Provable Security Analysis for the Password Authenticated Key Exchange Problem

Ph.D. Thesis Presentation

Presenter: M. Sc. Jose Becerra

Supervisors: Prof. Peter Y. A. Ryan

Dr. Dimiter Ostrev

May 14, 2019 Esch-sur-Alzette, Luxembourg

Table of Contents

1. Introduction

Motivation and Research Objectives

- 2. Relation between SIM-based and IND-based security models
- Forward Secrecy for SPAKE2PFS-SPAKE2
- 4. Tight Security Reductions
 PAK Protocol
- 5. Summary

Introduction

What is a PAKE

- · Password Authenticated Key-Exchange protocol.
- Goal: Establishment of strong cryptographic session keys from low entropy secrets.

- Attacks should be limited to online dictionary attacks only.
 - A may test at most one password per session during an active attack.

What is a PAKE

- · Password Authenticated Key-Exchange protocol.
- Goal: Establishment of strong cryptographic session keys from low entropy secrets.

- · Attacks should be limited to online dictionary attacks only.
 - A may test at most one password per session during an active attack.

PAKEs Application I

Build secure channels relying only on shared passwords.

· No need of PKI.

PAKEs Application II

Login scenarios while intrinsically protecting the user's password.

- In 2018, 49% of phishing attacks where performed in https web pages (marked as secure by the browser).
- PAKEs prevent the compromise of the user's password.

PAKEs Application II

Login scenarios while intrinsically protecting the user's password.

- In 2018, 49% of phishing attacks where performed in https web pages (marked as secure by the browser).
- PAKEs prevent the compromise of the user's password.

Motivation and Research Objectives

Our aim is to facilitate the adoption of PAKEs in real-world applications.

- Examine whether the simulation-based and indistinguishability-based security notions for PAKEs are equivalent.
- 2. Investigate whether the SPAKE2 protocol provably satisfies some meaningful notion of forward secrecy.
- 3. Investigate the relevance of tight security reductions for PAKE protocols.

We consider the computational-complexity approach in our analysis.

Relation between SIM-based and IND-based security models

Security Models for PAKEs

IND-based

- Find then Guess (IND-FtG)
 [BPR00]
- 2. Real or Random (IND-RoR) [AFP05]

SIM-based

- Boyko Mackenzie and Patel (SIM-BMP) [BMP00]
- Universally Composable PAKEs (UC) [CHKM05]

Security Models for PAKEs

Fig. 1: Known relations between PAKE security definitions.

Security Models for PAKEs

Fig. 2: Known relations between PAKE security definitions.

Real or Random Security Model (IND-RoR)

• Security defined by a game played \mathcal{CH} and \mathcal{A} .

- · initUser (U)
- initInstance (U, i, pid)
- · Send (*U*, *i*, *m*)
- Execute (*U*, *i*, *U*', *i*')
- · Corrupt (U)
- Test (U, i)
 - if b = 1 real session key.
 - if b = 0 random string.

Definition

Protocol P satisfies RoR security if \forall PPT \mathcal{A} :

$$Adv_P^{ROR}(A) \leq \frac{k}{|D|} + negl(\lambda)$$

k: number of active instances

D: password dictionary

Simulation-based Security Model (SIM-BMP) I

Real World

- Real execution of the protocol.
- The adversary controls the network.

RW adv. is given access to the following queries:

- · initUser (U).
- · initInstance (*U*, *i*, *pid*).
- Send (*U*, *i*, *m*).
- Corrupt(U)
- Application (f, U, i).

Transcript: *RW(B)*

Simulation-based Security Model (SIM-BMP) II

- Defines the ideal functionality for a PAKE.
- · Secure by definition.

IW adv. (or simulator) is given access to the following queries:

- · initUser (U).
- · initInstance (*U*, *i*, *pid*).
- Abort user instance (U, i).
- Test instance password (U, i, π') .
- Start session (*U*, *i*).
- Application (f, U, i).
- · Implementation.

Transcript: $IW(B^*)$

Simulation-based Security Model (SIM-BMP) III

Definition

Protocol P is SIM-BMP secure if:

 $\forall B \ \exists B^* \ \text{s.t.} \ RW(B) \approx_{c} IW(B^*)$

No assumption is made about the distribution of passwords.

SIM-BMP \rightarrow IND-Ror I

Theorem (SIM-BMP \rightarrow IND-RoR)

If protocol P satisfies SIM-BMP security, then P also satisfies IND-RoR security.

SIM-BMP → IND-RoR II

• We construct B from A.

• The output is RW(B).

By SIM-BMP security definition:

$$\forall B \; \exists B^* \; \text{s.t.} \; RW(B) \approx_c IW(B^*)$$

• Build a distinguisher $\mathcal{D}(trx)$

 $1 \leftarrow \mathcal{D}(\cdot)$ if real-world trx $0 \leftarrow \mathcal{D}(\cdot)$ if ideal-world tr.

$$Adv_p^{ROR}(A) \le \frac{k}{|D|} + negl(\lambda)$$

· · · then P is IND-RoR secure.

 B,B^* are real-world and ideal-world adv. in SIM-BMP. $\mathcal A$ is the adv. in RoR.

SIM-BMP → IND-RoR II

• We construct B from A.

• The output is RW(B).

By SIM-BMP security definition:

$$\forall B \ \exists B^* \ \text{s.t.} \ RW(B) \approx_{\scriptscriptstyle C} IW(B^*)$$

• Build a distinguisher $\mathcal{D}(trx)$

 $1 \leftarrow \mathcal{D}(\cdot)$ if real-world trx. $0 \leftarrow \mathcal{D}(\cdot)$ if ideal-world try

$$Adv_P^{ROR}(A) \le \frac{k}{|D|} + negl(\lambda)$$

· · · then P is IND-RoR secure.

 B,B^* are real-world and ideal-world adv. in SIM-BMP. ${\cal A}$ is the adv. in RoR.

SIM-BMP → IND-RoR II

• We construct B from A.

• The output is RW(B).

By SIM-BMP security definition:

$$\forall B \ \exists B^* \ \text{s.t.} \ RW(B) \approx_{\scriptscriptstyle C} IW(B^*)$$

• Build a distinguisher $\mathcal{D}(trx)$.

 $1 \leftarrow \mathcal{D}(\cdot)$ if real-world trx. $0 \leftarrow \mathcal{D}(\cdot)$ if ideal-world trx.

$$Adv_p^{RoR}(A) \leq \frac{k}{|D|} + negl(\lambda)$$

· · · then P is IND-RoR secure.

 B,B^* are real-world and ideal-world adv. in SIM-BMP. $\mathcal A$ is the adv. in RoR.

IND-RoR vs SIM-BMP

Fig. 3: Could not prove by contradiction the implication.

SIM Security: Online Dictionary Attacks

SIM-BMP

- Incorporate in the IW, the non-negligible probability of an adversary guessing the password.
 - test instance password (U, i, π') .

P is SIM-BMP secure if $\forall \mathcal{D}$:

$$\forall B \ \exists B^* \ \text{s.t.} \ RW(B) \approx_c IW(B^*)$$

k: number of active instances D: password dictionary

SIM-BMP'

- 2. Do not incorporate in the IW the non-negligible probability of guessing the password.
 - Relax the indistinguishability requirement.

P is SIM-BMP' secure if $\forall \mathcal{D}$:

$$\forall B \ \exists B^* \ \text{s.t.} \ RW(B) \overset{k/|D|}{\approx} IW(B^*)$$

SIM-BMP' Security Model

Definition

Protocol P is SIM-BMP' secure if:

 $\forall B \exists B^* \text{ s.t. } RW(B) \stackrel{k/|D|}{\approx} IW(B^*)$

SIM-BMP' Security Model II

Theorem (SIM-BMP' \rightarrow IND-RoR)

If protocol P satisfies SIM-BMP' security, then P also satisfies IND-RoR security.

Theorem (IND-RoR \rightarrow SIM-BMP')

If protocol P satisfies IND-RoR security, then P also satisfies SIM-BMP' security.

IND vs SIM Comparison Results

Our results (in blue) are summarized in the following diagram:

Fig. 4: Relation between PAKE security definitions.

Forward Secrecy for SPAKE2

SPAKE2

- PAKE protocol by Abdalla and Pointcheval (CT-RSA 2005).
- · One round protocol.
- · Currently in the process of standardization by the IEFT.
- Proven secure in the IND-FtG security model (BPR).

... but without forward secrecy.

SPAKE2 - Description

Fig. 5: SPAKE2 protocol.

Forward Secrecy

"It ensures the protection of session keys even if the long-term secret of the participants gets later compromised" [DOW92].

- Weak Forward Secrecy (wFS).
 Session keys generated without the active intervention of A, should remain secret to A, regardless any Corrupt query.
- Perfect Forward Secrecy (PFS).
 Session keys established before any Corrupt (U) query should remain secret to the adversary.
- It is difficult to prove PFS for 1-round protocols with only implicit authentication.

Forward Secrecy

"It ensures the protection of session keys even if the long-term secret of the participants gets later compromised" [DOW92].

- Weak Forward Secrecy (wFS).
 Session keys generated without the active intervention of A, should remain secret to A, regardless any Corrupt query.
- Perfect Forward Secrecy (PFS).
 Session keys established before any Corrupt (U) query should remain secret to the adversary.
- It is difficult to prove PFS for 1-round protocols with only implicit authentication.

Perfect vs week Forward Secrecy

Fig. 6: Sessions protected with PFS.

Fig. 7: Sessions protected with wFS.

Perfect vs week Forward Secrecy

Fig. 6: Sessions protected with PFS.

Fig. 7: Sessions protected with wFS.

SPAKE2 - Problematic Scenario

- · An active adversary tries to impersonate C to S.
- Only implicit authentication : Server accepts (and might use) *sk* without confirming its intended partner.

SPAKE2 - Problematic Scenario

- 1. Perfect Forward Secrecy.
 - sk must be secret to A
- 2. Weak Forward Secrecy.
 - Does not guarantee the secrecy of sk

SPAKE2 - Problematic Scenario

- 1. Perfect Forward Secrecy.
 - sk must be secret to A.
- 2. Weak Forward Secrecy.
 - Does not guarantee the secrecy of *sk*.

SPAKE2 - weak Forward Secrecy

Theorem

SPAKE2 is secure in the BPR model with weak Forward Secrecy under the CDH and CSDH assumptions:

$$\operatorname{Adv}_{P}^{\text{wFS-FtG}}(\mathcal{A}) \leq \frac{n_{\text{se}}}{|D|} + \mathcal{O}\left(\frac{(n_{\text{se}} + n_{\text{ex}})(n_{\text{se}} + n_{\text{ex}} + n_{\text{ro}})}{q} + n_{\text{ro}} \cdot \operatorname{Adv}_{\mathbb{G}}^{\text{CDH}}(\mathcal{B}^{\mathcal{A}}) + n_{\text{se}}n_{\text{ro}} \cdot \operatorname{Adv}_{\mathbb{G}}^{\text{CDH}}(\hat{\mathcal{B}}^{\mathcal{A}}) + (n_{\text{ro}})^{2} \cdot \operatorname{Adv}_{\mathbb{G}}^{\text{CSDH}}(\tilde{\mathcal{B}}^{\mathcal{A}})\right).$$

D: password dictionary

 n_{se} : number of Send queries

 n_{ex} : number of Execute queries

 n_{ro} : number of random oracle queries

PFS-SPAKE2

- Incorporating key-confirmation codes to SPAKE2 results in PFS-SPAKE2.
 - Explicit mutual authentication.
 - · Remove one CRS.
 - · Computationally more efficient (client side).

PFS-SPAKE2 Description

Public: $M \in \mathbb{G}$; Secret: $\pi \in \mathbb{Z}_q, \pi \neq 0$

Client C Server S
$$x \overset{\$}{\leftarrow} \mathbb{Z}_{q}, X := g^{x}$$

$$X^{*} := X \cdot M^{\pi}$$

$$\sigma := Y^{x}$$

$$k \overset{?}{=} H_{1}(C, S, X^{*}, Y, \sigma, \pi)$$

$$k^{?} := H_{2}(C, S, X^{*}, Y, \sigma, \pi)$$

$$k^{?} := H_{3}(C, S, X^{*}, Y, \sigma, \pi)$$

$$k^{?} := H_{3}(C, S, X^{*}, Y, \sigma, \pi)$$

$$k^{?} := H_{3}(C, S, X^{*}, Y, \sigma, \pi)$$

PFS-SPAKE2 - Security

Theorem

PFS-SPAKE2 is secure in the BPR model with Perfect Forward Secrecy under the CDH assumption:

$$\begin{aligned} \operatorname{Adv}_{P}^{\operatorname{wFS-FtG}}(\mathcal{A}) &\leq \frac{n_{se}}{|\mathcal{D}|} + \mathcal{O}\left(\frac{(n_{se} + n_{ex})(n_{se} + n_{ex} + n_{ro})}{q} + \right. \\ &\left. n_{ro} \cdot \operatorname{Adv}_{\mathbb{G}}^{\mathsf{CDH}}(\mathcal{B}^{\mathcal{A}}) + n_{se}n_{ro} \cdot \operatorname{Adv}_{\mathbb{G}}^{\mathsf{CDH}}(\hat{\mathcal{B}}^{\mathcal{A}}) + \right. \\ &\left. (n_{ro})^{2} \cdot \operatorname{Adv}_{\mathbb{G}}^{\mathsf{CDH}}(\tilde{\mathcal{B}}^{\mathcal{A}})\right). \end{aligned}$$

D: password dictionary

 n_{se} : number of Send queries

 n_{ex} : number of Execute queries

 n_{ro} : number of random oracle queries

Tight Security Reductions

Tight Reductions

An adversary running in time t with advantage ϵ give us a π -solver running in time t_{π} with advantage ϵ_{π} .

The protocol is secure if such solver does not exist.

Tight Reductions

Hard Problem π

В

advantage = ϵ_{π} running time = t_{π}

Reduction

Protocol P

А

advantage = ϵ running time = t

The reduction is tight if

$$\frac{\epsilon}{t} = c \cdot \frac{\epsilon_{\pi}}{t_{\pi}}.$$

· Preserve strength of hardness assumption.

Why Tight Reductions?

The reduction is not tight if: $\epsilon >> \epsilon_{\pi}$ or $t_{\pi} >> t$.

• $\epsilon \leq L \cdot \epsilon_{\pi}$, for large L: security degradation factor.

For instance consider:

- Desired security level of 150 bits for the protocol.
- $L = 2^{40}$ degradation factor.

$$\epsilon \le L \cdot \epsilon_{\pi}$$
$$2^{-150} = 2^{40} \cdot 2^{-190}$$

 Then the hardness assumption needs to provide at least 190 bits of security → larger parameters and less efficient impl.

PAK Protocol

- · Boyko, Mackenzie and Patel 2001.
- PAKE protocol with explicit mutual authentication.
- · Low computation and communication cost.
- Satisfies forward secrecy.
- Currently under consideration by IETF for standardization.
 - Patent expired in 2017.

Initialization

Public:
$$\mathbb{G}$$
, g , q ; $H: \{0,1\}^* \to \mathbb{G}$;
 $H_1, H_2, H_3: \{0,1\}^* \to \{0,1\}^k$;

Fig. 8: PAK protocol.

Non-tight Reduction in PAK I

PAK security proof is not tight:

$$\mathrm{Adv}_{\mathbb{G}}^{\mathit{PAK}}(\mathcal{A}) \leq \frac{n_{\mathit{se}}}{|\mathcal{D}|} + \mathcal{O}\left(n_{\mathit{se}} \cdot (n_{\mathit{ro}})^2 \cdot \mathrm{Adv}_{\mathbb{G}}^{\mathsf{CDH}}(\mathcal{B}^{\mathcal{A}})\right)$$

We consider realistic parameters:

- \mathbb{G} has order $q=2^{256} o \mathrm{Adv}_{\mathbb{G}}^{\mathsf{CDH}} \leq 2^{-128}.$
- $n_{se} \approx 2^{30}$: Number of Send queries.
- $n_{\rm ro} \approx 2^{63}$: Number of random oracle queries.

$$n_{\text{se}} \cdot (n_{\text{ro}})^2 \cdot \text{Adv}_{\mathbb{G}}^{\text{CDH}}(\mathcal{B}^{\mathcal{A}}) >> 1 \dots \text{ is meaningless.}$$

Non-tight Reduction in PAK II

- · Instantiation over prime order groups.
 - · Both CDH and DDH are hard.
- Security proof relies on the CDH assumption and RO model.
- Construct a CDH-solver algorithm:

$$H(m, \mu, \dots, \sigma_1, \pi)$$
 $H(m, \mu, \dots, \sigma_2, \pi)$
 \vdots
 $H(m, \mu, \dots, \sigma_{ro}, \pi)$

How can the simulator choose the correct σ s.t..

$$\sigma = \mathrm{DH}\left(\frac{m}{\mathrm{H}(\pi)}, \mu\right)$$

possible with a DDH-oracle.

Non-tight Reduction in PAK II

- · Instantiation over prime order groups.
 - · Both CDH and DDH are hard.
- Security proof relies on the CDH assumption and RO model.
- Construct a CDH-solver algorithm:

$$H(m, \mu, \dots, \sigma_1, \pi)$$

 $H(m, \mu, \dots, \sigma_2, \pi)$
 \vdots
 $H(m, \mu, \dots, \sigma_m, \pi)$

How can the simulator choose the correct σ s.t.

$$\sigma = \mathrm{DH}\left(\frac{m}{\mathrm{H}(\pi)}, \mu\right)$$

· · · possible with a DDH-oracle.

Non-tight Reduction in PAK II

- Instantiation over prime order groups.
 - · Both CDH and DDH are hard.
- Security proof relies on the CDH assumption and RO model.
- Construct a CDH-solver algorithm:

$$H(m, \mu, \dots, \sigma_1, \pi)$$
 $H(m, \mu, \dots, \sigma_2, \pi)$
 \vdots
 $H(m, \mu, \dots, \sigma_{ro}, \pi)$

How can the simulator choose the correct σ s.t.

$$\sigma = \mathrm{DH}\left(\frac{m}{\mathrm{H}(\pi)}, \mu\right)$$

· · · possible with a DDH-oracle.

Tightly-secure PAK

Our solution:

- Instantiate PAK over Gap Diffie-Hellman groups, e.g. billinear groups.
- · Tight reduction from Gap-DH.

Theorem

$$Adv^{PAK}(A) \leq \frac{n_{Se}}{|D|} + \frac{8}{8} \cdot Adv^{Gap-DH}_{\mathbb{G}}(\mathcal{B}^{A})$$

More efficient implementations.

 PAK and G provide the same security level w.r.t. the Gap-DH problem.

Tightly-secure PAK

Our solution:

- Instantiate PAK over Gap Diffie-Hellman groups, e.g. billinear groups.
- · Tight reduction from Gap-DH.

Theorem

$$Adv^{PAK}(A) \leq \frac{n_{Se}}{|D|} + \frac{8}{8} \cdot Adv^{Gap-DH}_{\mathbb{G}}(\mathcal{B}^{A})$$

More efficient implementations.

 \bullet PAK and $\mathbb G$ provide the same security level w.r.t. the Gap-DH problem.

Summary

Summary of our Contributions

- Proved that the original SPAKE2 satisfies weak Forward Secrecy.
 - SPAKE2 with key-confirmation codes satisfies Perfect Forward Secrecy.
- Tight security reduction for the PAK protocol.
 - The same technique could be applied to other EKE-based protocols, e.g. PPK, SPAKE2.
- Comparison between SIM-BMP and IND-RoR security models for PAKEs.
 - SIM-BMP \longrightarrow IND-RoR.
 - SIM-BMP' \longleftrightarrow IND-RoR.

Thanks !!!