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35 Most terrestrial plants depend strongly on associations with arbuscular mycorrhizal (AM) 

36 fungi (Subphylum: Glomeromycotina) to establish and survive (Bever, 2002; van der Heijden 

37 et al., 1998; Klironomos et al., 2011; Veresoglou et al., 2017), and have evolved a nutritional 

38 mutualism. In this mutualism, the plant provides carbon to the fungus, usually subject to the 

39 availability of light (Hayman 1970; Heinemeyer et al., 2003; Shi et al. 2014; Konvalinkova & 

40 Jansa, 2016), and the fungus provides the plant with mineral nutrients acquired from soil. 

41 Because of light constraints, it is expected that latitude exerts a strong influence on reciprocal 

42 exchange of resources between mycorrhizal plants and fungi, and this could have 

43 consequences on the responsiveness of plants to mycorrhizal fungi. Latitude induces changes 

44 in the amount of solar energy and the timing when this is made available to primary producers 

45 during the year and in the day. At the same time, there is a strong negative relationship 

46 between latitude and temperature that may also impact the functioning of the mycorrhizal 

47 symbiosis, and in some cases (e.g. in north temperate systems), a general relationship between 

48 latitude and several edaphic factors (Read and Perez-Moreno 2003).

49 There is compelling evidence that the alpha-diversity of Glomeromycotan fungi,  

50 which form AM symbioses, decreases with latitude (Davison et al., 2015). This finding can be 

51 partially explained by the transition from ecosystems dominated by AM host plants in the 

52 tropics, to ectomycorrhizal and ericoid mycorrhizal dominated ecosystems at higher latitudes 

53 (Smith &Read, 2008). We know less about the extent to which latitude impacts the 

54 functioning of AM symbioses, which could occur either through latitudinal differences in 

55 solar radiation or resulting changes in temperature (Clarke & Gaston, 2006; Schluter, 2016). 

56 Here, we propose the ‘sun-worshipper’ hypothesis that discriminates three different types of 

57 underlying responses of latitudinal gradient-induced changes in plant host mycorrhizal 

58 responsiveness (Fig. 1). Changes in abiotic conditions may allow plants to derive more 

59 benefits from the symbiosis at lower latitudes through phenotypic plasticity (mechanism one – 

60 Fig.1). A likely example of phenotypic plasticity might involve changes in the expression of 

61 genes that allow crosstalk with AM fungi when light availability is low as has been shown for 

62 drought (Li et al., 2016). Abiotic conditions more favourable for the symbiosis close to the 

63 tropics could further exclude, via competition, species less dependent on AM fungi, resulting 

64 in distinct plant communities from a perspective of AM fungal-associating behaviour; such a 

65 process can be described as environmental filtering (mechanism two – Fig. 1). Finally, we 

66 know that AM plants at high latitudes encounter a less diverse pool of potential symbiotic 

67 partners (e.g. because of the observed latitudinal gradient in Glomeromycotan diversity; 

68 Davison et al., 2015) and at the same time communities at high latitudes are in general 
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69 dominated by plants that associate with ectomycorrhizal and ericoid mycorrhizal fungi. Plants 

70 distant from the tropics could thus form less profitable AM symbioses (but also support fewer 

71 AM partners) because of a more limited pool of suitable AM fungal partners, and this 

72 mechanism is analogous to the indirect eco-evolutionary causes (Pärtel, 2002) (mechanism 

73 three - Fig. 1). Here, we use the term eco-evolutionary processes to describe combined effects 

74 of latitude on phenotypic plasticity, environmental filtering and eco-evolutionary adaptation 

75 of the host plant trait mycorrhizal dependency (e.g. Thuiller et al., 2013). Even though these 

76 different mechanisms are not mutually exclusive, it is important to disentangle how each of 

77 them influences how host plants respond to mycorrhizal symbioses along gradients of latitude 

78 and solar radiation. 

79 The benefits that plants receive from the symbiosis in relation to the carbon costs vary 

80 considerably depending on abiotic growth conditions (Johnson et al., 1997; Hoeksema et al. 

81 2010; Grman and Robinson, 2013), compatibility of the plant host with the local AM fungal 

82 community (Klironomos, 2003) and the degree to which a plant can take advantage of non-

83 nutritional functions of mycorrhiza such as protection from pathogens (Veresoglou & Rillig, 

84 2013). Resource stoichiometry of phosphorus (P), nitrogen (N) and light, in particular, 

85 represents a proven tool explaining variance in growth responses of mycorrhizal hosts at 

86 various spatial scales (Johnson, 2010). Latitude-related predictions could complement such 

87 existing tools in understanding why mycorrhizal growth responses differ at large scales. It 

88 may additionally illuminate systematic differences in mycorrhizal responsiveness such as 

89 those explained by the life history of the hosts (Boerner, 1992; Roumet et al., 2005). This 

90 would be the case if the latitudinal effects are mediated through differences in solar radiation. 

91 Annual terrestrial plants may never experience light-duration stress during winter, whereas 

92 the opposite is the case for perennials that represent the majority of terrestrial plants (for 

93 example over 70% of species in the LEDA database are perennials – Kleyer et al. 2008). 

94 There is good evidence that perennial AM fungi can survive over winter in the roots of their 

95 hosts (Buwalda et al., 1985; Dodd & Jeffries, 1986 but see Hetrick et al., 1984; Mohammed 

96 et al., 1988), which could affect the carbon economy of their plant hosts. During winter, plant 

97 requirements for nutrients are limited and photoassimilates are in short supply; therefore, 

98 plants that can confine the activity of their mycorrhizal partners may benefit through 

99 improved survival rates. As a result, we expect that there is evolutionary pressure for 

100 perennials to further confine mycorrhizal responsiveness when growing outside the tropics, 

101 compared to annuals. 

102
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103 We undertook three synthesis activities to establish whether the expectations outlined 

104 above are plausible for mycorrhizal systems (see Methods in supplementary material). We 

105 first compiled a database on crop plant responses to mycorrhiza to identify phenotypic 

106 responses to latitude (Fig. S1). To assess environmental filtering due to AM fungi with 

107 regards to latitude, we synthesized data from a common garden experiment on comparative 

108 mycorrhizal responsiveness of North-American annual and perennial herbaceous plants 

109 (Wilson & Hartnett, 1998) with plant distribution data for the specific plants from USDA 

110 (USDA, 2016). We also tested for differences in mycorrhizal responsiveness across genotypes 

111 of Zea mays (maize) that are routinely used either in temperate or tropical systems, despite 

112 that genetic variability could effectively be attributed to breeding. These syntheses activities 

113 were not sufficiently robust to address the mechanistic constituents of the sun worshipper 

114 hypothesis but were carried out to support the over-arching concept and encourage larger 

115 syntheses or experiments exploring the hypothesis in the future.

116 Variance in the database on crop plant responses could be best explained, in our 

117 models consisting of a single predictor, by photosynthetic radiation (Fig 2.a). The optimal 

118 model had an intercept of -0.5 (F=9.7, P<0.001) and a slope per MJ.m-2.day-1 radiation of 0.23 

119 (F=6.1, P=0.019). Fitted intercepts for the different plant species shared a standard deviation 

120 of 0.048 (Fig. 2a). Analysis of maize lines demonstrated that eco-evolutionary processes also 

121 drive latitude-dependencies on mycorrhizal responsiveness. The Mann-Whitney test between 

122 temperate- (i.e. middle two quartiles) and tropical-climate adapted lines of maize revealed 

123 higher responsiveness for temperate lines (U = 24.5, P=0.034). When we repeated this 

124 analysis for tropical lines through maintaining the two middle quartiles, the differences 

125 became even more apparent (U = 4, P<0.001, Fig. 2b). Mycorrhizal responsiveness of species 

126 in Wilson and Hartnett (1998) could be predicted by latitude of their distribution, which 

127 suggests that mycorrhizal responsiveness might induce an environmental filtering. We raised 

128 latitude to the fourth power to address fitting issues and obtained an intercept of 0.65; latitude 

129 slope of -2.44 10-8 (Flat=23.32; P<0.001; R2
adj=0.19; Fig. 2c). We subsequently fitted an 

130 additional parameter that differentiated between annual and perennial plants. Inclusion of the 

131 categorical variable perennial was significant (F=23.36, P<0.001) and there was a significant 

132 interaction between this parameter and latitude (F=9.47, P=0.003) suggesting that slopes also 

133 differed. When we analyzed annual and perennial plants separately, we found a significant 

134 relationship only for perennials (Kendall Tau was -0.32 - P=0.004, whereas for annuals the 

135 Kendall Tau was 0.03 - P=0.87).
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136 The sun-worshipper hypothesis predicts that latitude impacts mycorrhizal 

137 responsiveness in plants via three complementary mechanisms, namely phenotypic responses, 

138 eco-evolutionary processes and environmental filtering (Fig. 1). Even though the analyses we 

139 report have limited resolution, they were supportive of the sun worshipper hypothesis. We 

140 found evidence that phenotypic plasticity (Fig. 2a), eco-evolutionary processes (Fig. 2b) and 

141 environmental filtering (Fig. 2c) might be operational for all three different types of latitude 

142 related differences in mycorrhizal responsiveness (Thuiller et al., 2013). Despite the findings 

143 from our analyses, it is important to highlight additional factors that may also influence 

144 mycorrhizal responsiveness, and which have the potential to confound our findings.  For 

145 example, our observations may correlate with systematic differences in soil fertility; high 

146 weathering rates generally lead to poorer fertility, as occurs in many parts of the tropics (Read 

147 and Perez-Moreno, 2003). Therefore, disentangling the specific role of light versus other 

148 edaphic and environmental factors in driving mycorrhizal responsiveness likely requires 

149 additional experimentation. Testing competing hypotheses could be done with carefully 

150 designed common garden experiments or synthesizing evidence from altitudinal experiments. 

151 Nevertheless, our analysis and associated hypothesis prompts further mechanistic analyses to 

152 test how resource stoichiometry and other critical functions undertaken by mycorrhizal fungi 

153 are influenced by latitudinal gradients. 

154
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253  Legends to Figures

254

255 Fig. 1. The ‘sun-worshipper’ hypothesis: Light availability declines with latitude (x-axis) to 

256 which plant sprecies that associate with AM fungi respond via reducing their mycorrhizal 

257 responsiveness (LGMR – y-axis right). This is depicted in the figure with the black 

258 continuous line describing phenotypic plasticity (Mechanism 1). Eco-evolutionary responses 

259 partially offset the decline in LGMR with latitude (the resulting black discontinuous line has a 

260 lower slope - Mechanism 2). Reduced mycorrhizal responsiveness further induces a decline in 

261 species that associate with AM fungi (red line) with species that either associate with 

262 ectomycorrhizal (ECM) or ericoid (ERM) mycorrhizal fungi (green continuous line – y-axis 

263 left). This represents Mechanism 3. As a result, latitude is a key factor that determining plant 

264 responsiveness to mycorrhizal fungi

265

266

267 Fig. 2 (a) Scatterplot of mycorrhizal responsiveness plotted against photosynthetic radiation 

268 during the growth period for the annual crops that we included in our crop dataset. The 

269 relationship is positive; (b) beehive plot of mycorrhizal responsiveness of maize lines adapted 

270 to growth under temperate vs tropical conditions. In the plot, we only used the two central 

271 quartiles of the two groups of data. The differences are significant (U = 4, P<0.001); (c) 

272 maximum latitude of the distribution of North American herbaceous plants plotted against the 

273 mycorrhizal responsiveness as assayed in a common garden experiment. Each cross describes 

274 the maximum latitude of a single species and the red line is the best fit line for the relationship 

275 with mycorrhizal responsiveness. We found few plants having a high mycorrhizal 

276 responsiveness occurring at high latitudes.
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