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A B S T R A C T

Over eight years have now passed since the chain of events that occurred at Japan's Fukushima Daiichi Nuclear
Power Plant (FDNPP) and despite this, considerable research effort continues to be expended – yielding results
pertinent to understanding the conditions behind the numerous radioactivity release events. As well as invest-
ment in this extensive scientific research, great effort is also being directed to the large-scale remediation of the
radiologically-affected area and is set to continue for the foreseeable future. Central to this has been the study of
the highly-volatile and high-yield fission products of cesium (134Cs and 137Cs) and iodine (129I and 131I), which
were together dispersed at considerable total activities as a consequence of the accident.

In contrast to investigating the distribution (and state) of these high-activity fission products, this study
examined fragments of transition metals, rare earth elements and actinides found adhered to a diverse range of
organic samples collected from localities across the radiologically contaminated Fukushima Prefecture. As well
as varying enormously in their elemental composition, the entrapped particulates comprised a wide size range
(150 nm to> 10 μm). For particulate of certain compositions (including Ag, Ce, Sm, and Au), a correlation was
observed between their size and the distance at which they were encountered from the FDNPP. While a trend
was apparent for these and several other composition particles, other materials (including Zr, Pb, Sn, and Ba)
could not be described by such a strongly-negative linear trend. Although a Fukushima provenance could be
apportioned to a component of the material, an alternate source is necessary to account for a significant in-
ventory of the particulate material. While contrasting provenances may exist, both the size and composition of
this particulate could represent potentially significant health implications for exposed populations.

1. Introduction

The incident at the Fukushima Daiichi Nuclear Power Plant
(FDNPP) was responsible for the release of a large amount of radio-
active material into not just the area immediately surrounding the plant
(Furuta et al., 2011; Sanada et al., 2014), but also into the neighbouring
Pacific Ocean (Kawamura et al., 2011), and the wider global environ-
ment (Bolsunovsky and Dementyev, 2011; Loaiza et al., 2012; Lozano
et al., 2011; Masson et al., 2011). Estimates have placed the total
amount of radioactivity at between 340 PBq and 800 PBq (Chino et al.,
2011; Steinhauser et al., 2014; Yasunari et al., 2011) – or 10%–15% of
the total Chernobyl emission (Hamada and Ogino, 2012; Ten Hoeve and

Jacobson, 2012; Winiarek et al., 2012). As a consequence of the mul-
tiple reactors involved in the accident and the widespread international
ramifications it presented, the events at Fukushima were rated on the
International Nuclear Event Scale (INES) at Level 7 (IAEA, 2012, 2008)
– the most severe, like the Chernobyl accident and release 25 years
earlier.

Elemental and isotopic analysis of material ejected from the facility
has previously been performed using a diverse range of techniques –
following an equally diverse range of sample preparation procedures.
One of the most time and cost-efficient ways to fingerprint the gamma-
emitting contamination has, and continues to be, is through gamma-ray
(γ-ray) spectroscopy. Using this method, the individual gamma-ray
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photon energies associated with decay events of the radioactive species
(or their daughter products) can be measured and the results quantified,
without the need for an initial lengthy, complicated and costly sample
pre-preparation phase. A complementary spectroscopy method is alpha
(α) particle spectroscopy. Unlike γ-spectroscopy, measuring the sub-
atomic alpha-particle emissions from the nucleus of the atom to identify
the emitting species (typically contaminating actinides such as U and
Pu) relies on extensive sample preparation steps, a vacuum system as
well as lengthy counting times to produce meaningful results for these
longer-lived species (Holm and Fukai, 1977; Sill and Williams, 1981).
The alternative characterisation methods of mass-spectrometry, in-
cluding; inductively coupled plasma-mass spectrometry (ICP-MS)
(Zheng et al., 2012), thermal ionisation mass spectrometry (TIMS) (Yuji
Shibahara et al., 2014), and accelerator mass spectrometry (AMS)
(Sakaguichi et al., 2012), have all been used to characterise con-
tamination within soils and organic materials sampled from across the
Fukushima-affected region. Like radionuclide spectroscopy, these
spectrometry methods have near-exclusively investigated large volume
(bulk) material samples (Y. Shibahara et al., 2014; Zheng et al., 2012),
and not the fine-scale (individual) contaminant particulate. Compara-
tively few studies have been performed, focusing purely on the analysis
of these individual microscopic particles (Abe et al., 2014; Adachi et al.,
2013; Mukai et al., 2014; Satou et al., 2016).

Initial isolated micro-particle studies by Kaneyasu et al. (2012)
(Kaneyasu et al., 2012), Tanaka et al. (2012a) (Tanaka et al., 2012b),
and Kanai (2012) (Kanai, 2012) have each examined such aerosol
emissions – quantifying both their particle size and radioactivity, ob-
tained from localities surrounding the FDNPP. However, these studies
focused on the volatile fission-product species emitted (e.g. Cs, I, Ag,
and Te) – captured through high-volume air sampling instruments be-
fore being analysed using γ-ray spectroscopy. Having an easily detect-
able gamma-ray signature as well as being one of the highest-yield
fission product elements (Wilson, 1996), Cs has resultantly been the
primary radionuclide examined in the aftermath of the accident. While
a component of the volatile radiocesium inventory has been shown to
be concentrated within Si-based microparticles, resulting from the
readily-volatilised nature of Cs, the majority of this radionuclide
(alongside other similarly volatile species such as I, Ag, and Te) has
been distributed across Fukushima Prefecture through the wet deposi-
tion of ionic species (Katata et al., 2012; Yoshida and Takahashi, 2012),
rather than as the less common solid, micron-scale, particulate.

While the works of numerous studies including Kanai (2012) (Kanai,
2012), Mala et al. (2013) (Mala et al., 2013), and Masson et al. (2013)
(Masson et al., 2013), have highlighted and provided some quantifi-
cation of the Fukushima-derived release of particulate material into the
Japanese environment; other sources of such material also exist and
could be attributed to any one of a number of anthropogenic processes
and industries. Extensive analysis has been performed on both trace and
rare earth elements (REE) encountered in the environment at numerous
sampling sites around the world; with the foremost number of studies
having been conducted within Japan. Such works have investigated
material encountered within soils (Yamasaki et al., 2001; Yoshida et al.,
1996), incorporated within rainfall (Iwashita et al., 2011; Shimamura
et al., 2007), or sampled directly as airborne particulate (Furuta et al.,
2005; Suzuki et al., 2010). The enrichment of elements at concentra-
tions above specified levels – typically normalised continental crustal
abundance (Hofmann, 1988; Taylor, 1964), or the ratio of two specific
elements relative to one another, are both indicators of general (or
more directly attributable) anthropogenic processes. For example, the
use of the La/V and La/Sm elemental ratios were invoked by Kitto et al.
(1992) (Kitto et al., 1992), to represent a method for attributing such
fragment material to either hydrocarbon refineries or oil-fired power
plants.

In contrast to many European countries and the United States, as a
result of the limited available space within Japan, the vast majority of
wastes (both industrial and domestic) are incinerated at a large number

of specifically-designed plants, rather than being sent directly to landfill
facilities, the majority of which are located close to population centres
(Sakai et al., 1996). Values placed on municipal wastes generated by
the Japanese Ministry of The Environment (Japanese Ministry of the
Environment, 2014), determined that 70% of all of the countries waste
was incinerated, with only 20% recycled, and around 10% directed to
landfill. This value is only marginally different to the 74.3% reported by
Sakai et al. (1996), nearly two decades earlier. However, considerable
advancements have been made in the efficiency of capturing ash
otherwise released from these incineration processes, as well as the
processes involved in physically combusting the waste materials
(Tanaka, 1992).

An extensive number of historic works have examined and subse-
quently quantified particle resuspension after its initial deposition
(Nicholson, 1988; Sehmel, 1980), with some studying the important
influence of vehicles on remobilisation (Nicholson et al., 1989). The
deposition of mineral particles (dust), prior to their resuspension,
transport and secondary deposition has been viewed as important to the
local heterogeneity of particle composition (Amato et al., 2013).

Through first sampling bulk material collected from a range of
distances out from the FDNPP before subsequently applying high-re-
solution electron microscopy analysis, this work sought to investigate
whether clear depositional trends existed with respect to the distribu-
tion of any matrix-contained particulate. If a correlation were observed
to exist, could it be attributed solely to the Fukushima incident, natural
releases, anthropogenic activity – or a combination thereof. If material
could not be unequivocally attributable to Fukushima, then alternative
sources are required. Due to its micron-scale dimensions, the size of the
material is eminently respirable (Pope et al., 2002), and therefore poses
potential health implications if it were to be inhaled.

2. Experimental

2.1. Sampling

Samples were collected from localities across Fukushima Prefecture,
chosen arbitrarily to incorporate differing distances (and bearings) from
the plant (Fig. 1 and Table 1) – contaminated by radiocesium to varying
degrees by the accident (METI, 2015). These bulk samples were not
obtained directly from the ground (e.g. grasses, roadside detritus or
sediments, as in earlier studies (Mukai et al., 2014; Saito et al., 2014;
Satou et al., 2016; Tanaka et al., 2012a)) but from positions above the
ground where elevated levels of radioactivity were encountered –
identified in each instance using a handheld Geiger counter. This or-
ganic matrix material included mosses attached to boulders, lichens
adhered to trees as well as leaf-debris similarly trapped above the
ground. The collection of the particulate-containing bulk samples from
the various sampling sites was undertaken during trips to the con-
taminated Fukushima Prefecture during May 2014, May 2015 and
October 2015. Although a time period between the FDNPP accident and
the episodes of sample-collection from the land surrounding the sites
are apparent, care was taken to ensure that the influence of other an-
thropogenic sources of particulate were minimised – with secluded/
agricultural sites abandoned since the accident selected where the in-
fluence of roads or recent transient activity were viewed as negligible.

For collection, storage and the subsequent transportation, each
gram-size sample was contained within an airtight sample pot and
bagged multiple times to ensure its appropriate material/radiological
containment. To safeguard against any pre-existing particulate from
contaminating the results, sterilised sample pots and similarly sterilised
disposable plastic tweezers were used throughout the sampling at each
locality.

2.2. Sample preparation

To prepare for the examination of a small portion (typically 0.1 g) of
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the bulk sample, material was removed from the containing vessel be-
fore being deposited onto a low elemental background Spectro Tab
(PELCO™) adhesive carbon disc. Each disc was then individually and
immediately placed inside the chamber of the scanning electron

microscope (SEM). The instrument was then evacuated to its standard
“high-vacuum” pressure (< 1.0×10−5 mbar), where it was left for 2 h
to permit for sufficient sample out-gassing to occur.

2.3. SEM and EDS

Examination of each sample was conducted within a Zeiss™ Sigma
Variable Pressure (VP) Scanning Electron Microscope (S/N: 03–72,
Oberkochen, Germany) with Energy Dispersive Spectroscopy (EDS)
instrumentation (Octane Plus Silicon Drift Detector) and associated
TEAM™ analysis software supplied by EDAX™ (Mahwah, NJ, USA). To
avoid undesired contamination by sample coating (C or Au), negation
of charging was achieved by utilising the Variable Pressure function of
the instrument – introducing a nitrogen-rich atmosphere at compara-
tively low vacuum conditions (∼1mbar). A consistent working dis-
tance of 10mm–10.5 mm, in addition to an accelerating voltage of
25 kV and 1.7 nA beam-current, were maintained throughout. To pro-
vide a rapid and accurate method of analysing large areas (mm2), to
locate points of interest, the instruments backscattered electron de-
tector (Carl Zeiss AsB®) was used in collaboration with high-speed EDS
mapping. Using the high-contrast backscatter mode, locations with high
atomic (Z) number (showing as bright spots) were rapidly and auto-
matically indexed using EDS. Points of interest were then subsequently
examined with greater resolution. The smallest diameter particle
identifiable was determined to be approximately 100 nm. When con-
ducting EDS acquisition of individual particles of interest, the electron
beam was rastered within a user-specified region (“free-hand area”)
comprising the greatest volume of the particle of interest (generally not
less than 80% of the particle), with a background spectra also acquired
of a substrate area immediately neighbouring the particle for compar-
ison. A collection period of 500 s was used to maximise the signal
quality. Particles of interest for future study (by mass-spectrometry, x-
ray tomography or transmission electron microscopy) were physically
extracted from the background matrix by in-situ micromanipulators, as
described in a previous work (Martin et al., 2016).

Fig. 1. Map of Fukushima Prefecture with the location of the 14 sampling sites and the coastal FDNPP identified.

Table 1
Location of the 14 sampling sites, including each sites distance from the FDNPP
in addition to the bulk sample medium collected.

Site Name (Town or City) Latitude
Longitude

Distance to
FDNPP (km)a

Sample
medium

1 Emataira (Fukushima City) 37.724482 N
140.487234 E

58.8 Leaf &
Moss

2 Shimohiso (Iitate Village) 37.614174 N
140.708123 E

35.7 Lichen &
Moss

3 Okuma (I)
(Okuma Town)

37.400413 N
140.950743 E

6.0 Leaf &
Moss

4 Okuma (II)
(Okuma Town)

37.404197 N
140.971492 E

3.1 Moss

5 Kamiibuchi (Date City) 37.797488 N
140.619856 E

60.3 Leaf
detritus

6 Dai (Minamisoma City) 37.604078 N
140.914587 E

22.8 Lichen &
Moss

7 Katsurao (Futaba Town) 37.512471 N
140.816984 E

20.3 Moss

8 Yamakiya Junior High
School (Kawamata Town)

37.602655 N
140.676441 E

37.4 Lichen &
Leaf

9 Kitaosawa (Kawamata
Town)

37.545626 N
140.427948 E

55.7 Lichen &
Moss

10 Hirokuboyama (Kawamata
Town)

37.580838 N
140.716738 E

32.9 Moss

11 Shiobite (Namie Town) 37.565656 N
140.796706 E

25.9 Moss

12 Odakaku Kanaya
(Minamisoma City)

37.553426 N
140.873597 E

20.3 Moss &
Lichen

13 Teramae (Namie Town) 37.491576 N
140.981855 E

8.9 Moss

14 Mukaihata (Futaba Town) 37.394940 N
141.004750 E

3.6 Moss &
Lichen

a Direct distance measured from western site boundary.
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2.4. Statistical analysis

To accurately analyse the large number of particles observed during
this work, an extensive database was established into which the various
sample metrics were input. Such metrics included: (i) measurements for
the two perpendicular major axes of the fragment, (ii) its surface area
(both of which were determined by the microscopes control software)
as well as, (iii) its elemental composition, as determined through EDS
quantification analysis.

3. Results & discussion

3.1. Particle composition

The occurrence (presented as the average long-axis particle mea-
surements) of elements contained within particulate across the 14
sampling sites, is detailed in Table 2. Nearly all the particulate was
characterised by only a single “heavier” element in addition to any
number of lighter (namely transition) elements, including; O, S, Na, K,
P, C, Si, Al, Fe, Mn, Ti, Cu, and Zn – varying in their weight percentage
(wt%) proportions. While 99.1% of the 3000 particles characterised
during this work consisted of a single “heavier” element alongside
numerous accessory (lighter) elements, a minor component (< 1% of
the total inventory) contained a second (or in a very small number of
instances, a third) of these “heavier” elements. This bi-constituent
particulate consisted only of a number of particles containing Ce and
La ± Nd. Exemplar electron microscope images of typical REE-con-
taining particles (Eu, Ho, Er and Gd) are shown in Fig. 2, alongside their
associated EDS spectra. The accompanying Fig. 3 displays the average
elemental composition associated with a subset of the REE-containing
particles (Eu, Ho, Er, and Gd) identified within the bulk material during
this study. As is shown by this plot, the wt% component of the various
REEs alongside the associated accessory/transition elements that con-
stitute the particulate vary considerably – although each particle
comprises elevated components of O, Al and Si. Further apparent from
Fig. 3 is the difference in the average REE wt% component per-particle
– with Eu comprising the lowest average wt% (3.8 wt%) and Er the
greatest (50.2 wt%). Although not occurring at concentrations within
the particulate as high as O, Si and Al, the commonly observed co-
existing (counter) ions of P and S occur with average concentrations
within the REE-containing particulate of between 3% and 5% respec-
tively. While some particle compositions could be aligned to naturally-
occurring mineral sources (Deer et al., 2013; WebMineral, 2017), the
high (> 50wt%) concentration of Er evidenced as part of the subset of
particulate presented within Fig. 3 does not align with any known
mineral species. The varying proportions of all REEs (alongside other
transition and actinide elements) for all particulate examined during
this study is shown graphically within Fig. 4.

A plot detailing the minimum, maximum and average wt% con-
tributions of these “heavier” elements from the entire inventory of
particulate material is shown by the black lines in Fig. 4 (top). Apparent
from this plot is the wide variability in these values. For example, the
Ag component in particles examined in this study ranged from 5.5 wt%
to 92.8 wt%, with the concentration range of both Ce and U shown to be
similarly large, at 66.3 wt% and 63.9 wt% respectively. Smaller com-
positional ranges, however, were observed for species including As, Sb,
Te and Th. Alongside the elemental abundance concentrations of the
particles, the wt% compositional range of these elements when con-
tained in naturally-occurring minerals (WebMineral, 2017), is ad-
ditionally shown in Fig. 4 (by the green boxes). For many elements, the
range of mineral compositions encompasses all of that element-con-
taining particulate analysed in this work; with the abundances of Zr, Re
and Te for example, all bound by these known mineral compositions.
However, the wt% elemental contribution of some of the particles plots
considerably outside of the compositional bounds defined by such
known mineral species (WebMineral, 2017). As shown in Fig. 4, manyTa
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of the REEs (Sm to Yb) exist in the particulate at abundances greater
than maximum mineral-contained concentrations. Environmentally-
sourced particles of Tb, for example, were observed to contain between
8.22 wt% and 63.66 wt% of the element (mean 31.26 wt%), while its
observed mineral abundance ranges only between 0.03 wt% and
0.57 wt%. This elevated and un-natural abundance serves as strong
evidence that Tb (and other composition particulate as shown in Fig. 4),
is not of mineralogical origin, but rather anthropogenically-derived. It
is noted that while the literature values are specified for bulk mineral
crystals, potentially higher elemental concentrations/variations may be

associated with/across submicron or nanometer length scales, however
as was discussed formerly, the elemental quantifications associated
with this work are derived from the entire particles volume and
therefore represent the averaging of any intra-particle compositional
variation.

The weathering/erosion followed by the environmental mobilisa-
tion and subsequent deposition of naturally-occurring mineral species is
the primary means through which micron-scale material could exist
adhered to bulk surfaces (Amato et al., 2013; Sehmel, 1980). This
mechanism could therefore account for a proportion of the particulate
material, including those containing Ag, Ba, Au and U – together ob-
served across the majority of the sample sites. However, this natural
input of material is unable to account for many of the REEs, including
Gd, Ho and Er – hence, an additional mechanism is necessary to account
for the existence (and resulting distribution) of this composition ma-
terial.

Shown also in Fig. 4 (bottom), is the size distribution (minimum,
maximum and mean average) of particulate containing each of the
“heavier” elements. From this plot, a large particle size (diameter)
distribution is observed (discussed subsequently below), however, it
should be noted that the diameter of the REEs is on average smaller
than particulate containing other, “heavier”, elements – which exhibit a
much larger size range and average particle diameter. The micron-scale
size of a component of this particulate material will detrimentally in-
fluence the compositional results as determined via EDS elemental
analysis. Owing to the sampling (interaction) volume of EDS (at 20 kV)
used in this study being approximately 2 μm (Goldstein et al., 1992),
characteristic x-rays will be not only generated from the particle of
interest but also from the underling carbon-based mount (Spectro Tab)
as well as any underling sediment/organic matrix that the particle also
may be coincidentally attached to. This background signal contribution

Fig. 2. Electron microscope images of exemplar particulate (Eu, Ho, Er and Gd) identified within the bulk material, alongside their corresponding EDS spectra with
characteristic peaks identified.

Fig. 3. Average compositional variance (as wt%) exhibited by a subset of the
REE-containing particulate (Eu, Ho, Er and Gd).
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will serve to significantly reduce (dilute) the signal intensity generated
by the particle, therefore depressing the observed wt% abundances of
its constituent elements. As a result, the wt% values determined in
Fig. 4, for particulate with a diameter of less than 2 μm, represents an
underestimation of its true composition.

Shown in Fig. 5 is a plot depicting the distribution of particle shape
(roundness) – described as a measure of the particulates increasing
roundness, away from that of a perfect cube. This classification is based
upon the Powers Scale of Roundness (M. C. Powers, 1953), a metho-
dology originally-devised through which to describe the shape of clasts
within a sedimentary rock. Although largely qualitative, the metho-
dology is widely-accepted – with a value of 1 denoting a particle with
the highest degree of angularity, and 10 conversely ascribed to parti-
culate with the highest level of roundness.

From these results, a skewed bi-modal distribution is observed; with
the majority (c. 80%) of the particulate exhibiting a sub-rounded to
rounded form (6–9), and a smaller proportion (< 15%) showing a
considerably more angular particulate shape (1–3). This observed dis-
tribution, away from an angular/cuboidal crystal shape, can therefore
be invoked to represent either; (i) the non-mineral origin of the parti-
culate (owing to the mineral crystals being angular/cuboidal in form)
and of resultant anthropogenic origin, or, (ii) being of natural (mineral)
origin and having subsequently undergone significant transportation
and weathering to yield such non-angular particulate from a previously
highly-angular form.

3.2. Particle size average

A plot, independent of the materials composition, illustrating the
average particle diameter for all particulate across all sampling lo-
calities, is presented in Fig. 6. While a considerable spread is observed,
apparent from this plot is the small range shown by the average values
(plotted in blue) of less than 3 μm –with a mean value for all material of
1.61 μm. When the vertical (particle diameter) axis is plotted loga-
rithmically (as in Fig. 6), the trend within the data shows a linear

relationship, with the mean particle diameter shown to be progressively
decreasing with increasing distance away from the boundary of the
FDNPP.

Fig. 4. (top) Elemental wt% composition (minimum, max-
imum, and mean average) of particulate across all sampling
sites (black bars), alongside the wt% compositional range
(green boxes) of the same elements when contained within
known mineral species (WebMineral, 2017). (bottom) Plot
detailing the observed size range (minimum, maximum and
mean average) of particulate of the differing compositions
identified during this study. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 5. Observed particulate roundness indices (as percentage of total) for all
composition material, ranging from 1 (very angular/cuboidal) to 10 (well-
rounded). Based on Powers (1953) (M. C. Powers, 1953).
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3.3. Particle elemental size average

A linear relationship between the average particle diameter and the
direct distance from the FDNPP for particulate material of specific
compositions, is observed to exist. As shown in Fig. 7, for Ag, Ce, Sm,
Au, Bi, and Ru, with increasing distance from the coastal reactor site,
the average particle diameter is observed to decrease linearly (de-
monstrated by the coefficients of determination all greater than 0.71).
Particulate containing Ag, whose bulk elemental and isotopic (110mAg)
occurrence/concentration has formerly been quantified in earlier works
(Le Petit et al., 2012; Shozugawa et al., 2012), exhibits this strongly-
negative linear correlation – with particulates measured at the sites
within 10 km of the plant being some of the largest encountered as part
of this study (greater than or equal to 3 μm in diameter). Micron-scale
particulate containing Ce, Sm, Au, and Bi all exhibit the same negative
linear trend – with a marked decline in the average particle diameter
with distance from the FDNPP site. Particulate of Ru composition also
exhibit the same negative decline in particle size; however, particulate
containing this element is observed to only exist at sampling sites lo-
cated under 35 km from the FDNPP, along the primary north-westerly
trending emission plume. This contrasts with the aforementioned Ag,
Ce, Sm, Au and Bi containing particulate, whose existence has been
identified at sites located along the entire 60 km plume length. One
potential Fukushima-related release mechanism through which to ex-
plain this spatially-limited distribution results from the greater inherent
density of the Ru-containing material. With a higher density than many
other elements (12.1 g/cm3) (CRC Press, 2015), such particulate would
only remain “entrained” within the transporting air-mass for a limited
period prior to being deposited (falling-out). Additional FDNPP asso-
ciated factors that could similarly contribute to such a plant-proximal
depositional trend (but require additional evaluation) result from; (i)
the particulates less aerodynamic shape in comparison to the other
ejecta species and/or, (ii) the Ru emission occurred during a differing
(lower-energy) release phase than the other particulate material re-
leased.

Whereas Ag, Ce, Sm, Au, Bi and Ru (Fig. 7) all show a high degree of
linear correlation and a tight fit to the applied negative trend-line
(coefficients of determination (r2)> 0.71), the observed distribution of
U composition particulate (Fig. 8), despite depicting the same distance-

related reduction in size, is not as coherent a fit as was observed for the
particulate in Fig. 7 (r2= 0.57). Owing to the violent nature of events
that occurred during March 2011 at the FDNPP; the large amounts of
energy expended during the explosion would have resulted in the
fragmentation of the reactor-contained U fuel.

Unlike Ag, Ce, Sm, Au, Ru and U, which are all used within or
produced during the operation of a nuclear reactor, Bi is neither gen-
erated during the nuclear fission reaction (IAEA, 2017) – nor is it uti-
lised as a reactor component or structural material (Zinkle and Was,
2013). Therefore, the negative particle size regression (with distance
from the FDNPP site) likely represents such particulate having origi-
nated from a source other than the FDNPP reactors. Two additional
elements used extensively within nuclear reactors globally, including
those at Fukushima, are Zr and Pb. Zr (as a highly-specialist alloy,
Zircaloy-4™) is used as a neutron-transparent cladding material to
contain the reactors U fuel (in addition to being produced as a fission
product), with Pb conversely utilised as a radiation shielding/absorbing
material, and less-extensively to clad the outermost circumferences of
thermally-insulated heat-exchanger pipes (Zinkle and Was, 2013).
However, for materials intimately associated with nuclear reactors
(produced also as nuclear fission products), neither the Zr nor Pb
containing particle distribution trends mirror those of the material with
compositions shown formerly in Fig. 7. As shown in Fig. 8, for Zr and
Pb, no linear size reduction is apparent for these composition particu-
lates over the 60 km extent of the plume (illustrated by the low coef-
ficient of determination) – with both large and small material located
proximally and distally from the FDNPP site. Further shown in Fig. 8,
for particulate containing Sn and Ba (both fission product species with
significant reactor yields (IAEA, 2017)) are particle size distributions
contrasting with those formerly encountered – with particulate con-
taining a component of either Sn and Ba showing a particle size increase
(positive linear correlation) with greater distances from the coastal
FDNPP. While particulate of other compositions displayed the largest
diameters at sites< 10 km from the FDNPP – the inverse is observed for
particulate containing both Sn and Ba.

Alongside the observed decreasing particle size trend of the Bi-
containing material, and the absence of a statistical Zr and Pb dis-
tribution (despite both being used extensively/produced in nuclear
reactors) – the contrasting particle size increase (with decreasing site
proximity) of Sn and Ba serves to further advocate that, or a component
of, such material did not result from the FDNPP accident. A plot of
particulate material containing REE species average particle diameter
verses distance along the plume from the FDNPP is shown in Fig. 6.
Despite exhibiting a greater degree of data spread than for particulate
material of other compositions, observable from this plot, however, is
the marked reduction in measured diameter of this REE-containing
particulate along the 60 km plume length. With an exclusively natural
provenance to this particulate having been formerly excluded (Fig. 4) –
an anthropogenic source-term is hence required. While various REE
species are produced during the standard operation of a light water
reactor (IAEA, 2017), their yields are comparatively low in comparison
to other fission products, however, such REE-containing particulate
have been observed with a significant abundance, as shown in Fig. 4.
Consequently, a source other than the FDNPP accident is required to
account for a component of this REE composition material.

It should be noted that for all composition particulate examined
during this study, an element of sampling and analytical bias could
detrimentally influence the results and subsequent conclusions – for
example, the absence of Ru-containing material at sampling locations
greater than 35 km from the FDNPP. However, through the application
of automated SEM/EDS scanning for and analysis of any contained
particulate from several bulk samples derived from the same sampling
location, the influence of any adverse collection and analysis bias is
seen as sufficiently minimised.

Combined, a more appropriate explanation for the depositional
pattern of the wide range of material examined during this work arises

Fig. 6. Observed particle diameter reduction with increasing distance from the
FDNPP, measured directly from the plant boundary to the sampling site. The
average particle diameters for each sample set (distance from the FDNPP) are
shown in blue, a linear trendline is applied to the data. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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from particulate contributions other than/alongside those from the
FDNPP accident. To produce the spatial distribution as seen for ele-
ments Ag, Ce, Sm, Au, Bi, Ru and U – an additional emission source
would have existed at a location close to the FDNPP as to yield such a
decreasing size particulate with increasing distance from the coast. A
contrary emission source exists for both Sn and Ba-containing material,
whereby the release centre is likely located away from the FDNPP – at a
position towards the furthest-more extent of the north-westerly plume.
While a contribution of particulate of Zr and Pb composition may have
occurred from the FDNPP, an input from an additional emission source
(s) is reasonable and would serve to produce the particle size dis-
tributions shown in Fig. 6 (b) and (c). The same release source re-
sponsible for the Ag, Au, Bi, Ru and U composition material may also be
responsible for the environmental contribution from the comparably-

sized REE-containing material, which itself exhibits the same (reducing)
depositional trend.

As formerly discussed, with waste incineration existing as the main
method through which to dispose of refuge across Japan, the resulting
release of micron-scale aerosol particulate (as a consequence of this
process) is one mechanism to account for a component of this material.
However, modern incineration and ash capture technology serves to
eliminate the environmental ejection of such particulate. While various
industrial production and technological manufacturing processes
(alongside electronic recycling plants) all use/produce wastes of this
composition, the ever-increasing value of the elements promotes their
capture and recycling within developed or environmentally conscious
countries. Supported by other earlier work examining analogous ma-
terial deposition across mainland Japan (Sakata et al., 2014), the most-

Fig. 7. Scatter plots depicting average particle diameter with distance from the FDNPP site (measured directly from the plant boundary), for elements: Ag, Ce, Sm,
Au, Bi, and, Ru. The coefficient of determination (r2 value) for each plot is shown.
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probable additional source of such metal-containing particles examined
during this study is the result of the long-range transportation of
aerosols from other countries, in this instance mainland China (Fenger,
1999).

4. Conclusions and future work

Based on the analysis of over three thousand individual particles
collected from the surfaces of plants, lichens and mosses in the region
extending out from the coastal FDNPP, a considerable degree of cor-
relation was observed to exist for material of several compositions. A
mean particle size of 1.47 μm was determined for the material frag-
ments. Whereas this study attributes the likely source of a portion of
this particulate material to the March 2011 accident at the Fukushima

plant, various fragment compositions cannot be as easily linked to the
INES Level 7 nuclear release event.

From this work, further studies are hence required to better un-
derstand and further constrain the origin of the wide-range of fragment
material identified to occur within samples obtained from within
Fukushima prefecture. Such work will focus on the isolation of these
individual particles of material utilising the method previously de-
scribed in earlier works by the authors (Martin et al., 2016).

To attribute material unequivocally to the Fukushima accident of
March 2011 and not any other emission scenarios, the key particle type
of interest will be particles comprised of uranium. The identification of
a non-natural ratio of 235U/238U and/or the occurrence of non-natural
isotopes of the element (234U and 236U) will be indicative of a nuclear
release scenario. Furthermore, the incorporation of additional artificial

Fig. 8. Scatter plots depicting average particle diameter with distance from the FDNPP site (measured directly from the plant boundary), for elements: U, Zr, Pb, Sn,
Ba, and, Rare Earth Elements (REE). The coefficient of determination (r2 value) for each plot is shown.
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nuclides into these particles will be a clearly defining characteristic of
their in-reactor origin. For determining these ratios and the potential
inclusion of further radiogenic elements, the planned work will seek to
employ experimental methods such as laser ablation-inductively cou-
pled plasma-mass spectrometry (LA-ICP-MS) and three-dimensional
atom probe tomography (3D-APT), both conducted with the particulate
material directly-bonded onto the fine-tipped removal needles.

In addition, the collection of further samples from the region fully-
encompassing the FDNPP, would allow the existence and location of
any potential additional source(s) to be identified.

As current plans to resettle large numbers of Japanese citizens ori-
ginally displaced from their homes draws ever-closer, the need to un-
derstand the distribution of release material stemming from the acci-
dent is becoming increasingly important. While much of the material
encountered within the environment during this study may not be the
result of the FDNPP accident, as some of this material can be classified
as either toxic, or has been identified to present health implications,
attributing it to an emission source is equally important to both public
health and wellbeing (Centers for Disease Control and Prevention,
2018; Emsley, 2003; Timbrell, 1999). Due to the micro-scale size of the
material, it can be classified as easily inhalable – posing issues with
regards to its respiratory uptake (Pope et al., 2002), care must hence be
taken to ensure this material is not mobilised because of remedial
processes that may occur.
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