
This is a repository copy of Uncertainty Quantification of Density and Stratification 
Estimates with Implications for Predicting Ocean Dynamics.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145936/

Version: Published Version

Article:

Manderson, A, Rayson, MD, Cripps, E et al. (5 more authors) (2019) Uncertainty 
Quantification of Density and Stratification Estimates with Implications for Predicting 
Ocean Dynamics. Journal of Atmospheric and Oceanic Technology, 36 (7). pp. 1313-1330.
ISSN 0739-0572 

https://doi.org/10.1175/JTECH-D-18-0200.1

© Copyright 2019 American Meteorological Society (AMS). Permission to use figures, 
tables, and brief excerpts from this work in scientific and educational works is hereby 
granted provided that the source is acknowledged. Any use of material in this work that is 
determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the
conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108) does not 
require the AMS’s permission. Republication, systematic reproduction, posting in electronic
form, such as on a website or in a searchable database, or other uses of this material, 
except as exempted by the above statement, requires written permission or a license from 
the AMS. All AMS journals and monograph publications are registered with the Copyright 
Clearance Center (http://www.copyright.com). Questions about permission to use 
materials for which AMS holds the copyright can also be directed to 
permissions@ametsoc.org. Additional details are provided in the AMS Copyright Policy 
statement, available on the AMS website (http://www.ametsoc.org/CopyrightInformation).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Uncertainty Quantification of Density and Stratification Estimates with Implications
for Predicting Ocean Dynamics

A. MANDERSON,a M. D. RAYSON,b E. CRIPPS,a M. GIROLAMI,c J. P. GOSLING,d M. HODKIEWICZ,e

G. N. IVEY,b AND N. L. JONES
b

aDepartment of Mathematics and Statistics, University of Western Australia, Perth, Western Australia, Australia
bOceans Graduate School, University of Western Australia, Perth, Western Australia, Australia

cDepartment of Mathematics, Imperial College London, and Alan Turing Institute, British Library, London, United Kingdom,
d School of Mathematics, University of Leeds, Leeds, United Kingdom,

e Faculty of Engineering and Mathematical Sciences, University of Western Australia, Perth, Western Australia, Australia

(Manuscript received 7 November 2018, in final form 6 March 2019)

ABSTRACT

We present a statistical method for reconstructing continuous background density profiles that embeds

incomplete measurements and a physically intuitive density stratification model within a Bayesian hierarchal

framework. A double hyperbolic tangent function is used as a parametric density stratification model that

captures various pycnocline structures in the upper ocean and offers insight into several density profile

characteristics (e.g., pycnocline depth). The posterior distribution is used to quantify uncertainty and is es-

timated using recent advances in Markov chain Monte Carlo sampling. Temporally evolving posterior dis-

tributions of density profile characteristics, isopycnal heights, and nonlinear ocean processmodels for internal

gravity waves are presented as examples of how uncertainty propagates through models dependent on the

density stratification. The results show 0.95 posterior interval widths that ranged from 2.5% to 4% of the

expected values for the linear internal wave phase speed and 15%–40% for the nonlinear internal wave

steepening parameter. The data, collected over a year from a through-the-column mooring, and code,

implemented in the software package Stan, accompany the article.

1. Introduction

The horizontal and vertical distribution of the buoy-

ancy frequency

N(z)5

�

2
g

r
0

dr

dz

�1/2

(1)

and hence the background density r(z) is one of the

most important dynamical characteristics of the ocean

(Phillips 1977). The background density (or buoyancy

frequency) is a key input variable in many ocean pro-

cess models including planetary wave propagation (Gill

1982), internal gravity wave energy flux calculations

(Nash et al. 2005; Lee et al. 2018), nonlinear internal

wave models (Lamb and Yan 1996), strain-induced

turbulent dissipation parameterizations (Polzin et al.

2014), length-scale-based vertical mixing parameteri-

zations (Arthur et al. 2017), and internal wave avail-

able potential energy calculations (Kang and Fringer

2010). Such models require a precise estimate of the

background density profile, uncontaminated by internal

waves and turbulent fluctuations, and, importantly, a

profile that spans the entire water column from the free

surface to the seabed.

In low and midlatitudes, the vertical density (tem-

perature) structure usually consists of a surface mixed

layer, a sharp gradient region (the pycnocline or ther-

mocline), and then a weaker gradient region below

where the change in density increases (temperature

decreases) at an exponentially lower rate (Sprintall

and Cronin 2010). An exception to this general picture

are so-called fossil layers that form double pycnoclines,

usually found in subtropical regions (Sprintall and

Roemmich 1999). The pycnocline region is the most

dynamically and ecologically significant aspect of the

ocean stratification because the strong gradients suppress

turbulent transport of tracers, yet there is still consider-

able debate around how to objectively quantify its main

properties, such as the depth and strength (Fiedler 2010).

Fiedler (2010) provides an overview of several histori-

cal strategies for determining upper-ocean thermalCorresponding author: M D. Rayson, matt.rayson@uwa.edu.au
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structure, including fitting a series of discontinuous

linear segments.

Continuous analytical functions are an effective

means of capturing the vertical density, or tempera-

ture, structure because they allow properties such as

pycnocline depth (depth of maximum gradient) and

strength (maximum gradient) to be calculated objec-

tively (e.g., Chu et al. 1997; González-Pola et al. 2007;

Zhou et al. 2017). González-Pola et al. (2007) propose

the product of a Gaussian and an exponential to

represent the temperature structure below the surface

mixed layer, whereas Zhou et al. (2017) use a series

of Gaussian curves. González-Pola et al. (2007) cites

the physical basis for their function: it approximately

resembles a complementary error function, a solution

to a one-dimensional heat diffusion equation un-

der appropriate boundary conditions. An exponential

profile is often used to represent the density structure

in the deeper ocean, although it does not capture

the pycnocline variability (e.g., Llewellyn Smith and

Young 2003). More recently, Rayson et al. (2019)

use a double hyperbolic tangent (DHT) function to

reconstruct the full vertical structure of r(z) in the

upper ocean observed from mooring data. The DHT

function is flexible enough to model two pycnoclines

as it approximately resembles two error functions,

and its parameter values provide direct inference

about density profile characteristics. In these studies,

profile parameters were estimated via a minimization

algorithm [Zhou et al. (2017) use least squares fitting,

González-Pola et al. (2007) use an evolutionary al-

gorithm, and Rayson et al. (2019) use robust least

squares] and thus only providing a single estimate of

each density profile.

The above works produce valid databased esti-

mates of density profiles but offer no mathematically

coherent mechanisms to quantify the degree of belief

or uncertainty that accompanies any such synthesis

of hypothetical model and data. Probability is per-

haps the most acknowledged calculus for uncertainty

quantification and scientific inference (Singpurwalla

2006; Hennig et al. 2015), but concepts, such as confi-

dence intervals and standard errors, of traditional

frequentist statistics do not supply a probabilistic

description of parameter uncertainty (Jaynes and

Kempthorne 1976). This work demonstrates how to

formally account for uncertainty by uniting the DHT

of Rayson et al. (2019) with a probabilistic framework

that is suited to the structure of data analyzed herein.

Before introducing how this is accomplished, we dis-

cuss why this is important in the context of density

profile estimation and, importantly, the implied con-

sequences for ocean dynamical process models (i.e.,

nonlinear functions of density) that are analyzed in

more detail later.

First, our knowledge of a true, full-water-column, con-

tinuous ocean background profile density will always be

uncertain. Estimates are typically derived through an

equation of state using temperature–conductivity mea-

surements informed either frommoored instruments at a

finite number of depths, often without measurements

near the surface or bottom boundaries, or from repeated

vertical profiles with continuously sampling instruments

that seldom resolve down to the seabed (Nash et al. 2005).

Natural variability also contributes to noisy fluctuations

at various time scales because of seasonal processes

(e.g., mean ocean currents, monsoons), weekly pro-

cesses (e.g., mesoscale eddies), and hourly processes

(e.g., internal gravity waves). For internal gravity wave

propagation, we are interested in r(z) at time scales

greater than the inertial period (*
;
1 day) and the choice

of smoothing splines, temporal filters, and finite-

difference schemes to produce estimates of r(z), and

henceN(z), greatly vary between studies (e.g., Chelton

et al. 1998; Nash et al. 2005; King et al. 2012). These are

density profile–specific issues, to which may be added

more general concepts such as measurement error,

model misspecification, and sparse data. For an excel-

lent review on uncertainty sources and oceanography,

see Wikle et al. (2013, 2019).

Second, it is important to recognize that the un-

certainty associated with r(z) has implications for

models of ocean dynamical processes that depend upon

r(z). To clarify, consider the following two ocean dy-

namic examples considered throughout this article.

First, a simple baroclinic ocean process model de-

scribing motion in a flat-bottom ocean in a motionless

background state with the quasigeostrophic approxi-

mation is

d2f(z)

dz2
1

N(z)2

c2
f(z)5 0, (2)

subject to boundary conditions f(0)5f(2H)5 0,

where 2H is the total water depth (Gill 1982). Since

computation of N(z) relies on r(z), so too does

the vertical structure of each normal mode f(z)

and the phase speed c. Any uncertainty associated

with the initial value of r(z) will lead to uncertainty in

the function f.

As a second example, the Korteweg–de Vries (KdV)

equation,

›A

›t
1 c

›A

›x
1aA

›A

›x
1b

›3A

›x3
5 0, (3)

where
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a5

3c

ð0

2H

(df/dz)3 dz

2

ð0

2H

(df/dz)2 dz

(s21) , (4)

is often used to model the evolution of nonlinear in-

ternal waves in shelf seas as an alternative to the com-

putationally expensive Navier–Stokes equations (e.g.,

Holloway et al. 1999). If a, 1 s21, this corresponds to

waves of elevation, and for a. 1 s21, waves of elevation.

In lieu of solving Eq. (3) directly, Rayson et al. (2019)

demonstrate that the initial growth of nonlinear internal

waves is suitably estimated by a steepening length scale

derived from a balance between the time-dependent and

nonlinear terms in Eq. (3):

L
s
5

c2

aa
0
v
(m), (5)

where a0 and v are the initial wave amplitude and fre-

quency, respectively. Equation (5) suggests that non-

linear waves may occur ifLs is less than the distance from

an internal wave generation site (e.g., a continental shelf

slope or an island chain). But Ls is proportional to c and

inversely proportional to a, both of which are nonlinear

functions of r(z), and thus uncertainty in specifying r(z)

creates uncertainty in Ls.

This article quantifies uncertainty using probability

theory and performs statistical inference via Bayes’s

law. Bayes’s law is a framework that, in receipt of

new information such as data, coherently updates a

prior distribution over unknown quantities (e.g., sum-

marizing prior scientific knowledge) to their posterior

distribution (Jeffreys 1998). The posterior distribution

then supplies direct probabilistic inference and un-

certainty quantification, conditional on the data. When

the process of interest is complex, Bayesian hierar-

chical models (BHMs) can be used to decompose the

problem into a series of conditionally independent

components, the product of which yields the model’s

joint distribution. Compartmentalizing the model both

eases the burden of specifying dependencies in high-

dimensional distributions and is a flexible way to meld

multiple sources of information. BHMs are well suited

to multivariate data that are repeatedly measured (e.g.,

spatiotemporal data), where local processes within a

measurement benefit from the sharing of global in-

formation supplied by repetition (Gelman et al. 2013;

Betancourt and Girolami 2015).

Previous applications of BHMs to oceanography can

be found in a number of papers: Berliner et al. (2000) use

BHMs to produce long-lead sea surface temperature

predictions, Furrer et al. (2007) combine observations

and future climate projections within a BHM to predict

atmosphere–ocean circulation processes, Milliff et al.

(2011) develop a regional ocean forecast system for

surface vector wind fields, and Aldrin et al. (2012) as-

sess climate sensitivity using hemispheric temperatures

and global ocean heat content data. By embedding

prior knowledge of ocean dynamics within a probabi-

listic framework, such work resides at the interface of

statistical and oceanographic research with analyti-

cally unavailable posterior distributions, often due to

high-dimensional and strongly dependent parameter

spaces, that are estimated using carefully constructed

Markov chain Monte Carlo (MCMC) sampling algo-

rithms (Metropolis et al. 1953; Hastings 1970). For a more

comprehensive review of BHMs applied to oceano-

graphic processes, their challenges, and estimation

strategies, see Wikle et al. (2013).

The dataset we consider here contains multivariate

density profile measurements over depth in the upper

ocean. Repeatedly collected at regular time intervals

over a year, each profile measurement is regressed on

depth at the first level of the BHM, using DHT functions

as the expected values. While each DHT function has

its own parameterization, the second level specifies that

these parameters a priori share a common probability

generating mechanism. This permits not only the bor-

rowing of global (or annual) information to reduce local

(or time specific) parameter uncertainty but also in-

corporates the evolution of the parameters, and hence

r(z), over the year. Where domain knowledge is avail-

able, the third level specifies priors derived from expert

elicitation (O’Hagan et al. 2006); otherwise, priors that

are weakly informative are used. Finally, the posterior

distribution of r(z) that is implied by the BHM can be

propagated through models of ocean dynamical pro-

cesses to quantify their uncertainty.

Although the BHM is easily interpretable and models

the evolution of profile density measurements well, the

statistical nonlinearity of the DHT and the complex

spatiotemporal dependencies contained in its joint

distribution induce a posterior distribution sufficiently

complicated to appeal to more sophisticated and effi-

cient MCMC algorithms. We use Hamiltonian Monte

Carlo (HMC), an algorithm that exploits geometric

knowledge about the posterior surface (Betancourt

2017). The model is implemented in the open-source

software Stan (Carpenter et al. 2017). Diagnostic plots

to verify the MCMC algorithm, as produced by Stan,

are presented in the article. Data, code, and additional

documentation are publicly available online (https://

github.com/hhau/density-profile-examples). The R pack-

age used to fit the density profile model is available sepa-

rately (https://github.com/hhau/ddcurves2). Quantification
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of uncertainty is presented via the following estimated

quantities: full posterior distributions of DHT param-

eters at selected time points and posterior intervals

for their corresponding density profiles and the an-

nual evolution of posterior intervals of density profile

characteristics, isopycnal heights, and the nonlinear

functions for the ocean dynamical processes N(z)2,

f(z), c, a, and Ls.

The paper is structured as follows. Section 2 gives a

brief introduction to Bayesian inference and MCMC

algorithms, which is intended for the nonspecialist

statistician. Section 3 describes the DHT function in

the context of marginal seas, and section 4 describes the

shelf mooring dataset used as an example in this paper.

Section 5 contains details of the BHM, while section 6

presents the results. Section 7 concludes the article.

2. Bayesian inference and estimation via MCMC

a. The Bayesian paradigm

Statistical modeling begins with an assumed data

generating process that gives rise to a probabilistic

object called the likelihood function p(yju): the prob-

ability (density or mass) function of the observed data

in y, conditioned on the model parameters contained in

u. In frequentist statistics, where probability is defined

in a limiting frequency sense, u is considered unknown

but fixed. The uncertainty associated with any estima-

tor of u (e.g., maximum likelihood) is quantified by the

estimator’s probability distribution over notional re-

peated samples, but does not provide direct probabi-

listic inference for a given observed sample. Under the

Bayesian paradigm, where probability is a quantitative

representation of belief or uncertainty, our initial

knowledge about u is encoded in a prior distribution

p(u). In light of the observed data, invoking Bayes’s

theorem updates p(u) to the posterior distribution,

p(ujy)5
p(yju)p(u)

p(y)
} p(yju)p(u) . (6)

The current degree of belief is now summarized in p(ujy)

(Bernardo and Smith 1994). Uncertainty associated with

the data is described in p(yju), and p(u) allows the in-

corporation of additional sources of information, from

previous studies to domain-specific knowledge.

Some researchers find it difficult to articulate con-

clusions drawn from frequentist methods, for example,

the interpretation of a confidence interval that hinges on

hypothetical repeated samples (Jaynes andKempthorne

1976). In contrast, Bayesian inference is appealing be-

cause Eq. (6) supplies direct probabilistic statements

about model parameter uncertainty, conditioned on the

particular dataset observed. For example, estimates of

p(ujy) and 0.95 credible intervals (a, b), which corre-

spond to a posterior probability p(a, u, bjy)5 0:95,

are used in section 6 to quantify uncertainty.

b. Posterior estimation

The advent of MCMC sampling methods and the in-

creasing availability of computational power has en-

abled Bayesian statistics to tackle complex statistical

problems. Prior to MCMC, the difficulty with these en-

deavors was that the normalizing constant in Eq. (6),

p(y)5
Ð
p(y, u) du, was very likely intractable. MCMC

avoids this issue as follows: construct a Markov chain

of the model parameters u[0], u[1], u[2], . . . proposing a

value of u, u*, for the tth realization from a suitable

proposal density, q(u*ju[t21]). Accepting this proposal

with probability

min

(

1,
p(u*jy)q(u[t21]ju*)

p(u[t21]jy)q(u*ju[t21])

)

(7)

yields a transition kernel that guarantees theMarkov chain

will converge to a stationary distribution that coincideswith

p(ujy). Importantly, the ratio in Eq. (7) obviates the need

to compute the normalizing constant. By simulating such

a Markov chain until convergence, the subsequent re-

alizations may be used to estimate p(ujy). Furthermore,

these MCMC samples can also be used to estimate the

posterior distributions of functions of model parameters,

such as the ocean dynamic quantities presented in section 6.

In theory, the choice of q(�) in Eq. (7) is extremely

flexible, but in practice, q(�) has strong implications for

the efficacy of MCMC algorithms for two main reasons.

First, MCMC theory ensures asymptotic convergence but

not convergence in a finite number of simulated re-

alizations. Second, as opposed to ordinary Monte Carlo

analysis, these realizations are not independent but may

be heavily autocorrelated depending on the choice of

q(�). Quantitative diagnostics for the first issue are fragile,

and it is common to visually validate that multiple chains,

initialized from different states, converge to the same

stationary distribution. The idea is then to discard the

‘‘warm up’’ realizations prior to convergence, and use the

remainder for posterior estimation. The autocorrelations

can be checked with standard autocorrelation function

(ACF) plots and ought not display dependencies at un-

acceptably high lags. To establish an approximate in-

dependent sample size that corresponds to the MCMC

output, the effective sample size can be computed as

ESS5
n

11 �
‘

k51

r(k)

, (8)
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where n is the number of MCMC samples used for es-

timation and r(k) is their autocorrelation at lag k. These

diagnostics for our analysis are presented in section 6.

For an introduction and more details about MCMC and

its validation diagnostics, we direct the interested reader

to Robert and Casella (2013) and Brooks et al. (2011).

The complexity of modern day applied Bayesian

analyses requires input from both domain special-

ists and statisticians. One outcome of these collabora-

tions is statistical research into the construction of

efficient MCMC proposal densities due to parameter

spaces that are high-dimensional and/or exhibit strong

posterior dependencies [see Girolami and Calderhead

(2011) and discussions]. In these situations, standard

MCMC algorithms, such as random-walk Metropolis–

Hastings (Hastings 1970) or Gibbs sampling (Gelfand

and Smith 1990), can result in excessive warm-up pe-

riods and unacceptably strong autocorrelations. HMC,

a recent variant of MCMC, is specifically designed to

deal with such issues. HMC proposal densities harness

first-order gradient information about the posterior

surface to identify regions of sampling exploration and

ensure high acceptance rates. While the theoretical

foundations of HMC, and how it circumvents the above

issues, are beyond the scope of the present article, we

direct the interested reader to the textbook chapter of

Neal (2011), a conceptual introduction by Betancourt

(2017), and a short overview aimed at applied scientists

in Monnahan et al. (2017).

c. Overview of Bayesian hierarchical models

BHMs have been greatly transformed in general by

MCMC sampling (Gelman and Hill 2007; Gelman

et al. 2013) and more recently by its variant HMC

(Betancourt and Girolami 2015; Monnahan et al.

2017). BHMs are a model-building strategy in which

data and unknown parameters are organized into a

series of conditionally independent models, thereby

easing the strain of building large multivariate models

with complex covariance structures. Suppose that

u5 (u1, u2) in Eq. (6), then a BHMmay decompose the

problem by

p(yju)p(u)5 p(yju
1
,u

2
)p(u

1
, u

2
)

5 p(yju
1
)

|fflfflfflffl{zfflfflfflffl}

Stage 1

p(u
1
ju

2
)

|fflfflfflfflffl{zfflfflfflfflffl}

Stage 2

p(u
2
)

|fflffl{zfflffl}

Stage 3

, (9)

where Eq. (9) indicates that, conditional on u1, y is

independent of u2. Equation (9) is a succinct summary

of the full BHM proposed in this paper: stage 1 de-

scribes the data, conditional on the parameters that

govern the ocean pycnocline model parameters, stage 2

provides the mechanism to allow the pycnocline model

parameters to vary temporally, and stage 3 specifies

priors on the remaining parameters contained in u1.

Fortunately, the appeal of BHMs has led to the

development of many software packages (also known

as probabilistic programming languages) to facilitate

MCMC implementation for the scientific community.

While users must understand the basics of Bayesian

modeling and MCMC output, these software pack-

ages provide straightforward model specification,

data synthesis, and output retrieval. This article uses

Stan (Carpenter et al. 2017) and its interface to R (R

Core Team 2018), RStan (Stan Development Team

2018). The HMC algorithm inside Stan (Hoffman and

Gelman 2014) is also adaptive, so hand tuning of the

proposal density by the practitioner is minimal, and

it readily provides the MCMC diagnostics suggested

above. However, we note that Stan does have one

drawback that more traditional MCMC algorithms

and accompanying software do not: the inability to

estimate models with discrete (or noncontinuous)

parameters because of its need to compute gradients

(Gelman et al. 2015).

3. A parametric ocean pycnocline model

Ocean water density ~r(z, t) is derived from tem-

perature, salinity, and pressure variables, measured at

discrete depths from either a vertical mooring or a

profiling instrument, through an equation of state. A

filtering operation is typically applied to the time se-

ries to extract the background density from the mea-

sured (raw) data via r(z)5 h~r(z, t)i, where h�i indicates a

low-pass-filter operation. It is the background density

that is the dynamically significant quantity of interest for

most analyses.

A parametric model for the density profile is needed

to reduce the dimensionality from a finite number of

discrete points to a few parameters that can provide

inference. Such a model should have the following

properties. First, it must appropriately fit observed

data in the presence of either one or two distinct

pycnoclines, the most dynamically significant aspect

of the ocean stratification. Second, the function must

allow for sensible extrapolation both above the shal-

lowest observation to the ocean surface and beyond

the deepest observation to the ocean floor. Such be-

havior is not an immediate attribute of parametric forms

such as polynomials nor nonparametric methods such as

splines or Gaussian processes. Third, the function should

be monotonic to maintain gravitational stability.

We use a DHT model similar to Liu and Benney

(1981) and Stastna and Lamb (2002) that suitably

captures the pycnocline structure in marginal seas and

JULY 2019 MANDERSON ET AL . 1317



the upper ocean in low and midlatitudes (depths less

than 500m). Liu and Benney (1981) present their model

in terms of buoyancy frequency,

N(z)2 5N2
1sech

2

�
z1b

2

b
3

�

1N2
2sech

2

�
z1b

4

b
5

�

. (10)

Via integration, a DHT function for this type of back-

ground density is

r(z)5b
0
2b

1

�

tanh

�
z1b

2

b
3

�

1 tanh

�
z1b

4

b
5

��

. (11)

The buoyancy frequency derived from Eq. (11) is simi-

lar in form to Liu and Benney (1981), where N2
1 5

2g/r0(b1/b3) andN2
2 52g/r0(b1/b5). Equation (11) also

satisfies the requirements mentioned previously and has

the added benefit that each parameter has a physical

interpretation as illustrated in Fig. 1. Figure 1 depicts

how the first parameter b0 (kgm23) is approximately

the mean density over the profile, while b1 (kgm
23) is a

scale for the density difference over the water column.

The additive factors b2 and b4 (m) are the middepths of

the upper and lower pycnoclines, respectively, and the

denominators b3 and b5 (m) are the pycnocline widths.

Properties such as the pycnocline depth, defined as the

depth of maximum gradient, and the strength, defined as

the maximum gradient, can now be computed exactly

from Eq. (10). Finally, note that Eq. (11) may also be

used to represent the vertical temperature structure by

changing the sign in front of b1 and noting that b0 and b1

would have units of degrees Celsius.

4. Mooring data

We demonstrate the suitability of embedding the

parametric form in Eq. (11) within a BHM using tem-

perature data collected from a through-the-water-column

mooring deployed in 250-m-deep shelf region on the

Australian NorthWest Shelf (13.75898S, 123.34628E,) for

12 months (April 2016–May 2018). The mooring was

serviced in early November 2016 to download data and

remove biofouling, resulting in two 6-month data blocks

separated by a 2-day gap. The mooring consisted of 11

thermistors (Starmon mini temperature loggers) spaced

at 20–30-m-depth intervals and sampling every 60 s. The

uppermost instrument was nominally located 10m be-

low the free surface, although knockdown due to drag

caused this depth to vary. A pressure sensor on the up-

per float measured knockdown, allowing us to map

temperature onto a moving vertical coordinate. Tem-

perature data were converted to density by assuming

constant salinity (34.6 psu) and a nonlinear equation of

state (Feistel 2008). Raw or measured density ~r(z)

was converted to background density r(z) by first

linearly interpolating the instrument depths onto a

constant depth array, then using a backward-in-time

low-pass filter with a cutoff time scale of 34 h (Rayson

et al. 2019).

Background density for the 12-month record was

linearly interpolated from the discrete observation

depths to produce a time series of isopycnals heights

(Fig. 2). The density field in the region evolved over

an annual time scale with smaller, weekly time-scale

fluctuations. A cool mixed layer down to approxi-

mately 70-m depth occurred during the austral winter

(August 2016) with a sharp pycnocline between 70

and 200m. Lighter, more buoyant water appeared in

the upper 50m during the summer months because of

warming and the pycnocline also broadened. A sec-

ondary pycnocline occurred intermittently throughout

the 12-month period. However, this view (Fig. 2) of the

data does not contain any information about the un-

certainty of the isopycnal heights or about general

features like the pycnocline width. In section 6, we

show how our BHM produces not only point estimates

of the isopycnal heights, as reported in Fig. 2, but also

their credible intervals.

FIG. 1. Schematic of the parametric double hyperbolic tangent

(DHT) density profile model [Eq. (11)].
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5. The Bayesian hierarchical model

As in section 4, we have a mooring at a fixed latitude/

longitude with a one-dimensional spatial component

over depth and repeated measures over time. The first

level of the hierarchy describes each time-specific ob-

served density vector (over depth) as a DHT function

with normal errors. The second stage allows the pa-

rameters of the DHT to vary from profile to profile ac-

cording to a multivariate normal distribution. The third

stage completes the BHM by specifying prior distribu-

tions for the remaining parameters and also utilizes

scientific knowledge about the characteristics of vertical

density profiles.

a. Data

Let yd,t for t5 1, 2, . . . , T and d5 1, 2, . . . , D be

the observed seawater density at time t and depth d.

For the data in this article, observations correspond to

T 5 1473 time periods and D 5 11 discrete depths.

Write yt 5 (y1,t, y2,t, . . . , yD,T)
0, z5 (z1, z2, . . . , zD)

0, then

at time t, our BHM specifies

y
t
5b

0,t
2b

1,t

"

tanh

 

z1b
2,t

b
3,t

!

1 tanh

 

z1b
4,t

b
5,t

!#

1 e
t

5 r(z,b
t
)1 e

t
, e

t
;N(0,s2

yID),

(12)

where all arithmetic operations involving vector

quantities occur in an element-wise manner, ID is the

D 3 D identity matrix, and the errors contained in

the D 3 1 vector et, are independent normal random

variables with zero mean and variance s2
y. By allow-

ing the regression parameters bt 5 (b0,t,b1,t, . . . ,b5,t)
0

to vary across time, Eq. (12) captures the local tem-

poral characteristics of the density profiles. Writing

y5 (y01, y
0
2, . . . , y

0
T)

0 and b5 (b0
1,b

0
2, . . . ,b

0
T)

0
, the like-

lihood function is

p(yjb,s2
y)5P

T

t51

(2ps2)
2D/2

exp

�

2
1

2s2
[y

t
2 r(z,b

t
)]0[y

t
2 r(z,b

t
)]

�

.

(13)

b. Density model parameters

Although the values of bt in Eq. (12) vary tempo-

rally, we assume they are generated by a common

probability distribution. This is also an opportunity to uti-

lize prior knowledge. We incorporate this into the distri-

bution of bt as

b
t
;N

1
(m

b
,S

b
) for t5 1, 2, . . . ,T , (14)

where mb 5 (mb0
,mb1

. . . ,mb5
)0, Sb 5 diag(s2), and s2 5

(s2
b0
, s2

b1
, . . . , s2

b5
). The notation N1 indicates a normal

distribution constrained to be positive and hence en-

sures the density profiles at each time point are mono-

tonic. Equation (14) implies the existence of some

common density profile parameterized by mb and that

the density profile at a specific time t is a deviation from

this mean. This level of the BHM structure allow us to

share information across time points, permits global

inference about bt, and results in a more precise esti-

mate of sy (Gelman et al. 2013). The BHM model de-

scribed until this point is depicted as a directed acyclic

graph in Fig. 3.

c. Final level priors

To complete the Bayesian specification of the model,

we require prior distributions on all remaining model

FIG. 2. Background density temporal evolution derived from the mooring data. Nominal

measurement heights are indicated by black diamonds. Contours (isopycnals) are spaced at

0.5 kgm23 intervals and computed via linear interpolation.
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parameters. The following priors for the regression

coefficient means are the result of an expert elicitation

process (Astfalck et al. 2018) about the possible be-

havior of vertical density profiles. Given the physical

interpretation of these parameters, as discussed in

section 3 and shown in Fig. 1, our priors that appro-

priately encode the expert knowledge are

m
b0
;N

1
(1025, 102), m

b1
;N

1
(5, 22),

m
b3
;N

1
(80, 152), m

b5
;N

1
(80, 152),

m
b2
;N

1
(75, 152), m

b4
;N

1
(150, 152).

The choice of prior distributions for the mean pa-

rameter incorporates our knowledge about reason-

able values of certain parameters. For example,

scientific knowledge suggests it is unlikely that the

mean value of the background ocean density over the

whole water column falls outside the range of 1005

to 1045 kgm3. Thus, our prior for mb0
, the typical value

of the density profile intercept term, places 0.95 of the

prior (not posterior) probability mass in this interval.

The prior distributions for the remaining parame-

ters contained in mb have been elicited in a similar

manner.

On the other hand, prior specification of stan-

dard deviation parameters is more difficult to elicit.

Furthermore, if the number of repetitions within the

data is small or the standard deviations approach

close to zero, uninformative priors, despite their

intention, can exert a significant influence on the

posterior (Gelman 2006). Our dataset contains

substantial repetitions (T 5 1473), and we specify

weakly informative priors similar in spirit to those

recommended by Gelman et al. (2013). In particu-

lar, we set
ffiffiffiffiffiffiffi

s2
bi

q

5sbi
;N1(0, 15

2) for i5 0, 1, . . . , 5

and
ffiffiffiffiffi

s2
y

q

5 sy ;N1(0, 0:25
2). While these priors

specify more likely (positive) values toward zero,

they taper off as the standard deviation increases, al-

lowing the posterior to be dominated by the likelihood

rather than the prior, if necessary.

6. Results

We first present some diagnostics of the MCMC

output produced by Stan. Since the BHM has 8851

unknown parameters, we restrict this discussion only

to mbi
, i5 0, 1, . . . , 5, and note that the remaining

parameters display similar output. One chain of

length 5500 samples takes 1.6 h on a standard work-

station hardware (4-core Intel i5 at 3.3 GHz with

8GB of RAM). The first 2000 samples are discarded

as the warm-up period. Three chains, each initialized

from different states, are presented in Fig. 4 for the

post-warm-up period and have converged to the

same stationary distribution. The ACF plots in Fig. 5

do not exhibit significant autocorrelations at un-

acceptably large lags. Across all model parameters,

the minimum effective sample size as calculated by

Eq. (8) is 3337 samples. As a result, we consider the

MCMC algorithm to be satisfactory for estimating

the posterior distribution.

In describing the BHM results and the effect of

uncertainty quantification on ocean dynamics, we

first demonstrate the appropriateness of the BHM

described in section 5 by comparing p[r(z, bt)jy] with

density profile observations at three time periods

chosen to exhibit different stratification conditions.

For the same time periods, p[N2
t (z)jy] and p[ft(z)jy]

are discussed. Next, the annual evolution (i.e., for

t5 1, 2, . . . , T) of p(ctjy), p(atjy), and p(Ls,tjy) illustrate

the uncertainty in the linear baroclinic phase speed,

nonlinear internal wave parameter, and internal wave

steepening length scale given in Eqs. (2), (4), and (5),

respectively. Finally, p(zt*jy), where zt* is an isopycnal

height that satisfies r*2r(zt*, bt)5 0 for a given density

r*, provides a novel way to illustrate isopycnal contours.

All posterior distributions are summarized by expected

values,
Ð
xp(x) dx, and 0.95 credible intervals (a, b) such

that p(a,X,b)5
Ð b

a
p(x) dx5 0:95. In what follows,

the statements ‘‘expected value’’ and ‘‘credible interval’’

refer to these summaries of the relevant posterior

distribution.

Posterior distributions of the more complicated

functions are estimated using the MCMC output.

As an example, p[N2
t (z)jy] can be estimated by

evaluating

FIG. 3. Directed acyclic graph of the hierarchical model. Circular

nodes are (hyper)parameters of the model, for which we specify

prior distributions. The elliptical node is the structural node that

enforces the common prior for each bt . Rectangular nodes are

either derived quantities from the model parameters and DHT

model or observations.
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FIG. 4. Trace plots of mbi
, i5 0, 1, . . . , 5, for three MCMC chains simulated by Stan, each of length 3500 and

post-warm-up period. Individual chains were initialized with different values.
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FIG. 5. ACF plots of mbi
, i5 0, 1, . . . , 5, for three MCMC chains simulated by Stan, each of length 3500 and

post-warm-up period.
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(15)

for MCMC samples of bt and treating these as re-

alizations from p[N2
t (z)jy]. Similarly for p(ctjy), p(atjy),

p(Ls,tjy), and p(zt*jy).

a. Background density profile and characteristics

Three example time periods, shown in Fig. 6, dem-

onstrate the performance of the BHM for density

profiles that exhibited diverse stratification conditions:

a double pycnocline on 7 May 2016 (t 5 27), a single

pycnocline on 26 August 2016 (t 5 469), and a broader

single pycnocline on 9 October 2016 (t5 647). Figure 6

shows that the expected values fit the data well, pro-

viding sensible monotonic interpolation and extra-

polation both at the sea bed and surface. The credible

intervals for the density profiles in Fig. 6 were greater

at the sea surface where the profile was extrapolated

upward. Overall, the credible interval widths ranged

from 0.1 to 0.25 kgm23.

Figure 7 displays the posterior distributions of the

profile characteristics for the three example time

periods in Fig. 6. Recall that the characteristics

provided by the DHT function are the mean density

b0, density difference across the water column b1, and

the two pycnocline depths b2 and b4 and widths b3 and

b5. The expected value for b1,t was largest during the

double pycnocline period (Fig. 6a; 6 May 2016; t5 27)

with a value of 1.3 kgm23. This date corresponded to

expected values of b2,t and b3,t of 59.8 and 30.7m,

respectively. In contrast, single pycnocline time pe-

riods showed larger expected values for b3,t of 53m at

t 5 469 and 44.4m at t 5 647 (Figs. 6b,c), indicating

wider upper pycnoclines. Furthermore, both single

pycnocline time periods reported an expected value

of the density difference b1,t of 1.0 kgm
23. The rela-

tively small density difference and relatively wide

upper pycnocline were the key characteristics that

resulted in the single pycnocline structure as opposed

to the distinct double pycnocline seen at t 5 27

(Fig. 6a).

Figure 7 demonstrates how each of the DHT param-

eters behave for the three contrasting density profiles

and posterior distributions of the parameters for all

time points are presented in Fig. 8. The expected

values of the b0,ts had a maximum of 1024.1 kgm23

on 9 September 2016 (t 5 563) with a credible in-

terval of (1023.9, 1024.3). The minimum expected value

of the b0,ts was 1023.2 kgm23 on 19 November 2016

(t 5 801) with a credible interval of (1023.1, 1023.3).

FIG. 6. The posteriormean (line) and 0.95 credible intervals (gray shading) for the double hyperbolic tangent density profilemodel. Red

dots indicate the background density profile measurements. (a) Plot for 7 May 2016 (t5 27) when the density profile was characterized by

was a double pycnocline. (b) Plot for 26Aug 2016 (t5 469) when there was a single pycnocline. (c) Plot for 9Oct 2016 (t5 647) when there

was a broader single pycnocline.
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The b1,t had a minimum expected value of 0.90 kgm23,

with a credible interval of (0.81, 1.00), on 2 October

2016 (t 5 621), and peaked on 3 May (t 5 10) at

1.30 kgm23 [credible interval of (1.26, 1.36)]. The pri-

mary pycnocline b2,t was deepest on 16 August 2016

(t 5 308) with an expected value 129.7m [credible in-

terval of (121.0, 140.3)]. The credible intervals of b0,t,

b1,t, and b2,t suggest increasing uncertainty of the mean

density, density difference, and depth of the upper

pycnocline from September to November 2016, before

the mooring was serviced. There was considerably

greater knockdown during this period resulting in the

greater uncertainty range of these density model pa-

rameters that were dependent on the upper-water-column

measurements.

The expected values of b3,t varied from 39.9m

[credible interval of (31.6, 49.8)] in winter to 53.7m

[credible interval of (45.9, 61.9)] in the austral sum-

mer indicating a wider upper pycnocline during the

warmer months. Expected values for the secondary

pycnocline depth b4,t was greatest in the austral win-

ter (169m) and decreased substantially to 115m

during the transitional season around October. There

was no clear seasonal pattern in the width of the

secondary pycnocline; the expected b5,t ranged from

35m with a credible interval of (28, 41) to 68m with a

credible interval of (55, 80).

b. Squared buoyancy frequency and vertical

mode structure

Posterior summaries for N2
t (z) and ft(z) for the three

examples shown in Fig. 6 are shown in Fig. 9. The double

pycnocline period (t 5 27) resulted in two maxima of

the expected value of N2
t (z) (Fig. 9a). Depths of these

maxima coincided with expected values for b2,t and

b4,t. In all three example time periods, depths where

the vertical density gradient was largest [i.e., the

maxima of N2
t (z)] also exhibited wider credible in-

tervals at depths of 60, 151, and 50m in Figs. 9a–c,

respectively.

FIG. 7. Uncertainty quantification as represented by the posterior probability distributions of bt for (top) t5 27, (6May 2016), (middle)

t 5 469 (25 Aug 2016), and (bottom) t 5 647 (8 Oct 2016). The value in each panel indicates the posterior mean.
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The credible intervals allow us to make direct

probabilistic statements about the properties ofN(z)2

and f(z). For example, when t 5 27, the credible in-

tervals only include N2
t (z)5 4:03 1024 for depths be-

tween 48 and 75m. Outside of these depths, the

probability that N2
t (z). 4:03 1024 is small. For the

corresponding time period, the maximum expected

value of ft(z) occurs at a depth of 112m. However,

the credible intervals for ft(z) indicate it is also

reasonable that the depth of the maximum lies be-

tween 97 and 127m. Similar probabilistic statements

can be made from the profiles during other time

periods.

c. Nonlinear internal wave quantities

Over the entire observational period, the posterior

distributions of phase speed ct revealed credible inter-

val widths that ranged from 2.5% to 4% of its ex-

pected values (Fig. 10a). Credible interval widths for the

steepening parameter at ranged from 15% to 40% of its

expected values (Fig. 10b). As Eq. (5) demonstrates, the

steepening length Ls is dependent on both c and a, and

note that the width of the credible intervals for the

steepening length scale Ls,t in Fig. 10c indicate un-

certainty levels that varied by several orders of mag-

nitude. Given the relatively small credible intervals of

the background density profiles (see, e.g., Fig. 6),

these results demonstrate large uncertainties in these

ocean dynamic quantities.

The credible intervals for at provide interesting in-

ference about the nonlinear internal wave character-

istics at certain times (Fig. 10b). On occasion (e.g.,

during October 2016), p(at , 0jy)’ 1, indicating per-

sistent high probability that the environment was

conducive to nonlinear internal waves of depression.

Alternatively (e.g., during July 2016 and toward

the end of the observational period), p(at . 0jy)’ 1, in-

dicating persistent high probability that the environment

FIG. 8. Posterior distribution for bt for the 12 months of data. For each t the posterior

distribution is summarized by the upper and lower bounds of the 0.95 credible interval (gray

shading) and the posterior mean (black line).
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was conducive to nonlinear internal waves of ele-

vation. When the credible intervals contained zero

(e.g., 1 December 2016), it was uncertain whether waves

of depression or elevation would evolve. When cred-

ible intervals contain zero and were narrow (e.g., July

2016), it was most likely that the environment was

thus not conducive to any nonlinear internal wave

formation.

The steepening length Ls (Rayson et al. 2019) in-

dicates nonlinear internal wave occurrence at a given

location in the following manner. If d is a distance from

the internal wave generation site, then p(Ls , djy)’ 1

means nonlinear internal wave steepening will almost

surely occur at the site and solitary-like waves will

likely be present. Alternatively, p(Ls , djy)5 0means

nonlinear internal wave steepening will almost surely

not occur. At the mooring site, d’ 100 km, so we can

make statements like p(Ls , djy)5 0 during mid-June

2016 and p(Ls , djy)’ 1 during October 2016. During

certain periods, 0, p(Ls , djy), 1 (e.g., late March

2017), meaning there is some probability that non-

linear internal waves will form given the credible

interval width of Ls.

d. Isopycnal height

Figure 11 shows the expected values and credible

intervals for isopycnal heights as the density pro-

file evolves over time. The credible interval widths

for isopycnal heights ranged from 5 to 10 m at the

approximate location of the main pycnocline (i.e.,

between 50 and 200 m). Uncertainty in isopycnal

heights increased near the seabed and surface,

where credible interval widths extended to approxi-

mately 20–40 m. These are usually regions of weaker

vertical density gradients that result in larger iso-

pycnal height uncertainty. Note that contouring via

linear interpolation, as is typical in the literature

and shown in Fig. 2, does not provide this addi-

tional information about the heights of individual

isopycnals.

FIG. 9. Posterior mean and 0.95 credible regions for the (a)–(c) squared buoyancy frequency N(z)2 and (d)–(f) mode-1 vertical structure

functions f(z). Columns correspond to the dates in Fig. 6.
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7. Summary and conclusions

We have outlined a methodology for constructing a

Bayesian hierarchical model to estimate continuous

vertical density profiles using discrete measurements.

An analytical function (DHT) was used to objectively

characterize the vertical density structure, whereas

the BHM with the Hamiltonian Monte Carlo sam-

pling technique infers the posterior distribution of

the DHT parameters. The first level of the hierarchy

models time-specific background density using a DHT

function [Eq. (11)], thereby retaining local temporal

characteristics of continuous vertical depth profiles.

The second level permits the DHT parameters to vary

temporally in order to assess their annual variability

over the observational period. When available, sci-

entific knowledge about the behavior of the density

characteristics informed the third and final level prior

distributions; otherwise, they were allocated weakly

informative priors. It was shown that the DHT func-

tion is a flexible model for background density, per-

forms well across different stratification conditions,

and yields probabilistic statements about vertical den-

sity profiles and their characteristics.

For the interested user, variations to the BHM are

straightforward to implement in the Stan software

provided. For example, rather than the DHT function

in Eq. (12), analytical functions such as exponential

stratification models or those described in González-

Pola et al. (2007) and Zhou et al. (2017) could be used,

as could nonparametric mean functions such as smooth-

ing splines or Gaussian processes. Similarly, various prior

specifications, including nonparametric priors, over vari-

ous model parameters may be substituted for the ones

mentioned in this article. Furthermore, the DHT can

be adapted to model temperature structure, instead of

density, as mentioned in section 3.

This article concentrates on uncertainty as quan-

tified by probability. The BHM provided posterior

probabilistic inference for upper-ocean density

characteristics, as given by the DHT parameters, at

both at a given point in time and their evolution

over a year. A novel way of assessing and visualizing

the uncertainty in isopycnal heights was shown that

provides users with information beyond what is

typically reported via interpolating contour lines.

Background density is also used as an initial condi-

tion in the calculation of various ocean scalars,

process models, and parameterizations. We have

provided a demonstration of how to propagate the

uncertainty in initial background density profiles to

obtain posterior distributions of various ocean dy-

namical properties that may serve as instruments for

probabilistic inference.

These results also suggest the need for full uncertainty

propagation, as opposed to ad hoc sensitivity analyses of

FIG. 10. The 12-month time series of posterior median (black) and 0.95 credible intervals

(gray shading) for (a) the linear phase speed c [Eq. (2)], (b) the nonlinear parameter a

[Eq. (4)], and (c) the steepening length scale Ls [Eq. (5)]. An initial amplitude a0 5 20m was

used to estimate Ls.
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input variables, to fully appreciate the effect that the

background density profile uncertainty has on ocean

dynamic quantities such as N(z)2, c, and Ls. For ex-

ample, at times during the observational period, the

nonlinear steepening parameter showed significant

uncertainty and the steepening length scale displayed

credible interval widths that varied by orders of mag-

nitude. To identify such phenomena a full coverage of

the input space, and an associated probability distri-

bution, is required. In this work, they were supplied

by the BHM, the posterior distribution of which was

validated against real measurements.
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