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Forecasting the repose between eruptions at a volcano is a key goal of volcanology for emergency planning and
preparedness. Previous studies have used the statistical distribution of prior repose intervals to estimate the
probability of a certain repose interval occurring in the future, and to offer insights into the underlying physical
processes that govern eruption frequency. However, distributions are only decipherable after the eruption, when
a full dataset is available, or not at all in the case of an incomplete time-series. Thus there is value in using an ap-
proach that does not assume an underlying distribution in forecasting likely repose intervals, and that can make
use of additional information that may be related to the duration of repose. The use of a non-parametric survival
model is novel in volcanology, as the size of eruption records is typically insufficient. Here, we apply a non-
parametric Bayesian grouped time Markov Chain Monte Carlo (MCMC) survival model to the extensive 58-
year eruption record (1956 to 2013) of Vulcanian explosions at Sakura-jima volcano, Japan. The model allows
for the use of multiple observed and recorded data sets, such as plume height or seismic amplitude, even if
some of the information is incomplete. Thus any relationships between explosion variables and subsequent or
prior repose interval can be investigated. The model was successfully able to forecast future repose intervals
for Sakura-jima using information about the prior plume height, plume colour and repose durations. For
plume height, smaller plumes are followed by shorter repose intervals. This provides one of the first statistical
models that uses plume height to quantitatively forecast explosion frequency.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Knowledge of the likely repose between eruptions at a volcano can
inform emergency management actions and offers insights into the un-
derlying physical processes that govern eruption frequency. Many stud-
ies have attempted to understand eruption repose intervals over
timescales that vary from hours or days (e.g. Watt et al., 2007; Connor
et al., 2003; Jaquet et al., 2006) to decades or centuries (e.g. Pyle,
1998; Mendoza-Rosas and De La Cruz-Reyna, 2010), or both (e.g.
Marzocchi and Bebbington, 2012). A common model is a renewal pro-
cess (Bebbington and Lai, 1996), in which the repose interval duration
depends only on the time since the last onset, commonly inferred to
be due to magma recharge (Marzocchi and Zaccarelli, 2006; Turner
et al., 2011). A mixture of the Weibull renewal model was proposed
by Turner et al. (2008) to represent the effects of mantle recharge into
ins).

. This is an open access article under
a volcano's plumbing system. At Sakura-jima, Udagawa et al. (1999)
found that a lognormal probability distribution best fit the 1980–1994
time-series of explosion repose intervals and suggest that the volcanic
system is characterised by branching conduits that control the renewal
process. Other processes have been inferred from the distribution of re-
pose intervals for open-system volcanoes with frequent Vulcanian ex-
plosions, including Sakura-Jima. Log-logistic (Connor et al., 2003) and
Weibull (Watt et al., 2007) distributions were used to signify, respec-
tively, competing processes in the conduit and a classic failure model.

Statistical models that forecast eruption onsets need to be fitted to
the prior repose interval data. Which of multiple candidates best fit
the data can be identified bymeans ofmaximum likelihood-based tech-
niques. A more difficult question is whether any of the models capture
the essential features of the data. This question is normally answered
via residual analysis, which in the case of renewal models can be
based on the point-process compensator (Ogata, 1988). This approach
provides formal tests where the rescaled process can be tested against
a null hypothesis of a Poisson process. Given a large enough dataset,
not something commonly available for eruptions, an alternative is to
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Fig. 1. Location of Sakura-jima volcano, Aira caldera and Kagoshima city within Japan. NASA Satellite image taken from the International Space Station, 10 January 2013.

1 The plume size (Q) is an integer value derived from the vertical cross-section (S) inm2

through the function Q= (log10S – 4.328) / 0.358, when areas are between 10^4.865 and
10^6.297. Thedecimal value is rounded to thenearest integer to provide a proxy for plume
size. Areas below 10^4.865 are assigned Q = 1, and above 10^6.297 assigned Q = 6.
Where columns reach to the stratosphere Q = 7.
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test the forecasts from the model against future data not used in the
model development or fitting (Bebbington, 2013a). Thesemethods typ-
ically work well for datasets up to a few hundred observations. Beyond
this, simple parametric renewalmodelswith handfuls of parameters are
typically overwhelmed by the complexities that then become apparent
in the data. The tendency towards complexity with larger datasets can
be countered by division of the dataset into different periods, basically
cutting down the size of the dataset to something manageable, or by a
non-parametric approach as used here, in which the data are used di-
rectly in the model formulation.

For some volcanoes, including Sakura-Jima, there are data available
beyond simply the onset times, and therefore repose durations, such
as a measure of the eruption size (Marzocchi and Zaccarelli, 2006), or
the geochemistry of prior deposits (Green et al., 2013). This additional
information can be incorporated into a statistical renewal model
through a proportional hazards approach, as we do here. In this study,
we investigate the use of a non-parametric Bayesian grouped timeMar-
kov ChainMonte Carlo (MCMC) survival model in forecasting explosion
repose intervals at Sakura-jima volcano in Japan. In comparison to pre-
vious statistical distribution fits to the data, the advantage of the model
proposed here as a tool for forecasting future repose durations is that:
1)noparticularunderlyingdistribution to thedata is assumed; 2) explo-
sion variables, such as plume height and size, can be incorporated into
model forecasts; and 3) a Bayesian multiple imputation technique (de-
scribed in Section 4) is used to deal with missing data, thereby increas-
ing the number of usable records.

In what follows, we introduce Sakura-jima volcano and the eruption
dataset (Section 2) before applying parametric statistical models to the
data (Section 3), which provide rationale for the use of the non-
parametric model described in Section 4 and fitted, validated and
applied to forecast repose durations in Sections 5 and 6. Section 7 dis-
cusses the model application and draws relevant conclusions for our
study.
2. The Sakura-jima eruption: 1956 to 2013

Sakura-jima volcano is an andesitic stratovolcano located in Kago-
shima Bay, southern Kyushu, approximately 4 km from Kagoshima
city. The volcano is part of a long-lived volcanic system associated
with several nested caldera structures, of which Aira caldera is the
youngest, forming 22,000 years ago (Aramaki, 1984) (Fig. 1). The
post-caldera phase from 13 ka to present has consisted of major explo-
sive eruptions (most recently in 1914) with intervening periods of
prolongedVulcanian explosions and ash-venting over decades to centu-
ries (Kobayashi et al., 1988). Most recently, the volcano has been active
since 1955 and regularly produces small (b3 km plume height) Vulca-
nian explosions. Explosions have been continuously monitored by the
Kagoshima Local Meteorological Observatory of the Japan Meteorologi-
cal Agency (JMA), with records including time of explosion, plume
height, a proxy for size1 and colour, and maximum seismic and infra-
sonic amplitude, whichwe term ‘explosion variables’. The record repre-
sents the longest continuous dataset of Vulcanian explosions and ash
emissions available. Each explosion is short-lived (order of a few mi-
nutes or less) with short impulsive seismic signals. Between 1955 and
2006, explosions were produced exclusively from one or both of the
summit ‘Minamidake’ craters. In June 2006, the ‘Showa’ crater, approx-
imately 500 m to the East of Minamidake, also became active (Yokoo
et al., 2013) and by 2009 was the source for the vast majority of
explosions.

Details of the Sakura-jima eruption dataset of explosion times and
variables compiled for this study are given in Table 1. Two different



Table 1
Description of data available for explosionsmeasured throughout the Sakura-jima eruption record from1956 to 2013. Additional data include qualitative observations of explosive sounds,
sensory infrasonic wave, volcanic projectiles, thunder and changes in pressure as well as the direction of ash transport. Information on seismic and infrasonic amplitudes are easily acces-
sible up to and including the year 2000, afterwhich the record format changed so that comparison on an event-by-event base is difficult. Thederivation of the plume size proxy is explained
in an earlier footnote.

1956 to 2013

Variable n % data available Minimum Maximum

Repose interval (hours) 11,828 100 0.02 (1 min) 7394 (308 days)
Plume size proxy (Q) 7151 62 1 6
Plume height (m) 7416 61 50 5000
Plume colour 5972 50 Four key colours: black, grey, brown, white (ten in total)
Explosion crater 1989 52 One or multiple of three craters
Maximum seismic amplitude(μm) 6556 55 (1961–2000) 0.4 204.0
Infrasound (hPa) at site 0 1690 14 (1990–2000) 0.01 3.08
Infrasound (hPa) at site E 544 5 (1997–2000) 0.03 1.35
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continuous datasets were merged: one from 1956 to 2001 (n = 7498
explosions: Udagawa et al., 1999), and one from 2001 to 2013 (n =
4330 explosions). The datasets were sourced from Bulletins of the
Japan Meteorological Agency (JMA, 1956a; JMA, 1956b), and their on-
line catalogue (JMA, 2015). The data examined here include only
those ash emissions that are associated with acoustic or seismic signals
to prevent airborne ash recorded during scheduled observations being
included as additional explosions, rather than as the remnants of a pre-
vious explosion. The data required extensive formatting in order to pro-
vide one consistent catalogue that could be used for analysis; the
dataset is provided as supplementary material. The explosion variable
data are shown in Fig. 2.

Four different explosion craters (Showa, Minamidake A,
Minamidake B, and simultaneous Minamidake A B), are recorded.
Plume colour is recorded as one of ten different variants. Seismic data
are only available from 1961 to 2000, and infrasonic data from 1990 to
2000 and 1997 to 2000 for sites O and E, respectively. Plume heights
are estimated from visual observations and are therefore likely to vary
according to wind conditions at the time of explosion, which affects
the angle of viewing and the inclination of any plume. A discrete
proxy for plume size, Q, is provided in the JMA catalogue derived from
the vertical cross-sectional area of the plume height and binned into
qualitative sizes ranging from a ‘very small amount’ (1) to ‘extremely
large amount’ (6) and plumes that reach into the stratosphere (7), as
described in an earlier footnote. No eruptions of size 7 are present in
the 1956 to 2013 dataset. The plume height andQ are very strongly pos-
itively correlated (Spearman's rank correlation of 0.75, P-value of 0).
The seismic dataset available to us between 1961 and 2000 does not dis-
tinguish between earthquake types, e.g. hybrid or explosion earth-
quakes, preventing separate analysis by earthquake type.

The dataset is not complete across all explosion variables for all time,
with some periods showingmore complete records than others (Fig. 3)
Fig. 4 shows the empirical repose distributions separated according to
whether the respective explosion variables were observed or missing
for the explosion prior to the repose. We see that missing visual
(plume colour, height or size, or explosion crater) observations indicate
a longer subsequent repose, whereas the effect is reversed for missing
instrumental (seismic, infrasound) observations. Hence we conclude
that missing data may be informative and need to be incorporated
into our models.

We are interested in the potential information that explosion vari-
ables provide for forecasting the subsequent repose. In the case of the
non-discrete variables, shown in Fig. 5, we can calculate the rank corre-
lation and consequent P-value against a null hypothesis of zero correla-
tion. Missing values were omitted from the calculation along with the
corresponding reposes. While there is a significant (positive) correla-
tion between plume height and subsequent repose, there is no indica-
tion of any significant correlation between repose duration and
seismic or infrasonic measurements. Although the Infrasoundmeasure-
ments from Site E are marginally significant, they cover only 4 years of
eruptions, and possibly represent a false positive for the test of signifi-
cance given that measurements from Site O were not a significant pre-
dictor, and the fact that the two infrasound sequences have a
correlation of 0.793.

Turning to the discrete variables, Fig. 6 shows the distributions of re-
pose lengths subsequent to each plume colour. There is a great degree of
overlap, but using analysis of variance (ANOVA) on the logarithm of the
repose length (to remove the skewness), we find that the colours can be
grouped as ‘Missing’ (5853 observations), ‘Grey-White/Grey-Brown/
Black’ (3190 observations) and ‘Other’ (2779 observations), with no sig-
nificant differences in themeanswithin each group (P= 0.380 and P=
0.187 for the Grey-White/Grey-Brown/Black and Other combined
groups, respectively). The groups are then different with P b 0.0005.

The effect of the explosion crater location is shown in Fig. 7. In a sim-
ilarmanner to theplume colour,wefind that the explosion crater can be
grouped as ‘Showa’ and ‘Other’ (P = 0.384 between groups).

Turning to the proxy for plume size (Q), the effect of which on re-
pose length is shown in Fig. 8, we find that the Q-values can be grouped
as Q= {1,2} (1294 observations, P=0.58), {3} (3419 observations), {4}
(1479 observations) and {missing,5,6} (5632 observations, P = 0.38).

Traditionally, models for repose intervals have been based on re-
newal models, where each repose is independent and identically dis-
tributed (Bebbington and Lai, 1996; Bebbington, 2013a). Serial
correlation is not usually incorporated: it is assumed that, conditional
on any covariates, the interval lengths are independent. If there is rea-
son to believe that there is a ‘memory’ effect in which processes are ca-
pable of remembering the past dynamic conditions (e.g. Jaquet et al.,
2006), we can additionally condition on the previous repose interval
length, or the previous two or more repose intervals if the dependence
is considered to be greater than first order. The autocorrelation function
for the logarithm of the repose lengths is shown in Fig. 9a. We see that
the reposes are positively correlated. Much of this is due to trend
(s) within the sequence, as demonstrated by themuch shorter term au-
tocorrelation of the first differences of the log-reposes (Fig. 9b). This in-
dicates that the previous two reposes should be sufficient to condition
the process.

To summarise, the variables that seem to have potential for forecast-
ing repose durations are the prior plume height, plume colour (two cat-
egories – missing is treated as a reference group), explosion crater
(‘Showa’ or not), plume area (three categories plus reference group),
the previous two log-reposes, and something in the way of a time
trend (i.e. changes in eruption rate over time).

3. Parametric models

Before introducing the non-parametric Bayesian survival model, we
will consider the parametric alternative(s) for benchmarking purposes.

A shorter record (1955–1998) of the explosions at Sakura-jima has
been analysed previously by Watt et al. (2007), who found that a log-
logistic distribution best described the repose intervals in the earlier



Fig. 2.Data available for explosionsmeasured throughout the Sakura-jima eruption record from1956 to 2013. Additional data include qualitative observations of explosive sounds, sensory
infrasonic wave, volcanic projectiles, thunder and changes in pressure as well as the direction of ash transport.

Fig. 3. Completeness over time (Gaussian kernel smoother, bandwidth 100 days) for explosion variables in our dataset.
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Fig. 4. Repose lengths conditional on observation/non observation of explosion variables.

48 S.F. Jenkins et al. / Journal of Volcanology and Geothermal Research 381 (2019) 44–56
part of the eruption (up to 1971), and a Weibull distribution the latter
part. Note, however, that only the eruption onset times were used to
fit the model, not any of the other variables. The fit for Weibull, two
and three component mixtures of Weibulls (Turner et al., 2008) and
log-logistic renewal distributions to the current dataset are shown in
Fig. 10. We see that the log-logistic outperforms all of theWeibull mix-
ture renewal models, as measured by the Bayes Information Criterion,
BIC = p log(n) – 2 logL, where p is the number of parameters, n the
number of data and L the estimated maximum likelihood. The log-
logistic distributions were attributed to explosions being controlled by
competing processes in the conduit (Connor et al., 2003; Watt et al.,
2007). The log-logistic distribution has probability density

f τð Þ ¼ kτk−1

μk 1þ τ=μð Þk
� �2 ð1Þ

where τ = t-s is used to denote the elapsed time since the last erup-
tion onset occurred at time s, and k, μ are parameters to be estimated.
The log-logistic k values, which describe the shape of the density
function, and therefore the periodicity of explosions, were notice-
ably lower (b1.3 (Watt et al., 2007), 1.0072 for the current dataset)
than those observed at Soufrière Hills Volcano, Montserrat (k = 4;
Connor et al., 2003). A k value of 1.0 within a log-logistic renewal
model would represent Poissonian activity. However, the rate of
eruptions varies through time, and successive repose intervals are
strongly correlated (Fig. 9), which rules out the Poisson process as
a feasible model. Instead we need to investigate the hidden structure
controlling the process, developing a model in which information
additional to the previously observed repose interval durations is
used to improve forecasts of the time to the next eruption. In doing
so, we hope to find that the log-logistic model fits the entire data,
with appropriate time-varying modulation from the other variables.
An alternative could be to try a change-point (or ‘regime’) type
model (Mulargia et al., 1987), but without a stochastic model for fu-
ture changes in regime this cannot be used for forecasting. Hence it
would have to be placed within the framework of a hidden Markov
model (Bebbington, 2007).



Fig. 5. Rank correlation coefficients (ρ) and P-value (p) between non-discrete explosion variables and subsequent repose. A P-value of close to 0 refutes the null hypothesis of zero
correlation.
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A possible augmentation to the log-logistic renewal model to ac-
count for time-varying behaviour is to formulate it as a proportional
hazards model (Green et al., 2013) incorporating eruption variables.
Fig. 6. Repose durations by plume colour. Using ANOVA, plume colours can be grouped as
Black, Grey-Brown, Grey-White (red circles), Others (green squares), and Missing (no
markers). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
The corresponding survival function for the log-logistic density function
of Eq. (1) is defined as

S τð Þ ¼ Pr Repose lengthNτð Þ ¼ μk

μk þ τk
;

and hence the hazard rate is

h τð Þ ¼ f τð Þ=S τð Þ ¼ kτk−1

μk þ τk

where the probability of an onset in a short time interval (τ,τ Δ) is ap-
proximately h(τ)Δ. The proportional hazards model is then defined via
its hazard function

hPH τð Þ ¼ exp δ
0
x

� �
h τð Þ ð2Þ

where x is a vector of eruption variables, and δ a vector of coefficients to
be determined. From the analysis above, a reasonable starting point for
the proportional hazards term is

δ
0
x ¼ δ1 loghþ δ2C1 þ δ3C2 þ δ4Sþ δ5Q12 þ δ6Q3 þ δ7Q4

þ δ8 logτ−1 þ δ9 logτ−2 þ δ10N tð Þ=t ð3Þ

where h is the height of the previous plume (missing heightswill be im-
puted by the mean), Ci are indicator variables (0 or 1) for the two ‘non-
missing’ plume colours identified (Fig. 6), S is an indicator variable for
the Showa crater, Q12 is an indicator variable for Q = 1 or 2, similarly
for Q3 andQ4. Terms8 and 9 are obtained bynoting that there is a strong
correlation between logτi − log τi−1 and logτi−1 − log τi−2, while the last
term is an allowance for deviation from the overall rate of events.



Fig. 7.Reposedurations by explosion crater. Using ANOVA, craters can be grouped as Showa (red circles) and ‘other’ (Minimidake A, B, A B andMissing: nomarkers). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Note that the proportional hazard is relative to a missing plume colour,
from the Minamidake craters, with Q = 5,6 or missing. The continuous
measurements are normalized by subtracting their mean.

Assessing the resulting model fits using BIC reveals that the plume
colour and plume area (Q) terms are not significant, and hence our
baseline model reduces to

δ
0
x ¼ δ1 loghþ δ4Sþ δ8 logτ−1 þ δ9 logτ−2 þ δ10N tð Þ=t: ð4Þ

Evaluation using the point process compensator (Bebbington,
2013b) indicates that the model does not pass the goodness of fit tests
(constant rate, independence, exponential distribution). Given these
limitations of simple distribution fitting, this studywill now focus on in-
vestigating the relationship between repose interval and explosion var-
iables without assuming an underlying distribution.

4. The non-parametric Bayesian survival model

The model is an adaptation of a non-parametric model for fitting or-
deredmultilevel data (Goldstein, 2011), available asMATLAB programs
(www.bristol.ac.uk/cmm/software/realcom). The basic data structure
for the model application here is that of the sequence of (repose) inter-
vals betweenVulcanian explosions. Interactions between explosion var-
iables (covariates) are handled within the model so that the more
Fig. 8. Repose durations byQ, a proxy for plume size. Using ANOVA, plume sizes can be grouped
(For interpretation of the references to colour in this figure legend, the reader is referred to th
traditional and complex approach illustrated above of arriving at a suit-
able parametric model is unnecessary. Further details about the deriva-
tion of the model and the estimation algorithm are given in Goldstein
(2011, Chapter 11). The following description contains the essential
concepts and provides the statistical model formulation. We provide a
table of symbols and their meanings in Appendix 1.

We adopt a latent normal formulation (Goldstein et al., 2009) for an
ordered m-category response, by discretising (or approximating) the
repose distribution into a non-parametric piecewise linear survival
function.We operationalise themodel by discretising the repose length
time scale with m cut points (τ0(=0),τ1, … ,τm). Thus, if φ(s) denotes
the standard normal density with zero mean and variance one, we
have a probit link cumulative probability model

γh ¼ Pr τ≤τhð Þ ¼
Xh
g¼1

πg ¼
Zαh−X

0β

−∞

φ sð Þds ð5Þ

for time intervals h = 1, …,m-1, where X is a matrix of predictor vari-
ables. Eq. (5) is used, given a value of β, to determine defines αh

where β are parameters, treated in the Bayesian formulation as random
variables, and πg = Pr (τg−1 b τ ≤ τg).

In practice, the number and location of cut points, m, will be deter-
mined by the data. A useful procedure is to aim for approximately
as 1, 2 (red circles), 3 (green squares), 4 (orangediamonds), andMissing, 5, 6 (nomarkers).
e web version of this article.)

http://www.bristol.ac.uk/cmm/software/realcom


Fig. 9. Autocorrelation function (starting at lag 1) for the log-reposes (A) and their first
difference (B).
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equal numbers of observed reposes in each grouping interval, with no
requirement for the intervals to have equal lengths. For example, for
an eruption dataset containing 1000 explosion records, we may choose
twenty cut points (τh in Eq. 5) by assigning the repose durations at each
5th percentile as the cut points. The more intervals that can be used in
the model the better, with a limit determined largely by computational
time. Here, we used 100 cut points.

The threshold parameters αh correspond to the cut points of the
grouped time bins, and we require that they satisfy the order constraint
α1 b α2. . … b αm. For identifiability, we set α1 = 0 if an intercept is in-
corporated in Xβ. The matrix X= [1 Y] is a vector of 1's for a model ap-
plication that only considers the repose intervals, and augments this by
a matrix Y of explosion variables when they are included, as described
below. We see from Eq. (5) that if αh is held constant, the probability
that a repose is shorter than τh decreases as Xβ increases, i.e., reposes
become longer. The discrete hazard function (probability that the re-
pose length is between τh-1 and τh given it is ≥ τh-1) corresponding to
Eq. (5) is h(τ) = πh/(1 − γh−1) for τh−1 b τ ≤ τh.
Fig. 10. Survival probabilities, S(τ) = P(Repose N τ), for various rene
This use of a non-parametric survival model is novel in volcanology,
as the typical size of eruption records is insufficient. However,
Smethurst et al. (2009) considered a piecewise linear non-parametric
model for Mt Etna flank eruptions, with the eruptive probability re-
maining constant over partitions of the time history.

Fitting the model (5) to data is done via Markov Chain Monte Carlo
(MCMC) estimation, as detailed in Goldstein et al. (2007) and Goldstein
(2011): At any given iteration of the MCMC estimation algorithm, as-
sume that we have current estimates of the α = {αh} parameters. We
sample a value of the latent normal scale such that, if we observe cate-
gory h (1 b h b m) then we sample from the normal interval [(αh−1 −
Xβ),(αh − Xβ)] with associated probability πh. The updated β parame-
ters β⁎ can then be sampled using a Gibbs step, assuming a diffuse
prior with a resulting multivariate normal posterior. The updated α pa-
rameters (α ∗) are derived from theα and these are sampled using aMe-
tropolis step, accepting a new sample α ∗ with probability min(1,Pα ∗/
Pα), noting that the component of the likelihood associated with a par-
ticular ordered category is Pα = ∏hγh. Passarelli et al. (2010) have also
used MCMC methods to fit hierarchical renewal models to repose data.

The advantages of this formulation over the parametric proportional
hazard model are that 1) it makes no particular distributional assump-
tion, which aligns with the different distribution fits to these data iden-
tified by Watt et al. (2007), 2) the coefficients are treated as random
variables, in a fully Bayesian approach and hence epistemic variability
is accounted for, and 3) the MCMC procedure automatically accounts
for missing data through multiple imputation, which would have to be
manually performed for parametric models using, for example, imputa-
tion or expectation-maximisation methods. For future applications, a
multi-level formulation is potentially available to deal with different
regimes.

For many of the variables, up to 60% (Fig. 3) of the data values are
missing in the Sakura-jima dataset at various times. We assume that
missing data are randomly distributed, or at least random conditional
on the model parameters (Missing at Random, MAR). However, we ac-
knowledge that missing information could be related to the subsequent
repose duration (Fig. 4). If wewere to remove recordswithmissing var-
iables this would substantially reduce the size of the dataset and the ef-
ficiency of our parameter estimates. Instead we can retain all the data
and use an extension of the multiple imputation technique for missing
values (Rubin, 1987). Goldstein et al. (2014) describes how the model
wal models, plotted against the observed 1956 to 2013 record.
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can handle missing data in a fully efficient and fully Bayesian procedure
that allows for missing data, where the predictor variables are either
normal, e.g. log(plume height), or binary, e.g., plume colour, together
with any interactions.

5. Model fitting and validation

Applying themodel described in Section 4 to the 1956–2013 Sakura-
jima eruption record allows us to investigate repose intervals, and their
relationship with explosion variables, without assuming a particular
distribution. We can incorporate as much available data as possible,
even with missing observations. Model outputs β and αh characterise
probability distributions, or survivor functions, for likely repose interval
given a certain value of X, where X includes explosion variables, such as
plume height or infrasonic amplitude.

The model was fitted to the entire data set, using stepwise removal
of factors to obtain the best BIC, where BIC was estimated as

BIC ¼ N
σ2 MSEþ p logN

N

� �

(Hastie et al., 2001), where MSE is the mean of the square of the resid-
uals, σ is the residual standard deviation of a complex model (all covar-
iates included), N = number of data and p = number of parameters.
The resulting model and parameter estimates are given in Table 2,
with the posterior distributions for the β coefficients shown in Fig. 11,
and their correlations in Table 3.

The plume size variables Qwere excluded due tomassive correlation
with the plumeheight. Thefinalmodel parameter estimates show that a
higher plume indicates a longer subsequent repose, i.e. mean β is posi-
tive, effectively a time-predictable model (Bebbington, 2013b).

A black plume indicates a shorter subsequent repose, and a white
plume a longer subsequent repose. A black plume contains the greatest
concentration of ash, and so is possibly correlated with a larger mass of
eruptible material in the conduit. Note that both categories are sparsely
represented in the data set (Table 1), but it is nevertheless interesting
that the model selected only the two ‘extreme’ plume colours (Fig. 6).

The Showa craterwas inactive from the beginning of the data set, re-
suming activity in 2006 and being the sole crater producing explosions
from March 2011. Regular explosions from Showa are recorded in our
data set from 2008 and after this date we see a marked increase in the
rate of eruptions, and hence a decrease in the repose lengths.

Although the estimated standard error for the coefficient of the in-
frasonic observations at station E exceeds its estimated mean, it was
nevertheless significant by BIC measure. The infrasonic measurements
(station E) were by far the shortest set of covariate data, available only
between 1997 and 2000, and was marginally significant in Fig. 5. Its in-
clusion illustrates the power of the fully Bayesian imputationmethod to
extract value from such scant data.

The serial autocorrelation incorporated through the previous re-
poses indicates that the activity level persists to some degree: short re-
poses tend to be followed by short reposes. The overall rate term
Table 2
Non-parametric Bayesian survival model parameter estimates associated with the best
BIC.

Factor Mean β Median β SD β

Intercept 1.547 1.501 0.166
log of plume height 0.158 0.164 0.022
White plume 0.499 0.511 0.175
Black plume −1.004 −1.061 0.500
Showa crater −0.549 −0.551 0.028
log of infrasonic (E) −0.024 −0.056 0.032
log of repose (lag 1) 0.151 0.152 0.006
log of repose (lag 2) 0.106 0.105 0.006
Rate of eruptions to date 0.674 0.677 0.156
represents regression towards a ‘mean activity level’, i.e. if the rate de-
creases, reposes become shorter, thus increasing the rate.

We see from Fig. 11 that most of the β distributions are reasonably
symmetric and bell-shaped. The exceptions are the Showa crater and in-
frasonic coefficients. Occurrence of these factors is restricted to small
parts of the dataset. Approximately 95% of the infrasonic values are im-
puted, whichmay explain the broader distribution of its coefficients. As
seen in Table 3, the Showa coefficients are strongly correlated with all
the other variables except plume colour. This relationship reflects in-
creasing activity once the Showa crater reactivated.

The model was validated using the method in Bebbington (2013a).
Each repose is predicted as a distribution, and we record the quantile
of the predicted distribution in which the actual repose falls. In order
to keep the computation within bounds, we adopted the compromise
of selecting themodel based on the full data set, and then using param-
eter estimates calculated from only the first 10,823 reposes without
updating to forecast the final 1000 repose durations. We can compare
the performance with the parametric model described by (2) and (4).
Fig. 12 shows that the parametric model does not perform as well as
the non-parametric Bayesian model (using the median estimates for
the parameters) when using the derived test of uniformity at the 5% sig-
nificance level.

6. Model forecasts

The purpose of the described modelling is to be able to forecast fu-
ture repose intervals. In the model here, we use information from the
most recent explosion, along with the previous two repose lengths as
covariates to adjust the overall survival probability (i.e. the probability
that the repose exceeds a given duration).

Fig. 13 shows how the forecast repose distribution varies as a func-
tion of selected preceding explosion variables. In order to isolate each
factor, the other variables were held at their median values, andmedian
β (Table 1) estimates were used. The observed distribution is also
shown, as are the equivalent values from the parametric model.

Firstly, themedian effects are almost identical under the twomodels
(parametric versus non-parametric). These differ from the observed
distribution due to the incorporation of non-linear effects and interac-
tions of the explosion variables in the models. Secondly, we see that
the Showa and log Repose-2 variables have a very similar range of ef-
fects under the non-parametric and parametric models. However,
plume height has greater leverage in the parametric model, while the
most recent repose has greater leverage in the non-parametric model.
The repose is of course more accurately measured than the plume
height, another point in favour of the non-parametric model.

7. Discussion and conclusions

In applying the non-parametric Bayesian survival model proposed
here as a forecasting tool, no parametric distributional assumptions
are made about repose intervals. The model can readily take advantage
of whatever data are available, in whatever degree of completeness. Co-
variates such as explosion plume height or colour can be incorporated
into the model. For Sakura-jima a number of explosion variables were
found to provide statistically significant improvements in forecasts of
likely future repose. Correlations between plume height and repose in-
terval during similar explosions at Anak Krakatau in Indonesia have
been found previously (Watt et al., 2007), but this is the first time that
plume heights have been applied to quantitatively forecast explosion
frequency.

The non-parametric model has the same limits on incorporation co-
variates (i.e. explosion variables) as in the proportional hazard model
(Eq. 2) – only the last observation can be included. However, bymodel-
ling the threshold parameters as functions of explanatory variables,
such as their moving average, the non-parametric model can be
reformulated in a non-linear manner (Goldstein et al., 2014) to account



Fig. 11. Posterior distributions for β, using the non-parametric model. Colour K is black, W white.
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for time-varying covariates (i.e. the entire history). This has been exam-
ined parametrically for eruptive volume (Bebbington, 2008), but not for
other variables.

Earthquake types (e.g. b-type or hybrid) were not available to us. In-
corporating themwill require an elaboration of themodel to account for
time-varying (on an inter-explosion time scale) covariates. A simpler
course would be to search for any seismic patterns that could be used
over longer timescales (days to weeks) to provide an indication of fu-
ture explosion frequency.

A further potential advantage of the model is the ability to account
for missing data and multiple hierarchies in data (e.g. explosion se-
quences within eruption sequences within periods of activity), in addi-
tion to covariates that are predictive of repose intervals. The interactions
of the ‘Showa’ term in the model is indicative of a system that may ex-
perience multiple regimes (Mulargia et al., 1987; Bebbington, 2007),
where the statistical model shifts from one set of parameter values to
Table 3
Correlations betweenmultilevelmodel parameters. The lower left triangular portion of the table
a black.

Int logH W K

Int −0.869 0.004 −0.015
logH 0.000 −0.001 −0.033
W 0.931 0.976 0.007
K 0.742 0.465 0.867
Showa 0.013 0.000 0.390 0.119
logInfE 0.000 0.011 0.420 0.486
logRep-1 0.837 0.117 0.526 0.698
logRep-2 0.844 0.089 0.264 0.176
Rate 0.000 0.005 0.704 0.155
another, due to a change in the underlying physical processes control-
ling the eruptions.

For illustrative purposes, we have used a least squares spline tool
(freely available in MATLAB: SLM - Shape LanguageModelling) to iden-
tify breakpoints within a linear regression, and thus divide the 1956 to
2013 eruption record into five broad periods (Fig. 14), with each period
exhibiting a differing rate of activity:

- Period 1: January 1956 to July 1973 (n= 1699), in which Vulcanian
explosions occurred on average once every four days (mean of 0.27
explosions/day); This could possibly have three sub periods;

- Period 2: August 1973 to November 1986 (n=3648)was very active
with nearly one explosion per day (mean of 0.75 explosions/day);

- Period 3: December 1986 to August 2001 (n = 2151) returned to a
slower rate of activity with on average one explosion every two to
three days (mean of 0.40 explosions/day).
is the P values, upper the correlations (italicised if significant at 5%),W is awhite plume, K

Showa logInfE logRep-1 logRep-2 Rate

−0.111 0.176 −0.009 0.009 −0.276
0.353 0.114 0.070 0.076 −0.127
0.039 0.036 −0.028 0.050 0.017
−0.070 −0.031 −0.017 −0.061 0.064

0.184 0.246 0.230 −0.542
0.000 0.090 0.064 −0.116
0.000 0.043 −0.270 −0.015
0.000 0.156 0.000 −0.096
0.000 0.009 0.732 0.032



Fig. 12. Validation of (A) the non-parametric Bayesian model, and (B) the loglogistic proportional hazards model.
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- Period 4: September 2001 to January 2009 (n = 174) represents a
very quiet period of activity, with an explosion on average every
two weeks (mean of 0.07 explosion/day).

- Period 5: February 2009 to December 2013 (n=4156)was by far the
most active period to date (mean of 2.35 explosions/day), and coin-
cides with explosions mostly being generated from the Showa crater.

Amultilevel model could be implemented by treating the ‘period’ as the
second level of the hierarchy (Goldstein, 2011).

We can also consider multivariate models (Goldstein et al., 2009)
where we may have several ‘responses’ in addition to the repose time.
For example, the size of the explosion (e.g., plumeheight or seismic am-
plitude) could be modelled alongside the repose time, allowing an
Fig. 13. Repose interval duration forecasts conditional on the variables from the last explosio
variable, the central 90% of values for Showa cannot be represented.
estimate of the correlation between them. This would augment the
time-predictable model into a size and time-predictable model, previ-
ously only examined on an eruption level (Marzocchi and Zaccarelli,
2006; Bebbington, 2014).

The non-parametric Bayesian survival model may also prove useful
for inferring the physical processes underlying explosions. The model
selection process, suitably extended, can be used to test hypotheses
about the significance of individual factors, and even factors acting in
concert, uncomplicated by the assumption of a specific baseline distri-
bution. There would thus be value in establishing if the non-
parametric model developed here for Sakura-jima can be successfully
applied to analogous open-system Vulcanian explosions for which we
have incomplete or complete time-series of observations, e.g. Santa-
n being of a certain value. The grey area is the central 90% of the values; as a categorical
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Fig. 14. Cumulative explosions with time and the recorded plume heights, where available, for those explosions. The 1956 to 2013 record is divided into five broad periods of similar
activity.
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Maria (1922), Popocatépetl (2005), Soufrière Hills (1997). If success-
fully applied, themodel can be used to improve time-dependent hazard
assessments for Vulcanian eruptions (e.g. Bonadonna et al., 2005;
Jenkins et al., 2008; Jenkins et al., 2015).

However, themodel is unable to provide viable results to forecast re-
pose intervals between eruptions at closed-system volcanoes at longer
timescales, due to insufficient data for a non-parametric approach.
Here a parametric approach is required, unless themulti-level capability
of the model (Goldstein et al., 2014) can allow for analogous volcanoes
to be considered jointly to expand the available eruption dataset.
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Appendix 1. Non-parametric Bayesian survival model glossary

The symbols used by the non-parametric Bayesian survival model,
their description and use in the model.
Symbol
τg

φ(

α

m
X

Description
 Use in the model
Time cut points. Often chosen as a
percentile, so that data are equally

divided between time bins
To provide time bins for the
survival model
z)
 Standard normal distribution, with
zero mean and standard deviation
The probit link function in the
Bayesian formulation
g
 Threshold parameter for a model
with no covariates, i.e. explosion

variables.
Model output for each time bin g
Number of time bins

Explosion variable values
 The survivor function is calculated

for a given variable value, X. For
example, the 5th, 50th or 95th
continued)
Symbol
 Description
 Use in the model

percentile prior plume height.

Explosion variable coefficients
 Model output for each explosion

variable

k
∗
 Threshold parameter for a model with multiple covariates, for each time

interval k

Number of time-varying explosion variables
g
 The probability that an event occurs
in time bin g
Calculated value from model
outputs (Eq. 5)
Appendix 2. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jvolgeores.2019.04.008.
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