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ABSTRACT: The evaporation characteristics of sessile droplets on heated hydrophobic and 

hydrophilic surfaces are investigated. Results are reported for the evaporation of water droplet 

volumes covering a range of shapes dominated by surface tension or gravity and over a range of 

temperatures between 40℃  and 60℃ . The weight evolution and total time of evaporation is 

measured using a novel self-contained heating stage on a high resolution analytical balance, which 

has advantages over visualization measurement techniques as it allows free choice of the initial 

droplet size and surface and the ability to record the droplet evaporation right through to the final 

stages of droplet life. Evaporation is modelled through a combination of a constant contact area and 

a constant contact angle model with the switch from the former to the latter occurring when the 

contact angle falls below its predetermined receding value. Theoretical results compare well with 

the experimental results for the hydrophobic substrate. However, a significant deviation is observed 

for the hydrophilic substrate due to the combined effects of droplet surface cooling due to 

evaporation and buoyancy effects which are not included in the model. The proposed method of 

using the stick-slip model offers a convenient means of modeling droplet evaporation by mimicking 

the drying modes based on initial measurements of the static and receding contact angles.   
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INTRODUCTION 

The important role of droplet evaporation phenomena in many applications has motivated a wide 

range of experimental and theoretical investigations. These applications span industrial, medical 

and biological fields including DNA mapping1, 2 biosensing3, cooling4, 5, 6, cleaning7, printing and 

painting8. These studies explored the effect of the different parameters on the evaporation of 

droplets with particular focus on understanding the effect of substrate thermal conductivity, 

roughness and wettability on the evaporation process. However, droplet evaporation is still the 

focus of scientific investigation due to the associated complexity of interlinking flow dynamics, 

substrate physical surface chemistry and heat and mass transfer considerations. 

A number of studies have explored the influence of the thermal conductivity of the substrate on the 

evaporation lifetime of droplets 9, 10, 11. This has been found to be a key influence on the 

evaporation rate, for example David et al.9 and Sobac and Brutin11 have shown that there is a 

significant difference between the evaporation rate of non-metallic and metallic substrates with the 

same hydrophilic properties but no major differences between different metallic substrates with 

similar hydrophilic properties. Both experimental and numerical studies have examined the 

interaction between droplet evaporation and the wetting characteristics of the surfaces. The majority 

of these studies have concentrated on studying hydrophobic and super-hydrophobic surfaces6, 11, 12, 

13, 14, 15 while comparatively few have investigated droplet evaporation over hydrophilic substrates 

11, 12. Studies concerning free droplet evaporation (no substrate temperature control) have received 

more attention 6, 12, 13, 14, 16, 17, 18, 19, 20 than evaporation with controlled substrate temperatures 11, 15, 16.   

The majority of studies have considered evaporation of droplets with volumes between 1𝜇𝑙 and 5𝜇𝑙 

6, 11, 13, 14, 15, 19, since these are consistent with the assumption of a spherical droplet cap, where 



 
 

3 
 

surface tension dominates over gravity to yield a homogeneous and regular droplet shape. This then 

allows a visualization method to be adopted based on imaging the whole droplet profile from the 

side in order to determine the contact angle, contact radius, and droplet height 6, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23. The Young-Laplace model, valid for axisymmetric droplets, is the most common 

way of interpreting the data. However, this approach has limitations since estimates of the contact 

line position are very sensitive and are associated with large errors in the predicted contact line and 

contact angle24. Wilson et al.25 showed that the apparent contact angle (measured contact angle) 

depends on the resolution to which the angle is measured which is different than the actual value. 

Srinivasan et al.24 have shown that small variations in the lighting and camera focus can also lead to 

a difference of several degrees in the measured contact angle which in turn leads to significant 

errors in the calculated droplet volumes. The associated error increases at small contact angles and 

rates of droplet evaporation are often extrapolated from data where de-pinning occurs 9, 11, 26, 27. 

There is an additional error associated with a non-circular contact line due to the surface roughness 

and surface impurities at small and large droplet sizes 13, 28, 29, 30.  

Two main evaporation modes have been discovered by experimental observations which are related 

to the surface properties and characterised by the pinning and de-pinning properties of the droplet 

contact line: (i) constant contact radius mode (CCR), in which the contact angle of the droplet 

vanishes and the contact radius remains constant; (ii) the constant contact angle mode (CCA), in 

which the contact radius of the droplet vanishes and the contact angle remains constant31. However, 

another phase of evaporation has also been reported to occur in which both the contact angle and 

the contact radius collapse20, 32. The evaporation mode is largely controlled by the surface 

roughness33, wettability34 and surface energy35. Mollaret et al.10 found that for high surface energy, 

the pinning force increases with increased substrate temperature while there is little dependence on 

temperature for the low surface energy surfaces. Blake and DeConinck36 and Putnam et al.34 both 

examined the effect of surface wettability on the pinning and de-pinning forces and found that the 
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pinning force dominates for contact angles lower than 90° (hydrophilic surfaces) and reduces with 

increasing contact angle (hydrophobic surfaces). Therefore, hydrophobic surfaces are associated 

with the CCA evaporation mode22, 37, although wettability is not the only defining factor for all the 

hydrophobic surfaces13. Kulinich and Farzaneh38 determined that the mode of evaporation can be 

discovered from the contact angle hysteresis of the surface and cannot be explained by the initial 

contact angle of the droplet.  

Characterizing surface properties and the interactions between the droplet and the substrate is 

necessary for numerical investigations. Bourges-Monnier and Shanahan39 derived an analytical 

expression for the evaporation of pinned droplets in the diffusion limited regime. This analytical 

expression was also successfully applied to describe the evaporation of the de-pinned droplets by 

Raj et al.40 and Gunjan et al.41. Similarly Hu and Larson42 proposed an approximate expression 

based on finite element analysis to describe a droplet evaporating in the pinned mode. Deegan et 

al.43 proposed a model to predict the local evaporation flux over the droplet surface as a function of 

the contact angle. Popov44 developed a model to calculate the total rate of evaporation based on the 

local evaporation flux model of Deegan et al. which was termed the vapour-diffusion model. 

Popov’s model, which was originally developed to account for the deposition of solute resulting in 

a pinned contact line, underpins many studies for different surface wettabilities spanning 

hydrophilic11, 43, pinned hydrophobic11, de-pinned hydrophobic15, 22 and superhydrophobic 

surfaces13.  

Note that the above models, which are based on the assumption of Fickian diffusion, are unable to 

model the flow of complex, multi-component droplet systems such as in water-glycol or water-

ethanol droplets45, fuel droplets46 or complex polymer systems47. Multi-component diffusion 

systems have been reviewed comprehensively by Bird & Klingenberg48. 

For the water droplet systems considered here, the vapour-diffusion model of Deegan et al. based 

on the assumption of Fickian diffusion, predicts the evaporation rate with reasonable accuracy for 



 
 

5 
 

the hydrophobic15 and hydrophilic11, 15 surfaces but to significantly under predict the total 

evaporation time for super-hydrophobic surfaces15, 22. Dash and Garimella22 used a scaling factor 

for the vapour-diffusion model to reduce the discrepancy of the predicted results for super-

hydrophobic surfaces. Gleason and Putnam49 introduced a modification for the local mass flux and 

the evaporation rate models by applying a temperature distribution across the liquid-vapour 

interface of the droplet. Pan et al.50 attributed the discrepancy of the vapour-diffusion model to 

evaporative cooling while Carle et al.51 claimed this under-estimation to be due to the natural 

convection driven by the buoyancy in the gas phase for the heated surfaces. However, others have 

attributed the under-estimation to the effect of substrate thermal conductivity which is not included 

in the underlying model11, 13, 26.      

The mode of evaporation is vital in determining the evaporation mass flux and the total time of 

evaporation. Models focus either on a single mode of evaporation (CCR or CCA) that has the 

largest portion of the total evaporation time based on experimental visualisations11, 15, 22. Others 

have considered using a combination of models to describe the evaporation process where the 

droplet evaporates under the CCR mode and then shifts to the CCA mode based on experimental 

observations of the contact angle and the droplet radius to identify the point at which the mode of 

evaporation switches6, 20, 52, 53. Some studies have developed an experimental control methodology 

(such as creating a trench in the substrate) to force the droplet to evaporate at constant contact 

radius allowing theoretical predictions for a specific model of operation49. Stauber et al.52 proposed 

a relationship between the initial contact angle and the point at which the droplet shifts into the de-

pinning mode based on the experimental data of droplet evaporation from different studies in the 

literature. Recently, Hu and Wu 53 examined theoretically the effect of different receding contact 

angles on the total time of evaporation assuming the droplet evaporates under pinned mode and 

then in the de-pinning mode once the receding contact angle was reached. It is also important to 

recognize that contact line shapes are also influenced by surface heterogeneity. A number of studies 
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have shown that these can be tailored to specific shapes by carefully designing chemical 

heterogeneity on the surface29, by topographic patterning28, are highly susceptible to surface 

contaminants41, and can be manipulated to flow in specific directions on asymmetric nano-

structured surfaces30.                       

In the present study, the evaporation of sessile droplets over heated surfaces is examined 

experimentally using a self-contained heating stage allowing weight loss to be established until 

complete evaporation has occurred and theoretically using an evaporation model where the 

behaviour is switched based on a pre-measured receding contact angle. The originality of the 

present work is in its proposals for: (i) a new way of measuring the droplet evaporation using a 

precise measurement balance to overcome the aforementioned limitations of the conventional 

imaging methods; (ii) a new method of predicting the evaporation rates over the whole period of 

drying with a switch from CCR to CCA modes (stick-slip mode) based on the receding contact 

angle. Thus, whereas previously, the use of the stick-slip mode of evaporation have been reported 

by a few studies based on the experimental observation of the whole evaporation process, here we 

propose the use of a suction method of measuring the receding contact angle at the same time as 

measuring the initial contact angle to be fed in the model to define the point at which the mode of 

evaporation is shifted from CCR to CCA. This method will provide a much more convenient means 

of studying the evaporation of sessile droplets over any kind of surfaces and will only require 

simple initial measurements of the static and receding contact angles. Part of this paper is based on 

a previously published PhD thesis under the title “Holistic study of thermal management of direct 

liquid cooled data centres: from chip to environment54”. 

This article is organized as follows: the first part includes description of the experimental and 

sample preparation methodologies for droplet evaporation . The second part discusses the 

theoretical analysis of the Deegan model for local evaporation flux, the Popov model of droplet 

evaporation and the stick-slip model implemented in this study . The third part presents the typical 
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results of the Deegan model. The fourth part discusses the validation of the proposed model. Finally 

in the fifth part, the experimental and theoretical results of the droplet weight evolution are 

discussed for both surface tension-dominated and gravity-dominated droplets.     

 EXPERIMENTAL METHODOLOGY FOR EVAPORATING DROPLETS 

The experiments deposit a controlled droplet volume on a heated substrate, which is then allowed to 

evaporate. The time evolution of the weight of the droplet is monitored and measured.   

To investigate the influence of the sample substrate temperature, a compact self-contained unit was 

designed to carry the substrate sample and heat and control the temperature, as shown in Figure 1. 

The weight of the entire unit was such that it could be positioned on a stage of an accurate balance. 

The substrate is heated using a thick film electrical resistor powered by a small lithium polymer 

battery and controlled using an embedded microcontroller coded with a PID control loop (see 

Supporting Information). The circuit maintains a constant substrate temperature with a variation of 

±0.5℃ by modulating the amount of current supplied to the resistor. Using the PID controller loop 

means that any temperature disturbance (e.g. reduced heat load during drying) will be automatically 

compensated for.  The substrate under test is attached to the thermal resistor with a thin uniform 

layer of thermally conductive ethoxy paste (Electrolube TCER75S).  

An analytical balance (METTLER TOLEDO XP 205) is used to measure and digitally record the 

droplet mass evolution as a function of time with a resolution of 10 micrograms. The design of the 

heated stage allows the self-contained unit to sit on the weighing pan, with sides around the balance 

to prevent disturbances by air currents. 

A camera (Basler acA1300-30𝜇𝑚 and lens CCS SE-16SM) is used to obtain side and top views of 

the droplet. The recorded frames allow monitoring the droplet lifetime as well as the shape of the 

droplet especially at the final stages of droplet life. The droplet is created using a micropipette to 

control the droplet size, which is gently laid down on the plate sample to evaporate into the air 

inside a cubic cell of dimensions (15 × 18 × 21cm3) to avoid any perturbation from potential 
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external flow. To ensure repeatability of the results, each experiment is repeated four times. Before 

each measurement, a cleaning procedure is adopted by rinsing the substrate with deionized water 

and drying in an air stream.  

The temperature and relative humidity inside the laboratory containing the balance was maintained 

at 21±0.2℃ and 30±1%, respectively. The effect of substrate temperature was investigated over 

five different temperatures: 40, 45, 50, 55 and 60℃  (±0.5℃). Deionized water droplets of four 

different initial volumes (2, 4, 8 and 30𝜇𝑙) are investigated covering shapes dominated by surface 

tension through to those dominated by gravity; the Bond number ( 𝐵𝑜)55 varies from  𝐵𝑜 < 1 to 

 𝐵𝑜 > 1 , respectively. The Bond number is defined by  𝐵𝑜 =
∆𝜌𝑔𝑅2

𝛾
, where ∆𝜌 is the density 

difference between the water and air, 𝑔  is the gravitational acceleration, 𝛾 is the surface tension 

between water and air at the substrate temperature, and 𝑅 is the droplet contact radius.  
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Figure 1 Experimental rig setup.   
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SAMPLE PREPARATION AND CHARACTERIZATION 

Two different substrates were studied, hydrophobic treated aluminium and hydrophilic treated 

aluminium. Disks of material were formed by machining aluminum bar of 10 mm diameter into 

disks of 3 mm thickness. The hydrophobic coated disks were polished from both sides with 

polishing paper of 1200 grade before being coated using Oxford nanoSystems56 nanoFLUX® 

process to produce a dendritic surface nanostructure. Each disk has two holes (drilled from the 

sides) for temperature measurement, one of these holes is used to embed the electronic circuit 

thermocouple sensor whereas the other one is used for temperature calibration purposes.  

The contact angle for all the samples was measured using CAM 200 from KSV. Each angle is 

reported as an average of 20 measurements taken at four locations across the surface. The static 

contact angles of the hydrophobic and hydrophilic aluminum surfaces were 120° ± 1.83 and 49° ±

1.13, respectively.  

The receding contact angle was determined using a First Ten Angstroms (FTA) 4000 Microdrop 

where the droplet volume is reduced using a needle to create contact line motion (see Supporting 

Information). The measured receding contact angle was found to be 10° ± 0. 6𝑜  for the 

hydrophobic surface. For the hydrophilic surface, the contact line started receding at a value of 

6° ± 2𝑜. The error is due to the difficulty in visualising the small angle and is consistent with that 

previously observed34, 36.  

The surface roughness of the samples was determined using white light interferometry (Bruker Np-

Flex) (see Supporting Information). The root mean square roughness (RMS) was found to be 2.468 

and 0.677 µm respectively for the hydrophobic and hydrophilic surfaces.  
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THEORETICAL ANALYSIS: DIFFUSION DRIVEN DROPLET EVAPORATION MODEL  

The theoretical analysis presented here predicts the evaporation of a sessile droplet due to forced 

evaporation through heating of the substrate, allowing comparison with experimental data.  

In the diffusion driven evaporation model, the limiting rate of mass transfer between the liquid and 

vapour medias is due to diffusion at the liquid-vapour interface. Fick’s law of diffusion governs the 

evaporation of the droplet 

 
𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐,            (1) 

where, 𝐷, 𝑐  and 𝑡 are the diffusion coefficient, vapour concentration and time respectively.  

The time scale analysis indicates that the droplet evaporation can be assumed to be quasi-steady 

when the droplet lifetime is much larger than the mass transfer Fourier number indicated by (𝐷/

𝑅𝑖
2), where 𝑅𝑖 is the initial droplet radius. In this case, the transient term in equation (1) can be 

neglected, resulting in the Laplace equation  

∇2𝑐 = 0.                                                                                                                                    (2) 

 

Figure 2 Droplet schematic and the boundary conditions 

The droplet size adapted in this theoretical analysis is considered to satisfy the spherical cap 

assumption and to indicate symmetry across the central axis of the droplet. The boundary 

conditions (as shown in Figure 2) to satisfy the Laplace equation are (i) saturated vapour at the 

𝜃 

𝑇 = 𝑇∞, ∅, 𝐶∞ 

𝐶𝑠, 𝑇𝑑𝑟𝑜𝑝 = 𝑇𝑠𝑢𝑏  

2R 

𝑇 = 𝑇𝑠𝑢𝑏 

h 
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surface of the droplet at the substrate temperature (𝑐𝑠), (ii) the vapour concentration far from the 

droplet surface is defined by the ambient conditions (𝑐∞ = ∅𝑐∞,𝑆), where ∅ is the relative humidity 

and 𝑐∞,𝑆 is the saturated vapour concentration at the ambient temperature, (iii) all the phase change 

occurs across the liquid-vapour interface of the droplet, and (iv) the diffusion coefficient is 

calculated based on the substrate temperature. By employing a toroidal coordinate system as 

explained by Lebedev57, Laplace’s equation can be solved for the vapour concentration around the 

droplet and the solution can be described as 

𝑐(∝−𝛽)−𝑐∞

𝑐𝑠−𝑐∞
= √2 cosh ∝ −2 cos 𝛽 × ∫

cosh(𝜃𝜏) cosh(2𝜋−𝛽)𝜏

cosh(𝜋𝜏) cosh(𝜋−𝛽)𝜏

∞

0
𝑃1

2
+𝑖𝜏

(cosh 𝛼)𝑑𝜏,                   (3) 

where 𝑃1

2
+𝑖𝜏

(cosh 𝛼) is the hyperbolic legendre function.   

From equation (2) and (3), the Deegan model can be obtained which governs the local evaporation 

flux 43, 44  

𝐽(α) =
𝐷(𝑐𝑠−𝑐∞)

𝑅
[

1

2
sin 𝜃 + √2(cosh 𝛼 + cos 𝜃)3/2 × ∫

τ cosh(𝜃𝜏)

cosh(𝜋𝜏)

∞

0
tanh[(𝜋 −

𝜃)𝜏] 𝑃
𝑖𝜏−

1

 2

(cosh 𝛼)𝑑𝜏].                                                                                                            (4) 

The total mass loss from a droplet during evaporation can be obtained by integrating the Deegan 

model, equation (4), over the liquid-vapour interface which results in Popov’s model 22, 44 

𝑑𝑀

𝑑𝑡
= 𝜌𝐿

𝑑𝑉

𝑑𝑡
= −𝜋𝑅𝐷(𝑐𝑠 − 𝑐∞)𝑓(𝜃), where           (5) 

𝑓(𝜃) =
sin 𝜃

1+cos 𝜃
+ 4 ∫

1+cosh 2𝜃𝜏

sin 2𝜋𝜏

∞

0
tanh[(𝜋 − 𝜃)𝜏] 𝑑𝜏,          (6) 

where  𝑀 , 𝜌𝐿 , 𝑉 , and 𝑅   are the mass, density, volume, and contact radius of the droplet 

respectively. 

The rate of mass change can be calculated as a function of base radius and contact angle. Two 

stages of evaporation are observed experimentally in which the major part of evaporation occurs 

with a constant droplet base radius, R, and the contact angle a function of time, 𝜃 = 𝜃(𝑡), until it 

reaches the receding contact angle, 𝜃 = 𝜃𝑟 , where the droplet starts de-pinning and the evaporation 
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becomes a function of base radius only, 𝑅 = 𝑅(𝑡) with the contact angle remaining fixed at the 

receding angle until evaporation is completed. The evolution of the contact angle during the first 

stage of evaporation of a pinned droplet and the second stage of evaporation of a de-pinned droplet 

can be respectively represented as      

𝑑𝜃

𝑑𝑡
=

𝐷(𝑐𝑠−𝑐∞)

𝜌𝑅𝑖
2 (1 + cos 𝜃)2𝑓(𝜃)                                  (7) 

𝑑𝑅

𝑑𝑡
=

𝐷(𝑐𝑠−𝑐∞)

𝜌𝑅2

(1+cos 𝜃𝑟)2

2+cos 𝜃𝑟
[

1

1+cos 𝜃𝑟
+ 4 ∫

1+cosh 2𝜃𝑟𝜏

sin 𝜃𝑟 sinh(2𝜋𝜏)

∞

0
tanh[(𝜋 − 𝜃𝑟)𝜏] 𝑑𝜏 ].                        (8) 

The new mass of the droplet after each time step based on the new contact angle or the new base 

radius is calculated using the spherical cap assumption as (𝑀 = 𝜌𝐿𝑉) 

𝑀 =
𝜋𝜌𝑅3

3

(1−cos 𝜃)2(2+cos 𝜃)

sin3 𝜃
 .                              (9) 

The transient contact angle in equation (7) and the transient base radius in equation (8) were solved 

using the trapezoidal numerical integration method implemented in Matlab58. The numerical 

calculation procedures and the Matlab code are described in detail in the Supporting Information. 
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INFLUENCE OF THE SURFACE WETTABILITY AND SUBSTRATE TEMPERATURE ON 

THE EVAPORATION FLUX.   

The spatial variation of vapour concentration based on the Deegan model, equation (4), is shown in 

Figures 3 and 4 for the hydrophobic and hydrophilic surfaces, respectively. The arc length is 

calculated from the droplet surface radial distance (horizontal distance from the center of the 

droplet and the point at the droplet surface), which is described by 
𝑟

𝑅
= sinh 𝛼/(cosh 𝛼 + cos 𝜃), 

and the vertical coordinate, which is described by 
𝑧

𝑅
= sin 𝜃/(cosh 𝛼 + cos 𝜃) . The local 

evaporation flux is presented for all the cases as a function of the normalized arc length which is 

defined as the line around the gas-liquid interface from the point of the gas-liquid-solid contact line 

to the point of maximum height. This is normalized by the total arc length of the droplet. Substrate 

temperatures of 40, 50 and 60℃ and initial droplet sizes of 2𝜇𝑙 and 4𝜇𝑙 are chosen to illustrate the 

difference in the variation of the evaporation flux on the droplet surface.      

The evaporation flux at the start of the evaporation process, calculated using equation (4) for 

droplet sizes of 2𝜇𝑙 and 4𝜇𝑙 on the hydrophobic surface with different substrate temperatures is 

shown in Figure 3. It shows that the evaporation flux is higher for the smaller droplet size; in all 

cases the maximum flux is at the point of maximum height of the droplet, and largely constant 

before rapidly reducing close to the contact line. This agrees with previous theoretical results22, 

which show that the evaporation flux by natural diffusion (no substrate heating) of the sessile 

droplet with hydrophobic contact angle remains almost uniform along the upper half of the droplet 

surface. The behaviour with the hydrophilic surface is significantly different. Figure 4 shows 

equivalent data to that in Figure 3, but for the initial conditions of the droplet with contact angle of 

49°. It can be seen that the diffusion flux rapidly increases as the contact line is approached. In both 

cases reducing the temperature causes a reduction in the total evaporative flux, with the distribution 

of local flux transport remaining similar.      
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Figure 3 Initial local evaporation flux along the surface for 2 µl and 4 µl water droplets for the 

hydrophobic surface for various substrate temperatures at contact angle of 120°.  

 

Figure 4 Initial local evaporation flux along the surface for 2 µl and 4 µl water droplets for the 

hydrophilic surface for various substrate temperatures at contact angle of 49°. 
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TOTAL TIME OF EVAPORATION  

The total time of droplet evaporation from a surface is highly dependent on the surface temperature 

and wettability. Figure 5 shows experimental measurements of the total time for the complete 

evaporation of 2, 4 and 8𝜇𝑙 water droplets, for the hydrophobic and hydrophilic surfaces, together 

with the predicted values using the diffusion only model. Increasing both the substrate temperature 

and wettability causes a reduction in the time taken for complete evaporation. 

The stick-slip receding contact angle model (SSR) postulated here is used to predict evaporation, 

where the droplet initially evaporates under a constant contact radius mode until the contact angle 

falls below the receding angle, at which point the behaviour is switched to constant contact angle 

mode until complete evaporation. For most real surfaces, the modes of droplet evaporation are 

usually unknown a priori, however the combined model developed in this study (SSR) can capture 

the physical behaviour of droplet evaporation based on a pre-determined static and receding contact 

angle. This removes the requirement to visually monitor the droplet over its lifetime to establish the 

appropriate model to capture the mode of evaporation20, 52, 53.  

In the case of the hydrophobic surface for the droplet sizes dominated by the surface tension force 

(2, 4 and 8 𝜇𝑙), the total time of evaporation calculated by the vapour diffusion model based on the 

SSR mode is generally in excellent agreement with that measured experimentally, where an average 

relative deviation of less than 4% is observed as shown in Figures 5a-c. This suggests that the 

vapour diffusion model, based on the stick-slip behaviour where the slip happens when the receding 

contact angle is reached, succeeds in describing the entire influence of substrate heating throughout 

the evaporation process. In the case of the hydrophilic surface, the results of the model are 

presented for the range of measured receding contact angle between 4 and 8 ° . However, a 

considerable under prediction of 22% on average is observed when the surface is hydrophilic, as 

shown in Figures 5a-c.  
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There are two possible explanations for these over-predictions. These are that: (i) the model does 

not include evaporative cooling15 over the height of the droplet resulting in an over-prediction of 

the surface temperature and consequently an under-prediction of the time of evaporation; (ii) 

buoyant convection 59 resulting in an under-prediction of concentration gradient and an over-

prediction of the time of evaporation.   

The hydrophobic droplets, presenting a higher droplet height to radius ratio than the equivalent 

(volume) hydrophilic droplet, creates conditions favourable for evaporative cooling, due to the 

distance between the hot base and cooler droplet surface – this may counter the buoyant convection 

thereby giving a closer match between model and experiment. The hydrophilic droplets will 

experience less evaporative cooling since the height to radius ratio is reduced; together with the 

higher surface temperatures driving buoyant convection.  

Saenz et al.’s60 3D simulations of evaporating, non-axisymmetric sessile droplets provides useful 

insight and context to the present results. Their Diffuse Interface simulations predicted the 

emergence of azimuthal currents and counter-rotating vortices within the bulk flow which could 

provide additional mechanisms for increasing heat transfer across the droplet. These would in turn 

lead to increased rates of evaporation which could potentially lower the predicted total evaporation 

times towards the experimental values obtained here. These effects are subtle and inter-related – but 

are supported by the stronger agreement between experimental and theoretical predictions for 

evaporation on hydrophobic surfaces when compared to hydrophilic surfaces, as shown in Figure 5. 
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Figure 5 Total time for droplet evaporation on hydrophilic and hydrophobic surfaces as a function 

of substrate temperature. (a) 2µl, (b) 4µl and (c) 8µl. 
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EVAPORATION OF DROPLET SHAPES DOMINATED BY SURFACE TENSION 

Experimental and numerical results of the evaporation of water droplets are now presented for 

Bond numbers in the range between 0.07 and 0.7 allowing the droplet shape to be considered as a 

spherical cap.  

The reduction in droplet weight with time during evaporation of the droplets over the hydrophobic 

surface for three different surface temperatures (40, 50 and 60℃) are shown in figure 6 for droplet 

sizes of 2, 4 and 8µl. The evolution of weight is consistent with earlier observations of droplet 

evaporation using the traditional visualization measurement technique over hydrophobic aluminium 

substrates coated with Teflon15, 20 and PFC11 coatings. The weight evolution of  droplet evaporation 

over the hydrophobic surface was found to be predicted well by the vapour diffusion model based 

on the stick-slip behaviour mode (SSR). This is in agreement with earlier observations using the 

CCA15 and the CCR11 modes.  

The weight evolution of the water droplet over time during evaporation over the hydrophilic surface 

for three different temperatures (40, 50 and 60℃) is shown in Figure 7 for the droplet sizes of 2, 4 

and 8𝜇𝑙. As the initial static contact angle is relatively small (49°), the surface area (both in contact 

with the surface and the air) is relatively large and the  evaporation is much faster than that 

observed for an equivalent droplet on the hydrophobic surface. For the case of the hydrophilic 

surface (and as discussed previously), the vapour diffusion model based on the SSR mode under-

predicts the experimental evaporation rate, herewith a percentage error of 22%.  

Visualisations of an 8𝜇𝑙 droplet, from the top and the side, on a heated substrate (60℃) are shown 

in Table 1 for the initial droplet and at points from 90% to complete evaporation. This demonstrates 

that the droplet shape can be measured easily using the traditional visualization methods at the early 

stages, however, for the final 2% and 10% of the total time of evaporation of the hydrophobic and 

hydrophilic surfaces (respectively), there is a high associated error when calculating the droplet 

volume based on the contact angle or contact radius, as the droplet shape is very different from that 
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of a spherical cap. This is consistent with the previous observations 13, 24. The high associated error 

in calculating the droplet size at the final stages of evaporation has resulted in a high uncertainty in 

calculating the total time of droplet evaporation and the rates of droplet evaporation are often 

extrapolated 6, 13, 27. The present method of weight measurement for the droplet evolution is shown 

to be superior regarding the independency on the droplet shape and the contact angle. This can also 

trace the evaporation process of any size of droplet which sits on any type of surface until it has 

evaporated completely, without the need for any approximation or extrapolation. 
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Figure 6 Measured and predicted (using stick-slip model) droplet weight evolution on the 

hydrophobic surface for a range of droplet sizes  (a) 2µl, (b) 4µl and (c) 8µl.  
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Figure 7 Measured and predicted (using stick-slip model) droplet weight evolution on the 

hydrophilic surface for a range of droplet sizes  (a) 2µl, (b) 4µl and (c) 8µl.  
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Table 1 Time-dependent images of an 8µl water droplet during the evaporation under the substrate 

temperature of 60℃ for the hydrophobic and hydrophilic surfaces (t* is the normalized time which 

is the ratio of time from start of experiment to the total time of evaporation). 
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EVAPORATION OF LARGE DROPLETS 

In this section, the evaporation of a relatively large water droplet volume (30𝜇𝑙) is studied. The 

mass evolution of the droplet with time is shown in Figures 8a and 8b over the  hydrophobic and 

hydrophilic surfaces respectively, for three different substrate temperatures (40, 50 and 60℃).    

The experimental results show that, for a given substrate temperature, the evaporation times on the 

hydrophobic surfaces are significantly greater than for the hydrophilic one with increases of around 

75%, 60% and 40% for substrate temperatures of 40℃, 50℃ and 60℃ respectively. The chosen 

initial droplet volume leads to a higher ratio of gravity to surface tension forces which results in a 

Bond number of 0.78 for the hydrophobic surface and 1.7 for the hydrophilic surface. This is also 

associated with a larger contact radius compared to the capillary length (𝑘−1) of the droplet (𝑘−1 =

√
𝛾

𝜌𝑔
 ). However, for both the hydrophobic and hydrophilic surface, the proposed method of 

measurement based on the weight evolution successfully tracks the droplet mass for the studied 

range of temperatures. 

The levels of agreement between theory and experiment for the two cases are, as expected, 

influenced by the Bond number since the model’s spherical cap assumption is reasonable for the 

hydrophobic cases but is not appropriate for the hydrophilic ones. The SSR model was also used to 

predict the evaporation of the droplet as shown in Figure 8 and the average error in the hydrophobic 

case, shown in Figure 8a, is around 13% but is much larger, 47%, for the hydrophilic case as shown 

in Figure 8b. The high Bond number of 1.7 for the 30𝜇𝑙 droplet over the hydrophilic surface and its 

large contact radius compared to the capillary length results in a non spherical and flatter droplets 

which cannot be modelled accurately by the present approach.  
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Figure 8 Measured and predicted (using stick-slip model) droplet weight evolution on (a) 

hydrophobic and (b) hydrophilic surfaces for a 30μl droplet.  
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CONCLUSION 

A comprehensive experimental and theoretical investigation of droplet evaporation on heated 

hydrophilic and hydrophobic surfaces is presented. Measurements of the droplet evaporation is 

achieved using a novel self-contained heating system, allowing characterization of the whole 

evaporation process for any initial droplet size. The experimental apparatus was successful in 

capturing actual evaporation rates without the need for imaging techniques.  

A theoretical model is postulated here based on stick-slip behaviour (SSR) of the contact line. To 

fully identify the point of shifting from CCR mode to CCA mode in the model, the receding contact 

angle is measured using the needle suction method to be considered as the point where the slip 

mode (CCA) starts. The theoretical predictions agree well with the experimental results for the 

hydrophobic surface with an average percentage error of 4%, however agreement is poorer for 

larger droplets for which the contact line is no longer circular and for hydrophilic surfaces. It would 

be instructive to assess the impact of the cross-droplet temperature variations, buoyancy effects 

within the air and non-circular contact lines using numerical techniques to define where regions of 

operability lie for simplified models, as has been done for free surface film flows48.  

ACKNOWLEDGMENT 

We would like to thank Dr Alexander Reip from Oxford nanoSystems Ltd. UK, for providing the 

hydrophobic coating, and Mr. Patrick Cotton from Airedale International Air Conditioning Ltd, UK 

for providing the coated samples. The authors would also like to thank Mr Kevin Gleason and 

Professor Shawn Putnam from the University of Central Florida, USA for the help with the 

MATLAB code to solve the Deegan model of local evaporation flux. NK thanks GSK and RAEng 

for funding his Research Chair. 

 



 
 

27 
 

SUPPORTING INFORMATION 

Detailed PID circuit along with C code. Detailed receding contact angle measurement procedure. 

Scanning topography of the surfaces. Numerical calculation procedure for solving the Popov model 

along with the MATLAB script. This material is available free of charge in the Supporting 

Information file.     
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