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Resumo  

           

     

        

      

           

             

          

     

      

          

      

 

O objectivo deste trabalho foi investigar a influência de alguns factores (ex. local, 

comprimento do boto, abundância da presa) respeitantes ao consumo de arenque e badejo, 

na variabilidade da dieta do boto. Estudo foi realizado para a região da Escócia, focando 

o período entre 1992 e 2014. Serve o presente documento, também, dar continuidade a 

um anterior estudo publicado em 2004 pela investigadora Begonã Santos, para a mesma 

área geográfica. 

A observação directa dos períodos de alimentação é uma prática dispendiosa e morosa, 

dificultada também pelo próprio comportamento tímido dos botos. Assim sendo, a análise 

de estômagos provenientes de carcaças de cetáceos são uma prática mais recorrente. Este 

procedimento é duplamente apoiado e criticado por diferentes investigadores. Mesmo 

inerente a erros, contribui para um estudo mais detalhado da ecologia e biologia de uma 

espécie. 

A equipa escocesa responsável pelo estudo e recolha de animais marinhos arrojados na 

Escócia (SMASS) foi quem forneceu as amostras analisadas no presente trabalho. Os 

conteúdos estomacais passaram por uma diversidade de etapas, desde a limpeza, a 

triagem, até ao seu armazenamento. Depois das diferentes estruturas esqueléticas terem 

sido separadas do conteúdo estomacal procedeu-se à identificação dos ossos aí 

O boto apresenta uma alimentação composta por uma variedade de peixes da família 
Gadidae, Clupeidae, Gobidae, Ammodytidae bem como de cefalópodes. Ao longo dos 
anos, tem apresentado diferentes preferências alimentares. Na Escócia, são alguns 
exemplos dessas espécies sobretudo cardumes de peixes pequenos de galeotas 
(Ammodytes), badejos (Merlangius merlangus), Trisopterus spp. e arenques (Clupea 
harengus).

O boto (Phocoena phocoena) é um cetáceo comumente observado em zonas de águas 

pouco profundas (<200m), sendo a sua distribuição sobretudo limitada à plataforma 
continental. Nas zonas costeiras, são observados frequentes arrojamentos desta espécie 
provocados pela interação negativa com artes de pesca, por colisões com embarcações e, 
também por ataques de roazes (Tursiops truncatus) e de focas cinzentas (Halichoerus 
grypus). Apesar das ameaças existentes, é nestas zonas que se concentram as suas presas.
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encontrados. Parte desta identificação já tinha sido anteriormente realizada por estudantes 

e investigadores. Estômagos não antes analisados foram processados pela presente autora.  

           

              

          

           

         

           

            

         

  

De forma geral, a dieta de um cetáceo pode reflectir a sua condição física. Por exemplo, 

as habilidades e a experiência na procura de alimento normalmente estão associadas a 

indivíduos de grande porte e mais velhos. Fêmeas gestantes estão associadas a 

necessidades energéticas maiores. O boto pode, também, ajustar a sua alimentação em 

função da abundância e biomassa das suas presas. No caso do badejo e do arenque, os 

seus stocks têm sofrido grandes variações ao longo do século. 

                 

  

            

          

             

    

Na análise estatística os modelos aditivos generalizados (GAMs) demonstraram quais dos 

factores em estudo (entre as características físicas, espaciais e temporais) foram 

significativos na variabilidade do consumo de badejo e arenque na dieta do boto, para o 

período entre 1992-2014. O teste X2 foi usado para a escolha do modelo cujas variáveis 

eram mais representativas da realidade.  Os dados para a costa oeste da Escócia bem como 

alguns dos obtidos para o arenque foram passíveis de originar resultados com 

representatividade discutível, devido ao tamanho reduzido das amostras (<50).  

Durante a identificação foi dada prioridade aos ossos designados por otólitos, e aos ossos 
da boca do peixe – as premaxilas e as dentárias. Estes ossos permitiram muitas vezes a 
identificação até a espécie, pois são estruturas com um grau de resistência aos fluídos 
digestivos. A sua capacidade de conseguirem manter as suas estruturas quase originais, 
formas e tamanhos permitiram estabelecer uma relação com a espécie ao qual 
pertenceram. O tamanho e peso dos arenques e dos badejos ingeridos pelos botos foram 
estimados de forma indirecta através de equações específicas para cada espécie. Quanto 
ao número de presas presentes no estômago de cada boto, este foi calculado através do 
número máximo de estruturas ósseas encontradas.

Os dados sobre a abundância e a biomassa das presas nos mares da costa da Escócia foram 
disponibilizados por relatórios do ICES (International Council for the Exploration of the 
Sea). Os stocks das áreas que envolvem a costa da Escócia (4a, 4b e 6a) são monitorizados 
em associação com outros das áreas em redor. Portanto, os dados da costa este, são 
representativos da combinação dos stocks das áreas 4a, 4b, 3a e 7d, e os da costa oeste 
são combinados com os das áreas 6a, 7b e 7c.
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O boto demonstrou ser um predador voraz de badejo quando comparado com o consumo 

de arenque, sobretudo nas águas costeiras a este da Escócia. O badejo tem apresentado 

um papel consistente como presa ao longo dos anos, enquanto a importância de arenque 

se tem mantido reduzida nas tendências alimentares. De forma geral, observou-se que as 

escolhas alimentares do boto estão relacionadas possivelmente apenas com a abundância 

das suas presas primárias. Também, o local onde os botos se alimentam pela última vez 

reflete ser factor de variabilidade na dieta. Assim, como a sazonalidade parece ser 

determinante na escolha dos tamanhos ingeridos de badejo e arenque. Respeitante ás 

características físicas do boto, o seu tamanho, também, se destacou sendo um factor de 

variabilidade. Botos maiores alimentam-se de badejo de maiores tamanhos. Este cetáceo 

apresentou, também, preferência por badejo e arenque de menores tamanhos que aqueles 

capturados pelas pescas. O consumo destas duas espécies de peixe observou-se ser 

independente dos botos serem do género masculino ou feminino. 

            

       

           

        

          

         

    

             

          

  

 

Termos chave: Escócia, Phocoena phocoena, factores, variabilidade alimentar, Clupea 

harengus, Merlangius merlangus.  

Importante de referir, que os factores que potenciam a variabilidade da dieta são 
transversais à relação predador-presa. Considerando os mesmos factores de variabilidade, 
a dieta parece ser afectada de forma diferente tendo em conta o nível de importância das 
presas no seu regime alimentar. Continua ainda assim por explicar muitos dos factores 
que direcionam a dieta dos botos, em especial no consumo de badejo e de arenque, 
contribuindo o actual trabalho com novos conhecimentos para esta área. Deste modo, 
contribuiu como estudo ecológico para a monitorização do bem-estar e desenvolvimento 
da estrutura populacional de botos na Escócia. Para uma abordagem mais próxima da 
realidade sobre a dieta dos botos nesta região, novas pesquisas envolvendo outras 
variáveis de estudo e com uma maior representatividade populacional serão necessárias.
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Abstract  

Harbour porpoise (Phocoena phocoena) is one of the most abundant cetaceans in 

Scotland, where it forages for prey such as whiting, sandeel and sepiolids. Currently, 

whiting is among primary prey, while herring, an important prey historically for 

porpoises, seemed not to be common in their diet anymore. The present work aimed to 

study spatial and temporal variability in porpoise diet, and the effects of prey availability 

and porpoises physical characteristics on the consumption of herring and whiting. Besides 

presenting new information, this study helps extend the data on porpoise diet beyond a 

published study from 2004 (by Begoña Santos), for Scotland. The stranded monitoring 

scheme (SMASS) provided the dietary samples from 1992 to 2014. Regression equations 

were used to back-calculate the amount of prey eaten based on measurement of fish hard 

parts (e.g. otoliths) recovered from stomach contents. GAMs and X2 test analysed the 

variables that significantly influence the variability of porpoise diet. 

      

         

          

   

       

       

       

           

  

        

           

      

 

 

Key words: Scotland, Phocoena phocoena, dietary drivers, Clupea harengus, 

Merlangius merlangus. 

  

              
            

                 
              
            

             
             

                

  
Although, even with an incomplete knowledge of the variables that affect porpoise diet, 
the present study provides new insights. Porpoise diet seems to be highly linked to the 
relationship predator-prey, and changes in the biology or ecology on one or the other, 
could have consequences for porpoise population well-being and development.

Porpoise sex didn’t affect the consumption of whiting and herring. On the other hand, 
geographical location, year and seasonality were significant factors in the presence and 
size of these prey species in the diet. Porpoises seem to prefer small sizes of herring and 
whiting than the ones fishery harvested. Over the years, whiting was more important and 
constant than herring in porpoise diet. Whiting consumption was consistent with trends 
in whiting abundance (based on ICES stock assessments for the North Sea). Additionally, 
bigger whiting was eaten by bigger porpoises. The consumption of herring by porpoises 

did not appear to be affected by the same or equivalent (as in the case of 

herring abundance) variables.
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1. Introduction 
 

1.1. Harbour porpoise (Phocoena phocoena), in Scottish waters  

 

Figure 1.1- Abundance and density of Harbour porpoise, in Scottish waters 

a) Estimated density of harbour porpoise for 2016, in Northeast Atlantic shelf waters (Hammond et al., 

2017). b) Harbour porpoise sightings from the last SCANS-III survey (Hammond et al., 2017). 

 

Harbour porpoise (Phocoena phocoena) is one of the most common cetaceans in the 

North Sea, who is sighted regularly in Scottish coastal waters (Dolman et al., 2014; 

Hammond et al., 2017). Over the years, ongoing surveys (e.g. SCANS-I/1994, II/2005, 

III/2016) along the European continental shelfs have provided information on the 

abundance and distribution of this species (Figure 1.1). Among these waters, porpoise 

abundance did not change from 1994 to 2016 (SCANS-II, 2008; Hammond et al., 2013, 

2017). However, it had a marked decline during the 1980s in the north coast of Scotland 

(Shetland), but the trend reversed after 1991 (Evans et al., 1996). In 2016, the North Sea 

and west of Scotland were the area with the highest porpoise abundance estimation, 

~369743animals/km2 (Hammond et al., 2017).  

In some Scottish regions, as in the west coast, porpoises distribution is often within 15km 

from the shore and between 50-150m deep (Marubini et al., 2009). But in the eastern side 

(Aberdeenshire), they occur not in such deep waters, porpoises were detected just around 

20m depth (Weir et al., 2007). In a small-scale study carried out in Scotland, porpoises 

have revealed seasonal migrations. In the west coast, porpoises were observed moving in 
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spring to inshore waters, while on summer they move offshore (Gilles et al., 2016). In the 

east side (Aberdeenshire), in 1999-2001, an increase number of animals was observed 

between July and October (Weir et al., 2007). And in the northern waters, in 1990-1995, 

it was observed in summer, with a peak in August-September (Evans et al., 1996). The 

availability and distribution of primary prey species and the bycatch of porpoises were, 

in the case of north Scottish region, described as possible reasons for the changes in their 

abundance and distribution (Parson et al., 2000; Santos & Pierce, 2003; SCANS-II, 2008; 

Hammond et al., 2013).  

       

         

         

       

      

       

          

        

        

  

     

        

         

      

           

 

Over the years, porpoises dietary studies have been published for Scotland (Southwell, 

1881; Rae, 1973; Santos, 1998; Santos et al., 2004) as well as for other areas in the North 

Sea (e.g. Holland, Denmark, Norway, Sweden, Germany) (Santos, 1998; Lockyer, 2003; 

Leopold, 2015). Many of these researches are based on the stomach content analysis from 

individuals found beached, floating at sea, bycaught or killed by other animals (Santos, 

1998; Lockyer, 2003; Leopold, 2015). This approach can provide information about the 

ecology for both prey and predator species (Clarke, 1980; Greenstreet & Tasker, 1996; 

Gilles et al., 2016). This method is based on the identification of the prey species using 

the predator stomach remains such as otoliths, beaks, jaw and opercular bones, vertebrae, 

Abundant and widely spread in the Scottish coastal waters (SCANS-II, 2008; Dolman et 
al., 2014; Hammond et al., 2017), harbour porpoises are an active predator for a wide 
range of commercial a non-commercial species (Rae, 1973; Santos, 1998; Santos & 
Pierce, 2003). Porpoises are sight mainly alone or in small groups (e.g. 3-4 individuals) 
(Jefferson et al., 2008; Dolman et al., 2014), notably single when foraging (Read, 2008). 
Porpoises have the capacity in moving between marine and freshwater habitats (Leopold, 
2015), but they apparently seem to prefer shallow cold seawaters (Rae, 1965; Weir et al., 
2007; Read, 2008; Marubini et al., 2009). Occasionally, they also swim to deeper offshore 
sites (Jefferson et al., 2008; Gilles et al., 2016). Within these areas, porpoise forage all 
over the water column, during night and day periods (Linnenschmidt et al., 2012; 
Wisniewska et al., 2016), for both pelagic and demersal species (Corbet & Harris, 1991; 
Jefferson et al., 2008; Read, 2008). However, they seem to avoid spiny schooling fish 
(Jefferson et al., 2008) as well as deep fish species (SCANS-II, 2008). Porpoises describe 
a day-night feeding behaviour (Wisniewska et al., 2016), which could be related with the 
daily vertical migration of their prey. As an example, cephalopods which are demersal 
species, approach the surface at night (Read, 2008) being forage by porpoises (Santos, 
1998).
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etc, from the sampled contents (Clarke, 1980, 1987; Pierce & Boyle, 1991; Santos et al., 

2004; Bowen & Iverson, 2012).  

  

             

           

          

    

           

        

       

          

        

            

      

      

       

   

Ecological studies of harbour porpoises have been focused on describing their diet, as 

well as potential factors that drive porpoises to adjust their foraging behaviour 

(Linnenschmidt et al., 2012). Some factors such as porpoise sex and age, prey availability 

and competition, and season could lead to different food choices (Rae, 1965, 1973; 

Santos, 1998; Santos et al., 2004; Leopold, 2015). Porpoises have high energy demands 

(mean energetic densities of the diet>5.5kJ/g) (Spitz et al., 2012), and due to their small 

body size (Van Beneden, 1889), porpoises have a low energy storage capacity making 

them more dependent of food (Brodie, 1995). They eat an estimated 1.17kg of daily food 

(Santos, 1998) which suggests their need of feeding almost continuously, to meet their 

high metabolic demands (Wisniewska et al., 2016). For example, pregnant females with 

heavier bodies (Learmonth et al., 2014), or even lactating females (in which body weight 

increases by 80%) (Yasui & Gaskin, 1986), will require higher energy compared to 

immature females, could this resulting in differences in the diet. In Scottish waters, 

porpoises live approximately 11-15yrs (Santos, 1998), ranging from 0.60 to 1.75m in 

length (Rae, 1973; Learmonth et al., 2014) and weight up to 72.9kg (Learmonth et al., 

2014). Although, prey biology and ecology can drive porpoise forage behaviour as well. 

Around UK waters, including Scotland, porpoise present a wide array of prey species on 
its diet (Corbet & Harris, 1991; Santos 1998; Santos et al., 2004). Adult porpoises and 
juveniles share feeding Scottish sites where they forage for different prey species (Santos, 
1998; Santos et al., 2004). Some of the Scottish targeting prey are herring, Trisopterus 
spp., cod, sandeel, haddock, whiting, crustaceans and Sepiolidae (Scott, 1903; Rae, 1965; 
Corbet & Harris, 1991; Santos 1998; Santos et al., 2004). Despite all these species, 
nowadays, porpoises apparently have preference for sandeels and whiting (Santos et al., 
2004). Historically, harbour porpoise preferential prey have been shifting (Scott, 1903; 
Corbet & Harris, 1991; Santos, 1998). Whiting has been a consistently important prey for 
porpoises over many decades (Scott, 1903; Rae, 1965; Santos, 1998; Santos et al., 2004), 
while herring was only important in porpoise diet until the beginning of 1990s (Southwell, 
1881; Rae, 1965; Corbet & Harris, 1991). Both fish species are, also, of high commercial 
and economic importance (Whitehead et al., 1986; Simmonds, 2007; Scottish 
Government, 2017) as well as an important prey in other food webs (e.g. grey gurnard, 
grey seals) (Leopold, 2015; ICES, 2017).
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This has been supported by the fact that porpoises distribution has been relating to areas 

in close proximity to the distribution of their prey (Evans et al., 1996; Parson et al., 2000; 

Santos & Pierce, 2003; Hammond et al., 2013). Also, it seems that if the availability of a 

common prey declines, porpoises could shift its diet to other prey species (Santos & 

Pierce, 2003). Climate changes (e.g. Learmonth et al., 2006; Lambert et al., 2014), 

anthropogenic activities (e.g. bycatch, oil exploration, pollution, shipping, military tests) 

(Parsons et al., 2000; Weir et al., 2007) and, interspecific relationships (e.g. bottlenose 

dolphins and grey seals attacks (Santos & Pierce, 2003; Santos et al., 2004; Weir et al., 

2007; ASCOBANS, 2015; Leopold, 2015)) seem to dictate porpoises distribution and 

therefore under the possibility in changing their feeding grounds and main prey.  

Currently, harbour porpoises face different threats, fishery has been the most problematic 

one (SCANS-II, 2008; Marubini et al., 2009). In 2005, he was referred as one of the two 

main species more affected by fishing around UK waters (Northridge et al., 2016). Due 

to their interaction with the fishing gears, they may get accidental tangled in nets such as 

bottom-set gillnets and trawls (Parsons et al., 2000; Jefferson et al., 2008; Heath et al., 

2017). In the North Sea, a few mitigation measures had been applied such as the use of 

pingers in the fishery nets (ICES, 2018). Since 2008, in the IUCN Red List of Threatened 

Species porpoises are globally classified as species of “Least Concern”, although in 1996 

they were considered “Vulnerable” (Hammond et al., 2008). This could reflect the current 

concern and responsibility for the well-being of the harbour porpoise species. The more 

recent action was, in 2016, with the proposal of most of the west coast of Scotland (Inner 

Hebrides and the Minches) as Special Areas of Conservation (SACs) for harbour 

porpoises (Embling et al., 2010; SNH, 2016).  

 

1.2. Historical Harbour porpoise dietary studies 

Studies regarding harbour porpoise feeding habits (Treacy & Crawford, 1981; Leopold, 

2015), including several in Scottish waters (Southwell, 1881; Van Beneden, 1889; Scott, 

1903; Rae, 1965, 1973; Santos, 1998; Santos et al., 2004) have been published in the last 

decade. Recent studies, for Scottish waters, showed whiting (Merlangius merlangus) and 

sandeel (Ammodytidae) as porpoises Top 2 most important prey, when herring (Clupea 

harengus) represents a small proportion (Santos et al., 2004; Pierce et al., 2007; SCANS-

II, 2008; Hammond et al., 2013).  
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The research from Pierce & Boyle (1991), Santos (1998), Santos & Pierce (2003), Santos 

et al. (2004), Pierce et al. (2007) and Leopold (2015) demonstrated that diet composition 

and food preferences can differ from individual to individual, in relation to age, sex, 

             
             

             
          

         
            

          
         
              

               
             

               
              

            
               
              
              

           

             
             

             
          

         
            

         
         

           
             

              
             
              

             
               

             
             

            
       

             
             

             
          

         
            

        
         

           
             
              
           

               
            

             
               

            
            
          

 

             
             

             
          

         
            

        
         

           
             
              
           

               
            

             
               

            
            
          

  

             
             

             
          

         
            

        
         

           
             
              
           

               
            

             
               

            
            
          

 

Described as a generalist predator, harbour porpoises have a taste for several species 
(Leopold, 2015). The identification of different prey in porpoises diets, is not recent. 
During Rae studies (1965, 1973), he found a variety of species like cephalopods, 
crustaceans, flatfish, cod (Gadus morhua), sprat (Sprattus sprattus), mackerel (Scomber 
scombrus), Norway pout (Trisopterus esmarki), hake (Merluccius merluccius), haddock 
(Melanogrammus aeglefinus) and saithe (Pollachius virens). Later on, in 1991 Corbet & 
Harris discovered new species, including sardine (Sardina pilchardus), 
scad (Trachurus trachurus), pollack (Pollachius pollachius), gobies, and blue 
whiting (Micromesistius poutassou). Although, for Scotland and the east coast of 
England, Santos (1998) in her study apart from fish, she found polychaetas at 
porpoises stomachs. For the west side of European waters, Santos et al. (2004) also 
identified crabs, isopods and amphipods in porpoise diet. However, it is 
possible that some of those prey might be present because of secondary feeding. 
Whiting is a piscivorous, that eats many of the prey described above, like 
crustaceans, annelids, sprat, herring, cod, haddock and other whiting fishes (Hislop, 
1991), while herring is eaten by cod and other gadoids (ICES, 2011a). Gadoids can, 
also, ingest or be hosts for parasitic copepods (Rae, 1973), misleading the real 
prey species eaten by porpoises. Besides the widely variety of prey species 
presented on their diet, porpoises showed preferences for sandeel and 
whiting, along Scottish waters (Santos, 1998).

Old descriptions on porpoise diet around British waters, stated that porpoises mainly feed 
on herring (Southwell, 1881; Van Beneden, 1889). Years later, at the northeast Scottish 
waters, porpoises had whiting as primary prey (Scott, 1903). This result was obtained by 
Scott after stomach content analysis, where he found otoliths belonging to whiting and 
sandeel. For Scottish waters, Rae carried out studies (1965, 1973), between 1959-1971, 
showing that almost half of harbour porpoise diet was based on herring (15.6%) and 
whiting (25%). In a recent study, for Scotland and the east coast of England, Santos 
(1998) registered a consumption of 14640t of whiting, 13800t of sandeels and 1000t of 
herring, per year. Besides whiting and sandeels being found as main prey, she even noted 
cod as a primary prey. At the 21st century, off the east coast of Scotland whiting and 
sandeels are still the main prey, comprising ~80% of their diet (Santos et al., 2004).
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reproductive status, season, cause of death and reflecting prey abundance and distribution. 

Therefore, the data collected for diet in a specific region should not be applied uncritically 

to other geographical locations (Pierce & Boyle, 1991). 

 

       

       

        

          

 

For Scottish waters, during 1992 to 2003, Santos et al. (2004) made demonstrated the 

existence of regional, seasonal, and inter-annual variation in porpoise diets. Santos (1998) 

noted that sprat was most important in porpoise diet in 1992-1993, while herring started 

to be important in 1994. Recently, herring and sprat rarely occurred in stomach contents, 

suggesting that their importance has been changed along the years (Santos, 1998; Santos 

et al., 2004). Other study carried out by Santos (1998) reported the prevalence of sandeels 

in spring and summer diets of Scottish harbour porpoises. Santos (1998) and Santos & 

Pierce (2003) were not certain if it was the increase in their availability and/or the 

decrease of whiting abundance, that led to this result. Also, the increased amount of 

whiting during autumn and winter in porpoises diet could be related with the same 

principle above (Santos & Pierce, 2003). Winter period often means a high need of high-

energy prey (e.g. clupeids, sandeels), however as demonstrated by Leopold (2015) and 

the studies above, porpoises in the winter prefer lean prey, like whiting and gobies, 

following the opposite trend in spring time. One of the explanations for porpoises change 

their preferences could be found in the Santos (1998) citation, “(…) The seasonal 

movement together with the ecology of some of the prey species could explain some of the 

seasonal differences found in the diet”. 

         

          

    

          

       

        

         

Porpoises aged <1yr old demonstrated preferences for gobies and shrimps (Santos et al., 
2004). Older individuals show preferences for sandeels, while the youngest animals 
preferred Trisopterus spp. (Santos, 1998). Also, adult porpoise males ate bigger whiting 
specimens, and feed on a higher variety of prey compared to females (Santos, 1998; 
Santos & Pierce, 2003). Energy requirements or different skills to feed can be reasons for 
these trends (Leopold, 2015).

The cause of those changes remains unclear, however there are analogies than can be 
made, including if porpoises main prey be depleted by fisheries the possibility of them to 
switch to prey which are available. In Shetland, when the number of porpoises fluctuated 
with the status of local sandeel stocks (Evans & Weir, 1996). Or even with species of low 
preferences, like what occurred in European waters with the decline in herring stocks, the 
number of harbour porpoises declined too (Smeenk, 1987). However, the above trends 
could be merely analogies and nothing else, as Weir et al. (2007) observed, in
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Aberdeenshire, that with the increasing of mackerel the number of porpoises in that area 

also increased, although mackerel is not commonly recorded in porpoise stomachs. 

Rae (1973), Santos (1998) and Santos & Pierce (2003) concluded that harbour porpoise 

diet consisted mostly in commercial important species, which are the most abundant 

fishes in Scotland. Santos (1998) found a positive correlation (in 3yr out of 5yr) between 

the most important species eaten by porpoises and fishery landings in Scotland. 

Feeding habits are difficult of being carried out through direct observation in their natural 

habitat (Hammond et al, 2013), for example because of harbour porpoise shy behaviour 

(Jefferson et al., 2008; Read, 2008). Therefore, the analyses of stomach contents of dead 

animals will provide the necessary information for whiting and herring. As Casteel (1971) 

refers the predator stomach contents can help to indicate fish distribution. 

 

1.3. Prey species potential biology/ecology factors of variability 

1.3.1. Atlantic Herring (Clupea harengus) 

Atlantic herring is one of the species from Clupeidae family that occurs all over the North 

Sea, being widely distributed from the northern Bay of Biscay to Greenland (Whitehead, 

1985). The pelagic adult fishes tend to occur in continental shelf seas (to 200m deep) 

(Whitehead, 1985) while juveniles are found in shallow waters (ICES, 2011a). Maravelias 

(2001) show for both life stages higher abundances in shallow waters (<150m). Their 

shallow habitat made them an easy prey for porpoises.  

Adults and juveniles, like the carrying capacity of herring’s early life stages (Nash et al., 

2009) can be compromised by the availability of food and by ecological conditions 

(Maravelias, 1997, 2001). Changes in the environmental conditions can shift the 

traditional spawning grounds and the spawning peaks (Maravelias, 1997). As a demersal 

spawner, herring moves to shallow waters (15-40m deep) with gravel beds (Whitehead, 

1985; Nash et al., 2009; ICES, 2011a), to attach its pelagic eggs (Whitehead, 1985). 

Herring spawns in autumn and spring, being the first season possible to be extended from 

September to January (ICES, 2011a). On Scotland, Moray Firth and Firth of Forth are 

important nursery grounds (ICES, 2011a), the planktonic larvae often move to inshore 

waters (Whitehead, 1985) and after 2yrs, herring moves into deeper waters to join to the 

adult population that migrates to the western part of the North Sea (ICES, 2011a). 
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Maravelias (2001) stated that older and larger fishes occur more offshore. He studied the 

case of Shetland Islands where on the west coast larger fishes were observed when 

compared to east side. In North Sea waters the lifespan is less than 7yrs, with a maximum 

length range of 20-30cm (ICES, 2011a). Herring usual swims in large schools 

(Whitehead, 1985; Camphuysen, 1990; ICES, 2011a), with diurnal vertical migration 

patterns, moving to the surface at the sunset and dispersing during the night (ICES, 

2011a). 

Herring is one of the most important pelagic fishes in several North Atlantic ecosystems, 

being an important prey for many predators such as other fishes, seabirds and marine 

mammals (ICES, 2011a). For many hundreds of years, herring has been exploited at the 

North Sea, being an important source of food and economic value for Europe (Simmonds, 

2007). Herring is important for both commercial fisheries and cetaceans lives, in Scotland 

(Parsons et al., 2000), its distribution and abundance can be a proxy for predators and 

regulates the fisheries actions.  

Herring exploitation goes back several centuries, and due to natural environment changes 

and human exploitation stocks have shown higher fluctuations (ICES, 2011a). Many 

years ago (1870s), herring was the most profitable species at Scotland, in the Firth of 

Clyde, on the west Scottish coast (Thurstan & Roberts, 2010). In 1889-1962, the area was 

closed to trawlers to protect herring spawning grounds, but after 1962 the rules were 

adjusted allowing to fish again until the decline of herring after 1973 (Thurstan & Roberts, 

2010; Heath et al., 2017). Then, in 1984, even with the decrease on landings, they re-open 

all the area again to trawling expecting to increase herring catch levels and with the 

intention to explore new species (e.g. Norway lobster) (Thurstan & Roberts, 2010; Heath 

et al., 2017). In that region, around 2005, the demersal fishery ceased, and in late 2000s 

the only demersal fish landings were from bycatches from other fisheries (Thurstan & 

Roberts, 2010; Heath et al., 2017). Considerable fluctuations in catches were observed 

before and after the World War II (1939-1945) (ICES, 2011a), but Whitehead (1985) 

stated that fact could result from the fishing effort, and not from herring availability.   

In the North Sea, after 1950s, herring fisheries had a high level of expansion (Simmonds, 

2007), to suffer some years later (1964-1978), one of its biggest stock collapses due to 

human overexploitation (Whitehead, 1985; Simmonds, 2007; ICES, 2011a), possible a 

consequence of lack of regulation during that time (e.g. no catch limits) (Simmonds, 
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2007). The herring stock has recovered slowly only after the closure of the fishery and 

with the application of strict rules (Whitehead, 1985; Simmonds, 2007; ICES, 2011a). 

Simmonds (2007) reported a moderate to large stock size between late 1980s and early 

1990s. However, another period of greater decline was very clear in 1994/95 (Maravelias, 

1997; Simmonds, 2007). Simmonds (2007) related this fact with high fishing mortality 

while the Maravelias (1997) study showed that in 1994/95 environmental changes (e.g. 

Sea Surface Temperature - SST) were the reason for low herring abundance. In 1997, an 

EU/Norway management plan was applied, that resulted in the recovery of stock observed 

in 2003 (Simmonds, 2007; Dickey-Collas, 2016). 

Nash et al. (2009) agrees that environment changes linked with overexploitation can be 

the reasons for those herring collapses, and the new EU landings obligations helped to 

reverse the declines (Dickey-Collas, 2016). 

Nowadays, fisheries continue all year with peak catches between October and March with 

a minimum landing size of 20cm for the North Sea (ICES, 2011a). Its exploitation usually 

is done by purse-seine, distinct types of trawls and in inshore waters with drift nets (ICES, 

2011a). According to Dickey-Collas (2016), presently herring from the North Sea is 

sustainably fished, with ~400000t catches per year (1995-2013), with the spawning 

biomass above the limit reference points (Blim=800000t). 

 

1.3.2. Whiting (Merlangius merlangus) 

 

Whiting is one of the species from Gadidae family that occurs widely spread along the 

Scottish coast (ICES, 2011b). It is a demersal species which inhabits shallow waters (10-

200m) (Whitehead, 1986; ICES, 2011b), like herring its habitat facilitates to be captured 

by porpoises. 

One of the regular spawning grounds is situated at the north of Dogger Bank, along the 

east coast of Scotland (Loots, 2010). Even a demersal species, its eggs are pelagic, and 

the spawning season peak occurs at springtime, between March-June, for the northern 

waters (Hislop, 1984). High number of immature whiting occurs off the Scottish coast 

(ICES, 2013). Males grow to a small size than females (ICES, 2011b), and the species 

can live ~20yrs (ICES, 2011b).  

Its migration through north-south are carried out along the coast of Scotland, while in 

Shetland waters they even move to offshore, in direction to east and south waters (Hislop 
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& Mackenzie, 1976). On a daily basis, whiting feeds at night near to the bottom and 

during daylight he moves into the water column and feeds on pelagic prey (Rindorf, 

2003). In summer many individuals are observed offshore the Scottish coast (ICES, 

2011b). Whiting is a very important prey for many piscivorous fishes and marine 

mammals (ICES, 2013, 2014, 2017). In cold seasons, the specimens which are not 

possible to be caught by fishermen due to their small size are the main prey of harbour 

porpoises (Santos, 1998; Santos & Pierce, 2003). 

Over many years, demersal fisheries in the North Sea and adjacent waters have taken 

whiting as one of the main target species (Whitehead et al., 1986; ICES, 2013), and 

nowadays it has reached high market values (Scottish Government, 2017). The outburst 

in 1960s-1970s of gadoids was apparently related with the high productivity of the 

ecosystem (ICES, 2014a), and could had help to increase whiting abundance. However, 

catches fell to an historical low in 1998 (ICES, 2011b). Since 2000, whiting has recovered 

slightly in Scottish waters (Heath et al., 2017), although registering a 2nd historical low 

level between 2005-2008 (ICES, 2017). Nowadays, for some areas (north, west) of the 

North Sea whiting abundance has been increasing, while in others (south, east) it has 

declined (ICES, 2011b, 2014; Napier, 2014).  

Environmental factors (e.g. SST) can be linked with the low abundance of whiting in 

recent years (ICES, 2014a). Since 2008, the spawning stock biomass (SSB) has been well 

above the biological reference point (Blim=172741t), and for the North Sea and west 

Scottish whiting has been harvested in a sustainable way (ICES, 2016, 2017d). 

With a minimum landing size of 27cm (ICES, 2011b), whiting is caught all year (ICES, 

2013) with mixed trawl fishery gears (e.g. demersal, beam, Nephrops trawl) along with 

other gadoids (ICES, 2011b, 2013) but it has been captured as bycatch by industrial 

fisheries (e.g. Norway pout, Nephrop) (ICES, 2013, 2014). Since 2012, more selective 

gears and a reduced fishery bycatch have decreasing whiting fishing mortality, but even 

with the reduction on the number of bycatches, the MSY (Maximum Sustainable Yield) 

remains high (ICES, 2014a). Due to is main role in porpoises diets, his abundance can 

made lead to changes in porpoises choices.  
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2. Objectives 
 

Considering the literature (Southwell, 1881; Van Beneden, 1889; Scott, 1903; Rae, 1965, 

1973; Santos, 1998; Santos et al., 2004, Pierce et al., 2007; Marubini et al., 2009; 

Leopold, 2015), it is apparent that herring and whiting have been part of the harbour 

porpoise diet in Scottish waters over a long period of time. We were interested in 

investigating the variation in importance of those these two fish species in the diet of 

porpoises in Scottish waters during 1992-2014. Over this period, fish stock abundance 

has fluctuated widely and piscivorous predators might be expected to adjust their diet to 

reflect these changes. In addition, it is likely that energy demands and foraging skills both 

increase as porpoises grow larger, and that mature females have higher energy needs than 

mature males, and these differences may be reflected in the diet. We therefore propose 

the following main hypotheses: 

• The importance of whiting in the diet increases when herring are less important 

and vice versa. 

• The consumption of herring and whiting by harbour porpoises increases when 

these fish are more abundant in the sea. 

• The consumption of herring and whiting varies regionally (within Scottish coastal 

waters), seasonally, over time (1992-2014) and in relation to porpoise physical 

characteristics. 

 

From these, 

• Bigger porpoises will eat higher amount and larger sized herring and whiting. 

• Females will eat higher amount and larger sized herring and whiting, compared to 

males. 
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3. Material and Methodology 
 

3.1.  Source of Harbour porpoise diet samples 

Harbour porpoises found stranded on the Scottish coast, and occasionally floating at sea 

in Scottish waters, entangled in fishing nets or killed by bottlenose dolphins, were used 

to study the diet of the harbour porpoises in Scottish waters. 

The Scottish Marine Animal Stranded Scheme (SMASS) has been collecting samples 

from dead harbour porpoises from different Scottish locations, during 1989-2016 (Figure 

3.1.). 

 

Figure 3.1 - Harbour porpoises stranded in Scotland (1989-2016) 

Geographical distribution map of the harbour porpoises found death, around Scottish coast and waters 

(1989-2012, ▲, n=1450; 2013-2016, ●, n=324). (source SMASS/QGIS 2.10)  

 

Between 1989 and 2016, SMASS recorded 1774 dead harbour porpoises which could be 

potential sources for a diet study. Unfortunately, from most of them (n=1468) there was 

no information about their diet, especially from the ones recovered during mid-1989-

1991, before the stranding network was fully funded. Of those animals sampled, 8 animals 

were found with an empty stomach.  

The information provided by SMASS was not always complete, probably due to the 

difficulty of access to some animals or their advanced state of decomposition, but also 

due to limited funding for necropsies. Dietary data were collected by several researchers 

and some inconsistencies were found in the way the data were collected. Consequently, 
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the total number of samples used for the analysis during the present study was less than 

expected.  

          

           

          

          

          

         

   

 

In order to study the variability in the diet of harbour porpoises, I analysed the 

relationships between the consumption of herring and whiting and their stock status, 

porpoise sex and body length (cm), and the year, season and location where they were 

found dead.  

 

3.2.  Sampling, Processing and Storage diet samples 

Firstly, it was mandatory to wear gloves and a lab coat to handle the biological material 

from the porpoises. Necessary precautions suggested by different authors (e.g. Pierce & 

Boyle, 1991; Watt et al., 1997). During a necropsy, usually, the stomach samples are 

frozen, or stored in alcohol or in formalin (Fitch & Brownell, 1968; Treacy & Crawford, 

1981; Härkönen, 1986; Watt et al., 1997). The University of Aberdeen study avoided the 

use of formalin due to its harmful properties and the fact that it dissolves otoliths. The 

stomach contents were sieved with a mesh of 0.25-0.5mm (Treacy & Crawford, 1981; 

Prime & Hammond, 1987), and so skeleton bones and otoliths were separated according 

to their shapes and densities. The contents were placed in an aluminium foil container 

(the type used for take-away meals), and water was added. Due to the density of otoliths 

compared with other structures (Treacy & Crawford, 1981; Pierce & Boyle, 1991; Watt 

et al., 1997) they sunk in the bottom of the container. This gross sorting helped to separate 

flesh and intact skeletons from the sample, and to avoid the sieve to be clogged (Treacy 

& Crawford, 1981). Also, floating on the water were the lighter structures that were 

decantated into the sieve (Treacy & Crawford, 1981). One by one otoliths and bones were 

removed and kept separately in vials. Residual material from sorting procedure was set 

aside for future analysis (Treacy & Crawford, 1981). Hard structures, like otoliths and 

It’s important to note that the date/location and physical characteristics of porpoises were 
collected by SMASS’s team during their necropsies. The stomach contents were analysed 
by researchers at the University of Aberdeen: during 1989-2003, most sampled were 
analysed by Begoña Santos research while for 2003-2016 several different students 
collected the data. All this available information was compiled in one single Excel file. 
Several stomachs not previously examined were processed and the data added to this 
database as result of the laboratory work of the current author (2004-2014).
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bones were kept dry (Fitch & Brownell, 1968; Härkönen, 1986; Watt et al., 1997; Assis, 

2000; Campana, 2004). Otoliths could change their shape if stored in alcohol (Jobling & 

Breiby, 1986) or formalin (Fitch & Brownell, 1968; Treacy & Crawford, 1981; Campana, 

2004). All the storage plastic or glass vial were labelled outside and inside, as 

recommended by Roper & Sweeney (1983) and Watt et al. (1997), using a water-resistant 

marker and pencil on waterproof paper respectively. 

 

3.3.  Skeleton structures used for diet identification 

Fish remains from stomach contents were the source to describe the harbour porpoise 

diet. As the literature suggested the recovery of skeleton structures (Casteel, 1971), and 

other hard parts of the body (Bowen & Iverson, 2012) helped in the identification of the 

prey. To identify herring and whiting and to estimate their weight and length, the 

informative skeletal remains used were mainly sagittae otoliths and jaw bones 

(premaxillae, dentaries) 

Along the years, studies have shown how useful and accurate otoliths have been to 

identify prey species due to their particular shape and size (Adams, 1940; Casteel, 1976; 

Frost & Lowry, 1981; Härkönen, 1986; Jobling & Breiby, 1986; Pierce & Boyle, 1991; 

Assis, 2000; Bowen & Iverson, 2012). Their use relies on their resistance to digestion 

process (Fitch & Brownell, 1968; Treacy & Crawford, 1981; Härkönen, 1986; Bowen & 

Iverson, 2012), for example, Gadidae otoliths are more resistant than the ones from 

Clupeidae (Da Silva & Nielson, 1985; Jobling & Breiby, 1986). The sagita seemed to be 

the most adequated to use not only because of its shape and structure, but also it is the 

largest earstone among marine fishes (Jobling & Breiby, 1986; Bowen & Iverson, 2012). 

However, for some researchers the use of the 3 pairs of otoliths (sagittae, asterisci, lapili) 

are a stronger tool to distinguish between species (Adams, 1940). Equally important, it’s 

to have an identification key reference of the different species life stages (Jobling & 

Breiby, 1986). As an example, it seems that otoliths from adults can be well identified 

(Casteel, 1976), while, for some families, otoliths from juveniles are hardly identified to 

the species level (Härkönen, 1986).  

As a suggestion procedure, to be visualized under the microscope the otoliths were 

oriented with the sulcus cavity up, with the posterior margin to the left side and anterior 

margin right-sided (rostrum), (Härkönen, 1986; Assis, 2000). 
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The prey remains analysis was very time consuming and almost inexpensive but for a 

reliable identification it requires experience “eyes” (Pierce et al., 2004), and so prof. 

Graham Pierce was consulted several times. Also, to an inexperienced worker, as the 

present author, the recommendation was to make use of a reference collection and 

identification guides (Pierce & Boyle, 1991; Assis, 2000; Pierce et al., 2004; Bowen & 

Iverson, 2012). The reference collection, from Scotland region, it’s held in the IIM 

(Instituto de Investigaciones Mariñas de Vigo). The publish guides for bones were from 

North Sea species (Watt et al., 1997), and the otolith guides were from Northeast Atlantic 

                 

             

              

          

          

Besides otoliths, other skeleton bones were mentioned by the literature as useful for diet 
analysis, too (Fitch & Brownell, 1968; Casteel, 1976; Watt et al., 1997; Granadeiro & 
Silva, 2000; Bowen & Iverson, 2012). To help in the identification and when otoliths 
weren’t representative of the sample, jaw bones offered an excellent way due to their 
variety of forms (Watt et al., 1997; Bowen & Iverson, 2012), specially the premaxillae 
(Watt et al., 1997). However, even with the use of premaxilla, between species from the 
same family the differences were not always obvious. Vertebrae were useful when the 
head of the prey wasn’t eaten, and because they can be found in high amounts in the 
stomach (Casteel, 1976; Watt et al., 1997). Due to their hard structure and low variation 
along the vertebral column (Watt et al., 1997), the caudal vertebrae were used just only 
to help clarifying the identification of the species. Bowen & Iverson (2012) said that 
vertebrae are useful for identification, but they don’t provide prey quantities, and 
therefore in this study they were not used for estimations. Beyond jaw bones and 
vertebrae, as recommend by researchers, other structures were used in case of 
identification doubts, such as opercular series (Watt et al., 1997), cleithrum (Hansel et 
al., 1988; Wheeler & Jones, 1989), or posttemporal bones (Wheeler & Jones, 1989). 
According Watt et al. (1997) and Bowen & Iverson (2012), the importance of other bones 
relies on how difficult is to distinguish otoliths between species, and an example is inside 
the Gadidae family (e.g. whiting vs blue whiting) (Pierce & Boyle, 1991).

In the case of some families, the right and left structure of a premaxillae and otoliths (e.g. 

Gadidae, Clupeidae) did not have any significant asymmetry and so did not require 

a separately analysis (Messieh, 1972; Frost & Lowry, 1981; Watt et al., 1997). All 

them have distinctive features that facilitated the identification process (Härkönen, 

1986; Watt et al., 1997; Granadeiro & Silva, 2000; Campana, 2004).
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and Artic species (Härkönen, 1986). Casteel (1976) and Watt et al. (1997) refer both tools, 

guides and reference collections, as of high value for identification of prey species.  

Fitch & Brownell (1968) demonstrated the importance of knowing the resident fishes of 

the study region, for after to be compared with the collection material. Casteel (1971) 

even refers that this fact offers reliability to the information acquired from the bones 

identification process. Therefore, the knowledge of the Scottish fauna and previous 

information about harbour porpoise diet, for a specific region, helped to give an idea of 

the possible species that can be found on their stomach contents. 

 

3.4.  From skeleton to quantification of diet composition 

The next step after the sorting of the bones, it was to measure otoliths and jaw bones 

which helped to predict the length and weight of herring and whiting that was eaten by 

porpoises. Also, it was counted the number of otoliths, premaxilla and dentaries in each 

stomach. 

The number of individuals of herring and whiting was estimated firstly from the number 

of otoliths. In the absence of otoliths other remains were used, and when the otolith was 

broken, but it still had more than half of its size, it was counted as one otolith. Per stomach, 

when resulted to have ≤50 otoliths of one fish species, all of them were measured; when 

>50, a random sample of 30-50 of those otoliths were measured. As suggested by many 

authors, to obtain meaningful values is necessary to use randomly samples with a 

moderate-large size (n>30) and evenly distributed (Härkönen, 1986; Pierce et al., 2004; 

Pierce et al., 2007; Bowen & Iverson, 2012). 

During counting, some samples had enormous amounts of otoliths and so they weren’t 

counted one by one, instead it was weighted a sub-sample (±0.01mg), and from that it 

was calculated the approximately real number of otoliths presented in the main sample. 

After counting the total number of otoliths, premaxilla and dentary, it was calculated the 

number of herring and whiting, per stomach. For each species, the highest number of 

structures identified it was considered the minimal number of individuals eaten from that 

same species. It was taken into account that some skeleton structures like maxillae, 

premaxillae, dentaries, otoliths and eyes exist in pairs (Pierce & Boyle, 1991; Santos, 

1998), hence during the estimation of the number of prey, each structure was considered 

to be 0.5 of a fish. This step was made very cautiously because of the high probability of 
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overestimation, when using different bone structures. For that reason, it was considered 

only the number of otoliths to predict the final number of individuals, unless otoliths 

weren’t present. An example, (M007/06), it was the case of whiting that was identified 

with 7 otoliths and 4 premaxillae. Because they are both paired bones their number was 

divided by two and because the highest number came from otoliths, so it resulted in 3,5≈4 

whiting (0.5 means 1 more otolith and so it contributes with 1 more individual) as the 

minimum number eaten by that porpoise. However, for the same sample, an unknown 

Gadidae was identified with 3 otoliths, 33 maxillae, 15 dentaries and 1 premaxillae. The 

highest structure’s number was 33 maxillae and so it should had been 16.5≈17 unk. 

Gadidae that had been eaten, but no. Some of that 33 maxillae can had belonged to the 

whiting referred above or other species from the same family, and at the end it was 

consider only 2 unknown individuals Gadidae (3/2₌1.5) present in the stomach. Other 

situation, it was when there was a sample with bones that were identified with more than 

one species and bones from only one species. After divided the total number of structures 

by 2, the total minimum number of individuals was calculated like: 1.5whiting ind.+2.5 

Whit./Trisop. ind.= 4ind., rather than 1.5whiting ind.≈2+2.5 Whit./Trisop. ind.≈3 = 5 

individuals. 

For measurements it was used a calliper (0.05mm) for bigger structures (centimetres size 

at the naked eye). And a binocular microscope for smaller ones, as advised by Fitch & 

Brownell (1968). This last instrument had an eyepiece graticule (0.1mm/10mm) and 4 

lens magnifications (x6, x12, x25, x50). To get the real size of the bones the final 

measurement values were calibrated using the correction factors (per unit): x6 - 0.26mm; 

x12 – 0.125mm; x25 – 0.06mm; x50 – 0.029mm.  

       

    

       

     

 

For measuring skeleton bones, Watt et al. (1997) referred that “all the dimensions should 

be taken in straight lines, without correcting the curvature of the bone”. For jaw bones it 

was essential to measure the specific dimensions for each species, as happened to otoliths 

(Watt et al., 1997; Hernandez-Milian, unpublish). The standard dimensions for 

premaxillae and dentaries (Figure 3.2) which were measured were the ones mention in 

             
         
             

             
 

Fish length and weight were calculated from regressions on otolith size, based on 
Härkönen (1986), Brown (unpublished) and Hislop (unpublished) work (Appendix). 
Although, due to the otoliths shape there are standard measurements, for Clupeidae and 
Gadidae family, is the otolith width (OW) and the length (OL), respectively (Härkönen, 
1986) (Figure 3.2, top images).
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their respectively regression formulas (Appendix). Jaw bones were described as good 

estimators of fish length and weight when the right measures are selected (Hansel et al., 

1988). 

 

Figure 3.2 - Standard measures for otoliths and fish jaw bones 

Standard measurements for whiting and Atlantic herring, from otoliths (top images), premaxillae 

(central images) and dentaries (bottom images). (adapt. Hernandez-Milian, unpublish) 

 

        

       

      

         

        

              

          

     

 

The regression formulas were chosen regarding their Pearson’s correlation coefficient (r) 

and sample size (n). It wasn’t always possible to calculate length and weight through the 

bone size regressions. Regressions for herring from otolith length to fish weight and 

length weren’t available. Also, when the final identification of an otolith or a jaw bone 

was more than one species, the regression formula used was a combination of those 

species (e.g. otolith identified as Whit./BLW (Appendix). However, not all the combined 

It was supposed to use standard measurements, due to their consistency with the real 
dimensions (Casteel, 1976; Härkönen, 1986; Watt et al., 1997; Brown, unpublish; 
Hernandez-Milian, unpublish). However, in some occasions, it was necessary to use 
dimensions beyond the ones stablished at the beginning. The dimensions suggested are 
rated regarding their precision with the real fish size and so when it wasn’t possible to 
measure the standard dimensions, the next in the scale rate it was taken in its place. 
Sometimes it was even measured more than one dimension for a single bone, especially 
with broken structures and ambiguous identification among the species (e.g. 
Whiting/Trisopterus spp., Whiting/Blue whiting, unknown Clupeidae).
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The diet composition of harbour porpoises included the number or the presence/absence 

of whiting and herring in the stomach, as much as herring and whiting length and weight. 

Later on, to predict the variability of the diet, the response of those variables were study 

in relation to porpoises physical characteristics, geographical area, year, seasonality and 

the stock status of herring and whiting.  

 

3.5.  ICES stock assessments of herring and whiting 

Every year, as a commercial species, herring and whiting are subjects of an analytical 

stock assessment (VPA) which means that estimations of their stock in the North Sea are 

             
              
               
           

At the beginning the two main species that had been referred along the text, herring and 
whiting, became a combination of other fish species. During the sorting, some samples 
were identified with more than just only herring or whiting, as mentioned before. For this 
reason, the data coming from the bone structures identified as Whit./BLW (Merlangius 
merlangus/Micromesistius poutassou), Whit./Trisopterus spp. (Merlangius merlangus/Trisopterus 
spp.) and whiting (Merlangius merlangus) were used as information of whiting. And 
Herring/Sprat (Clupea harengus/Sprattus sprattu), unknown Clupeidae and herring (Clupea 
harengus) as data of herring.

samples had combined regressions to be applied, like the case of Whit./Trisopterus spp.. 
The jaw bones were the ones with less access to regression equations. Although, broken 
and eroded otoliths or bones were not submitted to any type of calibration. The lack 
of bone regressions had limited their contribution to estimate fish length and weight.

Each value resultant from the bone regression was representative of the length and weight 
of each fish, in the porpoise stomach. However, because the bones used were paired, in 
the case of the fish weight, that value was multiply by 0.5. In a general way, each porpoise 
had more than one individual from the same species on its stomach, so it was calculated 
an average value for weight (after x0.5) and length, too. Also, when it was measured less 
bones (≈40) that the ones that were really found in the stomach, the rest of the fish weight 
were estimated through a rule of three (e.g. mean whiting weight of all sample=8.45g, no. 
of whiting otoliths measured=30, no. of whiting otoliths counted=115, total mean 

weight=8.45gx115/30). In the case of length this step was not necessary. Therefore, 

the length (mm) and weight (g) of whiting and herring found in each porpoise stomach 

was estimated.
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available. The recruitment data and the spawning stock biomass (SSB) were undertaken 

by the respective ICES assessment working groups (e.g. ICES Herring Assessment 

Working Group), during research trawls surveys (Santos et al., 2004). The ICES areas 6a, 

4a, 4b, where these assessments are carried out, include the surrounding Scottish waters. 

Survey grids are based on ICES statistical rectangles (30x30 nautical miles), each 

rectangle is often fished per ships of two different countries, and usually twice a year they 

do a survey (January-February; August-September) (ICES, 2012). During the tow the 

standard fishing speed should be between 3.5-4.5knots, for 30min., with an average of 

4/5 hauls per day and with a maximum fishing deep of 200m for the North Sea (ICES, 

2012). 

 

          

         

          

         

         

       

           

          

        

        

              

        

         

     

Likewise, in the case of whiting, the advice ICES report was a combination of 4 area with 

division 7d (North Sea and eastern English Channel) (ICES, 2017d). The report for 6a 

area was single (ICES, 2016). Whiting recruitment (age 1) and SSB data for 4 and 6a 

ICES area were collected by the Working Group on the Assessment of Demersal Stocks 

in the North Sea and Skagerrak (WGNSSK) and the Working Group for the Celtic Seas 

Ecoregion (WGCSE), respectively (ICES, 2016, 2017d). 

For the stock status, the recruitment and SSB data of whiting and herring were used as 

variables which may predict the variability of whiting and herring that was eaten by 

               
               

               
            

              
              

                  
              

             
                

                  
              

              
     

               
               

               
            

              
              

                  
              

             
                

                  
              

              
     

               
               

               
            

              
              

                  
              

             
                

                  
              

              
     

Herring stock data was available for ICES area 6a (West of Scotland) (ICES, 2014), but 
since 2015 it has been an assessment combined with the area 7b-c (ICES, 2017a). ICES 
still assume that separate stocks exist (ICES, 2017a), but because a mixture of fish from 
the surrounding areas were identified, ICES began to combine the assessments advise 
(ICES, 2014). Despite data just for area 6a seemed more specific, the combined report 
had updated estimations and assumed to be more complete. In this report the data 
recruitment data was for the age of 1, and the SSB had the followed note “For this autumn- 
spawning stock, the SSB is determined at spawning time and is influenced by fisheries 
between 1 January and spawning (September).” (ICES, 2017a). Also, area 4 (North Sea) 
advice was combined with 3a and 7d divisions (ICES, 2017c), and was the one used in 
the present study of ICES areas 4a, 4b. The report area 4 had recruitment data for the age 
of 0 and SSB was estimated at spawning time (September). Both combined reports have 
been collected by the ICES Herring Assessment Working Group for the Area South of 
62ºN – HAWG (ICES, 2017a, c).
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porpoises. The data reports, due to some of their particularities, required the division of 

the waters around Scotland in east coastal waters (4a, 4b) and west coast (6a). 

From the historical GPS coordinates registered by SMASS’s team, it was possible to link 

an ICES area to each harbour porpoise found (Figure 3.1). It’s important to take in mind 

that after died the floating body of the animal was possible affected by currents and winds 

and so the location where the porpoise was found is a source of bias (Peltier et al., 2012). 

 

3.6.  Statistical analysis of diet data 

Excel, R software and Brodgar programme were the main tools to get further with the 

data analysis and the statistical models. 

Brodgar version 2.7.5 was the statistical software chosen for most of the data analysis. 

It’s a user-friendly programme suitable for the analysis of ecological data (Zuur et al., 

2007). The software package had an interface to R version 3.5.0, which makes possible 

data exploration, univariate and multivariate analysis and other techniques (Brodgar’s 

manual, 2000; Zuur et al., 2007). The programme and its manual were available at 

www.brodgar.com (Brodgar’s manual, 2000). R Studio version 3.5.0 (2018-04-23) 

helped get through the analysis of Negative Binomial, Binomial models, and model 

comparison (Chi-squared test). 

 

3.6.1. Data Sorting 

Porpoises diet contents and their body characteristics, from 1992-2014, were provided by 

previous published and unpublished works. All this information was compiled in only 

one Excel file. From those prior databases some information needed to be reviewed and 

rectified (e.g. going back to the original notebooks, when they were available). Other 

needed to be completed and updated, and even new calculations were done with previous 

data. When there were cases of reviewed identification, the highest number of structures 

was considered (it was possible that some bones and otoliths had been lost or broken 

during the procedures). When possible, the data from the present author was used instead 

of the other available data. Not all the databases had the same information, most of the 

researchers counted the number of otoliths, but only some had measured them. Other prey 

http://www.brodgar.com/
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remains can be considered but otoliths were the more often ones. Therefore, the use of 

equations to estimate prey length and weight were limited to be used in all the data. 

             

        

      

          

          

      

            

  

  

3.6.2. Data Exploration and Modelling 

The data was analysed over a series of figures and tables. To study the diet variability in 

response to porpoise physical characteristics, time, season, geographical location and 

prey stock status, linear regressions and generalised additive models (GAMs) were used 

for the statistical analysis. 

The data exploration was done using Brodgar software (Brodgar’s manual, 2000; Zuur et 

al. 2007, 2010). The response variables were whiting and herring number, presence, 

length and weight. And the explanatory variables were porpoise length, weight and sex, 

year, season and Scottish coast (ICES area) where they have been found. The variables 

ICES area, sex and season needed to be transformed in numerical characters. These 

categorical variables in the end were ICES area:1=4a, 2=4b, 3=6a, sex:1=Female, 

2=Male, 3=Unidentified, and season:1=Jan., Feb., Mar.; 2= Apr., May, Jun.; 3=Jul., Aug., 

Sept.; 4=Oct., Nov., Dec.. The explanatory variables were explored for outliers, 

correlation and variance inflation factors (VIF). Porpoise weight variable was excluded 

due to its high correlation with length (correlation=0.88).  

Generalised Additive Models (GAMs) were then used to explore the patterns in the data. 

The response variables showed different data distributions, Normal distribution, Binomial 

and Negative Binomial distribution. For modelling a Negative Binomial distribution, it 

was used R Studio instead of Brodgar, with the guidance of Dalgaard (2002) work, and 

previous commands not published. For a Normal distribution a logarithmic 

After organizing the excel database, some samples were left out from the final database 
such as the empty stomachs, samples with missing diet information or mislabelled, 
stomachs with unidentified content and samples with imprecise location. Although, from 
the more recent years 2015 (n=60) and 2016 (n=38) the data that has been collected was 
insufficient to included here. Samples that belonged to the study ICES area but the 
animals where found stranded in English coast, or the opposite, samples which were 
collected in Scottish territory but are already out of the borders of the study ICES area 
(e.g. 7a) were excluded.
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transformation of the response variable values was applied, when an improvement of the 

model was verified. Considering the distribution of the data, different combination of 

models were tested, variables not having a significant effect at the 5% level (F-statistic) 

were eliminated one by one from the models. Also, for the smoothers, an amount of 

smoothing can be applied to the variable using a base dimension (k) when it justifies.  

This will improve the model, but should be used carefully. For example, it’s expected that 

the abundance of herring will vary over the years, so the resulted trend could have many 

shapes sometimes even difficult to interpret, so this variable should not be smooth. In 

case of length, for instance, it’s expected not to show to much variation, so to a clear 

analysis a base dimension can be applied.  

Analysis of Variance (ANOVA) was used to test for herring and whiting differences in 

the physical characteristics of porpoise (sex, length), time, season, geographical location 

and fish stock status. A 95% confidence limit (CL) for the response variable and the best 

fitted line have designed the best model for the selected data. The selection was based on 

the Akaike Information Criterion (AIC), and/or in deviance/degrees of freedom residual, 

and/or in the estimated degrees of freedom (edf) and/or on the resultant graphics of the 

model (e.g. histogram, Q-Q plot, etc). In case of doubts choosing a model, a Chi-squared 

test was applied. 

To study the relation between the number of prey eaten with the number (recruitment) of 

prey in the surrounding waters, the frequency of occurrence of whiting and herring was 

used. Frequency of occurrence: the number of stomachs containing remains of 

herring/whiting was expressed as a percentage of the number of stomachs examined in 

each year for the west and east coast, separately. The sample size for the data related with 

the west coast was small (n=47) for both prey, so the results needed precaution on their 

interpretation. 

For the relationship between amount of prey (g) eaten and the amount (SSB) of prey 

existent in the waters of the study area, it was calculated indirectly the total mean weight 

(g) – biomass - of whiting and herring. Biomass: the total mean weight of the prey bone 

structures was expressed as a proportion of all stomachs weight, examined in each year 

for the west and east coast, separately. Also, for this study of the west coast, the sample 

size was small, whiting (n=47) and herring (n=42), and again the resultant predictions 

might be quite unrealistic. 
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    Figure 4.2 Figure 4.4 Figure 4.10 Figure 4.12

          

            

  

          

         

         

        

          

         

          

     

 

 

3.7.  Sources of potential bias  

Each stage, since the sampling to the final data were potential sources of bias in assessing 

harbour porpoises diet information from their prey remains. 

         

       

    

        

        

  

       

          

           

 

 

Sampling error and the loss of material during sorting can be minimized by increasing 

sample size when possible (Bowen & Iverson, 2012), and by collecting the whole 

digestive tract from the animal (Pierce & Boyle, 1991). Every handling procedure can 

Not all the years, between 1992-2014, were possible to cover with diet information, and 
so the blank years shown in the figures ( , , , ) 
cannot be compared against the years with provided information. The blank years did 

not mean the absence of whiting or herring in the sampled stomachs, they were years that 

any reference was registered, neither its presence or absence.

In the case of herring, due to such a small sample size for the west Scottish coast, in the 

two studies referred above, it was not possible to fit a model. Also, either to study its 

length or weight in relation to the other variables, the sample size was quite small (n=17), 

despite the bigger sample size (n=313) used for analysis of the presence/absence of 

herring in the stomachs. In the analysis of its importance in the porpoise diet, a 

preferential Binomial model was tested, due to the high number of stomachs without 

herring present (n=282 without, n=24 with). For whiting, both a Binomial and a 

Negative Binomial model were applied, especially because the presence of a similar 

number of stomachs with (n=154) and without whiting (n=160).

The use of stomach contents to predict cetacean diet is a questionable procedure. Some 
authors agree its use can bring problems of identification and quantification of marine 
mammal diets, but it stills the most adopted method (Pierce & Boyle, 1991; Pierce et al., 

2004; Santos et al., 2004). However, it is important to keep in mind, that the 

diet information coming from stranding or bycaught animals can be biased due to 

different factors. The porpoises that were sampled can have a different diet due to their 

group age (Santos, 1998), a sick cetacean can have an atypical diet (Pierce & 

Boyle, 1991; Learmonth et al., 2014), a bycaught animal could be feeding near fishing 

areas where a certain species its more abundant, porpoises feeding near the coast 

can have a high representation of coastal fish species on their stomach (Santos, 1998).
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break the otoliths and as solution Härkönen (1986) referred the possibility of them to be 

reconstructed. 

To decrease the identification error, different body structures were analysed, as suggested 

by different authors (Casteel, 1976; Da Silva & Nielson, 1985; Pierce & Boyle, 1991; 

Watt et al., 1997; Santos, 1998; Granadeiro & Silva, 2000).  

Both otoliths and bones are exposed to a certain digestive degradation, and so their 

original shape and size could be modified, special the more fragile ones (Härkönen, 1986; 

Pierce & Boyle, 1991; Granadeiro & Silva, 2000; Campana, 2004; Pierce et al., 2004; 

Bowen & Iverson, 2012). So, to solve this problem, Härkönen (1986) recommended to 

measure the maximum otolith width, or to know the digestion time and how much the 

structure shortened in size (Pierce & Boyle, 1991; Bowen & Iverson, 2012). However, 

those authors stated that applying a correction factor to calculate fish weights could be 

difficult and not always available. Although, a single correction factor may be not enough, 

and both regressions for eroded and uneroded structure sizes should be calculated. As 

more practical solution, Pierce & Boyle (1991) suggested only the use of undigested bone 

parts. Even though, small progresses have been done regarding correction factors (Bowen 

& Iverson, 2012). Also, the size of the hard parts can differ with the body weight of the 

individual (Pierce et al., 2007). Such sources of error took Jobling & Breiby (1986) and 

Granadeiro & Silva (2000) referring the limitations of the use of otoliths to analyse marine 

mammal diets.  

Sometimes, the presence of fish can be both under and overestimated. One of the reasons 

is when the fish head is not ingested (Härkönen, 1986; Jobling & Breiby, 1986; Bowen 

& Iverson, 2012). Some authors suggested the use of other structures when they are 

available (Casteel, 1976; Da Silva & Nielson, 1985; Watt et al., 1997; Granadeiro & 

Silva, 2000), or the use of DNA, fatty acids, stable isotopes or protein identification 

techniques (Pierce et al., 2004). Regurgitation of indigestible remains (Pierce & Boyle, 

1991) or the existence of secondary prey inside the eaten fishes (Härkönen, 1986; Pierce 

& Boyle, 1991; Pierce et al., 2007) were other scenarios that can be minimized if the 

distribution of the prey species is known (Pierce et al., 2004). 

The use of regression equations to estimate length and fish weigh was advised by Pierce 

& Boyle (1991) because it’s a quick method and the fact of having just a few variables it 

reduces the potential error. Relationships estimated from the standard dimensions and 
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from small samples can provide a general application fish length-fish weight (Pierce & 

Boyle, 1991). On this project, all otoliths and jaw bones were used for identification and 

quantification of the prey number, while the estimation of fish weight and length was 

limited by the bones with regression equations. 

Still Frost & Lowry (1981), Granadeiro & Silva (2000) and Pierce et al. (2007) advised 

a carefully interpretation of the results derived from regressions of a different region from 

the one of the study regions.  

The use of frequency occurrence, in the study of prey number in the diet vs its recruitment 

data, was referred by Pierce & Boyle (1991) a source of bias due the higher importance 

that could be given to incidental prey found in the stomach contents. In the estimation of 

amount (g) of prey – biomass-, a single heavy prey can have a higher representativity in 

the diet. 

The estimation significance and the prediction could be biased because of the small 

sample sizes for certain regions and prey (sample sizes have depended on the response 

variable). 

The diet results from the stomach remains and their predictions can be seen as more 

representative of the variability of diet of death harbour porpoises than from the living 

population (Santos, 1998).  
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4. Results 

4.1.  Harbour porpoises sampled data-series 

In Scotland, between 1989-2016, SMASS reported 1774 harbour porpoises that had been mostly 

found stranded on the coast. Besides the registration of local and date of their dead, some physical 

characteristics and biological samples were taken by the SMASS’s team.  

 

4.1.1. Spatial and temporal distribution 

 

Figure 4.1- Spatial and temporal distribution of sampled Harbour porpoise 

              

             

            

           

 

The spatial distribution of all the registered death porpoises (n=1774) can be seen in 

Figure 3.1. (Material and Methodology section) and the temporal-series in Figure 4.1a), 

for the Scottish coast, between 1989-2016. The annual total number of death porpoises, 

found by SMASS, had been showing fluctuations along the last 27 years. Along those 

years, a mean of ≈66 animals, per year, had been reported.  

From now on, the data just will stand on to the period between 1992-2014, because just 

18% (n=322) of the sampled harbour porpoises had provided relevant diet information 

for the present study, Figure 4.1b). 

 

a) Annual total number of the registered death harbour porpoises (n=1774) from the Scottish coast, 1989- 
2016. b) Total number of harbour porpoise’s stomachs sampled (n=322), by sex (F=Female, M=Male, 
U=Unidentified), by Scottish coast (east: area 4a, 4b, west: area 6a), and season (Q1=Jan., Fev., March; 
Q2=Apr., May, Jun.; Q3=July, Aug., Sept.; Q4=Oct., Nov., Dec.), between 1992-2014.
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Among those 18%, a higher number of porpoises had been found on the first 6 months 

(71%) comparatively to the rest of the year (28.9%). There were more on the east Scottish 

coast (4a=50.9%; 4b=34.2%) than on the western side (6a=14.9%). In general, males had 

been reported in higher number (M=54%) than females (F=45.7%). The exception was 

on the west coast with 62.5% of females registered. Both sexes were found mostly in the 

east coast (85.1%) and between January and June (Q1=35.4%, Q2=35.7%). 

          

stomachs herring or whiting. Likewise, the individual with the unknown sex (U=1) had 

on its stomach other fish contents but not whiting or herring. Empty stomachs were found 

in 8 (2.48%) animals, 7 of them were males that stranded between 2003-2011. 

 

4.1.2. Physical characteristics  

Sex, length (cm) and body weight (kg) were some of the physical characteristics collected 

during porpoise’s necropsies. Those measurements corresponded mostly to the animals 

found on the Scottish coast, between 1992 to 2014, (Table 4.1). 

Table 4.1- Sizes of Harbour porpoise dead population 

Length (cm) and weight (kg) of porpoises found death on the Scottish coast, between 1992-2014 (n=321). 

Minimum (Min.) and maximum (Max.) total length (cm) and weight (kg), with the sample size in 

parentheses. The mean sizes with their standard error in parentheses. *One harbour porpoise which the sex 

wasn’t possible to identified, neither its length and weight isn’t describe here. 

 

 

       

  

 

 

 

 

For the study region, females were found to be larger and fatter than males. The smallest 
male had 6.1kg, however it was an animal in moderate decomposition.

               From the 322 harbour porpoises sampled, 152 (47%) of both sexes did not have on their



29 

 

4.2. Herring and whiting variability in the diet of Harbour porpoises 

In the last years, for the Scottish waters, whiting has been one of the main prey species of 

harbour porpoises diet. Other fish species such as herring make part of their diet, too. 

Both fishes are important commercial species in that region.  

Their size and amount eaten by porpoises can be affected by year, seasonality, 

geographical location of the feeding area, porpoise body length or sex, and by their stock 

status reported for the region.  

Linear regressions and GAMs were used to explore the response of herring and whiting 

to those variables. 

 

4.2.1. Importance of herring in the diet considering its stock recruitment 

ICES reports, from 1992-2014, were available with herring recruitment data. The quantity 

of herring that was eaten was obtained through the number of harbour porpoises stomachs 

with that species on them.  

In order to explore if the occurrence of herring eaten was related with their present 

recruitment in the surrounding waters, recruitment data from ICES reports and the 

proportion of stomachs with herring, found in the sampled porpoises, were used as 

proxies.  

For the Scottish coast, the occurrence of herring in all the stomachs examined was limited 

to some years, as shown in Figure 4.2. 
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Figure 4.2- Annual occurrence of herring in diet and sea (recruitment), in Scotland 

Frequency of occurrence (%) of herring in Phocoena phocoena’s stomachs (total number of stomachs with 

herring per the total number of stomachs recovered, in each Scottish coast, in each year), between 1992-

2014. Herring recruitment data (thousands), for each ICES Scottish area, between 1992-2014. Upper: ICES 

area 4 (4a+4b) combined with 3a and 7d divisions data (recruitment age 0) – east coast (n=267) (ICES, 

2017c). Lower: ICES area 6a combined with 7b-c data (recruitment age 1)– west coast (n=47) (ICES, 

2017a). Empty stomachs weren’t considered. The blank years do not indicate absence of herring in the 

stomachs (↓ indicates absent years). *herring is referred here as a combination of data of Clupea harengus, 

Clupea harengus/Sprattus sprattus, and unknown Clupeidae. 

 

         

         

       

         

 

               
             

               

               
            

                              
   

               
   

                
            

coast, in the middle of the 90’s, herring had occurred in higher numbers in the 
stomachs, specially in 1994. In that same year, the reports had registered a decreasing in 
the abundance of this species, in the sea.

For the east coast, only the year 2013 did not register stomachs with the reference 
of occurrence or non-occurrence of herring. Considering all the time-series for the east
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For the western coast, a total of 40 stomachs were sampled without the existence or non-

existence of herring in their contents. On the western coast, in 1999 and in 2002 a high 

frequency of herring was identified in the diet.  

The annual herring recruitment had experienced fluctuations, from year to year, for both 

coasts. Generally, after 2001 there was a collapse on herring recruitment stock, more 

gradually in the case of west coast.  

Although there was no clear trend between the frequency of herring in the porpoise diet 

and its availability in the sea over the time-series, for the Scottish coast. 

       Figure 4.2  

        

 

           

      

          

            

      

       

 

 

 

 

 

 

 
 

 

Figure 4.3- Number of herring eaten in response to Recruitment stock 

Smoothing function of the best fitted Poisson model applied on the mean number of herring found in the 

Phocoena phocoena stomachs from the Scottish east coast, in response to its recruitment (thousands), 

between 1992-2014. DE=40% (n=265). The s() is a smooth spline smoother and the number in the smooth 

spline smoother is the degrees of freedom for the smoother.  The solid line is the estimated smoother and 

the dashed lines are the 95% confidence limits. *herring is referred here as a combination of data of Clupea 

harengus, Clupea harengus/Sprattus sprattus, and unknown Clupeidae. 

 

 

To confirm the unclear pattern resultant from the graphical analysis ( ), GAMs 
were used for a second exploration. For the east coast of Scotland, a Poisson model 
explained 40% of the variation of herring in the diet, also the mean number of herring in 

the stomachs had not a statistically effect (p-value=0.765). The full model formula 

was: herring mean number ~ 1+s(herring recruitment), with AIC=44.2 (n=265). In this 

case, even without an effect, a possible slightly relation could be present for the east 

coast ( ). For the west side of the coast, a Poisson model was plotted due to 

the type of distribution of the data. An AIC=4 and the formula: herring mean 

number ~ 1+s(herring recruitment), the model explained deviance resulted in -

Inf.% (n=46), meaning the impossibility of fitting a model to the data of the west coast.

Figure 4.3
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4.2.2. Importance of herring in the diet considering its stock biomass (SSB) 

The amount (grams) of herring that was eaten was obtained through the quantification of 

their weight found in the stomach contents of harbour porpoises.  

In order to explore if the amount of herring eaten was related with their biomass in the 

surrounding waters, SSB data from ICES reports and the total mean weight of herring, 

found in the sampled stomachs, were used as proxies.  

           

  Figure 4.4   

Figure 4.4- Annual occurrence of herring in diet and sea (SSB), in Scotland 

Total mean weight (g) of herring eaten by harbour porpoises (Phocoena phocoena) (proportion of the total 

mean weight of herring per number of total stomachs with herring, in each Scottish coast, in each year), 

between 1992-2014. Herring spawning stock biomass (tonnes) for each ICES Scottish area, between 1992-

2014. Upper: ICES area 4 (4a+4b) combined with 3a and 7d divisions data– east coast (n=257) (ICES, 

2017c). Lower: ICES area 6a combined with 7b-c data (SSB was determined at spawning time)– west coast 

(n=42) (ICES, 2017a). Empty stomachs and stomachs with herring but not weighted weren’t considered. 

Considering the Scottish coast, it seemed that during many years porpoises hadn’t any 
herring on their stomachs when they died ( ).
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The blank years do not indicate the absence of herring in the stomachs (↓ indicates absent years). *herring 

is referred here as a combination of data of Clupea harengus, Clupea harengus/Sprattus sprattus, and 

unknown Clupeidae. 

 

In the east coast, for the year 1994 and 2002, the mass of herring found in the stomachs 

of sampled porpoises was higher, and corresponded to periods of increase herring 

biomass in that area, too. The herring biomass showed an abrupted decline in 2000, which 

reverted after.  

For the west coast, only the porpoises stranded in 2002 had some herring weight on their 

stomach contents. The high amount eaten that year corresponded to a period when herring 

biomass stock had increased, too. 

In the last few years, the herring SSB had been decreasing in Scottish east and west 

waters. Also, during the period here represented any clear pattern related with the mass 

of herring eaten by porpoises and herring biomass in the sea was observed. 

To recheck the results from the Figure 4.4, GAMs were used to confirm. For the east 

coast of Scotland, a Poisson model explained 47.6% of the mass (g) variation of herring 

in the diet. Although, the average mass (g) of herring in the stomachs hadn’t statistically 

effect (p-value=0.169). The full model formula was: herring mean mass ~ 1+s(herring 

SSB), with AIC=108.14 (n=248). Even without an effect, a possible small relation could 

be present for the east coast (Figure 4.5). For the west side of the coast, a Poisson model 

was tested due to the distribution of the data of this region. The formula was: herring mass 

~ 1+s(herring SSB), with AIC=4. The DE was -Inf.% (n=42) which meant the unfitted 

data of herring mass (g) to create a model.  



34 

 

 

Figure 4.5- Mass (g) of herring eaten in response to SSB 

Smoothing function of the best fitted Poisson model applied on the average mass (g) of herring found in 

Phocoena phocoena stomachs from the Scottish east coast, in response to its SSB (tonnes), between 1992-

2014. DE= 47.6% (n=248). The s() is a smooth spline smoother and the number in the smooth spline 

smoother is the degrees of freedom for the smoother. The solid line is the estimated smoother and the 

dashed lines are the 95% confidence limits. *herring is referred here as a combination of data of Clupea 

harengus, Clupea harengus/Sprattus sprattus, and unknown Clupeidae. 

 

4.2.3. Variability in the presence/absence of herring in the diet 

          

     

          

           

         

          

        

      

       

        

 

Among the 314 (8 had empty stomachs) sampled porpoises, 282 did not have herring on
their stomach contents. A GAM for presence/absence of herring in the harbour porpoises 
diet was constructed to explore patterns which resulted in a Binomial model (0-1) has the 
best fitted model. Here it was considered the presence/absence of herring in the stomachs 
instead of the total number of herring ingested. The Binomial model with a logit link, had 
as full model: herring presence/absence ~ year + ICES area + porpoise length. A 
backward selection in which the variable with the highest p-value was sequentially 
dropped from the model, resulted with the variables year, and geographical location to 
have statistically effect. On the other hand, porpoise’s sex and body size (cm), and even 

season had not statistically effect. Although, the model had an AIC=191.62 and a 

deviance explained=19.3%.
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Figure 4.6- Presence/absence of herring eaten in response to year and porpoise length 

Smoothing function of the best fitted Binomial model applied on the presence/absence of herring in the 

sampled Phocoena phocoena stomachs, between 1992-2014, from the Scottish coast. The s() is a smooth 

spline smoother and the number in the smooth spline smoother is the degrees of freedom for the smoother. 

Deviance explained=19.3% (n=313). a) Smoother for year. b) Smoother for porpoise total length (cm). The 

solid line is the estimated smoother and the dashed lines are the 95% confidence limits. *herring is referred 

here as a combination of data of Clupea harengus, Clupea harengus/Sprattus sprattus, and unknown 

Clupeidae. 

 

         

          

     

    

 

        

value=0.140), however, the Figure 4.6b) above suggested that a possible trend could 

existed, and even its presence in the formula improved the final model. The 

presence/absence of herring in the diet possible increased until the porpoises reach around 

130cm length and decreased after. This case of non-statistically effect limited the 

interpretation of the Figure 4.6b). 

 

 

 

 

The ANOVA function suggested that the presence/absence of herring in the diet slightly 
changes with the geographical location where porpoises had their last meal (ICES area, 
p-value=0.0196). Similarly, the presence/absence of herring experienced small changes 

along the years (p-value=0.019), a). This trend it was not so precisely, as it 

was in the years after 2010.

As shown by ANOVA, porpoise’s body length had not statistically effect (tlength, p-

Figure 4.6
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4.2.4. Variability in the length of herring in the diet 

For Scottish waters, from the examined samples the size of herring eaten by harbour 

porpoises ranged from 4.8 to 29.6cm. 

The herring length (cm) relation regarding the length of porpoise (cm) is demonstrated in 

Figure 4.7. 

 

Figure 4.7- Herring length (cm) vs Porpoise length (cm) 

Mean length (cm) of herring in the diet regardless porpoise’s body length (cm), between 1992-2014, for 

Scottish waters. R-squared and regression equation are given. *herring as a combination of Clupea 

harengus, Clupea harengus/Sprattus sprattus, and unknown Clupeidae. 

 

The small slopes from the equation given in Figure 4.7 suggested that herring size would 

not change with the length of the porpoise (herring, b=0.1942). Although, the small R-

squared value indicates a small variability of the herring length around its mean. 

 

The GAM exploration of the variation of herring size (mm) in the diet of harbour 

porpoises regarding different explanatory variables (porpoise length, sex, geographical 

location, time period) required the analysis of many models with different combinations 

as shown in the next Table 4.2. 

Table 4.2 - Tested GAMs for herring length (mm) 

Summary of generalised additive models for mean length (mm) of herring. Sample size (n) =17. The 

response variable was log-transformed. For each model, the table shows deviance explained (DE) and 

Akaike Information Criterion (AIC) value. Each explanatory variable used in the model is indicated with a 

p-value for significance. For smoother variables, the estimated degrees of freedom (edf) and, when useful, 

the bases dimension (k) are in parentheses. When the variable wasn’t considered in the formulation of the 
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The apparently best fitted Normal model was the model A which had the lowest AIC 

value (-57.75), gather with variables with statistically effect. However, looking to the edf 

of the smoother variables it was possible to identify an overfitted model. So, in this 

situation the best fitted model chosen was the Normal model with a log transformation 

with an identity link, the model C of the Table 4.2. Considering the edf values, it was the 

next in line with the lowest AIC value (-10.23), and it had only 2 variables which made 

it simple, too. The full model: herring length~1 + ICES area + porpoise length. None of 

the remaining variables (location, porpoise length) had statistically effect. Even without 

effect, it was observed different length sizes of herring in the stomachs of the porpoises 

stranded in the different coasts of the Scotland. In the eastern coast, porpoises ate herring 

with a length up to 22.2cm (mean 10.8cm), in the north side, up to 29.6cm (mean 17.8cm) 

and in the west coast a length up to 8.9cm (mean 8.2cm). 

                   
               

      

model, the cell in the table was left in blank. Any combination formula with year without a bases dimensions 
transformation did not fit any model. *herring is referred here as a combination of Clupea 
harengus, Clupea harengus/Sprattus sprattus, and unknown Clupeidae.
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Figure 4.8- Length (mm) of herring eaten in response to porpoise length (cm) 

Smoothing function of the best fitted Normal model applied on the length of herring (mm) found in 

Phocoena phocoena stomachs from the Scottish coast, in response to the porpoise total length (cm), 

between 1992-2014. The s() is a smooth spline smoother and the number in the smooth spline smoother is 

the degrees of freedom for the smoother. Deviance explained= 43.1% (n=17). The solid line is the estimated 

smoother and the dashed lines are the 95% confidence limits. *herring is referred here as a combination of 

data of Clupea harengus, Clupea harengus/Sprattus sprattus, and unknown Clupeidae. 

 

        

         

         

     

          

  

 

4.2.5. Variability in the mass (g) of herring in the diet 

From the examined stomachs, the heaviest herring eaten by harbour porpoises had a 

maximum of 110g. 

For the GAM exploration of the variation of the herring weight (g) in the diet of harbour 

porpoises with various categorical variables, there were a few possible combinations of 

models, Table 4.3.  

 

 

As shown by ANOVA, porpoise’s body size had not statistically effect (tlength, p-
value=0.174), however, a possible trend that big porpoises ate big herring could existed 
(correlation=0.58). The prediction of porpoise length seemed not to be precise for smaller 

and bigger sizes ( ). Also, porpoise’s sex, year and season had not 

significant effect, either. The variables composing the best model, even without a 

significant effect they improved the final model.

Figure 4.8



39 

 

Table 4.3 - Tested GAMs for herring mass (g) 

               

           

              

               

                  

            

         

 

 

 

 

           

       

       

       

          Table 4.3

         

        

      

     

 

                 
              

                
                 
                    

              
              
 

Summary of generalised additive models for total mean weight (g) of herring. Sample size (n)=17. For each 
model, the table shows deviance explained (DE) and Akaike Information Criterion (AIC) value. Each 
explanatory variable used in the model is indicated with a p-value for significance. For smoother variables, 
the estimated degrees of freedom (edf) and, when useful, the bases dimension (k) are in parentheses. When 
the variable wasn’t considered in the formulation of the model, the cell in the table was left in blank. Any 
combination formula with year without a bases dimensions transformation did not fit any model. 
*herring is referred here as a combination of Clupea harengus, Clupea harengus/Sprattus sprattus, and 
unknown Clupeidae.

The apparently best fitted Poisson model was the model A which had the lowest AIC= 
97.92 and a 99.8% of DE (expected when small sample sizes), gather with variables with 
high statistical significant effect. However, looking to the edf of the smoother variables 
(year, tlength) it was possible to identify an overfitted model. So, in this situation the best 
fitted model chosen was the Poisson model with a log link, the model G of the . 
Considering lower edf values, it was the next in line with the lowest AIC value (256.66) 
with a deviance explained= 67.3%. The full model: herring weight~1 + year + porpoise 
length + sex + season. The remaining variables (year, porpoise length, season) had 

statistically significant effect while porpoise’s sex and geographical location had not.
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Figure 4.9- Mass (g) of herring eaten in response to year and porpoise length (cm) 

Smoothing function of the best fitted Poisson model applied on the total mean weight of herring (g) found 

in Phocoena phocoena stomachs from the Scottish coast, between 1992-2014. The s() is a smooth spline 

smoother and the number in the smooth spline smoother is the degrees of freedom for the smoother. 

Deviance explained= 67.3% (n=17). a) Smoother for year. b) Smoother for porpoise total length (cm). The 

solid line is the estimated smoother and the dashed lines are the 95% confidence limits. *herring is referred 

here as a combination of data of Clupea harengus, Clupea harengus/Sprattus sprattus, and unknown 

Clupeidae. 

 

Year and the porpoise length variables appeared to have equally significant effect (p-

value=<2x10-16). Also, season (p-value=8.14x10-15) has very significant effect, too. The 

mass (g) of herring eaten apparently changes with the feeding season. Year and porpoise 

length predictions are possible to see in the Figure 4.9. The mass (g) of herring eaten by 

porpoises seemed to had a general decline along the years. However, the mass (g) of 

herring ingested would tend to increase with the size of the porpoise (correlation=0.49). 

Even without a significant effect with the geographical location, the mass of herring eaten 

showed general differences in the diet of porpoises. In the east coast, porpoises ate herring 

with a weight up to 36.3g (mean 10.8g), for the north coast, up to 110g (mean 30.8g), and 

in the western side fish up to 1.98g (mean 1.68g). 

 

4.2.6. Importance of whiting in the diet considering its stock recruitment 

In the same way as for herring, whiting recruitment data was accessed through ICES 

reports, and the ICES areas surrounding Scotland were analysed as east and west waters, 

for the period between 1992 to 2014. 
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Likewise, the quantity of whiting that was eaten was obtained through the number of 

harbour porpoises stomachs with whiting present.  

To explore if the occurrence of whiting eaten was related with their present recruitment 

in the surrounding waters, recruitment data from ICES reports and the proportion of 

stomachs with whiting, found in the sampled porpoises, were used as proxies.  

Harbour porpoise’s stomachs showed that whiting was still eaten along the years, since 

1992, as shown in the next Figure 4.10. 

 
Figure 4.10- Annual occurrence of whiting in diet and sea (recruitment), in Scotland 

Frequency of occurrence (%) of whiting in Phocoena phocoena’s stomachs (total number of stomachs with 

whiting per the total number of stomachs recovered, in each Scottish coast, in each year), between 1992-

2014. Whiting recruitment data (thousands), for each ICES Scottish area, between 1992-2014. Upper: 

ICES area 4 (4a+4b) combined with 7d divisions data (recruitment age 1) – east coast (n=267) (ICES, 

2017d). Lower: ICES area 6a (recruitment age 1)– west coast (n=47) (ICES, 2016). Empty stomachs 

weren’t considered. The blank years do not indicate absence of whiting in the stomachs (↓ indicates absent 
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years). *whiting is referred here as a combination of data of Merlangius merlangus, Merlangius 
merlangus/Micromesistius poutassou and Merlangius merlangus/Trisopterus spp..

               
               

                

               

                 
 

            

           

            
           of whiting in porpoise diet, for both Scottish coasts, over the time-series.

             

               
               

                

               

                 
 

               
               

                

               

                 
 

               
               

                

               

                 
 

For an additional exploration of the unclear pattern resultant from the histogram (
 ), GAMs were used for a statistical analysis. For the east coast of Scotland, a Negative 
Binomial model (Theta=0.296) explained 0.09% of the variation of the number of whiting 
eaten. The full model formula was: whiting mean number ~ s(whiting recruitment), with 
AIC=640.2071 (n=267). The mean number of whiting in the stomachs hadn’t statistically 
significant effect (p-value=0.635), but, a slightly positive response of the number of 
whiting in the diet could had existed ( a)). For the west side of the coast, a 
Negative Binomial model (Theta=0.285) was the best one fitted, too, with AIC=125.115, 
and the formula was: whiting mean number ~ s(whiting recruitment). The model 
explained 22.3% of the variation number of whiting in the diet, and it resulted in a 
statistically significant effect p-value (0.0115) for the recruitment number of whiting in 
the sea. The model suggested a positive trend ( b)), meaning that higher the 
number of whiting in the sea had increased the number of whiting eaten by porpoises. 
However, due to the small sample size (n=47), those values and trends might not illustrate 
the reality and need to be carefully interpreted.

The frequency of whiting in porpoises diet was constant for the east coast, from 1992 to 
2014. In 1992-1993, 1997-1999 and 2007-2008 the number of whiting recruitments in the 
sea and in the diet had both increased. However, for 1996-1997, 2001-2003 and 2008- 
2009 the opposite trend was observed. So generally, the peaks of whiting recruitment not 
always coincided with higher or lower frequency of whiting in the diet.
On the west coast, the whiting recruitment has been decreasing since 1992, and after 2000 
it collapsed. There were years when the occurrence of whiting was null in the stomachs. 

In 1998 and 1999, high and low peaks of whiting recruitment in the sea did not 

coincide with a higher or lower frequency in the diet, respectively. The year of 2014 

was the one with high frequency of whiting in the diet, despite the low recruitment in the 
same region.

Therefore, a general trend wasn’t clear between the whiting availability and the frequency
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Figure 4.11- Number of whiting eaten in response to Recruitment stock 

             

             

                 

               

             

          

    

 

4.2.7. Importance of whiting in the diet considering its stock biomass (SSB) 

The whiting amount (grams) that was eaten was obtained through the quantification of 

their weight found in the stomach contents of harbour porpoises. 

To explore if the amount (g) of whiting eaten was related with their biomass in the 

surrounding waters, SSB data from ICES reports and the total mean weight of whiting, 

found in the sampled stomachs, were used as proxies.  

In Scottish waters, whiting seemed to be part of harbour porpoise diet along the years, 

between 1992 to 2014 (Figure 4.12). 

 

Smoothing function of the best fitted Negative Binomial model applied on the mean number of whiting 
found in Phocoena phocoena stomachs from the Scottish coast, in response to its recruitment (thousands), 
between 1992-2014. The s() is a smooth spline smoother and the number in the smooth spline smoother is 
the degrees of freedom for the smoother. a) East coast, DE= 0.09% (n=267). b) West coast, DE=22.3% 
(n=47). The solid line is the estimated smoother and the dashed lines are the 95% confidence limits. 
*whiting is referred here as a combination of data of Merlangius merlangus, Merlangius 
merlangus/Micromesistius poutassou and Merlangius merlangus/Trisopterus spp..
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Figure 4.12- Annual occurrence of whiting in diet and sea (SSB), in Scotland 

             

                

          

              

            

              

            

    

 

For the east coast of Scotland, for all the years between 1992-2014, whiting had been 

identified in porpoises stomach contents. During the same period of time, the SSB of 

whiting in the east waters of Scotland, had suffer two main declines, first in 1995 to 1998, 

and then between 2001-2007. Generally, those years were related with periods of low 

whiting mass (g) in the stomachs contents, too. Also, in 2001, whiting SSB reached a high 

peak which it was coincident with a high mass (g) of this fish in the porpoise’s stomachs. 

Total mean weight (g) of whiting eaten by porpoises (Phocoena phocoena) (proportion of the total mean 
weight of whiting per number of total stomachs with whiting, in each Scottish coast, in each year), between 
1992-2014. Whiting spawning stock biomass (tonnes) for each ICES Scottish area, between 1992-2014. 
Upper: ICES area 4 (4a+4b) combined with 7d – east coast (n=265) (ICES, 2017d). Lower: ICES area 6a 
– west coast (n=47) (ICES, 2016). Empty stomachs and stomachs with whiting but not weighted weren’t 
considered. The blank years do not indicate the absence of whiting in the stomachs (↓ indicates absent 
years). *whiting is referred here as a combination of data of Merlangius merlangus, Merlangius 
merlangus/Micromesistius poutassou and Merlangius merlangus/Trisopterus spp..
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However, not all the high peaks of whiting biomass were indicators of a high mass of fish 

in the stomachs and vice-versa. 

        

     

     

         

 

  

 

          

 

For a statistical analysis of the results of the Figure 4.12, GAMs were used. For the east 

coast of Scotland, a Negative Binomial model (Theta=17.718) explained 99.2% of the 

mass (g) variation of whiting in the diet. The full model formula was: whiting mean mass 

~ s(whiting SSB), with AIC=3674.049 (n=265). Also, the average mass (g) of whiting in 

the stomachs had statistically significant effect (p-value=<2x10-16). The fitted GAM 

suggested a negative relation, meaning that higher the biomass of whiting in the sea less 

mass (g) of whiting was found in porpoises diet, for the east Scottish coast (Figure 4.13a)). 

For the west side of the coast, the best fitted model was a Negative Binomial 

(Theta=0.98), with AIC=626.4964, with the formula: whiting mass ~ s(whiting SSB). The 

model explained 85.9% of the variation of the whiting mass (g) in the diet (p-

value=<2x10-16), with a significant relation with the whiting SSB in the sea (Figure 

4.13b)). However, because of the small sample size (n=47) those results for the west 

Scottish coast need to be interpreted very carefully and might not even be representative 

of the reality. 

In the west Scottish waters, whiting SSB had showed higher values in the beginnings of 
90’s, and since then had decreased ( Lower). The existence of higher SSB 

values of whiting in the waters it was not always linked with a higher mass (g) of 

whiting ingested by porpoises. However, it’s possible to see years, after 2003, when 

whiting SSB was decreasing and the mass (g) of whiting found in porpoise’s stomachs 

in that same years was lower, and sometimes even none. In the case of the year 2001, 

SSB of whiting had a higher peak but the mass (g) found in porpoise’s stomachs was 

lower than the year after, when the SSB was decreasing.

Figure 4.12

               
whiting SSB in Scottish waters, for both coasts.

A general trend was not clear between the weight of whiting eaten by porpoises and the
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Figure 4.13- Mass (g) of whiting eaten in response to SSB 

               

             

                   

                

            

           

   

 

4.2.8. Variability of the presence/absence and number of whiting in the diet 

The amount of whiting eaten resulted in two different and fitted statistical models: a 

Negative Binomial which considered the number of whiting found in each sampled 

stomach and the Binomial model (0-1) which deal with the presence/absence of whiting 

in the stomach contents. 

       

        

       

        

        

          

         

     

      

       Figure 

4.14  

 

Smoothing function of the best fitted Negative Binomial model applied on the average mass (g) of whiting 
found in Phocoena phocoena stomachs from the Scottish coast, in response to its SSB (tonnes), between 
1992-2014. The s() is a smooth spline smoother and the number in the smooth spline smoother is the degrees 
of freedom for the smoother. a) East coast, DE= 21.9% (n=265). b) West coast, DE=51.6% (n=47). The 
solid line is the estimated smoother and the dashed lines are the 95% confidence limits. *whiting is referred 
here as a combination of data of Merlangius merlangus, Merlangius merlangus/Micromesistius poutassou 
and Merlangius merlangus/Trisopterus spp..

After tested a combination of models, the Negative Binomial with a log link function that 
resulted had as full model: whiting abundance~ year + ICES area + season. It had an 
AIC=1538.174, a Theta value=0.181 and a deviance explained=12.7%. This model 
showed that the explanatory variables such as sex and porpoise body length hadn’t 
statistically significant effect. Meaning that no matter which sex, or the size of the 
porpoises the number of whiting eaten will not change. However, the ANOVA function 
suggested that the number of whiting eaten by porpoises its highly affected by the 
geographical location and seasonality. Season showed the highest significant effect (p- 
value=2.08x10-05), followed by ICES area (p-value=0.00108) and lastly the years (p- 
value=0.0037). The prediction trend along the years can been observed in the next
 .
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Figure 4.14- Number of whiting eaten in response to year 

            

              

                  

            

               

      

 

From 1992-1998, porpoises showed an increased number of whiting on their stomachs. 

After that period, they had decreased the consumption of that same fish species. Also, for 

the earlier years and more recent ones, the model was less precise about the observed 

trends.  

In a succinct way for the Negative Binomial model, the physical characteristics of 

porpoise seem not to predict the number of whiting ingested while the geographical area 

and temporal (year, season) variables do it. 

        

   

        

     

     

          

        

 

         

       

          

Smoothing function of the best fitted Negative Binomial model applied on the total number of whiting 
found in Phocoena phocoena stomachs from the Scottish coast, in response to years, 1992-2014. The s() is 
a smooth spline smoother and the number in the smooth spline smoother is the degrees of freedom for the 
smoother. Deviance explained= 12.77% (n=314). The solid line is the estimated smoother and the dashed 
lines are the 95% confidence limits. *whiting is referred here as a combination of data of Merlangius 
merlangus, Merlangius merlangus/Micromesistius poutassou and Merlangius merlangus/Trisopterus spp..

             
             

                
              

          
          

             

             

  

Equally important was the Binomial model (0-1), because there were 154 stomachs with 
the presence of whiting and 160 without. Different model combinations were design, after 
a Chi-squared test was applied and the final chosen Binomial model with a logit link had 
as full model: whiting abundance~ ICES area + season, with an AIC=424.2414 and a 
deviance explained= 4.98% (n=313). From the model, season hadn’t statistically 
significant effect (p-value=0.07614). Likewise, sex, porpoise body length and years 

had not significant effect, either. On the contrary ICES area p-value suggested that 

the geographical area was associated with the presence/absence of whiting in the diet 

(ICES area, p-value=0.00205).
For the two models, despite both AIC values cannot be compared, the Negative Binomial 
kept year, season and geographical location as variables with significant effect while 
Binomial model only considered with a significant effect the location where the porpoise
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4.2.9. Variability in the length of whiting in the diet 

For Scottish waters, from the examined samples the length of whiting found in harbour 

porpoises stomachs ranged from 1.2 to 35.6cm. 

The correlation between whiting length (cm) and the length of porpoise (cm) is in Figure 

4.15.  

 

Figure 4.15- Whiting length (cm) vs Porpoise length (cm) 

              

           

        

  

 

The small slopes from the equation given in Figure 4.15 suggested that the size of whiting 

would not change with the length of the porpoise (whiting, b=0.0451). Also, the small R-

squared value indicates that the model explains a small variability of whiting length 

around its mean. 

Mean length (cm) of whiting in the diet regardless the porpoise’s body length (cm), between 1992-2014, 
for Scottish waters. R-squared and regression equation are given. *whiting is referred here as a combination 
of data of Merlangius merlangus, Merlangius merlangus/Micromesistius poutassou and Merlangius 
merlangus/Trisopterus spp.

feed for the last time. In the Binomial model, the presence/absence of whiting was limited 
to the simplest act of fish consumption (for each year during 27 years and 4 seasons the 

differences between the samples were not so greater than the ones for west and east 

coast). Instead, the Negative Binomial model (total number of prey) considered the high 

and low numbers of whiting ingested per year, season and area, reflecting this the time 

and place when and where porpoises had eaten more or less whiting.
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A GAM for the length of whiting in the harbour porpoises diet was constructed to explore 

patterns with different variables (porpoise length, sex, geographical location, time 

period). It resulted in a Normal model has the best fitted one. The Normal model with a 

log transformation and an identity logit link, had as full model: whiting length~1 + season 

+ porpoise length, with an AIC= -161.44. The resulted remaining variables season and 

porpoise length had statistically significant effect. ANOVA showed a slightly higher 

variability in the size of the whiting that was consumed with the porpoise length (p-

value=0.011) than to season (p-value=0.0128). The response of the size of the whiting 

eaten to the porpoise length is shown in the Figure 4.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16- Length (mm) of whiting eaten in response to porpoise length (cm) 

           

               

                 

               

            

         

   

 

The Figure 4.16 suggested that the size of whiting eaten increased with porpoise’s body 

length. The position of the fitted line and the confidence limit’s lines show that the 

previous trend referred it was always present even if slightly (never the fitted line was 

horizontal).  

Porpoise’s sex, geographical location and year weren’t considered significantly predictors 

for the size of whiting eaten by porpoises. Even without significant effect, it was observed 

differences in the length of the whiting found in the porpoises stomachs that stranded in 

 

Smoothing function of the best fitted Normal model applied on the whiting mean length (mm) found in 
Phocoena phocoena stomachs from the Scottish coast, in response to the total length of porpoises (cm), 
between 1992-2014. The s() is a smooth spline smoother and the number in the smooth spline smoother is 
the degrees of freedom for the smoother. Deviance explained= 9.99% (n=152). The solid line is the 
estimated smoother and the dashed lines are the 95% confidence limits. *whiting is referred here as a 
combination of data of Merlangius merlangus, Merlangius merlangus/Micromesistius poutassou and 
Merlangius merlangus/Trisopterus spp..
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the different coasts of the Scotland. For east and north coast, whiting was found within a 

length up to 35.5cm (mean 12.7cm and 12.5cm respectively), and for the western coast 

with a length up to 32.8cm (mean 14.2cm). 

 

4.2.10. Variability in the mass (g) of whiting in the diet 

The whiting found in harbour porpoises stomach contents had a maximum of 227g of 

weight. 
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Figure 4.17- Mass (g) of whiting eaten in response to year and porpoise length (cm) 

             

              

                

               

             

           

    

Smoothing function of the best fitted Normal model applied on the total mean weight of whiting (g) found 
in Phocoena phocoena stomachs from the Scottish coast, between 1992-2014. The s() is a smooth spline 
smoother and the number in the smooth spline smoother is the degrees of freedom for the smoother. 
Deviance explained= 10.7% (n=152). a) Smoother for year. b) Smoother for porpoise total length (cm). 
The solid line is the estimated smoother and the dashed lines are the 95% confidence limits. *whiting is 
referred here as a combination of data of Merlangius merlangus, Merlangius merlangus/Micromesistius 
poutassou and Merlangius merlangus/Trisopterus spp..

              
                

              
           

              

           

             

               

                 
   

             

After the analysis of a combination of models the Normal distribution model with an 
identity link and a log transformation was selected as it produced the best values. It has 
as a full model: whiting weight ~ year+ season+ porpoise length, with an AIC=242.63. 
Season and porpoise length were variables with statistically significant effect. Year, 

geographical location and porpoise’s sex did not appear to change the mass (g) of 

whiting ingested by porpoises. Even without significant effect with the geographical 

location, the mass of whiting eaten showed general differences in the diet of 

porpoises. In the east coast, porpoises ate whiting with a weight up to 177.7g (mean 

14.05g), for the north coast, up to 227.2g (mean 20.08g), and in the western side fish up 
to 142g (mean 23.12g).

 The response trend for year and porpoise body length is shown in the next Figure 4.17
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Year even with a p-value=0.1134, it had improved the model. Also, the Figure 4.17a) 

showed that a possible trend could existed, like the decreasing in the mass (g) 

consumption of whiting or the possibility of no changes at all, along the years. This case 

of variable without significant effect limited the interpretation of the Figure 4.17a). 

The mass (g) of whiting consumed seemed to change slightly with the length of the 

porpoise (p-value=0.0458) and more with the season (p-value=0.00369). The Figure 

4.17b) suggested that the mass (g) of whiting ingested increased with the porpoise length. 

For porpoise between 120-140cm of body length that pattern was more precise than to 

the smaller and bigger porpoises. 

 

5. Discussion 
 

The use of stranded animals has been increasingly considered a useful indicator to 

approach the biology and ecology of small cetaceans (Meager & Sumpton, 2016). The 

next chapter will mainly discuss significantly aspects of the variability of harbour 

porpoise diet who feed in Scottish waters, between 1992-2014. 

Firstly, a brief description of the observed characteristics of dead porpoises. Then the 

second part, it will be about the factors predicted to affect the consumption of herring and 

whiting by harbour porpoise. Geographical location, seasonality, the biology of predators 

and the availability of prey are some examples of those factors.  

 

5.1. Characteristics of Harbour porpoises strandings in Scotland 

Most of the dietary studies that use stranded animals can give a general idea of the 

mortality patterns and of the characteristics of the dead animals for a certain region. The 

present study analysed samples from strandings between 1992-2014 for the Scottish area, 

and noticed that most of the porpoises stranded between January and June (Figure 4.1b). 

Many of the causes of those deaths were unclear, but the ones identified included attacks 

by bottlenose dolphins, physical trauma, bycatch, starvation and pathological conditions. 

Other researchers, also, showed that exact same period as the one with the highest number 

of strandings (Santos, 1998), with a peak value in June (Ross & Wilson, 1996). 

Learmonth et al. (2014) observed in more detail that mortality periods varied with 
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porpoise length (e.g. February-June, for individuals 90-130cm; May-August, for 

individuals ≤90cm).  

       

          

    

     

        

       

    

         

           

  

       

        

    

            

           

          

       

             

      

Body sizes of the stranded porpoises differ by sex: females had reached bigger sizes than 

males. The mean body sizes estimated were F=132cm, 34kg and M=125cm, 31kg, sizes 

similar to the ones observed in other studies (Santos in 1998, F=128cm, 33kg, M=128cm, 

34kg; Learmonth et al. in 2014, F=128cm, 31kg, M=124cm, 30kg). Comparing the three 

studies for the Scottish coast, in the end, females not always have a higher body size 

compared to males. Also, very small individuals were included in the study (e.g. 6.1kg; 

86cm), and such small body sizes could be associated with natural dimensions of neonates 

(77.6-80.5cm, 6.7-8kg, Learmonth et al., 2014), bad health conditions, or an advanced 

state of decomposition.  

The body weight and length were analysed without considering the maturity state of 

porpoises (or pregnant females). For example, the body length for mature males can range 

from 135-157cm while immature individuals are smaller (84-130cm), as well as mature 

             
              

            
           

               
                
            

              
               

             
               

            
           

             
               

                   

               

                 

               

Porpoise characteristics such as body length, age, maturity can also be associated with 
the seasonal mortality period of the present study. Considering the study carried out by 
Learmonth et al. (2014) for Scottish waters, porpoise reproduction season occur in 
November-June with a gestation period of approximately 10-11months, and so it’s 
expected to observe a higher number of neonates from May to August. For example, in 
the region of Aberdeenshire, a high peak of calves sights was observed in June (Weir et 
al., 2007). Also the lactation period takes approximately 8 months (Lockyer, 2003), 
however, some small calves start to eat solid food before ending the weaning (Learmonth 
et al., 2014). Gannon et al. (1998) suggested this as evidence of calves initial forage 
behaviour. The inexperience of the young animals (e.g. became entrapped in nets (Heath 
et al., 2017)), and their vulnerability (be killed by other animals (Patterson et al., 1998; 
Leopold, 2015)) are factors that apparently can increase their early mortality. For 
example, between March-August, Santos (1998) demonstrated that 41.7% of her sample 
were juveniles attacked by bottlenose dolphins. Considering all those facts, it’s likely that 
those very small porpoises become vulnerable when they start to forage for the first times, 
and therefore the first 6 months of the year seem to be very prone to a higher number of 

deaths. The present study did not have enough information about the age or the age 

group of the necropsied animals, but it is possible to use body length as a proxy for 

age as was done by Santos et al. (2004), and so further work can be carried out.
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females and males are heavier due to the increased mass of the gonads (Lockyer, 2003; 

Learmonth et al., 2004). However, when the effect of maturity is removed, Santos (1998) 

concluded that females were bigger than males.  

            

     

        

           

      

         

             

          

   

         

           

   

         

          

        

  

Looking an ordinary map is possible to see that the west of Scotland has a rugged 

coastline (Hebrides islands) (Scottish Executive Resources, 2003), and so not so 

accessible to beach patrolling (Sveegaard, 2011). On the other hand, the east coast was 

considered to be a more favourable feeding ground (Davies et al., 2004), which could 

attract a higher number of animals to that same area. Hammond et al. (2017) sighted a 

higher abundance and density of individuals on the east side of Scottish coast (Figure 

1.1).  

The availability of prey is also considered to be related with the distribution of porpoises 

(Smeenk, 1987; Camphuysen, 2004), additionally, there are authors (Silva & Sequeira, 

2003) that even defend the probability of oceanographic factors affect the number of 

strandings, too. The relationship between stranding trends and population dynamics can 

be often unclear. The use of stranding data as representation of trends or demographic 

parameters for cetacean populations or communities is still controversial, some don’t trust 

             

           

            

                

             

             

              

                 

           

Regarding porpoise sexes, it was registered that the stranded males (n=174) and females 

(n=147) was not so different. Similarly, other authors detected also small 

differences between the animal sexes who stranded in Scotland (Santos, 1998; Santos 

et al., 2004; Learmonth et al., 2014). In fact, Santos et al. (2004) noticed differences in 

the causes of death between sexes, with males being more vulnerable to bycatch. 

Bycatch has been considered to be a relevant human threat to harbour porpoise 

populations, particularly the bottom set gillnets (Parsons et al., 2000; Davies et al., 2004; 

Jefferson et al., 2008; Heath et al., 2017), a type of fishery common for herring and cod 

which are species forage by porpoises (Davies et al., 2004; ICES, 2017).
Geographical differences were also observed with the type of death by other authors. 
Porpoises apparently have less risk of being bycaught on the west coast of Scotland 
(OSPAR, 2017). Dolphins attacks have been subject of several studies, and it seems that 
a higher number of porpoises were dying in the eastern coast of Scotland (Ross & Wilson, 
1996; Santos & Pierce, 2003). As a matter of fact, this study also analysed a higher 
number of porpoise deaths from the east coast compared to the number of carcasses 
recovered from west of Scotland.
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(Siebert et al., 2006) while others believe in their ecological significance in case of 

species monitoring and conservation (Sveegaard, 2011; Learmonth et al., 2014; Meager 

& Sumpton, 2016). 

 

5.2.  Variability in the diet of Harbour porpoise 

Considering the importance that the predator-prey interactions have in determining the 

structure and dynamics of species communities (Greenstreet & Tasker, 1996), the diet of 

the harbour porpoise was studied with a particular focus on the consumption of herring 

and whiting. 

For instance, herring is a fatty fish and porpoises fish them near to the bottom, while 

whiting is a lean. So, the presence of those two prey in the porpoise diet could be affected 

individually by different factors. In addition, each prey is distinguished by own 

characteristics, together they also share common places over their distribution. In fact, 

the distribution and abundance of one species can affect other species who share the same 

resources (Greenstreet & Tasker, 1996). So, here it will be discussed the factors that 

affected herring and whiting as a food choice of harbour porpoises, in Scottish waters. 

 

5.2.1. Interference of prey availability in the diet 

Porpoises are predators of many fish species such as whiting, herring, sandeels and gobies 

(Santos, 1998) but usually the diet consists mainly of a small number of prey (Santos & 

Pierce, 2003). Therefore, they are considered opportunistic by some authors (Davies et 

al., 2004; Leopold, 2015) and generally, this means that the prey are ingested as 

encountered, and this way prey availability can affect the diet (Santos & Pierce, 2003). 

Previous studies already demonstrated the existence of a relationship between porpoise 

diet and the abundance a specific prey (e.g. haddock (Santos et al., 2005a), sandeel (Evans 

& Weir, 1996)). With this in mind, it was determined whether the fluctuations in herring 

and whiting stocks influenced porpoise diet. Surveys taken in the North Sea, that included 

Scottish waters of the east and western side, showed different trends for whiting and 

herring within porpoise diet, between 1992-2014. 

Any general conclusion resulted from the analysis of the west coast as potential factor 

affecting diet variability due the lack of an appropriate sample size. 
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Regarding the east coast, and despite what was expected, the consumption of herring and 
whiting seemed not to be affected by their abundance in the sea. However, porpoise 
seemed to eat amounts (g) of whiting coincident with the whiting trend biomass.
Porpoises did not seem to consume herring, given their abundance or biomass at sea, for 
the period between 1992-2014. Reviewing old studies, porpoise was a predator of herring 
(Southwell, 1881; Van Beneden, 1889; Rae, 1965, 1973) but nowadays herring seem not 
to be such a regular choice in the meal (Santos, 1998; Santos et al., 2004). Herring stocks 
have experienced some collapses in the North Sea, between 1964-1978 and in 1994, and 
at the end of the 20th century (Whitehead, 1985; Maravelias, 1997). SSB had fluctuations 
from 1997 to 2016, but always above the full reproductive capacity (SSB>Bpa) (ICES, 
2017c). Also, since 2003, its recruitment has been low despite a sustainable fishing 
mortality (F<FMSY) and the large size of the stock (ICES, 2017c). Therefore, it hasn’t 
contributed to the increase in the spawning stock, at least until 2014 (ICES, 2017c). All 
those local reductions and shifts in herring stock that occur in the east part of Scotland 
could contribute to the more recent low presence of herring in diet. For example, Santos 
et al. (2004) noticed herring in low proportions in porpoise diet in the 1990s, but even 

after the recovery of the North Sea herring stock, herring dietary trend did not 

change. Although, there is a case for Dutch waters, where the authors associate the 

presence of porpoises with the abundance of herring. Smeenk (1987) said that even 

with species of low preference such as herring, the number of porpoises decrease 

simultaneously with the decline of herring stocks. Identically, for the same region, 

Camphuysen (2004) affirms that with the return of herring an increased number of 
porpoises was sighted.
The decline of herring in porpoise diet can also reflect the shift interest by porpoises to 
other species. Hughes (1993) and Spitz et al. (2012) said that the diet should be adjusted 
according to the quality and availability of food. According to Brodie (1995), porpoise 
small size doesn’t let them to store much energy making them more dependent of food. 
Although, Spitz et al. (2012) and Wisniewska et al. (2016) estimated high energy needs 
for porpoises. So, and regarding the optimal foraging theory (Hughes, 1993) it’s expected 
that porpoises will prefer spend their energy with food that fulfill their energetic demands. 
Herring is a fish with a high calorific value (Leopold, 2015), is fished in big schools 
(Whitehead, 1985; Camphuysen, 1990; ICES, 2011a) of small individuals (Santos, 1998; 
Read, 1999; Santos & Pierce, 2003). It’s possible that even with those characteristics, 
herring had been shifted for other species. Possibly, the energy spent by porpoises to
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forage for herring its less cost effective rather than for lean but bigger fish, such as 

whiting. Sandeels, for example, also with a small size and being a rich source of energy 

living in the bottom (Leopold, 2015) could be one of those alternative species. In addition, 

sandeel was identified as one of the main prey eaten by porpoises, in Scottish waters 

(Santos et al., 2004; Pierce et al., 2007; Hammond et al., 2013). In Shetland islands (north 

of Scotland), for instance, Evans & Weir (1996) observed fluctuations in the number of 

porpoises with the status of local sandeel stocks. In other regions, for example in the 

eastern North Sea, Skagerrak and Kattegat, where herring is a primary prey for porpoises, 

their distribution was positively correlated with herring abundance (Sveegaard, 2011).   

Similar to herring consumption, the whiting abundance trend wasn’t coincident with the 

whiting diet patterns. Different from herring, it was observed that the consumption of 

whiting had a negative trend with the biomass of whiting available in the Scottish eastern 

sea. According to more recent studies, whiting represents a big proportion of porpoise 

diet in the Scottish waters (Santos et al., 2004; Pierce et al., 2007; Learmonth et al., 2014). 

For the period between 1992-2014, the present study detected porpoises with preference 

for whiting rather than for herring, based on a higher consumption (weight and number) 

of whiting, and a higher number of porpoises stomachs with the presence of whiting 

compared to herring. Besides whiting often occurrence in porpoise diet, whiting have 

experienced historical low stock levels (ICES, 2011b, 2017), as similar with what happen 

to herring. That situation was observed for the east coast in 1998 (ICES, 2011b) and 

between 2005-2008 (ICES, 2017). The low values of SSB and recruitment could resulted 

in those low stock levels in the follow years (Figure 4.10, Figure 4.12). Also, SSB has 

fluctuated between 1992-2014 (ICES, 2017d), and the whiting mortality has been above 

its MSY (was unsustainable harvested until 2000). As demonstrated by Nash et al. (2009) 

when a higher number of juveniles is fished it’s expected to see a low recruitment in the 

follow years. ICES surveys carried out in the east coast perceived a decrease of 

recruitment after 2003 (ICES, 2017d). Therefore, it seems that the stock has been 

exploited in a way that is compromising the ability of the stock to replace itself, implying 

low spawning sizes in the later years. Under this whiting stock perspective, the study also 

showed porpoises ate less amount (g) of whiting when whiting biomass increased. An 

increased amount on the weight of whiting in the east Scottish coast, can also attract other 

predators competing with porpoises for whiting. In the North Sea, other marine animals 

and piscivorous fish are potential predators (ICES, 2011a). For example, grey gurnard 
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can cause up to 50% of the predation mortality (whiting age-0) in the north and east side 

of Scotland (ICES, 2017), exhibiting this way a high repercussion in the whiting 

population of this area. 

Despite the optimal foraging theory (Hughes, 1993), whiting is a low-fat fish (Leopold, 

2015), and it’s apparently an important prey for porpoises, in Scottish waters. Some 

authors related whiting availability with periods when other energetic-rich prey are not 

accessible (Zheng et al., 2001; Santos & Pierce, 2003; Santos et al., 2004). This could, 

also, suggest that besides whiting, porpoises could adjust their diet to the abundance of 

other species (e.g. cod or haddock were, also, important for porpoises in Scotland, Santos, 

1998; Santos et al., 2004). 

 

5.2.2. Interannual variation in diet 

Evidence of interannual variation in the consumption of herring and whiting by porpoises 

was observed for the period from 1992-2014. The annual diet variation includes the 

importance of prey and the prey size, which showed different results for herring and 

whiting. 

Herring importance in porpoise diet showed variation with years, but because of a low 

number of samples after 2005, that trend was not so clear after that year. Also, importance 

of Clupeidae (sprat, herring) in porpoise diet varied in a study carried out by Santos 

(1998) and Santos et al. (2004), for Scotland. In all three studies, unlike herring, whiting 

didn’t show any annual variation in importance in the diet. Dietary studies for porpoises, 

in Scottish waters, corroborated with these results as they show that nowadays whiting is 

still one of the primary prey but herring is uncommon in porpoise stomachs (Rae, 1965, 

1973; Santos, 1998; Santos et al., 2004). Santos (1998) was more precise in the case of 

herring variation, and described herring as more important in 1994 than in 1992 or 1993 

(in a study from 1992-1996). Herring ICES surveys also showed the variation of herring 

abundance with the years (ICES, 2017a). Santos et al. (2004) mentioned that the 

differences in the porpoise diet can be associated to different prey abundances in 

Scotland. Herring had suffering some stock fluctuations over the years (Figure 4.4). For 

example, on the west coast of Scotland (Firth of Clyde) at the end of the 20th century the 

stock of herring had collapsed (Whitehead, 1985; Maravelias, 1997; Thurstan & Roberts, 

2010), explained by the overexploitation and the destruction of herring habitats by the 
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fishing gears (Thurstan & Roberts, 2010). For instance, the landings in Clyde ports of 

roundfish (e.g. herring, cod, haddock) declined from 35% in 1993, to 2% in 2008 

(Thurstan & Roberts, 2010). The same authors, also, emphasized the fact that long before 

the 20th century (in the 1870s) herring was the most profitable species in the Firth of 

Clyde. However, after 2 centuries herring landings begun to reflect its enormous stock 

decline in the region which might also be reflected in the decreasing importance of herring 

in porpoises diet. And, if the availability of a common prey declines, this could lead 

porpoises to shift to other prey species (Santos & Pierce, 2003). 

       

       

 

        

       

        

           

  

 

             

             

     

         

        

        

        

        

         

        

    

    

          

 

 

Despite lack of evidence of between-year variation in the presence of whiting in porpoises 
diet, the number of whiting in the diet varied, over the period 1992-2014. Also, this 
change, approximately after the year 2000, started to describe a decline in the number of 
whiting ingested. Additionally, as was seen before, the number of whiting in the diet 

did not change with whiting stock abundance. With all this in consideration, it’s 

possible to suggest that the consumption in number of whiting by porpoises depends 

more on porpoise choice than whiting availability, at least for porpoises feeding in the 

east Scottish coast. So even with low stock levels in Scottish waters (ICES, 2011b, 

2017), those seem apparently irrelevant to porpoise diet.

In relation to prey size there wasn’t any evidence that whiting size varied in the diet. A 
similar result was shown by Santos et al. (2004) but not by Santos (1998). This latter 
author described porpoises eating smaller whiting in 1995 compared to the other years. 
On the contrary, in the present study, the herring mass eaten showed to vary with the 
years. Unfortunately, due to the small sample size (n=17) this apparently variation of 
herring is inconclusive, and so any conclusion needs to be carefully done. Although, ICES 
surveys showed annual variation in herring biomass in Scottish waters (ICES, 2017c). 
Also, with the age, the mean weight of herring changes (Dickey-Collas, 2004) being 
biological supported by annual growth variations (Heath et al., 1997). Also, it seems that 
herring length change with spawning season within the years (Dickey-Collas et al., 2005). 
Moreover, herring length differences could be associated also to temperature and prey 
food availability (Fiksen & Folkvord, 1999; Johannessen et al., 2000). In other studies, 

herring size different results were observed. Santos et al. (2004) did not see 

interannual variation in the size of the Clupeidae eaten by porpoises, in Scottish waters.
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5.2.3. Seasonal variation in diet 

             

      

          

       

    

         

          

  

        

 

    

Additionally, Santos (1998) saw that the size of whiting in the diet also changed with 

season. Porpoises ate smaller whiting in autumn and bigger in spring and summer. A 

similar result was found in the present study. Here both length and mass of whiting had 

change in the diet with season. These can be related with the migration pattern observed 

by different age-classes of whiting, older whiting seem to prefer offshore waters and 

whiting <1yr live inshore (Zheng et al., 2001). As expected, also the mass of herring eaten 

varied in porpoise diet with season. Unfortunately, due to the small sample size (n=17) 

the observed trend is inconclusive. However, this trend could be related with the body 

changes during herring life cycle (Winters & Wheeler, 1996; Heath et al., 1997). For 

instance, previous studies showed that herring grow faster in spring than in autumn 

(Fiksen & Folkvord, 1999). It could also be related with herring seasonal inshore-offshore 

migrations (Maravelias, 2001; ICES, 2011a). Herring is a spring and autumn spawner 

(ICES, 2011a), so, at least, two times a year herring body size changes due to the increase 

of gonads weight (Winters & Wheeler, 1996). Spawning occurs in coastal waters (Nash 

et al., 2009; ICES, 2011a), and as a nursery area offsprings stay approximately 2 years in 

shallow waters before they migrate as juveniles (ICES, 2011a, 2017e). As porpoises often 

harvest in shallow waters (SCANS-II, 2008), the consumption of herring in different 

maturity stages (immature=25.2g, mature=151.3g, ICES, 2017b) can possibly contribute 

to diet variation with season. This also can reflect that even an analysis with a small 

sample size, a seasonal small variation in the prey size in the diet could be detected.  

 

The importance of herring and whiting in the porpoise diet didn’t vary with the season. 
However, many studies had showed the opposite for porpoises feeding in Scotland 
grounds. Santos (1998) showed whiting to be more important in the diet in autumn than 
in spring. Also, and being sandeels other primary prey for porpoises in the Scottish waters, 
the higher importance of whiting in autumn (Santos, 1998) could be related to the lower 
availability of sandeels (Santos & Pierce, 2003). However, this is also supported by the 
study of Zheng et al. (2001). Through surveys, the authors found a decline in whiting 
during the summer, which was also consistent with whiting abundance trends. Although, 

the importance of whiting was not evident seasonally, in the present study, the number 

of whiting in porpoises stomachs had varied, which possibly reflect the seasonally 

different abundances observed by Zheng et al. (2001).
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5.2.4. Geographical variation in diet 

Univariate analysis described the variability in the diet for Scottish coast. For the period 

between 1992 to 2014, porpoises, feeding in Scottish coastal waters, showed that the 

presence of the herring and whiting in their stomachs varied with the feeding location.  

       

         

       

      

         

      

          

           

          

           

           

           

       

          

        

        

     

 

        

         

     

          

      

 

The consumption of a high or low number of whiting could be related with many factors 

such as porpoise energetic demands, prey-catching abilities or feeding ground 

characteristics.  

            
             

           
           

                 
          

                 
                 

             
                

                 
               
              

                
              

           
               

  

Besides whiting and herring, other previous dietary studies had described other fish 
species and cephalopods in porpoises diet (Santos, 1998; Santos et al., 2004). For 
Scotland, the research carried out between 1992-2003 described porpoises with high 
preference for whiting (51.1%), sandeels (48.9%) and Sepiolidae (33.5%) while herring 
(9%) was not so often on their diet (Santos et al., 2004). They even found different species 
preferences between places, in the north (Shetland) haddock/saithe/pollock were more 
numerous than in the diet of east porpoises. In the east and north coast sandeels were a 
more important prey than in the western coast. For the west coast, they noted that it was 
whiting and Trisopterus spp. that were more common in porpoise diet. Those evidences 
suggest that porpoises prey will change with the feeding ground. So, even if a species is 
a primary prey, as was observed for whiting in the west, it’s possible that whiting rank in 
porpoise diet it will change due to the presence of another important species in other 
location. Also, herring could be less important in one feeding ground than in another, 
despite the fact that, in general, it is a species of low importance for porpoises, as 
was supported by the high number of stomachs without herring that was observed for 
both coasts. Although, the presence of herring change with geographical location, 
which suggests, that variations in the diet could be detectable even for relatively less 
often prey in the diet.

The models also predicted that porpoise ate different amounts (in number) of whiting 
considering porpoises feeding sites. It was already described that the abundance of 
whiting did not contribute to the variation in the number of whiting observed in the diet. 

So, it suggests it was not the different amounts of whiting in the different feeding 

places that reflected the significant relationship observed between number of whiting in 

the diet and geographical location.
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For example, if a place is a nursery/breeding area, so it’s likely that pregnant females and 

the ones in lactating period will eat more, as it was confirmed by Gannon et al. (1998). 

Also, this author suggested that calves learn to forage for food usually targeting small 

sizes even before the weaning. This learning process can also happen in more protected 

area, and this way contributes, probably in small amounts, to the number of whiting 

predated in a specific area. The identification of feeding and nursery/breeding grounds 

were recognised to be important in the conservation (SACs) and protection of a species 

(Marine Protected Areas - MAPs), for porpoises this has been implemented under the EU 

Habitats Directive (92/43/EEC) (Weir et al., 2007; Embling et al., 2010). Recently, in 

2016 the Inner Hebrides and the Minches (west of Scotland) were submitted to the 

European Commission as a candidate for Special Area of Conservation (SAC) for harbour 

porpoise (Embling et al., 2010; SNH, 2016). 

Differences in the topographic Scottish coast can, also, provide easier food for porpoises. 

Knowing that whiting, considered a demersal fish (ICES, 2017), migrates in the water 

column to feed (Rindorf, 2003), shallow waters and more closed areas can facilitate 

whiting to be fished by porpoises. For example, Marubini et al. (2009) studied habitat 

preferences, for the northwest of Scotland, a region with a coastline with a series of sea 

fjordic sea lochs. The authors predicted a significant relationship between topographical 

variables (e.g. bottom topography, sea state, tide height) and the distribution of porpoises, 

who prefer water that extends for 15km from the shore and depth between 50m-150m. 

Additionally, the quality of whiting can be different from place to place which could lead 

a certain area to be a favourable feeding ground. For instance, older whiting was observed 

offshore while younger juveniles where sited near Scottish coast (Zheng et al., 2001), and 

as well-known porpoises prefer to forage in shallow waters (Rae, 1965). However, 

migrations to specific regions just for feeding are well known among other marine 

mammals (e.g. whales, dolphins) (Spitz et al., 2012). In the west of Scotland (Hebrides), 

porpoises were sighted travelling between feeding grounds (Embling et al., 2010). 

Porpoises forage strategies are mainly determined by the quality of prey rather than its 

quantity (Spitz et al., 2012). For example, for Scottish coastal waters, Santos et al. (2004) 

estimated size of whiting eaten by porpoises, for three different geographical places, and 

they showed that bigger whiting was eaten in the north than in the west.  

The present study did not show evidence that porpoises feed on different sizes (mass or 

length) of herring and whiting for the Scottish coasts. However, even not statistically 
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In addition, the differences in prey size are not so simple as describing them as for east, 

west or north of Scotland. Oceanographic conditions (e.g. SST) and the availability of 

food were demonstrated to be also determinant in the distribution of fish species as this 

could affect their development (Heath et al., 1997; Zheng et al., 2001).  

As the relation predator-prey is linked (Greenstreet & Tasker, 1996), changes in prey 

distribution or abundance could also be reflected in the diet of harbour porpoise.  

 

5.2.5. Ontogenic variation in diet 

For Scottish waters, evidence of variation in the diet related to body size but not with 

porpoise sex. As a general result, bigger porpoises ate bigger whiting. For herring a small 

variability with porpoise length was suggested by dietary data, but not quite statistically 

significant, reflecting the small sample size (<50) of the estimated herring length eaten 

by porpoises. 

Although the statistical analysis was inconclusive, it’s likely that bigger porpoises eat 

large (mm) herring as well as bigger (g) herring. For whiting, bigger porpoises prefer to 

eat big (g) and large (mm) individuals, too. For both prey species, the previous trend did 

not describe the smallest and the biggest porpoises due to the lack of precision of the 95% 

CL, reflecting small sample sizes for very small and very large porpoise individuals. 

evident, porpoises ate whiting and herring with different size ranges for each geographical 
location. The porpoises sampled here ate slightly bigger whiting in north and east coast, 
and bigger herring in the north compared to east side. In a general view, those porpoises 
ate whiting bigger (1.22-35.6cm, up to 227.2g) than herring (4.82-29.6cm, up to 110g). 
For example, larger herring seems to occur more offshore (Maravelias, 2001) while 
porpoises feed more often in coastal waters (Rae, 1965; Santos et al., 2004). So, porpoises 
seem not to follow the big fish, as they apparently prefer small fish sizes (Santos, 1998; 
Read, 1999; Santos & Pierce, 2003). Santos et al. (2004) also estimated that porpoises ate 
smaller herring (29cm) than whiting (35.5cm). This was expectable for those two species 
as surveys carried out in Scottish waters showed that whiting (15-53cm, 54-419g) was 
larger and bigger than herring (8.4-30cm, 4.6-236.4g) (Wheeler, 1969; ICES, 2017b). 
From this, it’s possible to see that porpoises feed in herring and whiting smaller/lighter 
than the ones caught by fishermen.
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For the Scottish waters, this study did not detect variation in the diet related to porpoise 

sex. But as a matter of fact, females ingested the biggest sizes of herring and whiting, 

while males ate the high amount for those two species.  

Variability in the diet with sexes was observed by other authors for Scotland, despite the 

models from the present study did not show it. Adult males prefer bigger whiting, and 

feed on a higher variety of prey compared to females (Santos, 1998; Santos & Pierce, 

2003). This can reflect different feeding grounds or less diet selection by male porpoises 

Knowing that energy requirements and foraging experience differ between ages 
(Leopold, 2015), and in general age can be related to the length of the body, it was 
expected to see variations in the diet with porpoises body length. Such an age-length 
relationship was described by Learmonth et al. (2014), for porpoises from Scottish 
waters. Newborns (0-2mo. old) had a body length between 77.6-80.5cm, young porpoises 
(1-7yr) ranged from 119-153cm and adults (6-20yr) body length was from 135 and 
173cm. A more detailed study developed by Santos (1998) and Santos et al. (2004) 
demonstrated those differences in the diet of adults and young individuals, in Scotland. 
Juvenile harbour porpoises ate smaller whiting than did adult (Santos, 1998), gobies were 
more important for porpoises with ≤ 118cm and medium size porpoises preferred more 
clupeids than large and small porpoises individuals (Santos et al., 2004). Also, young 
porpoises preferred Trisopterus spp., while older individuals showed preference for 
sandeels (Santos, 1998). Santos (1998) and Santos et al. (2005) referred to similar 
observations for Dutch waters, where adults ate bigger sandeels and gobies than juveniles 
while smaller porpoises ate more gobies than did bigger porpoises, and for Danish waters 
where adults ate smaller blenny and whiting than juveniles. A similar result was observed 
for calves in the Northwest of Atlantic (Gulf of Maine), where the proportion of prey 
types and sizes of prey differed also from those of adults (Gannon et al., 1998). Some 
authors considered those differences to possibly be related with feeding grounds (Santos, 
1998), or experience in prey-catching (Gannon et al., 1998). For example, calves (<1yr) 
seemed to prefer gobies and shrimps (Santos et al., 2004); these small prey captured could 
reflect the first steps in foraging before calves shift to big prey (Smith & Read, 1992; 
Gannon et al., 1998). In addition, the digestive tract structure of toothed cetaceans has 
been suggested to limit the size of prey they can ingest (MacLeod et al., 2007). So, the 
small body size of porpoise can also be other explanation to the preference for small size 
prey and additionally for diet prey length variation with porpoises body size.
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6. Conclusion 
 

The general conclusions here suggested refer to harbour porpoises feeding in Scottish 

waters during 1992-2014. 

• Stranded porpoises can be a good source of diet information, when the sample 

size is representative of the population in the region. In a general way, stranded 

porpoises physical characteristics (e.g. body size) but not porpoise sex, seem to 

be similar among stranded animals in space and time. 

• Porpoises are an important predator of whiting in the east coast of Scotland. 

• Consumption of herring or whiting was independent of porpoise sex, but not on 

porpoise length. Bigger porpoises preferred to eat bigger prey.  

• Whiting was a consistent important prey for harbour porpoises over the years, 

with a decline in the amount ingested after, approximately, the year 2000.  

• Herring importance has still remained low in the diet of these cetaceans. 

• Porpoises ingest different amounts of whiting and herring when they fed in 

different places, likely relating to characteristics of the feeding ground. 

• Variation in the diet of porpoise may follow the abundance of preferred prey in 

  

(Santos & Pierce, 2003). Additionally, it has been suggested that the daily food 
consumption is calculated in function of the body weight (3.5% by Yasui & Gaskin, 1986; 
individuals ≤50kg, 8% of the body weight by Santos et al., 2005). Considering that, 
pregnant and lactating females will require higher energy (Yasui & Gaskin, 1986; 
Learmonth et al., 2014) and so diet differences will be expectable. In fact, it’s possible 
that females nursing will adapt their food choices when forage with calves (Smith & Read, 
1992). Also, males body weight change during maturity stages (e.g. active mature males, 
testis mass range between 1.3% to 6.8% of body mass, immature, 0.25%, and, pubescent 
and resting mature males, from 0.5%-1.1%) (Learmonth et al., 2014). In other regions, 
like Denmark and Holland, also, a few differences were found between sexes (Santos, 
1998). In the Northwest of Atlantic, in Gulf of Maine (Gannon et al., 1998) and Gulf of 
St. Lawrence (Fontaine et al., 1994) no variability in the diet was found between the diets 
of male and female porpoises.

the sea but does not follow the abundance of other prey.
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• Season had an important role determining the quantity and quality (size of prey) 

of herring and whiting, likely relating to prey biology and to fishery exploitation. 

In conclusion, our current knowledge of the drivers of harbour porpoise diet, with 

particular reference to consumption of Atlantic herring and whiting is still incomplete but 

the present study provides some new insights. Important to point out, that some factors in 

the diet variation were seen to be transversal to the prey species while others did not. As 

a prey-predator relationship is always present, porpoise diet can shift not only due to its 

food choices but also due to factors directly related with prey. 

 

7. Future work 
 

Several topics for future work are suggested here: 

1. Noting that the number of stomachs available was very low in some years, it may 

be useful to search for additional stomachs held in storage by SMASS, especially 

for porpoises stranded in the more recent years (2015-2017). It is important to 

collect enough samples to make future results more reliable and representative of 

the population as a whole. 

2. To estimate the fish length and weight, if available in the future, to use regressions 

derived from fish caught in the area of study (Santos, 1998), and also regressions 

for each month of the year, because their body weight changes during their life 

cycle (especially during spawning time) (Eggers et al., 2014).  

3. New statistical analysis, using GAMs to predict single variable effects. As an 

example, it would be useful to study the spatial variability in the diet in more detail 

(for east, north and west coasts). Biological and environmental variables should 

be considered within each area and period of time. 

4. To expand this study to other harbour porpoise prey (e.g. cod, cephalopods, etc), 

and to test other variables (e.g. porpoise weight, age, maturity state, four seasons, 

etc) which can affect the variability of the diet. Also, a new study can include not 

only the analysis of stomach contents but also the whole digestive tract. The 

analysis of compound specific stable isotopes will additionally provide 

information due to the relationship between the isotopic composition of predator 

and their prey (isotopes of 13C/12C, 15N/14N), of a dietary history of individuals 
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over different time periods (Pierce et al., 2004; Mendes et al., 2007; EMD, 2011). 

Therefore, with these technical approaches will be possible to have a dietary 

history of porpoises over different time periods for a more complete diet 

knowledge. 

 

8. Literature Cited 

 

Adams, A. L. 1940. Some characteristic otoliths of American Ostariophysi. Journal of  Morphology: 

66(3):497-527. DOI: 0.1002/jmor.1050660307. 

ASCOBANS. 2015. Compilation of Annual National Reports to ASCOBANS 2015.  Germany:89. 

Assis, C. A. S. 2000. Estudo morfológico dos otólitos Sagitta, Asteriscus e Lapillus de  teleósteos 

(Actinopterygii, Teleostei) de Portugal continental – Sua aplicação em  estudos de 

filogenia, sistemática e ecologia. Ph.D. thesis. Universidade de Lisboa,  Lisboa:1004. 

Bowen, W. D., Iverson, S. J. 2012. Methods of estimating marine mammal diets: A  review  of 

validation experiments and sources of bias and uncertainty. Marine  mammal  Science, 

29(4):719-754. DOI: 10.1111/j.1748-7692.2012.00604.x. 

Brodgar’s manual. 2000. Highland Statistics Ltd. Software package for Multivariate Analysis and 

Multivariate Time Series Analysis. BRODGAR Version 2.0+ Manual:148. Retrieved from 

http://www.brodgar.com/index.php/download on April 2018. 

Brodie, P.F. 1995. The Bay of Fundy/Gulf of Maine harbour porpoise (Phocoena phocoena): Some 

considerations regarding species interactions, energetics, density dependence and bycatch. Report 

of the International Whaling Commission: Biology of the phocoenids. 

Campana, S. E. 2004. Photographic Atlas of Fish Otoliths of the Northwest Atlantic  Ocean. NRC 

Research Press, Ottawa, Ontario:284. ISBN: 0-660-19108-3. 

Camphuysen, C. J. 1990. Fish stocks, fisheries and seabirds in the North Sea – Feasibility  study for 

an analysis of interactions between fish stocks, fisheries and wintering  seabirds. 

Technical Report Vogelbescherming, 5:120. ISSN: 0924-5103. 

Camphuysen, C. J. 2004. The return of the harbour porpoise (Phocoena phocoena) in Dutch coastal waters. 

Lutra, 47(2):113-122. 

Casteel, R. W. 1971. Differential bone destruction: Some Comments. American  Antiquity, 

 36(4):466-469. 

Casteel, R. W. 1976. Fish remains in Archaeology and Paleo-environmental studies.  Academic Press, 

New York:180. ISBN: 0-121-63850-2. 

Clarke, M. R. 1980. Cephalopoda in the diet of sperm whales of the southern hemisphere and  their 

bearing on sperm whale biology. Discovery Reports37:1-324. 

Corbet, G. B., Harris, S. 1991. The handbook of British mammals. London: Blackwell,  3rd ed.  ISBN: 

06-2-090804. 

Da Silva, J., Neilson, J. D. 1985. Limitations of using otoliths recovered in scats  to  estimate 

prey consumption in seals. Canadian Journal of Fisheries and Aquatic  Science, 

42(8):1439-1442. 

Dalgaard, Peter. 2002. Statistics and Computing: Introductory statistics with R. USA: Springer. ISBN: 0-

387-95475-9. 

Davies, N., Fisher, P., Gillham, K., Hall, K., Maher, M., Weir, C. 2004. Living Shetland Biodiversity Action 

Plan. Species Action Plan: Harbour Porpoise. 

Dickey-Collas, M. 2004. The current state of knowledge on the ecology and interactions of North Sea 

Herring within the North Sea ecosystem.  CVO 04.028 Report: 17. 

Dickey-Collas, M. 2016. North Sea herring: Longer term perspective on management  science  behind 

the boom, collapse and recovery of the North Sea herring fishery.  Edwards CTT & Dankel 

DJ, (Eds.). In Management Science in Fisheries: An  Introduction to Simulation-Based Methods, 

London:397-410. 

Dickey-Collas, M., Damme, C.J.G., Clausen, L.A.W., Fässler, S.M.M. 2005. Whithin Stock Structure and 

TACs: an investigation into the spawning origin of North Sea herring using otolith microstructure 

and the dynamics of Downs herring. ICES CM 2005/K:12. 

http://www.brodgar.com/index.php/download


67 

 

Dolman, S. J., Hodgins, N. K., Macleod, C. D., Pierce, G. J., Weir, C. R. 2014. Harbour 

 porpoises (Phocoena phocoena) and minke whales (Balaenoptera acurostrata) 

 observed during land-based surveys in the Minch, north-west Scotland. Journal  of the 

 Marine Biological Association of the United Kingdom, 94(6):1185-1194. 

 DOI:10.1017/S0025315413000507. 

Eggers, F.; Slotte, A.; Libungan, L. A.; Johannessen, A.; Kvamme C.; Moland, E.; Olsen, E. M.; Nash, R. 

D. M. 2014. Seasonal dynamics of atlantic herring (Clupea harengus L.) populations spawning in 

the vicinity of marginal habitats. PLoS ONE, 9(11): e111985. DOI: 

10.1371/journal.pone.0111985. 

Embling, C. B., Gillibrand, P. A., Gordon, J., Shrimpton, J., Stevick, P. T., Hammond, P. 2010. Using 

habitat models to identify suitable sites for marine protected areas for harbour porpoises 

(Phocoena phocoena). Biological Conservation, 143 (2):267-279. DOI: 
10.1016/j.biocon.2009.09.005. 

EMD. 2011. Compound Specific Isotope Analysis: Fact sheet. Interstate Technology Regulatory Council 

Environmental Molecular Diagnostics: 1-7. 

Evans, P. G. H., Weir, C. R., Nice, H. E. 1996. Temporal and spatial distribution of Harbour  porpoise 

in Shetland waters, 1990-95. European Research on Cetaceans – 10:  Proceedings of the 10th 

Annual Conference of the European Cetacean Society.  Lisboa:234-237. 

Fiksen, O., Folkvord, A. 1999. Modelling growth and ingestion processes in herring Clupea harengus 

larvae. Marine Ecology Progress Series, 184:273-289. DOI: 10.3354/meps184273. 

Fitch, J. E., Brownell, R. L. 1968. Fish Otoliths in Cetacean Stomachs and their  Importance in 

 Interpreting Feeding Habits. Journal of the Fisheries Research  Board  of Canada, 

 25(12):2561-2574. 

Fontaine, P.M., Hammill, M.O., Barrette, C., Kingsley, M.C. 1994. Summer diet of the Harbour porpoise 

(Phocoena phocoena) in the estuary and the Northern Gulf of St. Lawrence. Canadian Journal of 

Fisheries and Aquatic Sciences, 51(1):172-178. 

Frost, K. J., Lowry, L. F., 1981. Trophic importance of some marine Gadids in  Northern  Alaska 

and their body - otolith size relationships. Fishery Bulletin, 79(1):187-192. 

Gannon, D.P., Craddock, J.E., Read, A.J. 1998. Autumn food habits of harbour porpoises, Phocoena 

phocoena, in the Gulf of Maine. Fishery Bulletin, 96(3):428-437. 

Gilles, A, Viquerat, S., Becker, E. A., Forney, K. A., Geelhoed, S. C. V., Haelters, J., Nabe- Nielsen, 

J., Scheidat, M., Siebert, U., Sveegaard, S., Van Beest, F. M., Van Bemmelen,  R., Aarts, G. 

2016. Seasonal habitat-based density models for a marine top predator, the  harbour porpoise, 

in a dynamic environment. Ecosphere, 7(6):22. DOI: e01367.  10.1002/ecs2.1367. 

Granadeiro, J. P., Silva, M. A. 2000. The use of otoliths and vertebrae in the  identification  and size-

estimation of fish in predator-prey studies. Cybium, 24(4):383-393. 

Greenstreet, S.P.R., Tasker, M.L. 1996. Aquatic Predators and their Prey. Fishing New Books:191. ISBN: 

0-85238-230-8. 

Hammond, P. S., Bearzi, G., Bjørge, A., Forney, K., Karczmarski, L., Kasuya, T., Perrin,  W. F., 

Scott, M. D., Wang, J. Y., Wells, R. S., Wilson, B. 2008. Phocoena  phocoena. The IUCN Red 

List of Threatened Species. Retrieved from  http://www.iucnredlist.org/details/17027/0 on 

November 2017. 

Hammond, P. S., Lacey, C., Gilles, A., Viquerat, S., Borjesson, P., Herr, H., Macleod, K.,  Ridoux, 

V., Santos, M. B., Scheidat, M., Teilmann, J., Vingada, J., Oien, N. 2017.  Estimates of 

cetacean abundance in European Atlantic waters in summer 2016  from  the SCANS-III 

aerial and shipboard surveys. 

Hammond, P. S., Macleod, K., Berggren, P., Borchers, D. L., Burt, L., Cañadas, A.,  Desportes, G., 

Donovan, G. P., Gilles, A., Gillespie, D., Gordon, J., Hiby, L.,  Kuklik,  I., Leaper, R., 

Lehnert, K., Leopold, M., Lovell, P., Øien, N., Paxton, C.  G. M.,  Ridoux, V., Rogan, E., 

Samarra, F., Scheidat, M., Sequeira, M., Siebert,  U.,  Skov, H., Swift, R., Tasker, M. L., 

Teilmann, J., Canneyt, O. V., Vázquez,  J.A.  2013. Cetacean abundance and distribution 

in European Atlantic shelf waters  to  inform conservation and management. Biological 

Conservation, 164:107-122.  ISSN:  0006-3207. 

Hansel, H. C., Duke, S. D., Lofy, P. T., Gray, G. A. 1988. Use of diagnostic bones to  identify  and 

estimate original lengths of ingested prey fishes. Transactions of the  American Fisheries 

Society, 117:55-62. 

Härkönen, T. 1986. Guide to the otoliths of the bony fishes of the Northeast Atlantic. Danbiu  Aps 

Biological Consultants. ISBN:87-982290-2-8. 

Heath, M., Law, R., Searle, K. 2017. FIS013- Scoping the background information for an ecosystem 

approach to fisheries in Scottish waters: Review of predator-prey  interactions with fisheries, 

http://dx.doi.org/10.1016/j.biocon.2009.09.005
http://www.iucnredlist.org/details/17027/0


68 

 

and balanced harvesting. A study commissioned by  Fisheries Innovation Scotland (FIS):57. 

ISBN: 978-1-911123-10-1. Retrieved  from http://www.fiscot.org/media/1383/fis013.pdf 

on November 2017. 

Heath, M. Scott, B., Bryant, A. D.1997. Modelling the growth of herring from four different stocks in the 

North Sea. Journal of Sea Research, 38 (3-4):413-436. 

Hislop, J. R. G. 1984. A comparison of the reproductive tactics and strategies of cod, haddock,  whiting 

and Norway pout in the North Sea. In Fish reproduction: Strategies and tactics,  Oxford: 

311–330. 

Hislop, J. R. G., Mackenzie, K. 1976. Population studies of the whiting Merlangius merlangus  (L.) of 

the northern North Sea. ICES Journal of Marine Science,37(1):98-111. 

Hislop, J. R. G., Robb, A. P., Bell, M. A., Armstrong, D. W. 1991. The diet and food  consumption of 

whiting (Merlangius merlangus) in the North Sea. ICES Journal of  Marine Science, 48: 139-

156. 

Hughes, R.N. 1993. Diet Selection: An Interdisciplinary Approach to Foraging Behaviour. Blackwell:221. 

ISBN: 0-632-03559-5. 

ICES. 2011a. Species fact sheet: Herring, Clupea harengus. ICES- FishMap. Retrieved  from 

http://www.ices.dk/marine- data/Documents/ICES%20FishMap/ICES- FishMap.zip on 

November 2017. 

ICES. 2011b. Species fact sheet: Whiting, Merlangius merlangus. ICES- FishMap. Retrieved from 

http://www.ices.dk/marine- data/Documents/ICES%20FishMap/ICES-FishMap.zip on 

November 2017. 

ICES. 2012. Manual for the International Bottom Trawl Surveys. Series of ICES Survey 

 Protocols. SISP 1-IBTS VIII:68. ISBN: 978-87-7482-112-0. 

ICES. 2013. ICES Stock Annex: Whiting (Merlangius merlangus) in Subarea 4 and Division 7.d 

 (North Sea and eastern English Channel). Retrieved from 

 http://www.ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2016/whg-

 47d_SA.pdf on December 2017. 

ICES. 2014. ICES Advice June 2014: Celtic Seas, Herring in Division VIa (North). Retrieved from: 

http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2014/2014/her-vian.pdf on June 

2018. 

ICES. 2014a. ICES Advice November 2014: North Sea, Whiting in subarea IV (North Sea)  and 

Division VIId (Eastern Channel) (updated). Book 6:13. Retrieved from 

http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2014/2014/whg- 47d.pdf  on 

October 2017. 

ICES. 2016. ICES Advice: Whiting (Merlangius merlangus) in Division 6.a. (West of  Scotland). 

Retrieved from  http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/2016/whg-

scow.pdf on December 2017. 

ICES. 2017. Report of the Working Group on Assessment of Demersal Stocks in the North  Sea and 

Skagerrak (WGNSSK), 26 April-5 May 2017, ICES HQ. ICES  CM2017/ACOM 21:1077. 

ICES. 2017a. ICES Advice: Herring (Clupea harengus) in divisions 6.a and 7.b-c (West  of 

Scotland, West of Ireland). DOI: 10.17895/ices.pub.3061. Retrieved from  

http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.6a7bc.pdf on 

December 2017. 

ICES. 2017b. Herring Assessment Working Group for the Area South of 62 deg N (HAWG),14-22 March 

2017. ICES CM 2017/ACOM:856. Retrieved 

http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2017/H

AWG/01%20HAWG-

%20Report%20of%20the%20Herring%20Assessment%20Working%20Group%20for%20the%2

0Area%20South%20of%2062%20deg%20N.pdf on September 2018. 

ICES. 2017c. ICES Advice: Herring (Clupea harengus) in Subarea 4 and in divisions 3.a  and 7.d, 

autumn spawners (North Sea, Skagerrak and Kattegat, eastern English  Channel). DOI: 

10.17895/ices.pub.3130. Retrieved from 

http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.3a47d.pdf on 

December 2017. 

ICES. 2017d. ICES Advice: Whiting (Merlangius merlangus) in Subarea 4 and Division  7.d 

(North Sea and eastern English Channel). DOI: 10.17895/ices.pub.3530.  Retrieved 

http://ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/whg.27.47d.pdf on December 

2017. 

 

http://www.fiscot.org/media/1383/fis013.pdf
http://www.ices.dk/marine-%09data/Documents/ICES%20FishMap/ICES-%09FishMap.zip
http://www.ices.dk/marine-%09data/Documents/ICES%20FishMap/ICES-FishMap.zip
http://www.ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2016/whg-%0947d_SA.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2016/whg-%0947d_SA.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2014/2014/her-vian.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2014/2014/whg-%0947d.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.1-24a514a.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.6a7bc.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.6a7bc.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.6a7bc.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2017/HAWG/01%20HAWG-%20Report%20of%20the%20Herring%20Assessment%20Working%20Group%20for%20the%20Area%20South%20of%2062%20deg%20N.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2017/HAWG/01%20HAWG-%20Report%20of%20the%20Herring%20Assessment%20Working%20Group%20for%20the%20Area%20South%20of%2062%20deg%20N.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2017/HAWG/01%20HAWG-%20Report%20of%20the%20Herring%20Assessment%20Working%20Group%20for%20the%20Area%20South%20of%2062%20deg%20N.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2017/HAWG/01%20HAWG-%20Report%20of%20the%20Herring%20Assessment%20Working%20Group%20for%20the%20Area%20South%20of%2062%20deg%20N.pdf
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.1-24a514a.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.1-24a514a.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.1-24a514a.pdf%20on%20December%202017
http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2017/2017/her.27.1-24a514a.pdf%20on%20December%202017


69 

 

                 

       

Johannessen, A., Blom, G., Folkvord, A. 2000. Differences in growth pattern between spring and autumn 

spawned herring (Clupea harengus L.) larvae. Sarsia, 85(5-6):461-466. DOI: 

10.1080/00364827.2000.10414595. 

Lambert, E., Pierce, G., Hall, K., Brereton, Dunn, T. E., Wall, D., Jepson, P., Aville, R., Macleod, C. 2014. 

Cetacean range and climate in the eastern North Atlantic: future predictions and implications for 

conservation. Global Change Biology, 20: 1782-1793. DOI: 10.1111/gcb.12560. 

Learmonth, J.A., Macleod, C.D., Santos, M.B., Pierce, G.J., Crick, H.Q.P., Robinson, R.A. 2006. Potential 

effects of climate change on marine mammals. Oceanography and Marine Biology: An Annual 

Review, 44:431-464. 

Learmonth, J. A., Murphy, S., Luque, P. L., Reid, R. J., Patterson, A. P., Brownlow, A., Ross,  H. M., 

Barley, J. P., Santos, M. B., Pierce, G. J. 2014. Life history of harbour  porpoises 

(Phocoena phocoena) in Scottish (UK) waters. Marine Mammal  Science, 30(4):1427-1455. 

DOI: 10.1111/mms.12130. 

Leopold, M. F. 2015. Eat and be eaten – Porpoises diet studies. Ph.D. thesis.  University of 

 Wageningen:239. ISBN: 978-94-6257-558-5. 

Linnenschmidt, M., Teilman, J., Akamatsu, T., Dietz, R., Miller, L. A. 2012. Biosonar, dive, and foraging 

activity of satellite tracked harbour porpoises (Phocoena phocoena). Marine  Mammal Science, 

29(2): E77-E97. DOI: 10.1111/j.1748-7692.2012.00592.x. 

Lockyer, C. 2003. Harbour porpoise (Phocoena phocoena) in the North Atlantic: Biological parameters. 

NAMMCO Scientific Publications, (5):71-90. DOI:  10.7557/3.2740. 

Loots, C., Vaz, S., Planque, B., Koubbi, P. 2010. Spawning distribution of the North Sea plaice  and 

whiting from 1980 to 2007. Journal of Oceanography, Research and Data, 3:77-95. 

Macleod, C. D., Reidenberg, J.S., Weller, M., Santos, M. B., Herman, J., Goold, J., Pierce,G. J. 2007. 

Breaking Symmetry: The Marine Environment, Prey Size, and the Evolution of Asymmetry in 

Cetacean Skulls. The anatomical Record, 290 (6):539-545. 

Maravelias, C. D. 1997. Trends in abundance and geographic distribution of North Sea  herring  in 

relation to environmental factors. Marine Ecology Progress Series,  159:151-164. 

Maravelias, C. D. 2001. Habitat associations of Atlantic herring in the Shetland area:  influence of 

spatial scale and geographic segmentation. Fisheries Oceanography,  10(3):259-267. 

Marubini, F., Gimona, A., Evans, P. G., Wright, P. J., Pierce, G. J. 2009. Habitat preferences  and 

interannual variability in occurrence of the harbour porpoise Phocoena  phocoena off 

northwest Scotland. Marine Ecology progress series, 381:297-310.  DOI: 10.3354/meps07893. 

Meager, J. J., Sumpton, D. W. 2016. Bycatch and strandings programs as ecological indicators for data-

limited cetaceans. Ecological Indicators, 60:987-995. DOI: 10.1016/j.ecolind.2015.08.052. 
Mendes, S., Newton, J., Reid, R.J., Zuur, A.F., Pierce, G.J. 2007. Stable carbon and nitrogen isotope ratio 

profiling of sperm whale teeth reveals ontogenetic movements and trophic ecology. Oecologia, 

151 (4):605–615. DOI: 10.1007/s00442-006-0612-z. 

Messieh, S. N. 1972. Use of otoliths in identifying herring stocks in the southern Gulf of  St. 

Lawrence and adjacent waters. Journal of the Fisheries Research Board of  Canada, 

29(8):1113-1118. 

Napier, I. R. 2014. Fishers’ North Sea stock survey 2014. NAFC Marine Centre, Shetland, 

 Scotland. Retrieved from http://nsss.eu/public/NSSS-2014-FINAL.pdf on December  2017. 

Nash, R. D. M., Dickey-Collas, M., Kell, L. T. 2009. Stock and recruitment in North Sea  herring 

(Clupea harengus); compensation and depensation in the population  dynamics. Fisheries 

research, 95(1):88-97. DOI: 10.1016/j.fishres.2008.08.003. 

Northridge, S., Kingston, A., Thomas, L. 2016. Annual report on the implementation of Council 

 Regulation (EC) No 812/2004 during 2015. Retrieved from 

 http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None

 &ProjectID=18535&FromSearch=Y&Publisher=1&SearchText=CETACEAN 

 BYCAtCH&SortString=EndMth&SortOrder=Asc&Paging=10#Descriptionon  December 2017. 

OSPAR. 2017. Harbour Porpoise Bycatch: Biological Diversity. Intermediate Assessment (BDC17/D108). 

Parsons, E. C., Shrimpton, J., Evans, P. G. 2000. Cetacean conservation in northwest  Scotland: 

Perceived threats to cetaceans. European Research on Cetaceans,  13:128- 133. 

Patterson, I., Reid, R., Wilson, B., Grellier, K., Ross, H. M., Thompson, P.M. 1998. Evidence for infanticide 

in bottlenose dolphins: an explanation for violent interactions with harbour porpoises? 

Proceedings: Biological Sciences, 265 (1402):1167-1170. 

                 
       

                 
       

               
     

                 
       

               
     

               
     

Jobling, M., Breiby, A. 1986. The use and abuse of fish otoliths in studies of feeding habits of
 marine piscivores. Sarsia, 71:265-274. Bergen. DOI: 10.1080/00364827.1986.10419696

               
     

              
      

              
      
Jefferson, T., Webber, M., Pitman, R. 2008. Marine Mammals of the World: Comprehensive Guide to
 Their Identification. Academic Press: 592. ISBN:9780123838537.

https://doi.org/10.1080/00364827.2000.10414595
http://dx.doi.org/10.1016/j.ecolind.2015.08.052
http://nsss.eu/public/NSSS-2014-FINAL.pdf
http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None
http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None


70 

 

Peltier, H., Dabin, W., Daniel, P., Canneyt, O. V. 2012. The significance of stranding data as indicators of 

cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecological Indicators, 

18:278-290. DOI: 10.1016/j.ecolind.2011.11.014. 

Pierce, G. J., Boyle, P. R. 1991. A review of methods for diet analysis in piscivorous marine 

 mammals. Oceanography and Marine Biology, 29:409-486. 

Pierce, G. J., Santos, M. B., Cerviño, S. 2007. Assessing sources of variation underlying estimates of 

cetacean diet composition: a simulation study on analysis of harbour  porpoise diet in Scottish 

(UK) waters. Journal of the Marine Biological  Association of  the United Kingdom, 

87(1):213-221. DOI:  10.1017/S0025315407055348. 

Pierce, G. J., Santos, M. B., Learmonth, J. A., Mente, E., Stowasser, G. 2004. Methods  for  dietary 

studies on marine mammals. CIESM Workshop Monographs, 25:36. 

Prime, J. H., Hammond, P. S. 1987. Quantitative assessment of grey seal diet from  fecal  analysis. 

In Approaches to marine mammal energetics: 165-182. A. C.  Huntley, D. P.  Costa, G. A. J. 

Worthy, M. A. Castellini (Eds). Society for  Marine Mammalogy,  Lawrence,  Kansas: 

Allen Press. 

Rae, B. B. 1965. The food of Common porpoise (Phocaena phocaena). Journal of  Zoology, 

146:114-122. 

Rae, B. B. 1973. Additional notes on the food of the Common porpoise (Phocoena  phocoena). 

Journal of Zoology, 169(1):127-131. DOI: 10.1111/j.1469- 7998.1973.tb04657.x. 

Read, A.J. 1999. The harbour porpoise – Phocoena phocoena (Linnaeus, 1758). In Handbook of 

marine mammals Vol. 6: The second book of dolphins and the porpoises, S.H. Ridgway & R. 

Harrison (eds). London: Academic Press:323–355. 

Rindorf, A. 2003. Diel feeding pattern of whiting in the North Sea. Marine Ecology  Progress Series, 

249: 265-276. 

Roper, C. F. E., Sweeney, M. J. 1983. Techniques for fixation, preservation, and  curation of 

cephalopods. Memoirs of the National Museum Victoria, 44:28-47. 

Ross, H. M., Wilson, B. 1996. Violent interaction between Bottlenose Dolphins and Harbour Porpoises. 

Proceedings: Biological Sciences, 263(1368):283-286. 

Santos, M. B. 1998. Feeding Ecology of Harbour porpoises, Common and Bottlenose  dolphins and 

Sperm Whales in the Northeast Atlantic. Ph.D. thesis. University of  Aberdeen, Aberdeen:284. 

Santos, M. B., Pierce, G. J. 2003. The diet of Harbour porpoise (Phocoena phocoena) in  the 

Northeast Atlantic. Oceanography and Marine Biology: an Annual Review,  41:355- 390. 

Santos, M. B., Pierce, G. J., Learmonth, J. A., Reid, R. J., Ross, H. M., Patterson, I. A.  P.,  Reid, D. 

G., Beare, D. 2004. Variability in the diet of Harbour  porpoise  (Phocoena 

phocoena) in Scottish waters 1992-2003. Marine Mammal Science,  20(1):1-27. 

Santos, M.B., Pierce, G.J., Ieno, E.N., Addink, M., Smeenk, C., Kinze, C.C., Sacau, M. 2005. Harbour 

porpoise (Phocoena phocoena) feeding ecology in the eastern North Sea. ICES CM 2005/THEME 

SESSION R:15 (Marine Mammals: Monitoring Techniques, Abundance Estimation, and 

Interactions with Fisheries). 

Santos, M. B., Pierce, G.J., Macleod, C.D., Zuur, A.F. Sacau, M., Ieno, E.N., Beare, D. 2005a. Relating 

trends in marine mammal diet to fish abundance: determining functional responses from dietary 

data. ICES CM 2005/THEME SESSION R:16 (Marine Mammals: Monitoring Techniques, 

Abundance Estimation, and Interactions with Fisheries). 

SCANS-II. 2008. Small Cetaceans in the European Atlantic and North Sea. Final Report  to the 

European Commission on Project LIFE04NAT/GB/000245.  Retrieved from  http://biology.st-

andrews.ac.uk/scans2/documents/final/SCANS-II_final_report.pdf on  November 2017. 

Scott, T. 1903. Some further observations on the food of Fishes, with a note on the food  observed in the 

stomach of a common Porpoise. Report of the Fishery Board for  Scotland. 21(3):218-227. 

Scottish Executive Resources. 2003. Factsheet: Scotland in Short. Retrieved from 

 http://www.gov.scot/Resource/Doc/923/0010669.pdf on December 2017. 

Scottish Government. 2017. Scottish Sea Fisheries Statistics 2016. ISBN: 978-1-78851-216-9. 

 Retrieved from http://www.gov.scot/Resource/0052/00524991.pdf on October 2017. 

Siebert, U., Gilles, A., Lucke, K., Ludwig, M., Benke, H., Kock, K.H., Scheidat, M. 2006. A decade of 

harbour porpoises occurence in German waters – Analyses of aerial surveys, incidental sightings 

and strandings. Journal of Sea Research, 56(1):65-80. DOI: 10.1016/j.seares.2006.01.003. 

Silva, M., Sequeira, M. 2003. Patterns in the mortality of common dolphins (Delphinus delphis) on the 

Portuguese coast, using stranded data records, 1975-1998. Aquatic Mammals, 29(1):88-98. 

DOI:10.1578/016754203101023924. 

Simmonds, E. J. 2007. Comparison of two periods of North Sea herring stock management:  success, 

failure and monetary value. ICES Journal of Marine  Science, 64:686-692. 

http://www.gov.scot/Resource/Doc/923/0010669.pdf
http://www.gov.scot/Resource/0052/00524991.pdf
http://dx.doi.org/10.1016/j.seares.2006.01.003


71 

 

Smeenk, C. 1987. The harbour porpoise Phocoena phocoena (L., 1758) in the Netherlands: 

 Stranding records and decline. Lutra, 30:77–90 

Smith, R. J., Read, A. J. 1992. Consumption of euphausiids by harbour porpoises (Phocoena phocoena) 

calves in the Bay of Fundy. Canadian Journal of Zoology, 70(8): 1629-1632. DOI: 10.1139/z92-

225. 

Scottish National Heritage (SNH). 2016. Inner Hebrides and the Minches proposed Special Area of 

Conservation. Consultation Report. August, 2016:1-89. 

Southwell, T. 1881. Seals and Whales of the British Seas. London:128. 

Spitz, J., Trites, A.W., Becquet,V., Amour, A.B., Cherel, Y., Galois, R., Ridoux, V. 2012. Cost of living 

dictates what Whales, Dolphins and Porpoises eat: The importance of prey quality on predator 

foraging strategies. PLoS ONE,7(11): e50096. DOI: 10.1371/journal.pone.0050096. 
Sveegaard, S. 2011. Spatial and temporal distribution of Harbour porpoises in relation to their prey. PhD 

thesis. Department of Artic Environment, NERI. National Environment Research Institute, Aarhus 

University, Denmark:128. 

Thurstan, R. H., Roberts, C. M. 2010. Ecological Meltdown in the Firth of Clyde,  Scotland: Two 

Centuries of Change in a Coastal Marine Ecosystem. PLoS ONE,  5(7):e11767. DOI: 

10.1371/journal.pone.0011767. 

Treacy, S. D., Crawford, T. W. 1981. Retrieval of otoliths and statoliths from gastrointestinal  contents 

and scats of marine mammals. The Journal of Wildlife  Management,  45(4):990-993. 

Van Beneden, P. J. 1889. Histoire Naturelle des cetacés des mers d’Europe. Bruxelles:664. 

Watt, J., Pierce, G. J., Boyle, P. R. 1997. Guide to the identification of North Sea fish  using premaxillae 

and vertebrae. Co-operative Research Report, No 220.  International  Council for the 

Exploration of the Sea, Copenhagen. 

Weir, C. R., Stockin, K. A., Pierce, G. J. 2007. Spatial and temporal trends in the  distribution of the 

harbour porpoises, white-beaked dolphins and minke whales  off  Aberdeenshire (UK), 

north-western North Sea. Journal of the Marine Biological  Association of United Kingdom., 

87:327-338. DOI:  10.1017/S0025315407052721. 

Wheeler, A. C. 1969. The Fishes of the British Isles and the North-west Europe. Michigan State University 

Press: 1ed.: 613. 

Wheeler, A., Jones, A.K.G. 1989. Fishes. Cambridge Manuals in Archaeology,  Cambridge 

 University Press, Cambridge. ISBN-13: 978-0521105415. 

Whitehead, P. J. P. 1985. FAO species catalogue, Vol. 7. Clupeoid fishes of the world  (Suborder 

Clupeoidei: An annotated and illustrated catalogue of the herrings,  sardines, pilchards, sprats, 

shads, anchovies and wolf-herrings), Part 1 –  Chirocentridae, Clupeidae and 

Pristigasteridae. FAO Fisheries Synopsis,  125(7):303. ISBN: 92-5-102340-9. 

Whitehead, P. J. P., Bauchot, M. L., Hureau, J. C., Nielsen, J., Tortonese, E. 1986. Fishes of the  north-

eastern Atlantic and the Mediterranean. ISBN: 97-8-923002-2150. 

Winters, G. H., Wheeler, J. P. 1996. Environmental and phenotypic factors affecting the reproductive cycle 

of Atlantic herring. ICES Journal of Marine Science, 53 (1): 73-88. 

Wisniewska, D., Johnson, M., Teilmann, J., Doñate, L., Shearer, J., Sveegaard, S., Miller, L., Siebert, U., 

Madsen, P. 2016. Ultra-high foraging rates of harbour porpoises make them vulnerable to 

anthropognic disturbance. Current Biology, 26:1441-1446.  

Yasui, W. Y., Gaskin, D. E. 1986. Energy budget of a small Cetacean, the harbour Porpoise, Phocoena 

Phocoena (L.). Ophelia, 25(3): 183–197. DOI:10.1080/00785326.1986.10429749. 

Zheng, X. Pierce, G. J., Reid, D. G. 2001. Spatial patterns of whiting abundance in Scottish waters and 

relationships with environmental variables. Fisheries Research, 50(3):259-270. DOI: 

10.1016/S0165-7836(00)00219-8. 

Zuur, A. F., Ieno, E.N., Elphick, C.S. 2010. A protocol for data exploration to avoid common statistical 

problems. Methods in Ecology & Evolution, 1:14. DOI: 10.1111/j.2041-210X.2009.00001.x. 

Zuur, A. F., Ieno, E. N., Smith, G.M. 2007. Analysing Ecological Data. Statistics for Biology and Health.1st 

Edition, XXVI, Springer:672. ISBN: 978-0-387-45972-1 

  

https://doi.org/10.1016/S0165-7836(00)00219-8


72 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX  

 

 

REGRESSIONS FOR ESTIMATION OF FISH SIZE  



73 

 

Regression equations used to predict fish lengths (mm) and weights (g) from otolith, 

premaxilla and dentary measurements (Figure 3.2). Data from Härkönen (1986), Brown 

(unpbl. data), Hislop (unpbl. data), Watt et al. (1997) and Hernandez-Milian (unpublish). 

Combine regressions use data from more than one species (*). 

 

Otolith - Härkönen (1986), Brown (unpbl. data), Hislop (unpbl. data) 

 

(a)     FW= 4.910 * OW5.193                         r2=0.845  (Herring) Härkönen (1986) 

(b)      FL=-87.490+184.390*OW1                  r2=0.790   (Herring) Härkönen (1986) 

          *(c)     FW=7.509*OW4.437                                   (Herring/Sprat) Härkönen (1986) 

          *(d)     FL=-40.271+152.071*OW                       (Herring/Sprat) Härkönen (1986) 

          *(e)     FL=-40.271+152.071*OW1                            (Clupeidae) Härkönen (1986) 

          *(f)      Fw=7.50981*OW4.4371                                                      (Clupeidae) Härkönen (1986) 

(g)     log FW= -1.89907 + 3.5375*log OL     n=55    (Whiting) Härkönen (1986) 

            (h)     FL = -4.87+19.621*OL                                             (Whiting) Hislop (unpbl.) 

(i)      log FW=-0.11556+3.72252*log OW                        (Whiting) Brown (unpbl.) 

(j)      FL=-88.550+85.390*OW1                                       (Whiting) Hislop (unpbl.) 

          *(k)     FL=0.5+20.448*OL1                                       (Whit./BLW) Härkönen (1986) 

          *(l)     FW=0.011983*OL3.61130                                  (Whit./BLW) Härkönen (1986) 

 

From above: FL= fish length, FW= fish weight, OW= otolith width, OL= otolith length, 

n=sample size, r2= Pearson correlation coefficient.    

 

Premaxillae - Watt et al. (1997) 

 (m)  ln TL= 3.4183+1.1664*ln PMXL  r2=0.969  (Herring) 

(n)  ln TL= 4.2107+0.9822*ln PMXAH  r2=0.990 (Whiting) 

(o)        ln TL= 2.6165+0.9954*ln PMXL                r2=0.984          (Whiting) 
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From the above equations: TL= total length, r2=Pearson correlation coefficient; PMXAH 

– height of articular process, “from the highest point of the articular process to the ventral 

surface of the ramus”; PMXL – total length of premaxilla, “from the most anterior point 

of the bone to the most posterior”. 

 

 Dentary - Hernandez-Milian (unpublish) 

      (p) TL= -32.3+12.4*S-VL              r2=0.989 (Herring) 

     (q)  TL= 12.34+9.02*S-VL              r2=0.986 (Whiting) 

 

 

From the previous regressions: TL= total length, r2=Pearson correlation coefficient, S-

VL – total length of dentary, of the ventral side, from the most anterior point of the 

symphysis to the most posterior one. 
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EXAMPLES OF STATISTICAL ANALYSIS USING WHITING DATA 
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Before to start importing the data to the statistical analysis programmes and to do the data 

exploration, some data changes aspects and previous work has been done in the Excel 

file. 

The construction of the Excel spreadsheet had its specifications in order to import data to 

Brodgar and R Studio. Each head column and row were labelled shortly, differently and 

without spaces with Courier letter (Figure I 1- Partial data imported for statistical 

analysis 

 No empty cells were left behind and missing values were replaced by NA (NA cells are 

automatically transformed in the value 999 by the Brodgar software). 

 

Figure I 1- Partial data imported for statistical analysis 

Illustration of part of the abundance and biomass spreadsheet in Excel, that was imported to Brodgar. 

 

Brodgar only recognizes numbers and not letters, and so the variables ICES area, sex and 

season needed to be transformed. The categorical variables in the end were ICES 

area:1=4a, 2=4b, 3=6a, sex:1=Female, 2=Male, 3=Unidentified, and season:1=Jan., Feb., 

Mar.; 2= Apr., May, Jun.; 3=Jul., Aug., Sept.; 4=Oct., Nov., Dec.. Only, for the 

exploration of the type of distribution, those same variables were even compiled if they 

were only one variable (e.g. all years=1, all seasons=1), as it will be explained later on 

text.  
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- Brodgar software 
 

To show step by step, how was done the statistical analysis using Brodgar, it was chosen 

the whiting data-series.  

Initially, it was followed the instructions in http://www.brodgar.com/index.php/download 

and it ended with the download of the Brogdar software version 2.7.5 

(www.brodgar.com/setup275.exe).  

 

 

 

 

 

 

Figure I 2- Brodgar version 2.7.5. interface 

 

Brodgar’s manual (2000) helped to manage the tools to do the statistical analysis, gather 

with Zuur et al (2007, 2010) publications. 

To start, the box for decimal separator was set as a dot (12345.12), then data was imported 

from an Excel spreadsheet, and using Brodgar data viewer the data was checked if it has 

been imported correctly. In this case, all numbers were checked if they had “.” instead of 

“,”, if there were any empty cells, and if the values and headers were in their right column 

and row. To correct this step, for the whiting data analysis it was taken seven attempts, 

going back and forward to the Excel spreadsheet to solve the problems (e.g. a completely 

empty row that was in the middle of the data, a sample with the values in the wrong 

columns). 

After a cleaning data table, the variables were divided as response (Y) or explanatory (X), 

selecting YES or No for each one (Figure I 3), and the file was saved as 

“whitingabundance7.brd”, and the data imported process was finished. 

 

 

 

 

http://www.brodgar.com/index.php/download
http://www.brodgar.com/setup275.exe
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Figure I 3- Variables and Transformations window, in Brodgar. 

 

In the exploration phase, it was observed the way as the response variable, “whit_abund”, 

behave with the explanatory variables “allyear”, “allseason”, “allsex”, “allices”, “tlength” 

and “weight”. 

 

 

 

 

 

 

 

 

Figure I 4- Distribution data histogram. 

Left: Distribution of the number of whiting eaten considering harbour porpoise sex as one variable 

(females+males+unidentified=1). Right: Distribution of the number of whiting eaten considering harbour 

porpoise sexes as separately variables, (females=1, males=2, unidentified=3).  

 

The explanatory variables were used first as they were a single variable, e.g. “allsex” (all 

sexes were compiled in only one sex), as shown in the left Figure I 4. This provided an 

easier graph to interpret the type of whiting distribution when compared to the many 

graphics from Figure I 4 at the right. This was the only reason to compile the explanatory 

variables, “allyear”, “allseason”, “allsex” and “allices”. After this analyse, the original 

explanatory variables, “sex”, “ICES”, “season” and “year” were selected with YES, and 

the others with NO, at the Brodgar data viewer in “Variables and Transformations”. Every 

time the data was changed, it was needed to save the changes and finish the data import 

process. 
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         Figure I 4  

        

  Figure I 5  

 

 

 

 

 

 

 

 

 

 

 

Figure I 5- Distribution data Q-Q plot. 

Q-Q plot with a non-Normal distribution for the whiting abundance in harbour porpoise’s stomachs. 

 

For the search of outliers, it was preferentially plotted a Dotplot graph instead of a 

Boxplot, especially because of the high number of variables. 

 

 
 

Figure I 6- Distribution data Dotplot and Boxplot. 

a) Explanatory variables “tlength” and “sex” given in separately windows by Dotplot. b) Explanatory 

variables “tlength” and “sex” whiskers-boxes given together by Boxplot. 

 

 
 

Go forward in the exploration process, different graphics were plotted to search for 
outliers, normality, homogeneity of variances, correlation and variance inflation factors 

(VIF).

Through the previous histograms of all the explanatory variables a Poisson distribution 
for the number of whiting found in the stomachs was identified (left , example 
for the sex variable), and a Q-Q plot confirmed the inexistence of a Normal distribution 

(the points do not lie on a straight line) ( ).
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The Dotplot made the interpretation easier than to plot one variable each time to have 

readable whiskers-boxes, as is possible to see for the same two variables in Figure I 6. 

Selecting all the variables at once, the Dotplot resulted in separately windows. The same 

technique with Boxplot resulted in only one window, making it very hard to interpret, as 

in Figure I 6b).  

The variables “tlenght” (Figure I 6a)), “weight”, “whit_abund” showed outliers, and those 

low and high extreme values were checked in the Excel file, and at the end they were all 

biological acceptable. 

       

  

   

 
Figure I 7- Output for correlation and variance inflation factors 

Output of the correlation and GVIF for whiting abundance. 

 

As the Figure I 7 showed the GVIF (Generalized Variance Inflation Factor) for length and 

porpoise’s weight were >3 and for the other variables was lower than 3. With a GVIF>3 

and a correlation=0.8887 (≈1), between length and porpoise’s weight it was demonstrated 

a high correlation (collinearity). The other variables showed a r<0.3, so low correlation 

between them. A Pairplot was even created to confirm the same aspects in a different 

view (Figure I 8). 

 

             

                

After, it was tested the existence of correlation between covariates and their VIF. It was 

chosen the tool “Correlation and VIF” which resulted in the followed values (Figure I 
7).
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Figure I 8- Pairplot and     

Pairplot for the number of whiting in the diet vs all the explanatory variables (year, season, ICES area, 

porpoise sex, porpoise length, porpoise weight). The lower diagonal part of the pairplot shows the 

correlation coefficient in which the font size is proportional to the value of the correlation. The upper 

diagonal shows the scatterplots. 

In the Pairplot, bigger the font size of the number so higher will be the correlation between 

the variables. Variables “tlength” and “weight” showed a high correlation number (=0.89) 

(Figure I 8), also confirmed before by the output in the Figure I 7. 

It was removed the covariate variable one by one (weight and length) to see which one 

gave a VIF <3, which resulted in both of them. However, the variable length was chosen 

instead of the weight, because it made more sense to study the relation between the size 

of the porpoises and the number of whiting eaten by them. Even, the “weight” variable 

was the one with more NA data, too. So, the variable “weight” was selected as NO, at the 

Brodgar data viewer in “Variables and Transformations”.  

 
Figure I 9- Output and pairplot for correlation. 

Output without the variable “weight” and the correspondent Pairplot.  

 

In the end, the variable “tlength” presented a GVIF=1.05 and a non-high correlation with 

the other variables (Figure I 9). 

 

Scatterplot for the data.
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At this point, it was resulted as an explanatory variable the number of whiting, and as 

response variables the year (1992-2014), season (1,2,3,4), ICES (1,2,3), sex (1,2,3) and 

porpoise’s length (cm). The next step, it was to go to UNIVARIATE section and to create 

the models (GAMs). 

As demonstrated by histograms and Q-Q plots (Figure I 4, Figure I 5) it was a Poisson 

distribution. It was selected a log link function, as a specify smoothers “year” and 

“tlength”, as nominal variables “sex”, “season” and “ICES”, and as response variable 

“whit_abun”, and the model was run. Several graphics resulted as Figure I 10 shows. 

 

Figure I 10- Brodgar graphics for a Poisson model. 

Some of the graphics resultant after plotted a GAM with a Poisson distribution with a log link, for the 

number of whiting found in harbour porpoise’s stomachs.  

 

From the Figure I 10, the b) and c) suggested a possible fluctuation of the number of 

whiting with the years (which seemed biological acceptable) and with porpoise’s length, 

in d) with the residual versus fitted values the interpretation wasn’t clear, from e) the 

histogram showed a Poisson distribution very skewed at the right side, and in f) it seemed 

to exist influencers but no (high values <0.70). 

      output demonstrated a 

  Figure I 11. 

 

       
        

As complement for the analysis the numerical 
deviance/df.residual equals to 26.49, as shown in the next
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Figure I 11- Numerical output for data analysis. 

Numerical output for the Poisson model with a log link, for the number of whiting n the stomachs. 

With a deviance/df. residual higher than 1 and a very right skewed distribution, the next 

step it was to try a Negative Binomial model. 

 

        

          

       

 

 

Figure I 12- Brodgar graphics for a Negative Binomial model. 

Some of the graphics plotted for a Negative Binomial model with a log link and Theta=1, for the number 

of whiting found in the stomachs of harbour porpoises. 

  

 

A Negative Binomial with a log link function, with a Theta between 1 to 10, with the 
exactly same explanatory and response variables set for the Poisson model, it was plotted 

and run. However, Brodgar did not let to go forward with this model. So, it was 

changed the Theta value for 1, and it worked.
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  Figure I 12      

     

        

          

          

         

      

       

Figure I 10            

 

 

Figure I 13- Smoother graphics for a GAM. 

Comparison of “tlength” smoothers: left - “tlength” with k=4, right –“tlength” with k=default. 

 

Figure I 13 shows the transformation made to the smoother “tlength” referred before. Now 

the GAM suggested a possible trend, not so clear before, between the number of whiting 

eaten and the porpoise length (Figure I 13- left). 

After, it was plotted the numerical output which the ANOVA demonstrated a 

deviance/df.residual equals to 3.07, and an AIC=1880.67, as shown in the next Figure I 

14. 

From the , the graph b) suggested a possible fluctuation with the number of 
whiting eaten along the years, which seemed biological acceptable. The graph c) showed 
that the number of whiting eaten by porpoises went up and down based on their length, 
so it was applied to the smoother “tlength” a change to its base dimension (k), from default 
to the value of 4. The result it will be showed further on. In d) with the residual versus 
fitted values the interpretation wasn’t clear, but it was possible to see again the presence 
of outliers, which were considered from the beginning. Histogram e) showed a 
distribution slightly less right skewed compared with the histogram of the Poisson model 

( e)). In graph f) it seemed to exist influencers but they were not real because 

the values stayed near 0.5, and h) demonstrated a non-Normal distribution.
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Figure I 14- Numerical output of a Negative Binomial model, 1st model. 

Numerical output for the Negative Binomial model with a log link and a Theta=1, with the smoother 

variable “tlength” with a k=4. 

 

A backward selection in which the variable with the highest p-value was sequentially 

dropped from the model, was the next step. So, as the output plotted, the least significant 

variable effect was “sex” with the highest p-value=0.0616, and so a different model was 

tested without this variable. 

 
Figure I 15- Numerical output of a Negative Binomial model, 2nd model. 
Numerical output for the Negative Binomial model with a log link and a Theta=1, with the smoother 

variable “tlength” with a k=4, and without the variable “sex”. 
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ANOVA showed for the new model, the deviance/df.residual stayed the same (=3.07) and 

with a slightly higher AIC=1881.01. All the variables had low p-values (<0.05) and so 

they were variables with significant effect. Most significant effects were season and year, 

followed by ICES area and length of the porpoise.  

At this point, the models were compared based on their AIC value and 

deviance/df.residual. This last model only had a slightly higher (<0.5) AIC, but among 

them it was the simplest one. Therefore, the Negative Binomial model with a log link 

function and a Theta of 1, with the formula: 

whit_abun~1+as.factor(season)+as.factor(ICES)+s(year)+s(length, k=4), it seemed the 

best fitted model. 

 

NOTE: The Negative Binomial model done until now it was done based on a Theta=1, 

but the real Theta value could be different. Brodgar cannot performed the next steps (e.g. 

set a theta value), so the statistical analysis was taken in R Studio. 

 

 

- R Studio  

 

Following the previous work, a Negative Binomial model was tested in R Studio 

programme. 

Before to test any model, it was run in R the followed commands. 

Different libraries need to be run at the beginning: library(nlme), library(mgcv), 

library(lattice), library (graphics), library (AER). 

Then it was set the directory where the results were saved: 

setwd("C:/Users/Ana/Dropbox/R/whitabund"), followed by the importation of the 

data from a file saved as a text (MS-DOS): modeldatafile="whitabundance.txt". The 

data was then read from the file: defradata<-read.table(file=modeldatafile, fill= 

TRUE, header=TRUE, dec="."). 

Before started the analysis, it was explored if the imported data was correct. The text file 

used here was created especially just for R (details were explained in Chapter III: 

Methodology). It was used the commands: view(defradata), names(defradata),  
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hist(defradata$ICES), hist(defradata$year), hist(defradata$whit_abun), 

hist(defradata$sex), hist(defradata$season), hist(defradata$tlength), summary 

(defradata$tlength), summary (defradata$whit_meanlen), 

summary(defradata$season), summary(defradata$year), 

summary(defradata$whit_abun). It was detected years misplaced from their column, 

which had been rectified in the text file. 

      

          

   

 

The command thedata<-defradata was the last one, and marks the last step used before 

plot the formula of any model. Until here, all the previous bold commands were used to 

plot the next described models.  

Now, to test a Negative Binomial model was done the followed steps. 

Firstly, it was tested if the results from R Studio and Brodgar were the same, for a 

Negative Binomial model plotted with a Theta=1. The first commands used was 

names(thedata), which helped to write the right headers for the model commands: gam1 

<-gam(whit_abun~s(year)+s(tlength)+as.factor(sex)+as.factor(ICES)+ as.factor(season), 

family= nb(1), data=thedata), summary.gam(gam1). ANOVA function and the AIC value 

were plotted: anova(gam1), AIC(gam1). 

It was, even, verified how many harbour porpoises did and did not have whiting on 
their stomachs, resulting from a total data with 314 animals, 160 without and 154 that had 

e a t e n w h i t i n g . T h e c o m m a n d s u s e d w e r e : d e f r a 2 < -

subset(defradata,whit_abun==0), defra2$"whit_abun", and defra3$"whit_abun, defra3.
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Figure I 16- R console output of a Negative Binomial model, for whiting data. 
Output of a Negative Binomial model, with Theta=1, and “tlength” with k=4, for the number of whiting. 

 

The R output (Figure I 16) and the Brodgar (Figure I 14) showed similarities in their results, 

AIC’s close to each other (AIC(R)=1884.2, AIC(Brd)=1880.7), the deviance/df.residual 

had the same value (3.07) and even for both models the lowest statistically significant 

variable effect was sex.  
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However, the objective was to run a Negative Binomial model and to determine the real 

Theta value. All the above bold commands were previously run, then it was set the 

command with the specific formula: gam2<-

gam(whit_abun~s(year)+s(tlength)+as.factor(sex)+as.factor(ICES)+as.factor(season), 

family= nb(), data=thedata), summary.gam(gam2). ANOVA function and the AIC value 

were plotted as: anova(gam2), AIC(gam2). 

 

   

Figure I 17- R console output of a Negative Binomial model, 1st model. 
Output of a Negative Binomial model, with Theta=0.183, for the number of whiting. 
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The Theta value resultant was equal to 0.183, and the AIC was 1537.49. A backward 

selection in which the variable with the highest p-value was sequentially dropped from 

the model, resulted in the removing of length of the porpoise (p-value=0.22677) and so a 

new model was test without this variable. 

A new command, without length, was run: gam3<-

gam(whit_abun~s(year)+as.factor(sex)+as.factor(ICES)+as.factor(season), family= nb(), 

data=thedata), summary.gam(gam2). ANOVA function and the AIC value were plotted: 

anova(gam3), AIC(gam3). 

 

 

Figure I 18- R console output of a Negative Binomial model, 2nd model. 

Output of a Negative Binomial model, with Theta=0.183, without variable length. 

 

          

          

  

For this 2nd formula inserted, the Theta value resultant it did not change. AIC was 
slightly higher (=1538.528). Sex was the variable with the least significant effect with a 
p-value=1, and so it was removed to test a 3rd model.
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The 3rd model command, without length and sex, was: gam4<-

gam(whit_abun~s(year)+as.factor(ICES)+as.factor(season), family= nb(), data=thedata), 

summary.gam(gam4). Again ANOVA function and the AIC value for the 3rd model were 

plotted: anova(gam4), AIC(gam4). 

 
Figure I 19- R console output for a Negative Binomial model, 3rd model. 

Output of a Negative Binomial model, with Theta=0.181, without variable length and sex. 

For the 3rd model, Theta value resultant it was 0.181. AIC was slightly smaller 

(=1538.174). ICES area, season and year had significant effect, as Figure I 19 showed 

(season>ICES area>year). 

After compared all the AIC values from the 3 models and choosing the simplest one, the 

best Negative Binomial that fitted whiting data was the last one. For a complete analysis, 

it was plotted different types of graphics in R. 
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Figure I 20- R commands used to create graphics. 

Commands used to plot some graphics for the best fitted Binomial model, with Theta=0.181, for the whiting 

abundance data. 

 

Example of graphics that were plotted with the previous R commands, Figure I 21.  

Figure I 21- Plotted graphics with R commands 

a) Pattern between whiting abundance along the years. b) Hat values. c) Residual vs fitted values. d) Pearson 

predictor vs linear. 

 

NOTE: Comparing the two Negative Binomial models, one which the Theta value (=1) 

that was stated by the programme and the other which the real Theta value (=0.181) was 

calculated by the programme, it was possible to check their different outcomes. 

Until here, a Poisson and a Negative Binomial model were tested, but due to a high 

number of 0 whiting found in the stomachs, a Binomial model was investigated, too. 
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To test the Binomial model, in R Studio, it was required a transformation of the original 

file. The number of whiting eaten equal to 0 stayed zeros, and the number of whiting 

eaten higher that 0 were changed to 1’s. The new file was imported to R Studio as 

“BNabundanceAP.txt”. Then all the above bold commands used for the Negative 

Binomial were run, with the difference on the file’s name written in the command: 

modeldatafile=" BNabundanceAP.txt ".  

The exploration phase had been already done for the Negative Binomial model in 

Brodgar. The next step was to run the full model formula: bin1<-

gam(whit_abunAP~s(year)+s(length)+as.factor 

(sex)+as.factor(ICES)+as.factor(season), family= binomial, link=”logit”, data=thedata). 

A summary of the data, summary.gam(bin1), the ANOVA function, anova(bin1), the AIC 

value, AIC(bin1), and the deviance/df.residual, deviance (bin1)/df.residual (bin1), were 

plotted, too. 
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Figure I 22- R console output of a Binomial model, for whiting data. 

Output of the Binomial model (bin1), for the number of whiting eaten by porpoises. 

 

It resulted in an AIC= 423.99, and with porpoise length as the least statistically significant 

effect (p-value=0.657). 

Next full model command plotted was without length: bin2<-

gam(whit_abunAP~s(year)+as.factor (sex)+as.factor(ICES)+as.factor(season), family= 

binomial, link=”logit”, data=thedata). The model summary, the ANOVA function, AIC 

and the deviance/df. residual resulted in the next outcomes (Figure I 23). 
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Figure I 23- R console output of a Binomial model, 1st model. 

Output for the Binomial model (bin2), without variable length 

 

It resulted in an AIC= 424.40, and with porpoise sex as the least statistically significant 

effect (p-value=0.999). Again, a backward selection in which the variable with the highest 

p-value will be dropped from the model, resulted in the removing of sex variable. 

The 3rd full model command plotted was without length and sex: bin3<-

gam(whit_abunAP~s(year)+as.factor(ICES)+as.factor(season), family= binomial, 

link=”logit”, data=thedata). The model summary, the ANOVA function, AIC and the 

deviance/df. residual resulted in the next outcomes (Figure I 24). 
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Figure I 24- R console output of the Binomial model, 2nd model. 
  Output of the Binomial model (bin3), without variable length and sex. 

 

It resulted in an AIC= 424.019, and with year as the least statistically significant effect 

(p-value=0.159). Again, to test other model, year variable was removed.   
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Figure I 25- R console output of the Binomial model, 3rd model. 

Output for the Binomial model (bin4), without variable length, sex and year. 

 

The followed full model, without length, sex and year, had: bin4<-

gam(whit_abunAP~as.factor(ICES)+as.factor(season), family= binomial, link=”logit”, 

data=thedata). The model summary, the ANOVA function, AIC and the deviance/df. 

residual were plotted, too (Figure I 25). 

As the 4rd model tested, Figure I 25 shows for the model an AIC=425.88, with ICES area 

as the only statistically significant effect (p-value=0.0027). 
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The last model, without length, sex, year and season, had: bin5<-

gam(whit_abunAP~as.factor(ICES), family= binomial, link=”logit”, data=thedata). 

Also, the model summary, the ANOVA function, AIC and the deviance/df. residual were 

plotted (Figure I 26). 

 

Figure I 26- R console output of a Binomial model, 4th model. 

Output for the Binomial model (bin5), without variable length, sex, year and season. 

 

As the last model tested, Figure I 26 shows for the model an AIC=427.36, again with ICES 

area as the only variable with statistically significant effect (p-value=0.00124). 

 

NOTE: Binomial model it was done in R Studio programme and in Brodgar software, and 

both had given the same results. 
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To compare all the models, R only accepted data with the same “size”. A new adjustment 

was done: whitingbinom<-defradata, whitingbinom, whitingbinomless1row <- 

subset(whitingbinom, sex!=3), thedata<-whitingbinomless1row. 

One by one the models were run with the next commands, Figure I 27. 

Figure I 27- R commands of the final models. 

Binomial models which will be after compared.  

A new series of AIC values resulted: 423.99 (bin1), 422.40 (bin2), 421.90 (bin3), 424.24 

(bin4), 425.33 (bin5). 

A Chi-squared test was performed between the models: anova(bin1, bin2, test="Chisq"), 

anova(bin2, bin3, test="Chisq"), anova(bin3, bin4, test="Chisq"), anova(bin4, bin5, 

test="Chisq") or anova(bin1, bin2, bin3, bin4, bin5, test="Chisq"). 

 

Figure I 28- R console output of the Chi-squared test. 
Analysis of deviance table with a Chi-squared test. 

 

 

After compare all the 5 Binomial models and to try to choose the simplest one, the AIC 
values were similar, and to complicate, the simplest model had the highest AIC value. 
Therefore, a comparing ANOVA table between all the 5 models was the next step.
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At the end the chosen best fitted model was bin4, with an AIC=424.2414, a deviance 

explained=4.98% (n=313), with the remaining variables ICES (p-value=0.0025) and 

season (p-value=0.0761). From bin4 some graphics can be plotted with the same 

commands as the ones used before for the Negative Binomial model.  

 

 

 

 

 

 

 

 


