
computers

Article

Resource Allocation Model for Sensor Clouds under
the Sensing as a Service Paradigm

Joel Guerreiro 1 , Luís Rodrigues 1 and Noélia Correia 1,2,*
1 Center of Electronics, Optoelectronics and Telecommunications (CEOT), University of Algarve,

8005-139 Faro, Portugal; jdguerreiro@ualg.pt (J.G.); lrodrig@ualg.pt (L.R.)
2 Faculty of Sciences and Technology (FCT), University of Algarve, 8005-139 Faro, Portugal
* Correspondence: ncorreia@ualg.pt

Received: 26 January 2019; Accepted: 18 February 2019; Published: 20 February 2019
����������
�������

Abstract: The Sensing as a Service is emerging as a new Internet of Things (IoT) business model
for sensors and data sharing in the cloud. Under this paradigm, a resource allocation model for the
assignment of both sensors and cloud resources to clients/applications is proposed. This model,
contrarily to previous approaches, is adequate for emerging IoT Sensing as a Service business models
supporting multi-sensing applications and mashups of Things in the cloud. A heuristic algorithm is
also proposed having this model as a basis. Results show that the approach is able to incorporate
strategies that lead to the allocation of fewer devices, while selecting the most adequate ones for
application needs.

Keywords: Internet of Things; cloud; Sensing as a Service; WoT; mashup

1. Introduction

For the Internet of Things (IoT) not to become just a collection of Things, unable to be discovered,
a move towards the Web of Things (WoT) is required. The WoT aims to bring real-world objects
into the World Wide Web and is envisaged as the key for an efficient resource discovery, access and
management [1,2]. This way, objects become accessible to a large pool of developers and mashups
combining physical Things with virtual Web resources can be created. However, as more and more
physical Things become available in the IoT world, and mashups are built, large amounts of data with
processing needs will emerge, meaning that new challenges arise in terms of storage and processing.
The Sensing as a Service (Se-aaS) model, relying on cloud infrastructures for storage and processing,
emerges from this reality [3,4].

The Se-aaS is a cloud-based service model for sensors/data to be shared, allowing for a multi-client
access to sensor resources, and multi-supplier deployment of sensors [3]. This way, everyone can
benefit from the IoT ecosystem, while benefiting from cloud’s storage and processing capabilities.
When incorporating Se-aaS platforms in the application architecture, software components usually
have bindings to virtual sensors managed in the cloud. Any workflow, wiring together virtual sensors,
actuators and services from various Web sources, is managed on the client side. Managing these
mashups at the client side brings, however, significant delays because there will be multiple travelings
of data to the client. The proposal in this article is for software components to be able to have bindings
to mashups managed in the cloud. The cloud would ensure that events are processed and actuations
are triggered, according to the predefined workflow of the mashup, delivering just the final data of
interest to the consumer/client application. The whole mashup, or parts of it, may also be consumed
by multiple applications. Managing mashups in the cloud brings new challenges when assigning
resources (devices and cloud) to consumer needs, as discussed in the following sections. The main
contributions of this article are the following:

Computers 2019, 8, 18; doi:10.3390/computers8010018 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0001-7471-4928
https://orcid.org/0000-0002-2090-8038
https://orcid.org/0000-0001-7051-7193
http://www.mdpi.com/2073-431X/8/1/18?type=check_update&version=1
http://dx.doi.org/10.3390/computers8010018
http://www.mdpi.com/journal/computers

Computers 2019, 8, 18 2 of 15

• Resource allocation model for sensor clouds under the Se-aaS paradigm, assuming that
applications have bindings to mashups managed in the cloud;

• Heuristic algorithm having the just mentioned model as a basis.

The proposed model is adequate for many emerging IoT Se-aaS business models, like the ones
supporting multi-sensing applications, mashups of Things, and/or integration of data from multiple
domains, allowing for a more efficient orchestration of both sensor and cloud resources to face
client requests.

The remainder of this article is organized as follows. In Section 2, cloud-based Se-aaS architectures
and system functionalities are discussed. Section 3 discusses work related with the Se-aaS paradigm.
Section 4 presents the resource allocation model, and a heuristic algorithm is proposed. Results are
analysed in Sections 5 and 6 concludes the article.

2. Cloud-Based Sensing-as-a-Service

Many cloud-based “as a service” models have emerged over the last several years. The most
relevant are: (i) Infrastructure as a Service (IaaS), providing computing resources (e.g., virtual machines);
(ii) Platform as a Service (PaaS), providing computing platforms that may include operating system,
database, Web server, and others; and (iii) Software as a Service (SaaS), where the cloud takes over the
infrastructure and platform while scaling automatically [5]. All of these models promote the “pay
only for what you use”. The Se-aaS model emerged more recently and the idea is for sensing devices,
and their data, to be shared in the cloud, so that many parties can use them. This means that there is a
multi-supplier deployment of sensors, and multi-client access to sensor resources. Se-aaS platforms
may provide storage, visualization and management facilities [6]. Naturally, cloud service providers
must compensate the device owners for their contribution, or find some incentive mechanism for them
to participate [7,8]. Secure user-centric service provisioning is also a critical issue [9].

2.1. Architecture

Similarly to other cloud-based “as a service” models, the resources in Se-aaS should be dynamically
provisioned and de-provisioned on demand. Since sensors (or data) are to be accessed by multiple
users/applications in real time, through service subscription, the costs associated with owing,
programming and maintaining sensors and/or sensor networks will scale down [9]. Figure 1 shows the
service architecture of a Se-aaS system. The challenges when planning and designing such systems are:

• Underlying complexity should be hidden, so that services and applications can be launched
without much overhead;

• Scalability, ensuring a low cost-of-service per consumer while avoiding infrastructure upgrade;
• Dynamic service provisioning for pools of resources to be efficiently used by consumers.

Figure 1. Se-aaS architecture.

Computers 2019, 8, 18 3 of 15

2.2. System Functionalities

Besides registration capabilities for consumers and providers, IoT Se-aaS systems end up having
one or more of the following functionalities [4]:

• Virtualization: Sensor virtualization is used to enable the management and customization of
devices by clients/applications/consumers, allowing a single device to be linked to one or
multiple consumers. Groups of virtual sensors can be made available for specific purposes.
Virtualization is illustrated in Figure 2.

• Dynamic Provisioning: This allows consumers to leverage the vast pool of resources on demand.
A virtual workspace (e.g., virtual machine) is usually created for the provisioning of virtual
sensors, which can be under the control of one or more consumers. Virtual workspace instances
are provisioned on demand, and should be as close as possible to the consumer’s zone.

• Multi-Tenancy: A high degree of multi-tenancy in architectures allows sharing of sensors and data
by consumers, and dedicated instances for each sensor provider. Issues like scaling according to
policies, load balancing and security need to be considered.

Figure 2. Virtualization layers in Se-aaS.

2.3. Embedding Mashups into the Cloud

The virtualization approach shown in Figure 2 allows sensors/data to be accessed and mashups
to be built at the client side. As an example, an application may use data from VS1 and VS3 to decide
on some actuation. However, if such workflows (wiring together VSs, actuators and services from
various Web sources) were implemented in the cloud, some of the data would not have to travel
to the client side. The cloud would ensure that events are processed and actuations are triggered,
according to the predefined workflow of mashups, delivering just the final data of interest to the
consumer/client application. The whole mashup, or parts of it, may also be consumed by multiple
applications. This additional system functionality results in an additional mashup virtualization layer,
as illustrated in Figure 3.

Managing mashups in the cloud brings new challenges when assigning resources (devices
and cloud) to consumer needs. More specifically, mashups end up defining flow dependencies
(see Figure 3), which will influence:

• Mapping between one or more mashup elements (defined by consumers) and a virtual Thing,
for resource optimization.

Computers 2019, 8, 18 4 of 15

• Mapping between virtual Things and physical Things (materialization onto devices).
• Placement of virtual Thing workspaces in the cloud.

Figure 3. Virtualization layers in Se-aaS architectures having mashups embedded into the cloud.

Thus, after mapping a virtual Thing to one or more mashup elements, such virtual Thing ends
up participating in multiple mashups. The just mentioned mappings should be done having some
criteria in mind, like an efficient use of physical Things and cloud resources, a reduction of flows or
delay between virtual Thing workspaces (imposed by mashups), which improves user’s quality of
experience and scalability. This approach fits many emerging IoT Se-aaS business models, like the ones
supporting multi-sensing applications, mashups of Things, and/or integration of data from multiple
domains. Note that the approach in Figure 2 will be a particular case of Figure 3 where mashups have
a single element.

3. Related Work

The Se-aaS concept was initially introduced by [7,10], where cloud-based sensing services using
mobile phones (crowd sensing) are discussed. The authors identify the challenges of designing and
implementing such systems. The general idea of these proposals is to use the sensors of mobile devices
to fulfil some need/request. In the context of smart cities, Se-aaS is discussed in [3,11]. The first
addresses technological, economical and social perspectives, while the last proposes the abstraction
of physical Things through semantics, so that these can be integrated by neglecting their underlying
architecture. In [12,13], the semantic selection of sensors is also addressed. Multimedia Se-aaS have
been explored in [14–17]. These mainly focus on real-type communication requirements of audio/video
data, and Wang et al. [16] explores cloud edges and fogs.

Regarding virtualization of devices, several proposals have appeared in the literature.
When virtualizing Wireless Sensor Networks (WSNs), the general idea is that the cloud should abstract
different physical device platforms in order to give the impression of a homogeneous network,

Computers 2019, 8, 18 5 of 15

enhancing user experience when configuring devices. In [6,18,19], data storage and/or device
assignment to tasks is discussed, allowing for a uniform and widespread use of WSNs. In [6], a WSN
virtualization model is discussed. Service-centric models in [20–22] focus on the services provided by
a WSN acting as a service provider.

In IoT Se-aaS business models, the general idea is to virtualize sensing services provided by
devices. A virtual sensor ends up being responsible for passing user’s specifications to device(s)
and for processing of the sensed data before delivering it to users. In [23,24], the physical resources
are abstracted, virtualized, and presented as a service to the end users. This way, the access and
interaction with physical Things becomes uniform and in compliance with IoT/WoT goals. Specific
platforms providing efficient sharing mechanisms for data (among multiple applications) have been
proposed in [4,25,26]. In [4], the extra challenge is multitenancy considering both sensor providers
and consumers, and on-demand big data sensing service. In [25], the focus is on how to ensure an
ecosystem that is interoperable at multiple layers, for the Fog and Edge Computing paradigms to be
explored. Such paradigms are suitable when latency, bandwidth utilization and energy consumption
need to be reduced, but, for high-demanding processing tasks and integration of data from multiple
sources, the use of the cloud is inevitable [27].

In this article, and contrarily to other works, consumer/client applications have bindings to
mashups managed in the cloud, each mashup combining one or more Things through some workflow.
This approach avoids the delay that exists when mashups are managed at the client side because the
traveling of data to the client is significantly reduced. As far as is known, mashups have not been
considered in previous Se-aaS cloud works.

4. Resource Allocation Model

4.1. Definitions and Assumptions

Definition 1 (Physical Thing). A sensor detecting events/changes, or an actuator receiving commands for the
control of a mechanism. The model of a physical Thing i includes all properties necessary to describe it, denoted
by Pi, and all its functionalities, denoted by Fi. That is, Pi = {p : p ∈ P} and Fi = { f : f ∈ F}, where P is
the overall set of properties (e.g., sensing range, communication facility, energy consumption, location), and F
the overall set of functionalities (e.g., image sensor), from all devices registered in the cloud.

It is assumed that properties and functionalities, at P and F , are semantic-based. That is, specific
vocabularies are used when naming properties and functionalities (see [28]). In addition, each property
pi ∈ Pi will have a “subject/predicate/object” description (A Resource Description Framework (RDF)
triple. See https://www.w3.org/standards/semanticweb/) associated with it (e.g., cameraResolution
hasValue 12.1 MP) denoted by spo(pi). The set of all registered physical Things is denoted by T P,
and it is assumed that providers voluntarily register/deregister physical Things to/from the cloud.

Definition 2 (Virtual Thing). Entity used for the mapping of multiple mashup elements (consumers) to
physical Things, having a virtual workspace associated it. A virtual Thing j can be materialized through one
or more concerted physical Things, denoted by Mj, Mj ⊂ T P. Therefore (the symbol , means equal by
definition, in our case logically/semantically equivalent), f j , ∪i∈MjFi and Pj = ∪i∈MjPi. A virtual Thing
materialization must fulfill the requirements of all its consumers.

Thus, a virtual Thing can have in background one or multiple physical Things working
together to provide the requested functionality, producing data that reaches the cloud using standard
communication. The set of virtual Things created by the cloud is denoted by T V.

The set of all consumer applications is denoted by A = {A1, ...,A|A|}, and these are assumed to
be outside the cloud. An application Ai can have one or more independent components, denoted by
C(Ai) = {C i

1, ..., C i
|C(Ai)|

}, and each component C i
j has a binding to a mashup in the cloud.

https://www.w3.org/standards/semanticweb/

Computers 2019, 8, 18 6 of 15

Definition 3 (Mashup). Workflow wiring together a set of elements/nodes. Each element n included in a
mashup has a functionality requirement and a set of property conditions, denoted by f̄n and P̄n, respectively.

That is, it is assumed that user application components have bindings to mashups stored in the
cloud, each mashup including elements connected by a workflow (Web templates can be used to draw
mashups). The output of a mashup element can be input to another, while final mashup output data is
sent to the corresponding application component. The functionality requested by a mashup element,
and property conditions, are also semantic-based and each pn ∈ P̄n has a “subject/predicate/object”
description of the condition that is being defined (e.g., cameraResolution greaterThan 12.1 MP;
frequencySampling equalTo 10 s), denoted by spo(pn). Thus, mashup elements are not physical
Things, but, instead, nodes that specify requirements. The overall population of mashup elements
(from all applications) is denoted by N .

Virtual Things, to be created in the cloud, are the ones to be materialized into physical Things.
Then, each mashup element n ∈ N must be mapped to a single virtual Thing, while a virtual Thing
can be mapped to multiple mashup elements (with same functionality and compatible property
requirements). With such approach, data generated by a virtual Thing can be consumed by multiple
application mashup elements, reducing data collection/storage and increasing the usefulness of data.
The right set of virtual Things to be created in the cloud, their mapping to mashup elements and their
materialization onto physical Things should be determined while using resources efficiently, which is
discussed in the following section.

The goal of cloud virtualization is for users to remain unaware of physical devices involved in the
process. This way, physical Things can be dynamically allocated to virtual Things used by applications.
The client ends up having no deployment and maintenance costs, while having an on-demand fault
tolerant service because virtual Things can always use other available physical Things. Clients would
not be aware of such change due to virtualization.

4.2. Formalization

Let us assume a particular partition of N (population of mashup elements), denoted by
ηi = {N i

1,N i
2, . . .}, where all elements in a N i

j have the same functionality requirement. A virtual

Thing k ∈ T V mapped to N i
j must provide the requested functionality, which is the same for all

mashup elements in N i
j . The following allocation function f : ηi → T V can be defined:

f (N i
j) = {∃!k ∈ T V : f̄k = fn, ∀n ∈ N i

j }. (1)

One or more physical Things materialize one virtual Thing. Assuming τi = {T P,i
1 , T P,i

2 , . . .} to
be a specific partition of T P, each T P,i

j making sense from a functional point of view, the function

g : τi → T V is defined for virtual Thing materialization:

g(T P,i
j) = {∃!k ∈ T V : fk , ∪l∈T P,i

j
Fl}. (2)

This states that a virtual Thing k ∈ T V is materialized by T P,i
j , including one or more physical Things,

if they are functionally similar.
Different partitions, and allocations done by f and g, have different impacts on the use of

resources (cloud and physical Things) and provide different accomplishment levels for property
requirements (more or less tight). Therefore, the best partitions should be determined. Let us assumed
that ηU is the universe set including all feasible partitions of mashup elements, N . That is, ηU =

{η1, η2, . . . , η|η
U|} and ηi = {N i

1,N i
2, . . . ,N i

|T V|}, ∀i ∈ {1, . . . , |ηU|}. Also assume that τU is the

universe set including all feasible partitions of physical Things, T P. That is, τU = {τ1, τ2, . . . , τ|τ
U|}

and τi = {T P,i
1 , T P,i

2 , . . . , T P,i
|T V|}, ∀i ∈ {1, . . . , |τU|}. The impact of f and g allocations, regarding the

Computers 2019, 8, 18 7 of 15

gap between requirements and properties of physical Things, can be described by the following cost
function h : ηU × τU → <+:

h(ηi, τ j) = ∑
{N i

k∈ηi}
∑
{p∈χ}

minn∈N i
k
{∆GAP

n,p (f (N i
k), τ j)}, (3)

where χ = ∪n∈N i
k
P̄n includes all properties, having conditions, from mashup elements inN i

k . For each
property p ∈ χ, the min is used to capture the lowest gap between requirements and physical Things
regarding property p (e.g., if two elements in N i

k request for 12.1 MP and 24.2 MP camera resolutions,
respectively, and the materialization of N i

k ’s virtual Thing is a physical Thing providing 48.4 MP,
then the 24.2 to 48.4 MP gap is the request-supply gap to be considered; the other request is considered
to be fulfilled). Note that f (N i

k) returns the virtual Thing assigned to N i
k . Since multiple physical

Things can be associated with a virtual Thing materialization, the ∆GAP
n,p at Equation (3) must be

defined by:

∆GAP
n,p (l, τ j) =

max

t∈T P,j
k :∃pt=p,pt∈Pt

{∆GAP(spo(p), spo(pt))}, if ∃T P,j
k ∈ τ j : g(T P,j

k) = l,

∞, otherwise,

(4)

where ∆GAP provides the gap between the property requirement and property value at one of the
physical Things enrolled in materialization. Multiple physical Things may include a property and,
therefore, max is used to capture the highest gap value, in order to avoid virtual Thing materializations
from having physical Things with property values far above the requirements. All the just mentioned
gaps can be determined using SPARQL semantic query language (See https://www.w3.org/TR/
rdf-sparql-query/) [29,30]. Having the previous definitions in mind, the best partitioning for N and
T P, determining which virtual Things should be built and their materialization, could be given by
argmin≡i∈≡U,τ j∈τU{h(ηi, τ j)}. This would provide scalable solutions because the number of required
virtual Things (and virtual workspaces) ends up being minimized (see Equation (3)). However,
mashups define flows between their elements. This means that, after mapping partitions of N
(mashup elements) into virtual Things, there will be flows between virtual workspaces of virtual
Things. These flows must be taken into account so that scalability and QoE are not jeopardized due
to overhead and delay in the cloud. Therefore, an additional cost function h′ : ηU × τU → <+ is
defined as:

h′(ηi, τ j) = ∑
{N i

k∈ηi}
∑

{T P,j
l ∈τ j}

TFP2V(T P,j
l ,N i

k) + ∑
{N i

k∈ηi}
∑

{N i
k′∈ηi}

TFV2V(N i
k′ ,N

i
k) +

+ ∑
{N i

k∈ηi}
∑

{Ai∈A}
TFV2A(N i

k ,Ai), (5)

where:

• TFP2V is a physical-to-virtual (P2V) transfer cost associated with the flow of data from physical
Things to virtual Thing’s workspace in the cloud. This is zero if f (N i

k) 6= g(T P,j
l), meaning that

T P,j
l is not used in the materialization of N i

k ’s virtual Thing;
• TFV2V is a virtual-to-virtual (V2V) transfer cost associated with the flow of data between virtual

Things’ workspaces of partitions N i
k′ and N i

k . This is zero if no flow between workspaces
is required;

• TFV2A is a virtual-to-application (V2A) transfer cost associated with flow of data from virtual
Things’ workspaces to user applications. This is zero if the application is supposed to consume
such data.

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

Computers 2019, 8, 18 8 of 15

Transfer costs may reflect the number of hops and/or processing needs at these hops, meaning
that it is dependent on the placement of virtual workspaces in the cloud. A Cloud Service Provider (CSP),
which will be denoted by S , often includes a set of distributed networks, that interconnect to provide
services, and are usually organized in order to better serve certain regions. Therefore, a CSP is defined
by S = {S1, . . . S|S|}, where Si includes a set of computing resources that can host virtual workspaces.

Finally, the best resource allocation, or partitioning for N and T P, is defined by:

(ηi, τ j)∗ = argminηi∈ηU,τ j∈τU{α× ĥ(ηi, τ j) + β× ĥ′(ηi, τ j)}, (6)

where α and β are weights, α + β = 1, defining the relative importance of normalized (Normalization
formula: x−xmin

xmax−xmin) costs, ĥ and ĥ′.

4.3. Resource Allocation Algorithm

Based on the previous model, a resource allocation algorithm is proposed next. It is assumed that:

• As physical Things are registered in the cloud, a pool of possible materializations is computed for
each functionality, denoted byM(f), using SPARQL. A materialization may involve one or more
registered physical Things, and a physical Thing may be at multiple pools.

• As application mashups are inserted in the cloud, an auxiliary graph G(N ,L,L′) is updated.
The N includes all mashup elements, L are the links denoting a flow between two elements
of a mashup, and L′ are compatibility links between two elements from any mashup. That is,
a link between ni and nj ∈ N exists in L′ if: (i) nodes have the same functionality requirement;
and (ii) property requirements are compatible (SPARQL is used to determine compatibility).

The resource allocation algorithm is described in Algorithm 1. The initialization step builds a
partition for each mashup element, generates random places in CSP resources for them, and assigns
an infinite cost. This has to be done in a per materization basis because different materializations
involve different physical Things, generating different costs, and some materializations may not
even be feasible due to mashup element property conditions. For random placement of partition’s
virtual Thing workspace, a uniform distribution is used for load balancing to be obtained in the long
term. The second step improves this initial solution by analysing cliques in auxiliary graph G(N ,L′),
and materialization possibilities.

For the last step, different selection criteria have been compared: (i) cheapest materialization
cost (CMC) first; (ii) cheapest materialization, of mashup element (node in graph in N) with fewer
materialization choices (LMC), first; (iii) cheapest materialization, of mashup element with highest
cost variance (HCV), first. The reasoning behind LMC is that more materializations might be possible
if critical mashup elements are processed first. Regarding HCV, the reasoning is that a late selection of
mashup elements with highest cost variance might result in materializations with higher cost.

Computers 2019, 8, 18 9 of 15

Algorithm 1: Resource allocation heuristic
Input: N , L, L′,M(f) ∀ f ∈ F , S , α, β1
/* Initialization step */2
for each n ∈ N do3

Create vector of partitions vn of size |M(fn)|4
Create vector of places pn of size |M(fn)|5
Create vector of costs cn of size |M(fn)|6
for each m ∈ M(fn) do7

/* Nodes joining n in partition, materialized by m */8
vn(m) = ∅9
/* Place for partition’s virtual Thing workspace */10
pn(m) = RANDOMSELECTION(S)11
/* Materialization costs, initially set to infinity */12
c1

n(m) = ∞13
c2

n(m) = ∞14

end15

end16
/* Improving feasible solution */17
for each ni ∈ N do18

/* Clique subgraphs in G(N ,L′) that include ni*/19
N̄ = {Z ⊆ N : ni ∈ Z ∧ (nj, nk) ∈ L′, ∀nj, nk ∈ Z}20
/* Maximum clique for which there is at least one feasible materialization */21
N̄max = argmaxZ∈N̄ :∃ f easible m∈M(fni)

{ω(Z)}22

/* Random place for N̄max’s workspace */23
pl = RANDOMSELECTION(S)24
for each nj ∈ N̄max do25

/* for each possible materialization of fni */26
for each m ∈ M(fni) do27

/* determine best materialization cost for nj*/28
c1 = Equation (3) considering N i

k = N̄max29
c2 = Equation (5) considering nj’s in/out flow30
if α× ĉ1

nj
(m) + β× ĉ2

nj
(m) > α× ĉ1 + β× ĉ2 then31

pn(m) = pl32
vnj (m) = N̄max33

c1
nj
(m) = c1

34

c2
nj
(m) = c2

35

end36

end37

end38

end39
/* choose best resource allocations */40
Build virtual Things based on materialization cost vectors until all requests are fulfilled or no more devices exist41

5. Performance Analysis

5.1. Scenario Setup

To carry out evaluation, a pool of functionalities was created together with a pool of properties
for each functionality. Based on these, physical Things and mashup elements were created as follows:

• Mashups were randomly generated using the algorithm in [31], which is suitable for the generation
of sparse sensor-actuator networks. An average of 10 elements per mashup is defined.

• The functionality required by each mashup element is randomly selected from the pool of
functionalities, together with 50% of its properties. Each pair ni, nj ∈ N sharing the same
functionality requirement is assumed to be compatible with probability δ.

• A physical Thing has a functionality assigned to it, together with 50% of its properties (randomly
extrated from corresponding pool).

Computers 2019, 8, 18 10 of 15

• The gap between a property condition and device property is randomly selected from {∆1, . . . , ∆5},
where ∆1 is the lowest cost and ∆5 is the highest (moderate and extreme levels).

This information is used to generate random scenarios, from which results are extracted.
Regarding the CSP network graph, this was randomly generated assuming |S| = 10 (number of
places with computing resources that can host virtual workspaces) and a network density (Network
density is measured using L

N×(N−1) , where L is the number of links and N is the number of nodes) of
0.25. Tests include α and β values equal to 0.25 or 0.75, α + β = 1, so that the impact of component
costs in (6) can be evaluated. Table 1 summarizes the adopted parameter values. All simulations were
performed using C++ programming language.

Table 1. Adopted parameter values.

Parameter Value

Functionality pool size 10
Avg size of property pools 10

Total number of devices 100
Device’s properties (from pool) 50%

Avg number of elements per mashup 10
Mashup element’s properties (from pool) 50%

δ 0.5
{∆1, . . . , ∆5} {1, . . . , 5}

α, β 0.25 or 0.75; α + β = 1
|S| 10

CSP density 0.25

5.2. Results

5.2.1. Materializations and Fulfilled Mashup Elements

The plots in Figures 4–6 show how CMC, LMC and HCV strategies perform regarding the number
of materializations (number of virtual Things materialized into physical devices), number of elements
from mashups that have been fulfilled (mapped to a virtual Thing and, therefore, materialized into
a physical device) and the average number of mashup elements per virtual Thing (average size of
clique N̄max at Algorithm 1). From such plots, it is possible to observe that the worst strategy is
LMC that reaches the total number of available devices more quickly while fulfilling fewer mashup
elements than the other strategies. This is confirmed by the relatively low average number of mashup
elements mapped to virtual Things (low aggregation level). The approach of LMC is to choose the
cheapest materialization from mashup elements with fewer materialization choices, based on the
assumption that more materializations would be possible if critical mashup elements were processed
first. However, such mashup elements end up being the ones with more incompatible requirements
(reason behide having fewer materialization choices), leading to a less efficient use of physical devices.
That is, for a specific number of mashups, more devices are used for materialization of virtual Things
having a low level of aggregation.

The best strategy is HCV that presents a higher average number of mashup elements mapped to
virtual Things, when compared with the other strategies, and more fulfilled mashup elements. Such
highest aggregation level leads to a more controlled use of available devices, which are not wasted
with materialization of virtual Things having a low level of aggregation. The approach of HCV is to
pick the cheapest materialization from mashup elements with highest cost variance. This is based on
the assumption that their late selection could result in a materialization with high cost. It happens
that a mashup element having high cost variance also means that such mashup element has more
requirements that are compatible with others, leading to a higher level of aggregation. For this reason,
HCV presents better results.

Computers 2019, 8, 18 11 of 15

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

M
a
te

ri
a
liz

a
ti

o
n
s

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

M
a
te

ri
a
liz

a
ti

o
n
s

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 4. Number of virtual Things materialized into physical Devices.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fu
lfi

lle
d

 M
a
sh

u
p

 E
le

m
e
n
ts

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fu
lfi

lle
d

 M
a
sh

u
p

 E
le

m
e
n
ts

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 5. Number of fulfilled mashup elements.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

C
liq

u
e
 S

iz
e

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

C
liq

u
e
 S

iz
e

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 6. Average number of mashup elements per virtual Thing.

Note that, for a relatively low number of mashups, the difference between strategies, regarding
the number of virtual Things materialized into devices and fulfilled mashup elements, is very low.
This is because the population of mashup elements is small, not allowing a high level of aggregation.
That is, it is more difficult to find mashup elements with compatible requirements, for these to be
linked to the same virtual Thing.

Regarding the impact of changing α, which is the importance given to the cost associated with the
gaps between the mashup element’s properties and physical Thing’s properties, it looks like this does
not influence the number of virtual Things materialized into devices and fulfilled mashup elements.

Computers 2019, 8, 18 12 of 15

5.2.2. Cost

The plots in Figure 7 show the overall materialization cost resulting from CMC, LMC and HCV
strategies, together with the two cost components associated with Equations (3) and (5), c1 and c2

in Algorithm 1, respectively. Plots show that, when the number of devices in use is not close to the
limit, the highest cost is the one given by LMC because of its low aggregation level (low average
number of mashup elements mapped to virtual Things). HCV ends up providing the best cost values
because it makes more aggregations. More specifically, the min in Equation (3) captures the lowest gap
between requirements of mashup elements (linked to a virtual Thing) and physical Things, reducing
the overall cost.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

To
ta

l
C

o
st

Number of Mashups

CMC
LMC
HCV

(a) Total cost using α = 0.25

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40

To
ta

l
C

o
st

Number of Mashups

CMC
LMC
HCV

(b) Total cost using α = 0.75

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

C
1

 C
o
st

Number of Mashups

CMC
LMC
HCV

(c) c1 using α = 0.25

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

C
1

 C
o
st

Number of Mashups

CMC
LMC
HCV

(d) c1 using α = 0.75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

C
2

 C
o
st

Number of Mashups

CMC
LMC
HCV

(e) c2 using α = 0.25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

C
2

 C
o
st

Number of Mashups

CMC
LMC
HCV

(f) c2 using α = 0.75.

Figure 7. Materialization cost.

After all the devices are in use; however, CMC is the one able to reduce the overall cost because
it has the freedom to search for the cheapest cost, while the other strategies are conditioned in
the search. LMC must pick the cheapest cost from mashup elements with fewer materialization
choices, while HCV must pick the cheapest cost from mashup elements with highest cost variance.
Although the population of mashup elements is greater, CMC does not improve its overall cost thanks
to c1 component (related with gaps between the mashup element’s properties and physical Thing’s

Computers 2019, 8, 18 13 of 15

properties) because this strategy has a low aggregation level. Instead, the reduction is achieved thanks
to c2 component, meaning that better placements for virtual Things, reducing the number of hops
between workspaces, were found. LMC and HCV strategies were not able to reduce c2 because these
strategies are conditioned in their search for the cheapest materialization, as just mentioned.

Regarding the impact of α, it is possible to conclude that strategies present more similar costs
when c1 has more importance than c2 (α = 0.75) because of the just mentioned improvement of c2

by CMC. Note that HCV presents the best results on c1, when compared with the other strategies,
being able to make more aggregations without increasing the materialization cost. This strategy may,
however, be improved in the future for better virtual Thing placements to be found, as its c2 does not
reduce as in CMC.

5.2.3. Number of Flows

From the number of flows between virtual Thing workspaces, plotted in Figure 8, it is possible to
conclude that the strategies with higher aggregation level are able to bind additional mashup elements
to virtual Things, after all the devices are in use, without much impact on the number of flows.
Although more mashup elements are being fulfilled, the aggregations do not increase the number of
flows because virtual Things are the ones exchanging flows, and not individual mashup elements.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fl
o
w

s

Number of Mashups

CMC
LMC
HCV

(a) α = 0.25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40

N
o
.

o
f

Fl
o
w

s

Number of Mashups

CMC
LMC
HCV

(b) α = 0.75

Figure 8. Number of flows.

Note that, if mashups were outside the cloud, then more flows, between application
components and the cloud in this case, would exist. The number of flows would be
No. o f f ul f illed mashup elements × 2 (see Figure 5). These values are not shown in order not to
disturb the visualization of results from strategies. Flows would also have higher transfer delays, as
these are not confined to internal transfers inside the cloud.

6. Conclusions

In this article, a resource allocation model for Se-aaS business models was addressed. The model
fits multiple emerging IoT Se-aaS business models, including the ones where client applications
have bindings to mashups in the cloud, each mashup combining one or more devices. This way,
applications can share devices registered in the cloud, for their mashups to operate, using cloud
and device resources more effectively. The advantage of managing mashups in the cloud, instead of
managing them at the client side, is that delays associated with multiple traveling sessions of data
to the client are avoided. A heuristic was also proposed, having the resource allocation model as a
basis that allows for the implementation of strategies leading to an efficient allocation of resources.
The strategy with the best performance is HCV because devices are used for the materialization of
virtual Things with more mashup elements mapped to it, while fulfilling more mashup elements. HCV
picks the cheapest materialization from mashup elements with highest cost variance, based on the

Computers 2019, 8, 18 14 of 15

assumption that their late selection could significantly increase the overall cost. However, mashup
elements having high cost variance end up being the ones with more compatible requirements, leading
to a higher level of aggregation. This strategy may, however, be improved in the future in order to
place virtual Thing’s workspace more efficiently. The heuristic framework may also be improved for
other clique subgraphs (rather than just the maximum) to be explored.

Author Contributions: Conceptualization, methodology, formal analysis, and writing: J.G. and N.C.; Software,
validation: J.G. and L.R.; Investigation: J.G.; Supervision and funding acquisition: N.C.

Funding: This work was supported by FCT (Foundation for Science and Technology) from Portugal within CEOT
(Center for Electronic, Optoelectronic and Telecommunications) and UID/MULTI/00631/2019 project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fortino, G.; Russo, W.; Savaglio, C.; Viroli, M.; Zhou, M. Modeling Opportunistic IoT Services in Open IoT
Ecosystems. In Proceedings of the 18th Workshop “From Objects to Agents”, Calabria, Italy, 15–16 June 2017.

2. Guinard, D.; Trifa, V. Building the Web of Things; Manning Publications: Shelter Island, NY, USA, 2016.
3. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Sensing as a Service Model for Smart Cities

Supported by Internet of Things. Trans. Emerg. Telecommun. Technol. 2014, 25, 81–93. [CrossRef]
4. Kim, M.; Asthana, M.; Bhargava, S.; Iyyer, K.K.; Tangadpalliwar, R.; Gao, J. Developing an On-Demand

Cloud-Based Sensing-as-a-Service System for Internet of Things. J. Comput. Netw. Commun. 2016, 2016, 3292783.
[CrossRef]

5. Duan, Y.; Fu, G.; Zhou, N.; Sun, X.; Narendra, N.C.; Hu, B. Everything as a Service(XaaS) on the Cloud:
Origins, Current and Future Trends. In Proceedings of the IEEE 8th International Conference on Cloud
Computing, New York, NY, USA, 7 June–2 July 2015.

6. Misra, S.; Chatterjee, S.; Obaidat, M.S. On Theoretical Modeling of Sensor Cloud: A Paradigm Shift From
Wireless Sensor Network. IEEE Syst. J. 2017, 11, 1084–1093. [CrossRef]

7. Sheng, X.; Tang, J.; Xiao, X.; Xue, G. Sensing as a Service: Challenges, Solutions and Future Directions.
IEEE Sens. J. 2013, 13, 3733–3741. [CrossRef]

8. Pouryazdan, M.; Kantarci, B.; Soyata, T.; Foschini, L.; Song, H. Quantifying User Reputation Scores, Data
Trustworthiness, and User Incentives in Mobile Crowd-Sensing. IEEE Access 2017, 5, 1382–1397. [CrossRef]

9. Madria, S. Sensor Cloud: Sensing-as-Service Paradigm. In Proceedings of the IEEE International Conference
on Mobile Data Management, Aalborg, Denmark, 25–28 June 2018.

10. Al-Fagih, M.A.E.; Al-Turjman, F.M.; Alsalih, W.M.; Hassanein, H.S. Priced Public Sensing Framework for
Heterogeneous IoT Architectures. IEEE Trans. Emerg. Top. Comput. 2013, 1, 133–147. [CrossRef]

11. Petrolo, R.; Loscrì, V.; Mitton, N. Towards a Smart City Based on Cloud of Things, a Survey on the Smart
City Vision and Paradigms. Trans. Emerg. Telecommun. Technol. 2017, 28, e2931. [CrossRef]

12. Misra, S.; Bera, S.; Mondal, A.; Tirkey, R.; Chao, H.; Chattopadhyay, S. Optimal Gateway Selection in
Sensor-Cloud Framework for Health Monitoring. IET Wirel. Sens. Syst. 2014, 4, 61–68. [CrossRef]

13. Hsu, Y.-C.; Lin, C.-H.; Chen, W.-T. Design of a Sensing Service Architecture for Internet of Things with
Semantic Sensor Selection. In Proceedings of the International Conference UTC-ATC-ScalCom, Bali,
Indonesia, 9–12 December 2014.

14. Lai, C.-C.; Chao, H.-C.; Lai, Y.; Wan, J. Cloud-Assisted Real-Time Transrating for HTTP Live Streaming.
IEEE Wirel. Commun. 2013, 20, 62–70.

15. Lai, C.-F.; Wang, H.; Chao, H.-C.; Nan, G. A Network and Device Aware QoS Approach for Cloud-Based
Mobile Streaming. IEEE Trans. Multimed. 2013, 15, 747–757. [CrossRef]

16. Wang, W.; Wang, Q.; Sohraby, K. Multimedia Sensing as a Service (MSaaS): Exploring Resource Saving
Potentials of at Cloud-Edge IoTs and Fogs. IEEE Internet Things J. 2017, 4, 487–495. [CrossRef]

17. Xu, Y.; Mao, S. A Survey of Mobile Cloud Computing for Rich Media Applications. IEEE Wirel. Commun.
2013, 20, 46–53. [CrossRef]

18. Zhu, C.; Li, X.; Ji, H.; Leung, V.C.M. Towards Integration of Wireless Sensor Networks and Cloud
Computing. In Proceedings of the International Conference CloudCom, Vancouver, BC, Canada,
30 November–3 December 2015.

http://dx.doi.org/10.1002/ett.2704
http://dx.doi.org/10.1155/2016/3292783
http://dx.doi.org/10.1109/JSYST.2014.2362617
http://dx.doi.org/10.1109/JSEN.2013.2262677
http://dx.doi.org/10.1109/ACCESS.2017.2660461
http://dx.doi.org/10.1109/TETC.2013.2278698
http://dx.doi.org/10.1002/ett.2931
http://dx.doi.org/10.1049/iet-wss.2013.0073
http://dx.doi.org/10.1109/TMM.2013.2240270
http://dx.doi.org/10.1109/JIOT.2016.2578722
http://dx.doi.org/10.1109/MWC.2013.6549282

Computers 2019, 8, 18 15 of 15

19. Kumar, L.P.D.; Grace, S.S.; Krishnan, A.; Manikandan, V.M.; Chinraj, R.; Sumalat, M.R. Data Filtering in
Wireless Sensor Networks using Neural Networks for Storage in Cloud. In Proceedings of the International
Conference ICRTIT, Chennai, Tamil Nadu, India, 19–21 April 2012.

20. Zaslavsky, A.; Perera, C.; Georgakopoulos, D. Sensing as a Service and Big Data. In Proceedings of the
International Conference on Advances in Cloud Computing, Bangalore, India, 4–6 July 2012.

21. Distefano, S.; Merlino, G.; Puliafito, A. Sensing and Actuation as a Service: a New Development for
Clouds. In Proceedings of the IEEE 11th International Symposium on Network Computing and Applications,
Cambridge, MA, USA, 23–25 August 2012.

22. Deshwal, A.; Kohli, S.; Chethan, K.P. Information as a Service based Architectural Solution for WSN.
In Proceedings of the IEEE International Conference on Communications in China (ICCC ’12), Beijing, China,
15–17 August 2012.

23. Dinh, T.; Kim, Y. An efficient Sensor-Cloud Interactive Model for On-Demand Latency Requirement
Guarantee. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France,
21–25 May 2017.

24. Distefano, S.; Merlino, G.; Puliafito, A. A Utility Paradigm for IoT: The Sensing Cloud. Pervasive Mob. Comput.
2015, 20, 127–144. [CrossRef]

25. Fortino, G.; Savaglio, C.; Palau, C.E.; de PugaM, J.S.; Ganzha, A.; Paprzycki, M.; Montesinos, M.; Liotta, A.;
Llop, M. Towards multi-layer interoperability of heterogeneous IoT platforms: The INTER-IoT approach.
In Integration, Interconnection, and Interoperability of IoT Systems; Springer: Cham, Switzerland, 2018.

26. Ishi, Y.; Kawakami, T.; Yoshihisa, T.; Teranishi, Y.; Nakauchi, K.; Nishinaga, N. Design and Implementation
of Sensor Data Sharing Platform for Virtualized Wide Area Sensor Networks. In Proceedings of the
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Victoria, BC, Canada,
12–14 November 2012.

27. Casadei, R.; Fortino, G.; Pianini, D.; Russo, W.; Savaglio, C.; Viroli, M. Modelling and simulation of
Opportunistic IoT Services with Aggregate Computing. Future Gener. Comput. Syst. 2019, 91, 252–262.
[CrossRef]

28. Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.;
Henson, C.; Herzog, A.; et al. The SSN Ontology of the W3C Semantic Sensor Network Incubator Group.
Web Semant. Sci. Serv. Agents World Wide Web 2012, 17, 25–32. [CrossRef]

29. Blackstock, M.; Lea, R. IoT mashups with the WoTKit. In Proceedings of the IEEE International Conference
on the Internet of Things (IOT), Wuxi, China, 24–26 October 2012.

30. Barnaghi, P.; Wang, W.; Taylor, C.H.A.K. Semantics for the Internet of Things: Early progress and back to the
future. Int. J. Semant. Web Inf. Syst. 2012, 8, 1–21. [CrossRef]

31. Onat, F.A.; Stojmenovic, I. Generating Random Graphs for Wireless Actuator Networks. In Proceedings
of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Espoo,
Finland, 18–21 June 2007.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.pmcj.2014.09.006
http://dx.doi.org/10.1016/j.future.2018.09.005
http://dx.doi.org/10.1016/j.websem.2012.05.003
http://dx.doi.org/10.4018/jswis.2012010101
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cloud-Based Sensing-as-a-Service
	Architecture
	System Functionalities
	Embedding Mashups into the Cloud

	Related Work
	Resource Allocation Model
	Definitions and Assumptions
	Formalization
	Resource Allocation Algorithm

	Performance Analysis
	Scenario Setup
	Results
	Materializations and Fulfilled Mashup Elements
	Cost
	Number of Flows

	Conclusions
	References

