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 Resumo 

 

O governo português, numa iniciativa conjunta com o governo espanhol, formou o 

Mercado Ibérico de Eletricidade ou MIBEL, que possibilita a qualquer consumidor do espaço 

ibérico, adquirir energia elétrica num regime de livre concorrência, a qualquer produtor ou 

comercializador de energia elétrica que atue em Portugal ou Espanha. Criou-se assim um 

mercado de energia muito competitivo, onde a energia elétrica é comprada e vendida ao preço 

do mercado. Como consequência, o risco assumido pelas empresas que produzem, vendem ou 

compram energia elétrica aumentou substancialmente, tornando-se difícil gerir uma empresa 

deste sector sem fazer qualquer tipo de análise estatística ou sem implementar técnicas e 

métodos de previsão. Daí a necessidade de estudar e desenvolver modelos de previsão para o 

consumo da energia elétrica.  

Numa perspetiva de otimização das ofertas de compra de energia, em mercados 

organizados, atendendo às previsões das necessidades dos clientes e volatilidade dos contratos, 

o processo de compra revela-se uma atividade crucial. O trabalho desenvolvido presente neste 

relatório vem no seguimento desta necessidade identificada durante o periodo de estágio na 

empresa do Grupo Rolear, no departamento Rolear Viva responsável pela comercialização de 

electricidade e gás natural no mercado livre.  Depois de um período de estudo aprofundado do 

funcionamento do setor, foram utilizados modelos de redes neuronais de função de base radial 

(RBFNN), em que a sua estrutura foi otimizada através do algoritmo genético multi-objectivo 

(MOGA). Os modelos foram idealizados para um horizonte de previsão de 24 e 48 horas, 

assentes em abordagens de consumos energéticos sazonais e anual, bem como utilizando 

variáveis exógenas que reflitam os hábitos diários e contributos atmosféricos no consumo de 

energia. 

 

 

Palavras-chave: Redes Neuronais Artificiais, Função Base Radial, Previsão de 

Consumo Energético, MIBEL, Algoritmos Genéticos Multi-Objectivo. 
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Abstract 

 

The Portuguese government, in a joint initiative with the Spanish government, formed 

the Iberian Electricity Market or MIBEL, which enables any Iberian consumer to acquire 

electricity in a free competition regime, to any producer in Portugal or Spain. This has created 

a very competitive energy market, where electricity is purchased and sold at the market price. 

Consequently, the risk assumed by the companies that produce, sell or purchase electric energy 

has increased substantially, making it difficult to manage a company in this sector without any 

statistical analysis or without implementing forecasting techniques and methods. Hence the 

need to study and develop forecast models for the consumption of electricity. 

In a perspective of optimizing energy purchase offers, in organized markets, considering 

the prediction of consumers needs and contract volatility, the purchasing process proves to be 

a crucial activity. The work developed in this report is a possible answer to this need identified 

during the internship period at the Rolear Group company, in the Rolear Viva department 

responsible for the commercialization of electricity and natural gas in the free market. After a 

period of in-depth study of the sector's operation, radial basis function neural network models 

(RBFNN) were used, optimized through the multi-objective genetic algorithm (MOGA). The 

models were designed for a prediction horizon of 24 and 48 hours, based on seasonal and annual 

energy consumption approaches, as well as using exogenous variables that reflect the daily 

habits and atmospheric contributions in energy consumption. 

 

 

Keywords: Artificial Neural Networks, Radial Basis Function, Energy Consumption 

Forecasting, MIBEL, Multi-Objective Genetic Algorithms. 

 

 

 

 

 



 

v 
 

List of Contents 

 

Declaração de autoria de trabalho ............................................................................................................ i 

Acknowledgments ................................................................................................................................... ii 

Resumo ................................................................................................................................................... iii 

Abstract .................................................................................................................................................. iv 

List of Contents ....................................................................................................................................... v 

List of Figures ....................................................................................................................................... vii 

List of Tables ........................................................................................................................................ viii 

List of Abbreviations .............................................................................................................................. ix 

1. Introduction ................................................................................................................................. - 1 - 

1.1 Internship motivations and goals ......................................................................................... - 1 - 

1.2 Report scope ........................................................................................................................ - 2 - 

2. Rolear Internship ......................................................................................................................... - 3 - 

2.1 The Rolear group ................................................................................................................. - 3 - 

2.2 Rolear.ON Internship .......................................................................................................... - 5 - 

2.3 Rolear Viva Internship ........................................................................................................ - 6 - 

3. National Electric System ............................................................................................................. - 8 - 

3.1 Background ......................................................................................................................... - 8 - 

3.2 NES value chain ................................................................................................................ - 10 - 

3.2.1 Production ................................................................................................................. - 11 - 

3.2.2 Transportation ........................................................................................................... - 11 - 

3.2.3 Distribution ................................................................................................................ - 11 - 

3.2.4 Commercialization .................................................................................................... - 12 - 

3.2.5 Final consumer .......................................................................................................... - 13 - 

4. Iberian Electricity Market ......................................................................................................... - 15 - 

4.1 Liberalized market ............................................................................................................. - 15 - 

4.2 MIBEL operation .............................................................................................................. - 16 - 

4.2.1 Daily market .............................................................................................................. - 18 - 

4.2.2 Intraday market .......................................................................................................... - 20 - 

4.2.3 Forward market ......................................................................................................... - 21 - 

5. Data Availability ....................................................................................................................... - 23 - 

5.1 Information flow................................................................................................................ - 23 - 

5.1.1 Individual data by delivery point (DPC) ................................................................... - 24 - 

5.1.2 Data aggregated data by client portfolio ................................................................... - 25 - 

5.2 Smart meters ...................................................................................................................... - 27 - 



 

vi 
 

6. ANN Theoretical Background ................................................................................................... - 29 - 

6.1 Artificial Neural Network Concepts .................................................................................. - 29 - 

6.2 Radial Basis Function Neural Network ............................................................................. - 32 - 

6.3 RBFNN Training Schemes ................................................................................................ - 34 - 

6.3.1 Fixed centers selected at random ............................................................................... - 34 - 

6.3.2 Self-organized selection of centers ............................................................................ - 35 - 

6.3.3 Supervised selection of RBFNN parameters ............................................................. - 36 - 

6.3.4 Stopping criteria ........................................................................................................ - 39 - 

6.4 Multi Objective Genetic Algorithms ................................................................................. - 40 - 

7. Methodology Applied ................................................................................................................ - 43 - 

7.1 Early work development overview .................................................................................... - 43 - 

7.2 Data set .............................................................................................................................. - 45 - 

7.3 Patterns of consumption .................................................................................................... - 46 - 

7.3.1 Characteristic days patterns ....................................................................................... - 47 - 

7.3.2 Temperature influences ............................................................................................. - 48 - 

7.4 Data approaches ................................................................................................................ - 48 - 

7.4.1 Seasonal data approach.............................................................................................. - 50 - 

7.4.2 Yearly data approach ................................................................................................. - 51 - 

7.5 RBFNN model design using MOGA ................................................................................ - 52 - 

7.5.1 RBFNN Training ....................................................................................................... - 52 - 

7.5.2 MOGA model optimization ....................................................................................... - 53 - 

7.5.3 Model design cycle .................................................................................................... - 54 - 

7.5.4 Dataset preparation .................................................................................................... - 56 - 

7.5.5 Models design ............................................................................................................ - 57 - 

8. Results ....................................................................................................................................... - 60 - 

8.1 Early experimental work ................................................................................................... - 60 - 

8.2 RBFNN model design using MOGA optimization ........................................................... - 61 - 

8.2.1 Prediction horizon 24 steps ahead ............................................................................. - 61 - 

8.2.2 Prediction horizon 48 steps ahead ............................................................................. - 69 - 

8.3 Models final comparison ................................................................................................... - 78 - 

9. Conclusions and Future work .................................................................................................... - 82 - 

9.1 Conclusions ....................................................................................................................... - 82 - 

9.2 Future Work ...................................................................................................................... - 83 - 

References ......................................................................................................................................... - 84 - 

 

 



 

vii 
 

List of Figures 

Figure 2.1 – Rolear group logo. [1] ..................................................................................................... - 3 - 

Figure 3.1 – National electric system structure in the early days. [2][3] ............................................ - 9 - 

Figure 3.2 – Restructuration of the national electric system. [4] ...................................................... - 10 - 

Figure 3.3 – National electric system value chain. [5] ...................................................................... - 10 - 

Figure 3.4 – Different voltage levels assigned to the customers. ...................................................... - 13 - 

Figure 4.1 – Overall structure of the different Iberian electricity markets. ....................................... - 17 - 

Figure 4.2 – The crossing of purchase and sale offers originates the market price of electricity. This 

method is based on the Euphemia algorithm. [16] ............................................................................ - 18 - 

Figure 4.3 – Market splitting procedure. [16] ................................................................................... - 19 - 

Figure 5.1 – Periodicity of the availability of data. ........................................................................... - 24 - 

Figure 5.2 – Periodicity and content type of the data made available by delivery point. .................. - 25 - 

Figure 5.3 - Periodicity and content type of the data made available for the complete client portfolio. .. - 

26 - 

Figure 5.4 – The smart meter, e-box, being installed by the EDP Distribuição. [21] ....................... - 28 - 

Figure 6.1 – Biological neuron. [24] ................................................................................................. - 30 - 

Figure 6.2 – Example of a neural network with xm inputs, one neuron and one output. [26] ........... - 30 - 

Figure 6.3 - Example of a RBF neural network with xm inputs and N neurons. [26] ........................ - 33 - 

Figure 6.4 – Optimum stopping avoiding overtraining and undertraining in order to achieve a satisfied 

generalization. [27] ............................................................................................................................ - 40 - 

Figure 6.5 - Concept of Pareto optimality. [31] ................................................................................ - 41 - 

Figure 6.6 – MOGA procedure diagram. [32] ................................................................................... - 41 - 

Figure 6.7 – Chromosome composition and representation of the input equation of a neural network. 

[32] .................................................................................................................................................... - 42 - 

Figure 7.1 – Early work development during this project. ................................................................ - 44 - 

Figure 7.2 – Google maps screenshot of the Rolear group headquarters. coordinates: 37°02'26.5"N 

7°53'49.0"W. ..................................................................................................................................... - 45 - 

Figure 7.3 – Comparison of the energy consumption between 5 days distinct days. ........................ - 47 - 

Figure 7.4 – Comparison of the energy consumption at every 11h00 of the data set. ...................... - 48 - 

Figure 7.5 – Developed models according to each data approach. ................................................... - 49 - 

Figure 7.6 – Energy consumption in each seasonal data set. ............................................................ - 50 - 

Figure 7.7 - Energy consumption in the entire data set corresponding to a year. ............................. - 51 - 

Figure 7.8 – MOGA design cycle. [35] ............................................................................................. - 55 - 

Figure 8.1 – Performance of the models chosen for each seasonal approach, for the forecasting error of 

24 steps ahead. ................................................................................................................................... - 64 - 

Figure 8.2 - Performance of the models chosen for the yearly approach, for the forecasting error of 24 

steps ahead. ........................................................................................................................................ - 66 - 

Figure 8.3 - Performance of the best models for 24 steps ahead prediction horizon. ....................... - 68 - 

Figure 8.4 - Performance of the models chosen for each seasonal approach, for the forecasting error of 

48 steps ahead. ................................................................................................................................... - 72 - 

Figure 8.5 - Performance of the models chosen for the yearly approach, for the forecasting error of 48 

steps ahead. ........................................................................................................................................ - 74 - 

Figure 8.6 - Performance of the best models for 48 steps ahead prediction horizon. ....................... - 77 - 

Figure 8.7 - Comparison of the performance of the models designed with RBFNN using MOGA 

optimization. ...................................................................................................................................... - 80 - 

file:///C:/Users/Manel/Google%20Drive/Tese/tese_completo.docx%23_Toc525492011
file:///C:/Users/Manel/Google%20Drive/Tese/tese_completo.docx%23_Toc525492035
file:///C:/Users/Manel/Google%20Drive/Tese/tese_completo.docx%23_Toc525492035


 

viii 
 

List of Tables 

Table 4.1 – The different sessions available in the intraday market. [19] ......................................... - 20 - 

Table 6.1 – Most common activation functions. [23][25] ................................................................. - 32 - 

Table 7.1 – Code assigned to each day. [33] ..................................................................................... - 46 - 

Table 7.2 – Overview of the complete data set. ................................................................................ - 46 - 

Table 7.3 – Overall information of the seasonal data sets. ................................................................ - 50 - 

Table 7.4 - Overall information of the yearly data sets. .................................................................... - 51 - 

Table 7.5 - Models input lags combinations. .................................................................................... - 56 - 

Table 7.6 – MOGA parameters used in the first cycle. ..................................................................... - 57 - 

Table 7.7 – Restriction/objectives applied in the second cycle of MOGA design for the models of 24 

steps ahead prediction horizon. ......................................................................................................... - 58 - 

Table 7.8  – Restriction/objectives applied in the second cycle of MOGA design for the models of 48 

steps ahead prediction horizon. ......................................................................................................... - 59 - 

Table 8.1 – Network evaluations of the models generated using MATLAB NN Time Series Toolbox. . - 

61 - 

Table 8.2 – NAR and NARX models of the selected network models of each seasonal approach, for a 

24 step ahead prediction horizon. ...................................................................................................... - 63 - 

Table 8.3 – Network evaluation of the best models generated using MOGA optimization for each 

seasonal approach. ............................................................................................................................. - 63 - 

Table 8.4 – 1 step ahead, 24 steps ahead and sum of the forecasting error for the models of each 

seasonal approach. ............................................................................................................................. - 65 - 

Table 8.5 - NAR and NARX models of the selected network models of the yearly approach, for a 24 

step ahead prediction horizon. ........................................................................................................... - 65 - 

Table 8.6 - Network evaluation of the best models generated using MOGA optimization for the yearly 

approach. ........................................................................................................................................... - 66 - 

Table 8.7 – 1 step ahead, 24 steps ahead and sum of the forecasting error for the models of the yearly 

approach. ........................................................................................................................................... - 67 - 

Table 8.8 - Best models of each approach. ........................................................................................ - 68 - 

Table 8.9 – 1 step ahead, 24 steps ahead and sum of the forecasting error for the best models of each 

approach, for 24 steps ahead prediction horizon. .............................................................................. - 69 - 

Table 8.10 - NAR and NARX models of the selected network models of each seasonal approach, for a 

48 step ahead prediction horizon. ...................................................................................................... - 71 - 

Table 8.11  – Network evaluation of the best models generated using MOGA optimization for each 

seasonal approach. ............................................................................................................................. - 71 - 

Table 8.12 –1 step ahead, 48 steps ahead and sum of the forecasting error for the models of each 

seasonal approach. ............................................................................................................................. - 73 - 

Table 8.13 - NAR and NARX models of the selected network models of the yearly approach for a 48 

step ahead prediction horizon. ........................................................................................................... - 73 - 

Table 8.14 - Network evaluation of the best models generated using MOGA optimization for the 

yearly approach. ................................................................................................................................ - 74 - 

Table 8.15 – 1 step ahead, 48 steps ahead and sum of the forecasting error for the models of the yearly 

approach. ........................................................................................................................................... - 75 - 

Table 8.16 - Best models of each approach. ...................................................................................... - 76 - 

Table 8.17 – 1 step ahead, 48 steps ahead and sum of the forecasting error for the best models of each 

approach, for 48 steps ahead prediction horizon. .............................................................................. - 77 - 

Table 8.18 – Comparison of the NAR and NARX models performances of the different model design 

methods used in this work, from an early experimental phase to an optimization phase. ................. - 79 - 

Table 8.19 - 1 step ahead, 24 steps ahead and sum of the forecasting error for the models designed 

with RBFNN using MOGA. .............................................................................................................. - 81 - 



 

ix 
 

List of Abbreviations 

 

MIBEL Iberian electricity market 

XBID  Cross-border intraday market project 

EDP  Energias de Portugal 

CEO  Chief executive officer 

NES  National Electric System 

ORP  Ordinary regime production 

SRP  Special regime production 

NTN  National transmission network 

NDN  National distribution network 

VHV  Very high voltage 

HV  High voltage 

MH  Medium voltage 

SLV  Special low voltage 

NLV  Normal low voltage 

ERSE  Energy services regulatory authority 

REN  Redes Energéticas Nacionais 

LRES  Last resort energy supplier 

DGEG  Directorate general for energy and geology 

IMO  Iberian market operator 

OMIP  Operator of the Iberian energy market (Portuguese pole) 

OMIE  Operator of the Iberian energy market (Spanish pole) 

DPC  Delivery point code 

DNO  Distribution network operator 

TNO  Transmission network operator 

EB  Energy box 

HAN  Home area network 

ANN  Artificial neural network 

RBF  Radial basis function 

RBFNN Radial basis function neural network 



 

x 
 

MOGA Multi-objective genetic algorithm 

GA  Genetic algorithm 

NAR  Nonlinear autoregressive  

NARX  Nonlinear autoregressive exogenous 

PH  Prediction horizon 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 - 1 - 

 

 

 

 

Chapter 1 

1.  Introduction 

  

1.1 Internship motivations and goals 

 After a long academic journey that trained me with a solid scientific and technical 

knowledge in the field of electronics and telecommunications engineering, through the learning 

of methodologies and tools for solving problems in engineering, I decided to test myself, going 

out of the comfort zone of university environment, and approach a new experience in the field, 

by undergoing on an internship that could improve my capacities as a new professional in the 

business and grow as person.  

This initiative had several main goals, that constantly motivated me to challenge myself. 

One of the main goals, and of course, the one that gives purpose to this work, is to complete 

my academic course, more specifically, to conclude the integrated master’s degree in 

electronics and telecommunications engineering in the Faculty of Science and Technology of 

University of Algarve, but also, to seize the opportunity and make the most of my time in the 

company that embraced me. By taking advantage of the opportunity of an internship, it would 

be a great chance of being introduced to the field and to the job market, as well as, gain 

experience by working with direct contact with professionals, being a good test to my skills and 

to acquire new abilities that could serve me in the future.  
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In the scope of the report main topic, another motive that also captivated my curiosity, 

was the fact of being able to explore emerging fields related to artificial intelligent, such as 

machine learning, prediction algorithms or artificial neural networks and their methodologies. 

Having these subjects, such an increasing relevant role in nowadays different working areas, 

this could be an useful skill to possess, serving as preparation for what my professional future 

may bring. 

The project developed during the internship was idealized with the purpose to fill a 

need, namely in the support of a task which reveals particularly relevant in the business of 

commercialization of electricity. This task, more specifically, is the process of purchasing 

electricity in the different Iberian electricity markets, where a good forecast in a short period of 

time proves to be a fundamental support for a favourable participation in the markets. With this 

aim in mind, a familiarization with the Iberian electricity markets and the National electricity 

system was carried out, in order to explore the use of methods based on artificial neural 

networks for different forecast periods and different consumption patterns during a year. The 

work developed furthermore is characterized by the capacity to be executed on the current state 

of the electrical system, but also able to adapt to the innovations that are currently being 

implemented in this sector. 

   

1.2 Report scope 

 In chapter 2, a report of my experiences during the internship and how the work 

developed in this thesis fits in the needs of the company department is performed. In chapter 3, 

the constitution and hierarchy of the national electrical system structure is presented. In chapter 

4, the different Iberian electricity markets and their specificities are explained. In chapter 5, is 

explained how the data availability flow is operated between the different agents in the national 

electrical system and the innovations in the sector. In chapter 6, is theoretically introduced the 

artificial neural networks concept, the training schemes applied and MOGA implementation. 

In chapter 7, the methodology, design and implementation used in the forecasting model using 

artificial neural networks is explained. In chapter 8, the results of the tests are presented and 

elaborated. In chapter 9, conclusions and future work are given. 
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Chapter 2 

2.   Rolear Internship 

   At the end of July of 2017, with the intention of completing the master's degree in 

electronic engineering and telecommunications and simultaneously acquire professional 

experience, I carried out an internship at the company Rolear, SA. This period was fruitful in 

learning and acquired skills, and this chapter reports in detail my experience during the 

internship.   

 

 

2.1 The Rolear group 

In May 1979, Rolear S.A. was founded in a small shop in Faro. This first company 

settled the foundations of what is now a major group of companies, all focused in different 

fields specializations, but at the same time working together in harmony, as a team and still 

characterized by the same values that marked the early beginnings since its foundation. 

 

 

Figure 2.1 – Rolear group logo. [1]   
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In his early days, Rolear, S.A focused in the job market with innovative offers in 

customized engineering solutions, commercialization of electrical and electromechanical 

equipment, as well as technical assistance. The success of this first project, having its most 

impact mainly in Algarve, with leading pioneer investments in the representation of renowned 

brands, or in automation solutions for hydraulic oil systems, electricity and compressed air, 

dictated the continuous growth that enabled the constitution of Rolear Group. This resulted in 

the expansion of new business areas through creating and adding several specialized companies 

and brands, capable of keeping the same ability to be in edge of progress offering a wider range 

of solutions not only in Algarve region, but to all Portugal regions. 

Currently the Rolear Group has his headquarters in Sitio do Areal Gordo, Faro, and is 

composed by 5 major branches:  

• Rolear Mais, experts in the market of electrical, mechanical and electromechanical 

products and equipment for public and private spaces, as well as, representing 

several Portuguese and international leading brands. Also having 11 more shops 

spread throughout continental Portugal.  

 

• Rolear.ON, is a company dedicated to both installation and maintenance services in 

industrial facilities, construction works infrastructures and landscaping.  

 

• Rolegás, responsible for the supply of propane gas, installation projects and 

maintenance of gas grids.  

 

• Academia Rolear, is a company focused on the training and teaching in technical 

and management areas.  

 

• Rolear Viva, the most recent branch, created with purpose of providing natural gas 

and electricity in the liberalised energy market. 

 

Having several departments specialized in such specific areas, makes Rolear Group 

present in the market in different ways, offering a wide range of solutions from product and 

equipment supply, to piped gas distribution, commercialization of natural gas and electricity, 

construction, infrastructures and landscaping to all sorts of technical installations, maintenance, 

technical support and training. All of this being supported by quality of products, but most of 
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all, the know-how of a dynamic team of approximately 230 employees and the tradition of 

accurate working ethics for almost 40 years. [1] 

 

2.2 Rolear.ON Internship 

In the end of July 2017, the internship in Rolear Group officially started. The company 

in which the internship started was Rolear.ON, more especially, in the department of electricity 

and electrical panels, responsible for engineer and assemble electric panels, give assistance and 

maintenance to electrical systems and complete execution of electrical projects.  

In this period, I was engaged in several works, that went from electric panels alarm 

modules programming and configuration, project external protection to air conditioner, 

luminaires control systems configuration, maintenance and assistance, implementation of cctv 

security systems, project security lock system for transformer substation, electrical surveys and 

orders, dimension or quantify electric cables and rails for different electrical systems, as well 

as, minimal maintenance works. It should also be noted the close monitoring of some works, 

that enabled a learning experience and captivated an interest such as in automation systems 

programming and assistance, electric panels assemble, complete projection of electrical 

systems and AutoCAD use for design, dimensioning and projection.  

 Alongside to this numerous works, I was involved in a main project which was the main 

subject of my master thesis. This project was a collaboration between Rolear.On and 

EasySensing – Intelligent Systems, Lda, a spin-off company of University of Algarve dedicated 

to intelligent control systems. The idea behind the partnership consisted in a concept for energy 

efficiency in buildings, namely hotel buildings, focused on energy monitoring using internet of 

things techniques and computational intelligence, for determination of the electricity 

consumption profile, and visualization of the relevant parameters. The optimization process 

would also involve a survey of habits and environment characteristics, that directly or 

indirectly, affect the energy consumption, finally resulting in proposals to optimize the 

consumption of those same behaviours, by ending or changing habits, or other relevant 

modifications. 

 Although the project had a promising start on an initial phase, slowly the process begin 

to gain some inertia in its development and failed to pass to the execution stage. Unexpectedly 

and not related to the project constraints, in the end of October 2017, an invitation appeared to 
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enter the Rolear Viva department, ending my time at Rolear.ON. Despite having been such a 

short period of time, it was, above all, a rewarding period of professional relations, acquired 

experience and new knowledges, that in a way, prepared me for what was coming next. 

 

2.3 Rolear Viva Internship 

 In the end of October 2017, due to the invitation of Group Rolear CEO, Engº António 

Parreira Afonso and the Rolear Viva chief department, Rui Santana, the internship proceeded 

at Rolear Viva department. The Rolear Viva department is the Rolear Group, most recent sector, 

responsible for the commercialization of electricity and natural gas in the liberalized energy 

market. In the scope of this business unit of Rolear, there is multiple and distinct operations 

essential to the activity functioning, from the participation in energy markets for supply, 

management of the operations of energy transportation and delivery, balance sheets and other 

direct activities with the final customers – contracting, management and billing.  

 During my internship period in this department, I dedicated myself to the knowledge of 

the energy commercialization activity - electricity and natural gas, familiarization of the energy 

markets and all its organization and procedures, as well as, the knowledge of the activities 

already existing in the company associated with the energy purchase forecast for the elaboration 

of offers. In a point of view of familiarization with the field and to follow the evolutions of the 

sector, I accompanied the chief department and my company guide, Rui Santana, at numerous 

meetings organized by EDP Distribuição, in which issues related to the electricity comerciali- 

zation activity are presented and discussed, and also, an informative session organized by the 

OMIE, on a new intraday cross-border market (XBID), about to be implemented.  

 Following the change of department, became essential to reformulate the original 

concept of the thesis, that could adapt to the area of activity and that, in a way, could fill the 

existing needs. In this sense, the process of electrical energy purchase, that reveals a crucial 

process in the activity, became the main focus in the developing of this thesis. In a perspective 

of optimizing and technically assisting the procedure of energy purchase, in organized markets 

or by bilateral contracts, attending to the forecasts of the needs and characteristics of clients 

consumptions, a work was developed according to the guidance of Professor António Ruano. 

 This work is based on the application of algorithms of artificial neural networks for the 

consumption forecast of the clients list, defined by the specifications of the data availability 
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flow, between the different identities belonging to the national electricity sector. The concept 

of this work not only meets the possibilities of application in the present state of the sector, as 

well as, to follow the modernization trends of electrical smart grids and smart meters.  This 

developed work can thus be seen as, a support tool for the participation on the Iberian market 

of electricity, or MIBEL, being that, from the forecasts of consumption of each client, it is 

possible to quantify the necessary purchasing energy to supply the entire client portfolio, 

reflecting in the minimum deviations and losses possible.  

 It was on the basis of this ideology that the work for the thesis in question was 

developed. The following chapters will describe in detail the hierarchy of the electricity sector, 

how the method of data availability is conceived in an energy supplier point of view, and how 

organized electricity markets works. The algorithms of neural networks are sustained in the 

functioning of this activity, in the present, and looking at the innovations to be implemented in 

a near future. The methodology applied will also be explained in the following chapters.  

 In addition, during this period, on my own initiative, I took a training course at the 

Rolear Academy on "Photovoltaic systems - Selfcomsuption ", besides that, I acquired several 

skills at the level of Web applications development. This acquired knowledges, that arise as 

personal interests, soon became possibilities to explore, for the future development of the work 

exposed in the present thesis. 
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Chapter 3 

3.   National Electric System 

 In this chapter, a brief overview is made about the National electric sector, all its 

constituents and main parties involved, so that the reader can briefly understand the origin and 

evolution of the system, implemented hierarchy and the sequence of events from the production 

of the energy to its final customer consumption. 

 

  

3.1 Background 

 Over the last 30 years, the national electric system (NES) has undergone a remarkable 

evolution from a structural, regulatory point of view and at the level of the properties of the 

assets involved. Previously, the national electric system had a vertically integrated structure in 

which a company, namely Electricidade de Portugal, EDP, encompassed all the different sectors 

from production to the relationship with the final customer. This type of vertical structure 

conditioned the electricity market, in the sense that there was no competition whatsoever in the 

business, acting based on a monopoly regime. In this business model, one company could own 

a set of captive clients who were limited in options, since they only had to stick to a single 

energy supplier and the services it provided. 
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Figure 3.1 – National electric system structure in the early days. [2][3] 

 

Over the years, inevitably, the structure of this sector has undergone deep changes. 

Currently, the national electricity system is based on a set of activities performed by different 

entities, ranging from the relations with the suppliers cycles of production and selling, until the 

final distribution phase and commercialization to the consumers. The changes led to the 

establishment of a more competitive electricity market once a liberalized regime has been 

implemented in detriment of a monopolistic regime. This restructuring is due to the progressive 

implementation of a liberalized market with the beginning of the XXI century, namely in the 

creation of a common market of electricity between Portugal and Spain, or MIBEL – Iberian 

Electricity Market, which began to be established in November 2001 and started its full activity 

in July 2007 [8][9].  

 The emergence of the MIBEL and its liberalized regime, culminated in the need to 

dismantle the vertical structure of the national electricity system, being in the genesis of the 

emergence of several new agents in different sectors, with the most notable cases being the 

production and commercialization sectors, this way reflecting in an increase of competition and 

giving consumers a more active role taking in count the possibility to select the service provider 

entity. As a consequence, the liberalization of the electricity market and the emergence of new 

agents in different crucial sectors, there was simultaneously, a growing clear need to regulate 

the various activities – quality service, for example.  All these alterations made the national 

electricity system and the electricity market a business subject to regulation and therefore, more 

transparent, with better services and with a more balanced sectorial organization. [3] 
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Figure 3.2 – Restructuration of the national electric system. [4] 

 

3.2 NES value chain 

The National Electricity System (NES) can now be synthesized through a value chain 

that integrates production, transportation, distribution, commercialization and in the end the 

final client, in which the production and commercialization activities practice their activities in 

an open competition regime, subject to obtaining the necessary licenses and approvals, while 

transportation and distribution activities operate by means of public concessions. All the 

different activities from the production to the commercialization in the value chain are subject 

to a regulation by a responsible entity, the Electricity Services Regulatory Entity (ERSE).   

 

Figure 3.3 – National electric system value chain. [5] 
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3.2.1 Production 

 The production of electricity is a fully liberalized activity that operates on a market-

based logic and under free competition regime, through the granting of a license. The electricity 

production is carried out under an ordinary regime (ORP) or under a special regime (SRP). The 

production in ordinary regime, relies on hydroelectric power plants or power plants that use 

non-renewable energy sources, mainly coal and natural gas. The production in special regime 

is based on production using renewable energy sources or cogeneration (combined production 

of electricity and steam). [6] 

 

3.2.2 Transportation 

 The activity of transporting electricity, in very high voltage (150, 220 and 400 kV), is 

carried out through the National Transport Network (NTN), by means of a concession granted 

by the Portuguese State, under a public service regime and of exclusivity to REN, Redes 

Energéticas Nacionais. The concession includes the planning, construction, operation and 

maintenance of the NTN, also covering the planning and global technical management of the 

national electricity system to ensure the harmonized operation of the infrastructures that 

integrate it, as well as, the continuity of service and security of the electricity supply. The NTN 

is interconnected with the Spanish grid in several places, allowing electricity exchanges with 

Spain, either for security or for supply reasons. These links improve the security and stability 

of the grid and supply of electricity, as well as, facilitate the commercial exchanges of electrical 

energy between both national systems, contributing to the integration of markets. 

 

3.2.3 Distribution 

 The distribution of electric energy is based on the National Distribution Network 

(NDN), which allows a regulated activity that consists of routing through the distribution 

networks of electricity between the National Transmission Network (NTN) substations and the 

end points consumption. NDN, like the NTN, is operated through an exclusive concession 

granted by the Portuguese State to the subsidiary of the EDP group, EDP Distribuição. In the 

case of low voltage networks, the activity is carried out under concession contracts signed 

through public tenders launched by the municipalities, which are attributed almost entirely to 

EDP Distribuição, with the exception of a few local companies. 
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3.2.4 Commercialization 

 The activity of commercialization of electricity is free but is subject to the attribution of 

a license by the competent administrative entity, Directorate General for Energy and Geology, 

DGEG, which clarifies the list of rights and duties in the perspective of a transparent exercise 

of the activity. In the course of their business, energy suppliers agents can freely purchase and 

sell electricity, with the right of access to the transmission and distribution networks, however, 

by paying regulated tariffs in order to have the right of access to the transmission and 

distribution networks. In Portugal, consumers can, under market conditions, freely choose their 

energy supplier with no additional costs. There are two types of energy supplier agents to 

operate in the national electricity market: energy suppliers in the regulated market and energy 

suppliers in the liberalized market. Regulated market energy supplier agents, also called last 

resort energy suppliers (LRES), aim to ensure the supply of electricity to all consumers with 

low voltage installations with contracted power equal to or less than 41.4kW (NLV), being 

subject to a system of regulated tariffs and prices and are usually the only ones to offer prices 

subject to the tariff regime fixed by ERSE, namely transitional tariffs. In continental Portugal, 

the commercialization of last resort in electricity is ensured by EDP Serviço Universal and by 

a group of small distributors that act locally. 

 Energy suppliers in the liberalized market, share a competition regime in the electricity 

market, where they are free to set their own energy prices according to the competition rules 

and the ERSE regulatory entity. Due to the healthy competitive environment created by this 

method of free competition, the liberalized energy market allows consumers to choose their 

electricity supplier, opting for a solution that is more appropriate to their needs. In the 

liberalized marketing market, several companies, including Rolear Viva, compete with each 

other to attract the largest number of clients. 

 The fact that an energy supplier agent belongs to the liberalized market does not 

necessarily mean that it practices prices lower than those of the regulated market. The difference 

in the two is that in the regulated market, the energy supplier is obliged to charge prices 

according to the tariffs defined by ERSE, while in the liberalized market the energy suppliers 

are free to choose their prices, as long as the regulated tariffs for access to electrical networks 

are covered [7]. The choice of energy supplier is at the discretion of the consumer who may opt 

for the free market or regulated market. According to the directive n.º 348/2017, published in 

November 2017 by the government, until 2020, a consumer is free to choose between the 
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regulated market or liberalized market, but it is expected that from that date on, the regulated 

market will be extinguished and only the liberalized market will be implemented. 

 

3.2.5 Final consumer 

 Depending on the needs and characteristics of the consumer type, a voltage level is 

assigned to them, in order to respond to their needs and match their dimensions. The following 

diagram shows the arrangement of the different voltage levels per customer: 

 

Figure 3.4 – Different voltage levels assigned to the customers. 

 

• Very High Voltage (VHV): Facilities such as the automobile, railway, pulp and mining 

industries. Voltage between phases greater than 110kV; 

 

• High Voltage (HV): Steel industry, large hospitals, pulp industry, plastics industry, 

fertilizer industry, energy services, etc. Voltage between phases greater than 45kV and 

equal to or greater than 110kV; 

 

• Medium Voltage (MV): Automotive components, metallurgy, molds, vitrification, large 

hotel industry, etc. Voltage between phases greater than 1kV and equal to or less than 

45kV; 
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• Low Voltage (LV): Residential customers, shops, offices and small businesses. 

Voltage between phases equal to or less than 1kV; 

 

o Special Low Voltage (SLV): Supply in LV with power superior to 41.4kW; 

 

o Normal Low Voltage (NLV): Supply in LV with power equal to or less than 

41.4kW. 

 

 

 Clients of NLV level are further profiled according to consumption characteristics, 

based on contracted power and consumption of the previous twelve months. According to these 

characteristics three profiles are applied: 

• Profile Class A for clients with contracted power exceeding 13.8kVA; 

 

• Profile Class B for clients with contracted power equal to or less than 13.8kVA and 

annual consumption of the twelve months preceding the date greater than 7140kWh; 

 

• Profile Class C for clients with contracted power equal to or less than 13.8kVA and 

annual consumption of the twelve months prior to the date equal to or less than 

7140kWh. 
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Chapter 4 

4.   Iberian Electricity Market 

 In the previous chapter the National electric system, the different sectors and the main 

agents were introduced. In this chapter, we intend to explain the concept of the liberalized 

market, as well as to demonstrate and describe the operation and structure of the Iberian 

market of electricity, or MIBEL. 

 

 

4.1 Liberalized market 

As described in the previous chapter, what we now know as the electricity market is due 

to an accumulation of changes, made over a vast period of years. From this gradual evolution, 

the concept of liberalized market emerged. According to ERSE document [10], the liberalized 

market can be defined as follows: 

 

"The market is considered liberalized when several operators can compete freely in 

prices and commercial conditions, observing the rules of competition, the general law and the 

applicable regulations. The transport and distribution - as natural monopolies - remain 

activities carried out under a public and exclusive service regime, being guaranteed the access 

of third parties to the networks in conditions of transparency and non-discrimination." 

Consumer Guide of Electricity in the Liberalized Market, ERSE, 2010 [10] 
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Based on this characterization and the ideals of a free market, the understanding between 

the governments of Portugal and Spain arose so that in a cooperation process, they could create 

a common market of electricity. The result of this joint effort was the Iberian Electricity Market, 

or MIBEL. The MIBEL was created with the purpose of promoting the integration of the 

electric systems of the two countries, in which, electrical energy transactions are carried out 

and financial instruments are traded that refer to this same energy. [11] For all the parties 

involved, the MIBEL still had several benefits as objectives in its formation, and the following 

should be highlighted: [12] 

• Benefit consumers of electricity from both countries; 

• Structure the functioning of the liberalized market; 

• Build a single reference price for the entire Iberian Peninsula; 

• Provide free access to the market, in conditions of equality, transparency and 

objectivity; 

• Favour the economic efficiency of companies in the electricity sector; 

• Promote free competition between them. 

With the formation of this common market between the two countries of the Iberian 

Peninsula, it became possible for any energy supplier to purchase electricity in a regime of free 

competition. 

 

4.2 MIBEL operation  

The organized markets of MIBEL operate based on an Iberian exchange market of 

electricity settled on a single market operator, the Iberian Market Operator (IMO), held in equal 

shares by entities of both signatory states, with two poles: 

• OMIP - Operator of the Iberian Energy Market (Portuguese Pole): which is 

responsible of managing the forward markets; 

• OMIE - Operator of the Iberian Energy Market (Spanish Pole): which is responsible 

for managing the daily and intraday markets. 

 

The liberalization of the electricity sector added the existence of organized markets, 

which are constituted as negotiation platforms tendentially independent of the traditional agents 
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that operate in the activities of production and commercialization of electricity. The energy 

suppliers can purchase electrical energy from various forms of contracting: 

• Next day trading market (daily market), which is subdivided into two types, daily 

and intraday markets. It is in these markets that the various proposals of sale 

(production) and purchase (commercialization) of electricity for the day after the 

negotiation are presented; 

 

• Futures market (forward market), where futures commitments for production and 

purchase of electricity are stipulated. The forward market may carry out physical 

liquidation (sale of energy) or financial liquidation. 

 

Within this segment of electricity contracts, but in another branch of MIBEL, there is 

also the non-organized market, characterized by the model of bilateral contracts. Bilateral 

contracts are a rigid model that guarantees the security of the price of electricity, since it is 

established by a physical contract and for a certain period. These types of contracts are 

permitted between all types of producers and other qualified agents and established the 

conditions under which energy suppliers and producers may sell energy previously acquired to 

other producers or external agents. One of the advantages of this model is the elimination of the 

risk associated with the price volatility in the stock market. [13][14] 

 

 

MIBEL
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Figure 4.1 – Overall structure of the different Iberian electricity markets. 
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4.2.1 Daily market 

The daily market of MIBEL is the platform where electricity is transacted for delivery 

on the day after the negotiation. This market is priced for each of the 24 hours of each day (it 

can still be 23 or 25 hours for the particular case of the summer time change or winter time 

change) and for each one of the 365 or 366 days of each year. Every day the daily market 

platform is active until 12:00, when, at the close of the session, electricity prices are presented 

for the following day. Before this deadline, the energy proposals of purchase and sale are made, 

which will be in the origin of the value of the prices of electricity for each hour. The 

participation in the market is performed through a simple computer system that uses the 

internet, which enables the simultaneous participation of a large group of agents and the 

management of a large number of offers for the purchase and sale of electricity in a short period 

of time, as well as the preparation of economic settlements. [15] 

This market operates through the crossing of offers - of purchase and sale - by the 

various agents registered to operate in that market, each offer indicating the day and time to 

which it relates, the price and the corresponding amount of energy. The market price of 

electricity for each hour is found through a process, in which the price offers of sale (supply 

curve) are ordered in an increasing way, and the price offers of purchase (demand curve) are 

ordered in a decreasing way. The market price will correspond to the intersection of the supply 

and demand curves, resulting in the lowest price that ensures that the supply satisfies the 

demand. This process is based on an algorithm approved for all European markets, the 

EUPHEMIA algorithm. [15] 

 

 

Figure 4.2 – The crossing of purchase and sale offers originates the market price of electricity. This method is 

based on the Euphemia algorithm. [16] 

 



Chapter 4 – Iberian Electricity Market 

- 19 - 

 

Regardless of the agents participating in the markets being in Spain or Portugal, the 

operation of the daily market implies that all buyers pay the same price and all sellers receive 

the same price, in what is called a single marginal price model. The operating rules of this 

organized market are specific to the market operator, OMIE.  

In addition, since it is an Iberian market, constituted by Portugal and Spain, there may 

be circumstances where commercially available interconnection capacities between the two 

countries do not allow the cross-border flows of energy that cross-market offers would dictate. 

In case this occurs, the current market rules determine that the two market areas corresponding 

to Portugal and Spain are separated and that specific prices for each of the mentioned areas are 

found. The EUPHEMIA algorithm is then executed separately, in such a way that, a different 

price is defined for both countries. This mechanism is called market splitting or market 

separation. [15] 

 

Figure 4.3 – Market splitting procedure. [16] 
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4.2.2 Intraday market 

Complementary to the daily market, there is the intraday market (sometimes called the 

adjustment market), which daily, through several sessions, allows to make adjustments in the 

quantities transacted in the daily market. The intraday market is structured in six daily trading 

sessions, with an operating base similar to that described in the daily market, where the volume 

of energy and price per hour are determined by the intersection between supply and demand. 

The distribution of times per session is as follows [17][19]: 

 

 

 

• The first intraday session defines prices for the last 3 hours of the trading day and 

for the 24 hours of the day following the trading day; 

 

• The second intraday session defines prices for the 24 hours the day after trading day; 

 

• The third intraday session defines prices for the 20 hours between the hour 5 and the 

hour 24 of the day following the trading day; 

 

• The fourth intraday session defines prices for the 17 hours between the hour 8 and 

the hour 24 of the day following the trading day; 

 

• The fifth intraday session defines prices for the 13 hours between hour 12 and the 

hour 24 of the day following the trading day; 

 

 1st 

Session 

2nd 

Session 

3rd 

Session 

4th 

Session 

5th 

Session 

6th 

Session 

Session opening 17:00 21:00 01:00 04:00 08:00 12:00 

Session ending 18:45 21:45 01:45 04:45 08:45 12:45 

Prices publication 20:45 23:45 03:45 06:45 10:45 14:45 

Schedule horizon (time 

periods) 

27 hours 

(21-24) 

24 hours 

(0-24) 

20 hours 

(5-24) 

17 hours 

(8-24) 

13 hours 

(12-24) 

9 hours 

(16-24) 

Table 4.1 – The different sessions available in the intraday market. [19] 
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• The sixth intraday session defines prices for the 9 hours between hour 16 and the 

hour 24 of the day following the trading day. 

 

The intraday market shares with the daily market the method of operation, based on the 

submission of offers, purchases and sales, by the various agents registered to act in the daily 

market, indicating each offer per session the day and hour, the corresponding price and quantity 

of energy. This type of market therefore gives a great versatility to the operation of the agents, 

allowing a very considerable degree of optimization, according to the needs of each agent, in a 

variety of time horizons and with the same guarantees in terms of transparency and possibilities 

of supervision which characterize the daily market. 

 

4.2.3 Forward market 

The forward market is a trading platform, which shares the same operating 

characteristics of MIBEL in daily markets but is distinguished by the establishment of electric 

energy purchase and sale contracts for a certain maturity in the future (week, month, trimester 

or year). In the scope of MIBEL and the agreements established for this market, the entity 

responsible for the management of the futures market is OMIP. In this way, OMIP offers the 

following instruments for the establishment of contracts [18]: 

 

• Future Contracts: contract for the purchase or sale of energy for a certain time 

horizon, in which the buyer agrees to purchase electricity during the delivery period 

and the seller agrees to place the same electricity, at a price determined at the time 

of the transaction. Gains and losses resulting from price fluctuations during the 

negotiation phase in this type of contract are liquidated on a daily basis. According 

to OMIP, the most traded products in the futures market are Futures contracts. 

 

• Forward contracts: a contract for the purchase or sale of energy for a certain time 

horizon, in which the buyer commits to purchase electricity during the delivery 

period and the seller agrees to place the same electricity, at a price determined at the 

time of the transaction. Contrary to the future contracts, in a Forward contract the 
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gains and losses resulting from price fluctuations during the negotiation phase in 

this type of contract are liquidated on the days of physical or financial delivery. 

 

• SWAP contracts: a contract in which a variable price position is exchanged for a 

fixed price position, or vice versa, depending on the direction of the exchange. Their 

function is to manage or take financial risk, not verifying the physical delivery of 

the product to which they refer, but only the liquidation of the corresponding 

margins. 
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Chapter 5 

5.   Data Availability 

 In this chapter, it is described how data availability and information flow is 

accomplished between the different agents of the sectors and the energy supplier agent. It is 

still addressed the topic of the smart meter, and what kind of benefits it will bring, not only to 

the customers but also to the entire electricity business. 

 

 

5.1 Information flow 

 For an efficient functioning of the electricity sector, the exchange of information and 

the availability of data plays an essential role, among the various agents of the NES value of 

chain. For this reason, there are responsibilities in each one of the sectors that need to be 

accomplished, in terms of providing relevant data for the sectors that relate. Regarding the 

commercialization sector, there is a mandatory flow of information between the energy supplier 

agent, the distribution network operator (DNO) and the transmission network operator (TNO). 

This information becomes crucial, not only for billing purposes, but essentially to the 

management of the client portfolio or for the definition of strategies for the participation in 

MIBEL. 

 One of the factors with a major relevance in the ease of data acquisition, is about the 

existence or not of telemetering. Nowadays, telemetering with data consumption records, 
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includes the totality of clients of the voltage level SLV, MV, HV and VHV, while, clients with 

voltage level NLV, do not have telemetering. In this case, estimates and average calculations 

according to a classification assigned are used, through records of the contracted power and the 

consumption of the last 12 months. This situation has been undergoing significant changes in 

recent years, due to technological innovations applied in the electrical grid, as we will see later 

in this chapter.  

 The data received by the energy supplier agent, comes with a mandatory daily and 

monthly frequency. Daily, it is possible to the energy supplier to receive consumption data 

referring to the previous day, but due to the particularity of the NLV client data daily available 

being based on estimates, there are monthly corrections of different levels sent, as actual real 

values are collected by the DNO. The energy supplier receives monthly 3 files in a period of 

nine months, namely one month after the consumption, three months after the consumption and 

nine months after the consumption. As these data files are received, they contain corrections 

and adjustments of the previous data files. Only nine months after the consumption, it is 

possible to the energy supplier to obtain the definitive data values of the complete client 

portfolio in that period. 

  

 

Figure 5.1 – Periodicity of the availability of data. 

   

 In the following points, the informations to be supplied by the DNO and the TNO to the 

energy supplier agent are explained in more detail, according to the type of information, as well 

as the periodicity of availability and its respective content.  

  

5.1.1 Individual data by delivery point (DPC) 

 On a daily and monthly basis, by the part of the DNO, consumption data of each 

individual DPC, belonging to the client portfolio of the energy supplier, with a sampling period 

of 15 minutes, on the day after the consumption (D+1) and on the month after the consumption 
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(M+1) are made available. As said before, this data depends directly on the existence of 

telemetering, that is, in client of a mainly business sector, SLV, MV, HV and VHV, real data 

values are made available equivalent to the actual consumption. In the majority of domestic 

clients, the NLV, in which the telemetering functionality does not exist, the data available are 

based on estimates and averages calculated by historical records. The data referring the NLV 

clients are separated by classes: NLV A, NLV B and NLV C.   

   

 

Figure 5.2 – Periodicity and content type of the data made available by delivery point. 

 

5.1.2 Data aggregated data by client portfolio 

 On a monthly basis, 3 types of consumption data are provided by the TNO: a 

consumption data file, corresponding to the previous month, M+1, also known as "Version 1", 

or V1, a consumption file corresponding to consumption three months before, referred to as 

"Version 2", or V2, and lastly, the consumption data file of nine months before, M+9, also 

designated as "Version 3", or V3. Each one of those file versions, corresponds to a correction 

of the previous version, and only Version 3 will contain definitive data. For SLV, MV, HV and 

Data D+1, day after the consumption

Clients with telemetering: SLV, MV, HV, VHV

• Daily periodicity, on the day after consumption (D+1);

• Load diagram of one day of consumption, distributed in periods of 15
minutes, per DPC;

• Real data.

Clients without telemetering: NLV A, NLV B, NLV C

• Daily periodicity, on the day after consumption (D+1);

• Load diagram of one day of consumption, distributed in periods of 15
minutes, per NLV class;

• Data estimated by the DNO.

Data M+1, month after the consumption

Clients with telemetering: SLV, MV, HV, VHV

• Monthly periodicity,  in the first month following the consumption (M+1);

• Load diagram of all the days of the month of consumption of the previous 
month, distributed in periods of 15 minutes, per DPC;

• Real Data.
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VHV clients, the data entered in versions V1, V2 and V3 do not differ in anything from their 

D+1 values, since the readings are real and do not change. 

 The reason behind this method, is due to the fact that in NLV installations, it is not 

always possible to obtain cyclic readings with the periodicity required by the availability of 

data, so it is necessary to use calculations to determine the estimated consumption. As the cycle 

readings are being performed, the data is being updated and this is being transposed into the 

various data corrections, in the form of file versions (V1, V2 and V3), received by the energy 

supplier agents. 

 As opposed to daily data, this monthly data is distributed by hour, for each day of the 

month, of the reference month. In addition to this data, there is also information on the recording 

of hourly and daily electricity prices, as well as information on the deviations, by default and 

in excess, per unit of energy (MWh) and currency unit (€), of operations of purchase of 

electricity in MIBEL in the previous month, by the energy supplier. 

 

 

Figure 5.3 - Periodicity and content type of the data made available for the complete client portfolio. 

Data M+1, in the first month following the consumption (V1)

Clients aggregate: NLV A, NLV B, NLV C, SLV, MV, HV e VHV

• Monthly periodicity,  in the first month following the consumption (M+1);

• Load diagram of all the days of the month of consumption of the previous 
month, distributed by hour, of the clients aggregate of the energy supplier;

• Estimated data based on average consumptions.

Data M+3, in the third month following the consumption (V2)

Clients aggregate: NLV A, NLV B, NLV C, SLV, MV, HV e VHV

• Monthly periodicity,  in the third month following the consumption (M+3);

• Load diagram of all the days of the month of consumption of three months 
ago, distributed by hour, of the clients aggregate of the energy supplier;

• Data calculated on the basis of all the existing definitive consumptions, and 
in average consumptions for the remaining DPCs.

Dados M+9, in the ninth month following the consumption (V3)

Clients aggregate: NLV A, NLV B, NLV C, SLV, MV, HV e VHV

• Monthly periodicity,  in the ninth month following the consumption (M+9);

• Load diagram of all the days of the month of consumption of nine months 
ago, distributed by hour, of the clients aggregate of the energy supplier;

• Data calculated on the basis of definitive consumptions.
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5.2 Smart meters 

 As mentioned previously, the fact that there are no telemetering conditions the quality 

of the data made available, since it is not always possible to the DNO to obtain cyclic readings 

at the frequency required by the availability of data, in which, alternatively, are used estimates 

using the historical records or the application of the annual consumption profiles. The fact that 

this happens, immediately conditions the energy supplier agent in the decision making, since 

the uncertainties generated by the estimates, lead to wrong decision making in the purchase of 

energy, in addition to conditioning the planning in the participation in the electricity markets. 

 In recent years, this situation has been changing with the gradual implementation of 

smart meters. Smart meters have emerged in recent years in Portugal, through the realization of 

intelligent electrical grids and energy efficiency projects, namely the InovGrid project, initiated 

in 2007, in Évora. The Smart Grid concept has revolutionized the way technical and commercial 

management of traditional electricity grids are conducted. This concept incorporates benefits 

of advanced communication and information technologies, in order to create an efficient 

network utilization and to provide real-time consumption information. [20] 

 This way, smart meters became a key element in the application of intelligent systems, 

since they act as the interface between the consumer and the rest of the electrical network, with 

the potential of, using the various sensors installed in the network, to be possible to feed 

information systems capable to manage and analyse large volumes of information. From the 

point of view, of the various users of the electricity network, among them the energy suppliers, 

this can be extremely useful regarding the possibility of managing and analysing big data 

systems, with a perspective to anticipate and predict consumption patterns, meaning a more 

efficient method for the participation in the electricity markets. 

Currently, EDP Distribuição is in the process of replacing the conventional meters to 

smart meters, or Energy Box (EB). The EB’s are equipped with an interface HAN (Home Area 

Network) external module, that allows the access of data not only to the clients using the 

devices, but also to energy supplier agents. The information available ranges from the active 

and reactive energy every 15 minutes, active and reactive energy per tariff every 15 minutes, 

max active power taken, instantaneous values of energy, voltage, active power, power factor 

and frequency, as well as the load diagram. Contractual information is also made available like 

the configured time cycle and the contracted limited power, with the available functionality of 

changing the contractual parameters through the communication with the EB. The distribution 
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network operator, EDP Distribuição, is the owner of the devices, responsible for installing, 

maintaining and operating, while the energy supplier agent receives the data made available by 

the device and acts as an intermediary between the clients demands and needs, and the DNO 

respective operations. 

  

 

Figure 5.4 – The smart meter, e-box, being installed by the EDP Distribuição. [21] 

 

By the end of 2017, 1.3 million EB's were installed, and by the year 2020, the number 

is expected to increase until 3.4 millions corresponding to 60% of customers. Within the offer 

of new services to the energy suppliers, in addition to those already mentioned above, the 

following functionalities are included: [21][22] 

• Consumer/production monitoring and energy efficiency services; 

• New tariffs based on more granular consumption measures (hourly rates, prepaid); 

• Improved billing service (without estimates, multipoint clients). 
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        Chapter 6 

6.   ANN Theoretical Background  

In the chapter 6, the reader is introduced to the general concepts of artificial neural 

networks (ANN) and a more focused explanation of a particular case of a neural network, a 

radial basis function neural network (RBFNN), used for the development of this work. The 

RBFNN training schemes, stopping criteria and the notion of multi objective genetic algorithms 

are also covered in this chapter. 

  

  

6.1 Artificial Neural Network Concepts 

The concept of artificial neural networks (ANN) was initially inspired by the operation 

of the brain and all its biological neuronal complexity. The basic component in a brain structure 

is the neuron. A neuron cell body is composed by a structure called dendrites connecting a nerve 

terminal, through a long axis called the axon. The nerve terminal is close to other neurons 

dendrites, forming junctions called synapses. These interconnections between neurons form a 

biological neural network circuitry. Neurons interact with each others by electrical signals, that 

propagate from the dendrites to the nerve terminal [23]. The figure 6.1 shows a biological 

neuron structure.  
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Figure 6.1 – Biological neuron. [24]   

  

Taking inspiration from the brain functionality, the concept of mimifying in an 

analogous way the brain behaviour has emerged, through a mathematical model capable of 

computational processing that follows the operations of a neuron. This concept of artificial 

neural network is characterized as an high adaptivity capability system, capable of a very 

efficient computational model, able to learn from examples and to generalize others never 

executed before. This artificial system is capable of carrying out autonomous learning, as well 

as pattern recognition, trainable and not directly programmable, standing out in applications 

where the solution is hardly achieved in regular programs and models. [25]   

Due to artificial neural networks modelling complexity, there are several factors to be 

considered in terms of network topology, learning algorithms and properties, that impact in a 

good neural network performance. 

 

Figure 6.2 – Example of a neural network with xm inputs, one neuron and one output. [26] 
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An artificial neural network can be shown in the figure above, composed by multiple 

inputs weighted and summed with an additional bias, connected with an activation function. In 

mathematical terms it can be described by equations 6.1, 6.2 and 6.3 with respect to neuron k, 

for m inputs: [26] 

 

 𝑢𝑘 = ∑𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

 (6.1) 

 

 

 

  

𝑣𝑘 = 𝑢𝑘  +  𝑏𝑘 (6.2) 

 𝑦𝑘 =  𝜑(𝑣𝑘) (6.3) 

 

 

The input vector is defined by x1, x2, …, xm and ωk1, ωk2, …, ωkm are the synaptic weights 

of the neuron k. υk is the activation potential resulting from the sum of the terms ωkjxj and the 

bias bk. Consequently, υk is denoted as net input and the argument of the activation function φ. 

Although an ANN could be composed by multiple neurons to handle multiple inputs, and 

multiple layers in the hidden layer, the concept is the same as explained before.  

The activation function plays a relevant role, by the effect on the final output. Some of 

the most common activation function used in the different ANN are represented in the table 

6.1: 

 

 

Name Function 

Threshold function 𝑓(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0
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Piecewise-linear function 

{
 
 

 
 1,                                𝑥 ≥  

1

2

𝑥 + 
1

2
,          −

1

2
< 𝑥 <

1

2

0,                             𝑥 ≤ −
1

2

 

Linear function 𝑓(𝑥) = 𝑥 

Sigmoid function 𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 

Hyperbolic tangent function 𝑓(𝑥) =  tanh𝑥 

Gaussian function 
𝑓𝑖(𝐶𝑖,𝑘, 𝜎𝑖) =  𝑒

∑ (𝐶𝑖,𝑘−𝑥𝑘)
2

𝑘=1

2𝜎𝑖
2

 

 

Table 6.1 – Most common activation functions. [23][25] 

 

 

 

6.2 Radial Basis Function Neural Network 

 A radial basis function neural network (RBFNN) was introduced as a particular type of 

artificial neural network in the late eighties.  RBFNN is composed by three layers. The first 

layer is the input layer, which connects the inputs to the network. The second layer is the hidden 

layer. Typically, in RBFNN, the network presents only one hidden layer, that can be composed 

by multiple neurons. Each neuron on the hidden layer contains a radial basis function as an 

activation function, hence the name radial basis function neural network. At last, comes the 

third layer, the output layer, usually composed by a single neuron, where the final result is 

outputted.  
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Figure 6.3 - Example of a RBF neural network with xm inputs and N neurons. [26] 

 

 

The hidden layer is formed by a neuron set, each one represented by a radial basis 

function, given by: 

 𝜑𝑖(𝑥) =  𝛾(|𝑐𝑖 − 𝑥|) (6.4) 

 

The ith input data point ci defines the centre of the radial-basis function, and the vector 

x is the signal (pattern) applied to the input layer. Unlike other types of ANN, like the multilayer 

perceptron, the links connecting the source nodes to the hidden units are direct connections with 

no weights.  

Although, there are several radial basis functions possible, the most widely used and 

also on this report, is the Gaussian function, using the Euclidean norm, which can be written 

as: 

 
𝜑𝑖(𝑥, 𝑐𝑖, 𝜎𝑖) = 𝑒

‖𝑥−𝑐𝑖‖2
2

2𝜎𝑖
2

 
(6.5) 

 

Where σi and ci are the width and center of the ith Gaussian function, respectively. The 

output of a RBFNN can be expressed as: 
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 𝑦(𝑥) = 𝑏 +∑𝑤𝑖𝜑𝑖(𝑥, 𝑐𝑖, 𝜎𝑖)

𝑛

𝑖=1

 (6.6) 

 

Where wi is the ith linear weight, n is the number of hidden neurons, and b is the bias. 

[26][27] 

 

6.3 RBFNN Training Schemes 

 One of the most enthusiastic features regarding the artificial systems, is the ability to 

learn and adapt through changes in the environment. In ANN, learning becomes the process of 

updating the inner properties of the system, in response to external stimulation, with the goal to 

achieve a specific task. This learning ability can be achieved by a training method, that consists 

of presenting to the network training examples, similar to the way we learn from experience. 

This procedure can involve from network architecture modifications, to adjusting the weight 

connections between layers and nodes, or even changes in the neurons properties, in order to 

adapt to the given training examples [4]. There are three classes of major methods for RBF 

training and are going to be explained in the following sections. This section follows close the 

section 2.2.1 in [23]. 

 

6.3.1 Fixed centers selected at random 

Initially, the RBFNN were considered as interpolators, capable of forcing the function 

to pass exactly for every point in the training data. This scheme had its problems due to need 

of enlargement of the data set, meaning an increase of complexity, usually originating badly 

conditioned networks. In order to avoid this problem, the RBFNN began to be considered as an 

approximator, which simplified the procedure by allowing a considerable decrease of the 

number of basis function needed and making possible the functions base centers not match the 

data points. The simplest way to determine the functions base centers is, by choosing them 

randomly, in the range of the training set. The Gaussian standard deviation, in this method, is 

usually given by: 



Chapter 6 – ANN Theoretical Background 

- 35 - 

 

 𝜎 =  
𝑑𝑚𝑎𝑥

√2𝑛
 (6.7) 

 

Where dmax is the maximum Euclidean distance between the centres and n is the number 

of centres. This avoids the condition of the base functions to be too picky or too flat. The linear 

weights can be obtained by: 

 �̂� =  Ф+𝑡 (6.8) 

 

 Where Φ+ is the pseudo-inverse outputs matrix of the hidden neurons, with dimension 

Q × n, being Q the number of training patterns. The t vector is the desired output of the network, 

with Q × 1 dimension.  

 

6.3.2 Self-organized selection of centers 

The problem with the previous described training method is related to the need of a large 

training set in order to achieve an acceptable performance. As an alternative an hybrid training 

process could be used involving a two-step method: A self-organized learning step, to determine 

the locations of the centres of the radial basis functions, and a supervised learning step, to 

determine the linear output weights.  

In the first step, for grouping the data in a homogenous manner, the most popular method 

is the k-means clustering algorithm [28]. This algorithm iterates by placing the centers into 

regions were significant number of examples are grouped, stopping the iterations until there are 

no significant alterations of the centres. The problem with this algorithm that it only can get to 

a local optimum solution, that depends on the centers initialization values. To solve this 

limitation several other algorithms have been proposed based on a measure that weights a 

variation on a group. One of them is the k-means adaptive clustering, allowing to converge to 

an optimum result, or close to it, without depending on initial centre values [29]. In relation to 

the standard deviations or spreads, they can be calculated using equation 6.7 or using other 

heuristics such as: 

• K-nearest neighbours: considering k (a user-defined percentage of the total number 

of centres) centres nearest the centre Ci. 
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 𝜎 =  
∑ ‖𝐶𝑖 − 𝐶𝑗‖
𝑘
𝑗=1

𝑘√2
 (6.9) 

 

 

• Nearest neighbours: Considering k the nearest neighbour of centre i. Q is an 

application-defined parameter. 

 

 𝜎 = 𝑄
‖𝐶𝑘 − 𝐶𝑖‖

√2
 (6.10) 

 

• Empirical standard deviation: where n is the train pattern number associated to the i 

group; 

 𝜎 =∑√‖𝐶𝑗,𝑖 − 𝑥𝑗‖
2

𝑛

𝑛

𝑗=1

 (6.11) 

 

• Maximum distance between patterns: where m is the train pattern number. 

 

 𝜎 =
𝑚𝑎𝑥𝑖,𝑗=1…𝑚‖𝑥𝑖 − 𝑥𝑗‖

2√2
 (6.12) 

 

 

6.3.3 Supervised selection of RBFNN parameters 

In this learning scheme, all the RBF network parameters: spread, 𝜎 , centres, C and 

linear weights, w, are obtained with a supervised learning process computed using error-

correction algorithms. The error is calculated as the sum of the squared differences between the 

net output and the desired output, being back propagated through the hidden neurons to update 

the weights of the connections. This process is repeated until a convergence in a minimum error 

solution is verified. The error back-propagation (BP) algorithm is the best known learning 

algorithm for performing this operation. The BP algorithm implements the steepest descent 



Chapter 6 – ANN Theoretical Background 

- 37 - 

 

method and uses a methodology based on the update of parameters, expressed like the equation 

below: 

 𝑤[𝑘 + 1] = 𝑤[𝑘] − ƞ𝑔[𝑘] (6.13) 

 

In equation 6.13, w is the vector that correspond to the model parameters, n is the 

learning rate and g is the gradient vector. Usually, the error criterion is applied by minimizing 

the sum of the square of the errors between the target and the actual output, expressed in 

equations 6.14 and 6.15 using the gradient vector, mathematically expressed in above equation 

6.16.  

 𝑒[𝑘] = 𝑡[𝑘] − 𝑦[𝑘] (6.14) 

 

 𝐸 =
1

2
𝑒𝑡𝑒 =  

1

2
∑𝑒2[𝑘]

𝑁

𝑖=1

 (6.15) 

 

 𝑔 = ∇𝐸(𝑤) = [
𝜕𝐸

𝜕𝑤1
,
𝜕𝐸

𝜕𝑤2
, … ,

𝜕𝐸

𝜕𝑤𝑀
]
𝑇

 (6.16) 

 

Several modifications of this algorithm have been proposed. One of them is to perform 

the update of the weights each time a pattern is presented. The reasoning behind pattern mode 

update is that, if is small, the departure from true gradient descent will be small and the 

algorithm will carry out a very close approximation to gradient descent in sum-squared error. 

Another modification, introduced by Rumelhart and the PDP group, is the inclusion of a portion 

of the last weight change, called the momentum term, in the weights update equation: [23][30].  

 𝑤[𝑘 + 1] = 𝑤[𝑘] − ƞ𝑔[𝑘] + 𝛼(𝑤[𝑘] − 𝑤[𝑘 − 1]) (6.17) 

 

Two disadvantages can be pointed out for the BP algorithm: it is not a reliable algorithm, 

as the training procedure can diverge, and the convergence rate is usually very slow. The 

limitations of the BP algorithm stimulated the development of alternative methods, such as the 

Levenberg-Marquardt method, explained in 6.3.3.1. 
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6.3.3.1 Levenberg-Marquardt method 

The Levenberg-Marquardt method is a general unconstrained optimization method, 

which has global convergence property. The search direction for this method is: 

 (𝐽𝑇[𝑘]𝐽[𝑘] + 𝑣[𝑘]𝐼)𝑝𝐿𝑀[𝑘] = −𝐽
𝑇[𝑘]𝑒[𝑘] (6.18) 

 

 Where the scalar v[k] controls both the magnitude and the direction of p[k]. As v tends 

to infinity, p[k] tends to a vector of zeros, and a steepest descent direction. The Levenberg 

Marquardt method is of the “trust-region” or “restricted step” type. this type of method attempts 

to define a neighbourhood where the quadratic function model agrees with the actual function 

in some sense. If there is good agreement, then the test point is accepted and becomes a new 

point in the optimization; otherwise it may be rejected, and the neighbourhood is constricted. 

The radius of this neighbourhood is controlled by the parameter v, usually denoted 

the regularization factor. 

 To introduce the algorithm, one way of envisaging the Hessian approximation employed 

at every kth iteration, consider a linear model for generation the data: 

 𝑜(𝑛𝑙)[𝑘] = 𝐽[𝑘]𝑤[𝑘] (6.19) 

 Using this, the predicted error vector, after taking a step p[k] is: 

 𝑒𝑝[𝑘] = 𝑒[𝑘] − 𝑗[𝑘]𝑝[𝑘] (6.20) 

  

 So that the predicted reduction of Ω: 

  ∆Ω𝑝[𝑘] = 𝛺(𝑤[𝑘]) −
𝑒𝑝[𝑘]𝑇(𝑒𝑝[𝑘])

2
 =  (6.21) 

 

 Actual reduction is given by: 

  ∆𝛺[𝑘] = 𝛺(𝑤[𝑘]) − 𝛺(𝑤[𝑘] + 𝑝[𝑘]) (6.22) 
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To measure the accuracy to which the quadratic function approximates the actual 

function, the ratio, r[k], in equation 6.23, is used to actualize the regulation parameter v that 

usually uses the rule in equation 6.24: 

 𝑟[𝑘] =
∆𝛺[𝑘]

∆𝛺𝑝[𝑘]
 (6.23) 

 

 

 𝑣[𝑘 + 1] =

{
 
 

 
 
𝑣[𝑘]

2
, 𝑟[𝑘] >

3

4

4𝑣[𝑘], 𝑟[𝑘] <
1

4
𝑣[𝑘],                    𝑐𝑐

 (6.24) 

 

For negative values of r[k] just the regularization parameter is actualized. [23][27] 

 

6.3.4 Stopping criteria 

 A well performed training procedure needs also the definition of a stopping criterion, 

that could avoid a poor network conditioning. A good conditioning ability is referred to as 

generalization capacity and its defined by avoiding two specific situations, that have negative 

effect in the network capability to generalize: overtraining and overfitting. Overtraining is when 

the neural network assumes an addicted behaviour by learning too many input-output examples, 

ending up by memorizing the training data, losing the ability to generalize between similar 

input-output patterns, acting close to a look up table. Overfitting refers to exceeding the optimal 

ANN size which may result in a worse predictive ability of the network.  

 A technique used to work around the bad conditioning training and to maximize the 

generalization ability is the early stopping method. When training a network, the performance 

of the model is measured with a different, fresh and unused set (testing set). Initially the testing 

fit decreases and increases afterwards, representative of an overtraining in the testing set, due 

to the loss of generalization ability during the training. The early stopping method is therefore 

used in the training of the network, by evaluating the performance of the model with the testing 

set until it reaches the minimum in terms of fit. The figure 6.4 shows the optimal stopping 

criterion, this way avoiding a bad conditioning model. [23][26] 
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Figure 6.4 – Optimum stopping avoiding overtraining and undertraining in order to achieve a satisfied 

generalization. [27] 

 

 

6.4 Multi Objective Genetic Algorithms 

 Genetic algorithms (GA) are one class of evolutionary algorithms defined by a set of 

procedures and operators, inspired by Darwin theory of natural selection from the survival of 

the fittest. In GAs, a population is composed by individuals, which evolves through several 

generations, the characteristics of each individual changing by mutations and, more often, with 

genetic information obtained by both parents (crossovers). The main idea is that, following each 

generation the weak unfit die and do not produce a generation. Analogous to that, in genetic 

algorithms, a set of solutions, represented by population of a specie, have a number of 

individuals that suffer operations to improve its capabilities to solve a problem. In each 

generation, the worst solutions are prevented to evolve.  

The presence of multi objectives, sometimes presents a conflicting environment, 

meaning an harming to some objectives or an improvement to others. This conflicting nature, 

of contradicting objectives to be optimized simultaneously, originates the Pareto set of the multi 

objective optimization.  
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Figure 6.5 - Concept of Pareto optimality. [31] 

 

Figure 6.5 shows an example of a two objective minimization problem. The shaded 

region in the space of solutions presents the dominated solutions, while the solid curve, where 

A and B are located, represent the non-dominated set of solutions, respective to objectives obj.1 

and obj.2. In this problem, the multi objective optimization goal is to improve the surface of 

non-dominated solutions in such a way that the surface approaches the origin as much as 

possible. This way optimizing the two objectives with the minimum solution possible, as 

intended. The MOGA procedures initially starts with an initial population of individuals 

representing the solution candidates. This initial generation is the source to new other 

generations, sequentially through iterations. The figure 6.6 shows the procedure of the iterations 

flow during MOGA operation. 

 

Figure 6.6 – MOGA procedure diagram. [32] 

  

At each iteration the population is evaluated for the specified multi objectives and a 

verification is made to confirm if the design criteria was met. If the objectives achieve 

satisfactory results of the design criteria intended, the algorithm stops, and the designer obtains 

the individuals with the approximation to the Pareto front of the present generation. 
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Chromosome: 

 
n 𝜆1 𝜆2 … 𝜆𝑑𝑚 𝜆𝑑𝑚+1 … 𝜆𝑑𝑀 

 

Input space of q features, F: 

𝑓1 𝑓2  𝑓𝑎0 𝑓𝑎0+1 𝑓𝑎0+2  𝑓𝑎0+𝑎1  𝑓𝑎0+⋯+𝑎0  𝑓𝑞  

↓ ↓  ↓ ↓ ↓  ↓  ↓  ↓ 

𝑦(𝑡) 𝑦(𝑡 − 1) … 𝑦(𝑡 − 𝜏𝑦) 𝑣1(𝑡) 𝑣1(𝑡 − 1) … 𝑣1(𝑡 − 𝜏𝑣1) … 𝑣0(𝑡) … 𝑣0(𝑡 − 𝜏𝑣0) 

 

Figure 6.7 – Chromosome composition and representation of the input equation of a neural network. [32] 

 

A fitness value is assigned to each individual. This way, the individuals are ranked and 

pairs of parents are chosen accordingly. Each mated pair will generate two offspring by the 

application of the recombination operator, thus forming the next generation. Lastly, the 

mutation operator is applied to each individual generated in the new generation before repeating 

the whole process. [32]  

Each individual in the MOGA population is represented by a string of integers, 

denominated as the chromosome, as shown in figure 6.7. In a MOGA chromosome, the first 

component, n, highlighted in a dark grey background, corresponds to the number of neurons, 

those highlighted by a light grey background represent the minimum number of inputs, dm, and 

remaining are a variable number of inputs up to a given total dM. [32][31]  

As we shall be dealing with dynamic mappings, we use the set of input features, non-

linear autoregressive (NAR) with exogenous inputs (NARX) formulation, represented by:  

𝑦(𝑡 + 1) = 𝑔(𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝜏𝑦),  

𝑣1(𝑡), 𝑣1(𝑡 − 1), … , 𝑣1(𝑡 − 𝜏𝑣1), …, 

 𝑣0(𝑡), 𝑣0(𝑡 − 1), … , 𝑣0(𝑡 − 𝜏𝑣0)) 

Where y is the output, g is a RBFNN, v1 to vo are the exogenous inputs and 𝜏𝑦, 𝜏𝑣𝑖 and 

𝜏𝑣0 the maximum lags of each respective input.  
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Chapter 7 

7.  Methodology Applied 

 In this chapter a detailed explanation of the practical procedures applied in the creation 

of several forecasting models, using radial basis function neural networks optimized by a multi 

objective genetic algorithm is done. Several aspects are going to be covered such as a brief 

overview of the early experimental work undertaken, the data collection specifications, different 

data approaches supported by the specific patterns of consumption of the data case study, as 

well as, the methodology applied in the models design. The objective is to achieve the best 

prediction models possible between different prediction horizons, yearly and seasonal models, 

as well as, multiple input variables, that could recreate the seasonal, temperature and daily 

characteristics influences in the energy consumption. 

 

 

7.1 Early work development overview 

The work developed and presented in this report, followed several stages of 

improvement, preparation or exploratory nature, until the achievement of satisfactory results. 

This served to deepen the knowledge of the themes covered in this work and to perfect the final 

results. In figure 7.1, a general overview, of the various stages of progress over the course of 

this project is presented.  
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Figure 7.1 – Early work development during this project. 

  

The development of this project could be separated into three major phases: An initial 

phase, an experimental phase and a final definition phase. In an initial phase, the development 

of the project was dedicated exclusively to the collection of data. A process of data analysis and 

identifying patterns of consumption. 

The first experience exploring the ANN forecast, served as an experimental phase, by 

using the Neural Network Time Series Toolbox provided by MATLAB. This method served 

the purpose of introducing the subject of neural networks forecast, with the use of various 

combinations of NAR and NARX networks time series trained using Levenberg-Marquardt 

algorithm. Also, in this period, the RBF neural networks using MOGA framework were 

introduced. A mixed seasonal data approach experimented, with data ranging from 1st August 

till 31st of December, with different input variables, allowing the exploring of MOGA properties 

and to adjust the parameters. This phase was plentiful in experiments of different variations of 

data and ANN model design exploring, which set the standards for the final definition of this 

project.  

 In the final phase, the final methods were idealized, with an yearly data approach and 

a seasonal data approach, training with various input variables and considering different 

prediction horizons. These yearly and seasonal methods represent the main case studies of this 

project, and their methodology are going to be explained, in full detail, in the following sections.  

 

Data collection 
and analysis

ANN model 
prediction using 

MATLAB NN 
Toolbox

RBFNN model using 
MOGA with a mixed 

data approach 

RBFNN model using 
MOGA, of seasonal 

and yearly data 
approach, with 24 and 

48 steps ahead 
prediction horizon 
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7.2 Data set 

 The Rolear Group headquarters building based in Areal Gordo, Faro, was the DPC 

energy consumption data used for this work. 

 

Figure 7.2 – Google maps screenshot of the Rolear group headquarters. coordinates: 37°02'26.5"N 

7°53'49.0"W. 

  

Being this DPC, a medium voltage client of Rolear Viva, this data was obtained by the 

available D+1 stream of data received and collected by the supplier for the purpose of this work. 

In chapter 4 is fully explained the availability of data. This data set has hourly energy values in 

MWh unit, with no missing data, from 20th March 2017 to 20th March 2018.  

For the atmospheric contributions, temperature data was considered as an exogenous 

input, and obtained by manually collecting minimum temperature Tmin and maximum 

temperature Tmáx, in ºC unit, for every day of data of energy considered, with no missing days, 

taken by the site www.ipma.pt in Faro location, as well as, in site www.accuweather.pt in Faro 

location. Unlike the energy values, this data has a daily basis, defined by the mean temperature 

Tméd given by the formula: 

 𝑇𝑚é𝑑 =
𝑇𝑚á𝑥 + 𝑇𝑚𝑖𝑛

2
 (7.1) 
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As it can be analysed in more detail in the section 7.3.1, the Rolear Group headquarters 

presents a regular behaviour of working labour schedule, having its energy consumption mostly 

from Monday to Friday, and minimal energy consumption on weekends, holidays or “bridge” 

days. For that reason, another exogenous input variable was created, by assigning a specific 

code to every characteristic day matching in the energy data set. This data has also no missing 

days, and like temperature, has a daily periodicity. Table 7.1 shows the code assigned to each 

day. This method was used in the paper [33].  

 

Day of week Regular day Holiday Bridge day 

Monday 0.05 0.40 0.70 

Tuesday 0.10 0.80  

Wednesday 0.15 0.50  

Thursday 0.20 1.00  

Friday 0.25 0.60 0.90 

Saturday 0.30 0.30  

Sunday 0.35 0.35  
 

Table 7.1 – Code assigned to each day. [33] 

 

Summing up, the complete dataset covers from 20th March 2017 to 20th March 2018 and 

is composed by 3 input variables: energy (MWh), temperature (ºC) and characteristic day code, 

with hourly, daily and daily periodicity, respectively, with no missing values.   

 

Variable Type Unit Periodicity Range of data 

Energy Modelled MWh Hourly [0.0111, 0.0948] 

Day Exogenous Code Daily [0.05, 1.00] 

Temperature Exogenous ºC Daily [8.5, 31.5] 
 

Table 7.2 – Overview of the complete data set. 

 

7.3 Patterns of consumption 

 The load diagram translates the variation of the energy consumption during hours of a 

day and days of a year. This allows to define a client profile by analysing the characteristics of 

the energy consumption in a temporal basis, enabling to understand the meteorological and 
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seasonal contributions. The next sections support the forecast approach methodology and 

exogenous variables chosen, by demonstrating the temporal and meteorological influence in 

energy consumption. 

 

7.3.1 Characteristic days patterns 

 The type of day of the week reveals an influential temporal factor in energy consumption 

mainly in 5 different cases: Working days (Monday to Friday), Saturdays, Sundays, holidays, 

and bridge days (working days between holidays, more properly Mondays or Fridays). In the 

sequence of working days, the behaviour pattern can be explained by the daily routine of a work 

schedule, from 09h to 18h, on a regular company, such as the case of Rolear Group 

headquarters. On weekends, there is another type of behaviour characteristic of offices and 

companies, in which the energy consumption decreases to is minimal possible, since its out of 

regular work schedule. The holidays are another specific case in which the consumption 

decreases, similar to what happens in weekends. Another specific characteristic are the “bridge” 

days, Mondays or Fridays in between holidays, in which some employers take the day off, that 

represents a less use of electrical equipments, resulting in a small decrease in energy 

consumption. The following figure demonstrates the different characteristics days present in 

the complete data set and which supports the coding scheme for day type idealized in section 

7.2.   

 

Figure 7.3 – Comparison of the energy consumption between 5 days distinct days. 
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7.3.2 Temperature influences 

 Besides the temporal factors, the meteorological factors, in this case temperature, are 

the ones that most affect the patterns of energetic consumption. The use of heating systems in 

the Winter and cooling/air conditioner in the Summer translate in an increase of electric energy 

consumption. This way, an input variable temperature can perform an import role in the case 

of a good forecast, since it contains information relative to seasonality and explains the 

behaviour of consumption along the different months. As can be seen in figure 7.4, the energy 

consumption, in the complete data set, varies according to the temperature changes. The habits 

of consumption are higher, when lower or higher temperatures are noted. The usage of heating 

systems in the winter and cooling systems in the summer translates in an increase of the energy 

consumption.  

 

Figure 7.4 – Comparison of the energy consumption at every 11h00 of the data set. 

 

7.4 Data approaches 

 The methodology applied was idealized to train the RBF neural networks, by covering 

different situations needs with the best possible accuracy, to obtain optimized prediction models 

enabling to forecast in between a few hours till a maximum of 48 hours. These optimized tools 

serve the purpose of being able to guarantee flexibility in forecasting, several steps ahead, the 

energy consumption of a certain individual. This way, is possible to plan the participations in 
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the different electricity markets, referred in chapter 4, namely in the OMIE day after and 

intraday markets. This being said, for every approach, two horizon prediction were 

experimented in training, 24 hours and 48 hours ahead. 

 In order to model the forecasting systems several network structures were put in place, 

taking into account the individual profile consumption, previously analysed in more detail in 

section 7.3. The forecasting models were built according to two major approaches of data sets: 

a seasonal approach defined by a spring period, a summer period, an autumn period and a winter 

period, and an yearly approach. These data collections are explained in more detail in the next 

sections. As inputs, the respective approach datasets were built with energy (MWh) as the 

modelled variable, local air temperature (ºC) and a specific characteristic day coding as the 

exogenous variables, like previously referred in more detail in section 7.2. Based on this, the 

models will present delayed values of those inputs, with a forecast time step of 1 hour, for a 

total of 24 or 48 hours time steps. 

In figure 7.5, the different design approaches according to data set inputs used and 

prediction horizons are presented.  

 

 

Figure 7.5 – Developed models according to each data approach. 

Predition horizon: 24 and 48 steps ahead

Seasonal approach: 
Winter, Spring, Summer, 

Autumn

Modelled 
variable: 
Energy

Modelled 
variable: 
Energy

Exogenous 
variable: Day

Modelled 
variable: 
Energy

Exogenous 
variable: Day, 
Temperature

Yearly approach

Modelled 
variable: 
Energy

Modelled 
variable: 
Energy

Exogenous 
variable: Day

Modelled 
variable: 
Energy

Exogenous 
variable: Day, 
Temperature
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7.4.1 Seasonal data approach 

 In this approach, the complete dataset was distributed in to four seasonal periods used 

for training: Winter, Spring, Summer and Autumn, differentiated by calendar date and not by 

the characteristics of the seasons. In table 7.3, the calendar limits and input variables 

information of the seasonal data sets, are represented. 

 

 Max Min Mean Start date End date   

Spring 
Energy (MWh) 0.0889 0.0112 0.0279 

20/03/2017 21/06/2017 
Temperature (ºC) 31 10 19.829 

Summer 
Energy (MWh) 0.0948 0.0131 0.0343 

21/06/2017 22/09/2017 
Temperature (ºC) 31.5 18 24.596 

Autumn 
Energy (MWh) 0.0806 0.0121 0.0298 

22/09/2017 21/12/2017 
Temperature (ºC) 25 11 18.291 

Winter 
Energy (MWh) 0.0855 0.0111 0.0333 

21/12/2017 20/03/2018 
Temperature (ºC) 16.5 8.5 12.978 

 

Table 7.3 – Overall information of the seasonal data sets. 

  

In figure 7.6, the energy consumption during each seasonal data set is presented. 

 

Figure 7.6 – Energy consumption in each seasonal data set. 
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7.4.2 Yearly data approach 

 In the yearly approach, the complete dataset was used for training. In table 7.4, the 

calendar limits and input variables information of this complete data set are presented.  

 

 Max Min Mean Start date End date 

Energy (MWh) 0.0948 0.0111 0.0313 
20/03/2017 20/03/2018 

Temperature (ºC) 31.5 8.5 18.9945 
 

Table 7.4 - Overall information of the yearly data sets. 

  

 

In the figure 7.7, the energy consumption during a complete year can be seen. 

 

Figure 7.7 - Energy consumption in the entire data set corresponding to a year.  
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7.5 RBFNN model design using MOGA 

 The RBF neural network model design uses an existing multi objective genetic 

algorithm framework implemented in a computer cluster, due to its computational demand and 

computation time, in the University of Algarve, Electronics and Informatics Engineering 

Department (DEEI), using MATLAB, Python, and C programming languages.  

The multi objective genetic algorithm, MOGA, is an evolutionary approach, inspired by 

the theory of natural selection and the notion of survival of the fittest, which performs a 

population-based search by employing operators, such as selection, mating and mutation. [35] 

The purpose use of MOGA in this work, is to achieve the design of RBF neural networks models 

with ensure efficiency and satisfactory performance, by the determination of optimized 

structure and parameters of RBFNN based models. This optimization process is accomplished 

by selecting combinations of input variables (and their lags), as well as the number of neurons, 

that optimize pre-specified model performance criteria. The neural network model design 

strategy employed, can be divided into a two stage procedure that contemplates: the ANN 

parameters and the ANN structure. The ANN parameters are obtained by a suitable training 

algorithm. In this case, neural network models are trained by the Levenberg-Marquardt 

algorithm using a modified training criterion. The ANN model structure is evolved using 

MOGA, by the selection of suitable input terms and number of neurons. These processes are 

going to be explained in the next sections. [34] 

   

7.5.1 RBFNN Training 

For a specified number of neurons, n, and for a determined set of inputs, X, training a 

RBFNN, formulated by the equation 6.6 in section 6.2, corresponds to determining suitable 

values of w, C, and σ.  These network parameters will be denoted as the parameter vector p: 

 

 𝑝 = [𝑤𝑖, 𝐶𝑖, 𝜎𝑖]       𝑖 = 1, 2, … , 𝑛 (7.2) 

 

 When each individual in the population is evaluated in MOGA, the training process for 

each model is made using a Levenberg-Marquardt algorithm minimizing an error criterion, that 

exploits the linear-nonlinear relationship of the RBF NN model parameters p. The training 

procedure stops using an early stopping technique, that evaluates over a second data set used 

for generalization, the testing data set, ceases to decrease within a maximum number of 

iterations, pre-specified in MOGA framework. The initial values of the nonlinear parameters 
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(C and σ) are obtained using an adaptive k-means clustering algorithm, w is determined as a 

linear least-squares solution. [36] 

 

7.5.2 MOGA model optimization 

 The training procedure only obtains the optimal values of the parameters in equation 

7.2, the MOGA model optimization covers the remaining main procedure stated in section 7.5, 

the ANN structure.  

In the full implementation of the model design, it is necessary to define the preferred 

specifications measures of the model design criteria, that could set the objectives for the 

determination of the network structure and parameters. Assume the data set composed of N 

input-output pairs as D = (X, y), divided into a training set Dt, a testing set Dg and a validation 

set Dv, also, a set F of the complete input features possible (lags of modelled and exogenous 

variables) and the vector parameter p. Using these assumptions, the execution of model design 

by MOGA can be expressed as the following: The model design preferences are given to the 

MOGA, by setting, the input features in the range of d ∈ [dm; dM], from F, and the number of 

neurons in the range of n ∈ [nm; nM]. Other specifications are used in the MOGA but are relative 

to the genetic algorithm functioning and not to the multi objective oriented optimization and 

model typology. After the execution, the MOGA generates a non-dominated set of RBF models 

according to the restriction or minimization of the multi objective set [μp, μs], where μp refers 

to the neural network parameters objectives p, and μs refers to the neural network structure 

objectives. The corresponding objectives [μp, μs], can be represented as:  

 

 𝜇𝑝 = [𝜀(𝐷𝑡), 𝜀(𝐷𝑔), 𝜀(𝐷𝑠, 𝑃𝐻)] (7.3) 

 

 

  

𝜇𝑠 = [𝑂(𝜇)] (7.4) 

 

In μp, the ε(Dt) and ε(Dg) represent the root mean squared error (RMSE) of the training 

and testing dataset, respectively. PH refers to the prediction horizon, in this work case it 

assumes values of 24 and 48 steps ahead, and Ds is an additional data set, that has m data points 

and for each data point the model is used to make predictions up to PH steps ahead. The error 

forecast matrix can be expressed as:  

 



Chapter 7 – Methodology Applied 

- 54 - 

 

  𝐸(𝐷𝑠, 𝑃𝐻) = [

𝑒[1,1] 𝑒[1,2] ⋯ 𝑒[1, 𝑃𝐻]

𝑒[2,1] 𝑒[2,2] ⋯ 𝑒[2, 𝑃𝐻]
⋮ ⋮ ⋱ ⋮

𝑒[𝑚 − 𝑃𝐻, 1] 𝑒[𝑚 − 𝑃𝐻, 2] ⋯ 𝑒[𝑚 − 𝑃𝐻, 𝑃𝐻]

] (7.5) 

 

Being 𝑒[𝑖, 𝑗] the model prediction error taken from the instant i of Ds, at step j within 

the PH value. Denoting the RMSE function operating over the ith column of the argument matrix 

by 𝑞(. , i) then the ε(Ds, PH) can be defined as: 

 

 

 

  
𝜀(𝐷𝑠, 𝑃𝐻) =∑𝑞(𝐸(𝐷𝑠, 𝑃𝐻), 𝑖)

𝑃𝐻

𝑖=1

 (7.6) 

 

In μs, O(μ) refers to the model complexity, that reflects the RBF input-output topology, 

and is calculated by: 

 

 𝑂(𝜇) = (𝑑 + 1)  × 𝑛 (7.7) 

 

Through a specified generated population, in each generation the individuals are trained, 

evaluated on the specified objectives [μp, μs] and ranked. In the case of unsatisfactory results, 

by means of operators such as recombination and mutation, the next generation chromosomes 

are determined, and the algorithm performs another iteration. Hopefully after a sufficient 

number of generations, a preferable set of models has been evolved, which meet the specified 

design criteria. [33][35][38] 

 

7.5.3 Model design cycle 

The model design optimization using MOGA problem can be synthesized as a sequence 

of actions, which should be repeated until prespecified design goals are achieved. These actions 

can be partitioned as three phase cycle: problem definition, solution(s) generation and analysis 

of results. 

Initially, the problem definition is characterized by the datasets preprocessing, by 

choosing the number of relevant variables and corresponding lagged terms, number of neurons, 

as well as, the set of objectives and goals to be attained. This is a crucial phase since, a poor 

problem definition could affect the size of the search space, as well as, the quantity and quality 
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of the resulting solutions. Then, in the solution(s) generation phase, MOGA does a full guided 

search to obtain models that satisfy the predefined objectives and goals. In the third and final 

stage, the set of the resulting models obtained that lie in the Pareto front are analysed. In this 

resulting set, the performance of the models in the validation set, assume major importance, 

since its not involved in the design and is capable of measuring the models generalization 

capability.  

In case of satisfactory results in the analysis of solutions provided by MOGA, the 

procedure stops. Otherwise the problem definition steps should be revised, either by variables, 

reducing the input space by removing reducing the number of input terms by choosing the more 

favourable ones from the resulting set of solutions, or by, restricting the trade-off surface 

coverage by changing objectives or redefining goals, this way guiding the MOGA operation to 

converge to a set of results closer to satisfactory results. This cycle actions could be repeated 

until satisfactory solutions are obtained.  

The procedure described can be visualized in the figure 7.8. [35][38]  

 

 

 

 

Figure 7.8 – MOGA design cycle. [35] 
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7.5.4 Dataset preparation 

As previously summarized in figure 7.5, for each data approach, 3 models were built 

according to the input variables used and for each model proposed, a corresponding input lag 

combination was required. In table 7.5, the models idealized are assigned with the respective 

range of lags of each variable for the design experiments. 

 

Variable Notation Model I Model II Model III 

Energy X1 20 lags 20 lags 20 lags 

Day X2 - 1 lag 1 lag 

Temperature X3 - - 1 lag 
 

Table 7.5 - Models input lags combinations. 

. 

As can be seen, Model I correspond to a NAR model where no exogenous variable is 

considered. Model II corresponds to a NARX model which uses as exogenous variable, day 

type with 1 lag, and Model III also corresponds to a NARX model using as exogenous variables 

temperature and day type, with 1 lag. In energy variable (X1), the 20 lags used are [1, 2, 3, 4, 

5, 6, 7, 8, 9, 10, 22, 23, 24, 25, 26, 46, 47, 48, 49, 50], while in day code (X2) and temperature 

(X3), the 1 lag used is [1]. The reasons behind these decisions are due to the periodicity nature 

of each variable, described in section 7.2.   

Data for each approach was prepared using the ApproxHull algorithm [37] as a method 

for determining the datasets. The ApproxHull algorithm application was computed using the 

computer cluster in the University of Algarve, Electronics and Informatics Engineering 

Department (DEEI). The lagged dataset of each model proposed, was computed in the 

Approxhull application to incorporate convex points reflecting the whole input range in which 

the model is supposed to be used in the training set, and allowing a normalization, important to 

a proper learning of relevant patterns, as relationships became clear when data is compressed. 

This compression of data defines the lower and upper values of the data ranging from [-1, 1].   

Finally, the Approxhull application generates the training (Dt), testing (Dg) and 

validation (Dv) sets with proportions of 60%, 20% and 20%, respectively. Additionally, an 

additional data set (not included in the original data set used for ApproxHull application), was 

used to create an additional set (Ds) with the purpose to be used in the MOGA forecast 

modelling.  
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7.5.5 Models design 

Based on the model design cycle described in 7.5.3, several cycles of design can be 

conducted leading to a definition of new designs, by redefining variables and their 

corresponding lag terms, as well as, imposing restrictions on objectives. This guides MOGA in 

the search of solutions closer to satisfactory results.  

In the execution of this work, two cycles of actions were conducted. In the first cycle, 

all the idealized data approach models had their structure, parameters and objectives similar, 

only differing in the prediction horizon of 24, for the 24 step ahead models and 48, for the 48 

steps ahead models. The MOGA parameters, structures and objectives used in the first cycle of 

design are shown in the table 7.6. 

 

 

Model type 

Nº of neurons 1 to 10 

Centers selection k-means algorithm 

Nº input features 1 to 20 

Training stopping Early stopping (with maximum 50 iterations) 

Objectives 

RMSE training Minimize ε(Dt) 

RMSE testing Minimize ε(Dg) 

Complexity Minimize O(μ) 

Forecasting error 
Minimize ε(Ds, PH)  

(PH = 24 and 48, with additional set) 

MOGA configuration 

Population size 100 

Nº of generations 50 

 

Table 7.6 – MOGA parameters used in the first cycle. 

 

 



Chapter 7 – Methodology Applied 

- 58 - 

 

After analysing the results, a second and final design cycle was performed in order to 

achieve optimized results, but this time, given the specific results of the previous iteration, a set 

of restrictions were attributed to strictly minimize the results according to specific structure, 

parameters and objectives. The MOGA parameters, structures and objectives used, specific for 

each model, in the second cycle of model design are shown in the table 7.7 for the models 

related to the prediction horizon of 24 steps ahead and table 7.8 for the models related to the 

prediction horizon of 48 steps ahead. 

 

  

 PH 24 Restrictions/Objectives values 

 Model 
RMSE Training 

ε(Dt)  

Complexity 

O(μ) 

Nº input 

features  

Nº of 

neurons 

S
p

ri
n

g
 

I 0.1 130 1 to 15 1 to 8 

II 0.08 120 1 to 19 1 to 7 

III 0.1 130 1 to 16 1 to 8 

S
u

m
m

er
 I 0.13 140 1 to 17 1 to 9 

II 0.13 130 - 1 to 8 

III 0.13 130 1 to 16 1 to 9 

A
u

tu
m

n
 I 0.1 130 1 to 18 - 

II 0.1 130 1 to 18 - 

III 0.11 120 1 to 16 1 to 9 

W
in

te
r 

I 0.16 130 1 to 15 1 to 6 

II 0.13 150 1 to 18 1 to 5 

III 0.12 130 1 to 18 1 to 8 

Y
ea

rl
y

 

I 0.12 130 1 to 14 1 to 8 

II 0.13 130 1 to 13 1 to 5 

III 0.13 130 1 to 12 1 to 6 

 

Table 7.7 – Restriction/objectives applied in the second cycle of MOGA design for the models of 24 steps ahead 

prediction horizon.  
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 PH 48 Restrictions/Objectives values 

 Model 
RMSE Training 

ε(Dt)  

Complexity 

O(μ) 

Nº input 

features  

Nº of 

neurons 

S
p

ri
n

g
 

I 0.1 130 1 to 16 1 to 8 

II 0.09 120 1 to 16 1 to 9 

III 0.1 110 1 to 16 1 to 8 

S
u

m
m

er
 I 0.12 130 - 1 to 6 

II 0.1 110 1 to 18 1 to 8 

III 0.12 140 1 to 14 1 to 8 

A
u

tu
m

n
 I 0.09 120 1 to 19 1 to 9 

II 0.11 130 1 to 18 1 to 8 

III 0.11 120 1 to 17 1 to 7 

W
in

te
r 

I 0.12 120 1 to 19 1 to 6 

II 0.12 130 1 to 19 1 to 5 

III 0.09 150 - - 

Y
ea

rl
y

 

I 0.09 110 1 to 19 1 to 8 

II 0.12 130 1 to 15 1 to 5 

III 0.13 130 1 to 10 1 to 3 

 

Table 7.8  – Restriction/objectives applied in the second cycle of MOGA design for the models of 48 steps ahead 

prediction horizon. 

 

The cases in which the restriction values present “-”, denotes no changes from the first 

cycle to the next ones.  Having done this extensive work of optimized model designs, in the 

next chapter the respective results will be presented, enabling comparisons between 

experiments and leading to the final conclusions. 
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Chapter 8 

8.   Results 

 This chapter purpose comes in the sequence of the detailed explanation of the 

procedures taken in this project in chapter 7. In here, are going to be presented the results and 

performance comparisons involving all different models. The models were generated using 

radial basis function neural networks optimization using MOGA framework and their 

performance is going to be evaluated according to their capability of generalization and 

forecasting up to several steps ahead. After a brief description of the early works developed, 

this chapter is separated in the two prediction horizons idealized, 24 and 48 hours ahead, and 

in each of those horizons, different periods of data were compared using multiple input 

variables.  

  

  

8.1 Early experimental work 

As stated in chapter 7, section 7.1, at an initial stage of this work, an exploratory phase 

was conducted, by experimenting the Neural Network Time Series Toolbox application 

provided by MATLAB. Using this method several ANN models were designed and trained. In 

order to get a perception of these experimental models, the network performance evaluations 

of a NAR model for each approach is presented in table 8.1. For all models the parameters and 

structure used in their design were the same: 

• Network topology: 1 hidden layer with 5 neurons; 

• Activation function: Sigmoid function; 

• Number of input features: 20 lags, from 1 to 20, of variable X1, following the 

notation in table 7.5; 
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• Training algorithm: Levenberg-Marquardt algorithm; 

• Training stopping: Early stopping (with the validation set). 

 

Approach 
RMSE Training 

(× 𝟏𝟎−𝟑) 

RMSE Testing 

(× 𝟏𝟎−𝟑) 

RMSE Validation 

(× 𝟏𝟎−𝟑) 

Spring 3.10 3.45 3.27 

Summer 5.68 5.42 5.27 

Autumn 4.51 4.81 4.41 

Winter 3.82 3.98 4.44 

Yearly 4.59 4.37 4.81 

 

Table 8.1 – Network evaluations of the models generated using MATLAB NN Time Series Toolbox. 

 

 This experimental models evaluations are going to be compared with the final results 

further ahead in this chapter, in order to understand the improvement with the final optimization 

technique using MOGA.  

 

8.2 RBFNN model design using MOGA optimization 

The model design with MOGA with prediction horizon comes in the sequence of what 

was previously reported. In order to improve the results obtained in an initial phase, the 

application of RBF neural networks using the MOGA framework was implemented as an 

optimization method. In the following sections are going to be analyzed and compared the 

results of the models idealized.  

 

8.2.1 Prediction horizon 24 steps ahead 

The proper evaluation of the models network capability to generalize and forecasting 

performance was made through the minimum root mean square error, RMSE, of the validation 

set and the model evolution for several prediction steps. This allows the performance of 

forecasting models to be assessed across different steps. In this section, only the 24 steps ahead 

will be presented and compared. In the scope of this thesis the performance evaluation will be 

done for each season, and for the whole year. 
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8.2.1.1 Seasonal approach 

This section contains the approaches of the four weather stations: Spring, Summer, 

Autumn and Winter. Each will present the corresponding input model equations, RBFNN 

structures, RBFNN parameters and performance evaluations of the models selected. For each 

model design, in each approach, only one RBF neural network was selected according to the 

best possible compromise between performance, complexity and forecasting ability. Using the 

notation in table 7.5, section 7.5.4, the formal description of models are given by the following 

input model equations: 

 

Spring Approach 

Model I 
y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-5), X1(k-6), X1(k-7), X1(k-8), X1(k-10), 

X1(k-24), X1(k-25), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-6), X1(k-8), X1(k-9), X1(k-10), X1(k-22), X1(k-24), 

X1(k-25), X1(k-26), X1(k-47), X1(k-48), X1(k-49), X2(k-1)) 

Model 

III 
y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-5), X1(k-9), X1(k-24), X1(k-25), X2(k-1)) 

Summer Approach 

Model I 
y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-5), X1(k-6), X1(k-7), X1(k-8), X1(k-10), 

X1(k-24), X1(k-25), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-6), X1(k-8), X1(k-9), X1(k-10), X1(k-22), X1(k-24), 

X1(k-25), X1(k-26), X1(k-47), X1(k-48), X1(k-49), X2(k-1)) 

Model 

III 
y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-5), X1(k-9), X1(k-24), X1(k-25), X2(k-1)) 

Autumn Approach 

Model I 
y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-5), X1(k-6), X1(k-7), X1(k-8), X1(k-10), 

X1(k-24), X1(k-25), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-6), X1(k-8), X1(k-9), X1(k-10), X1(k-22), X1(k-24), 

X1(k-25), X1(k-26), X1(k-47), X1(k-48), X1(k-49), X2(k-1)) 

Model 

III 
y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-5), X1(k-9), X1(k-24), X1(k-25), X2(k-1)) 

Winter Approach 

Model I 
y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-5), X1(k-6), X1(k-7), X1(k-8), X1(k-10), 

X1(k-24), X1(k-25), X1(k-49)) 
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Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-6), X1(k-8), X1(k-9), X1(k-10), X1(k-22), X1(k-24), 

X1(k-25), X1(k-26), X1(k-47), X1(k-48), X1(k-49), X2(k-1)) 

Model 

III 
y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-5), X1(k-9), X1(k-24), X1(k-25), X2(k-1)) 

 

Table 8.2 – NAR and NARX models of the selected network models of each seasonal approach, for a 24 step 

ahead prediction horizon. 

 

In the equations of table 8.2, y(k) is the output of the corresponding RBF neural network, 

represented in equation 6.6. The following table 8.3 show the selected networks performances 

evaluations, number of terms selected (already shown in previous table 8.2), respective number 

of neurons and complexity. The best RMSE of training, testing and validation for each approach 

is highlighted. 

 

 Model 

RMSE 

Training 

(× 𝟏𝟎−𝟑) 

RMSE 

Testing 

(× 𝟏𝟎−𝟑) 

RMSE 

Validation 

(× 𝟏𝟎−𝟑) 

Complexity 

Nº input 

features 

selected 

Nº of 

neurons 

S
p

ri
n

g
 

I 2.59 2.58 2.50 84 11 7 

II 2.38 3.06 2.64 90 14 6 

III 2.38 3.08 2.84 72 11 6 

S
u

m
m

er
 I 4.25 3.85 4.19 91 12 7 

II 4.03 4.22 3.60 90 14 6 

III 3.19 4.03 4.37 90 9 9 

A
u

tu
m

n
 I 2.86 3.12 3.04 84 11 7 

II 2.25 2.73 3.22 112 13 8 

III 2.63 2.82 2.71 84 13 6 

W
in

te
r 

I 4.31 3.52 3.54 80 15 5 

II 3.16 3.45 3.57 60 11 5 

III 3.15 3.36 3.32 96 11 8 

 

Table 8.3 – Network evaluation of the best models generated using MOGA optimization for each seasonal 

approach. 
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The forecasting ability of the models selected are shown in the following figure 8.1 and 

in table 8.4, with the respective RMSE evolution of the forecast models for 24 steps ahead, each 

step separated by a time interval of 1 hour. This RMSE of the forecast error is originated from 

the last 500 samples, present in the original data set of the respective data approach. 

 

 

Figure 8.1 – Performance of the models chosen for each seasonal approach, for the forecasting error of 24 steps 

ahead.  

 

 

 

 
Model 

RMSE 1 step ahead 

(× 𝟏𝟎−𝟑) 

RMSE 24 steps ahead 

(× 𝟏𝟎−𝟑) 

Sum RMSE forecast 

(× 𝟏𝟎−𝟑)  
 

S
p

ri
n

g
 

I 5.4 20.4 388 

II 15.9 23.6 520 

III 18.1 25.7 578 

S
u

m
m

er
 I 3.9 15.1 302 

II 16.6 22.9 538 

III 17.7 25.2 586 
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A
u

tu
m

n
 I 3.3 18.4 320 

II 11.2 17.3 400 

III 14.6 22 506 

W
in

te
r 

I 3.7 14.3 284 

II 19.7 25.4 592 

III 25.3 28.9 688 

 

Table 8.4 – 1 step ahead, 24 steps ahead and sum of the forecasting error for the models of each seasonal 

approach. 

 

8.2.1.2 Yearly Approach 

This subsection is defined by the yearly approach. It will present the corresponding input 

model equations, RBFNN structures, RBFNN parameters and performance evaluations. Using 

the notation in table 7.5, section 7.5.4, the formal description of models are given by following 

input model equations: 

 

Yearly Approach 

Model I 
y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-5), X1(k-6), X1(k-8), X1(k-10), X1(k-23), 

X1(k-24), X1(k-25), X1(k-26), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-3), X1(k-6), X1(k-7), X1(k-10), X1(k-24), X1(k-25), X1(k-

48), X1(k-49), X2(k-1)) 

Model 

III 

y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-6), X1(k-7), X1(k-8), X1(k-9), X1 (k-24), 

X1(k-25), X1(k-47), X1(k-49), X2(k-1)) 

 

Table 8.5 - NAR and NARX models of the selected network models of the yearly approach, for a 24 step ahead 

prediction horizon. 

 

y(k) in the equations of table 8.5, is the output of the corresponding RBF neural network, 

representing in equation 6.6. The following table 8.6 show the selected networks performances 

evaluations, number of terms selected (already shown in previous table 8.5), respective number 

of neurons and respective complexity. The best RMSE of training, testing and validation for 

this approach is highlighted. 
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 Model 

RMSE 

Training 

(× 𝟏𝟎−𝟑) 

RMSE 

Testing 

(× 𝟏𝟎−𝟑) 

RMSE 

Validation 

(× 𝟏𝟎−𝟑) 

Complexity 

Nº input 

features 

selected 

Nº of 

neurons 

Y
ea

rl
y

 

I 3.45 3.47 3.45 78 12 6 

II 3.69 3.44 3.76 44 10 4 

III 3.29 3.03 3.57 78 12 6 

 

Table 8.6 - Network evaluation of the best models generated using MOGA optimization for the yearly approach. 

 

The forecasting ability of the models selected are shown in the following figure 8.2 and 

in table 8.7, with respective RMSE evolution of the forecast models for 24 steps ahead, each 

step separated by a time interval of 1 hour. This RMSE of the forecast error is originated from 

the last 500 samples, present in the original data set of the respective data approach. 

 

 

 

 

 

 

 

Figure 8.2 - Performance of the models chosen for the yearly approach, for the forecasting error of 24 steps 

ahead. 
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Model 

RMSE 1 step ahead 

(× 𝟏𝟎−𝟑) 

RMSE 24 steps ahead 

(× 𝟏𝟎−𝟑) 

Sum RMSE forecast 

(× 𝟏𝟎−𝟑)  
 

Y
ea

rl
y

 

I 3.6 14.5 302 

II 10.8 19.4 428 

III 20.5 31.5 733 

 

Table 8.7 – 1 step ahead, 24 steps ahead and sum of the forecasting error for the models of the yearly approach. 

 

8.2.1.3 Models comparison 

Analyzing the table 8.3, from the seasonal approach, the models complexity range from 

72 to 112, while the nº features and the nº of neurons selected range from 9 to 15 and 5 to 9, 

respectively. The RMSE of training, testing and validation present slightly higher values in the 

summer and winter approach, contributing to the fact that in these periods the data presents 

patterns with greater discrepancies in terms of energy consumption, while in autumn and spring, 

the data patterns behave more stable and constant. In the yearly approach, as shown in table 

8.6, the models complexity ranges from 44 to 78, while the nº features selected and the nº of 

neuron range from 10 to 12 and 4 to 6, respectively. The RMSE of training, testing and 

validation present intermediate values within the range of values in the seasonal approach. It is 

worth notice the fact that, the proposed exogenous variable, X3, representing the mean daily 

temperature, wasn’t selected in any model 3 approach as shown in the input equations of tables 

8.2 and 8.5. This suggest that this variable had little influence in the construction of the models 

and the information that it offered to the network did not contribute to a better performance.  

As for the RMSE forecast comparison, all models used the last 500 samples of the 

respective data approach, to evaluate their forecast ability. In figures 8.1, 8.2 and tables 8.4, 

8.7, can be seen that in those specific samples, the approaches of model I in a general way 

present a smaller forecast error, and in summer and winter approach comparing model II and 

III with model I present the higher difference. Although in these cases the RMSE of the forecast 

error may give preference to the models I, the generalization capability of the models measured 

by the RMSE of the validation set, shows that some of the best models in every approach have 

a favorable response with the use of an exogenous variable, in this case, X2, representing the 

type of day. 
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The best model of each data approach, in sections 8.2.1.1 and 8.2.1.2, are going to be 

selected for comparison purposes, mainly in terms of generalization capacity present in the 

RMSE of validation set, but also giving importance to model complexity and forecasting 

capacity in 24 steps ahead with RMSE forecasting evaluation. The RBFNN models chosen from 

each data approach can be seen in the table 8.8. 

 

Approach Spring Summer Autumn Winter Year 

Model I II III III I 

RMSE Training (× 10−3) 2.59 4.03 2.63 3.15 3.45 

RMSE Testing (× 10−3) 2.58 4.22 2.82 3.36 3.47 

RMSE Validation (× 10−3) 2.50 3.60 2.71 3.32 3.50 

Complexity 84 90 84 96 78 

Nº input features 11 14 13 11 12 

Nº of neurons 7 6 6 8 6 
 

Table 8.8 - Best models of each approach. 

 

To evaluate the models generalization capacity, is going to be presented to each model 

an equal set of data chosen randomly from the original dataset. The models are compared 

according to the evolution of the respective forecasting error 24 steps ahead, separated by a 

time interval of 1 hour. The data chosen is defined by 1500 data points ranging from 20th March 

2017 to 21st May 2017. This way the different models can be evaluated by the way they perform 

when presented to the same input data. The performance results can be compared in the figure 

8.3 and table 8.8. 

 

 

Figure 8.3 - Performance of the best models for 24 steps ahead prediction horizon. 
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Approach Spring Summer Autumn Winter Year 

Model I II III III I 

RMSE 1 step ahead (× 10−3) 2.4 17.7 13.6 28.3 2.6 

RMSE 24 step ahead (× 10−3) 14.8 24.2 17.4 30.5 18.4 

Sum RMSE forecast (× 10−3) 279 582 414 729 336 

 

Table 8.9 – 1 step ahead, 24 steps ahead and sum of the forecasting error for the best models of each approach, 

for 24 steps ahead prediction horizon. 

 

By analyzing figure 8.3 and table 8.9, as expected, the spring and yearly approach 

present the best results, since the samples chosen for this evaluation were inside the spring 

seasonal data and consequently in the yearly data. Both models present a similar behavior until 

10 steps ahead, where the yearly model increases its RMSE, even ending with slightly worse 

result than the autumn model. The autumn model is the best model that shows best 

generalization capability, outside of those who were trained with this type of data. The summer 

and winter models present a not so good performance when presented to this input samples, 

also partly expected, since they are models trained with different specific patterns in their 

datasets.  

 

8.2.2 Prediction horizon 48 steps ahead 

The proper evaluation of the models network capability to generalize and forecasting 

performance was made through the minimum root mean square error, RMSE, of the validation 

set and the model evolution for several prediction steps. This allows the performance of 

forecasting models to be assessed across different steps. In this section, only the 48 steps ahead 

will be presented and compared. In the scope of this thesis the performance evaluation will be 

done for each season, and for the whole year. 

 

8.2.2.1 Seasonal approach 

This section contains the approaches of the four weather stations: Spring, Summer, 

Autumn and Winter. Each will present the corresponding input model equations, RBFNN 

structures, RBFNN parameters and performance evaluations of the models selected. For each 

model design, in each approach, only one RBF neural network was selected according to the 

best possible compromise between performance, complexity and forecasting ability. Using the 
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notation in table 7.5, section 7.5.4, the formal description of models are given by the following 

input model equations: 

 

 

Spring Approach 

Model 

I 

y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-5), X1(k-6), X1(k-8), X1(k-10), X1(k-22), 

X1(k-24), X1(k-25), X1(k-26), X1(k-47), X1(k-48), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-5), X1(k-6), X1(k-7), X1(k-10), X1(k-24), X1(k-26), X1(k-

46), X1(k-48), X1(k-49), X2(k-1)) 

Model 

III 

y(k)=f(X1(k-1), X1(k-3), X1(k-4), X1(k-6), X1(k-8), X1(k-10), X1(k-24), X1(k-25), 

X1(k-46), X1(k-48), X1(k-50), X2(k-1)) 

Summer Approach 

Model 

I 

y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-4), X1(k-5), X1(k-6), X1(k-7), X1(k-8), 

X1(k-9), X1(k-10), X1(k-22), X1(k-23), X1(k-24), X1(k-25), X1(k-26), X1(k-47), 

X1(k-48), X1(k-49), X1(k-50)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-5), X1(k-6), X1(k-7), X1(k-10), X1(k-24), 

X1(k-25), X1(k-26), X1(k-49), X1(k-50), X2(k-1)) 

Model 

III 

y(k)=f(X1(k-1), X1(k-2), X1(k-5), X1(k-6), X1(k-9), X1(k-10), X1(k-22), X1(k-24), 

X1(k-26), X2(k-1)) 

Autumn Approach 

Model 

I 

y(k)=f(X1(k-1), X1(k-2), X1(k-5), X1(k-6), X1(k-7), X1(k-8), X1(k-9), X1(k-10), 

X1(k-24), X1(k-25), X1(k-26), X1(k-47), X1(k-49), X1(k-50,) 

Model 

II 

y(k)=f(X1 (k-1), X1(k-5), X1(k-8), X1(k-9), X1(k-10), X1(k-22), X1(k-23), X1(k-

24), X1(k-25), X1(k-26), X1(k-49), X2(k-1)) 

Model 

III 

y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-6), X1(k-7), X1(k-8), X1(k-9), X1(k-24), 

X1(k-25), X1(k-26), X2(k-1)) 

Winter Approach 

Model 

I 

y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-4), X1(k-6), X1(k-8), X1(k-9), X1(k-10), 

X1(k-23), X1(k-24), X1(k-25), X1(k-26), X1(k-46), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-4), X1(k-6), X1(k-7), X1(k-10), X1(k-22), 

X1(k-24), X1(k-25), X1(k-26), X1(k-46), X1(k-48), X1(k-49), X1(k-50), X2(k-1)) 
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Model 

III 

y(k)=f(X1(k-1), X1(k-3), X1(k-6), X1(k-10), X1(k-25), X1(k-46), X1(k-47), X1(k-

48), X1(k-49), X1(k-50), X2(k-1)) 

 

Table 8.10 - NAR and NARX models of the selected network models of each seasonal approach, for a 48 step 

ahead prediction horizon. 

 

In the equations of table 8.10, y(k) is the output of the corresponding RBF neural 

network, representing in equation 6.6. The following table 8.11 show the selected networks 

performances evaluations, number of terms selected (already shown in previous table 8.10), 

respective number of neurons and complexity. The best RMSE of training, testing and 

validation for each approach is highlighted. 

 

 Model 

RMSE 

Training 

(× 𝟏𝟎−𝟑) 

RMSE 

Testing 

(× 𝟏𝟎−𝟑) 

RMSE 

Validation 

(× 𝟏𝟎−𝟑) 

Complexity 

Nº input 

features 

selected 

Nº of 

neurons 

S
p

ri
n

g
 

I 2.45 2.62 2.43 105 14 7 

II 2.17 2.79 2.46 96 11 8 

III 2.38 2.73 2.82 78 12 6 

S
u

m
m

er
 I 4.15 3.81 4.14 100 19 5 

II 4.72 5.19 4.37 98 13 7 

III 4.03 3.88 4.67 77 10 7 

A
u

tu
m

n
 I 2.67 3.10 3.15 90 14 6 

II 2.42 2.88 3.56 97 12 7 

III 2.66 2.91 2.70 72 11 6 

W
in

te
r 

I 4.38 3.70 3.51 60 14 4 

II 3.18 3.09 3.48 85 16 5 

III 2.51 3.30 3.37 120 11 10 

 

Table 8.11  – Network evaluation of the best models generated using MOGA optimization for each seasonal 

approach. 

 

 

The forecasting ability of the models selected are shown in the following figure 8.4 and 

in table 8.12, with respective RMSE evolution of the forecast models for 48 steps ahead, each 
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step separated by a time interval of 1 hour. This RMSE of the forecast error is originated from 

the last 500 samples, present in the original data set, respective to each data approach.  

 

 

 

Figure 8.4 - Performance of the models chosen for each seasonal approach, for the forecasting error of 48 steps 

ahead. 

 

 

 

 
Model 

RMSE 1 step ahead 

(× 𝟏𝟎−𝟑) 

RMSE 48 steps ahead 

(× 𝟏𝟎−𝟑) 

Sum RMSE forecast 

(× 𝟏𝟎−𝟑)  
 

S
p

ri
n

g
 

I 5.3 22.5 866 

II 15.6 22.4 1023 

III 14.1 22.2 1002 

S
u

m
m

er
 I 3.9 22.6 845 

II 11.9 22 1009 

III 12.3 22.9 984 

A
u

tu
m

n
 I 3.6 16.7 661 

II 10.8 20.6 935 

III 10.9 22.5 1017 
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W
in

te
r 

I 3.5 16.8 698 

II 19.2 30 1298 

III 12.9 22.1 1002 

 

Table 8.12 –1 step ahead, 48 steps ahead and sum of the forecasting error for the models of each seasonal 

approach. 

 

 

8.2.2.2 Yearly approach 

This subsection is defined by the yearly approach. It will present the corresponding input 

model equations, RBFNN structures, RBFNN parameters and performance evaluations. Using 

the notation in table 7.5, section 7.5.4, the formal description of models are given by following 

input model equations: 

 

 

Yearly Approach 

Model I 
y(k)=f(X1(k-1), X1(k-2), X1(k-4), X1(k-6), X1(k-7), X1(k-8), X1(k-10), X1(k-23), 

X1(k-24), X1(k-25), X1(k-26), X1(k-47), X1(k-48), X1(k-49)) 

Model 

II 

y(k)=f(X1(k-1), X1(k-2), X1(k-6), X1(k-8), X1(k-10), X1(k-24), X1(k-25), X1(k-

49), X2(k-1)) 

Model 

III 

y(k)=f(X1(k-1), X1(k-2), X1(k-3), X1(k-4), X1(k-9), X1(k-24), X1(k-25), X1(k-26), 

X1(k-46), X2(k-1)) 

 

Table 8.13 - NAR and NARX models of the selected network models of the yearly approach for a 48 step ahead 

prediction horizon. 

 

 

In the equations of table 8.13, y(k) is the output of the corresponding RBF neural 

network, representing in equation 6.6. The following table 8.14 show the selected networks 

performances evaluations, number of terms selected (already shown in previous table 8.13), 

respective number of neurons and respective complexity. The best RMSE of training, testing 

and validation for this approach is highlighted. 
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 Model 

RMSE 

Training 

(× 𝟏𝟎−𝟑) 

RMSE 

Testing 

(× 𝟏𝟎−𝟑) 

RMSE 

Validation 

(× 𝟏𝟎−𝟑) 

Complexity 

Nº input 

features 

selected 

Nº of 

neurons 

Y
ea

rl
y

 

I 3.58 3.58 3.55 75 14 5 

II 3.54 3.29 3.58 50 9 5 

III 4.02 3.80 4.29 33 10 3 

 

Table 8.14 - Network evaluation of the best models generated using MOGA optimization for the yearly 

approach. 

 

 

The forecasting ability of the models selected are shown in the following figure 8.5 and 

in table 8.15, with respective RMSE evolution of the forecast models for 48 steps ahead, each 

step separated by a time interval of 1 hour. This RMSE of the forecast error is originated from 

the last 500 samples, present in the original data set of the respective data approach. 

 

 

 

Figure 8.5 - Performance of the models chosen for the yearly approach, for the forecasting error of 48 steps 

ahead. 
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Model 

RMSE 1 step ahead 

(× 𝟏𝟎−𝟑) 

RMSE 48 steps ahead 

(× 𝟏𝟎−𝟑) 

Sum RMSE forecast 

(× 𝟏𝟎−𝟑)  
 

Y
ea

rl
y

 

I 3.7 16.3 678 

II 15.5 22.5 1171 

III 18.1 28.9 1559 

 

Table 8.15 – 1 step ahead, 48 steps ahead and sum of the forecasting error for the models of the yearly 

approach. 

 

 

8.2.2.3 Models comparison 

Analyzing table 8.11, from the seasonal approach, the models complexity ranges from 

72 to 120, while the nº features and the nº of neurons selected range from 10 to 19 and 4 to 10, 

respectively. The RMSE of training, testing and validation present slightly higher values in the 

summer and winter approach, contributing to the fact that in these periods the data presents 

patterns with greater discrepancies in terms of energy consumption, while in autumn and spring, 

the data patterns behave more stable and constant. In the yearly approach, as shown in table 

8.14, the models complexity ranges from 33 to 75, while the nº features selected and the nº of 

neuron range from 9 to 14 and 3 to 5, respectively. The RMSE of training, testing and validation 

present intermediate values within the range of values in the seasonal approach. It is worth 

notice the fact that, the proposed exogenous variable, X3, representing the mean daily 

temperature, wasn’t selected in any model 3 approach as shown in the input equations of tables 

8.10 and 8.13. This suggest that this variable had little influence in the construction of the 

models and the information that it offered to the network did not contribute to a better 

performance. This networks information resembles what was analyzed in the models for the 24 

steps ahead forecast. 

As for the RMSE forecast comparison, all models used the last 500 samples of the 

respective data approach, to evaluate their forecast ability. In figures 8.4, 8.5 and tables 8.12, 

8.15, can be seen that in those specific samples, the approaches of model I in a general way 

present an initial smaller forecast error, but in spring and summer approach the ending forecast 

error is similar to all models, and slightly different to the remaining autumn, winter and yearly 
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models. Although in some cases the RMSE of the forecast error may give preference to the 

models I, the generalization capability of the models measured by the RMSE of the validation 

set, shows that some of the best models in every approach have a favorable response with the 

use of an exogenous variable, in this case, X2, representing the type of day. 

The best model of each data approach, in sections 8.2.2.1 and 8.2.2.2, are going to be 

selected for comparison purposes, mainly in terms of generalization capacity present in the 

RMSE of validation set, but also giving importance to model complexity and forecasting 

capacity in 48 steps ahead with RMSE forecasting evaluation. The RBFNN models chosen from 

each data approach can be seen in the table 8.16. 

 

 

Approach Spring Summer Autumn Winter Year 

Model I I III III II 

RMSE Training (× 10−3) 2.45 4.15 2.66 2.51 3.54 

RMSE Testing (× 10−3) 2.62 3.81 2.91 3.30 3.29 

RMSE Validation (× 10−3) 2.43 4.14 2.70 3.37 3.58 

Complexity 105 100 72 120 50 

Nº input features 14 19 11 11 9 

Nº of neurons 7 5 6 10 5 
 

Table 8.16 - Best models of each approach. 

 

 

To evaluate the models generalization capacity, is going to be presented to each model 

an equal set of data chosen randomly from the original dataset. The models are compared 

according to the evolution of the respective forecasting error 48 steps ahead, separated by a 

time interval of 1 hour. The data chosen is defined by 1500 data points ranging from 20th March 

2017 to 21st May 2017. This way the different models can be evaluated by the way they perform 

when presented to the same input data. The performance results can be compared in the figure 

8.6 and table 8.17. 
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Figure 8.6 - Performance of the best models for 48 steps ahead prediction horizon. 

 

 

 

Approach Spring Summer Autumn Winter Year 

Model I I III III II 

RMSE 1 step ahead (× 10−3) 2.3 3.8 9.7 9.8 10.7 

RMSE 48 step ahead (× 10−3) 16.4 31.7 14.9 15.4 15.9 

Sum RMSE forecast (× 10−3) 655 1034 722 721 799 

 

Table 8.17 – 1 step ahead, 48 steps ahead and sum of the forecasting error for the best models of each approach, 

for 48 steps ahead prediction horizon. 

 

By analyzing figure 8.6 and table 8.17, it was expected that the spring model and yearly 

model would present the best results, since the samples chosen for this evaluation were inside 

the spring seasonal data and consequently in the yearly data. Although the spring model 

presents the best forecast ability, the winter and autumn models present a slightly better 

performance than the yearly model, meaning a good generalization capability for these models 

who were not trained with this type of data. The summer model presents a very particular 

behavior, having an initial good performance until near the 9 steps ahead forecast but becoming 

worse until the end. 
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8.3 Models final comparison 

To analyse how the use of the MOGA framework has improved the model design, the 

models generated by the MATLAB toolbox in table 8.1, and the RBFNN models using MOGA 

in table 8.8 and 8.16, will be compared for each idealized approach. Additionally, it is possible 

to compare the network performance of the models designed through MOGA optimization of 

the different forecast horizons. Table 8.18 presents the results, where the best RMSE of training, 

testing and validation for each approach is highlighted. 

 

 Model 

design 

method 

RMSE 

Training 
(× 𝟏𝟎−𝟑) 

RMSE 

Testing 
(× 𝟏𝟎−𝟑) 

RMSE 

Validation 
(× 𝟏𝟎−𝟑) 

Complexity 
Nº input 

features  

Nº of 

neurons 

S
p

ri
n

g
 a

p
p

ro
a
ch

 

MATLAB 

NN Toolbox 
3.10 3.45 3.27 105 20 5 

RBFNN 

using MOGA 

for PH 24 

2.59 2.58 2.50 84 11 7 

RBFNN 

using MOGA 

for PH 48 

2.45 2.62 2.43 105 14 7 

S
u

m
m

er
 a

p
p

ro
a
ch

 

MATLAB 

NN Toolbox 
5.68 5.42 5.27 105 20 5 

RBFNN 

using MOGA 

for PH 24 

4.03 4.22 3.60 90 14 6 

RBFNN 

using MOGA 

for PH 48 

4.15 3.81 4.14 100 19 5 

A
u

tu
m

n
 a

p
p

ro
a

ch
 

MATLAB 

NN Toolbox 
4.51 4.81 4.41 105 20 5 

RBFNN 

using MOGA 

for PH 24 

2.63 2.82 2.71 84 13 6 

RBFNN 

using MOGA 

for PH 48 

2.66 2.91 2.70 72 11 6 
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W
in

te
r 

a
p

p
ro

a
ch

 
MATLAB 

NN Toolbox 
3.82 3.98 4.44 105 20 5 

RBFNN 

using MOGA 

for PH 24 

3.15 3.36 3.32 96 11 8 

RBFNN 

using MOGA 

for PH 48 

2.51 3.30 3.37 120 11 10 

Y
ea

r
 a

p
p

ro
a
ch

 

MATLAB 

NN Toolbox 
4.59 4.37 4.81 105 20 5 

RBFNN 

using MOGA 

for PH 24 

3.45 3.47 3.50 78 12 6 

RBFNN 

using MOGA 

for PH 48 

3.54 3.29 3.58 50 9 5 

 

Table 8.18 – Comparison of the NAR and NARX models performances of the different model design methods used in this 

work, from an early experimental phase to an optimization phase. 

 

As can be observed, in every approach, the RBFNN using MOGA optimization presents 

overall better RMSE performance results, in comparison with the MATLAB NN Toolbox 

application. In terms of model complexity, the models designed for a 48 step prediction horizon 

with RBFNN using MOGA in the spring and winter approach, the complexity is equal and 

worse, respectively, compared to the models generated with MATLAB toolbox. Comparing the 

model performances for every approach, of the 24 and 48 prediction horizons RBFNN using 

MOGA, the RMSE results present a good balance between them, with the models generated for 

a prediction horizon of 48 steps ahead presenting better performance in the winter and spring, 

while the models generated for a prediction horizon of 24 steps ahead performed better in the 

summer, autumn and year approach. 

In order to make a comparison of the 24 and 48 prediction horizons RBFNN using 

MOGA models generalization capacity, is going to be presented to each model an equal set of 

data chosen randomly from the original dataset. Although some models were designed with the 

objective to forecast until 48 steps ahead prediction horizon, all the models are compared 

according to the evolution of the respective forecasting error for 24 steps ahead, separated by a 

time interval of 1 hour. The data chosen is defined by 1500 data points ranging from 16th August 
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2017 to 17th October 2017. This way the different models can be evaluated by the way they 

perform when presented to the same input data. The performance results can be compared in 

the figure 8.7 and table 8.19. 

 

 

Figure 8.7 - Comparison of the performance of the models designed with RBFNN using MOGA optimization. 

 

 

 
Model design method 

RMSE 1 step 

ahead 
(× 𝟏𝟎−𝟑) 

RMSE 24 steps 

ahead 
(× 𝟏𝟎−𝟑) 

Sum RMSE 

forecast 
(× 𝟏𝟎−𝟑) 

S
p

ri
n

g
 

a
p

p
ro

a
ch

 

RBFNN using MOGA for 

PH 24 
4.7 18.9 366 

RBFNN using MOGA for 

PH 48 
4.8 16.8 344 

S
u

m
m

er
 

a
p

p
ro

a
ch

 

RBFNN using MOGA for 

PH 24 
16.7 13 540 

RBFNN using MOGA for 

PH 48 
3.8 18.9 350 
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A
u

tu
m

n
 

a
p

p
ro

a
ch

 

RBFNN using MOGA for 

PH 24 
15.3 22.5 528 

RBFNN using MOGA for 

PH 48 
13.4 21.9 518 

W
in

te
r 

a
p

p
ro

a
ch

 

RBFNN using MOGA for 

PH 24 
27.5 31.1 744 

RBFNN using MOGA for 

PH 48 
13.5 22.1 508 

Y
ea

r 

a
p

p
ro

a
ch

 

RBFNN using MOGA for 

PH 24 
3.6 16.2 328 

RBFNN using MOGA for 

PH 48 
15.5 25.7 591 

 

Table 8.19 - 1 step ahead, 24 steps ahead and sum of the forecasting error for the models designed with RBFNN 

using MOGA. 

 

By analyzing figure 8.7 and table 8.19, it was expected that the summer, autumn and 

yearly models would present the best results, since the samples chosen for this evaluation were 

in its majority inside the summer seasonal data and partly in the autumn seasonal data, while 

consequently in the yearly data. Although the “Summer – RBF using MOGA for PH 48” and 

the “Year – RBF using MOGA for PH 24” presented a good forecast ability, both spring models 

presented a good performance, meaning a good generalization capability. On the contrary, 

autumn and winter models didn’t perform so well, as well as, the “Year – RBF using MOGA 

for PH 48” and “Summer – RBF using MOGA for PH 24” which didn’t perform as expected.  
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Chapter 9 

9.   Conclusions and Future work 

   

9.1 Conclusions 

This work comes after a period of internship in the Rolear group company, where I 

passed through two departments, but given the circumstances ended up establishing myself in 

the commercialization department of electricity and natural gas in the free energy market, more 

properly in the department Rolear Viva. In both departments the experience was rewarding, 

characterized by a constant learning and acquired knowledge. It was motivating and inspiring 

to work alongside excellent professionals, who were always available to teach, answer my 

doubts, and who have always tried to make me feel comfortable during my internship period. 

The execution of the processes of purchasing electricity and participation in the 

electricity markets is of great importance, since large amounts of energy are traded involving a 

significant monetary commitment. For this reason, a study was made of the various Iberian 

electricity markets, their function, the composition and hierarchy of the national electricity 

system and the way the data is processed and made available among the different agents of the 

electricity sector. Based on this, and in a perspective of implementation in the present but 

adapting itself to the future technological innovations in the sector, RBF neural networks using 

multi objective genetic algorithms optimizations, MOGA, were designed for prediction 

intervals of 24 and 48 hours ahead, several data approaches and different combinations of inputs 

were tested. 
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The experimented models presented satisfactory results with good performance and 

generalization capability for a multi-step prediction. The use of the exogenous day type variable 

contributed most of the time to good conditioning in some models. On the contrary, the daily 

temperature variable did not offer guarantees, being not selected by the MOGA optimization in 

any model. The models in a summer approach were those that always presented worse results. 

This was due to the characteristic of electricity consumption in the summer, in which larger 

quantities are consumed, presenting higher unexpected peaks which increases the degree of 

difficulty in the forecast. Except for the summer models, the remaining seasonal models showed 

a slightly better performance than the annual models, although the annual models were 

characterized by viable and well-balanced performance models. Comparing the models 

designed for 24 and 48 hours prediction horizon, in general, both performances of the models 

and forecasting capacity, presented fairly balanced behaviours. 

 

9.2 Future Work 

The atmospheric conditions show a direct impact in the energy consumption. The most 

obvious one is temperature, which was experimented in this work, but only a daily periodicity 

was used due to the limitations of the data availability. A future work would be the application 

of the hourly temperature as an exogenous variable, this way reflecting the real impact of 

climatic conditions on the energy consumption. Another atmospheric condition that could be 

experimented is cloudiness, since the presence of clouds motivate the turning on of lights in a 

building, causing an increase of energy consumption. 

Another future work to be implemented is a web platform where it would be possible to 

the Rolear Viva energy supplier to perform, when necessary, the prediction for the next day or 

intraday electricity markets, as well as, making possible to train RBF neural network model for 

a given client newly entered in the portfolio. This way simplifying the process for the agent and 

making possible to analyse the consumption of clients, as well as, the entire client portfolio.  

One major factor in electricity markets is the volatility of electricity prices. A possible 

future work is to apply a forecasting model to the prediction of electricity price in the same 

range of energy consumption forecast. Consequently, creating an optimization algorithm, it 

would guarantee a proper efficient method in the participation on the electricity markets. 
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