the variation of these Yule parameters can help the developers
to check if the process of software production is on track. Similar values of m in
all releases denotes that the same policy of reuse of method names, or instance
variable names is adopted throughout the process, while strong variations of
m denote a possible issue on naming policies. The properties we studied are
related to software quality. The number of immediate subclasses corresponds
to the NOC metric of Chidamber and Kemerer quality metrics suite [19], while
the other metrics reflect the effectiveness of naming conventions, as said above.
Thus, the information about their distributions can be directly translated into
information about the evolution with different releases of parameters related
to software quality.

Note that, as almost always in software metrics, there is no a specific value
for a metrics, able to qualify a system as ”good“. It is possible, however, to con-
trol the evolution of a large system to assess whether some key metrics are un-
der control. For instance, it is considered good OO programming practice to
name in the same way variables and methods having the same meaning in dif-
ferent classes. This should result in a system having a few names very used
throughout the system, while retaining the property that most names are used
just once, or very few times. As regards subclassing, while in some cases it is
sensible to have superclasses with very many subclasses (think for instance to
the superclass of all supported devices), it is known that the overuse of sub-
classing in place of composition is a typical design error made by unexperi-
enced OO programmers. As a large system grows, it is natural that the number
of different variable and method names, or of the number of subclasses of ex-
isting classes grow. Since such metrics are known to follow a power-law, it is
difficult to assess whether the growth of these names, or of the number of sub-
classes, is within natural limits or it is too fast, using only simple statistics such
as the mean and standard deviation. Using power-law theory and stochastic
models such as those presented in this paper, on the other hand, it is possible
to better control if the values of these parameters tend to stay limited, or tend
to increase above an acceptable level. In the latter case, actions might be taken
to take the system under control again.

As an example of the use of our model, it is possible to directly measure

5.6. DISCUSSION 47

the values of the incremental parameter mi , for instance for the distribution
of method names. Having an history of the evolution of of mi , it is possible
to measure its value for a new version of the system. Since mi is the average
number of method names reused in between the addition of two new method
names, a reduction of mi means that method names tend to be reused less
than in previous versions. If this reduction is high enough, corrective actions
can be taken to verify if the problem is actually due to worsening programming
practices regarding method names, and if it is the case, to ask programmers to
revert to proper naming guidelines.

We had to limit our study to only four important aspects of software devel-
opment. However, from our preliminary studies there is evidence that many
other properties of software designs that exhibit a power-law behavior can be
modeled with the same approach. Among these we may quote in-link distribu-
tion of the class graph, and number of bugs per class or per source file.

Other properties of software systems, on the other hand, follow distribu-
tions patently different from power-law, such as the number of methods of
a class, the number of lines of code of classes and methods, the number of
out-links of class graph node [23]. For these properties, the proposed model
is clearly not suitable. Another OO metrics, such as the depth of inheritance
tree (DIT) of classes [19] has maximum value always less than 11 in the stud-
ied systems, so its statistics is not relevant under the perspective of power-law
distribution.

Appendix

In this appendix we report, for all main version of the examined software sys-
tems and for all the four studied properties, the entities with the highest value
of their properties. This gives an idea of the ”fatness“ of their distribution tails.

48 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

Table 5.17: Instance variable names with the maximum number of occurrences

for the main version of the examined software systems

Project Instance Variable name Occurrences
Eclipse2.0 name 99
Eclipse2.1 name 131
Eclipse3.0 RESOURCE-BUNDLE 181
Eclipse3.1 serialVersionUID 336
Eclipse3.2 serialVersionUID 390

Netbeans3.0 serialVersionUID 1189
Netbeans3.1 serialVersionUID 1285
Netbeans3.2 serialVersionUID 1404

Netbeans3.3.1 serialVersionUID 1501
Netbeans3.5 serialVersionUID 1873
Netbeans5.5 serialVersionUID 1477
Netbeans6.0 serialVersionUID 1937

Ant1.5.2 project 36
Ant1.5.3-1 project 36

Ant1.6.0 project 51
Ant1.6.1 project 51
Ant1.6.5 name 54
Ant1.7.0 FILE-UTILS 98
JDK1.2.2 serialVersionUID 170

JDK1.3.1.02 serialVersionUID 240
JDK1.4.0 serialVersionUID 293
JDK1.5.0 serialVersionUID 843
JDK1.6.0 serialVersionUID 1160

Table 5.18: Method names with the maximum number of occurrences for the

main version of the examined software systems

Project Method Name Occurrences
Eclipse2.0 visit(1) 536
Eclipse2.1 visit(1) 860
Eclipse3.0 visit(1) 1435
Eclipse3.1 visit(1) 1714
Eclipse3.2 visit(1) 854

Netbeans3.1 getHelpCtx(0) 411
Netbeans3.2 getHelpCtx(0) 544

Netbeans3.3.1 getHelpCtx(0) 668
Netbeans3.5 getName(0) 939
Netbeans5.5 getName(0) 1359
Netbeans6.0 visit(1) 3427

Ant1.5.2 execute(0) 192
Ant1.5.3-1 execute(0) 192

Ant1.6.0 execute(0) 242
Ant1.6.1 execute(0) 228
Ant1.6.5 execute(0) 230
Ant1.7.0 execute(0) 241
JDK1.2.2 toString(0) 193

JDK1.3.1.02 toString(0) 218
JDK1.4.0 toString(0) 377
JDK1.5.0 toString(0) 770
JDK1.6.0 toString(0) 783

5.6. DISCUSSION 49

Table 5.19: Maximum number of occurrences of calls to a method with a given

name for the main version of the examined software systems

Project Name of the called method Nr. of calls
Eclipse2.0 getString(1) 3079
Eclipse2.1 getString(1) 4218
Eclipse3.0 getString(1) 5503
Eclipse3.1 getName(0) 4140
Eclipse3.2 getName(0) 5026

Netbeans3.1 getDefault(0) 356
Netbeans3.2 getName(0) 604

Netbeans3.3.1 getName(0) 710
Netbeans3.5 getName(0) 1286
Netbeans5.5 getDefault(0) 2812
Netbeans6.0 getName(0) 5064

Ant1.5.2 log(2) 355
Ant1.5.3-1 log(2) 355

Ant1.6.0 getProject(0) 619
Ant1.6.1 getProject(0) 625
Ant1.6.5 getProject(0) 705
Ant1.7.0 executeTarget(1) 866
JDK1.2.2 size(0) 723

JDK1.3.1.02 size(0) 796
JDK1.4.0 equals(1) 1464
JDK1.5.0 equals(1) 2386
JDK1.6.0 equals(1) 2477

Table 5.20: Classes with the maximum number of immediate subclasses for the

main version of the examined software systems

Project Class Nr. of subclasses
Eclipse2.0 org.eclipse.jface.action.Action 161
Eclipse2.1 org.eclipse.jface.action.Action 219
Eclipse3.0 org.eclipse.jface.action.Action 355
Eclipse3.1 org.eclipse.jface.action.Action 406
Eclipse3.2 org.eclipse.jface.action.Action 483

Netbeans3.1 org.netbeans.editor.BaseAction 85
Netbeans3.2 org.netbeans.editor.BaseAction 89

Netbeans3.3.1 org.netbeans.editor.BaseAction 93
Netbeans3.5 org.netbeans.editor.BaseAction 97
Netbeans5.5 org.netbeans.modules.j2ee.verification.AbstractRule 89
Netbeans6.0 org.netbeans.modules.uml.core.AbstractUMLTestCase 227

Ant1.5.2 org.apache.tools.ant.Task 104
Ant1.5.3-1 org.apache.tools.ant.Task 104

Ant1.6.0 org.apache.tools.ant.Task 126
Ant1.6.1 org.apache.tools.ant.Task 126
Ant1.6.5 org.apache.tools.ant.Task 128
Ant1.7.0 org.apache.tools.ant.BuildFileTest 167
JDK1.2.2 java.lang.Object 847

JDK1.3.1.02 java.lang.Object 981
JDK1.4.0 java.lang.Object 1870
JDK1.5.0 java.lang.Object 2934
JDK1.6.0 java.lang.Object 3448

50 CHAPTER 5. THE YULE PROCESS FOR MODELING SOFTWARE

Chapter 6

Bug distribution in OO systems.

The distribution of bugs in software systems has been shown to satisfy the Pareto
principle, and typically shows a power-law tail when analyzed as a rank-frequency
plot. Zhang showed that the Weibull cumulative distribution is a very good fit
for the Alberg diagram of bugs built with experimental data [85]. We further
discuss the subject from a statistical perspective, using as case studies five ver-
sions of Eclipse, to show how log-normal, Double Pareto and Yule-Simon dis-
tributions may fit the bug distribution at least as well as the Weibull distribu-
tion. In particular, we show how some of these alternative distributions provide
both a superior fit to empirical data and a theoretical motivation to be used for
modeling the bug generation process. While our results have been obtained
on Eclipse, we believe that these models, in particular the Yule-Simon one, can
generalize to other software systems.

6.1 Related Works.

The distribution of defects, or bugs, in software systems is a very important
issue both from a theoretical and a practical software engineering perspective.
Limiting our attention to object-oriented systems, recent papers highlighted
the presence of a so called “Pareto principle” in the bug distribution, that is 20%
of source files tend to include about 80% of bugs1 [8], [33], [45], [85]. This is a
sub-problem of the more general issue of a statistical description of different
properties of large software systems.

Modern software systems, in fact, may be so huge that a statistical analy-
sis of their components may be appropriate. This is witnessed by some recent
works [23], [48] devoted to the investigation of the distribution of general prop-

1In fact, the actual percentage of bugs hitting 20% of modules with most bugs is typically
60-70%, but the substance of the principle remains.

51

52 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

erties in large software systems, like the number of out-links of a class, the num-
ber of lines of code, the distribution of variables names across classes, modules,
packages etc., from the perspective of complex system theory [57].

Researchers agree in finding power-laws in the tails of the distribution for
various software properties, computed at different levels of granularity of soft-
ware components (classes, packages, files, and so on) [13], [22], [81]. These
findings follow a more general Pareto 80-20 principle [57]. Note that, when
needed, we use the term “modules” in a general sense, as a synonym of any of
the above described basic software components. Fenton and Ohlsson [33] ver-
ified the Pareto principle for the defect distribution in packages, and this sug-
gests that the defect distribution may also satisfy a power-law, although there is
not evidence for this in literature. Their finding was recently confirmed by An-
dersson and Runeson [8]. Les Hatton used concepts from statistical mechanics
to model how the software component sizes obey a power-law Pareto distribu-
tion when the system is subject to external constraints [44]. Zhang [85] pointed-
out that fitting the Alberg diagram of bugs over modules by using a pure power-
law may result in a poor approximation. He used data at the package level,
which is similar to the level of “modules” used in [8]. He showed that an out-
standing fit is obtained using the Weibull cumulative distribution. In order to
obtain this result Zhang used the Weibull distribution to perform a best-fit of
the Alberg diagram built with experimental data.

In the next we want to clarify some issues related to the distribution of bugs
in the Eclipse system, which is a software development platform for Java. First,
we discuss the relative significance of using statistical distributions to model
how bugs are distributed among modules, and of using rank/frequency and
cumulative diagrams such as Alberg’s. Then, we present some key distributions
used in literature to model software properties, introduce the generative mod-
els able to produce such data, and apply these models to exploit the mecha-
nism of bug introduction in software modules. Finally, we perform an empirical
computation on five versions of Eclipse, a large, publicly available Java system,
which has already been used for this purpose by other authors, showing that
the Yule-Simon distribution is the best fit for our empirical bug data, since it
is also supported by a theoretical model suitable for explaining the generative
mechanism of the measured empirical distributions.

6.2 Bug distribution and its quantification

In this work, we deal with large software systems whose source code is divided
among modules, and also with bugs affecting these modules. Often, during
software development, when a bug is found it is traced in a bug-tracking system

6.2. BUG DISTRIBUTION AND ITS QUANTIFICATION 53

– it is assigned a unique code, a description and a status. Developers in charge
of fixing the bug figure out where to change the source code to fix it, and when
they make these changes they record its unique code in the comment associ-
ated to the change. In this way, with proper analysis of the logs of bug tracking
and configuration management systems, it is possible to associate source files
– and even classes – with bug fixing activities related to a specific bug.

Clearly, not all source modules changed due to a bug are to be considered
“faulty”. Some changes can happen to realign a correct piece of code with an-
other piece of code that was modified to fix the bug. So, what we measure is
to what extent a bug hits one, some or many source modules, and not whether
they are really faulty.

Note that the number of bug fixings made to each module is not necessarily
an indicator of how much the module is “buggy” at a given time, but of how
many bugs have been introduced in the module during its development since
its creation, revealed by mean of some testing procedure, and fixed. Thus, a
module with more bugs discovered and fixed has been corrected more, and
may even be more bug-free than other modules with less bug fixes, at a given
time.

Studying large software systems, we have a high number of source modules,
of the order of several thousands, or even tens of thousands, each of which can
be hit by zero, one or several bugs, in the sense explained before. So, it is sen-
sible to study the bug distribution among source modules using a statistical
approach.

Traditionally, such studies are performed by recording the histogram of the
number of bugs hitting the modules, and then trying to match these empiri-
cal data with some known probability distribution function (PDF), so that one
can synthesize mathematically their statistical behavior. In practice, the key di-
agram is the complementary cumulative distribution function (CCDF) P (x) =
P [X ≥ x], that is the probability that the number of bugs, X , is greater than or
equal to a given value x.

Dealing with bug data, however, often software engineers prefer to use an
Alberg diagram [33]. The Alberg diagram is obtained first by drawing a rank/frequency
plot of the data – obtained in our case by ranking the modules according to
their number of bugs, and then plotting this number versus the rank, r . Then,
the rank-frequency plot is cumulated, and both axes are rescaled from 0 to 100
to reflect percentage values.

It is well known that the CCDF P (x) and the rank/frequency plot x(r) bear
in fact the same information, and can be obtained from inverting one another
and properly rescaling the axes. Consequently, the Alberg diagram conveys the
same information of CCDF. In fact, saying that “the module with the r th largest
number of bugs has x bugs” is equivalent to saying that “r modules have x or

54 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

more bugs” [7]. So, the probability P [X ≥ x] ≃ r
N

, where r is the rank of the
sample immediately greater or equal to x, and N is the number of samples.

If we know, or estimate, the CCDF P (x), its inverse x(P) ≃ x(r
N

) can be used
to compute the rank/frequency plot. The Alberg diagram can thus be com-
puted using the formula:

A(r) =
∑r

i=1 x(i
N

)
∑N

i=1 x(i
N

)
(6.1)

with A and r properly rescaled to 0−100 intervals, to yield percentages.
We used Weibull, Double Pareto, log-normal and Yule-Simon functions to fit

the empirical bug distribution. We analyzed the Eclipse software system using
the same releases as in [85], plus other releases.

Double Pareto, log-normal and Yule-Simon distributions have an advantage
with respect to the Weibull distribution, because they have an associated gen-
erative model that may be suitable for modeling the process of software pro-
duction and the addition of bugs into software modules. On the other hand,
among these only the Yule-Simon distribution can model null values. Thus,
when fitting empirical data with the other distribution functions we must dis-
card modules with zero bugs, which represent a substantial fraction of the en-
tire system.

6.3 Bug distribution

We analyzed five main releases of Eclipse, a large Java system, from 2.1 to 3.3.
For each release, we computed the number of bugs for each module. In this
specific case the software modules are files of the Eclipse packages, containing
one or more classes.

Table 6.1 shows the basic statistics about bug incidence, including the per-
centage of bugs pertaining to 20% of modules most hit by bugs.

Table 6.1: Basic statistics of studied Eclipse releases.
nr. of total modules w. % bugs in 20%

Project modules bugs bugs most hit modules
Eclipse 2.1 7885 6416 2545 85.0
Eclipse 3.0 10584 15839 4721 79.9
Eclipse 3.1 12174 12848 4819 81.4
Eclipse 3.2 13347 9986 4071 86.0
Eclipse 3.3 14564 9427 4142 87.0

For each release, we had to discard modules with no bugs for those dis-
tribution functions not compatible with null values, retaining all data for the

6.3. BUG DISTRIBUTION 55

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

P
r(

X
 ≥

 x
)

x

Eclipse 3.3

Data

Double pareto

Weibull

Lognormal

Figure 6.1: The CCDF of bugs in Eclipse 3.3. Modules with no bugs are dis-
carded in these data, since the Double Pareto and log-normal models cannot
fit zero values.

others, and performed a best-fit to these distributions using standard Matlab
functions. For this reason, we reported the Yule-Simon fit on a separate plot .

Fig. 6.1 shows in a log-log plot the best-fit CCDF for empirical bug data re-
ferring to Eclipse 3.3. This plot clearly supports the Double Pareto distribution
as best fit of the data, throughout its range. The log normal and Weibull dis-
tributions are a good fit for low values of bugs, but both fail in the tail. Similar
results are obtained for all examined Eclipse releases.

Table 6.2: R2 coefficient of determination. Modules with no bugs are included

only in the Yule-Simon model.
R2 R2 R2 R2

Project Weibull LogNorm. DoublePar. Yule-Simon
Eclipse 2.1 0.929 0.949 0.961 0.99995
Eclipse 3.0 0.947 0.967 0.975 0.99994
Eclipse 3.1 0.930 0.952 0.962 0.99994
Eclipse 3.2 0.929 0.947 0.959 0.99992
Eclipse 3.3 0.921 0.944 0.957 0.99998

The goodness of Double Pareto fit (Table 6.2) highlights that the Recursive
Forest model [54] can be suitable as a dynamic model for bug generation in this
object-oriented software, when discarding modules without bugs.

Once we computed the best-fit distribution parameters, we plotted an Al-
berg diagram from the studied distributions, in order to compare our results
with Zhang’s ones, generating the corresponding ideal rank-frequency diagram,
and then applying eq. (6.1), as described in Section 6.2. Fig. 6.2 reports the Al-
berg diagram referring to empirical data, for Eclipse 3.3 (discarding zero values)

56 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
P

r(
X

 ≥
 x

)

x

Eclipse 3.3

Data

Weibull

Lognormal

Double Pareto

Figure 6.2: The Alberg diagram obtained from converting the fitting of the
CCDF representation, for the same data as in Fig. 1. Modules containing no
bugs are excluded.

and the corresponding Alberg diagrams generated from the three best-fit dis-
tributions.

In this case, at a visual inspection all three distributions look roughly equiv-
alent for generating an Alberg diagram which may fit the Alberg diagram cal-
culated with empirical data. Computing the coefficient of determination (R2)
statistics, as in [85] to compare the fits, we found very similar results for the
three distributions, with values of the order of 0.95. The R2 of the Double Pareto
distribution is slightly better than the Weibull and the log-normal R2’s, because
of the larger number of parameters available for optimizing the best fitting
curves.

Note that, comparing Fig. 6.2 with a similar plot reported by Zhang [85], in
our case we first fit a statistical distribution using bug data, and then generate
an Alberg diagram using the theoretical distribution. In [85] files with zero bugs
are not discarded and the Alberg plot is directly fitted using the functional form
of the distributions. This obviously yields a better fit, with R2 values close to
0.998.

In Fig. 6.3 we show the CCDF plot in log-log scale separately for the Yule-
Simon distribution. In this case we used all the system modules, including
those with no bugs. In all log-log scale plots, the points corresponding to zero
bugs are automatically deleted. However, they are included in the fitting proce-
dure. The parameter p0 is computed as the ratio among the number of modules
with zero bugs and the total number of modules, while h0 is null since the mini-
mum amount of bugs in a module is zero. The fitting procedure optimizes with

6.4. DISCUSSION 57

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.3

x

P
r(

X
 ≥

 x
)

Yule−Simon
Data

Figure 6.3: The CCDF of bugs and its best fitting Yule-Simon CCDF in Eclipse
3.3. This data set includes also modules with zero bugs.

respect to the parameters α and c of Eq. 4.8.
The coefficient of determination for the Yule-Simon distribution is quite

high for all the Eclipse releases analyzed (Table 6.2), and clearly outperforms
the other distributions.

6.4 Discussion

The number of bugs of our empirical data corresponds to the number of cor-
rections applied to a module when developing a given release. In some sense,
the more bugs are found and fixed in a module, the more they are reduced.
Thus, in practice, our empirical distributions do not describe how many bugs
are present in a module at a given time, but are related to how many bugs have
been introduced into modules during software development.

Log-normal model.

Qualitatively, a module containing worse quality code should present more
bugs (discovered at ’pre’ or ’post’ release, after testing, and so on). The other
way round, a module with more bugs should contain worse quality code (bugs
are the main code quality indicator). Thus, our assumption that new bugs are
introduced into modules in amounts proportional to the bugs already intro-
duced is a reasonable first approximation.

On the downside, the log-normal model presents two significant issues.
First, it does not explicitly consider the system growth. New software mod-
ules are introduced during the development, while the log-normal model only
allows the increase in the number of bugs – in an amount proportional to the

58 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

number that has been already discovered. The system growth is not explicitly
included.

Second, and more importantly, the log-normal PDF does not include zeros.
This implies that most of the software system is automatically not considered,
and the model may be consistently used only for a subset of it.

Double-Pareto model.

The Double-Pareto distribution is obtained, according to Mitzenmacher, by
a geometric mixture of log-normal distributions. This model explicitly includes
system growth. In fact, the original model considers the distribution of files
size in file systems. First, a log-normal distribution is generated starting from
a single file, assuming that it is copied and manipulated to generate another
file with size changed by a multiplicative factor. The files are hierarchically re-
lated, the first being the root. Then, the same procedure is applied repeatedly
to one of the existing files selected at random. Asymptotically the distribution
of files’ size will be log-normal for files at the same hierarchical level [55]. This
model is then generalized to allow for the introduction of completely new files
– not created by replicating and manipulating an already existing file – as well
as for file deletion. With a certain probability per step a new file is introduced,
while with complementary probability an existing file is selected at random to
be copied and modified into another file, according to the process described
above. The resulting file size distribution is a geometric mixture of log-normal
file size distributions, yielding a global Double-Pareto distribution [55].

It is possible to adapt Mitzenmacher’s model to the software systems stud-
ied, assuming that the files correspond to the software modules, and the bugs
to the file size. In this model, new bugs are introduced into existing modules,
selected at random, in amounts proportional to the bugs already inserted (mul-
tiplicative factor). Such a model explicitly includes also the system growth,
because modules may be newly created as well as discarded. Our best fitting
results suggest that the Double-Pareto distribution closely represents the em-
pirical data.

The main drawback of this distribution is that it cannot include zeros. The
Double-Pareto distribution is well defined only for positive values. Thus, like
the log-normal, it can model only a subset of the modules of the entire software
system.

Another minor drawback is the number of parameters, four, larger than
in the other distributions, while models with fewer parameters are generally
preferable.

Weibull model.

The Weibull distribution models a technical system in which components
present failures during time. The number of components is fixed at the begin-
ning, and growth only occurs in the fraction of failed components. Eventually,

6.4. DISCUSSION 59

this fraction saturates to one. Thus, even if we can equate software modules to
components, and failures to bugs, the introduction of new components and of
new bugs, as well as the bug fixing activities that actually reduce the number
of bugs, are hardly accounted for in this model. On the other hand, its CCDF
is very flexible and presents only two parameters to be tuned for best fitting
purposes.

Yule-Simon model.

This model may be easily applied to the software development process and
to the introduction of bugs into modules, according to the associated statistical
model described in section 3. In fact, it accounts for the addition of new enti-
ties, and for the discrete increase with time of their properties – the entities are
the software modules, and their properties are the number of bugs fixed in each
module. The critical point in order to obtain a system with power-law distribu-
tion in the tail is the applicability of the preferential attachment mechanism.
As already mentioned, this states that the existing entities whose property is
incremented are chosen with a probability proportional to the current value
of this property. This condition suffices for the generation of the Yule-Simon
distribution, which presents a power-law in its tail.

In our case, the entities are software modules and the properties are the
bugs introduced. As we already pointed-out, what we count in our empirical
distribution is the number of bugs already added, as revealed by testing pro-
cedures, by end-users, or by other means. The preferential attachment means
that new bugs are more likely to be introduced into software modules which
already have more bugs, since they are preferentially selected for bug introduc-
tion.

In order to verify this assumption we performed the following statistical
check. We grouped together, for each single release, modules with the same
number of bugs, and calculated the average number of bugs which affected
these modules in the next release. If the preferential attachment mechanism
can be applied to our software systems, modules are preferentially selected ac-
cording to the bugs they host. Thus, on average, in the next release we should
find more bugs introduced in the groups which already have more bugs, since
they have a larger chance of being selected. We can also expect a linear rela-
tionship, meaning that a group having a double number of bugs with respect
to another group will be, on average, preferentially selected twice, having in the
next release, on average, approximately twice the number of bugs.

In Table 6.3 we report the measured data for releases 3.0 and 3.1. We se-
lected in release 3.0 the modules with 0,1,2, ...14 bugs. We discarded the re-
maining 80 modules with more than 14 bugs because, due to the power-law
distribution in the tail, there are many missing points – no modules with 24
and 27 bugs for example – as well as large fluctuations in the existing values.

60 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

We then computed the average number of bugs fixed for the same modules in
the next release, 3.1. Table 6.3 shows how modules with more bugs in a release,
on average, exhibit more bugs in the next release.

Table 6.3: Average number of bugs hitting modules in release 3.1, for modules
with a number of bugs between 0 and 14 in release 3.0.

Release 3.0 Release 3.0 Release 3.1
#Bug #Modules Average

Bug Number
14 20 7.6
13 24 5.9
12 33 4.9
11 32 5.0
10 42 4.1
9 61 5.2
8 90 4.2
7 109 3.5
6 111 3.1
5 221 2.3
4 332 2.2
3 537 1.5
2 952 1.2
1 2016 0.6
0 5863 0.3

Modules with zero bugs have a non zero chance of receiving bugs, even if
such event is more unlikely than for other modules. This is again in agreement
with the Yule-Simon model, where the constant c take this possibility into ac-
count.

The rule that can be inferred by data in Table 6.3, is that the bugs inserted
in the next release are preferentially introduced into modules with more bugs
in the current release. For instance, modules with 3 bugs in Eclipse 3.0 receive
on average 1.5 bugs in Eclipse 3.1, while modules with 6 bugs receive on aver-
age 3.1 bugs. Considering modules with 7 and 14 bugs in release 3.0, release 3.1
provides respectively 3.5 and 7.6 new bugs, on average, in the corresponding
modules. These proportions are in agreement with the preferential attachment
mechanism. All these considerations hold within the limit of statistical fluctu-
ations, which are higher when we consider modules with more bugs.

Fig. 6.4 shows data for modules with up to 14 bugs. For each release, the
proportionality among bugs in modules of the current release and bugs intro-

6.4. DISCUSSION 61

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Current Bugs

A
ve

ra
ge

 N
ew

 B
ug

s

Eclipse 3.0 to 3.1

Eclipse 3.1 to 3.2

Eclipse 3.2 to 3.3

 y = 0.46x + 0.19

Figure 6.4: The average number of bugs introduced in the next release in the
modules having bugs from zero to 14 in the current release, for Eclipse 3.0, 3.1
and 3.2. The line refers to linear interpolation of the data set “Eclipse 3.0 to 3.1”.

duced in the same modules in the next release is patent, within statistical fluc-
tuations, in agreement with the hypothesis that modules with more bugs are
preferentially selected for introducing new bugs. The Figure shows, as a refer-
ence, the interpolating straight line for the data “Eclipse 3.0 to 3.1”. The linear
correlation coefficients for the three groups of data are all above 0.97, confirm-
ing the goodness of our model. All data show almost the same non null proba-
bility for introducing bugs also in bug-free modules. This cannot hold with the
log-normal and Double-Pareto models.

Note that this finding can be exploited to forecast the average number of
bugs reported in the next release, for the given classes of modules. This might
be used for software quality control.

The presented data, if we exclude modules with zero bugs, may also support
log-normal or Double-Pareto models, whose mechanisms imply proportional-
ity between the number of bugs introduced and the already existing bugs. Both
Yule-Simon and Double Pareto models produce fat-tails. Their differences re-
gard only the head of the distribution, namely the part of modules with few
bugs.

In conclusion, given that the Yule-Simon model is also able to include mod-
ules with no bugs, and fits the head of the data very well, we believe that it is the
optimal candidate for statistically modeling the introduction and the appear-
ance of bugs in the modules of a software system in continuous growth and
evolution.

62 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

6.5 Conclusions

We have discussed and extended the use of fat-tail statistical distributions to
bugs affecting large software systems, up to now roughly described as the 80-20
Pareto principle. We analyzed different releases of the Eclipse software system,
adopting statistical distributions already employed in the literature to describe
general properties of large software systems.

The motivations for this study came from a previous study of Zhang, which
used best fitting procedures on the Alberg diagram to support the Weibull dis-
tribution as optimal candidate for explaining the bug distribution in modules.
We showed how all the information contained in the Alberg diagram is retained
if we use the CCDF. In fact, our approach of using a CCDF distribution function
can easily take advantage of generative models available in the literature, which
can explain the genesis of such distributions. We believe that an approach sup-
ported by a generative model is to be preferred with respect to one only based
on best fitting arguments.

We performed a study of the bug distribution in modules of various versions
of the Java Eclipse system, comparing the goodness of fit of log-normal, Double
Pareto, Yule-Simon and Weibull distributions.

Using an empirical analysis, we showed that new bugs are introduced, on
average, in larger amounts in modules which where more bug affected in previ-
ous releases. This explicitly supports the “preferential attachment mechanism”
at the basis of the Yule-Simon model, not excluding mechanisms underlying
the log-normal and the Double Pareto models. The last two models are, how-
ever, less useful because they cannot account for zero values, namely modules
with no bugs, and may be only useful to model a reduced part of the entire
software system.

The Weibull distribution is instead related to the modeling of a system made
of components which fail at a given rate in time, and it is successfully used in
reliability engineering and in survival analysis. Thus, while it is flexible enough
to provide very good fits for fat-tail distributions by adjusting only two param-
eters, it cannot easily be accommodated for modeling systems where the num-
ber of components, as well as the components’ properties, grow in time, as in
the case of modules and bugs in software systems.

This works contributes to the body of empirical and theoretical research on
software fault behavior in large complex systems, studying different versions
of the Eclipse software system. This work takes into account the conventional
wisdom about bug distribution across software modules, showing the strengths
and weaknesses of the proposed models.

From the perspective of software practitioners, our results might be useful
to keep software quality under control. In fact, a statistical model able to esti-

6.5. CONCLUSIONS 63

mate the future rate of defects in classes of modules might help management
to organize pre- and post-release testing.

64 CHAPTER 6. BUG DISTRIBUTION IN OO SYSTEMS.

Chapter 7

Social Networks Metrics and Object

Oriented Software.

We already introduced the SNA metrics derived from Social Networks, and il-
lustrated their meaning in the context of software networks. Now we show the
application to object-oriented software of such metrics, and examine their rela-
tionship with software quality, as expressed in terms of number of bugs affect-
ing the system. Social Networks metrics, as for instance the EGO metrics, allow
to identify the role of each single node in the information flow through the net-
work, being related to software modules and their dependencies. These met-
rics are compared with other traditional software metrics, like the Chidamber-
Kemerer suite, and software graph metrics.

We examine the empirical distributions of all the metrics, bugs included,
across the software modules of several releases of two large Java systems, Eclipse
and Netbeans. We provide analytical distribution functions suitable for de-
scribing and studying the observed distributions. We study also correlations
among metrics and bugs.

We found that the empirical distributions systematically show fat-tails for
all the metrics. Moreover, the various metric distributions look very similar and
consistent across all system releases, and are also very similar in both the stud-
ied systems. These features appear to be typical properties of these software
metrics.

We present a study of a set of releases of two large Open Source OO systems,
Eclipse [3] and Netbeans [4] from the software network perspective, and com-
pute the observed complementary cumulative distribution functions (CCDF)
[57] of SNA metrics applied to software networks and of several others. We
study such systems because both the source code of several versions, and com-
plete data about Bugs and Issues of their software modules are available.

We study the relationships between these metrics and software fault-proneness

65

66CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

– measured as the number of Bugs affecting software modules – and between
them and more traditional software metrics. We also study the possibility of
estimating the metric features for the future releases. For all the observed dis-
tributions we performed best fits, finding analytical distributions able to model
the system.

The systems analyzed are written in Java. All their classes are contained in
Java source files, called Compilation Units (CU). A CU generally contains just
one class, but less frequently it may contain two or more classes. We extracted
the Bugs affecting files merging information found in bug-tracking repositories,
specifically Bugzilla [15] and Issuezilla [43], with information taken from source
code repositories, namely Concurrent Versioning System (CVS) [2]. The infor-
mation about Bugs and software changes (commit logs) is reported at CU level,
and not at class level. Therefore, we extended the concept of software graph to
CU level, building a graph in which nodes are Compilation Units and edges are
the relationships between these CU’s, extracted from the classes belonging to
each CU. We used this graph for computing all the metrics analyzed as well as
for computing the Bug distributions.

We found that most of the studied metrics are distributed according to the
Yule-Simon distribution [67] [22], to a high degree of accuracy, and show a per-
sistent or universal character across all different releases, for both systems an-
alyzed. The high degree of accuracy of the analytical fitting distributions and
their persistent character allowed us to estimate metrics values for the subse-
quent releases.

7.1 Research Questions.

The Pareto principle (80-20 rule), and the presence of power-laws in the tail of
the distributions of many properties of software systems, including Bugs, have
already been observed [23], [8] [85]. In [79], a high order statistic coefficient
was proposed to analyze software metrics exhibiting highly skewed statistical
distributions, that was efficient in observing changes in software systems and
in monitoring the development process.

We investigate if the new proposed SNA metrics possess the same proper-
ties and have similar empirical distributions. Moreover, the new metrics might
possibly show correlations with Bugs and/or with other metrics and properties.
Thus, it is desirable to study these correlations.

We also investigate if there are analytical distribution functions which may
be used to describe such empirical distributions and possibly to forecast future
properties of the software systems.

Consequently, our research questions are the following:

7.2. CU SOFTWARE NETWORKS AND CU-CK METRICS. 67

• RQ1- Are there analytical distribution functions describing the empirical
data? Have these functions power-law behavior in their tails? What is the
significance level of fitting empirical data with these distributions?

• RQ2- Are these distributions similar in all the releases and in different
systems, or tend to vary significantly?

• RQ3- Is it possible to use these distributions to estimate the metrics val-
ues in subsequent releases?

• RQ4- Are there SNA metrics significantly correlated with software Bugs,
and to which extent?

• RQ5- Are there SNA metrics significantly correlated to traditional CK met-
rics, and to which extent?

7.2 CU Software Networks and CU-CK Metrics.

In this study we do not distinguish among the various possibilities of software
relationships, and with regard to SNA metrics, for simplicity we do not even
consider edges orientation, which would imply the construction of different
EGO networks for the different kinds of links. Ours is a static analysis. Further-
more, since our software nodes are CUs, as explained later, many relationships
among Java classes lose their original meaning at this granularity level. Our
purpose is to focus on the role of the interactions among the software elements.
The number and orientation of edges allow to study the coupling between nodes,
that is between classes. In this graph, the in-degree of a class, or Fan-in, is the
number of edges directed toward the class. The out-degree of a class, or Fan-
out, is the number of edges leaving the class. Besides Fan-in and Fan-out met-
rics, we computed also, for each class, four CK metrics which were observed to
be significantly correlated with the number of Bugs. They are:

• Weighted Methods per Class (WMC). A weighted sum of all the methods
defined in a class. We set the weighting factor to one, to simplify our anal-
ysis.

• Coupling Between Objects (CBO). The counting of the number of classes
which a given class is coupled to.

• Response For a Class (RFC). The sum of the number of methods defined
in the class, and the cardinality of the set of methods called by them and
belonging to external classes.

68CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

• Lack of Cohesion of Methods (LCOM). The difference between the num-
ber of non cohesive method pairs and the number of cohesive pairs.

We also computed the lines of code of the class (LOC), excluding blanks and
comment lines. This is useful to keep track of the class size, because it is known
that a "big" class is more difficult to maintain than a smaller class.

Every class is contained in a Java file, called CU. While most files include
just one class, there are files including two or more classes. In Eclipse, about
10% of CUs host more than one class, whereas in Netbeans this percentage is
about 30%.

While OO metrics and class graphs are usually referred to classes, Bugs and
Issues are typically associated to CUs, because the logs of coding efforts aimed
to fix Bugs are associated to changes to the source code, which are made to files
(the CUs). Since the number of Bugs is of paramount importance to define soft-
ware quality, to make Issue tracking consistent with source code we decided to
base our analysis on CUs. Consequently, we extended CK metrics from classes
to CUs. CUs represent therefore the main element of our study.

We defined a CU graph, whose nodes are the CUs of the system. Two nodes,
A and B , are connected with an edge directed from A to B if at least one class
inside the CU represented by A has a dependency relationship with one class
inside the CU represented by B . Referring to this graph, we can compute In-
links and Out-links of a CU-node. We reinterpreted LOC and CK metrics for
this CU-graph:

• CU LOC is the sum of the LOCS of the classes contained in the CU;

• CU CBO is the number of out-links of each node, excluding those repre-
senting inheritance. This definition is consistent with that of CBO metrics
for classes;

• CU LCOM and CU WMC are the sum of LCOM and WMC metrics of the
classes contained in the CU, respectively;

• CU RFC is the sum of weighted out-links of each node, each out-link be-
ing multiplied by the number of specific distinct relationships between
classes belonging to the CUs connected to the related edge.

For each CU we have thus a set of 7 metrics: In-links (Fan-in), Out-links (Fan-
out), CU-LOCS, CU-LCOM, CU-WMC, CU-RFC and CU-CBO. These metrics
were computed for CUs of all versions of Eclipse and Netbeans.

We analyze the correlations among all of the SNA metrics, as well as with
the other metrics and with Bugs. For some metrics we analyzed the statistical
distributions and performed best fits with analytical distribution functions.

7.3. ISSUES EXTRACTION. 69

7.3 Issues Extraction.

Bug Tracking System (BTS) are commonly used to keep track of Bugs, enhance-
ments and features – called with the common term ’Issues’ – of software sys-
tems. The open source systems studied, Eclipse and Netbeans, make use of
BTS Bugzilla and Issuezilla, respectively.

Each Issue inside a BTS is univocally identified by a positive integer num-
ber, the Issue-ID. BTS store, for each tracked Issue, its characteristics, life-cycle,
software releases where it appears, and other data. In Bugzilla, a valid Bug is an
Issue with a resolution of ’fixed’, a status of ’closed’, ’resolved’ or ’verified’, and
a severity that is not ’enhancement’, as pointed out in Eaddy et al. [28]. Thus,
Bugs are a subset of Issues. For Issuezilla, it is possible to adopt an equivalent
definition: a Bug is an Issue with a resolution and status as above, and with type
’defect’.

Software configuration management systems like CVS (Concurrent Version
System) keep track of all maintenance operations on software systems. These
operations are recorded inside CVS in an unstructured way; it is not possible,
for instance, on query CVS to know which operations were done to fix Bugs, or
to introduce a new feature or enhancement. In order to identify Issues (Bugs)
affecting systems CUs, we had to match data stored in BTS with other data
recorded in CVS of Eclipse and Netbeans.

All commit operations are committed to the CVS log messages as single en-
tries. Each entry contains various data – among which the date, the developer
who made the changes, a text message referring to the reasons of the commit,
and the list of CU’s interested by the commit. To obtain a correct mapping be-
tween Issue(s) and the related CU(s) the only way is to analyze the CVS log mes-
sages, to identify commits associated to maintenance operation where Issues
are fixed. If a maintenance operation is done on a CU to address an Issue, we
consider the CU as affected by this Issue.

In our approach, we first analyzed the text of commit messages, looking
for Issue-IDs. In fact, in commit messages there may be strings such as ’Fixed
141181’ or ’bug # 141181’, but sometimes only the Issue-ID is reported. Unfor-
tunately, every positive integer number is a potential Issue-ID, but sometimes
numbers can refer to maintenance operations not related to Issue-ID resolu-
tion, such as branching, data, number of release, copyright updating, and so
on.

To avoid wrong mappings between Issue-IDs and CUs, we applied the fol-
lowing strategies:

• For each release a CU can be hit only by Issues which are referred to in
the BTS belonging to the same release.

70CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

• We did not consider some numeric intervals particularly prone to host
false positive Issue-IDs.

The latter condition is not particularly restrictive in our study, because we
did not consider the first releases of the studied projects, where Issues with
’low’ ID appear. All IDs not filtered out are considered Issues and associated
to the addition or modification of one ore more CUs, as reported in the commit
logs. This method might not completely address the problems of the mapping
between bugs and CUs [9].

In any case we checked manually:
- 10% of CU-bug(s) associations (randomly chosen) for each release
- each CU-bug association for 6 sub-projects (3 for Eclipse and 3 for Net-

beans) without finding any error. A bias may still remain due to lack of infor-
mation on CVS [27].

The total number of Issues affecting a CU in each release constitutes the
Issue-metric we consider in this study, while the subset of Issues satisfying the
conditions as in Eaddy et al. is the Bug-metric [28]. Clearly, not all source mod-
ules changed due to a Bug are to be considered “faulty”. Some changes can
happen to realign a correct piece of code with another piece of code that was
modified to fix the Bug. So, what we measure is to what extent a Bug hits one,
some or many CUs, and not whether they were really faulty.

7.4 Empirical results regarding metric distributions

We systematically analyzed several main releases of Eclipse and Netbeans projects,
namely releases from 2.0 to 3.4 of Eclipse, and releases from 3.2 to 6.1 of Net-
beans. For each release, we computed the class graph and the consequent CU
graph, and computed all the above quoted metrics at CU level. We analyzed the
statistical distributions of the metrics among the systems CU’s, which are our
graph nodes, as well as the Bugs and Issues distributions. Note that we used CU
metrics to be able to study more easily their relationships with Bugs and Issues.
However, we verified that the behavior of CU metrics is absolutely similar to the
behavior of the corresponding class metrics, for all considered metrics.

Tables 7.1 and 7.2 show the number of CUs in the various releases con-
sidered of Eclipse and Netbeans, respectively, together with their release date.
Both the size and the release date of the considered systems vary considerably.
The sizes – in number of CUs – vary of one order of magnitude in Netbeans, and
about three times in Eclipse.

We started the analysis by computing the empirical CCDF’s of the software
network metrics for the various system studied. The empirical distributions of

7.4. EMPIRICAL RESULTS REGARDING METRIC DISTRIBUTIONS 71

Table 7.1: Number of CUs of Eclipse for each release

Release 2.0 2.1 3.0 3.1 3.2 3.3 3.4
Number of CU 6391 7545 10288 11854 14138 15439 17387
Release date 06-2002 03-2003 06-2004 06-2005 06-2006 06-2007 05-2008

Table 7.2: Number of CUs of Netbeans for each release

Release 3.2 3.3 3.4 4.0 6.0 6.1
Number of CU 3346 4383 6264 9317 31425 35034
Release date 04-2001 11-2001 08-2002 12-2004 12-2007 04-2008

all considered SNA metrics show the same shape for all releases, both in Eclipse
and Netbeans. Therefore, we show only the figures for some selected metrics
for the last considered releases of the studied systems, namely Eclipse-3.4 and
Netbeans-6.0.

Fig. 7.1 shows graph and SNA metrics for Eclipse 3.4. All CCDF are reported
for convenience in log-log plots. Most CCDF show a small cut-off in the extreme
tail, which is typically due to the finite size of the sample. Fig. 7.2 shows the
same data for Netbeans 6.0. The behavior of Netbeans metrics is very similar to
Eclipse’s, with smaller cut-off in the extreme tail, perhaps owing to the higher
numbers of CUs.

In order to compare the empirical distributions across the releases, we show
in the same plot two SNA metrics, Effective-Size and Brokerage, for both Eclipse
and Netbeans, to highlight their overlap. Fig. 7.3 shows the persistency of the
distributions of these metrics across three different releases, starting from the
earliest to the most recent. In Eclipse the curves slightly differ only in the tail,
while in Netbeans they are almost coincident.

The empirical distributions of all considered metrics highly preserve the
same shape, meaning that, for each specific metric, a single distribution func-
tion may account for the empirical data for all the system releases. Moreover,
the distributions of the same metric looks also very similar in Eclipse and Net-
beans releases. Thus, once this distribution is known for one metric in one re-
lease, it is possible to infer the properties of the same metric in other releases,
provided that the number of CUs is known.

Regarding what specific distribution function can best fit our empirical data,
we experimented with the three distributions cited above – power-law, lognor-
mal, and Yule-Simon distributions.

72CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.4−Brokerage
P

r(
X

 ≥
 x

)

x
10

0
10

1
10

2
10

3
10

4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.4−effSize

P
r(

X
 ≥

 x
)

x

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.4−Fanin

P
r(

X
 ≥

 x
)

x
10

0
10

1
10

2
10

3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.4−Fanout

P
r(

X
 ≥

 x
)

x

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.4−Size

P
r(

X
 ≥

 x
)

x
10

0
10

1
10

2
10

3
10

4
10

5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eclipse 3.4−Ties

P
r(

X
 ≥

 x
)

x

Figure 7.1: CCDF of SNA metrics for Eclipse 3.4 release. The name of the metrics is

in the top of the box. The power-law behavior in the tail is patent for all metrics.

Fig. 7.4 shows Fan-in, Fan-out, LOC, Size and Ties, together with best-fit
functions, for Eclipse-3.1. For the LOC metric, only the data with the Yule-
Simon best-fit curve is shown, while for the other metrics data and best-fits
with all the three distribution functions are shown in two different figures.

The fit using a truncated power-law is almost always very good. Note, how-
ever, that this fit is made starting from a minimum value x0, denoting the value

7.4. EMPIRICAL RESULTS REGARDING METRIC DISTRIBUTIONS 73

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Netbeans 6.0−Brokerage

P
r(

X
 ≥

 x
)

x
10

0
10

1
10

2
10

3
10

4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Netbeans 6.0−effSize

P
r(

X
 ≥

 x
)

x

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Netbeans 6.0−Fanin

P
r(

X
 ≥

 x
)

x
10

0
10

1
10

2
10

3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Netbeans 6.0−Fanout
P

r(
X

 ≥
 x

)

x

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Netbeans 6.0−Size

P
r(

X
 ≥

 x
)

x
10

0
10

1
10

2
10

3
10

4
10

5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Netbeans 6.0−Ties

P
r(

X
 ≥

 x
)

x

e

Figure 7.2: CCDF of SNA metrics for Netbeans 6.0 release. The name of the met-

rics is in the top of the box.

from which the power-law tail is apparent. This makes easier to get good fits.
The fit with a lognormal is usually the poorest. This distribution is able to fit
very well the bulk of the samples with small values, but in general it tends to
zero too quickly with respect to empirical data. The fit with Yule-Simon dis-
tribution is sometimes very good, both for small values and in the tails. Other

74CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

effective−Size
P

r(
X

 ≥
 x

)

x

Eclipse 2.0
Eclipse 3.3
Eclipse 3.4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Brokerage

P
r(

X
 ≥

 x
)

x

Eclipse 3.4
Eclipse 2.0
Eclipse 3.3

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

effective Size

P
r(

X
 ≥

 x
)

x

Netbeans 3.3
Netbeans 6.0
Netbeans 6.1

10
0

10
2

10
4

10
6

10
8

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Brokerage

P
r(

X
 ≥

 x
)

x

Netbeans 3.3
Netbeans 6.0
Netbeans 6.1

Figure 7.3: CCDF of EffSize and Brokerage metrics for various Eclipse and Net-

beans releases. A very similar behavior is patent for all metrics and across all

releases of the same system.

times, it fails to get a good fit in the tail.
In order to evaluate fit accuracy we used the determination coefficient R2,

defined by R2 = 1−SE/ST , with:

SE =
∑

i

(fi − yi)2 (7.1)

ST =
∑

i

(ȳ − yi)2

where yi are the empirical CCDF values and fi the corresponding best fitting
values. All the fits have very high determination coefficients , sometimes up to
0.999 (Table 7.3). This suffices to answer to our research questions. It is in fact
known that when experimental data are roughly power-law distributed, it is in
general extremely difficult to assess the difference among a true power-law and
other fat-tail distributions, since typically any statistical test does not rule out
one or the other distribution function. In fact they are often compatible with
many different distribution functions [57].

7.4. EMPIRICAL RESULTS REGARDING METRIC DISTRIBUTIONS 75

Eclipse 3.1

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fan−in

Yule
data

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Fan−in

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fan−out

Yule
data

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Fan−out

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

locs

Yule
data

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Size

Yuledata

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Size

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Ties

Yule
data

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Ties

data
pareto
lognorm

Figure 7.4: Empirical CCDFs of various metrics in Eclipse 3.1, with their best-fit

theoretical distributions. Yule-Simon fit is shown separately.

Our purpose is, on the contrary, to provide a reasonable statistical descrip-

76CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

tion of the empirical data, and to find the analytical distribution function with
the best fit. This allows us to make statistically reliable forecasts on the value
assumed by some metrics in the future system releases. In our case power-law
is not in principle more interesting than the log-normal or Yule-Simon distri-
butions, as long as these provide reliable estimates and good descriptions of
the empirical data. Any other statistical speculation in order to discriminate
among power-law or other distributions is out of our purposes.

Note that the determination coefficients are evaluated on the linear scale,
whereas all the figures are in a log-log scale. In this scale, the discrepancy be-
tween best fitting curves and empirical curves are visually enhanced, especially
in the tail, whereas in the original scale the fitting curves and the empirical ones
visually overlap. On the other hand our fitting procedure does not rely on any
log-log representation of the data.

Fig. 7.5 shows the corresponding data and best fits for Netbeans 3.2. Also
for this system the curves provide a very good fitting of empirical data, for the
various releases and for the different metrics. Again the coefficient of determi-
nation is always close to one (Table 7.4). The power-law provides an excellent
approximation for the data in the tail above the x0 cut-off, whose value depends
on the metrics and on the system version.

Table 7.3: Determination coefficients for the three distribution functions
(Eclipse-3.1).

R2 Yule-Simon Lognormal Power-law
Fan-in 0.999 0.971 0.998
Fan-out 0.995 0.989 0.997
Size 0.987 0.999 0.998
Ties 0.998 0.999 0.999

Table 7.4: Determination coefficients for the three distribution functions
(Netbeans-3.2).

R2 Yule-Simon Lognormal Power-law
Fan-in 0.999 0.978 0.998
Fan-out 0.998 0.982 0.996
Size 0.980 0.995 0.998
Ties 0.999 0.998 0.999

The empirical studies presented above answer our first two research ques-
tions:

7.4. EMPIRICAL RESULTS REGARDING METRIC DISTRIBUTIONS 77

Netbeans 3.2

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Fan−in

Yule
data

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Fan−in

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Fan−out

Yule
data

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Fan−out

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Size

Yule
data

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Size

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Ties

Yule
data

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Ties

data
pareto
lognorm

Figure 7.5: Empirical CCDFs of various metrics in Netbeans 3.2, with their best-

fit theoretical distributions. Yule-Simon fit is shown separately.

R1: Are there analytical distribution functions describing the empirical data?

78CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

Have these functions power-law behavior in their tails? What is the significance

level of fitting empirical data with these distributions?

We definitely found that all studied metrics, traditional OO, network-based,
and derived from Social Network Analysis, tend to follow precise analytical dis-
tributions to a high degree of significance level, according to our best-fitting cri-
teria. These distributions are power-law – from a minimum value of data, x0 –
lognormal and Yule-Simon distributions. All three distributions are compatible
with a power-law behavior in their tail – regarding the lognormal distribution,
this is true for datasets of finite size.

The fit using a truncated power-law are always very good. However, they de-
pend on an ad hoc setting of the value x0, and the power-law regards only the
samples whose value x ≥ x0. Lognormal distribution shows good fits, accord-
ing to the value of the determination coefficients, but not as good as power-law.
Yule-Simon distribution, on the other hand, shows determination coefficients
very similar to those of power-law, but the fit is over all the range of values. So,
in general Yule-Simon distribution can be considered the best for most consid-
ered metrics.

R2: Are these distributions similar in all the releases and in different systems,

or tend to vary significantly?

We found that all considered metrics have a very consistent statistical be-
havior across all the releases of the same system, even when these releases span
over years, and have very different numbers of classes (and CUs).

For completeness, we studied also other Java systems, belonging to the Qual-
itas Corpus [61] and found that the considered metrics, in systems with over
one thousand classes, show behaviors very similar to those reported in this pa-
per for Eclipse and Netbeans.

Next, we analyzed also the metrics related to Issues and Bugs. We found that
also the distributions of Bugs and Issues follow similar patterns, in both Eclipse
and Netbeans. In Figs. 7.6 and 7.7 we show the empirical distributions of Issues
and Bugs, for the releases 3.3 of Eclipse, and 6.0 of Netbeans, together with
the best fitting curves of the three considered distribution functions. All Issues
and Bugs distributions are very similar throughout all Eclipse and Netbeans
releases, so these figures can be considered typical.

The distributions of these metrics are well fitted by the simple power-law,
according to the determination coefficient, above a threshold x0, which de-
pends on the particular data, and very well fitted by the Yule-Simon distribution
since the beginning of the data. The log-normal distribution provides a worse
fit, even if the determination coefficients R2 are always above 0.94. Note again
that the log-log scale enhances visually the distances in the tail, but the abso-
lute values of the difference among fitting curves and empirical distributions
are very small.

7.5. CORRELATIONS 79

Eclipse 3.3

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Bugs

Yule
data

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Bugs

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Issues

Yule
data

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Issues

data
pareto
lognorm

Figure 7.6: Empirical CCDFs of Bugs and Issues in Eclipse 3.3, with their best-fit

theoretical distributions. Yule-Simon fit is shown separately.

7.5 Correlations

In this section we report the correlations among SNA metrics, CK metrics and
Bugs. Since the empirical distributions of all metrics are strongly not normal,

80CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

Netbeans 6.0

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Bugs

Yule
data

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Bugs

data
pareto
lognorm

10
0

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Issues

Yule
data

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

P
r(

X
 ≥

 x
)

x

Issues

data
pareto
lognorm

Figure 7.7: Empirical CCDFs of Bugs and Issues in Netbeans 6.0, with their best-

fit theoretical distributions. Yule-Simon fit is shown separately.

correlations are better described using the Spearman coefficient. In our study

7.5. CORRELATIONS 81

we computed also Pearson correlations, which are reported only in one case,
for comparison. Our considerations, however, will refer only to Spearman cor-
relation. Using the latter, data must be ranked, the correlation coefficient being
given by:

ρSP = 1−
6
∑

i d 2
i

n(n2 −1)
(7.2)

where di are the differences among the ranks of each observation.
We report the correlations only for Eclipse-2.1 and for Netbeans-3.2, as rep-

resentative of all the other releases. Tables 7.5 and 7.6 report correlation data for
Eclipse-2.1, using Pearson and Spearman coefficients, respectively. Table 7.7
reports Spearman coefficients for Netbeans-3.2. The correlation coefficients in
all other releases of the same system are substantially similar to those reported
here, for both Eclipse and Netbeans.

The higher correlations are among Issues and Bugs, as it is natural, being
one a subset of the other. This means that nodes having an high number of
Issues also tend to have a high number of Bugs. In other words, the number of
Bugs is always about the same fraction of Issues. Thus only one of them will be
included in the subsequent analysis.

We computed the correlation matrix among Issue, Bug, CK metrics, LOC,
Fan-out, Fan-in and EGO-metrics. Correlations are almost the same in each
release, with fluctuations generally below 10%.

In Eclipse, CK metrics, LOCS, Fan-Out and EGO metrics generally show a
moderate correlation with respect to Issues (Bug). In Netbeans, we have sim-
ilar correlations, though usually slightly smaller. In both cases, the predictive
power of these metrics is similar for the same software system. In both systems,
LOC metric is the most correlated with Issues. This is expected, because bigger
files have a larger chance to produce Issues and Bugs. However, other good
predictors of Issues – comparable with LOC – are RFC, Fan-out, Size and, to a
lesser extent, LCOM, Ties and Brokerage. In general, we observe that many SNA
metrics are quite correlated with the number of Issues (and Bugs), showing the
importance of considering these metrics.

In both Eclipse and Netbeans, Fan-in always shows a small – though signif-
icant – correlations with Issues. The different correlation between Fan-in and
Fan-out with respect to Issues, indicates that to identify a fault-prone node it
is important to take into account not only the number of links but also their
direction. An Out-link directed from a compilation unit A to a compilation unit
B may be considered like a channel easing the propagation of defects from B
to A, but not vice-versa. This fact highlights the importance of an analysis of a
software system as an oriented graph.

82CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

CK and LOC metrics correlations with Issues are in line with results previ-
ously showed in [12]. In Eclipse, correlations between CK metrics and Eff-Size,
Closeness, Size, Ties, brokerage are quite large. Correlation with Nweak-comp,
Infocentrality, Dwreach and Closeness are smaller. Only a minor correlation
exists between CK metrics and Reach-Efficiency.

In Netbeans, correlations between CK metrics and Eff-Size, Size, Ties, Bro-
kerage are also large. Smaller correlations hold between CK metrics and Close-
ness, Nweakcomp, Dwreach. Only minor correlations, like in Eclipse, exist be-
tween CK metrics, Reach-Efficiency and Info-Centrality.

In both Eclipse and Netbeans, the only metrics that are anti-correlated with
the number of Issues are Info-Centrality and Nweak-Comp, suggesting that it is
better for a CU to have a high Information Centrality and Normalized number
of Weak Components, to be less prone to get Issues and Bugs.

Most Eclipse and Netbeans EGO metrics are not strongly correlated with
each other. For example, Reach-Efficiency has small correlation with Eff-Size,
Size and Brokerage, and no correlation with Nweakcomp. Size metric is the
most correlated with the others EGO-metrics, and shows an almost perfect cor-
relation with Eff-Size and Brokerage. Consequently, it is clearly needed to con-
sider just one of these metrics. We suggest to use Size, which is easier to com-
pute and, at least in the considered systems, looks slightly better correlated to
Issues.

These findings related to correlations answer our last two research ques-
tions:

R4: Are there SNA metrics significantly correlated with software Bugs, and to

which extent?

The data reported, and data very similar to them related to all other con-
sidered releases of Eclipse and Netbeans, confirm that there are significant cor-
relations between several SNA metrics and the number of Bugs. These corre-
lations are of the same order of magnitude of more traditional CK metrics –
whose predictive power in predicting faulty classes has been studied and as-
sessed for a long time [12] [37]. Note that all CK metrics, and most SNA metrics,
are basically complexity metrics, denoting high coupling and/or low cohesion
of the measured module. This is consistent with the positive correlation be-
tween these metrics and the fault-proneness of the module. However, some
SNA metrics are anti-correlated to a fairly high extent with the number of Bugs,
and this property might be further studied and exploited.

R5: Are there SNA metrics significantly correlated to traditional CK metrics,

and to which extent?

The study of Tables 7.6 and 7.7 confirms that all SNA metrics are signifi-
cantly correlated to all the four considered CK metrics – WMC, RFC, CBO and
LCOM. Some SNA metrics – namely Eff-Size, Size, Ties and Brokerage – show

7.6. PROVIDING ESTIMATES 83

Table 7.5: Eclipse 2.1. Pearson correlation among metrics
numissue numbug LOCS WMC RFC LCOM CBO fanin fanout reach efficiency effsize closeness dwreach infocentrality size ties nweakcomp

numbug 97% ** - - - - - - - - - - - - - - - -
LOCS 53% ** 53% ** - - - - - - - - - - - - - - -
WMC 49% ** 48% ** 57% ** - - - - - - - - - - - - - -
RFC 58% ** 59% ** 68% ** 92% ** - - - - - - - - - - - - -
LCOM 32% ** 30% ** 19% ** 79% ** 62% ** - - - - - - - - - - - -
CBO 54% ** 55% ** 65% ** 41% ** 70% ** 11% ** - - - - - - - - - - -
fanin 18% ** 17% ** 10% ** 30% ** 26% ** 26% ** 4% ** - - - - - - - - - -
fanout 51% ** 52% ** 62% ** 30% ** 58% ** 3% ** 94% ** -1% - - - - - - - - -
reachÂefficiency 0% 1% -4% * -4% ** -1% -3% * 9% ** -14% ** 14% ** - - - - - - - -
effsize 30% ** 29% ** 25% ** 36% ** 40% ** 26% ** 29% ** 96% ** 26% ** -10% ** - - - - - - -
closeness -2% -2% -1% -1% -2% 0% -3% -1% -3% * -5% ** -2% * - - - - - -
dwreach 27% ** 27% ** 23% ** 17% ** 29% ** 4% ** 46% ** 19% ** 50% ** 44% ** 32% ** -18% ** - - - - -
infocentrality -2% * -2% * -2% -2% -3% * 0% -4% ** -1% -5% ** -6% ** -2% * 94% ** -25% ** - - - -
size 32% ** 31% ** 28% ** 38% ** 42% ** 26% ** 32% ** 95% ** 29% ** -10% ** 100% ** -2% 34% ** -3% * - - -
ties 32% ** 31% ** 27% ** 43% ** 45% ** 37% ** 27% ** 87% ** 23% ** -9% ** 89% ** -1% 21% ** -2% 89% ** - -
nweakcomp -23% ** -23% ** -27% ** -18% ** -28% ** -2% * -39% ** -14% ** -40% ** -2% * -21% ** 4% ** -15% ** 5% ** -25% ** -22% ** -
brokerage 16% ** 15% ** 9% ** 30% ** 26% ** 35% ** 8% ** 85% ** 3% * -5% ** 83% ** 0% 12% ** -1% 82% ** 88% ** -7% **
** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

Table 7.6: Eclipse 2.1. Spearman correlation among metrics
numissue numbug LOCS WMC RFC LCOM CBO fanin fanout reach efficiency effsize closeness dwreach infocentrality size ties nweakcomp

numbug 95% ** - - - - - - - - - - - - - - - -
LOCS 46% ** 46% ** - - - - - - - - - - - - - - -
WMC 38% ** 38% ** 84% ** - - - - - - - - - - - - - -
RFC 46% ** 46% ** 90% ** 89% ** - - - - - - - - - - - - -
LCOM 34% ** 34% ** 66% ** 85% ** 74% ** - - - - - - - - - - - -
CBO 45% ** 45% ** 78% ** 61% ** 86% ** 50% ** - - - - - - - - - - -
fanin 8% ** 7% ** 7% ** 26% ** 7% ** 26% ** -14% ** - - - - - - - - - -
fanout 44% ** 44% ** 77% ** 60% ** 84% ** 51% ** 95% ** -15% ** - - - - - - - - -
reachÂefficiency 16% ** 16% ** 29% ** 17% ** 35% ** 13% ** 48% ** -29% ** 52% ** - - - - - - - -
effsize 41% ** 41% ** 59% ** 59% ** 68% ** 56% ** 63% ** 45% ** 66% ** 21% ** - - - - - - -
closeness 38% ** 39% ** 51% ** 45% ** 59% ** 42% ** 62% ** 14% ** 66% ** 63% ** 72% ** - - - - - -
dwreach 40% ** 40% ** 54% ** 48% ** 62% ** 45% ** 66% ** 15% ** 70% ** 68% ** 76% ** 96% ** - - - - -
infocentrality -33% ** -34% ** -45% ** -35% ** -48% ** -35% ** -53% ** -2% * -55% ** -51% ** -59% ** -79% ** -83% ** - - - -
size 43% ** 42% ** 63% ** 62% ** 71% ** 58% ** 66% ** 46% ** 69% ** 22% ** 98% ** 72% ** 76% ** -59% ** - - -
ties 42% ** 42% ** 64% ** 60% ** 69% ** 56% ** 65% ** 41% ** 67% ** 17% ** 89% ** 65% ** 69% ** -65% ** 94% ** - -
nweakcomp -28% ** -28% ** -48% ** -41% ** -47% ** -37% ** -44% ** -23% ** -44% ** -3% ** -42% ** -31% ** -34% ** 51% ** -52% ** -71% ** -
brokerage 42% ** 42% ** 61% ** 60% ** 69% ** 57% ** 65% ** 45% ** 67% ** 21% ** 100% ** 73% ** 76% ** -59% ** 99% ** 91% ** -46% **
** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

quite high Spearman correlation coefficients with all these CK metrics.

7.6 Providing Estimates

In this section we discuss how it is possible to estimate some values for the met-
rics starting from the knowledge of the analytical fitting functions. We assume
that all the data are known for one system release, and assume the persistence
of the distributions across releases.

Let us consider, for instance, the metric Ties, and the Eclipse releases from
2.1 to 3.3. Let us start with the lognormal distribution. If we compute the es-
timate of the mean values using the best fitting parameters found, using the

usual formula (exp(µ+ σ2

2)), they match actual values with an error of about

Table 7.7: Netbeans 3.2. Spearman correlation among metrics
numissue numbug LOCS WMC RFC LCOM CBO fanin fanout reachÂefficiency effsize closeness dwreach infocentrality size ties nweakcomp

numbug 98%** - - - - - - - - - - - - - - - -
LOCS 47%** 46%** %** - - - - - - - - - - - - - -
WMC 44%** 42%** 87%** - - - - - - - - - - - - - -
RFC 44%** 42%** 87%** 95%** - - - - - - - - - - - - -
LCOM 41%** 39%** 70%** 87%** 81%** - - - - - - - - - - - -
CBO 33%** 32%** 58%** 53%** 71%** 43%** - - - - - - - - - - -
fanin 13%** 12%** 19%** 34%** 30%** 31%** 13%** - - - - - - - - - -
fanout 45%** 44%** 65%** 58%** 68%** 54%** 71%** 3%* - - - - - - - - -
reachÂefficiency 17%** 16%** 18%** 14%** 18%** 15%** 18%** -19%** 49%** - - - - - - - -
effsize 38%** 36%** 52%** 58%** 62%** 54%** 53%** 56%** 70%** 20%** - - - - - - -
closeness 38%** 36%** 43%** 43%** 46%** 43%** 38%** 14%** 70%** 73%** 61%** - - - - - -
dwreach 37%** 35%** 45%** 45%** 48%** 44%** 40%** 17%** 73%** 77%** 66%** 94%** - - - - -
infocentrality -26%** -25%** -30%** -23%** -23%** -24%** -14%** 9%** -38%** -37%** -26%** -54%** -60%** - - - -
size 39%** 38%** 55%** 61%** 65%** 57%** 56%** 57%** 73%** 23%** 98%** 64%** 69%** -28%** - - -
ties 39%** 37%** 54%** 57%** 60%** 53%** 50%** 48%** 65%** 10%** 83%** 52%** 57%** -47%** 88%** - -
nweakcomp -26%** -25%** -37%** -32%** -32%** -31%** -23%** -16%** -30%** 12%** -25%** -17%** -20%** 60%** -36%** -63%** -
brokerage 38%** 37%** 53%** 59%** 63%** 55%** 54%** 56%** 71%** 21%** 100%** 62%** 67%** -28%** 99%** 84%** -30%**
** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

84CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

Table 7.8: The best fitting parameters for the three different distributions for the
metric Ties. For each version of Eclipse, empirical first and second moment,
number of CU and maximum value are also reported.

Ties lognorm Pow-law Y-S
Rel µ σLN αPL x0 αY S c #CU < x > < x2 > xmax

2.1 2.85 1.54 2.38 174 2.23 20.6 7545 59.6 227.3 9799
3.0 2.80 1.54 2.39 141 2.21 19.1 10288 59.2 257.6 11901
3.1 2.85 1.56 2.37 143 2.16 18.6 11854 64.9 294.7 14711
3.2 2.82 1.57 2.35 141 2.14 17.7 14138 65.3 316.2 17029
3.3 2.83 1.57 2.33 145 2.13 17.4 15439 66.8 336.3 18819

Table 7.9: Estimates for the extreme values of the metric Ties. In the last column
the two values refer to the estimate obtained using parameters from release 2.1,
or using parameters from the immediate previous version, respectively.

Rel Actual < xmax >log n < xmax > (Eq. 7.5, αp−l aw) < xmax > (Eq. 7.5, αY S)
3.0 11901 12962 12268 12609 / ==
3.1 14711 13634 13594 14148 / 14234
3.2 17029 14511 15446 16327 / 16838
3.3 18819 14967 16463 17539 / 18363

15% (see Table 7.9). With regard to the standard deviation, however, the esti-
mate of the lognormal fails. In fact, empirical data show a systematic increase of
their standard deviation, while the lognormal provides a constant value, since
the best fitting parameters are almost constant.

It is also possible to estimate the expected maximum value for a lognormal
population of finite size n, which depends on n, using the formula [68]:

log (xmax) =µ+σ
√

2log (n)−σ
(log log (n)+ log (4π))

2
√

2log (n)
+ǫ (7.3)

where ǫ is a small error term. We approximated our estimates using the first
two terms, since the third is negligible in our case. The predicted extreme val-
ues for the Ties distribution are reported in Tab. 7.9, which shows a discrepancy
with the empirical values of about 15/20 %, which increases with the system
size.

If we consider the best-fit power-law distribution, its exponent αPL has al-
ways values between 2 and 3, and this is consistent with the power-law prop-
erty that, for such values of α, the mean is finite, while the standard deviation
diverges. In the case of a finite number of samples, this means that the standard
deviation has obviously a finite value, but it tends to increase with the number

7.6. PROVIDING ESTIMATES 85

of samples [57]. This is exactly the behavior which we observed. Therefore,
when the number of CU increases from a release to another, so does the stan-
dard deviation. Note that the power-law cannot fit the bulk of the data, since
the cut-off starts at about 140. So, it cannot be used to estimate the mean of the
samples.

Using the power-law, however, we may provide an estimate for the maxi-
mum value, a quantity more relevant than the estimate of the mean. It is well
known that the following formula holds [57]:

< xmax >∼ n
1

α−1 (7.4)

so, for two generic releases we can write:

< xmax1 >
< xmax2 >

= (
n1

n2
)

1
α−1 (7.5)

and we can use one extreme value measured from release i to estimate the
extreme value of release i +1, when CU numbers are known. Using the values
in Table 7.8 the error is about 15%, as reported in Table 7.9.

The Yule-Simon distribution is a good compromise between the two other
considered distributions, because it fits both the bulk and the tail of the data.
We numerically estimated the average using the best fitting parameters of the
Yule-Simon distribution in Table 7.8, and they are in agreement with the em-
pirical values. The power-law exponent obtained from the Yule-Simon best fit
is among two and three, and it is consistent with the empirical standard devia-
tion, which seems to diverge with the number of CUs. Furthermore, since Eq.
7.4 holds asymptotically, we can use the power-law exponent as obtained from
the Yule-Simon best fitting in Eq. 7.5, to estimate the extreme values as before.
These are in excellent agreement with the empirical results (Table 7.9).

We may now answer to the third research question R3: Is it possible to use

these distributions to estimate the metrics values in subsequent releases?

We found that mean values, as obtained from the analytical distributions,
are in agreement with the empirical ones. From the knowledge of the best fit-
ting parameters of the Yule-Simon distribution in one release, assuming per-
sistence, we estimated the extreme values of subsequent releases using the CU
number. Such estimates are in agreement with the empirical values with an
error of ∆x

x
= 456/18819 ≃ 2.5%.

These results have been obtained for the metric Ties for Eclipse but similar
considerations hold also for the other metrics which are best fitted using Yule-
Simon distribution.

86CHAPTER 7. SOCIAL NETWORKS METRICS AND OBJECT ORIENTED SOFTWARE.

7.7 Conclusions

In this paper we studied for the first time the distribution of SNA metrics in
OO software networks, comparing their properties with those of CK metrics
and other graph-related metrics. We used as a central concept the Compila-
tion Unit and not the class, to be able to better study the impact of metrics on
Bugs and Issues, which always refer to CUs and not to classes, in commonly
used configuration management systems.

The empirical distributions of all the studied metrics systematically present
power-laws in their tails. This property holds also for bug distribution. It must
be noted that bug distributions may be biased due to the lack of information in
CVS commits, thus our results on bug distributions are as reliable as the infor-
mation about bugs extracted from CVSs. All metrics have very similar features
and shapes across all the system releases, and also show very similar behavior
in both Eclipse and Netbeans systems.

We found analytical distribution functions suitable for fitting the empirical
data. Power-law always outperforms other fittings in the tails, whereas Yule-
Simon distribution follows the shapes of most metrics empirical distributions
very well. In particular, Ties and Fan-in metrics are fitted by Yule-Simon distri-
bution from the very beginning of values, the determination coefficients being
over 0.98. We have shown – using the metric Ties – how it is possible to provide
reliable estimates for averages and extreme values of subsequent releases from
the knowledge of the best fitting parameters and system size. The knowledge
of extreme values of metrics could be exploited to keep under control the qual-
ity of software systems, because in general high values of these metrics denote
high coupling among classes.

Regarding correlations among SNA metrics and Bugs, they are generally
good, and when using the Spearman coefficient to assess them, they are com-
parable to those of CK metrics. It is known that LOC is one of the metrics best
correlated with the number of defects. Nevertheless, as it holds for some other
complexity metrics, they focus only on single software elements, while the use
of SNA metrics allows to take into account the role of interactions between ele-
ments, and how these interactions correlate with defects. Consequently, we can
state that the new SNA metrics are worth studying in greater detail, to better
assess their predictive power regarding Issues and Bugs, maybe in conjunction,
and not as an alternative to more traditional OO metrics.

Future developments of this seminal work will include controlled experi-
ments to better understand the effect of SNA metrics on bug proneness and if
they are able to identify different kind of bugs, and the construction of software
graphs where the link direction and type is taken into account.

Chapter 8

Analysis of SNA metrics on the Java

Qualitas Corpus.

In the previous section we analyzed the statistical properties of SNA metrics on
software networks, showing how fat-tail empirical distributions are always very
good representations of the empirical data. Next we present the analysis of the
software graphs of 96 systems of the Java Qualitas Corpus, obtained parsing the
source code and identifying the dependencies among classes. We analyzed 12
software metrics on these 96 graphs, nine SNA, and three more traditional soft-
ware metrics, such as Loc, Fan-in and Fan-out. We analyzed their correlations
at system level, and studied the correlation statistics at data-set level.

The analysis shows that these correlations are independent from the spe-
cific software system and are general properties of Java software systems. We
will see how the metrics can be partitioned in groups for almost the whole Java
Qualitas Corpus, and that such grouping can provide insights on the topology
of software networks.

For two systems, Eclipse and Netbeans, we computed also the number of
bugs, identifying the bugs affecting each class, and finding that some SNA met-
rics are highly correlated with bugs, while others are strongly anticorrelated.
This suggests that practitioners and software engineers might take advantage
of such metrics to keep control of software quality.

8.1 Related Works.

Only recently, Zimmermann and Nagappan used SNA metrics to investigate a
network of binary dependencies [87]. If we restrict the attention to the study of
OO software systems, only Tosun et al., to the authors’ knowledge, applied SNA
metrics to OO source code to assess defect prediction performance of these

87

88CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

metrics [74]. In particular, there are no studies investigating the correlations
among SNA metrics, traditional metrics, and Bugs metrics.

Here we extend the analysis performed by us and conjugate the network
approach with the need to measure software [47], using different SNA metrics.
These metrics are useful to characterize the different roles of nodes in the net-
work, their importance or responsibilities, to quantify how much a node inter-
acts with other nodes, and so on.

The motivations for this study come from the lack of researches devoted
to the investigation of Object Oriented software systems as a network of nodes
exchanging information by means of links supporting messages, and of the role
of such nodes in the information flow. From this point of view, the software
network is very similar to a social network, where the nodes are individuals and
the links represent social connections among these individuals.

From a software engineering point of view, such analysis may provide in-
sights on how much a class is used by other classes, and about what measures
are important in order to characterize the modular structure of the system. We
also studied, on two large systems for which we already had bug information
available the correlations between SNA metrics and bugs, highlighting inter-
esting properties.

The goals of this study are thus to analyze the correlations among these new
software metrics in Java systems, which is yet an unaccomplished task, to iden-
tify general rules valid for all analyzed Java systems, and to investigate new fac-
tors related to software quality.

Consequently, the research questions we address in this paper are the fol-
lowing:

• RQ1 Are the correlations among SNA metrics system-dependent, or are
they generally the same for all Java systems?

• RQ2 Does the social role of a node influence its bug proneness?

• RQ3 Are there SNA metrics useful for measuring software quality in Java
systems?

• RQ4 Are the correlations among SNA metrics related to a particular soft-
ware structure?

8.2. THE DATASET AND SNA METRICS FOR THE SOFTWARE NETWORKS. 89

8.2 The Dataset and SNA metrics for the software net-

works.

The systems analyzed are 96 systems from the Java Qualitas Corpus [61], for
which the source code was easily available. This is a large set of Java open
source projects [73], conceived for the most disparate purposes, and having
different sizes, aimed to provide a standard dataset to improve repeatability of
results in empirical software engineering. Their sizes range from 46 to 3512
classes, with an average of 690, for a total of about sixty five thousand classes
and six million Loc. Furthermore we analyzed two large software systems, Eclipse
3.0 [3] and Netbeans 4.0 [4], with about 12500 and 15000 classes respectively.

For each system, we parsed the source code in order to identify classes and
class dependencies, as defined above. These play the role of network nodes
and edges of our software networks, respectively. Our analysis is thus a static
analysis, and we do not consider run-time dependencies. In these Java sys-
tems, from a structural point of view, classes depend on one another because
of inheritance, composition and dependence relationships. In fact, a class may
depend one another because its code calls methods defined in other classes, or
uses temporary variables belonging to other classes. The former is called data

dependency, the latter call dependency.

After parsing the source code, the result is an oriented graph, where nodes
are the classes and interfaces, and edges are class dependencies. On this soft-
ware network we computed, for all the 98 systems, the following metrics: Loc,
Fan-in, Fan-out, dwReach, Closeness, Brokerage, Ties, Size, nWeakComponent,
infoCentrality, reachEfficiency, EffectiveSize.
The first three are traditional software metrics, the latter nine are used in Social
Network Analysis. Some of them are also called EGO metrics, since they refer to
the EGO-Network, a sub-network composed by a given node, the EGO, and all
the nodes directly connected to it. We did not compute CK metrics, but choose
Loc and Fan-out, because they are correlated to the CK metrics known to have
high correlation with bugs, namely WMC, CBO and RFC. For computing the
SNA metrics, we used un-directed edges.

All previous metrics are among those studied in [87]. For Eclipse and Net-
beans we computed also the number of bugs in each class.

For each class we obtained 12 metrics (plus bugs for Eclipse and Netbeans
classes), and we analyzed their Spearman cross-correlations inside each sys-
tem. We obtain, for each system, a 12 by 12 Spearman correlation matrix, with
66 independent entries. Then we studied how these correlation coefficients are
distributed among the 98 systems. In general, we found that there are metrics
for which the correlations values are centered among a mean value with little

90CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

variance. This means that these metrics are roughly equivalent for describing
the system properties, and this holds for all studied Java systems. We found
that, out of the twelve metrics, six or seven different groups may be identified.
In some other cases, the correlations values are not clustered among a central
value, but are spread across almost all the allowed range [-1 , +1]. Finally, there
are also particular cases for which the correlations are almost the same for all
Java Qualitas Corpus systems, but with a few very different or opposite values
of the correlations. This analysis was repeated twice. One time using all the
Java Qualitas Corpus, another time using only the systems with more than 1000
classes. Since there are several systems with a few classes (36 systems with less
than 300 classes), the overall statistics of the correlation coefficients are affected
by larger fluctuations for such small systems, making the data quite noisy. Re-
peating the same analysis retaining only the largest systems allows to reduce
such noise and to identify general features more clearly.

Another approach for identifying multivariate correlations among these twelve
metrics is by mean of a PCA (Principal Component Analysis). Thus we per-
formed a PCA for the software systems with more than 1000 classes, along with
a cluster analysis, in order to identify groups of metrics with another tool. The
PCA allows to quickly identify the major dimension of the variance and the lin-
ear covariances among the different metrics. It must be noted, however, that
the statistical distributions of the metrics across each software system analyzed
are usually fat-tail distributions, as examined in the previous chapter. In these
cases the computation of a non linear cross-correlation may be more appropri-
ate. Thus the PCA and the Spearman cross-correlation analysis may in princi-
ple provide different results.

8.3 PCA and Cluster Analysis

We performed a PCA on the 23 software systems with more than 1000 classes, in
order to have enough statistics. The main indication provided by this analysis
is that all the systems present a main principal component, explaining the ma-
jority of the variance, and a second smaller component, which together explain
always about 95% of the variance. These are accompanied by a very small third
component, which only in three cases is above 4%. Only one system (check-
style) presents the exception of two principal components almost equivalent.
The results are reported in Tab. 8.1 and show that all the software systems have
highly homogeneous features.

The clustering shows how the dwReach and Loc metrics provide major con-
tributions to the first and to the second principal components, respectively. In
Fig. 8.1 we present an example of a typical situation for the system Jrefactory,

8.3. PCA AND CLUSTER ANALYSIS 91

Table 8.1: Percentages of the variance explained by the first three principal
components (PCs).

System 1st PC(%) 2nd PC(%) 3rd PC(%)

ant 88.233 9.2252 1.7530
argouml 90.993 6.2521 2.1902
aspectj 80.241 14.681 4.1342
azureus 90.684 6.7305 2.1945
checkstyle 55.458 40.782 1.8304
columba 87.778 8.3074 3.6385
compiere 79.256 17.205 2.8861
derby 83.833 10.046 4.8409
eclipse 3.0 93.982 3.8925 1.9505
exoportal 85.941 11.600 1.9112
gt2 87.815 9.4388 2.3476
hibernate 90.822 6.9576 1.9135
jedit 84.032 12.384 2.5257
jena 91.167 4.9201 3.4452
jrefactory 71.830 24.015 2.3003
jtopen 80.206 16.738 2.5273
nakedobjects 90.335 6.0823 2.9967
netbeans 4.0 ide 86.956 11.755 0.7101
sandmark 86.251 10.350 3.0362
springframework 91.555 6.6683 1.3424
squirrel sql 88.846 8.4011 2.1022
tomcat 82.683 14.087 2.3919
xalan 74.625 20.063 4.0803

92CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

−140 −120 −100 −80 −60 −40 −20 0 20
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

jrefactory

Loc

Fan−in
Fan−out

reachEfficiency

effSize
Closeness

dwReach
infoCentrality

Size

Ties
nWeakComp

Brokerage

group A
group B
group C
group D
group E
group F

Figure 8.1: First and second Principal Components for the system Jrefactory.
Different points correspond to different metrics and the same color stands for
metrics belonging to one same group after clustering.

where we used six groups for the clustering.
This result can be quite naturally explained for the Loc, since it is the only

metric that is not influenced by the graph structure of the software system, and
thus is well separated from the others. The reason for the separation of the
dwReach is more obscure, and further analysis is necessary. Looking at the third
principal component also the Brokerage appears well separated from the other
metrics, as in reported in Fig. 8.2, for the same system.

This is due to the fact that Brokerage grows approximately in a quadratic
fashion with Size, and a PCA reveals such a non linear correlation. The Spear-
man correlation coefficient instead take into account non linear correlations
and provide different result, as we will discuss later on.

8.4 Statistics of Correlations and Bugs

We started by computing the correlations among all the 12 metrics, for a total
of 66 independent values for each of the 98 systems. Then we analyzed the
statistics of these 66 variables within a population of 98 samples, in order to
gain insights about general features and properties of the metrics for the Java
code.

We used the boxplot representation in order to obtain information on the
statistics of correlations among their metrics. We also computed the mean and
the STD statistics. The boxplot is a visual representation in which a box with
whiskers is reported for each set of data. The boxes have lines at the lower

8.4. STATISTICS OF CORRELATIONS AND BUGS 93

−140 −120 −100 −80 −60 −40 −20 0 20 40
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

1st Principal Component

3r
d

P
rin

ci
pa

l C
om

po
ne

nt

jrefactory

Loc Fan−in

Fan−out
reachEfficiency
effSize

ClosenessdwReach

infoCentrality Size

Ties

nWeakComp

Brokerage

group A

group B

group C

group D

group E

group F

Figure 8.2: First and third Principal Components for the system Jrefactory. Dif-
ferent points correspond to different metrics and the same color stands for met-
rics belonging to one same group after clustering.

quartile, median, and upper quartile values. The whiskers are lines extending
from each end of the boxes to show the extent of the rest of the data. Outliers
are data with values beyond the ends of the whiskers, and are represented by
crosses. The maximum whisker length has been set to 1.5.

First, we computed the boxplots for the correlations among all the 12 met-
rics for the whole Java Qualitas Corpus, and then retaining only the 23 systems
with more than 1000 classes, for a total of 24 boxplots. For convenience, we
choose to report only few representative cases: the boxplot for the correlations
among Size and the other metrics, for the whole Java Corpus (Fig. 8.3) and for
the largest 23 systems (Fig. 8.4), and the boxplots only for the largest 23 sys-
tems of the correlations for Closeness (Fig. 8.5), infoCentrality (Fig. 8.6) and
Loc (Fig. 8.7), since we found that they may be considered representative of
different groups of metrics.

The figures show how some pairs of metrics present almost the same values
for their cross-correlation, with a little spread around the median, while other
pairs have values ranging from negative to positive values among the 98 Java
systems, with a large spread. From the correlations we can identify four differ-
ent groups of metrics.

Fig. 8.3 shows how the metrics Ties and Size show almost perfect correlation
in all the systems, and are very highly correlated also with Brokerage and eff-
Size. These four metrics can be included into a single group, carrying basically
the same information. The picture is even clearer if we consider Fig. 8.4, report-
ing only the 23 Java systems with more than 1000 classes, where fluctuations of

94CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Loc

Fan−in

Fan−out

reachEfficiency

effSize

Closeness

dwReach

infoCentrality

Size

Ties

nWeakComp

Brokerage

Correlation

Size

Figure 8.3: Boxplot of the correlations among Size and the other metrics for all
the Java Qualitas Corpus.

the cross-correlations due to the smallness of systems are largely reduced. In
this case, the number of outliers is reduced too, and the cross-correlation val-
ues for these four metrics are almost the same in every system, suggesting that
this result does not depend on the particular Java system analyzed but is a gen-
eral property of open source Java systems, analyzed as software networks.

A second group can be identified for the metrics Closeness and dwReach,
which have correlation above 0.8 for almost all the Java systems, with a few
outliers presenting in any case correlation around 0.4. If we consider only the
23 systems with more than 1000 classes (Fig. 8.5), there is only one outliers
with correlation around 0.4, while all the others have correlation around 0.8 or
above. Furthermore, the correlations of these two metrics with the other met-
rics are always very similar, thus Closeness and dwReach can be considered in
general equivalent metrics for describing the software graph of the examined
Java systems.

A third group includes infoCentrality and nWeakComp. They are well corre-
lated in all the Java Corpus, with two exceptions, and well correlated for all the
systems with more than 1000 classes (Fig. 8.6). With regard to the other metrics,
they are always anticorrelated, apart for few outliers which show strong corre-
lation with other metrics. For the systems with more than 1000 classes, only
in one or two system these two metrics have strong positive correlation with
other metrics, while in all other systems their correlation with all other metrics
is generally negative or zero.

Finally, Loc and Fan-out have high correlation in all the Java Corpus sys-
tems, with few outliers, and even higher correlation in the 23 largest systems

8.4. STATISTICS OF CORRELATIONS AND BUGS 95

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Loc

Fan−in

Fan−out

reachEfficiency

effSize

Closeness

dwReach

infoCentrality

Size

Ties

nWeakComp

Brokerage

Correlation

Size

Figure 8.4: Boxplot of the correlations among Size and the other metrics for the
23 largest systems.

(Fig. 8.7), and show high correlation with the metrics of the first group as well.
Next, we discuss how the relationships among the correlations of some met-

rics can be related to the structure of the software network.

8.4.1 Metrics Size, Ties, Brokerage, effSize.

The metrics of the first group are all EGO metrics, namely are computed on the
EGO network of a given node. Given a Size N, since we consider un-directed
links and exclude multiple links, the value of Ties ranges from a minimum of
N-1, when all the nodes are connected only to the EGO, to a maximum of N(N-
1)/2, when the network is completely connected (every node is connected to
every other node). The strong correlation among Size and Ties can be easily
explained if Ties is, for most nodes, around the minimum value. In fact in
such case Ties and Size result, for most nodes, directly proportional to each
other, thus determining a strong correlation coefficient. If this were the case,
most nodes are expected to form a software network characterized by a star-
like structure, a network with ’hubs’. For the central node, Size would be N and
Ties would be N-1. For the peripheral nodes, Size would be 2 while Ties would
be 1, respecting the same rule. Thus for a network with many hubs, Size and
Ties have a correlation coefficient close to one.

With regard to effSize, such a structure would also show strong correlations
with Size (and so with Ties). In fact each node would have an average number
of ties with other nodes of the EGO of (N-1+N-1)/N = 2-2/N. effSize would then
be N - 1 - 2 + 2/N, for a Size N. This provides a direct proportionality even for N

96CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Loc

Fan−in

Fan−out

reachEfficiency

effSize

Closeness

dwReach

infoCentrality

Size

Ties

nWeakComp

Brokerage

Correlation

Closeness

Figure 8.5: Boxplot of the correlations among Closeness and the other metrics
for the 23 largest systems.

not too large, explaining why effSize is to be expected strongly correlated with
Size, and to a lesser extent, with Ties.

Finally, considering the Brokerage in the hypothesis of hub-structured net-
works, we have to distinguish two cases: the central node and the peripheral
ones. For the central node Brokerage is of O(N 2). For other nodes, which are
the majority, the EGO network consists only of two nodes, and Brokerage is
zero. For these same peripheral nodes also the other metrics are small (Size is
two, Ties is one, effSize is 0.5). Supposing that N is in general not too large, we
would again obtain a strong correlation among Brokerage and the other three
EGO metrics.

8.4.2 Metrics Closeness and dwReach.

Closeness and dwReach are not EGO metrics, and their computation involves
all the network’s nodes. Their high correlation can be again understood with
the hypothesis of a network characterized by many hubs, or with many star-
like structures. In fact, they can be computed using the following relationships:
Closeness = 1/(n1 + 2n2 + 3n3...) = 1/(

∑

i i ∗ni), dwReach = n1 +n2/2+n3/3...
=

∑

i ni /i , where ni is the number of nodes at a distance of i steps from the
given node, and with a proper normalization factor for Closeness. Since the
total number of nodes in the network is fixed, the sum of ni is a constraint of
the system. So, both Closeness and dwReach have maximum value for nodes at
distance one to all other nodes, and decrease for nodes with a different topol-
ogy. In the case of star-like structures, for peripheral points both Closeness and

8.4. STATISTICS OF CORRELATIONS AND BUGS 97

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Loc

Fan−in

Fan−out

reachEfficiency

effSize

Closeness

dwReach

infoCentrality

Size

Ties

nWeakComp

Brokerage

Correlation

infoCentrality

Figure 8.6: Boxplot of the correlations among InofCentrality and the other met-
rics for the 23 largest systems.

dwReach decrease markedly, while this does not occur for dense (highly con-
nected) networks. Thus, according to our hypothesis, our hub-structured soft-
ware networks would possess points with a large spectrum of different values
for Closeness and dwReach, with the peripheral points having the lowest values
for both metrics, and with the hubs having the largest values for both metrics.
This may explain the large correlation observed in our software networks.

8.4.3 Metrics nWeakComp and infoCentrality.

The high correlation between nWeakComp and infoCentrality is somehow more
surprising. In fact, the first is an EGO metric while the computation of the sec-
ond requires all network’s nodes. The metric nWeakComp is normalized with
Size of the EGO network. Thus, being inversely proportional to it, it is somehow
anti-correlated with Size. This is confirmed by the empirical results. On the
other hand, infoCentrality is proportional to the harmonic mean of the length
of paths starting from all network’s nodes. Thus, it may be computed according
to 1/(n1 +n2/2+n3/3...), which is approximately inversely proportional to the
metric dwReach, and to all the metrics positively correlated to it. This explains
why nWeakComp and infoCentrality are positively correlated on the large.

8.4.4 Metrics Loc and Fan-out.

Finally, we consider the fourth group. Loc and Fan-out are not SNA metrics;
one represents an inner metric, while the other measures to what extent a class

98CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Loc

Fan−in

Fan−out

reachEfficiency

effSize

Closeness

dwReach

infoCentrality

Size

Ties

nWeakComp

Brokerage

Correlation

Loc

Figure 8.7: Boxplot of the correlations among Loc and the other metrics for the
23 largest systems.

Pajek

Figure 8.8: Graph representation of the software system Cobertura.

uses other classes. The high correlation among the two is quite natural, since
the larger the Loc of a class, the larger is the chance of finding lines of code con-
taining calls to methods or variables belonging to other classes. On the con-
trary, Fan-in is not so correlated to Loc, since for a class, to have many lines
of code does not directly imply to have a large chance of being used by other
classes.

In Figures 8.8 and 8.9 we show some examples of software graphs, for sys-
tems with a relatively small number of classes. These graphs confirm our hy-
pothesis of a software network made of many central hubs, to which the other
classes generally refer, with only a few links among each other.

8.4. STATISTICS OF CORRELATIONS AND BUGS 99

Pajek

Figure 8.9: Graph representation of the software system Drawswf.

8.4.5 Metrics in Random Graphs.

In order to verify these considerations, we performed different simulations in
which we generated networks with a particular topology, such as random net-
works and scale-free networks, and analyzed the correlations among the SNA
metrics on these networks.

Figure 8.10 reports the correlation values among the metrics Size and Ties,
Brokerage, effSize, for random networks with different parameters p. We built
30 random networks, with 100 nodes, for each value of parameter p, which rep-
resents the probability that a couple of nodes is connected by one edge, for dif-
ferent values of p among zero and one. For fixed p, we calculated the correla-
tions among the metric Size and the metrics Ties (S-T), Brokerage (S-B), effSize
(S-E), respectively, for the corresponding 30 networks, and measured their min-
imum and maximum values. For convenience, in Figure 8.10 we report, for S-B
and S-E, only the maximum values at varying p. It can be seen that the cor-
relations are always close to 1, and are close to 0.9 only for small values of p,
namely for sparse networks, as it is the case of our Java software network. With
regards to scale-free networks, we obtained for different networks correlation
values between 0.8 and 0.9 (not reported in the Figure).

Thus, the correlations among the SNA metrics of the first group are similar
to those of sparse random networks and of scale-free networks.

8.4.6 Correlations with Bugs.

Eventually, we consider the correlations among the 12 metrics and bugs, only
for the systems Eclipse and Netbeans, whose bugs are available in their bug
tracking systems. Table 8.2 reports the correlation coefficients.

In this case, we do not have a statistical sample of 98 systems, thus our con-

100CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

C
or

re
la

tio
n

max S−T

min S−T

max S−B

max S−E

Figure 8.10: Correlations among four SNA metrics in random graphs.

siderations hold only for Eclipse 3.0 and Netbeans 4.0, even if they show some
common features. First of all, we may note that correlations among the 12 met-
rics and bugs confirm the grouping discussed above. Size, Ties, Brokerage and
effSize all show the same correlation with bugs, for both Eclipse and Netbeans,
even if they have slightly larger values in Eclipse. This suggests that the larger
are these metrics, the more are the bugs in the corresponding classes. Since
in the examined software networks we found these metrics equivalent, we may
discuss this result referring only to metric Size. The number of bugs in a class is
computed through the code correction commits reported in repositories such
as CVS. These corrections may be due to errors in the code of the given class,
but also to changes applied in order to realign the code to code changed in
other classes for bug fixing. Thus, the larger is Size, the larger is the probabil-
ity of such events, and thus the number of bug corrections associated to the
class. This reasoning is confirmed also by the high correlation of bugs with Loc
and Fan-out, and by the lower correlation with Fan-in. In fact, the larger is Loc,
the larger the probability that the code in the class makes calls to code in other
classes, and thus the larger is the Fan-out as already discussed previously. But
a large Fan-out implies a large chance to make code adjustments in the class
when the code of the called class is modified for bug fixing. This causes a re-
port in the CVS commits signaling a bug correction in the calling class. On the
contrary, in the case of large Fan-in this mechanism does not work. Let A be a
class with an In-link from another class B, a change in the code of class B does
not generally imply the need to change the code in class A.

dwReach and Closeness show relatively high correlation with bugs. Since
these two metrics are centrality metrics, namely represent how much a class is

8.4. STATISTICS OF CORRELATIONS AND BUGS 101

Table 8.2: Correlation coefficients among metrics and bugs.
Eclipse Loc Fan-in Fan-out
rel 3.0 0.53 0.20 0.48

reachEff effSize Closeness
0.16 0.45 0.39

dwReach infoCen Size
0.41 -0.33 0.47
Ties nWeakComp Brokerage
0.48 -0.33 0.46

Netbeans Loc Fan-in Fan-out
rel 4.0 0.40 0.19 0.37

reachEff effSize Closeness
0.23 0.36 0.29

dwReach infoCen Size
0.34 -0.17 0.37
Ties nWeakComp Brokerage
0.37 -0.15 0.37

closely connected to all other classes, the larger are these metrics the more the
class is connected to the rest of the network. This case can then be subsumed
into the previous one.

Perhaps, the most interesting result is the anti-correlation of bugs with nWeak-
Comp and infoCentrality. This means that the number of bugs is significantly
reduced in classes with larger values of these two metrics, that, as we already
observed, are strongly correlated to each other.

In general, these results show that the metrics related to the number of
classes directly connected to a given class are the most correlated to bugs. Thus
a class which play the role of a hub, or a star center, presents more chances to
be ’buggy’ or maybe that its bugs are actually discovered and fixed.

We can thus answer to our research questions:

• RQ1 Are the correlations among SNA metrics system-dependent, or are
they generally the same for all Java systems?

The answer to this question depends on the particular metric. We found
that it is possible to categorize some SNA metrics in groups. Thus for the
SNA metrics belonging to a group the answer is positive. In particular we
find that the high correlations among four out of the five EGO metrics,
Size, Ties, Brokerage and effSize are a general property of the Java sys-
tems, since the Java Qualitas Corpus represent a general statistical sam-
ple of Java software systems. These high correlations, moreover, hold also

102CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

for randomly generated networks.

The answer is positive also for Closeness and dwReach, because the anal-
ysis on the 23 largest systems show a little spread in the distribution of
their correlation.

The answer is negative for the metrics of the third group, nWeakComp
and infoCentrality, because even the data on the 23 largest Java systems
show a large spread of the correlation distribution, meaning that the cor-
relation value depends on the system analyzed.

• RQ2 Does the social role of a node influence its bug proneness?

Our classification in groups for the SNA metrics provides a positive an-
swer to this question. In fact, since the EGO metrics are the most cor-
related with bugs, they can be used to argue that central nodes of the
software network, for which Size and Brokerage take large values, are, in
general, more bug affected, while peripheral nodes are less bug affected.

• RQ3 Are there SNA metrics useful for measuring software quality in Java
systems?

On the basis of the correlations obtained among bugs and SNA metrics,
we can answer positively to this question. In fact, the SNA metrics be-
longing to the first group are well correlated with bugs, thus they can be
used as rough indicators of software quality, measured in terms of bugs.
Software nodes with high values of these SNA metrics have generally a
larger number of bugs than other nodes.

The same holds for dwReach and Closeness, even if to a lesser extent.

Of particular interest is the case of nWeakComp and infoCentrality. Since
these metrics look anti-correlated with bugs, a high value for these SNA
metrics is a hint of good software quality, in terms of the number of bugs
affecting the corresponding software nodes.

• RQ4 Are the correlations among SNA metrics related to a particular soft-
ware structure?

On the basis of our data we cannot answer to this question. In fact, while
we described how the correlations among these metrics can be related to
the software graph topology, our simulations on random and scale-free
networks also show high correlation values among the same SNA metrics.
Thus, we are not able to provide a statistically significant counter-prove
that a different network topology shows different correlations among the
SNA metrics. Further work is needed in order to answer this question.

8.5. CONCLUSIONS 103

8.5 Conclusions

We reported the analysis of twelve metrics computed on software graphs. Our
results extend some previous findings about metrics correlated to bugs, like Loc
and Fan-out. In particular, we extended the use of SNA metrics to Java software
networks.

With the aim of finding new software quality indicators, we presented new
metrics for measuring software systems, widening a field of research in which
more traditional software metrics like the CK suite have been already inves-
tigated, providing contradictory results. A significant result is that some SNA
metrics (Size, Ties, Brokerage and effSize) are consistently highly correlated for
all Java systems studied, and also for networks randomly generated. As a con-
sequence, we propose to use only size as best representative of these EGO met-
rics, dropping the use of other metrics correlated to it in future works on the
application of these metrics to software systems.

We found that some structural metrics look negatively correlated with bugs,
which may provide alternative insights to practitioners, with respect to the more
popular and largely used metrics positively correlated to bugs.

Among the contributions of this analysis there is the finding that some SNA
metrics can be useful as software quality indicators and that the role and the
position of the software nodes are related to bug proneness. The analysis con-
sidered only a subset of all the metrics used in literature for measuring OO soft-
ware systems. We believe that an extension of this analysis to other OO metrics
can provide further insights on the quality of such software systems.

104CHAPTER 8. ANALYSIS OF SNA METRICS ON THE JAVA QUALITAS CORPUS.

Chapter 9

Three Algorithms for Analyzing

Fractal Software Networks

The last metric we propose for characterizing software quality is the Fractal
Dimension of software networks. In this chapter we present an algorithm for
computing the fractal dimension of a software network, and compare its perfor-
mances with two other algorithms. Object of our study are various large, object-
oriented software systems. We built the associated graph for each system as
usually, analyzing the binary relationships (dependencies), among classes. We
found that the structure of such software networks is self-similar under a length-
scale transormation, confirming previous results of a recent paper from us. The
fractal dimension of these networks is computed using a Merge algorithm, first
devised by the authors, a Greedy Coloring algorithm, based on the equivalence
with the graph coloring problem, and a Simulated Annealing algorithm, largely
used for efficiently determining minima in multi-dimensional problems. Our
study examines both efficiency and accuracy, showing that the Merge algorithm
is the most efficient, while the Simulated Annealing is the most accurate. The
Greeding Coloring algorithm lays in between the two, having speed very close
to the Merge algorithm, and accuracy comparable to the Simulated Annealing
algorithm.

In the next chapter we will use these results to analyze the opportunity of
using the software network fractal dimension in order to characterize software
quality in terms of number of bugs in the system.

9.1 Related Works.

It is already well known that software networks have the characteristics of com-
plex networks, i.e. are scale-free and small-world [48] [76], [56], [23]. A recent

105

106CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

n = 0

n = 1

n = 2

n = 3

Figure 9.1: Fig. 9.1: Cantor set with three steps.

paper by Song et al. ([70]) demonstrated that the structure of complex net-
works can also be self-similar under a length-scale transformation, and showed
how to calculate their fractal dimension using the "box counting" method. This
finding was applied to software networks computed on the classes and class re-
lationships of large Smalltalk and Java systems, which were shown to exhibit a
consistent self-similar behavior [22]. Moreover, a significant correlation seems
to hold between the fractal dimension computed for various OO systems, and
standard metrics related with software quality. It is worth noting that the frac-
tal dimension is just a single number that characterizes a whole network, and
hence a whole software system, while complexity metrics are computed on ev-
ery module of the system - think for instance to Chidamber and Kemerer OO
metrics suite [19]. Obviously, the whole system can be characterized by some
statistics computed on all modules, but this is not the same of having just one
consistent, synthetic measure as with fractal dimension. For this reason, we
believe that the fractal dimension of software networks is a significant metric
describing the regularity of the software structure. It is therefore important
to have efficient and reliable algorithms to compute it. In fact, as it will be
shown in the following, the box counting algorithm is NP-complete, and its ex-
act computation for large networks cannot be practically accomplished. Here
we briefly recall the concept of fractal set and its application to complex net-
works, and then we present and compare three different algorithms to compute
it - Greedy Coloring, a Merge Algorithm devised by the authors, and Simulated
Annealing - discussing the results.

9.2 The Fractal Dimension of Software Networks

9.2.1 Fractals.

Before studying software networks scaling properties we need to introduce the
basic concept of fractal dimension. Systems possessing fractal dimensions fill
the space in a counterintuitive manner. One of the easy-to-understand and
well known examples of fractals is the Cantor set.

Let us consider a segment of unit length. For the sake of clarity, we label
its left extreme with the abscissa zero, and its right extreme with the abscissa

9.2. THE FRACTAL DIMENSION OF SOFTWARE NETWORKS 107

one. To obtain the Cantor set we delete pieces of this segment applying an
infinite iterative process, and look at the remaining set of points (fig. 9.1). At the
first step we subtract the inner third of the segment (any other fraction works
well). The remaining set are two segments of length one third each. At the
second step we subtract from each of these two segment their central third.
The remaining set are four segments of length one ninth each. According to
this process, at the nth step we obtain 2n segments of length 3−n each, and
the set’s total length is (2/3)n. Let us examine the limit for large n. Clearly the
number of segments grows to infinity, each segment becoming of zero length,
namely a point. But such set is not a simple set of discrete points. In fact it is
not countable. Actually it has the power-of-continuum, namely it is in a one-
to-one correspondence with the original unit length segment. The reasoning
is the following. Consider the first step. The two segments may be identified
with two numbers, zero for the left segment, and one for the right segment. For
the segments at the second step we can add another binary digit, again zero
for the left segment and one for the right segment. Thus the four segments
at the second step are identified by two binary digits: 00, 01, 10 and 11, from
left to right. In general, each segment at the nth step may be identified by a
sequence of n binary digits. In the limit of large n we can label each point of
the remaining set by an infinite sequence of binary digits. But each point of
the unit length segment is identified, in binary notation, by the same infinite
sequences. In other words, all the points among zero and one may be coded
in a fractional binary number. This provides a one-to-one mapping among the
original segment and the remaining set of points. Apparently the subtraction of
an infinite number of pieces does not modify the segment! Nevertheless they
are clearly two different sets. We can also consider another peculiarity. Let
us calculate the length of all the subtracted sub-segments. At the first step we
subtracted one segment of length one third. At the second step we subtracted
two other segments, each of length one ninth. In general at the nth step we
have to consider 2(n−1) segments of length 3−n . We obtain the following series
providing the total length:

Ltot =
∞
∑

n=1

2n−1

3n
(9.1)

This sum converges to one. Thus at the end we subtracted all the original
segment’s length! These are the paradoxes we have to face when dealing with
fractal objects. Even if the two sets are in a one-to-one correspondence, they
substantially fill the available space in a different manner. Roughly speaking,
the segment fills all the available space, while the Cantor set (the set of remain-
ing points) leaves lots of holes: it is non-continuous. This is the key observa-
tion to define the fractal dimension. In fact, if we partition the available space

108CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

in cells, with varying sizes or diameters, we can note the difference among the
two kinds of sets if we look at how many cells are filled or empty. In the seg-
ment case, regardless of the cells diameter, all the cells will be full. Thus the
number of filled cells grows with the inverse of the cells diameter. In the case of
the Cantor set this is not true, and the number of filled cells grows with a frac-
tional power of the inverse of the diameter. More formally, in the first case, we
simply partition the segment in N identical subsegments of diameter ǫ (in one
dimension all the partition cells are simply segments, while in dimension D we
can use D- dimensional cubes). The relationship among the two is Nǫ = 1/ǫ,
and thus the number of filled cells scales with the inverse power of the diam-
eter. If we use a different segment length we obtain a multiplicating factor in
front of the previous formula. In two dimensions, instead of a segment we par-
tition a unit square, using ǫ-side subsquares. Their number is given by N = 1/ǫ2,
and scales with the second inverse power of the diameter. Generalizing to di-
mension D, a unit D-cube will be partitioned by ǫ-side D-cubes, and their total
number will be Nǫ = 1/ǫD , scaling with the D inverse power of the diameter. All
these powers are integer, that we are use to call "integer dimensions". In the
case of Cantor set, for the covering partition at step n we need N = 2n cells of
diameter ǫ= 3−n . Then the scaling of N with ǫ is:

Nǫ ≃ ǫ
− log (2)

log (3) ≃ ǫ−K (9.2)

with K < 1. This defines the fractal dimension of the Cantor set as d = log(2)/log(3),
and indicates the scaling of the number of non empty cells with diameter, or,
in a sense, how many points fill the space in a range of the diameter, a concept
that will be extended for the network’s fractal dimension. This way of proceed
to calculate the fractal dimension is known as the box-counting method, since
the partition divides the space into equal boxes. The value log(2)/log(3) clearly
indicates that Cantor set does not fill the space nor like a one dimensional seg-
ment, neither like a set of disjoint point, whose fractal dimension is zero. The
Cantor set, by construction, shows an important signature of fractal sets, the
self-similarity: at any length scale the set looks the same. The structure reveals
always the same details when viewed at different magnifications, and there is
not lower limit, or something like “atomic” components, from which all the set
is built. While for mathematical sets this is exactly true at any length scale, for
real objects the scaling regime and self-similarity hold only in a limited range
of lengths, and finite size or granularity effects are revealed out of these limits.

9.2.2 Fractal Dimension of OO Networks

Fig. 9.2 shows the box counting analysis of the software network related to JDK
1.5.0 Java system. The log-log plot of NB vs. lB reveals a self-similar structure.

9.3. COMPUTING THE NETWORK FRACTAL DIMENSION 109

1 1.5 2 2.5 3 3.5 4 4.5
−14

−12

−10

−8

−6

−4

−2

0

LOG
2
(L

B
)

LO
G

2(N
B
/N

)

Figure 9.2: Fig. 9.2. Log-log plot of NB vs. lB for JDK 1.5.0.

Figure 9.3: Fig. 9.3. Log-log plot of NB vs. lB for Eclipse 2.1.3.

The slope of the fit is 4.24; this value is the fractal dimension dB for JDK 1.5.0
In fig. 9.3 we report the box counting result for Eclipse 2.1.3, whose software

graph has partially been shown in the first figure. Also for this system the log-
log plot of NB vs. lB is clearly linear, and the system exhibits the power-law
scaling. The slope provides 4.31 for the box-counting fractal dimension of this
software network

In fig. 9.4 we show the same plot for another software system, VWorks 7.3.
Once again it shows a self-similar structure and a power-law relationship among
NB and lB . Here the value provided by the box-counting method for the fractal
dimension is 4.54.

9.3 Computing the Network Fractal Dimension

Song et. al. in their first paper [70] do not give details about how they actually
computed the fractal dimension. Subsequently, Concas et al. shortly presented
a simple algorithm for computing dB [22]. Later, Song et al. demonstrated

110CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

Figure 9.4: Fig. 9.4. Log-log plot of NB vs. lB for VWorks 7.3.

that this computational problem is equivalent to the graph coloring problem,
and consequently took advantage of the many well-known greedy algorithms
to perform this task [69]. Here we compare three algorithms both in terms of
performance and precision - greedy coloring as in [69], a merge algorithm sim-
ilar to that reported in [22], and simulated annealing, which is considered one
of the best approaches to find the global minimum of difficult, multi-modal
problems.

9.3.1 Greedy Coloring (GC)

Song et al. demonstrate that the box counting problem can be mapped to the
graph coloring problem, which is known to belong to the family of NP-hard
problems. Vertex coloring is a well-known procedure, where colors are assigned
to each vertex of a network, so that no edge connects two identically colored
vertexes [50]. We used the greedy algorithm described by Song et al. For this im-
plementation we need a two-dimensional matrix cil of size N by lBmax , whose
values represent the color of node i for a given box size l = lB . The algorithm
works in the following way [69]:

1) Assign a unique id from 1 to N to all network nodes, without assigning
any colors yet.
(2) For all lB values, assign a color value 0 to the node with id=1, i.e. ci l = 0.
(3) Set the id value i = 2. Repeat the following until i = N.
(a) Calculate the distance li j from i to all the nodes in the network with id j less
than i.
(b) Set lB = 1.
(c) Select one of the unused colors c j li j from all nodes j<i for which li j ≥ lB .
This is the color of node i for the given lB value.
(d) Increase lB by one and repeat (c) until lB = lBmax

(e) Increase i by 1.

9.3. COMPUTING THE NETWORK FRACTAL DIMENSION 111

Figure 9.5: Fig. 9.5: Construction of the dual network G’ for a given box size
(here lB = 3), where two nodes are connected if they are at a distance l ≥ lB . We
use a greedy algorithm for vertex coloring in G’, which is then used to determine
the box covering in G, as shown in the plot.

This greedy algorithm is very efficient, since it can cover the network with a
sequence of box sizes lB performing only one network pass. The main steps are
illustrated in fig. 9.5, where the example shows the case lB = 3. Starting from
the network G representing the software graph, we build the dual network G’,
obtained from G connecting two nodes when their distance, calculated in the
original graph G, is larger than, or equal to, lB . Next we use a greedy algorithm
for vertex coloring in G’. Then we go back to the original network determining
the box covering on G

9.3.2 Merge Algorithm

This method is based on the union of two or more clusters into a third one. Two
clusters are merged if the distance between them is less than lB . MA uses the
configuration at lB to obtain the starting point for the successive aggregation at
lB+1 = lB + 1. In the initial configuration each cluster ck contains only a node,
so each node is marked with a different label. Let n be the number of nodes of
the network, and lmax the maximum value for lB . The algorithm works in the
following way:

lB = 2;
C = c1, c2 , c3 ,..., cn;
while lB ≤ lBmax ;
D = C;
repeat:

112CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

get a random cluster ck from C;
C’ = c j C| d(ck ,c j) ≤ lB ;
get a random cluster ci from C’;
c = merge(ck ,c j);
C = C - ck ,c j ;
D = D U c;
until size(C) ≤ 2 or C’= C whenever c ∈ C;
D = D U C
NB = size(D);
lB := lB +1;
C = D;
end while;
In order to find the set C’ we use an efficient burning algorithm to determine in
a single step all clusters belonging to C’.

9.3.3 Simulated Annealing(SA)

The MA described above is an efficient method to estimate the fractal dimen-
sion, and the base for Simulated Annealing algorithm. SA is a class of algo-
rithms inspired by the annealing process in metallurgy. In the SA context, a box
partition (box covering) is the state S of the physical system and the number of
boxes NB is the "internal energy" in that state. In order to consider a neighbor
state S’ of the current state S we compute three fundamental operations:

• movement of nodes;

• creation of new clusters;

• union of clusters;

If S’ is a solution worse that S, there is a probability to accept the state S’
even if it has the energy E(S’) ≥ E(S). A new state or partition with boxes of size
lB is obtained from the current state by moving nodes and merging clusters. Let
A and B be two generic clusters of the current partition. We define the following
operations:

• movement: a node is moved from A to B if B diameter doesń t exceed lB,
and A includes at least two nodes;

• creation: a node is taken from cluster A to form a new cluster;

• merge: all clusters are merged by using the merge algorithm described
above.

9.4. RESULTS 113

At each “temperatur” we perform k1 movements and k2 creations of nodes,
and a single merge of all clusters by using MA. We always accept a better or
equal solution, while we accept a solution S’ worse than S with probability:

p = e− E (S′)−E (S)
T (9.3)

At each step the system is cooled down to a lower temperature T0 = cT , where c
< 1 is the cooling constant. The typical starting temperature T is about 0.6 and
the typical values of k1 and k2 are 5000 and 5, respectively. We performed about
5000 steps at each temperature, and then reduceed T. The number of outer cy-
cles (temperature reductions) is k3, and it is set to 20, with cooling constant c
set to 0.995.

9.4 Results

We implemented the three algorithms and compared their performance in terms
of speed and quality of the result. In fact, being the box partitioning problem
NP-complete, on large networks its exact solution is not feasible. Consequently,
it is not enough to have a fast algorithm to compute the box partitioning, but
the results must be trusted, in the sense that the partitioning found should be
close enough to the global minimum to guarantee the consistency of the re-
sults. We tested the goodness of the results by repeatedly running the same
algorithm, selecting randomly the initial configuration. We then checked the
variance of the resulting estimate of NB (lB) for various values of lB , which in
turn depends on the number of boxes found in each partitioning. We used for
the tests the software network related to Java JDK 1.5 system, which includes
the standard Java libraries and development tools. The JDK network has 8499
nodes and 42048 edges, so it can be considered a quite large network.

9.4.1 Execution speed

We computed the execution speed on the whole computation of dB , which is
what actually matters, running the three algorithms starting from random con-
figurations of the initial box partitioning and performing 100 times the com-
putation. The results for a PC with Windows XP and a processor Intel Core 1.4
GHz are reported in Tables 9.1 and 9.2.

The most efficient algorithm is MA, and this is confirmed also by other test
runs on other networks, not reported here for the sake of brevity. GC is still
very efficient, while SA is much worse as regards execution speed, being at least
one order of magnitude slower. It has to be pointed out that these results may

114CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

Table 9.1: Average execution times for dB computation on JDK 1.5 class graph
(8499 nodes and 42048 links).

Algorithm Time (s) dB

GC 410 3.96
MA 289 4.24
SA 8807 4.06

Table 9.2: Average execution times for dB computation on the E. Coli protein
interaction network graph (2859 nodes and 6890 links).

Algorithm Time (s) dB

GC 13 3.44
MA 21 3.57
SA 1177 3.47

depend not only from the system analyzed, but also from the particular release.
In fact, changes of the software structure among various releases are reflected
in changes of their fractal dimension. Depending on the system, these changes
may be more or less pronounced.

In fig. 9.6 we report the results of the fractal dimension for various versions
of different software systems. It can be noted that, for Glass Fish, Eclipse Birt,
Netbeans, the fractal dimension is quite stable among releases, while for JDK
and Eclipse, it shows major variations. This is an index of major topological
changes in the structure of the graph associated to these systems, and, conse-
quently, of major modifications applied onto the software. Regarding the qual-
ity of results, they look similar but not exactly the same. This is discussed in
detail in the next section.

0 0.5 1 1.5 2 2.5 3

x 10
4

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Nr. Of Classes

F
ra

ct
al

 D
im

en
si

on

JDK
Eclipse

NetBeans

Eclipse Birt
Glass Fish

Figure 9.6: Fig. 9.6. Fractal dimension for different versions of the analyzed
systems, as a function of the release version, according to the number of classes
of each version.

9.5. CONCLUSION 115

10
1

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
B

P
(N

B
)

GC

L
B
=2

L
B
=3

L
B
=4

L
B
=5

L
B
=6

L
B
=7

Figure 9.7: Fig. 9.7 Empirical distributions of the values of NB for six values of
lB , for GC algorithm run 1000 times.

9.4.2 Result Quality

We computed the reliability of the three tested algorithms by testing for their
repeatability in 1000 runs on a smaller network than the whole JDK 1.5

software graph, the E. Coli protein interaction network [70]. This network
has 2859 nodes and 6890 edges. We varied lB , from 2 to 7. Figs. 9.7, 9.8 and 9.9
show the empirical distributions of the values of NB for each value of lB , and
for GC, MA and SA algorithms, respectively.

As you can see, GC and SA algorithms show a very small dispersion of the
resulting values of NB, showing that both are highly reliable. On the other hand,
the results of Fig. 9.8 regarding MA algorithm show a much higher dispersion.
Consequently, despite its high performances, we deem that MS algorithm is not
suitable for the computation of software networks fractal dimension. We report
in Fig. 9.9 the standard deviation of the computed NB for the three algorithms,
for eight values of lB , from 2 to 9. Fig. 9.10 confirms the previous results on the
reliability of the three algorithms.

The standard deviation of MA results is consistently higher than that of GC
and SA. The latter algorithms are quite similar, with a slightly better average
performance of SA over GC on the eight test values of lB .

9.5 Conclusion

The fractal dimension of software networks has the potential to be a signifi-
cant, synthetic metric describing the regularity of the structure of a software
system, and moreover it has been proven to be correlated to source code qual-
ity metrics of OO systems. It is therefore important to have efficient and reliable

116CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

Figure 9.8: Fig. 9.8. Empirical distributions of the values of NB for six values of
lB , for MA algorithm run 1000 times.

Figure 9.9: Fig. 9.9. Empirical distributions of NB for six values of lB , for SA
algorithm run 50 times.

Figure 9.10: Fig. 9.10. Standard deviations of the values of NB for eight values
of lB , for MA algorithm run 1000 times.

9.5. CONCLUSION 117

algorithms to compute it. We presented three different algorithms to compute
the fractal dimension of networks, which to our knowledge cover all the ap-
proaches proposed in literature. These algorithms - Greedy Coloring, Merge
Algorithm, and Simulated Annealing, have been described and compared us-
ing the software network related to Java JDK 1.5 open source system and, for the
purpose of assessing the algorithm reliability, also using a smaller protein inter-
action network. We found that SA is the best algorithm in terms of precision,
but it is by far the worst in terms of speed. The time performance of MA is bet-
ter than GC for large networks but the greedy coloring produces more precise
solutions. In conclusion, the Greedy Coloring algorithm, based on the equiva-
lence of the box counting problem with the graph coloring problem, looks the
best compromise, having speed comparable to MA, and accuracy comparable
with SA.

118CHAPTER 9. THREE ALGORITHMS FOR ANALYZING FRACTAL SOFTWARE NETWORKS

Chapter 10

Fractal Dimension Metric and

Object-Oriented Software Quality

In this chapter We present a study were software systems are considered as
complex networks which have a self-similar structure under a length-scale trans-
formation. On such complex software networks we computed a self-similar co-
efficient, also known as fractal dimension, using “the box counting method ”.

We analyzed various releases of the publically available Eclipse software
systems, calculating the fractal dimension for twenty sub-projects, randomly
chosen, for every release, as well as for each release as a whole. Our results dis-
play an overall consistency among the sub-projects and among all the analyzed
releases.

We found a very good correlation between the fractal dimension and the
number of bugs for Eclipse and for twenty sub-projects. Since the fractal di-
mension is just a scalar number that characterizes a whole system, while com-
plexity and quality metrics are in general computed on every system module,
this result suggests that the fractal dimension could be considered as a global
quality metric for large software systems. Our results need however to be con-
firmed for other large software systems.

In this part, we focus on analyzing the fractal dimension of software net-
works. A significant correlation was found between the fractal dimension com-
puted in various software systems and some CK metrics related with software
quality [22], [25]. We investigated the correlation between the fractal dimen-
sion and the number of bugs of different releases of the Eclipse software sys-
tem, analyzing the releases as a whole system as well as computing the fractal
dimension of many system of its sub-projects. Our results show a very high cor-
relation among the fractal dimension and the presence of bugs. For this reason,
we believe that the fractal dimension, being a scalar number that characterizes
the whole system, could be a synthetic metric describing the complexity and

119

120CHAPTER 10. FRACTAL DIMENSION METRIC AND OBJECT-ORIENTED SOFTWARE QUALIT

the quality of a software system.

10.1 Research Questions

The motivation for this study rises from the many recent results in literature
showing that large software systems can be naturally associated to software
networks which in turn display complex properties. The finding that the con-
cept of fractal dimension may be computed also for a complex graph, suggests
that a single global metric may be representative of the complexity of the whole
system. With regard to software systems, it is well known that the higher the
system complexity, the harder is its maintainability, and the easier is to intro-
duce defects into it. These are all features which contribute to decrease soft-
ware quality, and which are generally associated to a larger presence of bugs,
which is a reliable quality metric. It is thus natural to ask if the fractal dimen-
sion is somehow related to the bugs affecting the system, and to which extent.
Note that the fractal dimension may be not necessarily well defined for a soft-
ware network. In fact not all networks posses a structure for which the num-
ber of boxes covering the network scales with the linear size following a power
law, as required by the definition of fractal dimension. This may be particularly
tricky in the sub-systems, where the smaller size may prevent the power-law
scaling to occur over a range of the linear size large enough. In order to make
clear the previous consideration, we present and discuss the following research
questions:

RQ1: Is the fractal dimension well defined for the Eclipse software network
and for the sub-projects?

RQ2: Is the fractal dimension correlated to the presence of bugs in the sub-
projects of a same release?

RQ3: Are the fractal dimension and bugs globally correlated in time, as the
Eclipse systems evolves from one release to another?

RQ4: Is the fractal dimension a reliable global metric for software quality?

We studied the class graphs of Eclipse [3] and of twenty of its sub-projects,
whose source code is freely available on the Internet. Using the same method
followed by Song et al. [70], we calculated the fractal dimension dB for each
of the considered graphs. All these graphs revealed a self-similar structure. In
fig. 10.1 we report the box counting analysis of the software network related
to Eclipse 3.2. Similar plots are observed also for the other versions of Eclipse
analyzed, and for the Eclipse sub-projects the power law behavior is patent.

10.2. EVOLUTION OF THE FRACTAL DIMENSION 121

1 1.5 2 2.5 3 3.5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

log
2
(L

B
)

lo
g 2(N

B
/N

)

eclipse−3.2

Data
fit

Figure 10.1: Log-log plot of NB vs. lB for Eclipse 3.2.

10.2 Evolution of the fractal dimension

Software systems evolve in time, as new features are added, and bugs are fixed.
The corresponding graphs also evolve, both in terms of number of nodes (classes)
and links (relationship between classes). For instance, in the time span consid-
ered, Eclipse evolved from about 8500 nodes (Eclipse 2.1) up to 17800 (Eclipse
3.3). The evolution of some software systems may be easily studied because
programmers use version control systems for the source code, as for instance
CVS (Concurrent Version System) [2] and SVN (Subversion) [6]. In our study, we
analyzed five versions of Eclipse and of twenty of its sub-projects. As a conse-
quence the fractal dimensions also change in time, since they reflect the topol-
ogy of the software network. But these changes may not be completely arbi-
trary, since each software release preserves a bulk of the previous release, and
is built upon it. This means that the fractal dimensions of the various releases
are not independent on each other. This may be particularly true in the case of
sub-projects, where the modifications may be very limited, or even null, among
two consecutive releases. For the entire software system instead it usually hap-
pens that new sub-projects are added in a subsequent release, changing even
radically the network topology, and the value of the fractal dimension may thus
fluctuate more. It must be noted that the fractal dimension does not neces-
sarily increase as the system evolves, as does its size instead, since it reflects
the complexity of the network topology, that is in principle uncorrelated with
system size.

122CHAPTER 10. FRACTAL DIMENSION METRIC AND OBJECT-ORIENTED SOFTWARE QUALIT

Table 10.1: Fractal dimension coefficients for 20 sub-projects of some Eclipse ver-

sions.

Sub-Project 2.1 3.0 3.1 3.2 3.3
compare 2.376 2.935 2.473 3.204 2.492
core.resources 3.057 3.261 3.485 3.528 3.489
core.runtime 2.733 3.428 2.994 2.029 2.075
debug.core 2.275 2.921 2.750 2.873 2.209
debug.ui 2.380 3.204 3.407 4.307 2.779
help 2.325 3.160 2.623 3.522 2.812
jdt.core 3.556 3.628 3.622 4.214 3.812
jdt.debug 2.810 3.598 2.597 3.185 2.745
jdt.junit 2.286 3.234 2.582 3.252 3.010
jdt.launching 2.430 3.031 2.588 3.021 1.899
jdt.ui 3.649 3.857 3.807 4.021 3.649
jface 2.437 3.242 2.525 3.257 2.604
pde.core 2.876 3.466 3.343 3.866 3.408
pde.ui 2.765 3.500 2.988 3.920 3.512
swt 2.865 3.842 3.672 4.200 4.245
team.core 2.052 3.149 2.888 3.310 3.007
team.ui 2.371 3.196 2.478 3.517 3.005
ui.editors 1.555 2.746 2.564 2.910 2.500
ui.workbench 3.093 3.526 3.097 3.640 3.296
update.ui 2.905 2.991 3.031 3.060 2.765

10.3 Results

We analyzed five versions of Eclipse System and twenty sub-projects of the
same versions. All the chosen sub-projects have at least 40 classes, to provide
enough statistics for bugs and for computing the fractal dimension. Our analy-
sis presents two points of view: the evolution in time of the fractal dimension as
Eclipse, as well as its sub-projects, are developed, and an analysis of the fractal
dimension at fixed time, comparing the fractal dimensions of the sub-projects
of a same release. The correlation of fractal dimension with bugs is studied in
both cases.

First of all, we found a range for the scaling of the number of boxes covering
the networks with the linear size large enough to provide a well defined value
of the fractal dimension for all the releases and sub-projects. This is a nice re-
sult in itself, since in principle the scaling may be not well defined for arbitrary
networks. It must be pointed out that there is no a single choice for building
the software graph from the software code, since different relationships may be
chosen to represent the links among nodes. In particular many of these rela-
tionships should preferably be represented in a directed graph.

A first empirical result is that the behavior of the fractal dimension with time
evolution is oscillatory, namely it fluctuates from one release to the next, not
showing regular behavior. In particular, it does not grow as the system size does,
as the releases evolve with software development, as reported in Tab. 10.2. The

10.3. RESULTS 123

same kind of oscillations are shown by the fractal dimension of the sub-systems
(Tab. 10.1), where for most of them the fluctuations exactly replicate those pre-
sented in the time evolution for the whole releases, even if the fractal dimen-
sions of the sub-systems are smaller than those of the whole releases. This latter
fact may suggest that the assembly of the sub-systems software networks pro-
vide a software network which is more complex than each single component,
being the fractal dimension a measure of complexity. In any case the fluctua-
tions presented by the fractal dimension of the entire releases are coherent with
those existing in most of the sub-systems.

The behavior of the fractal dimension in time for the whole releases is re-
flected by the bugs number (Tab. 10.2). In fact the bugs number oscillates from
the first to the last release with the same pattern. This implies the existence
of a high correlation among bugs and fractal dimension for the whole releases,
as reported in Tab. 10.2, where the correlation is above 0.87. We found a high
correletion also between fractal dimension and some traditional metrics [19]
that have been found to be correlated with fault proneness of software systems
(see Tab.10.2). Since CK metrics analyzed (CBO and RFC) refer to single classes,
while the fractal dimension is a global measure of the system, we computed the
mean value of each metric for each version of the analized systems.

The high correlation of fractal dimension with bugs is also shown across
the sub-systems of a same release, as reported as an example in Tab. 10.3 for
Eclipse 3.2. In this case there is no a-priori correlation among the different sub-
systems, since they do not share any parts of code, as it occurs in the case of
the time evolution, where a subsequent release contains part of the code of the
previous one. Thus this empirical result strongly point to the direction that the
fractal dimension may by a reliable indicator for the system quality. We may
now answer to the research questions risen in section 2.

RQ1: Is the fractal dimension well defined for the Eclipse software network
and for the sub-projects?

The answer is positive. We found the scaling regions necessary for defining
the fractal dimension for all the releases and for all the sub-systems with more
than 40 classes. The results also show a high degree of coherence among the
fractal dimensions of the sub-projects in a release and the fractal dimension of
the entire release, as shown in Tabs. 10.1, 10.2.

RQ2: Is the fractal dimension correlated to the presence of bugs in the sub-
projects of a same release?

The fractal dimension is well correlated with the number of bugs affecting
the sub-systems in all of the releases analyzed, as reported in Tab. 10.4. All
the correlations are systematically around 0.7 and all the p-values show an ex-
tremely high level of significance.

RQ3: Are the fractal dimension and bugs globally correlated in time, as the

124CHAPTER 10. FRACTAL DIMENSION METRIC AND OBJECT-ORIENTED SOFTWARE QUALIT

Eclipse systems evolves from one release to another?
Bugs number and fractal dimension display the same kind of oscillations

with the evolution of the system releases. The correlation reported in Tab. 10.2
is particularly high, with a p-value of about 0.05, which may be considered a
good level of significance, given that we had only five measurements.

RQ4: Is the fractal dimension a reliable global metric for software quality?
All the results point into this direction, since we found for the system evo-

lution in time the same oscillations for fractal dimension and for bugs number,
and a very high level of significance for the correlation among fractal dimension
and bugs for the twenty sub-systems in all the releases analyzed.

Table 10.2: Correlation coefficients between some metrics and the fractal dimen-

sion for all the considered versions of Eclipse.

Version Classes Locs CBO RFC Bug FD
Eclipse2.1 8546 779130 5.201 17.21 7023 4.347
Eclipse3.0 12254 1118453 7.112 21.138 16986 4.652
Eclipse3.1 14235 1351957 5.300 17.375 13836 4.505
Eclipse3.2 17165 1638699 7.489 21.206 15481 4.722
Eclipse3.3 17881 1657986 5.205 16.931 10451 4.546
Corr. 0.658 0.661 0.860 0.827 0.873 1
P-Value 0.227 0.224 0.061 0.084 0.053 –

Table 10.3: Correlation coefficients between bugs and fractal dimension for 20

sub-projects of Eclipse 3.2.

Sub-Projects Nr. Classes Total Locs Bugs DF
compare 156 15722 292 3.2040
core.resources 277 26170 188 3.5281
core.runtime 29 2946 37 2.0290
debug.core 160 9371 97 2.8735
debug.ui 742 53507 1039 4.3070
help 1210 234333 1761 4.2138
jdt.core 481 36394 257 3.1850
jdt.debug 112 10877 112 3.0212
jdt.junit 2781 288276 1987 4.0213
jdt.launching 154 12282 111 3.2521
jdt.ui 379 34603 338 3.2572
jface 356 27271 59 3.5217
pde.core 434 29536 307 3.8662
pde.ui 991 79675 652 3.9196
swt 801 106224 1060 4.1996
team.core 202 13064 167 3.3103
team.ui 364 30316 647 3.5166
ui.editors 180 13822 37 2.9100
ui.workbench 1518 128865 971 3.6398
update.ui 134 11255 60 3.0600
correlation 0.6095 0.6217 0.7358 1
P-Value<0.05 0.0043 0.0034 0.0002 —-

10.4. THREATS TO VALIDITY 125

Table 10.4: Correlation coefficients and p-value between bugs and fractal dimen-

sion for 20 sub-projects of Eclipse.

Version bug-df P-Value
Eclipse2.1 0.728 0.000277
Eclipse3.0 0.700 0.000582
Eclipse3.1 0.737 0.000207
Eclipse3.2 0.736 0.000217
Eclipse3.3 0.645 0.002152

10.4 Threats to Validity

The first threat to validity is that we considered just one software system, Eclipse.
Though it is a very large system, composed of many sub-projects developed by
different programmers, and though we studied several versions of it, Eclipse
clearly cannot be representative of all Java systems. Further studies on differ-
ent systems, open source and commercial are needed to further validate our
study.

A second threat, related to the previous one, is that Eclipse may be con-
sidered representative of Java systems, but not of systems written not in Java
code. Thus a full investigation on the possibility of using the fractal dimension
as a single metric able describe the complexity of the whole software system
and of its capability to distinguish high quality software systems, due to the
correlation with bugs, must include a comprehensive study, spanning several
languages and systems.

10.5 Conclusion

We presented a novel empirical analysis where a single measure of complexity,
the fractal dimension, is applied to the concept of software network and to its
sub-networks, in order to introduce a global quality metric for the whole soft-
ware system. For this purpose we showed how the fractal dimension is related
to the bugs affecting the whole system, which are an ubiquitous measure of
system quality, both looking at the evolution in time across different releases as
the system evolves, and at fixed time, across the sub-projects of a same release.
Our results show strong and meaningful correlations among fractal dimension
and bugs affecting the software, to the point that for the entire software sys-
tems they display a same oscillatory behavior. These results are limited to five
releases of the same system, Eclipse, and thus may lack of generality. Further
work is needed in order to extend the validity of our results to other systems, in
particular to different programming languages or software paradigms. This will
constitute the object of our future work.

126CHAPTER 10. FRACTAL DIMENSION METRIC AND OBJECT-ORIENTED SOFTWARE QUALIT

Chapter 11

Concluding remarks

During these three years of Ph.D. I focused my research on the problem of mea-
suring software quality using new approaches. I used use the concept of com-
plex networks to study software networks, introducing new metrics which are
promising for assessing software quality.

In particular I investigated how the presence of fat-tail distributions in soft-
ware properties can be used to understand the process of bug introduction into
software, how it can be used to forecast the evolution of software systems, and
how it can be related to software quality.

I also investigated such properties in software systems under refactoring,
analyzing how the presence of power-laws can be connected to specific types of
refactorings and to the way they contribute to improve software quality. These
studies can be found in the papers listed at the end of this thesis (see the List of

publications).
The main results obtained during these three years can be resumed as fol-

lows:
I analyzed the bug distribution in modules of various versions of the Java

Eclipse system, by comparing the goodness of fit of log-normal, Double Pareto,
Yule-Simon and Weibull distributions and by using an empirical analysis. I
showed that new bugs are introduced, on average, in larger amounts in mod-
ules which where more bug affected in previous releases. This explicitly sup-
ports the“preferential attachment mechanism” at the basis of the Yule-Simon
model, not excluding mechanisms underlying the log-normal and the Double
Pareto models. The last two models are, however, less useful because they can-
not account for zero values, namely modules with no bugs, and may be only
useful to model a reduced part of the entire software system.

I analyzed the distribution of SNA metrics in OO software networks, com-
paring their properties with those of CK metrics and other graph-related met-
rics, to study the impact of such metrics on Bugs. The empirical distributions of

127

128 CHAPTER 11. CONCLUDING REMARKS

all the studied metrics systematically present power-laws in their tails, a prop-
erty which holds also for bug distribution. We found analytical distribution
functions suitable for fitting the empirical data. Power-law always outperforms
other fittings in the tails, whereas Yule-Simon distribution follows the shapes
of most metrics empirical distributions very well. In particular, Ties and Fan-in
metrics are fitted by Yule-Simon distribution from the very beginning of val-
ues, the determination coefficients being over 0.98. We have shown - using the
metric Ties - how it is possible to provide reliable estimates for averages and
extreme values of subsequent releases from the knowledge of the best fitting
parameters and system size. The knowledge of extreme values of metrics could
be exploited to keep under control the quality of software systems, because in
general high values of these metrics denote high coupling among classes. I
also shown how the correlations among SNA metrics and Bugs are generally
good. I also found that some structural metrics look negatively correlated with
bugs, which may provide alternative insights to practitioners, with respect to
the more popular and largely used metrics positively correlated to bugs. Among
the contributions of this analysis there is the finding that some SNA metrics can
be useful as software quality indicators and that the role and the position of the
software nodes are related to bug proneness.

Finally I presented a novel empirical analysis where a single measure of
complexity, the fractal dimension, is applied to the concept of software net-
work and to its sub-networks, in order to introduce a global quality metric for
the whole software system. For this purpose I shown how the fractal dimen-
sion is related to the bugs affecting the whole system, which are an ubiquitous
measure of system quality, both looking at the evolution in time across differ-
ent releases as the system evolves, and at fixed time, across the sub-projects of
a same release. The results show strong and meaningful correlations among
fractal dimension and bugs affecting the software, to the point that for the en-
tire software systems they display a same oscillatory behavior. These results
are however limited to five releases of the same system, Eclipse, and thus may
lack of generality. A more recent study, not reported in the thesis, shows that
these results can be extended also to various versions of Netbeans and to its
sub-projects, suggesting that the fractal dimension can be used as global index
for the software quality for large Java systems.

Bibliography

[1] Apache Ant. http://www.apache.org/. [cited at p. 32]

[2] Cvs. http://www.nongnu.org/cvs/. [cited at p. 32, 66, 121]

[3] Eclipse. http://www.eclipse.org/. [cited at p. 31, 65, 89, 120]

[4] NetBeans. http://www.netbeans.org/. [cited at p. 32, 65, 89]

[5] Jdk. http://www.java.sun.com/. [cited at p. 32]

[6] Svn. http://subversion.tigris.org/. [cited at p. 32, 121]

[7] L. A. Adamic, “Zipf, power-law, pareto - a ranking tutorial", Information Dynamics
Lab, HP Labs, HP Labs, Palo Alto, CA 94304, Tech. Rep., October 2000. [Online].
Available: http://www.hpl.hp.com/research/idl/papers/ranking/ [cited at p. 54]

[8] Andersson and P. Runeson. A Replicated Quantitative Analysis of Fault Distribu-
tions in Complex Software Systems. IEEE Trans. Software Eng. 33 (2007) 273-286.
[cited at p. 19, 51, 52, 66]

[9] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats on building models
from cvs and bugzilla repositories: the mozilla case study. In Proceedings of the 2007

conference of the center for advanced studies on Collaborative research, CASCON ’07,
pages 215–228, New York, NY, USA, 2007. ACM. [cited at p. 70]

[10] A. Barabasi and R. Albert. Emergence of scaling in random networks. Science 286
(1999) 509-512. [cited at p. 1, 6, 18]

[11] A. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random net-
works: the topology of the world wide web. Phys. A, 281:69–77, 2000. [cited at p. 1, 6]

[12] V.R. Basili, L.C. Briand, and W.L. Melo, A Validation of Object Oriented Design
Metrics as Quality Indicators. IEEE Transactions on Software Engineering, vol.
22(10), pp.267- 271, 1996. [cited at p. 11, 13, 82]

[13] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton, and
E. Tempero Understanding the shape of Java software. In Proc. of the 21st ACM
SIGPLAN conference Object-oriented programming languages, systems, and appli-
cations (OOPSLA), Oct. 2006, Portland, USA. [cited at p. 6, 21, 52]

129

130 BIBLIOGRAPHY

[14] F. Brito e Abreu The MOOD Metrics Set In Proc. ECOOP’95 Workshop on Metrics
(1995) [cited at p. 11]

[15] Bugzilla. http://www.bugzilla.org/ [cited at p. 66]

[16] S.R. Chidamber and C.F. Kemerer Towards a Metrics Suite for Object Oriented
Design Proc. Conf. Object Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA 91), vol. 26, no. 11, pp. 197-211, 1991. [cited at p. 13]

[17] H. Bauke. Parameter estimation for power-law tail distributions by maximum
likelihood methods. European Physical Journal B 44 (2007) 167-173. [cited at p. 31]

[18] G.J. Baxter and M.R. Frean Software graphs and programmer awareness.
arXiv:0802.2306v1 (2008) [cited at p. 19]

[19] S.R. Chidamber and C.F. Kemerer A metric suite for object-oriented design IEEE
Trans. Software Eng., 20 (1994) 476-493. [cited at p. 1, 11, 25, 46, 47, 106, 123]

[20] S.R. Chidamber, D.P. Darcy, and C.F. Kemerer Managerial Use of Metrics for Object
Oriented Software: An Exploratory Analysis. IEEE Trans. Software Eng., 24 (1998)
629-639. [cited at p. 11, 13]

[21] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empiri-
cal data. E-print (2007) arXiv:0706.1062. [cited at p. 31]

[22] G. Concas, M. Marchesi, S. Pinna, and N. Serra. On the suitability of yule process
to stochastically model some properties of object-oriented systems. Physica A 370
(2006) 817-831. [cited at p. 7, 14, 15, 19, 21, 25, 29, 52, 66, 106, 109, 110, 119]

[23] G. Concas, M. Marchesi, S. Pinna, and N. Serra. Power-laws in a large object-
oriented software system. IEEE Trans. Software Eng. 33 (2007) 687-708. [cited at p. 5, 6,

9, 19, 20, 25, 29, 47, 51, 66, 105]

[24] G. Concas, M. Locci, M. Marchesi, R. Tonelli, and I. Turnu. Computing the fractal
dimension - a global metrics for large software systems. In Proc. of 14th International

Conference on Computational Intelligence and Software Engineering (CISE), Wuhan,

China, IEEE Press, pages 1–4, 2010. [cited at p. 11, 15]

[25] G. Concas, M. Marchesi, A. Murgia, S. Pinna, and R. Tonelli. Assessing traditional
and new metrics for object-oriented systems. In Proceedings of the 2010 ICSE Work-

shop on Emerging Trends in Software Metrics, WETSoM ’10, pages 24–31, New York,
NY, USA, 2010. ACM. [cited at p. 119]

[26] A. de Moura, Y. Lai, and A. Motter. Signatures of small-world and scale-free prop-
erties in large computer programs. Physical Review E 68 (2003) 017102. [cited at p. 18]

[27] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats on building models
from cvs and bugzilla repositories: the mozilla case study. In CASCON, Toronto, CA,
Oct 23-25 2007. [cited at p. 70]

BIBLIOGRAPHY 131

[28] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy, N. Nagappan
and A. V. Aho, Do Crosscutting Concerns Cause Defects?. IEEE Trans. Software Eng.
26 (2000) 786-796. [cited at p. 69, 70]

[29] D. de Solla Price. A general theory of bibliometric and other cumulative advantage
processes. J. Amer. Soc. Inform. Sci. 27 (1976) 292-306. [cited at p. 18]

[30] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. Computer Communications Rev., 29:251–264, 1999. [cited at p. 2]

[31] J. Feder. Fractals. Plenum press, New York, 1988. [cited at p. 15]

[32] N. Fenton “Software Measurements, a Necessary Scientific Basis” IEEE Trans. on
Softw. Eng. Vol. 20 n. 3, (1994). [cited at p. 1]

[33] N. Fenton and N. Ohlsson. Quantitative Analysis of Faults and Failures in a Com-
plex Software System. IEEE Trans. Software Eng. 26 (2000) 797-814. [cited at p. 19, 51, 52,

53]

[34] S. Focardi, M. Marchesi, and G. Succi. A stochastic model of software mainte-
nance and its implications on extreme programming processes, In: G. Succi, M.
Marchesi (Eds.). Extreme Programming Examined, The XP Series, Addison-Wesley,
2000, pp. 191-206. [cited at p. 5, 6]

[35] N. Ganesh, K. Gopinath and V. Sridhar, “Structure and Interpretation of Computer
Programs”. cs.SE arXiv:0803.4025v1

[36] C. P. Stark and N. Hovius, “The characterization of landslide size distributions”,
Geophysical Res. Lett., Vol. 28, No. 6, pp. 1091-1094, March 15, 2001. [cited at p. 21]

[37] T. Gymothy, R. Ferenc, and I. Siket Empirical validation of object-oriented metrics
on open source software for fault prediction IEEE Trans. Software Eng. 31 (2005)
897-910. [cited at p. 11, 13, 82]

[38] M. L. Goldstein, S. A. Morris, and G. G. Yen. Problems with fitting to the power-
law distribution. The European Physical Journal B - Condensed Matter and Complex
Systems 41 (2004) 255-258. [cited at p. 31]

[39] A. Gorshenev and Y. Pis’mak. Punctuated equilibrium in software evolution. Phys-
ical Review E 70 (2004). [cited at p. 18]

[40] B. M. Hill. A simple general approach to inference about the tail of a distribution.
The Annals of Statistics 3 (1975) 1163-1174. [cited at p. 30]

[41] M. Ichii, M. Matsushita, K. Inoue. An Exploration of Power-Law in Use-Relation
of Java Software Systems. Software Engineering, 2008. ASWEC 2008. 19th Australian
Conference on (2008) 422-431. [cited at p. 19]

132 BIBLIOGRAPHY

[42] C. Kai-Yuan, Y. Bei-Bei. Software execution processes as an evolving complex net-
work. Information Sciences 179 (2009) 1903-1928. [cited at p. 18]

[43] http://netbeans.org/bugzilla/report.cgi [cited at p. 66]

[44] L. Hatton, “Power-law distributions of component size in general software sys-
tem”. IEEE Transactions on Software Engineering, 35(4) IEEE, July, pp. 566-572
(2009). [cited at p. 52]

[45] P. Liggesmeyer, G Engels, J Munch, J. Dorr, N. Riegel Proc. of Software Engineering
2009 Kaiserslautern, Germany, 2-6 March 2009, pp. 151-162. [cited at p. 51]

[46] W. Li. The big bang graph-a colored graph representation of software design. ACM
Computer Science Research Trends (Ed. Casey B. Yarnall), Nova Science Publishers,
Book Chapter (2008). [cited at p. 5]

[47] M. Lorenz, and I. Kidd Object Oriented software metrics: A pratical guide Endge
wood cliffs, N.J.: Pretience Hall [cited at p. 11, 88]

[48] Louridas, P., Spinellis, D., and Vlachos, V. Power laws in software. ACM Trans.
Softw. Engin. Method. 18, 1, Article 2 (September 2008), 26 pages. [cited at p. 6, 7, 19, 20,

21, 45, 51, 105]

[49] M. Marchesi, S. Pinna, N. Serra, S. Tuveri. Power laws in smalltalk. In: ESUG.
Conference 2004 Research Track (2004). [cited at p. 18]

[50] D.W. Matula, G. Marble and J.D. Isaacson, Graph Coloring Algorithms. In Graph
Theoryand Computing (Ed. R. Read). New York: Academic Press, pp. 109-122, 1972.
[cited at p. 110]

[51] T. McCabe A Complexity Measure. IEEE Transactions on Software Engineering,
Vol.2, No.4, 308-320. 1976 [cited at p. 13]

[52] S. Milgram. The small world problem. Psych. Today, 2:60–67, 1967. [cited at p. 6]

[53] E. Mills SEI Curriculum Module SEI-CM-12-1.1 Software Engineering Institute -
Technical Report [cited at p. 1]

[54] M. Mitzenmacher. Dynamic Model for File Size and Double-Pareto Distribution.
Internet Mathematics 3 (2003) 305-333. [cited at p. 7, 21, 22, 55]

[55] M. Mitzenmacher. A brief history of generative models for power law and lognor-
mal distributions. Internet Mathematics 1 (2004) 226-251. [cited at p. 17, 58]

[56] C. Myers. Software systems as complex networks: structure, function, and evolv-
ability of software collaboration graphs. Physical Review E 68 (2003). [cited at p. 2, 6, 9,

18, 105]

BIBLIOGRAPHY 133

[57] M. Newman. Power laws, pareto distributions and zipf’s law. contemporary
Physics 46 (2005) 323-351. [cited at p. 13, 17, 20, 21, 23, 27, 45, 52, 65, 74, 85]

[58] T.J. Ostrand and E.J. Weyuker. The Distribution of Faults in a Large Industrial Soft-
ware System. Proc. ACM SIGSOFT Int’l Symp. Software Testing and Analysis (ISSTA
’02), 27, 2002, pp. 55-65. [cited at p. 19]

[59] T.J. Ostrand, E.J. Weyuker, and R.M. Bell. Predicting the Location and Number
of Faults in Large Software Systems. IEEE Trans.Software Eng. 31 (2005) 340-355.
[cited at p. 19]

[60] A. Potanin, J. Noble, M. Frean, and R. Biddle. Scale-free geometry in object-
oriented programs. Communications of the ACM 48 (2005) 99-103. [cited at p. 2, 5, 6,

18]

[61] Qualitas Research Group, Qualitas Corpus Version 20090202,
http://www.cs.auckland.ac.nz/ewan/corpus. The University of Auckland, February
2009. [cited at p. 78, 89]

[62] W. J. Reed, “The Pareto Law of Incomes - An Explanation and an Extensio”, Physica
A, Vol. 319, 469-485. 2003. [cited at p. 22]

[63] W. J. Reed and B. D. Hughes, “From Gene Families and Genera to Incomes and
Internet File Sizes: Why Power-Laws Are So Common in Natur”, Physical Review E,
vol. 66 (2002), 67-103. [cited at p. 21]

[64] W. J. Reed and M. Jorgensen, “The Double Pareto - Lognormal Distribution - A
New Parametric Model for Size Distributions”, Communications in Statistics: The-
ory and Methods, 33-8. 2004. [cited at p. 21]

[65] J.P. Scott Social Network Analysis Sociology, Vol. 22, No. 1, 109-127 (1988)
[cited at p. 5]

[66] H. Seal. The maximum likelihood fitting of the discrete pareto law. Journal of the
Institute of Actuaries 78 (1952) 115-121. [cited at p. 30]

[67] H. Simon. On a class of skew distribution functions. Biometrika 42 (1955) 425-440.
[cited at p. 18, 22, 66]

[68] N. D. Singpurwalla, Extreme Values from a Lognormal Law With Applications to
Air Pollution Problems Technometrics, VOL. 14, No. 3, (1972) [cited at p. 84]

[69] C. Song, L. Gallos, S. Havlin, and H. A. Makse. How to calculate the fractal di-
mension of a complex network: the box covering algorithm. Journal of Statistical

Mechanics, P03006, 2007. [cited at p. v, 15, 16, 110]

[70] C. Song, S. Havlin, and H. Makse. Self-similarity of complex networks. Nature,
433:392–395, 2005. [cited at p. 2, 6, 9, 14, 15, 106, 109, 115, 120]

134 BIBLIOGRAPHY

[71] R. Subramanyam, and M. Krishan Empirical analysis of CK metrics for object-
oriented design complexity: Implications for software defects IEEE Trans.Software
Eng. 29 (2003) 297-310. [cited at p. 11, 13]

[72] T. Tamai and T. Nakatani. Analysis of software evolution processes using statistical
distribution models. Proc. of the International Workshop on Principles of Software
Evolution, IWPSE ’02, Orlando, Florida, 2002, pp. 120-123. [cited at p. 18]

[73] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton and J. Noble.
Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies 2010 Asia

Pacific Software Engineering Conference (APSEC2010), Dec. 2010. [cited at p. 89]

[74] A. Tosun, B. Turhan and A. Bener. Validation of Network Measures as Indicators of
Defective Modules in Software Systems. Proceedings of the 1st International Con-
ference on Predictor Models (PROMISE), 2009. [cited at p. 13, 14, 88]

[75] I. Turnu, G. Concas, M. Marchesi, S. Pinna, and R. Tonelli. A modified yule pro-
cess to model the evolution of some object-oriented system properties. Information

Sciences, 181:883–902, 2011. [cited at p. 9]

[76] S. Valverde, R. Ferrer-Cancho, and R. Solé. Scale-free networks from optimal de-
sign. Europhysics Letters 60 (2002) 512-517. [cited at p. 2, 5, 6, 18, 105]

[77] S. Valverde and R. Solé. Hierarchical small worlds in software architecture. Work-
ing Paper 03-07-044, Santa Fe Institute, Santa Fe, NM (2003) . [cited at p. 6, 18]

[78] S. Valverde and R. Solé. Network motifs in computational graphs: A case study in
software architecture. Phys Rev. E 72 (2005) 026107. [cited at p. 1, 6]

[79] R. Vasa, M. Lumpe, P. Branch and O. Nierstrasz Comparative analysis of evolving
software systems using the Gini coefficient icsm, pp.179-188, 2009 IEEE Interna-
tional Conference on Software Maintenance, 2009 [cited at p. 66]

[80] E.J. Weyuker “Evaluating Software Complexity Measures” IEEE Trans. on Softw.
Eng., Vol. 14 n. 9, 1988. [cited at p. 1]

[81] R. Wheeldon and S. Counsell. Power law distributions in class relationships. Proc.
3rd IEEE Int. Workshop on Source Code Analysis and Manipulation (SCAM03) (2003)
pp. 45-57. [cited at p. 6, 19, 41, 52]

[82] W.K. Wiener-Ehrich, J.R. Hamrick and V.F. Rupolo, “Modeling software behavior
in terms of a formal life cycle curve: implications for software maintenance”, IEEE
Trans. Software Eng., vol. 10, no. 4, pp. 376-383, 1984. [cited at p. 22]

[83] K. Yamasaki, K. Matia, D. Fu, S. V. Buldyrev, F. Pammolli, M. Riccaboni, and H. E.
Stanley. Preferential Attachment and Growth Dynamics in Complex Phys. Rev. E 74
(3) [cited at p. 28]

BIBLIOGRAPHY 135

[84] G. Yule A mathematical theory of evolution based on the conclusions of dr. j.c.
willis Philos. Trans. R. Soc. London B 213 (1925) 21-87. [cited at p. 22, 23]

[85] H. Zhang. On the Distribution of Software Faults. IEEE Trans. on Software Eng. 34
(2008) [cited at p. 19, 22, 51, 52, 54, 56, 66]

[86] H. Zhang and H. B. K. Tan, “An Empirical Study of Class Sizes for Large Java Sys-
tems”, Proc. of 14th Asia-Pacific Software Engineering Conference (APSEC 2007),
Nagoya, Japan, December 2007. IEEE Press, pp. 230-237. [cited at p. 21]

[87] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on
dependency graphs. Proceedings of the 30th international conference on Software
engineering, May 10-18, 2008, Leipzig, Germany. [cited at p. 6, 11, 12, 13, 14, 87, 89]

136 BIBLIOGRAPHY

List of Publications Related to the

Thesis

Published papers

Journal papers

• 1) G. Concas, M .Marchesi, A. Murgia, R. Tonelli, and I. Turnu “On the distribu-
tion of bugs in the Eclipse system”, IEEE TRANS. SW. ENG. (2011)

• 2) G. Concas, M .Marchesi, A. Murgia, R. Tonelli, “An Empirical Study of Social
Networks Metrics in Object-Oriented Software”, Advances in Software Engineer-
ing, Volume 2010, Article ID729826, 20 pages doi:10.1155/2010/729826

• 3) I. Turnu, G. Concas, M. Marchesi, S. Pinna, R. Tonelli “A modified Yule process
to model the evolution of some object-oriented system properties”, Information
Sciences 181 (2011) 883-902 .

• 4) G. Concas, G. Destefanis, M. Marchesi, R. Tonelli “An empirical study of object
oriented metrics for assessing the phases of an agile project.”, Int’l Journal of
Software Engineering and Knowledge Engineering (2012), to appear.

• 5) M. Locci, G. Concas, R. Tonelli, I. Turnu , “Three Algorithms for Analyzing
Fractal Software Networks”, Wseas Trans. on Information Science and Applica-
tions , Issue 3, Volume 7, March 2010.

• 6) R. Tonelli, G. Concas, M. Locci, “Three efficient algorithms for implementing
the preferential attachment mechanis in Yule-Simon Stochastic Process”, WSEAS
Transactions on Information Science and Applications, Issue 2, Volume 7, Febru-
ary 2010.

• 7) A. Murgia, R. Tonelli, G. Concas, M. Marchesi, S. Counsell “Parameter-based
refactoring and the relationship with fan-in/fan-out coupling” Journal of Object
Technology – Conditionally Accepted.

137

138 BIBLIOGRAPHY

Conference papers

• 8) G. Destefanis, R. Tonelli, G. Concas, M. Marchesi “An Analysis of Anti-Micro-
Patterns Effects on Fault- Proneness in Large Java Systems” SAC’12, March 25-29,
2012, Riva del Garda, Italy.

• 9) R. Tonelli, G. Destefanis “Mixing SNA and Classical Software Metrics for Sub-
Projects Analysis. ”11th WSEAS International Conference on SOFTWARE EN-
GINEERING, PARALLEL and DISTRIBUTED SYSTEMS (SEPADS ’12), 22-24 Feb.
2012, Cambridge UK.

• 10) A. Murgia, R. Tonelli, M. Marchesi, G. Concas, S. Counsell,“Parameter-based
refactoring and the relationship with fan-in/fan-out coupling.” 2011 Fourth In-
ternational Conference on Software Testing, Verification and Validation Work-
shops, - 25 March 2011, Berlin, Germany.

• 11) A. Murgia, R. Tonelli, M. Marchesi, G. Concas, S. Counsell “An Empirical
Study of Refactoring in the Context of FanIn and FanOut Coupling”, 2011 18th
Working Conference on Reverse Engineering - 17-21 Oct. 2011, Lymerich, Ire-
land.

• 12) A. Murgia, R. Tonelli, M. Marchesi, G. Concas, S. Counsell, J. McFall and S.
Swift “Refactoring and its Relationship with Fan-in and Fan-out: An Empirical
Study” 16th European Conference on Software Maintenance and Reengineering,
27-30 March 2012, Szeged, Hungary.

• 13) G. Concas, M. Locci, M. Marchesi, R. Tonelli, I. Turnu: “Computing the Frac-
tal Dimension - a Global Metrics for Large Software Systems”, Proceedings of
CISE 2010, December 10-12, 2010 Wuhan, China.

• 14) R. Tonelli, Giulio Concas, Michele Marchesi, Alessandro Murgia: “An Analysis
of SNA metrics on the Java Qualitas Corpus”, Proceedings of ISEC (India Software
Engineering Conference, Feb 23-26, 2011, Thiruvananthapuram, India.

• 15) I. Turnu, G. Concas, M. Marchesi, R. Tonelli: “The Fractal Dimension Metric
and Its Use to Assess Object-Oriented Software Quality”, Proceedings of WET-
SOM 2011, 24 May 2011- Honolulu, Hawaii, USA.

• 16) A. Murgia, G. Concas, M. Marchesi, R. Tonelli, “A machine learning approach
for text categorization of fixing-issue commits on CVS”, Proceeding of Empirical
Software Engineering and Measurement, September 16, 2010, Bolzano, Italy.

• 17) G. Concas, M. Marchesi, A. Murgia, S. Pinna, R. Tonelli, “Assessing Tradi-
tional and New Metrics for Object-Oriented Systems”, proceedings of ICSE, In-
ternational Workshop on Emerging Trends in Software Metrics, (WETSOM) May
2010, Cape Town, South Africa.

BIBLIOGRAPHY 139

• 18) R. Tonelli, G. Concas, M. Locci: “Efficient Implementation of the Yule-Simon
Stochastic Process for Modeling Internet and Software Development Activities”,
proc. Of the 8th WSEAS int. conf. 2009.

• 19) Alessandro Murgia, Roberto Tonelli: “Empirical study on software develop-
ment and issue growth”, proceedings of GIIS 2009, Salerno, Italy.

• 20) A. Murgia, G. Concas, S. Pinna, R. Tonelli, I. Turnu: “Empirical study of soft-
ware quality evolution in open source projects using agile practices”, ETSM 2009,
CoRR abs/0905.3287: (2009) Electronic Edition pubzone.org CiteSeerX Google
scholar BibTeX.

• 21) A. Murgia, G. Concas, M. Marchesi, R. Tonelli, I. Turnu: “An Analysis of Bug
Distribution in Object Oriented Systems”, ETSM 2009, CoRR abs/0905.3296: (2009)
Electronic Edition pubzone.org CiteSeerX Google scholar BibTeX.

Submitted papers

• 22) I. Turnu , G. Concas, M. Marchesi, R. Tonelli “Fractal Dimension of Software
Networks: a Global Quality Metric.”, submitted to Information Sciences.

