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Introduction

One of the most complex problems in computer networks is controlling

the routing decisions in inter-domain routing.

Competing entities called Autonomous Systems (ASes), operated by

many different Administrative Domains, must cooperate with each other

in order to provide global Internet connectivity according to business and

commercial agreements, using an inter-domain routing protocol able to

apply local policies for selecting routing and distributing reachability in-

formation to each other.

A fully independent management provided by each AS makes the prob-

lem of controlling inter-domain routing difficult to solve, due to potentially

conflicting policies essentially derived from the business agreements and

competition between domains, and from the feature of the inter-domain

routing protocol of advertising only a best path for a destination for per-

formance and reliability reasons.

The goal of this thesis is a deeply exploration of the issues related to
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routing decisions in inter-domain routing, with an analysis of the inter-

connection structure and the network hierarchy, the examination of the

inter-domain routing protocol used to exchange network reachability in-

formation with other systems, the examination of the routing decision pro-

cess between the entities according to the attributes and the policies and

the study of the topology generators of the AS relationships, reviewing

the most interesting proposals in this area, describing why these issues are

difficult to solve, and proposing solutions allowing to better understand

the routing process and optimally solve the trade-off of implementing a

peering engagement between two Administrative Domains, against the

extra cost that this solution represent.

More specifically, the objectives in this thesis are described as follows:

1. a deep analysis of the current inter-domain network model, and

of the aspects related to the routing decision process inside a BGP

speaker according to the policies and the filters over the updates.

A new scheme for the Routing Process Model is proposed, and a

formalization of a new and more complex routing process model

inside a BPG speaker is made;

2. a deep analysis of the routing decision process between the Au-

tonomous Systems, according to the attributes that administrators

can apply to control the policies.

Competing ASes must cooperate with each other in order to pro-
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vide global Internet connectivity (cooperation), according to their

business and commercial agreements (competition), using a routing

process model to set their policy independently to each others (au-

tonomy), and making all the manipulations allowed by the protocol

(expressiveness), without any global coordination;

3. an analysis of the problem of controlling inter-domain routing, due to

potentially conflicting policies derived from the business agreements

and competition between domains, that can lead to routing anomalies

such as instability, divergence in the update process, delays;

4. an analysis of the topology of the relationships and agreements be-

tween ASes to obtain a complete and accurate AS-level connectivity,

and of the interconnection structure of the Administrative Domains,

in order to understand the topological structure of the system;

5. an exploration of strategies for competitions between Administrative

Domains to identify a Settlement Model from the business relation-

ships. In particular, strategies for peering competitions are discussed;

6. an organization of the different aspects to be taken into account in

a peering engagement. A methodology to structure these aspects is

proposed to optimally solve the trade-off of implementing a peering

engagement against the extra cost represented by this solution;

7. a formulation of the decision problem of maximization of the impor-
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tance of the aspects and alternative options to be taken into account in

ex-ante evaluations of a peering engagement, subject to their mutual

relationship with budget constraints.

The problem has been expressed as an integer programming formula-

tion, and a practical implementation of a decision maker framework

called XESS2 (eXtended EGP Support System) has been proposed, in

order to find candidate solutions and to produce a synthetic conclu-

sion on the allocation of budgets. It is able to make a comparative

evaluation of alternative options through a numerical evaluation of a

set of variables, and to find an optimal reduced set of solutions using

a combinational optimization formulation and an integer program-

ming formulation of the problem.

The thesis is organized in seven chapters.

Chapter 1 introduces the basics and the necessary background to un-

derstand the mechanisms and the techniques proposed along this thesis.

The fundamental concepts of intra-domain and inter-domain routing, the

network hierarchy and the types of interconnection between ASes are ex-

plained, including a description of the main features of the routing proto-

col and its policy-based nature. In particular, the Border Gateway Protocol

(BGP), and the BGP message formats are deeply analyzed according to

RFC 4271.
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Chapter 2 covers the aspects of the routing decision process inside a BGP

speaker, according to the attributes that administrators can apply to control

the policies. In particular, mechanisms to run policies and filters over the

updates, and to add or modify a route’s path attribute before advertising

it to a neighbor are analyzed.

In addition, the traditional CISCO’s Routing Process Model is de-

scribed, and a new and more complete Routing Process Model is proposed.

Finally, a formalization of the Decision Process with the definition of

the attribute function, the Degree of Preference function and the Route Selection

function is proposed.

Chapter 3 covers the aspects of the routing decision process between

BGP speakers in inter-domain routing, exposing the major issues related

to routing decisions through the review of the most interesting proposals

in this area, and describing why these issues are difficult to solve.

In particular, issues related to BGP divergence derived from distributed

conflicting routing policies, to the exploration of alternative paths when a

path failure or routing policy changes occur, to well-known methodologies

such as hot-potato routing or prefix hijacking, and in-band and out-of-band

solutions are analyzed.

Chapter 4 exposes the major limitations of the research area related to the

study of the AS relationships and the development of accurate topology
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generators through the review of the most interesting papers in this area.

In particular, issues related to the commercial agreements model, to the

interconnection structure model, focusing on the generation of synthetic

AS topologies, and to the exporting policies model, are deeply discussed.

Chapter 5 introduces the analysis of the business relationships and the

possible strategies for competitions between Administrative Domains, in

order to identify a Settlement Model of the transactions.

Two types of business agreements between Administrative Domains

to provide reachability are considered, related to Transit services, where

one Administrative Domain provides reachability to all destinations in its

routing table to its customers, and to Peering services, where Administrative

Domains provide mutual reachability to a set of their routing table.

In particular, a deep analysis of the peering engagement is made, with

the description of the types of peering interconnection and peering rela-

tionships.

Chapter 6 proposes a formulation of a methodology to structure the

different aspects to be taken into account in a peering engagement, in

order to optimally solve the trade-off of implementing a process of peering

engagement against the extra cost that this solution represent.

In particular, a comparative analysis of the aspects and alternative

options to be taken into account in ex-ante evaluations of a peering en-
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gagement is proposed, and a decision maker called XESS2 (eXtended EGP

Support System) able to process the aspects and the alternative options,

to find candidate solutions, and to produce a synthetic conclusion on the

allocation of budgets in a peering engagement is explained.

XESS2 is designed to help decision-makers to integrate the different

options and to produce a single synthetic conclusion at the end of the

evaluation through a combinational optimization formulation and an in-

teger programming formulation of the problem.

Chapter 7 highlights the main conclusions of this thesis, focusing on

the analysis of the issues related to the routing decision process in the

interdomain routing generated by a lack of a global global coordination,

demonstrating to be inaccurate and poorly effective in controlling and

communicating the inter-domain decisions, and on the development of

solutions aimed at optimally implementing of a peering engagement be-

tween multiple solutions with different monetary costs, proposing several

areas of interest for future implementations of the work done in this thesis.
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Chapter 1

Background

1.1 Terminology and Concepts

The Internet is decentralized collection of autonomous network, indepen-

dent entities with its own policies, services, and customer targets. The

performance of the communications over these entities depends on the

routing process, that allows all networks to interconnect with each other

directly or indirectly. The routing process determines how packets are

treated and forwarded through network using a common IP addressing.

Each of these networks, known as Autonomous System (AS), appears

as a single coherent entity to other networks, with a common routing

policy, and managed by a single administration authority. Each AS has

the responsibility to route the traffic of a set of customer IP addresses,
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and the scalability of the Internet routing infrastructure depends on the

aggregation of IP addresses in contiguous blocks, called prefixes1. It is

estimated that today’s Internet is an interconnection of more than 26000

ASes [25].

RFC 4271 [126] defines the Autonomous System as “a set of routers

under a single technical administration, using an interior gateway protocol

(IGP) and common metrics to determine how to route packets within the

AS, and using an inter-AS routing protocol to determine how to route

packets to other ASes”.

For the purpose of this work, each administration authority is called

Administrative Domain (AD) as defined in RFC 1125 [37], as a set hosts and

network resources that is governed by common policies2. Each AD may

have the control of one or more ASes3 as illustrated in Figure 1.1.

Examples of Administrative Domains range from universities and cor-

porate networks to large Internet Service Providers (ISPs) such as AT&T.

1The term prefix indicates an aggregation of IP addresses in contiguous blocks consisting

of a 32-bit IP address and a mask length (e.g., 193.43.2.0 255.255.255.0 or 193.43.2.0/24)
2RFC 1125 defines the Administrative Domain referred to the Research Internet, “the

collection of government, university, and some private company, networks that are used by

researchers to access shared computing resources (e.g., supercomputers), and for research

related information exchange (e.g., distribution of software, technical documents, and

email)” [37].
3The relationship between ASes inside an Administrative Domain are called sibling

relationships when each AS export all of its routes to the other ASes [136] [53].
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Figure 1.1: Administrative Domains and Autonomous Systems.

Each AS is represented by an identifying number, called AS Number

(ASN)4. An ASN is a 16 bit number (65536 AS numbers), and some ASN

are for private use or reserved.

The registration and the administration of IP and AS numbers is possi-

ble via an Internet Registry, as ARIN (an Internet registry that provides the

WHOIS5 lookup service in North America, South America, the Caribbean,

and sub-Saharan Africa), RIPE NCC (which provides services for Europe,

the Middle East, and parts of Africa), and APNIC (which provides services

for Asia Pacific).

4There is no one-to-one relationship between AS numbers and ISPs.
5The WHOIS service provides information about each AS such as the name and address

of the administrative domain that the AS belongs to.
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Inter-AD routes are selected according to policy-related parameters

(e.g., cost, access rights), in addition to the traditional parameters of

connectivity and congestion. A Policy Routing (PR) is needed to navi-

gate through the policy boundaries created by numerous interconnected

ADs.

In addition, each AD has its own privileges and perspective of the

network, and therefore it makes its own evaluation of legal and preferred

routes. Today, there is little regulation, and each AD is free to decide where,

how, and with whom to connect.

In the next sections, an brief explanation of intra-domain e inter-domain

routing is made.

1.1.1 Routing Policies

An Autonomous System employs an intra-domain (intra-AS) routing to

determine how to reach each customer path, and an inter-domain (inter-AS)

routing to determine the reachability of paths in other ASes.

Intra-domain routing is usually optimized in accordance with the re-

quired technical demands, with the transmission of the prefixes towards

their destination using algorithms able to find the best path to each desti-

nation.

In the intra-domain routing, routers run an Interior Gateway Protocol

(IGP) such as Routing Information Protocol (RIP) [75], Open Shortest Path
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Figure 1.2: Autonomous Systems. EGP and IPG

First (OSPF) [116], or Intermediate System-to-Intermediate System (IS-IS)

[79].

The interconnection between ASes is made via Exterior Gateway Pro-

tocols (EGPs), able to provide a more structured view of the Internet by

segregating routing domains into separate administrations, and capable of

solving the issues related to the scalability of IGP protocols in enterprise

networks.

Inter-domain usually reflects political and business agreements between

the networks and companies involved, imposing restrictions in traffic rout-

ing between ASes according to the routing policies of each domain involved

in the routing process.
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These policy-based metrics allow to override distance-based metrics

in favor of policy concerns, enabling each AS to independently define its

routing policies with little or no global coordination.

Inflated AS paths and a suboptimal routing are the results of these

policies6.

The current Internet de facto standard EGP is the Border Gateway Protocol

Version 4 (BGP-4), defined in RFC 1771 [123] on March of 1995, and revised

in RFC 4271 [126] on January of 2006. Figure 1.2 illustrates a scheme of a

generic inter-domain scenario.

1.1.2 AS Interconnection

The interconnection between ASes can be applied via a single or via mul-

tiple connections (mainly used for load balancing reason and resilience).

The term Multihomed AS defines an AS which reaches a network outside

its domain via multiple exit points belonging to a single entity or multiple

entities.

Transit Traffic is defined as any traffic that has a source and destination

outside an AS.

Three types of ASes are usually classified depending on the way they

manage their transit traffic [124] [73]:

6Note that there is no one-to-one relationship between inter-domain routing and inter-

AD routing. The inter-domain routing can be made inside and Administrative Domain.



1.1. Terminology and Concepts 7

1. Single-Homed (Stub) AS.

A Single-Homed reaches networks outside its domain via a single

exit point [Figure 1.3]. Most of the universities, the Internet Service

Providers (ISPs) and Enterprise customers belong to this type of AS.

2. Multihomed Nontransit AS.

A Multihomed Nontransit AS does not allow transit traffic to go

through it [Figure 1.4]. It would only advertise the routes that has

an origin or destination that belongs to the local AS and would not

propagate routes learned from other ASes.

In the scenario illustrated in Figure 1.4, AS 100 and AS 200 will learn

X301 and X302, while AS 300 will learn X101, X102, X201 and X202.

AS 300 advertises only its local routes X301 and X302.

3. Multihomed Transit AS.

A Multihomed Transit AS allows transit traffic to go through it.

In the scenario illustrated in Figure 1.5, AS 100 will learn X301, X302,

X201 and X202 from AS300, AS 200 will learn X301, X302, X101 and

X102 from AS 300, AS 300 will learn X101, X102, X201 and X202.
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Figure 1.3: Single-Homed (Stub) AS

Figure 1.4: Multihomed Nontransit AS
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Figure 1.5: Multihomed Transit AS
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1.1.3 The Network Hierarchy

Networks are often classified in Tier-1, Tier-2 and Tier-3 ISPs. Tier-1 ISPs are

the largest ISPs interconnected with other Tier-1 ISPs via private peering7.

They have the most direct control over the traffic that flows through their

connections. However, they represent less than 0.1 % of the total number

of ASes in the Internet [25]. Other ISPs are completely dependent on Tier-1

ISPs. Tier-1 ISPs are divided into Global and Regional Tier-1 ISPs. The key

attribute of Global Tier-1 ISPs are:

• large size and scale;

• peering on more than one continent;

• no cost for the delivery of their traffic through similar-sized networks;

• access to the global Internet routing table via their peering relation-

ships.

A Tier-2 ISP is any transit AS which is a customer of one or more Tier-1

ISPs. Often, they have lower-quality networks than Tier-1 ISPs and tend

to establish peering relationships with other neighboring Tier-2 ISPs. A

representative example of a Tier-2 ISP is a national service provider.

Tier-3 ISPs focus on local retail and consumer markets, with a coverage

limited to a specific country or to subregions providing local access for end

customers. They tend to have low-quality networks and access speed.
7Routing information and traffic exchange between AS occurs through a process called

peering. More-detailed information is provided in the chapters thereafter.
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1.2 Border Gateway Protocol

The performance of the communications over the Internet depends on

the routing process that determines how packets are forwarded through

network.

In the routing process, the routes to destinations can be injected man-

ually in the router static routing. Whether a destination is active or not, the

static routes remain in the routing table, and traffic is still sent toward the

specified destination. The most stable, but less flexible configurations are

based on static routing8.

Another way of learning routes is via a routing protocol (dynamic rout-

ing). The next section discusses in detail the dynamic routing protocols for

intra-domain and inter-domain routing.

1.2.1 Intra-domain Routing Algorithms

Routers inside an Autonomous System run Interior Gateway Protocols

(IGPs) for intra-domain routing. All these routing protocols transmit IP

packets towards their destination using algorithms able to find the best

path to each destination.

Most intra-domain routing protocols used today are based on one of

two types of routing algorithms: distance vector and link-state routing algo-

8Instead, the term default routing refers to a route used when a destination is unknown

to the router.
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rithms. A detailed discussion of distance vector and link-state algorithms

is beyond the scope of this thesis. More-detailed information can be found

in [73],[140] and [44].

A Distance Vector routing protocol includes a vector of distances associ-

ated with each destination prefix routing message. Each router separately

computes the best path to each destination, and sends distance vectors to

its neighbors, notifying them of the available path (and the corresponding

metrics associated with the path) it has selected to reach the destination.

Distance vector protocols require that each node separately computes

the best path to each destination. Every neighbor determines if a better

path exists upon every message is receipted, and, in that case, it will update

its routing table and will notify its neighbors of its selected paths. The cycle

goes on until a convergence 9 towards a common topology is built. RIP [75]

is a distance vector routing protocol.

A distance vector routing protocol has several drawbacks and limita-

tions in the maintenance of large routing tables. It works on the basis of

periodic updates and hold-down timers, translating into minutes in con-

vergence time before the whole network detects a modification in the state

of the network.

In a Link-state protocol, information elements (link states), which carry

information about links and nodes, are exchanged by routers in the routing

9Convergence refers to the point in time at which the entire network becomes updated

to the fact that a particular route has appeared, disappeared, or changed.
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domain. There is no exchanging of routing tables. A flooding mechanism

ensures the exchange of information related to the adjacent neighbors (in-

cluding metric information associated with the connection).

Each routes uses these information to construct the network topology,

and to build a tree of destination placing itself at the root, by applying

the Shortest Path First (SPF) algorithm (Dijkstra Algorithm), in order to

compute the shortest path to each destination.

Link-state algorithms provide fast convergence capabilities, and better

routing scalability. However, several drawbacks and limitations have been

associated with traditional link-state routing protocol handling on inter-

domain routing.

Open Shortest Path First (OSPF) [116] is the commonly used link-state

protocol.

1.2.2 Inter-domain Routing Algorithms

Routers outside an Autonomous System run Exterior Gateway Protocols

(EGPs) for inter-domain routing.

A particular distance vector routing category called path vector routing

protocol is defined. An additional mechanism referred to as the path vector

is used to ensure a loopfree interdomain routing. A routing information

carries a sequence of AS numbers that identifies the path of ASes that

a network prefix has traversed. If an AS receives a routing information
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containing its AS number, this route10 is ignored.

Border Gateway Protocol (BGP) is a path vector routing protocol.

1.2.3 Border Gateway Protocol (BGP) concepts

In 1984, an Exterior Gateway Protocol called EGP was defined [108] in

order to exchange reachability information between the backbone and the

regional networks in NSFNET11. Due to several drawbacks and limita-

tions (topology restrictions, inefficiency in dealing with routing loops) a

new and more robust protocol called Border Gateway Protocol (BGP) [98]

was defined in 1989 to ensure the interconnection and the reachability of

different networks.

Today, Border Gateway Protocol version 4 (BGP-4) is the inter-domain

routing protocol of choice on the Internet, in part because it efficiently

handles route aggregation and propagation between domains.

Defined as inter-Autonomous System Routing protocol, as expressed

in RFC 4271 [126] “The primary function of a BGP speaking system is

to exchange network reachability information with other BGP systems.

10In this context, the term route represents a unit of information that pairs a destination

with the attributes of a path to that destination. More-detailed information is provided in

the sections thereafter.
11NSFNET was a network of multiple regional networks and peer networks (e.g., NASA

Science Network) connected to a major backbone, born in 1985 and decommissioned in

April 1995.
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Figure 1.6: Internal and External BGP Implementations

This network reachability information includes information on the list of

Autonomous Systems that reachability information traverses. This infor-

mation is sufficient for constructing a graph of AS connectivity for this

reachability from which routing loops may be pruned, and, at the AS level,

some policy decisions may be enforced”.

In addition, BGP-4 provides a set of mechanisms for supporting Class-

less Inter-Domain Routing (CIDR) [125], for the aggregation of a set of

destinations in prefixes, and the aggregation of routes and AS paths.

BGP can be used inside an AS. BGP connections between routers inside

an AS are called Internal BGP (IBGP), while a peer connection between
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routers in different ASes is referred to as External BGP (EBGP) [Figure 1.6].

Routing information exchanged via BGP supports only the destination-

based forwarding paradigm (a router forwards a packet based solely on the

destination address carried in the IP packet).

Routers that run a BGP routing process are referred to as BGP speakers.

Two BGP speakers that exchange routing information are known as neigh-

bors or peers. In Figure 1.6, routers R1 and R3 and routers R2 and R5 are

BGP peers12.

In the first phase, BGP neighbors exchange their full BGP routing tables.

After the session has been established and the initial route exchange has

occurred, only incremental updates are exchanged between BGP peers.

Information are injected into BGP dynamically depending on the status

of the network. However, a statical injection of routes is possible, regardless

of the status of the networks they identify. Today, the statical injection

of information into BGP has proven to be the most effective method of

ensuring route stability.

12neighbor remote-as command adds an entry to the BGP neighbor table. In Figure 1.6

the command on router R3 neighbor 194.100.10.1 remote-as 200 indicates that a BGP

peer session is to be established with the peer 194.100.10.1 in Autonomous System 200. So,

also routers R3 and R5 are BGP peers.
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1.2.4 BGP Message Formats

BGP messages are sent over TCP connections13. The maximum message

size is 4096 bytes. The smallest message that may be sent consists of a BGP

header without a data portion (19 bytes).

Each message has a fixed-size header. A message header format is a

16-byte Marker field, followed by a 2-byte Length field and a 1-byte Type

field.

• The 16-byte Marker field is included for compatibility and it must be

set to all ones14 [126].

• The 2-byte Length field is used to indicate the total BGP message

length, including the header. The value of the Length field must

always be at least 19 and no greater than 4096.

• The 1-byte Type field indicates the type code of the message.

– OPEN (Type Code: 1)

It is the first message sent by each peer, after a TCP connection

is established. A detailed information about the OPEN message

format is provided in the RFC 4271 [126];

13See RFC4271 for details[126].
14The Marker field should be different if used as part of an authentication mechanism

such as TCP MD5 Signature Option.
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– UPDATE (Type Code: 2)

Due to the importance of this message format, a detailed infor-

mation is provided in the associated section thereafter;

– NOTIFICATION (Type Code: 3)

A NOTIFICATION message is always sent whenever an error

is detected. The BGP connection is closed immediately after it

is sent;

– KEEPALIVE (Type Code: 4)

KEEPALIVE messages are periodic messages exchanged be-

tween peers to ensure that the connection is kept alive. A

KEEPALIVE message consists of only the message header and

has a length of 19 bytes.

1.2.5 The UPDATE message

In a BGP routing process, only incremental updates are exchanged between

BGP peers after the session has been established and the initial route ex-

change has occurred. This incremental update approach uses the type code

2 UPDATE message to exchange routing information between neighbors.

Basically, an UPDATE message contains a list of destinations that can

be reached via a BGP speaker, and a set of path attributes containing

information such as a list of ASes that the route has traversed and the

degree of preference for a particular route.
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The basic blocks of an UPDATE message consists of [Figure 1.7]:

• Unfeasible Routes;

• Network Layer Reachability Information (NLRI);

• Path Attributes.

These three blocks are discussed in the following subsections.

1.2.6 The UPDATE message. Unfeasible routes

The unfeasible routes represent the routes that are unreachable. When

a route becomes unreachable, a BGP speaker informs its neighbors by

removing the invalid route in the withdrawn routes field as 2-tuple format

<length, prefix>.

An example of a BGP UPDATE message containing a set of withdrawn

routes is shown below:

UPDATE Message

Marker: 16 bytes

Length: 35 bytes

Type: UPDATE Message (2)

Unfeasible routes length: 12 bytes

Withdrawn routes:

192.168.56.0/24

192.168.20.0/24

192.168.10.0/24
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No. Time Source Destination Protocol Info

31 75.287000 192.168.10.1 192.168.10.2 BGP UPDATE Message

Frame 31 (100 bytes on wire, 100 bytes captured)

Cisco HDLC Internet Protocol,

Src: 192.168.10.1 (192.168.10.1), Dst: 192.168.10.2 (192.168.10.2)

Transmission Control Protocol,

Src Port: bgp (179), Dst Port: 29334 (29334), Seq: 65, Ack: 65, Len: 56

Border Gateway Protocol

UPDATE Message

Marker: 16 bytes

Length: 56 bytes

Type: UPDATE Message (2)

Unfeasible routes length: 0 bytes

Total path attribute length: 25 bytes

Path attributes

ORIGIN: INCOMPLETE (4 bytes)

AS_PATH: 1 (7 bytes)

NEXT_HOP: 192.168.10.1 (7 bytes)

MULTI_EXIT_DISC: 0 (7 bytes)

Network layer reachability information: 8 bytes

192.168.56.0/24

192.168.10.0/24

Figure 1.7: An UPDATE message



1.2. Border Gateway Protocol 21

1.2.7 The UPDATE message. NLRI

The Network Layer Reachability Information (NLRI) indicates the net-

works being advertised in the form of a 2-tuple format <length, prefix> as

shown below [Figure 1.7].

Network layer reachability information: 8 bytes

192.168.56.0/24

192.168.10.0/24

1.2.8 The UPDATE message. Path Attributes

Path Attributes describe the information related to given route.

In the following example the UPDATE message advertises the routes

192.168.50.4/30 and 192.168.1.0/24 (in the NLRI), via the ASes 3, 1, 2, 5

(AS PATH).

UPDATE Message

Marker: 16 bytes

Length: 56 bytes

Type: UPDATE Message (2)

Unfeasible routes length: 0 bytes

Total path attribute length: 24 bytes

Path attributes

ORIGIN: INCOMPLETE (4 bytes)

AS_PATH: 3 1 2 5 (13 bytes)

NEXT_HOP: 192.168.30.2 (7 bytes)

Network layer reachability information: 8 bytes

192.168.50.4/30

192.168.1.0/24
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In the routing decision process, the Path Attribute enables the degree of

preference of a route, routing loops prevention, filtering, and enforcement

of local and global routing policies.

From RFC 4271 [126] “A variable-length sequence of path attributes is

present in every UPDATE message, except for an UPDATE message that

carries only the withdrawn routes.”

Each path attribute is a triple of variable length as follows:

< attribute type, attribute length, attribute value >

The following subsections deeply describe the Attribute Type and its

components.

Attribute Type

Attribute Type is a 16 bit field that consists of the following octets:

• Attribute Flags (1 octect);

• Attribute Type Code (1 octect).

Attribute Flags

Path attributes fall under two main categories: well-known attributes or

optional attributes.

From RFC 1771 [123] “Well-known attributes must be recognized by all

BGP implementations.
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Some of these attributes are mandatory and must be included in every

UPDATE message. Others are discretionary and may or may not be sent in

a particular UPDATE message. All well-known attributes must be passed

along (after proper updating, if necessary) to other BGP peers.”.

• BIT 0.Optional bit.

It defines whether the attribute is optional (if set to 1) or well-known

(if set to 0). From RFC 1771: “Well-known attributes must be rec-

ognized by all BGP implementations. Some of these attributes are

mandatory and must be included in every UPDATE message. Others

are discretionary and may or may not be sent in a particular UPDATE

message”.

If a well-known attribute is missing, a NOTIFICATION error is gener-

ated, and the session is closed. An example of a well-known manda-

tory attribute is the AS PATH attribute. An example of a well-known

discretionary attribute is LOCAL PREF.

“In addition to well-known attributes, each path may contain one or

more optional attributes. It is not required or expected that all BGP

implementations support all optional attributes. The handling of an

unrecognized optional attribute is determined by the setting of the

Transitive bit in the attribute flags octet.”.
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• BIT 1. Transitive bit.

It defines whether an optional attribute is transitive (if set to 1) or

non-transitive (if set to 0). From RFC 1771:

– Optional transitive. If an optional attribute is not recognized by

the BGP implementation and the flag is set, which indicates

that the attribute is transitive, the BGP implementation should

accept the attribute and pass it along to other BGP speakers.

Paths with unrecognized transitive optional attributes should

be accepted.

– Optional nontransitive. When an optional attribute is not rec-

ognized and the transitive flag is not set, which means that the

attribute is nontransitive, the attribute should be quietly ignored

and not passed along to other BGP peers.

Unrecognized non-transitive optional attributes must be quietly

ignored and not passed along to other BGP peers.

• BIT 2. Partial bit.

It defines whether the information contained in the optional transi-

tive attribute is partial (1) or complete (0).

From RFC 1771: “If a path with unrecognized transitive optional

attribute is accepted and passed along to other BGP peers, then the

unrecognized transitive optional attribute of that path must be passed
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along with the path to other BGP peers with the Partial bit in the

Attribute Flags octet set to 1.

If a path with recognized transitive optional attribute is accepted and

passed along to other BGP peers and the Partial bit in the Attribute

Flags octet is set to 1 by some previous AS, it is not set back to 0 by

the current AS”.

• BIT 3. Extended Length bit.

It defines whether the Attribute Length is one octet (if set to 0) or two

octets (if set to 1).

• BIT 4 - 7. UNUSED.

They must be zero when sent and ignored when received.

Attribute Type Code

The Attribute Type Code octet contains the Attribute Type Code.

Table 1.1 shows some common attribute type code. An explanation of

all the attribute types is beyond the scope of this work.

During the UPDATE process, when a BPG speaker have several routes

to the same destination, only one of these routes for inclusion in its BGP

routing table is selected.
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Type Code Attribute Name Category

1 ORIGIN Well-known mandatory

2 AS PATH Well-known mandatory

3 NEXT HOP Well-known mandatory

4 MULTI EXIT DISC Optional nontransitive

5 LOCAL PREF Well-known discretionary

Table 1.1: Attribute Type Codes

The decision process associated to this mechanism is related to these

attribute types, according to a tie-breaking algorithm15 following the order

explained below:

1. LOCAL PREF

2. AS PATH

3. ORIGIN

4. MULTI EXIT DISC (MED)

5. NEXT HOP

These attributes are explained in the following subsections.

15see the following chapter for details.
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LOCAL PREF (TYPE CODE 5)

Well-known discretionary attribute

Usually used to set the exit point of an AS to reach a certain destination,

the local preference (LOCAL PREF) attribute is a degree of preference given

to a route to compare it with other routes for the same destination.

The LOCAL PREF attribute affects the BGP decision process, influenc-

ing BGP path selection to determine the best path for outbound traffic, but

it is local to the Autonomous System and is exchanged between IBGP peers

only.

If multiple paths for the same prefix are available, the path with the

larger local preference value is preferred.

In the following example, the prefix 192.68.1.0/24 is preferred via IBGP

(local preference is 300), even though the AS PATH via EBGP is shorter16.

ROUTERX1#show ip bgp

BGP table version is 85, local router ID is 193.43.2.254

Status codes: s suppressed, d damped, h history, * valid, > best,

i - internal Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*>i192.68.1.0 193.43.1.2 300 0 2 1 i

* 193.43.20.1 0 0 1 i

16 Note that the letter i before the prefix 192.168.1.0 indicates an intra-domain prefix. The

default local preference value is set to 100.
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Figure 1.8: AS Path loop detection

AS PATH (TYPE CODE 2)

Well-known mandatory attribute

The AS PATH attribute contains a sequence of autonomous system num-

bers that represent the path a route has traversed.

When an AS originates a route to external BPG neighbors, it adds it

own AS number. Each AS, which receives that routes and passes it on to

others neighbors, adds its own AS number to the list.

The mechanism of adding an AS number to the beginning of the list is

called prepending. The final list represents all the AS numbers that a route

has traversed.

This ensures a loop-free topology on the Internet [Figure 1.8]. A route

is not accepted by an AS if the prefix has the AS in its AS PATH attribute.

In the next example, BGP prefers the second one as being the “best”

path due to its lower AS PATH length.
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ROUTERX1#show ip bgp

BGP table version is 87, local router ID is 193.43.2.223

Status codes: s suppressed, d damped, h history, * valid, > best,

i - internal Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

* 192.68.1.0 192.68.4.3 0 2 1 i

*>i 193.43.122.1 0 100 0 1 i

The mechanism of the AS Path manipulation is commonly used to

change a router’s process decision. This technique will be described in the

following chapter.

ORIGIN (TYPE CODE 1)

Well-known mandatory attribute

The ORIGIN attribute is used to establish a preference ranking among

multiple routes in the decision-making process.

The data octet can assume the following values [126]:

• 0: IGP. Network Layer Reachability Information is interior to the

originating AS;

• 1: EGP. Network Layer Reachability Information learned via the EGP

protocol [RFC904] [108];

• 2: INCOMPLETE. Network Layer Reachability Information learned

by some other means.
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Figure 1.9: MULTI EXIT DISC

MULTI EXIT DISC (TYPE CODE 4)

Optional nontransitive attribute

In the BPG speaker’s decision process, the MULTI EXIT DISC (MED)

attributes may be used to make a comparison between multiple paths

from external neighbors of the same AS17 [Figure 1.9].

This is useful when a customer has multiple connections to the same

provider, and it can be used for traffic balancing by both providers and

customers.

17MED attributes from different ASes are not comparable. The MED usually gives

information of the AS’s internal topology, routing policies, and routing protocol
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Some features of this attribute are described as follows:

• unlike LOCAL PREF, the MED attribute is exchanged between ASes;

• a MED attribute is received by an AS;

• a lower MULTI EXIT DISC value is preferred over a higher MED

value;

• a MED received by an AS does not leave the AS. When BGP passes

the routing update to another AS, the MED is reset to 018;

• MEDs are not always accepted by peers;

• when the route is originated by the AS itself, MED value is generally

set to the internal IGP metric of the route.

In Figure 1.9, router R1 is receiving routing updates about 170.0.0.0/24

from R2 (MED=100), R3 (MED=150) and R4 (MED=200). From AS 200, R1

will prefer the R3 route to reach 170.0.0.0/24 because router R3 is advertising

a lower MED value (MED=150).

The comparison between MED values between different ASes in not

generally possible19.

18Unless the outgoing MED is explicitly set to a specific value.
19 bgp always-compare-med command is used to compare MEDs coming from different

ASes. In this case, route to reach 170.0.0.0/24 coming router R2 will be preferred.
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NEXT HOP (TYPE CODE 3)

well-known mandatory attribute

It defines the IP address of the border router that should be used as the

next hop to the destinations listed in the NLRI.

In the next chapter, the routing decision process between BGP and its

peers will be explained, according to routing policies and filtering mecha-

nisms over the updates.



Chapter 2

Routing Decision Process

This chapter covers the aspects of the routing decision process inside a BGP

speaker in order to cooperate with other BPG speakers to provide global

Internet connectivity (cooperation), according to business and commercial

agreements (competition), using a routing process model to set their policy

independently to each others (autonomy), and making all the manipulations

allowed by the protocol (expressiveness), without any global coordination.
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As seen in the previous chapter, routes1 are advertised between BGP

neighbors using UPDATE messages.

Each BGP speaker applies policies and filters over the updates, and

may add or modify a route’s path attribute before advertising it to a peer

through a mechanism known as route filtering and attribute manipulation,

and described in section 2.2.1.

In addition, in case of multiple routes to the same destination, a ranking

mechanism is used to choose the best route to advertise to other neighbors.

In order to accomplish this process, a separate BGP Routing Table from

IP Routing Table is required. The IP Routing Table is the final routing

decision, and contains the routes learned from BGP peers and valid local

routes originated inside the AS.

In the next section, the traditional CISCO’s Routing Process Model is

described.

In the final section of this chapter, a new and more complete scheme

of the Routing Process Model is proposed according to RFC 4271 with the

examination of the input policy engine, the decision process, and the output

policy engine inside a BGP speaker. In addition, the formalization of the

decision process related to the route selection mechanism is proposed.

1As specified in RFC 4271 [126], “A route is defined as a unit of information that pairs a

destination with the attributes of a path to that destination”.



2.1. CISCO’s Routing Process Model 35

Figure 2.1: CISCO’s Routing Process Overview

2.1 CISCO’s Routing Process Model

CISCO’s routing process model [73] involves the following components

[Figure 2.1]:

• a pool of routes that the router receives from its peers;

• an input policy engine that can filter the routes or manipulate their

attributes;

• a decision process that decides which routes the router itself will use;

• a pool of routes that the router itself uses;

• an output policy engine that can filter the routes or manipulate their

attributes;

• a pool of routes that the router advertises to other peers.
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2.1.1 The BGP Routing Table

The BGP routing table consists of three parts:

• Adj-Routing Information Base IN (Adj-RIBs-In);

• Local Routing Information Base (Loc-RIB);

• Adj-Routing Information Base OUT (Adj-RIBs-Out).

The following subsections describe these three parts and its roles.

Adj-Routing Information Base IN (Adj-RIBs-In)

The Adj-RIBs-In contains unprocessed routing information that has been

advertised to the local BGP speaker by its peers [126].

Routes that are received from other BGP speakers are present in the

Adj-RIBs-In.

A Route Filtering (based on different parameters, such as IP prefixes or

AS PATH) and Attribute Manipulation (in order to influence route decision

process) might be applied by the operator via an Input Policy Engine2.

A filter in an incoming prefix indicates that BGP does not want to reach

that destination via that peer, or a better LOCAL PREF value indicates that

BGP prefers the prefix from a specific peer.

2Route Filtering and Path Manipulation are discussed in the next sections.
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Local Routing Information Base (Loc-RIB)

The Loc-RIB contains the routes that have been selected by the local BGP

speaker’s Decision Process [126].

These route become candidates for the placement in the IP Routing

Table and the advertisement to other neighbors.

The Loc-RIB contains only the preferred routes that have been selected

as the best path to each available destination.

Adj-Routing Information Base OUT (Adj-RIBs-Out)

The Adj-RIBs-Out contains the routes for advertisement to specific peers

by means of the local speaker’s UPDATE messages [126].

It stores routing information that the BGP speaker has selected for

advertisement to the neighbors. Likewise the Input Policy Engine, an

Output Police Engine may be used to apply a Route Filtering and Attribute

Manipulation before sending the UPDATE message.

The set of routes advertised to peers consists of those routes that success-

fully pass through the Output Policy Engine and are advertised to the BGP

neighbors.



38 Chapter 2. Routing Decision Process

2.2 A new scheme for Routing Process Model

In this section, a new and more complete Routing Process Model is pro-

posed according to RFC 4271 (Figure 2.2).

This routing process model involves the following components:

• a pool of routes that the router receives from its peers and stored in

the Adj-RIBs-In (I.UPDATE 1,...N in Figure 2.2);

• an Input Policy Engine that filters the routes or manipulate their at-

tributes taken from the local Policy Information Base (PIB), through

different mechanisms and policies such as Route Identification and Fil-

tering, Route Authorization and Attributes Manipulation described in

following paragraphs;

• a decision process able to select which routes the router itself will use,

via an individual application of a degree of preference to each route

(see the next sections for details), and the choice of the route with

the highest degree of preference (the PREFERRED ROUTES in Figure

2.2);

• a pool of preferred routes selected as the best path to each available

destination contained in the Loc-RIB. These routes are candidates

for the placement in the IP Routing Table, to be used locally by the

router;
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• a selection of routes contained in the Loc-RIB for advertisement to

other BPG peers, stored in the Adj-RIBs-Out;

• an Output Policy Engine that can filter the routes or manipulate their

attributes as seen in the Input Policy Engine, and according to the

policies in the PIB);

• a pool of routes that the router advertises to other peers via UPDATE

messages (O.UPDATE1,....M in Figure 2.2).

2.2.1 Route Filtering and Attribute Manipulation

Route Filtering and Attribute Manipulation involves three actions [Figure

2.3]:

• Route Identification and Filtering;

• Route Authorization;

• Attributes Manipulation.

In the example of Figure 2.4, the following commands:

neighbor 193.32.2.2 prefix-list 1 out

ip prefix-list 1 seq 5 deny 170.0.0.0/24

prevents R3 from propagating prefix 170.0.0.0/24 to AS 100.
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Figure 2.2: A new scheme for Routing Process Model
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Figure 2.3: Route Filtering and Manipulation Process

Figure 2.4: Example of filtering routes based on the NLRI
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Figure 2.5: Inbound and Outbound Route Identification and Differentiation

Route Identification and Filtering

The mechanism of route identification and differentiation of routes ex-

changed by BGP peers may be used in the updates received from other

peers (ROUTE4, ROUTE5 and ROUTE6 in Figure 2.5) or in updates adver-

tised to other peers (ROUTE1, ROUTE2 and ROUTE3 in Figure 2.5).

If a route remains unidentified, the route is discarded (ROUTE1 in

Figure 2.3).

The mechanism of route identification and differentiation is based on

different criteria. The most common way of identifying routes is based on

NLRI and the AS PATH.
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Route Authorization

A mechanism of permitting or denying the identified and differentiated

routes.

If a route is denied, that route is discarded (ROUTE2 and ROUTE5 in

Figure 2.3).

If a route is permitted, it can be accepted “as is” (ROUTE3 and ROUTE6

in Figure 2.3), or is submitted for attributes manipulation (ROUTE4 and

ROUTE7 in Figure 2.3).

Attributes Manipulation

A permitted route submitted for attributes manipulation may have its

attributes changed to affect the decision process for the identification of

the best routes to a destination (ROUTE4 and ROUTE7 in Figure 2.3).

A common example of attribute manipulation is called AS PATH Ma-

nipulation. After LOCAL PREF attribute, AS PATH attribute is the pre-

ferred attribute type in order in order of attribute preference in the routing

decision process. Carrier operators may use the manipulation of AS PATH

attribute in order to influence interdomain traffic trajectory by including

dummy AS PATH entries.

This AS PATH manipulation is made by prepending AS numbers at

the beginning of an AS PATH in order to have a longer path length.

In the next example ROUTERX1 received an UPDATE that changed
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router’s decision about reaching 192.68.1.0/24.

By prepending two extra AS numbers, the preferred path is via 193.43.1.2

instead the internal path via 193.43.20.1.

ROUTERX1#show ip bgp

BGP table version is 44, local router ID is 193.43.2.254

Status codes: s suppressed, d damped, h history, * valid, > best,

i - internal Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path

*>192.68.1.0 193.43.1.2 0 0 2 1 i

* i 193.43.20.1 0 0 1 1 1 i

2.2.2 Formalization of the Decision Process

The Decision Process is a crucial phase, and is responsible for the informa-

tion stored in the Loc-RIB.

In this section, the formalization of the decision process related to

the route selection mechanism is proposed, which involves the following

items:

• Candidates. The routes that are candidates for the placement in the IP

Routing Table, to be used locally by the BPG peer;

• Routes to Advertise. A selection of routes or advertisement to other

BPG peers.
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We introduce the Decision Process model which is able to define a pool

of loop-free and feasible routes through two different phases3:

• Degree of Preference;

• Route Selection.

Degree of Preference

RFC 4271 defines the approach for the computation of a degree of preference

for each route received via an UPDATE message as described as follows:

• if the route is learned from an internal peer, the value of DoP will be

the LOCAL PREF attribute, or the local system computes the degree

of preference of the route based on preconfigured policy information;

• if the route is learned from an external peer, the local BGP speaker

computes the degree of preference based on preconfigured policy

information.

According to the set of tie-breaking criteria proposed in RFC 4271 and

shown in Figure 2.6, for a given route r, we define the attribute function ατ,r

[eq. 2.1] which describes the importance of the attribute τ taken from the

3RFC 4271 uses three phases to explain this mechanism.
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Figure 2.6: Tie-Breaking Criterion

Type Code Attribute of the UPDATE message for the route r as follows:

ατ,r =



101 if τ = 3 (NEXT HOP)

102 if τ = 4 (MED)

103 if τ = 1 (ORIGIN)

104 if τ = 2 (AS PATH)

105 if τ = 5 (LOCAL PREF)

0 otherwise

(2.1)
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The tie-breaking algorithm4:

1. considers only the routes with the smallest number of AS numbers

in their AS PATH attributes;

2. considers only the routes with the lowest ORIGIN attribute values;

3. considers only the routes with lowest MED attribute values from the

same neighboring AS;

4. considers only the routes with lowest interior cost, determined by cal-

culating the metric to the NEXT HOP for the route using the routing

table;

5. considers only the route with lowest BGP Identifier value.

At this point, we introduce a formal way to describe the degree of

preference by defining a function Degree of Preference DoPα,r ∈ N [eq. 2.2]

which takes the value of the attribute function ατ,r for a given route r as

4A tie-breaking algorithm which differs from the algorithm proposed in this work

is proposed in RFC4271. In RFC 4271, firstly all equally preferable routes to the same

destination are considered, and then selected routes are removed from consideration. The

algorithm terminates as soon as only one route remains in consideration. See [126] for

details.
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argument and returns:

DoPα,r =


> 0 the degree of preference for the route r

= 0 the route is ineligible to be installed
(2.2)

As example, a DoP105,192.167.20.0/24 = 220 is a Degree of Preference for

the prefix 192.167.20.0/24 using a LOCAL PREF attribute.

If another DoP105,192.167.20.0/24 = 250 exists in another UPDATE message,

the highest value of DoP is considered (due to the fact that the tie-breaking

algorithm considers only the routes with the highest LOCAL PREF at-

tribute values [Figure 2.6]).

Route Selection

Broadly speaking, when a BGP speaker has several routes to the same

destination, it can select only one of these routes for inclusion in the Loc-

RIB.

This process is called Route Selection and can be summarized in :

1. the application of the DoP to each feasible route r;

2. the choice of the highest DoP value for this destination.

Let r1, r2, ...., rn ∀n ∈ N represent the n routes for the same destination

d. We define α∗d [eq. 2.3] the highest value of the attribute function for the
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set of n routes for the same destination d, and r∗ a route for a destination d

with α∗d as attribute function value:

α∗d =

max
n∑

k=1

αk


d

3 ∃
[

DoPα∗,r∗
]
d > 0 (2.3)

The condition
[

DoPα∗,r∗
]
d > 0 ensures that at least one route with α∗d is

eligible to be installed in the Loc-RIB.

At this point, let m the number of m routes for each destination d with

α∗d as attribute function value.

We can identify a Route Selection function RouteSeld [eq. 2.4] for a given

destination d as follows:

RouteSeld =

max
m∑

k=1

DoPα∗d,rk


d

(2.4)

At the end of the process, all the chosen routes for the a set of destina-

tions D are installed into Loc-RIB as described in eq. 2.5.

DecisionProcess =

D∑
d=1

RouteSeld =

D∑
d=1

max
m∑

k=1

DoPα∗d,rk


d

(2.5)
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2.3 Conclusion

After a brief introduction on the routing process model and the well-known

manipulating techniques, a new scheme for the Routing Process Model is

proposed, and a formalization of a new and more complex routing process

model inside a BPG speaker is made.

Besides, a formalization of the problem through a “route selection func-

tion” defined as the maximum value of the “degree of preference function”

built from all the available routes for a given destination is proposed.

In the next chapter, an examination of the issues related to routing

decisions in the inter-domain routing is made, with a review of the most

interesting proposals in this area.
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Routing Decision in the

Inter-AS routing

One of the most complex problems in computer networks is controlling

the routing decisions of the ASes in the interdomain routing.

BGP was designed as a protocol to apply diverse local policies for

selecting routes and distribute reachability information to other ASes.

The fully independent management provided by each AS domain

makes the problem of controlling inter-domain routing, due to potentially

conflicting policies derived from the business agreements and competition

between domains, that can lead to routing instability, demonstrating to

be inaccurate and poorly effective in controlling and communicating the

inter-domain decisions.
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In addition, recent studies made by Uhlig et al. reveal that the AS-

paths show large variations over time, because they are present in the BGP

routing tables for a few minutes [143].

This chapter examines some of the many issues related to routing de-

cisions in ASes, reviewing the most interesting proposals in this area and

describing why these issues are difficult to solve.

3.1 BGP divergence

The lack of a global global coordination between ASes, with a distributed

conflicting policy-based routing system, creates routing anomalies such as

divergence in the update process to the exchange of routing information

within an AS, and producing endless streams of routing updates unrelated

to changes in topology or policy [70] [71] [144] [145].

BGP allows each autonomous system to independently formulate its

routing policies to override distance metrics and enabling each AS to in-

dependently define its routing policies with no global coordination.

A divergence anomaly occurs when BGP routers permanently fail to

obtain a stable path to reach a destination.

A natural approach to the route convergence problem requires a global

coordination, using a repository of routing policies. Internet Routing Reg-

istry (IRR) [78] was born in order to solve the lack of global coordination,

but at the moment this solution is not practicable because a global coor-
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dination does not ensure a convergence in presence of link failures or a

policy change.

Besides, the registry is update via voluntary basis, and the Administra-

tive Domains may be unwilling to reveal their policies; so the information

are incomplete and out of date.

Several research have studied route convergence under the presence

of a global knowledge of the routing policies and topology, by using sim-

ple ring topologies [144], or by focusing on LOCAL PREF and AS PATH

attributes [71], but they proves only negative results [144] [71] [64] [7].

The solution proposed are divided into methodologies that extend the

capabilities of BGP [68] [26] [27] [16], restrict the types of routing policies

adopted by the ASes [56] [85] [86] , use a global coordination to avoid

routing conflicting policies [64], or detect conflicts at runtime [69].

In particular, Varadhan et al. [144] [145] first define the concept of safety,

observing that routing policies can cause BGP to diverge, and affirming

that only the policies based on a mechanism of shortest path routing or

next-hop are safety.

Griffin et al. [68] were the first to present the causes of this problem,

developing and approach to detect and resolve divergence by suppressing

routes that contain cycles, and generating a stable routing in unstable

BGP configurations (it is called stable paths problem). However they do not

consider the effects of the filtering process.

Other works [16] extend the original Simple Path-Vector Protocol used
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in [68] [26] [27].

Gao et al. [56] believe that convergence without requiring a coordina-

tion without other ASes is possible by restricting the set of policies that

each AS can apply. They formalize the notion of a stable state where no

AS would change its routes and a safe BGP system that is guaranteed to

converge to a stable state.

In addition, they enunciate a guideline for choosing routing policies

based on a set of constraints called Gao-Rexford Constraints1, over a set of

commercial relationships between ASes divided into customer-provider,

and peer-to-peer and backup relationships2 [6] [77].

Govindan et al. [64] [63] propose a routing architecture where ASes

coordinate their policies using a standardized object oriented language for

specifying routing policies called Routing Policy Specification Language

(RPSL) [7].

Tradeswoman et al [85] [86] in their papers propose an architecture for

policy based networks that involves semantically tagging packets, using a

semantically highly extensible language called OWL [106] instead of RPSL

[7].

Jaggard et al. [81] propose a set global conditions to guarantee safety

1Gao-Rexford Constrains are based on a set of assumptions and theorems. As example

they assume that peer-to-peer relationships satisfy the condition that there is no cycle in

the graph that represents the topology of a BGP system.
2These commercial relationships will be discussed thereafter.
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of routing systems based only of next-hop preferences, and a propose

algorithms to check these global conditions.

However, all these methodologies present several drawbacks [107], due

to the extension to the BPG protocol to carry additional information, to an

additional computation in the analysis of routing updates on every router

involved to be detected and identified at runtime, to protocol overhead, to

an incomplete analysis of the relationship between all the actors involved

in the process, to the need of an analysis of the all routing policies to verify

that they do not contain policy conflicts.

3.2 BGP convergence time

In BGP, when a path failure or routing policy changes occur, BGP peers

explore alternative paths to find new paths before selecting a new path

or declaring the unreachability to a destination, using a large amount of

BPG advertisements, in order to achieve a new steady state (convergence).

This is called path exploration. Path exploration should happen as fast as

possible.

Several studies have shown that a long time period may elapse before

the whole network eventually converges to a final decision. The conver-

gence time is very slow (tens of seconds) [67] [89] [90] [102], leading to

severe performance problems in data delivery.
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The techniques used to measure the path exploration and the conver-

gence time are based on passive measurements [91] [92] [147] [127] [43],

with the study of the instability on the prefixes, or on active measurements

[89] [102] [90], using a small number of beacon sites to control the events.

Different methodologies are proposed to reduce BPG convergence time

using different techniques, such as algorithms to force the quick distribu-

tion of bad news (in order to have a control of the number of messages

exchanged during the convergence) [18], or modifying the BGP protocol

(in order to of carrying additional information inside the BPG message)

[20] [119].

None of the mechanisms is able to accomplish the objectives.

3.3 AS mechanisms

Different mechanisms are developed by different types of ASes in the inter-

AS routing.

Transit multihomed AS uses a well-known methodology of reaching

a destination preferring eBGP over iBGP in the decision process called

hot potato routing, that causes routing instabilities across the boundaries of

the ASes caused by the lack of coordination between the policies of the

domains [3].

Akella et al. [5] have shown that stub ASes use mechanisms in order

to operate in short timescales via multiple connections. In this way they
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ensure an improvement of the performance containing costs.

However, this kind of techniques could create important problems in

the reliability of the inter-AS routing system if used in a massive way.

3.4 Prefix Hijacking

Prefix hijacking is a technique used by an AS to originate a prefix it does

not own. This false route may appear more attractive to some ASes than

the actual route to that prefix. Thus, these deceived ASes might choose

this false route as the best route and send packets to the false origin.

This AS path forgery is treated as a dangerous trick used by attackers

to threat network security, but no positive light for the solution is brought

by the research [12] [155] [94] [96].

The existing efforts in the area may be divided into mechanisms of

hijack prevention (based on cryptographic authentications) [84] [137] [134],

and mechanism schemes of hijack detection [93] [121] [82].

All these solutions require heavy changes to all router implementations,

or require a public key infrastructure.

In addition, the hijack detection mechanisms provide only the hijack

detection but not the hijack correction3.

3An inter-domain routing architecture of hijack detection and correction called MIRO

is proposed in [151].
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3.5 Out-Of-Band Solutions

Non-BGP-based techniques have arisen because the Administrative Do-

mains remain cautious about modifying BGP. This kind of techniques are

often called Out-of-Band Solutions.

Different types of approaches are proposed with the use of DNS-based

optimizers rely on Network Address Translation [110] [72] [5] (but traffic

control is unfeasible for medium and large ASes because this solutions are

not scalable) or with the use of Internet Route Controllers (IRCs), indipendent

intelligent devices able to control the routing decision process inside the

multihomed stub domains.

IRC solutions improve the end-to-end performance of inter-domain

routing [4], but they are not applicable to large transit ASes.

In addition, they are standalone solutions, so a cooperation between

devices is not possible, as the study of a global effect of the decision process

in the whole network.

Besides, Gao et al. [56] show that persistent oscillations can occur in a

competitive environment causing significant performance degradations.

3.6 QoS capabilites

The request of services such as VoIP requires mechanisms to offer services

similar to the differentiated services inside the intra-domain routing, with
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the creation of different levels of QoS for network services [111].

This set of mechanisms is called QoSR (QoS Routing), but BPG has no

inbuilt QoSR capabilities [30].

This problem is discussed in many papers and several solutions are

proposed [31] [150] using in-band or out-of-band solutions, but all of them

present strong limitations and are not appealing to become deployed in

practice.

3.7 Completeness

The reconstruction of the AS topology is an active area of research, but

building a complete set of links between Autonomous Systems, in order to

obtaining an accurate AS-level connectivity has proven difficult [95] [24]

[148] [23], due to the inter-domain decentralized architecture.

BGP uses only one route as the best path, if a router receives multiple

advertisements for the same destination. BGP uses UPDATE messages

to propagate only the best paths between peers, according to the routing

process and the policy mechanism4.

As a result, a set of peer links are invisible to the observation and the

AS topology remains incomplete.

This is called completeness problem.

4Some recent works [146] propose methods to advertise multiple routes for the same

destination to peers.
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Obtaining a complete and accurate topology of the relationships and

agreements between ASes remains one of the most active areas of research

[122] [21] [154] [40] [100] [6] [101].

Govindan et al. [65] recovered the traces of BGP updates and inferred

topological results and route stability results.

Faloutsos et al. [40] defined three power-laws inferred from the study

of a dataset of routing table information taken from three AS network

topology instances. This kind of approach is used also in [101].

Therefore, the quality of the currently used AS maps has remained by

and large unknown.

3.8 AS Relationship Inference

The generation of an accurate synthetic AS topology of a BGP system

to model the interconnection structure of the Administrative Domains is

another interesting research area.

In order to understand the topological structure of the BGP system, a

global hierarchical structure is inducted by the commercial relationships.

In the next chapter, an exhaustive review of the most interesting papers

in this research area is made, and methodologies for the generation of an

accurate synthetic AS topology are explained.
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AS Relationships

The research area referred to the study of AS relationships and to the deve-

lopment of accurate topology generators is essential for producing realistic

simulation studies of protocols and network architectures, to reduce mis-

configuration or to debug router configuration files, for the identification

of potential erroneous routes or to plan for future contractual agreements

[42] [88].

AS relationships have a profound influence on how traffic flows through

the Internet. Internet topology does not provide enough information, but

despite the volume of research in this area, current topology synthetic

generators fail to capture an inherent aspect of the AS topology.

A link between ASes is established when a contractual agreement to

exchange traffic is made between them.
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In general, the ASes tend to treat their agreements as proprietary in-

formation, so collecting the complete set of inter-domain links has proven

difficult. In the absence of a global registry, the AS-level structure of the

Internet is typically inferred from analysis of routing data.

In addition it is well known that AS paths in the Internet are longer

than the shortest path [57] [139] [138][135].

In order to conducting accurate and realistic simulation studies, an

evaluation of modeling AS relationships occurs [34] [117].

In this chapter a methodology for the generation of an accurate syn-

thetic AS topology is made through the review of the most interesting

papers in this area, and starting with the study of the available Data Set.

4.1 Data Set

A Data Set contains information related to several aspects of the intercon-

nection structure of the Internet topology. For this reason, different types

of Data Set are often used to infer relationships between ASes. Data Set

can be divided into:

• Internet Registries;

• IXP Data;

• BGP Table Dumps;

• Traceroute Data.
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4.1.1 Internet Registries

As seen in the previous chapter, the natural approach to the route conver-

gence problem requires a global coordination, using a repository of routing

policies.

Internet Registries are distributed databases containing information

related to the AS administration or AS number allocations, such as ARIN

[10] or RIR (Regional Internet Registries) [129].

In addition, Internet Routing Registry (IRR) [78] was created as a re-

pository of inter-AS connections and routing policies - and to perform

consistency checking on the registered information - that use the standard

language Routing Policy Specification Language (RPSL) [105] [7].

But several impediments to the global coordination were born:

• a global coordination does not ensure a convergence in presence of

link failures or a policy change;

• Internet Routing Registry is update via voluntary basis;

• contractual agreements between Administrative Domains are in ge-

neral proprietary;

• Administrative Domains may be unwilling to reveal their policies.

For these reasons the information are incomplete and out of date [21]

[28], and, in general do not imply anything about how ASes relate to each

other.
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4.1.2 IXP Data

Internet Exchange Points (IXPs) or Network Access Point (NAPs) are in-

frastructures that enable physical connectivity between their member net-

works through a shared medium, such as a FDDI ring, an ATM switch, a

Gigabit Ethernet. Table 5.1 shows a list of Internet Exchange Points [80].

Physical connectivity between member does not imply a connectivity

between ASes (reachability).

In fact, only the relationships between ASes via the negotiation of

contractual agreements ensure the exchange of traffic between them.

The lists of IXPs are available with the names of participants in same

cases [39] [120] [118]. But, since the information are input on a voluntary

basis, they are incomplete and outdated.

However, most IXPs publish the subnet prefixes they use keeping re-

verse DNS entries for the assigned IP addresses of each IXP participant

inside the IXP subnet [62].

A method to infer IXP participant was proposed by He et al. [74], but

all of the methods do not accurately convert router paths to corresponding

AS paths, with the generation of false and inflated paths.

4.1.3 BGP Table Dumps

In the absence of a global registry, the AS-level structure of the Internet

is inferred from analysis of routing data, taken from BGP table dumps or
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taken from traceroute data.

In the BPG table dump, BGP forwarding tables and routing updates are

passively listened by data collectors [53] [65] [58]. University of Oregon

RouteViews server [130], RIPE-RIS [128], Abilene [142], Geant [59], has

been used for the creation of the set of inferred links between the ASes for

the generation of a synthetic AS topology.

Gao [53] presents heuristic algorithms for inferring the relationships

from BGP routing tables, based on the fact that a provider is larger than its

customers and two peers are of comparable size, considering the relation-

ship between neighboring ASes as an inherent aspect of the inter-domain

routing structure.

Subramanian et al.[136] propose a methodology for combining data

from multiple vantage points in order to construct a more complete view

of the AS relationships and to network topology. It is an approach that

differs from the global coordination, based form a partial view of the

Internet topology, the analysis of AS paths from multiple locations, and

considering the commercial relationships between ASes.

4.1.4 Traceroute Data

Traceroute command provides a view of the path from a source to a desti-

nation host. A set of monitors send periodic UDP or ICMP packets to a set

of IP addresses, and convert router paths to AS paths [133] [131] [99] [19].
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The process of conversion of router paths into AS paths may introduce

false AS links as shown in [103] [76] [22].

4.2 Modeling the Commercial Agreements

ASes have the responsibility for carrying traffic to and from a set of prefixes.

BGP allows each AS to choose its own administrative policy in selecting

routes and propagating reachability information to others.

The negotiation of contractual commercial agreements between Admi-

nistrative Domains ensures the exchange of traffic between ASes, but the

routing policies are constrained by these AS relationships.

Routing policies are often manually configured in BPG routers by Ad-

ministrative Domain operators.

Several efforts are made to classify these commercial agreements [2]

[77] [53] [6].

Awduche et al. [2] define two types of peering relationships called

customer peering and non-customer peering.

In customer peering, an Administrative Domain provides transit service

to its customers for a fee, and routing their in-bound and out-bound traffic.

In non-customer peering, an Administrative Domain provides non-transit

service to other ASes on the basis of bilateral agreements.
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Houston [77] defines a set of commercial agreements as follows:

Customer-Provider agreements

• a customer pays its provider for connectivity to the rest of the Internet;

• a provider transits traffic for its customers;

• a customer does not transit traffic between its providers;

Peer-Peer agreements

• peers exchange traffic between their customers free of charge.

Mutual-Transit agreements

• the Administrative Domains provide connectivity to the rest fo the

Internet for each other. This is a typical agreement between two

small Administrative Domains located close to each other that cannot

afford additional Internet services for better connectivity.

Backup Relationship

• a backup connectivity to the Internet for Administrative Domains in

the event of a connection failure.

Even if this classification does not capture all the possible commercial

agreements between ASes, it is used as reference point by several authors

[53] [136] [34].
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Dimitropoulos et al. [34] affirm that ASes prefer customer routes over

routes through peers or providers, because ASes do not have to pay for

sending traffic to a customer and tend to avoid congestion at peering

exchange points.

4.3 Modeling the Interconnection Structure

A large number of works have focused on the generation of synthetic AS

topologies, in order to model the interconnection structure of the Admini-

strative Domains.

These network topologies have modeled the network structure as a

graph to represent the relationships and the interactions between the ASes.

In order to understand the topological structure of the AS connectivity

graph, a global hierarchical structure is inducted by the commercial rela-

tionships. The study of the inference of the type of relationships between

interconnected ASes based on a collected data set (which, in general, are

not part of the AS connectivity data) and their routing policies, is often

called the Type of Relationship (ToR) problem.

Some early studies consider network as a random structure or a struc-

tured network as abstract undirected graphs, missing the different types

of node relationships, inducing an unrealistic model of the interconnection

structure [149].

Siamwalla et al. [132] and Govindan et al. [66] presents two heuristic
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methods to discover routing adjacencies using traceroute command.

Faloutsos et al. [40] and Magoni et al. [101] describe a set of average

properties of the AS network from distributions (called power-laws), con-

cerning degree, distance, number of shortest paths or trees taken from a

very limited set of instances of BGP data1 [101].

Three power-laws are defined by Faloutsos et al. [40], and five power-

laws by Magoni et al. [101], to give a view of the current AS network

topology as well as a view of its on-going evolution, and to model the AS

network as accurately as possible.

But, all of them are empirical laws, inferred from a reduced set of data,

which generate an incomplete and unrealistic model of the interconnection

structure2.

All the aforementioned work do not present an explicit notion of AS an

hierarchical structure of the topology network.

A new, and more realistic view of interconnection structure as an

hiearchical and structural network topology, with the explicit notion of AS

relationships in the topology characterization is presented in several work

[65] [53] [35] [153] [34] [17].

Govidan et al. [65] define the degree of AS as the number of ASes that are

1Only six instances.
2As example, two of these empirical laws are: “(ASs growth). Currently, the number of

ASs in the AS network increases by 45% each year” or “(Connection growth). Currently,

the number of BGP connections in the AS network increases by 53% each year”.
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its neighbors. The degree of an AS is used as an heuristic in determining

the size of the AS and to classify ASes into four levels of hierarchy.

Dimitropoulos et al. [34] define the customer-degree dp2c of an AS as

the number of its customers, the provider-degree dc2p as the number of its

providers and the peer-degree dp2p as the number of its peers, in order to

capture their distribution in the ASes3.

Gao [53] proposes an hierarchical and structured AS graph represen-

tation G = (V,E), where the node set V consists of ASes and the edge set

E consists of the set of relationships between the ASes, based on a set of

commercial agreements.

This graph is represented as a partially directed graph, called annotated

graph, where its edges are classified into:

• provider-to-customer u→ v

AS u is a provider of AS v if u transits traffic for v and v does not

transit traffic for u. The edge (u, v) is directed from u to v4.

3As example, they affirm that large Tier-1 ASes typically have a large dp2c, zero dc2p,

small dp2p.
4 Note that, according to Gao [53], the direction of the node is from provider to customer

provider→ customer.

Several authors propose the direction of the node from customer to provider customer→

provider because the traffic flows from customer to provider. This may generate confusion

because the provider is a higher-level entity than the customer in this structured and

hierarchical topology.
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• customer-to-provider u← v

AS u is a customer of AS v if u does not transit traffic for v and v

transits traffic for u. The edge (u, v) is directed from v to u.

• peer-to-peer u · · · v

ASes u and v have a peering relationship if u does not transit traffic

for v and v does not transit traffic for u. The edge (u, v) is undirected.

• sibling-to-sibling u · · · v

ASes u and v have a sibling relationship if u transits traffic for v and

v transits traffic for u. The edge (u, v) is undirected.

Because provider-customer relationships are considered asymmetric,

and peer-to-peer and sibling-to-sibling relationships are considered sym-

metric, the edges in the graph between providers and customer are directed

while the edges between siblings and peers are undirected.

The relationship between the ASes does not correspond to their com-

mercial agreements.

In addition, a definition of a valley-free is made as: “After traversing a

provider-to-customer or peer-to-peer edge, the AS path cannot traverse a

customer-to-provider or peer-to-peer edge”.

In addition, the traffic flows from customer to provider only in certain conditions. See

section 1.1.2 for more details about AS interconnection.
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Therefore, an heuristic algorithm is proposed assuming that a provider

has a larger size than its customer, and the size of an AS is proportional

to its degree in the AS level connectivity graph. The experimental results

[29] indicate that 90% of the links in the Route-Views database are of type

customer-provider, 8% are of type peer-peer, and 1.5% are of type sibling-

sibling.

For this reason, sibling-to-sibling relationships are not often taken into

account in the modeling of the interconnection structure.

An analysis of the properties of the annotated graphs obtained with

this heuristic algorithm is provided by Ge et al. [58].

The topology presented by Gao, and the previously described Gao-

Rexford Constraints [56], have been used in several other works [77] [136]

[56] [29] [33] [41] [96] [6] [55], becoming the reference point of the set of AS

relationships.

A formal definition of the Type of Relationship (TOR) problem as a max-

imization problem is described by Subramanian et al. [136] as follows:

They denote an edge from a customer to a provider with a −1, an edge

from one peer to another with a 0, and edge from a provider to a customer

with a +1.

If every AS obeys the customer, peer, and provider export policies, then

every advertised path belongs to one of these two types for some M,N ≥ 0:
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• Type-1: −1, . . . (Ntimes),+1, . . . (Mtimes)

• Type-2: −1, . . . (Ntimes), 0,+1, . . . (Mtimes)

The first stage of a Type-1 path contains only customer-provider links

and the second stage contains only provider-customer links.

The Type-2 captures all paths which traverse exactly one peering link.

In order to solve the ToR problem, a structure of partial views of the

AS graph as seen from different locations is considered. Each partial view,

called vantage point, is taken from the routing table of a BPG speaker.

Then, each vantage point is combined with the others. This technique

is called Internet Hierarchy from Multiple Vantage Points.

Formally, given an undirected graph G = (V,E), with vertex set V and

edge set E and a set of paths P, label the edges in E as either −1, 0 or +1 to

maximize the number of valid paths in P. G represents the entire Internet

topology, and P consists of all paths seen from the various vantage points.

4.4 Modeling the Exporting Policies

The relationships between ASes are translated into policies for exporting

route advertisements via BGP sessions. Each AS defines its export policies

according to its agreements with their neighbors.

Alaettinoglu [6] defines four types of exporting policies. This set of

policies used in several other work [77] [53] [136] [34] and considered the
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standard set of exporting policies, are described as follows:

Exporting to a provider

• in exchanging routing information with a provider, an AS can export

local routes;

• in exchanging routing information with a provider, an AS can export

routes of its customers;

• in exchanging routing information with a provider, an AS usually

does not export routes learned from its providers;

• in exchanging routing information with a provider, an AS usually

does not export routes learned from its peers.

Exporting to a customer

• in exchanging routing information with a customer, an AS can export

local routes;

• in exchanging routing information with a customer, an AS can export

routes of its customers;

• in exchanging routing information with a customer, an AS can export

routes learned from its providers;

• in exchanging routing information with a customer, an AS can export

routes learned from its peers;

• in exchanging routing information with a customer, an AS can export

routes learned from its sibling ASes [34].
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Exporting to a peer

• in exchanging routing information with a peer, an AS can export local

routes;

• in exchanging routing information with a peer, an AS can export

routes of its customers;

• in exchanging routing information with a peer, an AS usually does

not export routes learned from its providers;

• in exchanging routing information with a peer, an AS usually does

not export routes learned from its peers.

Exporting to a sibling

• in exchanging routing information with a peer, an AS can export local

routes;

• in exchanging routing information with a peer, an AS can export

routes of its customers;

• in exchanging routing information with a peer, an AS can export

routes learned from other providers;

• in exchanging routing information with a peer, an AS can export

routes learned from other peers;

• in exchanging routing information with a peer, an AS can export

routes learned from other sibling ASes [34].
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4.5 Issues

Generally speaking, all the relationships and the topologies shown in the

previous sections present several important drawbacks, and do not capture

the global hierarchical structure.

Firstly, the hierarchical and structured AS representation of the inter-

connection structure of the Administrative Domains, and the classification

of the AS relationships into provider-to-customer, customer-to-provider,

peer-to-peer and sibling-to-siblings edges, does not reflect a real business

agreement between the Administrative Domains.

A study of the real commercial relationships between Administrative

Domains will be made thereafter, but just right now we can affirm that a

one-to-one relationship between business agreement and an AS relation-

ship is not possible. So, the rules in the export policies previously described

are not completely responding to the real enviroment.

In addition, we will see that several types of agreements between ASes

are possible with the generation of confusing rules and approaches. As

example, a public peering agreement between to ASes can be considered

as a provider-customer relationship in modeling of the AS relationships.

Besides, the Type of Relationships problem does not consider the hierar-

chical structure of the AS graph, and accepts cyclic structures as solutions.
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In this way a solution with a cycle such as:

nationalprovider → regionalprovider → localprovider
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

is acceptable, in contradiction with the assignment that a customer-

provider relationship does not contain cycles and, in general, with the

Gao-Rexford Constraints5 [56]. There are hundreds of similar real-world

examples [41] [34] .

Another drawback is related to the affirmation that ASes prefer cus-

tomer routes over routes through peers or providers, because ASes do not

have to pay for sending traffic to a customer [34]. This is true only to

some AS interconnection types (see section 1.1.2 for more details about AS

interconnection). If the Exporting to a provider policies previously described

are true, and, in particular, the sentence “in exchanging routing information

with a provider, an AS usually does not export routes learned from its peers and its

providers” is true, then the customer may hide to a provider a set of routes

learned from its providers and peers, hijacking provider’s traffic towards

other connections.

Finally, two ASes may have a peer indirectly through an intermediate

AS [56].

In summary, starting from a data set, and according to the synthetic

5Several variants are proposed to the Type of Relationship problem as a maximization

of the number of paths keeping the directed graph acyclic, with no applicable results [29]

[87].
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topologies shown in the previous sections, a mechanism of reverse lookup -

in order to have a clear and a realistic view of the interconnection structure

of the network - is not actually possible.

In addition, a process of verification of the results related to topol-

ogy inference is difficult without a complete and accurate repository of

the relationships between ASes, which are actually considered sensitive

information by Administrative Domains.

In the next chapter, an analysis of the business relationships and the

possible strategies for competitions between Administrative Domains is

made.



Chapter 5

Toward a more realistic model

As general assumptions, Internet is not considered as a well ordered

provider-client hierarchy, but a no-ordered subset of interconnections,

driven by business agreements, and where performance is not the first

scope.

For these reason, business relationships reflect both packet flow and

money flow.

In this chapter, a deep analysis of these business relationships to iden-

tify the Settlement Model, and an exploration of possible strategies for

competitions between Administrative Domain is made.
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5.1 Analysis of the Settlement Model

A value of the traffic and money flows between Administrative Domains

must be given, in order to identify a Settlement Model of these transactions.

The Settlement Model in the Public Switched Telephone Network (PSTN)

is easy to identify. A call between two users U1 → U2 is made via a provider

P1. In general, P1 belongs to a set n of providers P1 → P2 → . . . → Pn. In

this model, U1 pays P1 for this end-to-end service. The contractual agree-

ments between P1 and P2 , P2 and P3, . . . , Pn−1 and Pn ensure a periodically

and balanced money flow between all the actors involved.

In this way, each traffic flow and each money flow is identified, with

each transaction with a measurable value.

The analysis of the Settlement Model in the business relationships be-

tween Administrative Domains reveals that an identification through bidi-

rectional and measurable transactions of traffic and money flows is not

possible. Each individual IP packet can be considered as an individual

’transaction’, but a per-packet charging is not a a practicable way (as ex-

ample, packets can be lost).

Indeed, an analysis of costs and benefits related to the type of services

provisioned and managed by the Administrative Domains is necessary.

Prices for services can vary between Administrative Domains, even for

the same services, and depend on several factors such as physical network

topology, redundancy, types of interconnection with other networks, sub-
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scription ratios (available capacity:utilized capacity)1, demarcation point

issues2.

In the analysis of this Settlement Model, two types of business agree-

ments between Administrative Domains are considered:

• Transit; where one Administrative Domain provides reachability to

all destinations in its routing table to its customers;

• Peering; where Administrative Domains provide mutual reachability

to a set of their routing table.

An analysis of these two models is made in the following sections.

5.2 Transit

One Administrative Domain provides reachability to all destinations in its

routing table to its customers.

Transit services are generally sold in the form of Ethernet connections

with different port speeds (10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps port

1Subscription ratios vary based on the product being offered, typically from 4:1 ratios

(no more than four links for each backbone connection) to 10:1 ratios. Higher subscription

ratios ensures higher percentages of network bottlenecks and congestions.
2A demarcation point is the boundary between the network and responsibilities of each

Administrative Domain. Demarcation points are defined down to the cables and connec-

tors to ensure that no disagreements occur in case of equipment or network problems.
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speed)3.

A common practice to determine the traffic volume on a connection

for billing purposes over a calendar month is the 95% model for traffic

measurement as follows [115]:

• every five minutes two measurements (transmission and reception)

of the total traffic passed over the port since the last measurement

are made;

• at the end of the calendar month all measurements (the highest of

transmit and receive) of that month, generally 8.6404 measurements

per direction are lined up and sorted from high to low;

• the highest 5% of the measurements (5% ∗ 8.640 = 432) is dropped;

• the next highest measurement defines the 95% traffic level on which

the billing for that month is based.

In this way a burst traffic of (432 * 5 minutes / 60 =) ± 36 hours per

month does not affect on the monthly payment.

3 The carrier can limit the port speed to a lower value in some cases. In order to

avoid problems related to traffic bursts and congestion, the port speed is usually chosen by

considering an average traffic usage lower than 75% of the maximum port speed. A port

buffer is available but when the port buffer is full, traffic will be dropped.
4 12 (measurements per hour and direction) * 24 (hours) * 30 (days) = 8.640 measure-

ments.
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A Traffic commitment level is one of the most commonly forms of pay-

ments in a traffic business agreement. All traffic up to this traffic commit-

ment level is included in the fixed monthly price, and any traffic over the

commitment level is charged based on an agreed burst fee. So, using 6

Mbps in a 10 Mbps commitment there is no any additional monthly fee to

pay, while using 16 Mbps there is an extra fee of 6 Mbps of burst traffic.

5.3 Peering

Peering allows the exchange of routes and traffic limited to both networks

and their respective customers, and does not include transit routing to

non-customer networks.

Administrative Domains provide mutual reachability to a set of their

routing table. These destinations are generally customers, and reached via

zero cost peering links in many cases.

Peering reduces the traffic flow sent to its providers, saving operational

costs. Besides, additional equipment and management costs are required.

Peering can be realized through private interconnections (private peering

interconnection) or public interconnection (public peering interconnection),

through bilateral peering relationships or multilateral peering relationships.
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5.3.1 Private Peering Interconnection

A private peering interconnection is a private interconnection made in general

through a dedicated point-to-point network cable. Private peering allows

a direct control over the traffic flows, but the cost for buying, maintaining

and managing the equipment, and for each interconnection, can be very

high. For each AS to connect, a cable is required.

5.3.2 Public Peering Interconnection

A public peering interconnection is a interconnection implemented through

a physical public infrastructure called Internet eXchange Point (IXP), using

virtual circuits in a Switching Mesh.

In this case, only one cable to connect with the Internet Exchange Point

is required, reducing the cost for buying, maintaining and managing the

equipment. However the available bandwidth capacity between any two

participants can be limited.

The physical interconnection (Layer-1 and Layer-2 ISO/OSI model) with

a IXP does not ensure reachability to other ASes. An IXP provides only a

physical connectivity among all participants. Traffic can be exchanged after

a negotiation of peering agreements with other Administrative Domains.

It is up to individual networks to decide with whom to establish BGP

sessions.
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Name Country Members Update

Equinix [38] USA, Europe, Asia 491 2010-09-10

AMS-IX [8] Amsterdam (Netherlands) 365 2010-09-15

DE-CIX [32] Frankfurt (Germany) 353 2010-08-15

LINX [97] London (UK) 332 2010-07-31

MSK-IX [112] Moscow (Russia) 304 2010-07-31

NL-ix [114] Amsterdam (Netherlands) 240 2010-03-11

Table 5.1: List of Internet eXchange Points by members

However, the payload peering traffic over the Internet Exchange port

is often free of charge.

Internet Exchange Points are classified by the number of members,

traffic volume and amount of routes. Table 5.1 shows a list of Internet

Exchange Points by members [80].

Table 5.2 shows an example of pricing of an interconnection with two

different IXPs in Netherland, NL-ix and AMS-IX [115].

In this example, the demarcation point of the service is the port on the

NL-ix or AMS-IX switch on the datacenter. The patchcable from customer’s

equipment to the IXP is not included.
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Port Speed 100 Mbpsα 1 Gbpsβ 10 Gbpsγ

NL-ix Initial 250 e 500 e 1000 e

Monthly recurring 100 e 350 e 1000 e

AMS-IX Initial 0 e 0 e 0 e

Monthly recurring 500 e 1000 e 2500 e

α RJ45/UTP connector

β Multimode fiber SX/850nm or singlemode fiber LX/1310 nm (+ 500 einitial fee)

γ Singlemode fiber LX/1310 nm

Table 5.2: Pricing of an Interconnection with NL-ix and AMS-IX

5.3.3 Bilateral Peering Relationship

In a Bilateral Peering Relationship, members will peer on a one-to-one basis

through a private peering interconnection or a public peering interconnec-

tion. A bilateral peering relationship is commonly made via Layer-2 direct

switching, or Layer-2 virtual circuits in a Switching Mesh.

A bilateral peering relationship allows each member to select a pre-

ferred path to a given destination.

The bilateral peering agreement is the formal and signed document that

formalizes the relationship between the parties, including routing policy,

the settlement character of the traffic exchange, the duration of thee agree-

ments, technical best practices, and so on.
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Table 5.3 shows an example of pricing of a bilateral peering through

Open Peering [115], a bilateral payed peering interconnection with the im-

plementation and maintenance of a full set (up to 350) or a subset (top-25)

of peers.

Strenght:

• private peering;

• granular policy control;

• easy monitoring control and troubleshooting;

• total control over legal contract and technical agreements.

Weakness:

• technically complex;

• one BGP session per neighbor;

• management of multiple legal contracts and technical agreements;

• high cost.

5.3.4 Multilateral Peering Relationship

In a Multilateral Peering Relationship, members will only peer with a Ex-

change Route. The Exchange Route announces the members routes to all

peers and is able to select a preferred path to a given destination, imposing

transit policies.
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Type of Peering Price

Bilateral - Full Initial 12000 e

Monthly recurring 1200 e

Bilateral - Top 25 Initial 3000 e

Monthly recurring 300 e

Table 5.3: Pricing of a bilateral peering with Open Peering with a full bilateral
peering or a top-25 largest networks on an Internet Exchange Point

A Multilateral Peering Relationship can be made through a private

peering interconnection with the Exchange Route, or a public peering

interconnection . In this case the Exchange Route is an Internet Exchange

Point.

Also in this case, a multilateral peering agreement, the formal and signed

document that formalizes the relationship between the parties, is required.

In the case of a mutual peering relationship over an Internet Exchange

Point, a compliance with an Acceptable Use Policy is required. An Accept-

able Use Policy (AUP) is a standand formal and signed document containing

terms and conditions of use, technical agreements of use, to improve the

efficiency of routing and the general connectivity.

Examples of AUP are “Technical Standards and Policy for Subscribers

to LAP & MAE-LA” [141] and the “Multi-Lateral Peering Agreement

(MLPA)” [113].
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In these AUP are defined standards, policies, rules to respect and obli-

gations.

Here some rules:

• exchange of routes will be performed using BGP4 [126];

• subscribers will route prefixes that are a maximum prefix length of 24

bits. Aggregation of routing information where possible is required;

• subscribers will make use of a unique Autonomous System Number

assigned by a suitable registration authority;

• routing policy must be published in the Internet Routing Registry

[78];

• subscribers are obligated to advertise all its customers’ routes to all

other participants and to accept the customer’s routes advertised by

other participants;

• subscribers are not obligated to announce routes obtained from its

Bilateral Peering Agreements;

• subscribers are not obligated to provide transit to other subscribers;

• the agreement is implemented by each subscriber on a best-effort

basis.

In general, monetary settlements are not required, and there is no

installation fee and recurring fee, but the costs related to hardware and

connection to the Internet Exchange Point are not covered by the AUP.
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Multilateral Peering MLPA Registry MLPA Routing

Initial Free Free

Monthly recurring Free Free

Table 5.4: Pricing of a multilateral peering with MLPA Registry and Routing
services

.

Table 5.4 shows an example of pricing of a multilateral peering with

MLPA Registry and Routing services. MLPA Registry and Routing services

are free of charge and not for profit services of Open Peering [115] and pro-

vided on a time-permitting basis without 24*7 support and, theoretically,

they can be terminated at any point in time.

Strenght:

• technically easy;

• management of a single legal contract;

• cost.

Weakness:

• no private peering;

• lack of policy control;

• complex monitoring control and troubleshooting;

• additional AS PATH.
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5.3.5 Strategies for Peering Competitions

Broadly speaking, peering guarantees short and fast connections, improv-

ing performance and resilience, reducing bottlenecks and dependences on

transit providers. It also reduces the costs of delivering traffic, and can

increase money flows by new contractual agreements with customers due

to a more appealing status.

In addition, peering is free in general5.

In a zero cost bilateral peering, no money is payed for traffic exchanged

and the costs for the infrastructure are shared.

This implies equal benefit to all the actors involved. So, peering is an

appealing solution.

For these reasons, many Administrative Domains have very selective

peering engagements, because peering consumes resources and requires

continuous efforts in maintenance [9] [11].

Besides, small Administrative Domains have in general poor services,

and an unbalanced traffic flow between large and small peers is an unwill-

ing solution.

In addition, it is possible that substantial part of the traffic flow in a

small peer is from a larger one, impacting on the quality of the service

offered to other peers, or not allowing new contractual agreements with

5It is not true. Often peering is made using forms of contractual agreements called payed

peering.
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other ASes.

For this reason, the large peers tend to have strict peering policies, de-

manding strict maximum subscription ratios or peering in geographically

distribute locations.

In the next chapter, a formulation of a methodology to structure the

different aspects to be taken into account in a peering engagement is pro-

posed, in order to optimally solve the trade-off of implementing a peering

engagement against the extra cost that this solution represent.



Chapter 6

Ex-Ante Evaluations of Peering

Engagements

A key problem to be faced by Administrative Domains is how to optimally

solve the trade-off of implementing a peering engagement against the extra

cost that this solution represent.

An estimation of the additional income due to the peering engagement

is required.

As seen an Administrative Domain may choose between multiple so-

lutions with different monetary costs.

In this chapter, the formulation of a methodology to structure the dif-

ferent aspects to be taken into account in a peering engagement, and ef-

ficiently solve the decision problem of maximization of the importance
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of these aspects, subject to a mutual relationship between the involved

aspects and budget constraints is explained.

This study makes the following contributions:

• a comparative analysis of the aspects and alternative options to be

taken into account in ex-ante evaluations of a peering engagement is

explained;

• a decision maker called XESS2 (eXtended EGP Support System) able

to process the aspects and the alternative options in a peering en-

gagement, in order to find candidate solutions in a fast and high

efficient way, and to produce a synthetic conclusion on the allocation

of budgets and on the enhancements of effectiveness of the services

is proposed.

XESS2 is the second revision of XESS (eXtended E-Learning Sup-

port System) [49] [48] [50] [45] [46] [47], a Decision Support System

able to make a comparative evaluation of alternative options in an

e-Learning solution through a numerical evaluation of the variables

and the selection of the best possible solution, using a combinational

optimization formulation and an integer programming formulation

of the problem [1] [13] [83] [109].
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6.1 Modeling Peering Engagements

In this section an analysis of the aspects and alternative options to be taken

into account in ex-ante evaluations of a peering engagement is explained,

to formulate an exhaustive model of the real environment, to be used by

the decision maker to find candidate solutions, and to produce synthetic

conclusion on the allocation of budgets. So, this section is intended to

focus primarily on the definition of the problem properly, in order to be as

exhaustive as possible.

In the next subsections a description of all options is made.

6.1.1 Category Equipment

This category is related to the purchase of equipment and the related costs

of the human resources required to make the infrastructure operational.

BGP Router

A router which supports the BGP4 protocol is required, and pricing is

defined by the router class and by using refurbished routers. A refurbished

router is an used router, which have completely been updated and tested.

Table 6.1 describes the available options. For each Router Class, two

options related to a new router or a refurbished router are available.
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Option Router Class Description

1-2 100% CAM Router A full routing table is contained in the

router’s Content Addressable Memory

(CAM). Each packet is forwarded with-

out using the CPU.

3-4 CAM Cache Router A partial routing table is contained in

the router’s CAM.

5-6 Appliance Router Based on standard PC hardware com-

ponents, and running a custom OS and

routing software. The performance is

largely limited by the performance of

the CPU.

7-8 Software Router Based on standard PC hardware, and

an open source Operating System and

open source routing software. The main

advantages of software routers is their

low cost, despite to their performance

(limited by the performance of the CPU)

and stability.

Table 6.1: Router Options
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Each option is intended with a standard configuration included of:

• Chassis;

• Power Supply;

• Slot cover;

• Power Cable;

• Documentation.

Additional options are considered in Table 6.2.

Hardware Setup and Support

Two types of hardware setup and support services are considered [Table

6.3].

Hardware support services are considered as monthly costs with dif-

ferent support hours and max response time. For refurbished equipment,

they are often calculated as percentage of the total refurbished prices.

BGP Support

Three type of BGP support service are considered [Table 6.4]. The support

is done only via email, phone, or remote access. No on-site support is

included. Generally, pricing is divided into initial costs and monthly costs,

and a maximum amount of management or support hours per month is

considered.



98 Chapter 6. Ex-Ante Evaluations of Peering Engagements

Option Additional Router Options Description

9 Chassis Chassis, with more empty in-

terface and power supply slots.

10 Additional Power Supply Additional Power Supply.

11 Interfaces & Management UTP Ethernet Blades, or SX

multiMode Fiber Blade with

Management Blades.

12 Lasers Lasers.

13 Patches Singlemode patches or multi-

mode patches.

14 Accessories Slot cover for Power Supply

slot or for empty Interface Slot,

Flash Disk for management

modules.

15 Other Other options.

Table 6.2: Router Additional Options
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Option Hardware Setup Description

16 Router Setup 1 Setup of BGP sessions, to transit providers

and peers.

17 Router Setup 2 Setup of BGP sessions, to transit providers

and peers. Installation or upgrade of the

Operating System. Configuration of eth-

ernet interfaces, VLAN’s, interface IP ad-

dresses and static routes.

18 Support Service 1 Support Hours: 8*5 , Max Response time

(MRT): Next Business Day.

19 Support Service 2 Support Hours: 24*7,Max Response time

(MRT): 4 hours.

Table 6.3: Hardware Setup and Support



100 Chapter 6. Ex-Ante Evaluations of Peering Engagements

Course

In order to have a technical knowledge of routing, extra fees can be payed

for courses [Table 6.5]. They are generally divided into a theory part

(routing, addressing, BGP route mechanisms, policies, tools, issues and

troubleshooting), and a practical workshop part (router setup and config-

uration of transit and peering, path and attribute manipulation, filtering

and security).

6.1.2 Category Addresses

AS Number

A globally unique identification (AS number) is required in exchanging

exterior routing information with other networks [Table 6.6]. In the Euro-

pean region, the AS number is assigned by the RIPE Network Coordina-

tion Center (NCC), and needs to be registered and maintained in the RIPE

database.

IP Space

An IP Space (a set of globally unique IP addresses) is required to be able to

route traffic between Administrative Domains. A minimum block of 256

IP addresses is required. Pricing depends on the IP Space width [Table

6.7].
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Option BGP Support Description

20 BGP Service 1 Support Hours: 8*5, Max Response Time:

Next Business Day.

21 BGP Service 2 Support hours: 24*7, Max Response Time:

4 hours.

22 BGP Service 3 Support hours: 24*7, Max Response Time:

1 hour.

Table 6.4: BGP Support Services

Option Course Description

23 BGP Course A course divided into a theory part and a

workshop part with a maximum number

of attendants per course.

Table 6.5: Course

Option AS Numbers Description

24 AS Number The Registration and the maintenance of

an AS Number as an yearly recurring fee.

Table 6.6: AS Number Registration
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6.1.3 Category Connectivity and Rackspace

Generally, the Demarcation Point of a service is a port of the network device

on a Datacenter. So, the network connectivity with the Datacenter [Table

6.9] and the rack collocation in the Datacenter (Rackspace) [Table 6.8] are

considered in this category.

6.1.4 Category Peering

According to Section 5.3, private and public peering interconnections

through bilateral or multilateral peering relationships are considered [Ta-

ble 6.10].

Pricing are divided into initial costs and monthly recurring costs.

The physical interconnection with a IXP does not ensure reachability

to other ASes, but only a physical connectivity among all subscribers.

Traffic is exchanged after a negotiation of peering agreements with other

Administrative Domains.

So physical interconnection and peering agreements with a peer must

be considered in each option.
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Option IP Space Description

25 256+ IP Space of 256 IP addresses and multiple IP

Spaces. Pricing is generally divided into a

price for the first 256 addresses block, and a

price for any extra 256 addresses block.

26 2048 An IP Space of maximum 2048 IP addresses.

27 4096 An IP Space of maximum 4096 IP addresses.

28 8192 An IP Space of maximum 8192 IP addresses.

Table 6.7: IP Space

Option RackSpace Description

29 Rackspace 1 A rackspace for partial rack (10U,11U,14U)

30 Rackspace 2 A rackspace for full height rack (42U)

Table 6.8: Rackspace
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Option Connectivity Description

31 100 Mbps 100 Mbps connection based on 100Base-TX

standard, Cat5e UTP cable for a maximum

distance of 100 meter.

32 1 Gbps MM 1 Gbps connection based on 1000Base-X or

1000Base-SX (850 nm) standard over multi

mode fiber (with 62.5/125 µm core/cladding

diameter) using SC connectors, for a maxi-

mum distance of 550 meter.

33 1 Gbps SM 1 Gbps connection based on 1000Base-LX

(1310 nm) standard over single mode fiber,

for a maximum distance of 10 - 25 Km.

34 10 Gbps 10 Gbps connection based on 10GBase-LR

(1310 nm) standard over single mode fiber

(with 8-10/125 µm core/cladding diameter),

for a maximum distance between 10 and 25

Km, depending on the cable quality and loss

specifications.

Table 6.9: Connectivity
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Option Peering Description

35 2-Private Bilateral Peering through a private peering in-

terconnection (See section 5.3.3 for details).

36 2-Public-F Bilateral Peering through a full public bilat-

eral peering interconnection (See section 5.3.3

for details). As example, Open Peering [115]

[Table 5.3] considers the implementation and

maintenance up to 350 potential peers.

37 2-Public-S Bilateral Peering through an interconnection

based on a subset of peers. (See section 5.3.3

and Table 5.3).for details).

38 2-Public-IXP Bilateral Peering interconnection implemented

through an IXP (See section 5.3.2 for details).

Only the physical interconnection with the IXP

is considered.

39 M-Private A Multilateral Peering with a Exchange Route

(See section 5.3.4 for details). Only the phys-

ical interconnection with the Exchange is con-

sidered.

40 Mu-Public A Multilateral Peering with an IXP(See section

5.3.4 for details). Only the physical intercon-

nection with the IXP is considered.

Table 6.10: Peering Relationship
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Option (ω) Name Cost c(ω) Importance λ(ω)

Option 1 100% CAM Router New 40000 e 80%

Option 3 CAM Cache Router New 20000 e 50%

Option 4 CAM Cache Router Refurbished 5000 e 50%

Option 23 BGP Course 500 e 20%

Table 6.11: Examples of cost values and importance values related to some options

6.2 Problem Formulation

This section introduces a set of assumptions, and a formulation of the

mathematical model is made.

Let Ω = {ω1, . . . , ωn} be a set of finite n options to be taken into account

in ex-ante evaluations of a peering engagement.

A cost c(ωi) and an importance λ(ωi) are associated with each option

ωi ∈ Ω [Table 6.11]. CAPEX and OPEX are included into each cost c(ωi)1.

1An analysis of the cost and the importance of each option is behind the scope of this

work.
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Let χ(ωi) be a binary decision variable of the option ωi with the follow-

ing properties:

χ(ωi) =


1 if the option ωi is chosen

0 otherwise
(6.1)

Finally, let C be an assigned maximum budget to respect.

The goal of the problem is to find an optimal reduced set of solutions

Ω∗ ⊆ {ω1, . . . , ωn}, which can be formally stated as the following integer

programming formulation (Table 6.12 introduces the notation used):

maximize :
n∑

i=1

λ(ωi)χ(ωi) (6.2)

subject to :
n∑

i=1

c(ωi)χ(ωi) ≤ C (6.3)

χ(ωi) ∈ {0, 1} ∀i ∈ {1, . . . ,n} (6.4)
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Rmax∑
r=R0

χ(ωr) = 1 ∀R0,Rmax ∈ {1, . . . ,n} (6.5)

Smax∑
s=S0

χ(ωs) ≤ 1 ∀S0,Smax ∈ {1, . . . ,n} (6.6)

Umax∑
u=U0

χ(ωu) ≤ 1 ∀U0,Umax ∈ {1, . . . ,n} (6.7)

Vmax∑
v=V0

χ(ωv) ≤ 1 ∀V0,Vmax ∈ {1, . . . ,n} (6.8)

Jmax∑
j=J0

χ(ω j) ≤ 1 ∀J0, Jmax ∈ {1, . . . ,n} (6.9)

Kmax∑
k=K0

χ(ωk) ≤ 1 ∀K0,Kmax ∈ {1, . . . ,n} (6.10)

Mmax∑
m=M0

χ(ωm) ≤ 1 ∀M0,Mmax ∈ {1, . . . ,n} (6.11)

Mmax∑
q=K0

χ(ωq) , 1 ∀K0,Mmax ∈ {1, . . . ,n} (6.12)

Pmax∑
p=P0

χ(ωp) ≤ 1 ∀P0,Pmax ∈ {1, . . . ,n} (6.13)
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Symbol Desription

Ω The set of finite options to be taken into account in

ex-ante evaluations of a peering engagement

n Total number of the options to be taken into account

in the analysis

c(ωi) Cost of the option ωi

λ(ωi) Importance of the option ωi

χ(ωi) Decision variable {0, 1} depending if the ωi is chosen

or not

C Total admissible cost of the peering engagement

{ωR0 , . . . , ωRmax} Set of candidate routers

{ωS0 , . . . , ωSmax} Set of candidate options for setup of BGP sessions

{ωU0 , . . . , ωUmax} Set of candidate options for Hardware Support Ser-

vices

{ωV0 , . . . , ωVmax} Set of candidate options for BGP Support Services

{ωJ0 , . . . , ωJmax} Set of candidate options for IP Space

{ωK0 , . . . , ωKmax} Set of candidate options for a rackspace.

{ωM0 , . . . , ωMmax} Set of candidate options for a network connectivity

with the Datacenter.

{ωP0 , . . . , ωPmax} Set of candidate peering agreements

Table 6.12: Notation
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Expression (6.2) represents the object function. Expression (6.3) en-

sures that the total cost of the chosen set of options does not exceed the

total budget C. Expression (6.4) ensures that each χ(ωi) is either 0 or 1.

Expression (6.5) assures that at least one router ωr∗ is chosen from a set of

{ωR0 , . . . , ωRmax} candidates.

Expression (6.6) assures that at most one setup of BGP sessions ωs∗

is selected from a set of {ωS0 , . . . , ωSmax} choices. Expression (6.7) ensures

that at most one Hardware Support Service ωu∗ is selected from a set of

{ωU0 , . . . , ωUmax} alternatives. Expression (6.8) ensures that at most one BGP

Support Service ωv∗ is chosen from a set of {ωV0 , . . . , ωVmax} choices.

Expression (6.9) assures that at most one IP Space ω j∗ is chosen from a

set of {ωJ0 , . . . , ωJmax} alternatives.

Expressions (6.10), (6.11) and (6.12) ensure that a network connecti-

vity with the Datacenter ωm∗ and a rack collocation in the Datacenter

(Rackspace) ωk∗ are simultaneously considered.

Finally, expression (6.13) assures that at most one peering agreement

ωp∗ is selected from a set of {ωP0 , . . . , ωPmax} alternatives.

The solution of the above integer programming formulation gives the

optimal combination of the options Ω∗ to be considered in the analysis of

a peering engagement from a set of candidate solutions.

The problem in (6.2) is a special case of the Knapsack Problem [83] [1]

[13].
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6.3 Practical Implementation

In order to solve the decision problem of maximization of the importance

of the aspects related to peering engagements, subject to a mutual rela-

tionship between the involved aspects and budget constraints, a practical

implementation called XESS2 (eXtended EGP Support System) has been con-

structed.

Both XESS2 (eXtended EGP Support System) and XESS (eXtended E-

leaning Support System) use a common framework [49] [48] [50] [45] [46],

which is able to make a comparative evaluation of alternative options

through a numerical evaluation of a set of variables, and to find an optimal

reduced set of solutions Ω∗ using a combinational optimization formula-

tion and an integer programming formulation of the problem [1] [13] [83]

[109].

This framework is designed to help decision-makers to integrate the

different options and to produce a single synthetic conclusion at the end

of the evaluation, aiding the stakeholders in understanding and choosing

the best possible solution when the result is not obvious.

The framework exhibits a four-tier architecture:

1. a model of the real environment, intended to focus primarily on the def-

inition of the problem properly, in order to be exhaustive as possible.

In this case, the model is based on an analysis and identification
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of the options to be taken into account in ex-ante evaluations of a

peering engagement. The options are grouped into four categories

(Equipment, Addresses, Connectivity and Rackspace, Peering) and

several subcategories, as described in section 6.1. These categories

represent only a logical organization of the options, in order to have

a clear view of all the choices through a subdivision of the different

aspects to be evaluated in logical groups. Therefore they don’t affect

the final results of the solution algorithm.

A cost c(ωi) and an importance λ(ωi) are associated with each option

ωi ∈ Ω [Table 6.11].

2. a model of the mathematical correlations and dependences between the

options.

An analysis of the mathematical correlations and dependences be-

tween the options is made, in order to make a numerical evaluation

of the benefits in the combined use of the options.

3. a method for the solution of the integer programming problem shown in

the section 6.2.

Many solution techniques for this class of problems have been pro-

posed in the literature [14] [15] [83] [104] [61] [36], including linear

programming relaxations (with the conversion of the integer prob-

lem into a standard linear programming problem), branch and bound
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techniques, and heuristic methods (providing suboptimal but accept-

able solutions to the integer programming problem).

XESS2 uses the branch-and-bound method for the solution of the

integer programming problem shown in the section 6.2., finding an

exact solution to the mathematical formulation of the model using

an exact solution approach, and with a reasonable amount of time

[1] [13].

For each solution, an objective function value that represents the “qual-

ity” of the solution (expressed as a quantitative value) is given.

4. an interface for the decision-makers.

A client-server WEB application that provides the interface between

XESS2 and the decision-makers, using a common WEB browser via

local network or via internet connection.

The series of simulations performed in [49] [48] [50] [45] [46] provide

supporting evidence of the quality of the solutions that the framework

used in XESS and XESS2 is capable of finding.



114 Chapter 6. Ex-Ante Evaluations of Peering Engagements



Chapter 7

Conclusions

This thesis has studied the routing decision process in inter-domain rout-

ing, with special focus on the analysis of the issues related to the routing

decision and to the development of accurate topology generators, and

on the development of solutions aimed at optimally implementing of a

peering engagement between multiple solutions with different monetary

costs.

We have deeply analyzed the BGP protocol and the traditional routing

process model, in order to define a new and more complete routing process

model, and the formalization of the problem through the Route Selection

function defined as the maximum value of the degree of preference of all

the available routes for a given destination.

We have discussed about routing decisions in the interdomain routing,
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which present several issues generated by a lack of a global global coor-

dination between ASes, and demonstrating to be inaccurate and poorly

effective in controlling and communicating the inter-domain decisions.

We have shown that all the efforts and the most interesting proposals

in this area of research present several drawbacks difficult to solve.

In addition, another active area of research related to the reconstruction

of the AS topology, with the building a complete set of links between Au-

tonomous Systems, in order to obtaining an accurate AS-level connectivity

has proven difficult, and the AS topology remains by and large incomplete.

We have also discussed about the development of accurate topology

generators, which are essential for producing realistic simulation studies

of protocols and network architectures, to reduce misconfiguration or to

debug router configuration files, and to planning for future contractual

agreements, because AS relationships have a profound influence on traffic

flows. We have shown that, despite the volume of research in this area,

current topology synthetic generators fail to capture an inherent aspect of

the AS topology.

The hierarchical and structured AS representation of the interconnec-

tion structure of the Administrative Domains, and the current classification

of the AS relationships do not reflect the real business agreements between

the Administrative Domains, and many considerations are made in order

to provide a more accurate and realistic view of the real interconnection

structure.
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For these reasons, an analysis of the business relationships and the

possible strategies for competitions between Administrative Domains has

studied, to define standards, policies, rules and obligations between the

actors involved.

Finally, we have formulated and efficiently solved the problem the

decision problem of maximization of the importance of the different aspects

to be taken into account in a process of peering engagement, subject to a

mutual relationship between the involved aspects and budget constraints.

A real and complete model of peering engagement is explained, with

the definition of 40 variables related to the identification of 40 options

grouped into four categories (Equipment, Addresses, Connectivity and

Rackspace, Peering) and several subcategories.

The problem is formulated as a integer programming formulation and

a practical implementation of a framework called XESS2 (eXtended EGP

Support System), which is able to make a comparative evaluation of alter-

native options through a numerical evaluation of a set of variables, and to

find an optimal reduced set of solutions using a combinational optimiza-

tion formulation and an integer programming formulation of the problem,

has been proposed. Extensive experiments and simulations performed in

several previous works provide supporting evidence of the quality of the

solutions that XESS is capable of finding.

The most promising outcome of this part of this work is that the contri-

butions can be applied in other problems as XESS and XESS2 demonstrate.
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In particular, our proposals can be applied in all the environments where

constrained problems considering maximum cost vs. alternative options

are critical.
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