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Abstract
Considering whether a temporarily unattended bridge could be allowed, Maritime Authorities wish to investigate
whether sensor technology is available that, when seconded by sophisticated computer algorithms, is able to provide
outlook with the same reliability and safety as that of the average human outlook. This paper reports findings from a
comparative study of human versus electronic outlook. Assessment of navigator’s outlook is based on measurements
with a wearable eye-tracker and areas of their visual attention are recorded on video. Simultaneously, a set of
electro-optical sensors provides image-data as input to computer algorithms that detect and classify objects at sea
within visual range. The paper presents the methodology used to deduct, from the observations of fixations, when the
navigator turned his attention to a particular object and compares this with the Electronic Outlook. On the technology
side, the paper details on how machine learning is used for object detection and classification, an discusses quality
attributes, including efficiency and robustness of detection and classification, expressed through statistical measures.

Keywords: Outlook for navigation, autonomous vessels, electronic outlook, human outlook.

1. Introduction
Look-out for navigation is the task of observing various

objects which can have an impact on a ships planned route
and maneuvering capabilities, for example other vessels,
buoys and land. If the outlook is a separate person on the
bridge, observations are reported to the officer in charge
who decide any remedial actions. The look-out is made
using sight and aided by available technology such as
RADAR, AIS and ECDIS systems. Development within
camera technology and computer vision algorithms has
provided an additional possible source for look-out. This
study investigates the quality of this “electronic outlook”
and compares with human look-out.

A survey of maritime object detection and tracking
methods was published in the survey by [21], who empha-
sized that RADAR, which is required by IMO on merchant
vessels, is sensitive to the meteorological condition and the
shape, size, and material of the targets. They emphasize
that RADAR data need to be supplemented by other
situational awareness sensors to obtain safe navigation and
collision avoidance. Electro-optical sensors were available
in this study for several spectral ranges: visual (450-800
nm), near infrared, (NIR 800-950 nm) and long wave
infrared (LWIR 8-14 µm). Outlook was based on eye-
tracking by glasses that monitor the Navigator’s areas of
attention, judged by observed fixations. The eye-tracking
glasses were limited to determine fixations on outside
bridge objects in daylight conditions, and this defined the
scope of comparison in this paper.

The paper first summarizes the task of watch keep-
ing/lookout for navigation in Section 2, and 3 explains how
human outlook is observed through measurements where
a navigator wears eye-tracking glasses. Section 4 outlines
the use of electro-optical and other sensors to provide

electronic means to replicate the human observation of
surroundings. Section 5 introduces present technology for
object detection and classification at sea, showing the
features obtainable with image processing and machine
learning techniques, while Section 6 provides details on
data and training. Section 7 presents results on object
detection performance for the network chosen. Section 8
presents findings from ferries in near-coastal and shallow
water navigation and Section 9 discusses limitations and
perspectives of results. Finally, conclusions and future
directions are offered in 10.

2. Outlook for navigation
A. Human outlook

The analysis of manual lookout/watch-keeping is based
on a combination of observations on board several vessels
in Danish waters. Electronic observations and Eye track-
ing measurements were conducted during the summer of
2018 on ferries in Northern Øresund and South Funen
archipelago.

Further, but outside the scope of this study, generic
observations were made on board a large number of ves-
sels during the period 2000-2018. The generic experience
also includes observations from ship simulator exercises
at FORCE Technology in Lyngby, general knowledge on
human factors as well as literature, see [25] and [27].

B. Endogenous and exogenous driven visual attention

The look-out task involves both endogenous- and
exogenous-driven activities. Endogenous activities are vi-
sual attention controlled by the navigator himself on his
own initiative and based on relevant knowledge and expe-
rience, such as observing navigational markings, sighting
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of land and watching out for other vessels. Exogenous
activities are caused by an external (and in principle un-
foreseeable) event catching the attention of the navigator.
For instance, the sight of a vessel which the navigator
has not been looking for or some light or sound signals.
Everyday scenarios will typically be a combination of
endogenous and exogenous look-out activities.

It is important to be aware that the outlook is just one
among several tasks of the navigator on the bridge. Other
tasks include observation of the condition of engines and
systems, communication and passenger and safety related
tasks.

When it comes to performing an outlook, it makes sense
to distinguish between pure observations not requiring
action and observations requiring action, e.g. to prevent
a collision. An action is often seen as a combination of
several elements including signalling, steering and engine
manoeuvres, but the decision to act could not be covered
by the present analysis.

1) Recognition of objects: The navigator’s recognition
of objects is based on both the visual appearance and on
the behaviour of objects.

This study has not employed means to disclose how the
navigator interprets what he sees. The eye tracking glasses
can determine where the navigator has had visual focus.
The detailed recognition of objects and their behaviour are
therefore not in the scope of this investigation.

3. Eye-tracking
In the maritime context, the use of eye tracking as

means to examine the visual attention of ship navigators is
nothing new. At least not when it comes to the use of eye
tracking in simulation environments. [3] investigated the
operators’ foci of attention during simulated dynamic po-
sition operation. [2] examined the difference in attention-
allocation comparing novice and expert navigators during
use of the Conning Officer Virtual Environment, a simula-
tion system developed to train ship handling. [2] concluded
a clear link between the experts’ superior ship-handling
performance and a “tight Attention-allocation pattern that
focused only on the relevant areas of interest. Novices’
Attention-allocation patterns were highly scattered and
irregular” (p. xviii). [19] and [23] focused on evaluating
and improving the training of navigators using eye tracking
data and [20] suggested using (stationary) eye tracking to
determine or monitor the level of fatigue in the boat driver
with the purpose of enhancing situation awareness. [11]
used eye tracking data examination to suggest improve-
ment of usability design on the ships’ bridge layout and
in the software’s graphical user interface on a maritime
navigation display. [12] also investigated eye tracking
data in the pursuit of a recommendable optimal visual
scan pattern for navigators aiming to mitigate the mental
workload needed to monitor the increasing amount of
technology used at ship’s bridge.

A somewhat rare example of an investigation using eye
tracking during actual, real life navigation was presented
in [8] . They investigated gaze behavior data from 16
experienced and novice boat drivers during high speed
navigation and concluded that novices looked more at

Fig. 1: Tobiir eye tracking glasses. (photograph courtesy
of FORCE Technology)

objects closer to the boat while experts looked more at
things far from the boat. Also, novice boat drivers were
more focused on electronic displays, while the experts
focused mostly outside the boat and used the paper-based
sea chart to a larger extent than novice drivers.

The methodology of using eye tracking devices in real
life maritime situations is not often seen, and is considered
a feature of this study.

A. Eye tracking technology applied in this investigation
The eye tracking data was collected using Tobiir Pro

Glasses 2 ([1]), which is a lightweight wearable technol-
ogy illustrated in Figure 1

The head unit has a scene camera recording the wearer’s
front view (including audio) and the frame has infrared
illuminators and sensors installed thereby using the eye
tracking technique Corneal reflection (dark pupil). The belt
clip unit holds a SD card for recording data, operates on
rechargeable batteries and is Wi-Fi controlled through PC-
based software (in this case iMotionsr). This setup makes
it very easy for the person wearing the eye trackers to
freely move around on the ship and due to the non-invasive
design, most subjects easily forget they are even wearing
them while performing their job. Additional specifications
are shown in the table below, adapted from the Tobii Pro
Glasses 2 User’s Manual (2018, p. 40). Based on the
recording from the scene camera and the associated eye
tracking data, the iMotions software (version 7.1) produces
a video showing what was in the wearer’s field of view
during the recording (a 1st person perspective replay),
including a graphical overlay. A yellow dot indicates
where the person was looking at any given time, within the
field of view. The software was set to illustrate fixations by
increasing the size of the yellow dot. A fixation is defined
as a period (100 ms or more) in which the person’s eyes
are focused on a specific object (or location) in the field of
view. Fixations are excellent measures of visual attention
[14], [19].

The image in Figure 2, shows a single frame from replay
of an eye tracking recording. The yellow dot is the location
of the navigator’s fixation and the yellow line illustrates
eye movements faster than 100 ms (ie. saccades).

B. Limitation in scope due to equipment
The eye-tracking technology was challenged by the

high contrast between outdoor and inside bridge, and eye-
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Fig. 2: Eye tracking example in dense traffic and confined
from South Funen archipelago.

tracking could not reveal which objects on the Radar
screen or on the ECDIS caught the attention of the
navigator. Eye tracking could not be used in low-light
conditions during dusk and evening. The electronic to
human outlook investigation was therefore restricted to
compare performance in daylight conditions.

4. Electronic outlook
The electronic outlook system in this comparison con-

sist of 5 cameras, an FMCW RADAR and an AIS re-
ceiver for reference. The vision system is composed of 2
colour cameras (JAI GO-5000C 2560 × 2048, 12 bit), 2
monochrome cameras (JAI GO-5000M, 2560 × 2048, 12
bit) with longpass filters for the NIR range and 1 LWIR
camera (Teledyne Dalsa Calibir 640, 640 × 480, 14 bit).
The sensors are mounted on a forward facing stand on
board, see Figures 3 and 4.

Fig. 3: Sketch of the sensor platform. The five cam-
era houses are looking forward. Camera units, CW-FM
RADAR and GPS receiver are mounted on the test
platform. The combined horizontal field of view of two
daylight cameras is 110 deg.

5. Object detection and classification
We wish to identify what objects are present on the

water within a given distance from our vessel. Information
about stationary objects such as buoys, rocks, bridge pillars
and islands, and moving objects such as boats, ferries,
etc. are important for positioning, navigation and collision
avoidance.

A. Image-based Object Detection

We use image-based object detection and classification
to determine what is present in the environment in which
we navigate. Our electronic outlook system is continuously

Fig. 4: Southern Funen archipelago. Sensor platform
mounted beyond wheelhouse / ship’s bridge.

sampling images at a fixed rate, and we wish to know
what objects are present in the images and where. This is
valuable information that can later be used to determine
the objects approximate position relative to our vessel.

For this task we use instance segmentation, which is
a pixel-wise classification of the image. Using instance
segmentation, we not only get classifications of the objects
present but a segmentation mask of each of the instances in
the image i.e. if more objects of the same class are present
in the image, each of them are assigned a unique label.
That enables us to potentially track individual objects from
the same class.

Recently, data-driven solutions, such as deep neural
networks, have proved to give robust and accurate results
but these require large sets of annotated training data.
Annotations often have to be done manually, and espe-
cially pixel-wise annotations for semantic and instance
segmentation requires accurate annotations which can be
cumbersome. Techniques that require less or no prior data
also exist but tend to be less generalizable than a learning-
based approach. Since our system is operating near the
coast, many types and sizes of boats and ships can appear
in the images. Additionally, we can have both land and
water as background. The following provides an outline
of some challenges for a maritime environment along with
related prior work.

B. Related work

Several previous works address object detection, clas-
sification and tracking in a maritime environment. Chal-
lenges include waves that can cause a rapid change in the
frame of reference [7], sudden change of illumination and
unwanted reflections from the water [4], and the possibility
of poor weather conditions that reduce the range of sight.
As mentioned in the survey papers [21], [18] there exist a
range of methods concerning detection and classification
in images of the maritime environment, and horizon line
detection and background subtraction seems to be effective
for object detection [28], [26]. Methods include to utilize
infrared and visible light images [21], but also thermal
imaging alone has the ability to provide information about
objects on the water [16]. With recent progress in deep
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learning based segmentation and classification methods,
visible light images is an obvious choice for object detec-
tion since much training data, such as e.g. ImageNet [6],
already exists and can provide a good base for training.
Specifically for maritime environments, [15] and [5] show
that deep learning methods are effective, and annotated
data from the maritime environment exists [21]. This
project has used training data collected from observations
on-board ferries in Danish coastal waters.

C. Mask-RCNN detection and classification

Objects that are within visual range of the cameras
are detected and classified using a Convolutional Neural
Network (CNN), also referred to as deep learning tech-
nology. The network architecture employed in this project
to detect different objects in the maritime environment
is Mask-RCNN [13], which has the novelty of not only
being able to recognize and detect (bounding box) of
several classes, but is also able to segment all instances
of each one and create the corresponding binary mask
at a pixel level. Mask-RCNN is an architectural model
that started with a Region-Based Convolutional Neural
Network (RCNN) [10], followed by Fast-RCNN [9] and
then Faster-RCNN [22].

6. Dataset and Training

We found that existing maritime image datasets are
not sufficient to cover the scenarios we encounter in our
recordings. Consequently, a subset of images is hand-
annotated and used for both network refinement and to test
the performance of the detection algorithm. The subset is
labelled for instance segmentation so that pixels belonging
to each object in the image is labelled separately with a
polygon shape. Manually labelling of images for instance
segmentation is a time consuming and to ease the process
we use a free web-based annotation tool LabelMe [24] to
create polygons. Each object is assigned to a class and
Figure 5 shows how polygons are drawn for each object
in a picture. The process of manual labelling an image
with a few objects takes from 1-5 minutes depending on
the complexity of the silhouettes.

The images annotated were captured with the on board
RGB camera setup and additional images were acquired
with a DSLR camera on separate trips. Images from
internet sources are also added to the training data. All
images were manually annotated using the above men-
tioned technique. In summary, the annotated images for
the data-set consists of:

Data source Number of images
On-board RGB camera setup 330

On-board DSLR 179

Internet source 8

In total 517

The 517 images are annotated with two classes: buoy
and ship. A total of 600 buoys and 639 ship instances are
annotated across the data-set.

Fig. 5: Green polygons show the boundaries for one boat
and two buoys that are present in this image.

A. Training

The on-board RGB images are split so that 406 images
are used for training and 111 are used for validation. The
validation set consists of images from the on-board RGB
camera setup, as we wish to evaluate the performance
of the object detection on the on-board camera system.
To produce additional training data, data augmentation
was used on each of the on-board RGB training images
as follows: random rotation within a ±25 deg range,
flip image horizontally (mirroring), combine flipping and
rotation, replace an image pixel with a chosen colour for
every 50 pixels.

The augmentation increases the data-set with an addi-
tional 5 × 406 images. The images are cropped into 16
regions in a 4 × 4 grid. After this operation, the total
increase of the data-set is 16× 5× 406 images, resulting
in 16× 5× 406 + 406× 5 = 34510 images.

The Mask-RCNN uses the pre-trained weights obtained
from the COCO dataset [17] and we fine-tune the network
to detect the two classes provided in our training data:
buoy and ship. The network was trained for 40 epochs on
the first 4 layers (classificatory), then another 60 epochs
for the rest of the layers and finally 80 epochs for the
whole network. The learning rate was set to 0.0003 and the
momentum was 0.9. The total training time took around
24 hours on a GeForce GTX 1080 GPU.

7. Performance
This section evaluates the performance of the network

used through validation of images from the on-board
RGB camera system. With the above-mentioned training
procedure, we obtain a mean average precision (mAP) of
62.74%. The 0.5-mAP is used which means that inter-
sections of regions less than 50% are not included in the
calculation.

Object detection is done in two stages. First, detect and
classify a relevant object in the image. Second, determine
how accurately it is segmented. To discuss the results
with the aim of supporting navigation, the mean average
precision (mAP) is not very useful as a measure of
quality. The reason is that safe navigation requires that
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Detected & Classified
Buoy Ship ∼ Buoy ∼ Ship

R
ef

er
en

ce

near Buoy 47 0 0
Ship 0 83 0

far Buoy 27 1 54
Ship 0 51 0

none ∼ Buoy 6
∼ Ship 34

TABLE I: Performance of the object classification. De-
tected objects are compared to objects that were labelled
in the validation set. The number of detections is noted
for two categories of objects: buoy and ship. The distance
to objects are divided into near and far. The symbol ∼
denotes negation.

all objects are detected, which might present a risk to safe
navigation. We therefore employ the standard terminology
from statistics for quality assessment of object detection
and classification:

True positive Object is present in a frame and is detected.
False positive Object is not present but a detection oc-

curs.
True negative Object not present in the frame and no

detection occurs.
False negative Object present in the frame but is not

detected.

For our application, we need a good overall localization
of the object in the image, but not necessarily a precise
segmentation border around the object. We conclude that
segmentation of the objects are acceptable in most cases
where a true positive detection occurs, using visual inspec-
tion.

We also wish to investigate to what extent the network is
detecting the objects it is supposed to find, the occurrence
of false positives i.e. false classifications. To do this we
note down the comparison of the reference (ground truth)
annotations with the predictions provided by the network.
The precision of the segmentation mask is omitted here,
so it is only the object classification which is reflected
in this part of the results. Note that our validation set
consists of annotated images with one or more objects,
but also images without objects are included in the set.
Table I shows the results of the object detections and
classifications. We consider the two object classes buoy
and ship and divide the detections as near and far. The
separation near versus far was determined by the estimated
distance to an object in the frames.

The results in Table I show data for the validation set.
Classification of nearby objects is very satisfactory. 100%
of buoys and 100% of ships are found, and none are
misclassified. With objects farther away numbers drop to
33% correct classification of buoys and 66% of ships. One
buoy is detected but is misclassified as a ship. No ships are
mistaken for buoys. False positives occur at far distance, a
total of 6 buoys and 34 ships were detected without being
present.

The numbers in Table I are valid for single frame
recordings in the validation data set. Since the relative
distance to objects are reduced as they approach, they

are eventually detected and classified. The essence is that
objects are detected and classified in time to plan a path for
safe navigation and collision avoidance. Whether detection
and classification of far away objects is critical therefore
depends on time to encounter.

Fig. 6: Histogram of pixel area versus buoy detections.

Fig. 7: Histogram of pixel area versus ship detections.

The false positives are often detections on the water
where a piece of land far away is detected as a ship or
in the region above the horizon line, where clouds are
detected as ships. While it is not entirely straightforward
task, we argue that a number of false positives in the cloud
region could be removed by detecting the horizon in the
image, as part of a robustification of the classification.

Classification performance is further scrutinized in Fig-
ures 6 and 7, which show missed detections in blue and
correct detections in red colour as a function of pixel
area. The Figure reveals that probability of detection raises
sharply when object size in the image is above 450 pixels.
All objects larger than 2500 pixels are detected but are not
shown in these histograms.

Object classes were limited to buoy and ship to take
advantage of the more than 3000 images of the class ships
from the COCO data-set. For assessment of properties
of the objects met at sea, it would be an advantage to
add more classes to cover navigation and manoeuvering
capabilities of nearby objects.

It is noted that the above statistics are based on in-
spection in the visual range only. Additional sensors such
as near infrared and thermal imaging provide additional
valuable information, but have not yet been included in
the classification pipeline in this stage of the study.
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8. Results
This study compares the human outlook by assessing

the fixations determined by the eye-tracking system with
object classifications made by the electronic outlook. Eye-
tracking glasses were unable to determine areas in focus
on RADAR or on the electronic chart display (ECDIS)
screen on the bridge.

Comparison between the capabilities of electronic out-
look and the human counterpart are therefore done looking
at the instant of first observations of a given object. The
eye-tracking software gives an indication of fixation on an
object when the human lookout has been gazing at it for
100ms. This time is compared to the time-stamp that the
Mask-RCNN indicates its first detection and classification
of the object. Figure 8 shows a snapshot of eye-tracking.
The right part shows what the lookout is focusing on.
The yellow line on this shows that the eye focus wander
around, which is normal. Fixation is indicated by the red
circle. The Electronic Outlook is illustrated in Figure 9.

A. Temporal Comparison

This section presents an analysis of the time-wise dif-
ferences between the electronic lookout system and the
human counterpart. This is achieved by time-stamping
detection of objects observed by the electronic lookout
and comparing them with fixations captured by the eye-
tracking system. A comparison is done by examining the
difference

∆tobs = tHO − tEO (1)

where tHO is the time that the eye-tracking system indi-
cates the first fixation on an object, and tEO is the time that
the electronic outlook first detects and classifies the same
object. Figure 10 shows a histogram of ∆tobs. Figure 11
shows the time difference ∆tobs histogram for ships and
buoys separately. A positive value of time difference
means that electronic outlook classifies an object earlier
than the navigator has a fixation on it.

The time elapsed between the instant of detection of
an object and the instant when this object passes behind
the RGB camera’s field of view is defined as the time
to react. Two time differences are defined to analyze this
characteristic,

∆tHO = tpass − tHO (2)
∆tEO = tpass − tEO (3)

where tpass is defined as the time instant when the
object passes behind the RGB cameras’ field of view.

Figure 12 shows ∆tHO vs ∆tEO. The range is 0−200 s
before passing own vessel. In average, electronic outlook
allows more time to react.

9. Discussion
Since the ship has a RADAR and AIS sensors on board,

the detection of objects that are visible to RADAR or
have AIS transmitters, could be done quite accurately.
However, several objects are not visible on RADAR, such
as leisure surf borders and sea kayaks, boats without

RADAR reflector and AIS transmitter, and even containers
that accidentally dropped over board. Electronic outlook
with object classification is therefore essential for the ship
to act in a safe manner.

Object detection performance of the Mask-RCNN net-
work showed a satisfactory detection probability for ob-
jects larger than 400-500 pixels in an image, a quantifica-
tion that is useful for camera system design for electronic
outlook. However, a few outliers exist in the form of
some false detections and very few missed detections.
Missed detections can be critical and are believed to
be a consequence of lack of training of the network.
Sufficient coverage in the training of a neural network, and
robustness of detection, are challenges that need be further
addressed. A combination of neural net classification with
more classical image analysis methods, addition of object
tracking, and fusion with other sensor information could
be ways to obtain robust classification.

A combination of object positions from these sensors
and the Mask-RCNN architecture could increase the per-
formance and the results. Examples include object tracking
from camera information and using detected objects posi-
tions, by vision sensors and by Radar, as possible region
proposals in the network.

Further results will, therefore, fuse on-board RADAR
and AIS information with visual information in different
spectral ranges. This will include calibration that enables
RADAR and AIS data to be projected into e.g. the pixel-
coordinates of the input images to the CNN. This data
could be used for region proposal in the network and be
particularly useful in situations with reduced visibility of
the cameras.

A. Coverage of this analysis

Some of the elements of look-out are not captured by
only observing the fixtures with eye tracking glasses, but
would require further interpretation. This includes: gen-
eral visual observation of nothing in particular, but often
focused on the direction of the vessel and abeam/passed
objects in relation to progression of the navigation;
exogenous-oriented attention – something turns up - can
include comparison or verification with information from
Radar and AIS; endogenous-driven observation of objects
from other sources – sea charts, Radar or AIS .

Such interpretation of the situation was not part of this
study.

B. Electronic outlook as a fifth sense supplement for the
navigator

Look-out is just one among several tasks of the nav-
igator on the bridge. Other tasks include: observation of
the condition of engines and systems; handling of cargo
and passengers; safety-related routines; communication
internally on board the vessel and with external parties;
management of staff and other administrative tasks; QA
and documentation tasks; handling of safety-critical situ-
ations on board.

With several other tasks to care for, which might some-
times distract the navigator, it is believed that electronic
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Fig. 8: Eye-tracking of the manual look-outs fixations. Left: Forward facing camera used as reference in the analysis.
Right: Eye-tracking result. The yellow spot surrounded by a thin red line indicates fixation on an object.

Fig. 9: Object detection and classification on two RGB images are shown by highlighting the detected object in green
colour and showing the bearing to detected objects.

Fig. 10: Histogram of time differences between observa-
tions done by the human and electronic lookout (calculated
by (1)). The imposed normal distribution has the following
parameters: µ = 23.9 s and σ = 41.0 s. Electronic outlook
classifies objects earlier than the human eye fixation by
24s in average.

outlook could serve as a fifth sense for the navigator and
perhaps pave the way for temporally unmanned bridge in
conditions with little other traffic.

10. Conclusions

This study compared human outlook with electronic.
Using instance of fixation of eye-tracking glasses with

Fig. 11: Histogram of time differences between obser-
vations done by the human lookout and the electronic
lookout (calculated by (1)). In mean, the electronic outlook
detects and classifies objects 30 s faster for ships and
11 s for buoys, compared to human eye fixations. Negative
outliers should be avoided by improving robustness.

instance of electronic outlook by cameras and mask-
RCNN classification, the study provided statistics for
a comparison on one of the essential parameters. The
performance of the Mask-RCNN was evaluated on the
validation set of annotated RGB images. Object detection
performance showed a satisfactory detection probability
for objects larger than 400-500 pixels in an image, a
quantification that is useful for camera system design for
electronic outlook. Some outliers were found to exist in
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Fig. 12: Scatter diagram of time to react. The plot shows
the range 0 − 200 s. The trend line shows that time to
react is longer with electronic outlook than time after a
fixation.

form of false detections. A single instance of missed detec-
tion was also found in the validation data. Robustification
of the classifiers will be needed to obtain the required
dependability of electronic outlook and is a topic of further
research.
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