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Abstract

Introduction

Treatment of osteoporotic fractures is still challenging and an urgent need exists for new

materials, better adapted to osteoporotic bone by adjusted Young’s modulus, appropriate

surface modification and pharmaceuticals.

Materials and methods

Titanium-40-niobium alloys, mechanically ground or additionally etched and titanium-6-alu-

minium-4-vanadium were analyzed in combination with brain-derived neurotrophic factor,

acetylcholine and nicotine to determine their effects on human mesenchymal stem cells in

vitro over 21 days using lactate dehydrogenase and alkaline phosphatase assays, live cell

imaging and immunofluorescence microscopy.

Results

Cell number of human mesenchymal stem cells of osteoporotic donors was increased after

14 d in presence of ground titanium-40-niobium or titanium-6-aluminium-4-vanadium,

together with brain-derived neurotrophic factor. Cell number of human mesenchymal stem

cells of non osteoporotic donors increased after 21 d in presence of titanium-6-aluminium-4-

vanadium without pharmaceuticals. No significant increase was measured for ground or

etched titanium-40-niobium after 21 d. Osteoblast differentiation of osteoporotic donors was

significantly higher than in non osteoporotic donors after 21 d in presence of etched, ground

titanium-40-niobium or titanium-6-aluminium-4-vanadium accompanied by all pharmaceuti-

cals tested. In presence of all alloys tested brain-derived neurotrophic factor, acetylcholine
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and nicotine increased differentiation of cells of osteoporotic donors and accelerated it in

non osteoporotic donors.

Conclusion

We conclude that ground titanium-40-niobium and brain-derived neurotrophic factor might

be most suitable for subsequent in vivo testing.

1. Introduction

Osteoporosis is characterized by low mineral density and altered microarchitecture that causes

fragile bone and often results in fractures [1]. Surgical treatment of osteoporotic fractures is

still challenging for clinicians since implant fixation in osteoporotic bone often fails [2, 3].

Therefore, new materials are needed, which are adapted to the characteristics of osteoporotic

bone and ideally stimulate fracture healing. In particular, implant materials for orthopedic

applications should be robust and biocompatible [4]. With regard to non degradable implants,

titanium-based materials are predominantly used [4, 5]. Titanium and titanium alloys are pre-

ferred as implant materials because of their biocompatibility and high corrosion resistance [4,

6, 7]. In particular, beta titanium alloys are favored for the treatment of fractures due to their

low elastic modulus, which comes close to that of bone [4, 8, 9] and is much lower than for cur-

rently applied titanium or titanium alloys like titanium-6-aluminium-4-vanadium (Ti-6Al-

4V) [10]. Especially, a low Young’s modulus is preferable since high Young’s moduli, as mea-

sured for the momentarily applied alloy titanium Ti-6Al-4V in orthopedic surgery [11] were

shown to result in atrophy of bone and deficient remodeling [6, 10]. This can lead to implant

failure [11]. The beta-alloy titanium-40-niobium (Ti-40Nb), in contrast, possesses an elastic

modulus of 60–62 GPa, which can be further reduced by microalloying and thermomechanical

treatment [5] reaching an elastic modulus closer to the one of bone.

Surface modifications of implant materials play an important role as well. They can prevent

corrosion and offer higher biocompatibility by inhibiting an inflammatory immune response

[4, 12]. Moreover, surface modification has effects on cell growth and morphology [5].

Human mesenchymal stem cells (hMSCs) are ideal for testing since they proliferate quickly

and they are able to differentiate into bone forming osteoblasts [13–15]. These characteristics

make hMSCs a potential therapeutic in bone regeneration [16, 17]. However, in osteoporosis

osteogenic differentiation of hMSCs is impaired in favor of adipogenic differentiation [18].

Therefore, substances are required that stimulate hMSCs differentiation into osteoblasts. As

such, bone morphogenic protein 2 (BMP2) is already applied in the clinic. However, its effects

on osteogenic differentiation of hMSCs from osteoporotic patients in vivo are rather low [19].

Thus, there is a need for new factors that stimulate osteogenic differentiation in osteoporosis.

Brain-derived neurotrophic factor (BDNF) was shown to stimulate secretion of vascular

endothelial growth factor (VEGF) from osteoblasts during fracture healing [20]. This is impor-

tant since fractures do not heal properly without angiogenesis [21, 22]. Moreover, BDNF plays

a potential role during bone remodeling and bone formation. It is involved in differentiation

processes and was detected in osteoblast-like cells or osteoblasts in different healing models

[23–27].

Several studies demonstrated that acetylcholine (ACh) is involved in the regulation of pro-

liferation and differentiation of osteoblasts [28–30]. Sato et al. (2010) showed that ACh
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supports cell cycle progression in osteoblasts, but inhibits alkaline phosphatase (ALP) activity

during osteoblast differentiation [29].

Effects of nicotine (Nic) on bone metabolism are discussed controversially. It was shown

that nicotine concentrations, as found in heavy smokers, inhibited osteoblast differentiation,

worsened fracture healing [31] and increased osteoclast differentiation in vitro [32]. Kim et al.

(2012) demonstrated bimodal effects of Nic at low concentrations by means of increased osteo-

blast proliferation and decreased differentiation [33]. However, Rothem et al. (2009) indicated

dose-dependent effects of Nic. Nic concentrations as present in light or moderate smokers

increased osteoblast proliferation but at higher concentrations, as seen in case of heavy smok-

ers, it caused adverse effects [34], which was confirmed by Shen et al. (2013) [31].

These findings indicate that BDNF, ACh and Nic might be potential pharmaceuticals for

the treatment of osteoporotic fractures, which was the underlying reason to analyze these fac-

tors in the present study in vitro.

We therefore analyzed whether new Ti-40Nb alloys together with BDNF, ACh or Nic are

potential drugs to increase cell number and to stimulate osteogenic differentiation of hMSCs,

especially in osteoporotic patients.

2. Materials and methods

2.1 Human mesenchymal stem cells

Harvesting of hMSCs was approved by a written statement of the local ethics commission of

the department of medicine at the Justus-Liebig-University of Giessen (74/09). Patients gave

written consent for their participation in the underlying study.

hMSCs were isolated from reaming debris as described by Wenisch et al. (2005) [35] and

were obtained from different female osteoporotic as well as male and female non-osteoporotic

donors (n = 4 each) who underwent surgery in the department of trauma surgery at the Uni-

versity of Giessen. Age of patients ranged from 25 to 80 years.

In brief, reaming debris was incubated in Petri dishes (Becton-Dickson Falcon Franklin

Lakes, New Jersey, USA) with F-12K medium (Gibco, Life Technologies, Carlsbad, USA) con-

taining 20% fetal calf serum (PanSera ES, Pan Biotech, Aidenbach, Germany), 1% of 100 U/ml

penicillin and 100 μg/g streptomycin (Gibco) at 37˚C under 6% CO2 atmosphere. After

approximately 1 week cells migrated out of the debris. When cell growth reached confluence

cells were detached by applying 0.05% Trypsin (Gibco). Subsequently, hMSCs were transferred

into cryo tubes (Greiner bio-one, Frickenhausen, Germany) containing 0.9 ml fetal calf serum

(FCS) as well as 0.1 ml DMSO and stored over night at -80˚C before being placed in liquid

nitrogen.

Identification of hMSCs was achieved using a Fluorescence Activated Cell Sorting (FACS)

machine, FACS Canto II (BD Biosciences, Franklin Lakes, New Jersey, USA) after labeling

cells with mouse-anti-human CD105-APC and mouse-anti-human CD73-PB antibodies (Bio-

Legend, San Diego, California, USA).

Before starting the experimental procedure, hMSCs were placed in 200 ml cell culture flasks

(Greiner bio-one) containing MesenPro RS Medium (Gibco) including 10% FCS (PanSera

ES), 1% Glutamax (Gibco) and 1% of 100 U/ml penicillin and 100 μg/g streptomycin (Gibco)

at 37˚C under 6% CO2 atmosphere. Cells were split once when confluence was reached.

Experiments were performed in 24-well-plates (Becton-Dickson Falcon). Therefore, 4x104

hMSCs were seeded into each well. Cells were cultivated in F-12K medium (Gibco) containing

20% FCS for cell number analysis.

For differentiation assays osteogenic medium composed of low glucose Dulbeccos modified

Eagles medium (Gibco), including 10% FCS (Biochrom, Berlin, Germany), 1% 100 U/ml
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penicillin and 100 μg/g streptomycin (Gibco), 10−7 M dexamethasone (Sigma, St. Louis, Mis-

souri, USA), 5x10-5 M (+) sodium-L-ascorbat (Sigma), 10−2 M ß-glycero phosphate hydrate

(Sigma), 5x10-8 M vitamin D3 (Sigma-Aldrich) and 1.5x10-3 M calcium chloride (PromoCell,

Heidelberg, Germany) was used.

hMSCs were either incubated with etched Ti-40Nb, ground Ti-40Nb or Ti-6Al-4V. Phar-

maceuticals were added at the following concentrations: 40 ng/ml BDNF (Sigma), 10−4 M

ACh (Sigma) or 10−6 M Nic (Sigma). Decisions for selection of concentrations used were

made after testing different concentrations of these pharmaceuticals on hMSCs in vitro (data

shown in supporting information S1 Fig). The pharmaceutical concentration coming the clos-

est to or above the ALP concentration of cells that were incubated without pharmaceuticals

(control) was chosen. Testing for the appropriate ACh concentration revealed that 10−3 M

caused the highest ALP concentration. However, live cell images depicted holes within the cell

layer so that 10−4 M was applied for experiments.

In order to determine effects of the different Ti alloys and pharmaceuticals used hMSCs

that were incubated with or without Ti alloys in the absence of pharmaceuticals served as

controls.

2.2 Titanium-40-niobium

Ti-40Nb samples were produced as described by Helth et al. (2014) [36]. In brief, high purity

Ti and Nb were arc-melted to alloy ingots under argon atmosphere and subsequently cast into

rod-shape with 10 mm diameter using cold crucible casting. The rods were homogenized by

annealing for 24 h at 1000˚C in an argon filled quartz tube. Subsequently, rods were cut in 2–3

mm thick disks and then, either mechanically ground or additionally chemically etched.

Grinding was performed with P1200 silicon carbide emery paper. For additional etching of the

Ti-40Nb surface, samples were treated with so-called piranha solution composed of 98%

H2SO4 + 30% H2O2 (1+1 dilution) [5].

2.3 Live cell imaging

Cells were regularly monitored using an inverse light microscope (Zeiss, Oberkochen Ger-

many) and pictures taken at time points 0 days (d), 1 d, 7 d, 14 d and 21 d with the micro-

scope accompanying Stingray F-145 camera (Allied vision technologies GmbH, Stadtroda,

Germany).

2.4 Immunofluorescence imaging of non osteogenic and osteogenic

differentiated hMSCs

For immunofluorescence imaging cell medium was removed and cells carefully washed with

cold phosphate buffered saline (PBS). Subsequently, cells were fixed in 4% paraformaldehyde

(PFA) for 10 min before washed again 3x with cold PBS. For permeabilization of cells 0.1% tri-

ton-X 100 (Sigma) was added for 5 min. After washing 3x with cold PBS cells were incubated

for 40 min with 1% tetramethylrhodamine B isothiocyanate (TRITC) coupled phalloidin anti-

body (Sigma) in the dark. For the detection of nuclei cells were incubated for 15 min with 1%

Hoechst 33258 antibody (Sigma) after washing cells 6x with cold PBS. Finally, cells were cov-

ered in ProLong Gold antifade reagent (Life technologies) before microscopic evaluation.

2.5 Determination of hMSCs numbers

For the determination of total hMSCs numbers a CytoTox 961 Non-Radioactive Cytotoxicity

Assay (Promega, Madison, USA) was performed. Besides measuring cytotoxic effects, this
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assay can be applied for total cell number analysis. According to manufacturer’s instructions

cell numbers can be analyzed if cells are lyzed using a solution to release lactate dehydrogenase

(LDH), which is present inside the cytoplasm of intact cells.

Before applying the CytoTox 961 Non-Radioactive Cytotoxicity Assay, hMSCs were

washed twice with PBS to remove medium and potential dead cells. PBS was then completely

removed and cells immediately stored at -80˚C to cause cell burst followed by LDH release.

Subsequently, cell membrane of hMSCs was additionally disrupted by applying 1 ml of 1% tri-

ton-X 100 (Sigma) to each well of the 24-well-plate for 50 min under shaking conditions.

Lysates were then removed from the wells and transferred into Eppendorf tubes for centrifuga-

tion at 1800 rpm for 5 min. After centrifugation, 50 μl of the supernatant were filled into wells

of a 96-well-plate (Greiner bio-one) in triplicates followed by 50 μl of reconstituted substrate

(Promega). The 96-well-plate was then shaken for 1 min and incubated in the dark for 30 min.

Finally, stop solution was added and absorption measured at 490 nm using the Synergy HT

plate reader (BioTek Instruments Inc., Winooski, USA). For hMSCs of each donor a calibra-

tion curve was conducted by seeding 5x103, 1x104, 2x104, 4x104, 6x104, 8x104, 1x105 1,2x105,

1,4x105 and 1,6x105 cells per well. Cell numbers are directly proportional to absorbance values

measured and traced back to amounts of the calibration curve.

2.6 Determination of osteoblast numbers

A PicroGreen assay (Invitrogen, Eugene, Oregon, USA) was performed to determine cell num-

bers based on DNA content. Before conducting the assay, cells were washed twice with PBS,

which was then completely removed and cells immediately stored at -80˚C. Lysis was achieved

by incubating cells in 250 μl of triton-X 100 (Sigma) for 10 min on a rocking platform. Lysates

were then centrifuged for 10 min at 3000 g and 4˚C. Two hundred μl of PicoGreen working

solution were pipetted into a black 96-well-plate before 5 μl of the supernatants were added in

triplicates. Fluorescence intensity was measured at 528 nm after sample excitation at 485 nm

using the Synergy HT plate reader (BioTek).

2.7 Cell differentiation analysis

For the analysis of hMSCs differentiation into osteoblasts, the activity of alkaline phosphatase

(ALP) was measured using the SensoLyte pNPP Alkaline Phosphatase Assay Kit (AnaSpec,

Fremont, USA). After cell lyses and centrifugation as described above (2.6), 10 μl of the super-

natants were added in triplicates into 96-well-plates. Before, wells were equipped with 40 μl of

dilution buffer. Subsequently, 50 μl of para-nitrophenylphosphate substrate were added. After

incubation for 45 min at 37˚C, enzyme activity was measured at 405 nm using the Synergy HT

plate reader (BioTek). ALP activity was referenced to cell numbers obtained from the Pico-

Green assay mentioned in section 2.6.

2.8 Statistical analysis

Statistical analysis was carried out using the statistics program SPSS (version 22.0; SPSS Insti-

tute Inc, Chicago, USA), which was also conducted to generate graphs in figures 8 and 9 (sup-

porting information S2 and S3). Results were evaluated by Kolmogorov-Smirnov-test to assess

normality. Results were not normally distributed, so that Kruskal-Wallis-, Mann-Whitney-U-

tests or Friedman-tests were conducted. For the comparison of osteoporotic and non osteopo-

rotic donors Kruskal-Wallis- and Mann-Whitney-U-tests were conducted. The Friedman-test

was applied for the comparison of different Ti alloys and the comparison of pharmaceuticals.

A value of p� 0.05 was considered to be significant.
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3. Results

3.1 Live cell imaging

Live cell imaging of hMSCs showed that cells of osteoporotic and non osteoporotic donors ori-

entated towards all tested Ti alloys and did not avoid contact to the material (Figs 1A–1D–6A–

6D). Predominantly spindle-shaped morphology of hMSCs was seen during the entire evalua-

tion period. Less often large, flat hMSCs were observed. Moreover, rapidly self-renewing cells

(RS cells) were predominantly present in cultures of hMSCs of non osteoporotic donors. After

21 d of culture cell number (Fig 3) and mineralization (Fig 6) were visually increased in

comparison to cell number and mineralization at time point 7 d (Figs 1 and 4). Images of cell

number at time point 14 d are shown in Fig 2. Less mineral was present after 7 d (Fig 4) of oste-

ogenic differentiation compared to time points 14 d (Fig 5) and 21 d (Fig 6). At time point 14

days more mineralization was observed in cell cultures of non osteoporotic donors compared

to cells of osteoporotic donors (Fig 5). In contrast, after 21 d more mineral was seen in cell cul-

tures of osteoporotic donors compared to non osteoporotic donors (Fig 6).

3.2 Immunofluorescence imaging

Immunofluorescence labeling of hMSCs showed that cells attached to all Ti alloys tested after

1 d of incubation in non osteogenic medium (I) as seen in Fig 7A–7F and after 7 d of incuba-

tion in osteogenic medium (II) shown in Fig 7G–7L. Whereas in non osteogenic medium cells

attached to the material in a rather large, elongated and flat shape (Fig 7A–7F), they occason-

ally formed a round cytoskeleton in osteogenic medium. This was seen for cells of osteoporotic

donors incubated with ground Ti-40Nb (Fig 7I) and cells of both donor pools incubated with

Ti-6Al-4V (Fig 7K and 7L).

Fig 1. Live cell images of hMSCs number after 7 days in vitro. Shown are hMSCs of osteoporotic (left) and non osteoporotic (right) donors in presence of etched

(1st row) or ground Ti-40Nb (2nd row), Ti-6Al-4V (3rd row) or without Ti (4th row) in presence of BDNF (A), ACh (B), Nic (C) or without pharmaceuticals serving

as controls (D). The images show cells of different donors as typical representative of 4 independent experiments. Black regions at the margin of pictures show Ti

alloys. Scale bar shown in A applies to all photographs in this figure.

https://doi.org/10.1371/journal.pone.0193468.g001
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Fig 2. Live cell images of hMSCs number after 14 days in vitro. Shown are hMSCs of osteoporotic (left) and non osteoporotic (right) donors in presence of

etched (1st row) or ground Ti-40Nb (2nd row), Ti-6Al-4V (3rd row) or without Ti (4th row) in presence of BDNF (A), ACh (B), Nic (C) or without pharmaceuticals

serving as controls (D). The images show cells of different donors as typical representative of 4 independent experiments. Black regions at the margin of pictures

show Ti alloys. Scale bar shown in A applies to all photographs in this figure.

https://doi.org/10.1371/journal.pone.0193468.g002

Fig 3. Live cell images of hMSCs number after 21 days in vitro. Shown are hMSCs of osteoporotic (left) and non osteoporotic (right) donors in presence of etched

(1st row) or ground Ti-40Nb (2nd row), Ti-6Al-4V (3rd row) or without Ti (4th row) in presence of BDNF (A), ACh (B), Nic (C) or without pharmaceuticals serving as

controls (D). White arrows indicate RS cells. The images show cells of different donors as typical representative of 4 independent experiments. Black regions at the

margin of pictures show Ti alloys. Scale bar shown in A applies to all photographs in this figure.

https://doi.org/10.1371/journal.pone.0193468.g003
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Fig 4. Live cell images of hMSCs after 7 days of differentiation in osteogenic medium in vitro. Shown are hMSCs of osteoporotic (left) and non osteoporotic (right)

donors in presence of etched (1st row) or ground Ti-40Nb (2nd row), Ti-6Al-4V (3rd row) or without Ti (4th row) in presence of BDNF (A), ACh (B), Nic (C) or

without pharmaceuticals serving as controls (D). The images show cells of different donors as typical representative of 4 independent experiments. Black regions at the

margin of pictures show Ti alloys. Scale bar shown in A applies to all photographs in this figure.

https://doi.org/10.1371/journal.pone.0193468.g004

Fig 5. Live cell images of hMSCs after 14 days of differentiation in osteogenic medium in vitro. Shown are hMSCs of osteoporotic (left) and non osteoporotic

(right) donors in presence of etched (1st row) or ground Ti-40Nb (2nd row), Ti-6Al-4V (3rd row) or without Ti (4th row) in presence of BDNF (A), ACh (B), Nic

(C) or without pharmaceuticals serving as controls (D). White arrows indicate mineral. The images show cells of different donors as typical representative of 4

independent experiments. Black regions at the margin of pictures show Ti alloys. Scale bar shown in A applies to all photographs in this figure.

https://doi.org/10.1371/journal.pone.0193468.g005

Effects of new ß-type Ti-40Nb implants, BDNF, ACh and Nic on hMSCs of osteoporotic and non osteoporotic donors

PLOS ONE | https://doi.org/10.1371/journal.pone.0193468 February 28, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0193468.g004
https://doi.org/10.1371/journal.pone.0193468.g005
https://doi.org/10.1371/journal.pone.0193468


3.3 Determination of hMSCs numbers

An increase in relative cell number was detected generally for hMSCs of osteoporotic and non

osteoporotic donors in presence of etched and ground Ti-40Nb as well as Ti-6Al-4V, with or

without pharmaceuticals within 7–21 d (Fig 8 and supporting information S2 Fig).

A significant increase of relative cell number was measured for hMSCs of osteoporotic

donors after 14 d of incubation with BDNF in presence of ground Ti-40Nb or Ti-6Al-4V com-

pared to hMSCs that were incubated with BDNF but without Ti (Fig 8A).

After 21 d of cell culture Ti-6Al-4V without pharmaceuticals was significantly more stimu-

lating than etched Ti-40Nb without pharmaceuticals on the proliferation of hMSCs of non

osteoporotic donors. Moreover, number of hMSCs of non osteoporotic donors was increased

in presence of Ti-6Al-4V compared to hMSCs of the same donor pool that were incubated

without Ti and without pharmaceuticals (Fig 8B).

3.4 Analysis of cell differentiation based on ALP activity

After 7 days of incubation etched Ti-40Nb in absence of pharmaceuticals was the most stimu-

lating titanium alloy on ALP activity of cells of osteoporotic and non osteoporotic donors. A

significant increase occurred in comparison to cells that were incubated without Ti (Fig 9A).

Moreover, a significant increase in relative ALP activity was detected in cells of non osteopo-

rotic donors in presence of etched Ti-40Nb and Nic after 7 days of incubation when compared

to cells that were incubated with Nic but without titanium (Fig 9A). Supporting information is

shown in S3A Fig.

After 14 days of incubation no differences were detected between the different pharmaceu-

ticals or titanium alloys in regard to relative ALP activity in cells of both donor pools (data

shown in supporting information S3A and S3C Fig).

Fig 6. Live cell images of hMSCs after 21 days of differentiation in osteogenic medium in vitro. Shown are hMSCs of osteoporotic (left) and non osteoporotic

(right) donors in presence of etched (1st row) or ground Ti-40Nb (2nd row), Ti-6Al-4V (3rd row) or without Ti (4th row) in presence of BDNF (A), ACh (B), Nic (C) or

without pharmaceuticals serving as controls (D). White arrows indicate mineral. The images show cells of different donors as typical representative of 4 independent

experiments. Black regions at the margin of pictures show Ti alloys. Scale bar shown in A applies to all photographs in this figure.

https://doi.org/10.1371/journal.pone.0193468.g006
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However, after 21 days in presence of etched Ti-40Nb, Nic was the most effective pharma-

ceutical on relative ALP activity of cells of osteoporotic donors compared to cells of non osteo-

porotic donors that were treated the same way (Fig 9B). In presence of ground Ti-40Nb,

BDNF and Nic were the most effective pharmaceuticals on cell differentiation of osteoporotic

donors, resulting in significantly higher ALP activity compared to cells of non osteoporotic

donors. The effect of BDNF was even stronger than that of Nic when comparing the ALP activ-

ity of non osteoporotic donors (Fig 9B).

Nevertheless, Nic caused a significant increase in relative ALP activity in cells of osteopo-

rotic donors compared to those of non osteoporotic donors, regardless of the titanium alloy

added. This effect was shown for ACh only in presence of Ti-6Al-4V (Fig 9B).

Comparing the relative ALP activity of cells of both donor pools in absence of pharmaceuti-

cals, none of the titanium alloys tested was significantly more effective than the other (Fig 9C).

4. Discussion

Cell imaging revealed that hMSCs of both donor pools attached to all Ti alloys tested. This

aspect indicates that etching or grinding of the Ti-40Nb surface does not negatively affect cell

adherence and is similar to the adherence of cells to Ti-6Al-4V.

Fig 7. Immunofluorescence labeling of hMSCs incubated in non osteogenic and osteogenic medium. (I) hMSCs of osteoporotic (left) and non

osteoporotic (right) donors after 1 d of incubation with etched (A and B), ground Ti-40Nb (C and D) or Ti-6Al-4V (E and F) in presence of non osteogenic

medium without pharmaceuticals. (II) hMSCs of osteoporotic (left) and non osteoporotic (right) donors after 7 d of incubation with etched Ti-40Nb (G and

H), ground Ti-40Nb (I and J) and Ti-6Al-4V (K and L) in presence of osteogenic medium without pharmaceuticals.

https://doi.org/10.1371/journal.pone.0193468.g007
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Fig 8. Relative cell number of hMSCs of osteoporotic (grey boxplots) and non osteoporotic (white boxplots)

donors in presence of etched or ground Ti-40Nb, Ti-6Al-4V as well as without Ti with or without

pharmaceuticals. Shown is the effect of Ti alloys on cell number after 14 d (A) and 21 d (B) of in vitro incubation. The

grey line represents cells at time point 0 d without Ti and without pharmaceuticals. A value of p� 0.05 was considered

to be significant and is indicated with one asterisk.

https://doi.org/10.1371/journal.pone.0193468.g008
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Fig 9. Relative ALP activity in hMSCs of osteoporotic (grey boxplots) and non osteoporotic donors (white

boxplots) in presence of etched or ground Ti-40Nb, Ti-6Al-4V as well as without Ti with or without

pharmaceuticals. Shown are the effect of Ti alloys on ALP activity after 7 d (A) and 21 d (B) as well as the effect of

pharmaceuticals after 21 d of in vitro incubation (C). The grey line represents cells at time point 0 d without Ti and

without pharmaceuticals. A value of p� 0.05 was considered to be significant and is indicated with one asterisk.

https://doi.org/10.1371/journal.pone.0193468.g009
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However, immunofluorescence labeling showed that cell morphology was partially different

between cells that were incubated in non osteogenic or osteogenic medium. After 7 d in pres-

ence of osteogenic medium and ground Ti-40Nb as well as Ti-6Al-4V, cells developed a

roundish looking (nest-like) cytoskeleton. The nest-like cytoskeleton is considered to be char-

acteristic of not fully differentiated osteoblasts [37]. According to Owen et al. (1990) ALP

activity, as a marker for osteoblastic differentiation, should be the highest at this stage [38]. In

our study cells with nest-like structure were detected after 7 d on ground Ti-40Nb and Ti-6Al-

4V. However, 7 d results of the ALP assay showed that activity was the highest in presence of

etched Ti-40Nb. This observation matches Rodriguez et al. (2004) who ascertained that

hMSCs can reveal the characteristic cytoskeleton of differentiated cells but exhibit low ALP

activity [39].

Generally, the number of hMSCs was rarely altered. After 14 d BDNF was the only pharma-

ceutical that caused a significant effect on the number of hMSCs of osteoporotic donors in

presence of ground Ti-40Nb or Ti-6Al-4V when compared to cells that were incubated with

BDNF but without Ti. Cells of non osteoporotic donors remained unaffected. However, after 7

d BDNF did not increase the number of hMSCs. This corresponds with the result of Ida-Yone-

mochi et al. (2017) who did not detect an increase in proliferation in MC3T3-E1 cells after 7 d

[40]. In contrast, Cai et al. (2010) showed that osteoblast proliferation increased after 6 d in a

co-culture system of BDNF-producing Schwann cells and osteoblasts [41]. We therefore

hypothesize that BDNF shows time-dependent effects on the number of hMSCs in presence

of ground Ti-40Nb or reference Ti.https://www.ncbi.nlm.nih.gov/pubmed/?term=Ida-

Yonemochi%20H%5BAuthor%5D&cauthor=true&cauthor_uid=28072837 ACh and Nic did

not significantly increase the number of hMSCs at any time point.

After 21 d of in vitro cultivation, hMSCs numbers of non osteoporotic donors were signifi-

cantly increased in presence of Ti-6Al-4V and without pharmaceuticals when compared to

hMSCs that were incubated with etched Ti-40Nb or without Ti.

Pharmaceuticals alone did not alter numbers of hMSCs. This might be reasoned by the con-

centration of pharmaceuticals used. We used an ACh concentration of 10−4 M, which neither

significantly increased nor decreased hMSCs numbers. Another study analyzing proliferation

of bone marrow-derived MSCs from rats, applied ACh concentrations ranging from 10−5–

10−9 M. These concentrations did not affect proliferation either [42].

A dose-dependent effect was detected for Nic by Kim et al. (2012) who showed a significant

increase of cell proliferation after 7 d of incubation using Nic concentrations of 1 or 2 mM

[33]. A Nic concentration of 1 μM, as applied in our study, did not affect the proliferation of

cells [33], which is in accordance with our results.

On the other hand, a concentration of 1 μM Nic significantly increased the differentiation

of cells of non osteoporotic donors after 7 d in presence of etched Ti-40Nb, but also without

Nic differentiation of hMSCs of both donor pools increased significantly after 7 d in presence

of etched Ti-40Nb.

After 14 d of differentiation ALP activity was the same in both donor pools, irrespective of

the titanium alloy or pharmaceutical tested.

In contrast to Sato et al. (2010) who showed that ACh decreased ALP activity in murine

osteoblasts in vitro [29], we detected an increase in ALP activity of hMSCs of osteoporotic

donors in presence of ACh and Ti-6Al-4V after 21 d.

Usually, ALP activity of osteoblasts decreases with progressing mineralization [38]. How-

ever, after 21 d ALP activity in hMSCs of osteoporotic donors was significantly higher when

compared to hMSCs of non osteoporotic donors. In fact, ALP activity in hMSCs of non osteo-

porotic donors decreased significantly after 21 d of differentiation in presence of all titanium

alloys and pharmaceuticals tested. This indicates that the peak of ALP activity was reached
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earlier in cells of non osteoporotic donors and mineralization had already started, which led to

the decrease in ALP activity after 21 d. This is in accordance with live cell images, which

showed a rather large amount of mineral after 14 d in cell cultures of non osteoporotic donors

compared to those of osteoporotic donors. Furthermore, we detected RS cells in cultures of

non osteoporotic donors. RS cells are a hMSC subtype which were shown to differentiate more

extensively than larger mature hMSCs [43]. This is a further indicator that differentiation was

already progressed in hMSCs of non osteoporotic donors. Moreover, our results suggest that

low concentrations of BDNF, ACh or Nic stimulate ALP activity in hMSCs of osteoporotic

donors after 21 d in presence of all titanium alloys. Supporting this statement is the aspect that

ALP activity did not differ significantly between both donor pools after 21 d when incubated

without pharmaceuticals in presence of each titanium alloy. Stimulation of osteoblast differen-

tiation is aimed in osteoporotic patients since it is known that in osteoporosis the potential to

differentiate into osteoblasts is declined and differentiation into adipocytes is increased [44].

Guo et al. (2016) found that BDNF knockdown can suppress marker expression of osteo-

blastic differentiation, indicating that BDNF might stimulate osteoblast differentiation [45].

We observed that BDNF significantly increased cell differentiation of non osteoporotic donors

in presence of ground Ti-40Nb compared to the same cells that were incubated with ground

Ti-40Nb but in presence of Nic. This result shows that BDNF is more stimulating than Nic on

cell differentiation of non osteoporotic donors in presence of ground Ti-40Nb after 21 d.

However, together with etched Ti-40Nb or Ti-6Al-4V, Nic increased cell differentiation of

osteoporotic donors as well.

Even though hMSCs numbers and differentiation were also increased after 21 d in presence

of Ti-6Al-4V, the contained elements vanadium and aluminum are known to be toxic [4, 6,

46]. Particularly, vanadium can cause allergic reactions, which led to eczematous dermatitis

and implant failure in one patient [47]. Moreover, Ti-6Al-4V possesses a relatively high elastic

modulus (approx. 110 GPa) compared to that of human bone [11], which makes it rather inap-

plicable for orthopedic surgery, especially of osteoporotic bone. Ti-40Nb possesses a low elastic

modulus of approximately 60–62 GPa [5], which comes closer to that of bone (cortical bone:

16–20 GPa, cancellous bone: 1–4 GPa) [4, 8, 9] when compared to Ti-6Al-4V. This indicates

that etched or ground Ti-40Nb might be more suitable as implant materials than Ti-6Al-4V.

Besides, Nb is a non toxic element [11].

Implant surfaces can determine cell behavior. The interaction between cells and material

can regulate processes such as proliferation or differentiation of cells [11]. It was shown that

rough titanium implant surfaces increased differentiation of hMSCs towards the osteoblastic

lineage [48], which is aimed in regard to osseointegration of implants. Besides, chemical prop-

erties of implant material can influence cell behavior [11]. In our study, differentiation of

hMSCs of non osteoporotic donors into osteoblasts was achieved after 7 d either in presence of

etched Ti-40Nb together with Nic or in both donor pools without any pharmaceutical also in

presence of etched Ti-40Nb. After 21 d all titanium alloys tested increased differentiation of

hMSCs of osteoporotic donors in presence of each pharmaceutical.

To summarize, hMSCs numbers of osteoporotic donors increased after 14 d in presence of

ground Ti-40Nb or Ti-6Al-4V, both accompanied by BDNF. hMSCs numbers of non osteopo-

rotic donors increased significantly after 21 d in presence of Ti-6Al-4V only. However, Ti-6Al-

4V is not preferred because of the toxic effects of aluminum and vanadium.

In regard to osteoblast differentiation ground Ti-40Nb together with BDNF was effective in

both donor pools.

Considering that hMSCs numbers and differentiation were both significantly increased in

presence of ground Ti-40Nb and BDNF, we conclude that this alloy might be the most suitable

candidate for in vivo applications.
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Supporting information

S1 Fig. Determination of the appropriate concentration of BDNF (A), ACh (B) and Nic

(C) for use in experiments. Shown are the different pharmaceutical concentrations compared

to cells treated without pharmaceuticals (control). Values above bars indicate ALP concentra-

tions in percentage compared to the control.

(TIF)

S2 Fig. Relative cell number of hMSCs of osteoporotic (grey boxplots) and non osteopo-

rotic (white boxplots) donors in presence of etched or ground Ti-40Nb, Ti-6Al-4V as well

as without Ti with or without pharmaceuticals. Shown are the effects of Ti alloys and phar-

maceuticals on cell number after 7 d (A and B) and 14 d (C) and 21 d (D) of in vitro incuba-

tion. The grey line represents cells at time point 0 d without Ti and without pharmaceuticals.

(TIF)

S3 Fig. Relative ALP activity in hMSCs of osteoporotic (grey boxplots) and non osteopo-

rotic donors (white boxplots) in presence of etched or ground Ti-40Nb, Ti-6Al-4V as well

as without Ti with or without pharmaceuticals. Shown are the effects of pharmaceuticals and

Ti alloys on ALP activity after 7 d (A) as well as after 14 d (B and C) of in vitro incubation. The

grey line represents cells at time point 0 d without Ti and without pharmaceuticals.

(TIF)
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