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Abstract
Population	genetic	models	of	evolution	along	linear	environmental	gradients	cannot	
explain	why	adaptation	stops	at	ecological	margins.	This	 is	because,	unless	models	
impose	reductions	in	carrying	capacity	at	species’	edges,	the	dominant	effect	of	gene	
flow	is	to	increase	genetic	variance	and	adaptive	potential	rather	than	swamping	local	
adaptation.	This	allows	the	population	to	match	even	very	steep	changes	in	trait	op-
tima.	We	extend	our	previous	simulations	to	explore	two	nonlinear	models	of	ecologi-
cal	gradients:	(a)	a	sigmoid	(steepening)	gradient	and	(b)	a	linear	gradient	with	a	flat	
centre	of	variable	width.	We	compare	the	parameter	conditions	that	allow	local	adap-
tation	and	range	expansion	from	the	centre,	with	those	that	permit	the	persistence	of	
a	perfectly	adapted	population	distributed	across	the	entire	range.	Along	nonlinear	
gradients,	colonization	is	easier,	and	extinction	rarer,	than	along	a	linear	gradient.	This	
is	because	the	shallow	environmental	gradient	near	the	range	centre	does	not	cause	
gene	flow	to	increase	genetic	variation,	and	so	does	not	result	in	reduced	population	
density.	However,	as	gradient	steepness	increases,	gene	flow	inflates	genetic	variance	
and	reduces	 local	population	density	sufficiently	that	genetic	drift	overcomes	local	
selection,	creating	a	finite	range	margin.	When	a	flat	centre	is	superimposed	on	a	lin-
ear	gradient,	gene	flow	increases	genetic	variation	dramatically	at	its	edges,	leading	to	
an	abrupt	reduction	in	density	that	prevents	niche	expansion.	Remarkably	local	inter-
ruptions	in	a	linear	ecological	gradient	(of	a	width	much	less	than	the	mean	dispersal	
distance)	can	prevent	 local	adaptation	beyond	this	 flat	centre.	 In	contrast	 to	other	
situations,	 this	 effect	 is	 stronger	 and	 more	 consistent	where	 carrying	 capacity	 is	
high.	Practically	speaking,	this	means	that	habitat	improvement	at	patch	margins	will	
make	evolutionary	rescue	more	likely.	By	contrast,	even	small	improvements	in	habi-
tat	at	patch	centres	may	confine	populations	to	limited	areas	of	ecological	space.

K E Y W O R D S

ecological	margins,	local	adaptation,	niche	expansion,	patchiness,	population	genetics

1  | INTRODUC TION

Why	 is	 local	 adaptation	 prevented	 in	 some	 ecological	 and	
genetic	 situations,	 meaning	 that	 populations	 cannot	 track	

changing	 environments,	 and	 so	 have	 finite	 ranges	 in	 space	 and	
time?	Understanding	when	 and	where	 such	 limits	 to	 adaptation	
occur	 is	 critical	 for	 predicting	 species’	 extinction	 rates	 in	 time,	
their	 geographical	 distributions	 in	 space,	 and	 the	 evolution	 of	
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ecological	 communities.	 Information	 on	 maximum	 rates	 of	 evo-
lution	allows	estimates	 of	 where	 and	 when	 rapid	 environmental	
change	 will	cause	 the	 loss	 of	 species	 from	 ecological	 communi-
ties.	Understanding	 how	 genetic	 and	 ecological	 processes	 inter-
act	also	allows	scientists	to	provide	guidance	on	how	to	maximize	
evolutionary	rates	in	populations	that	are	close	to	critical	rates	of	
environmental	change.

Single	population	models	 for	 the	maximum	sustainable	 rate	of	
evolution	 (“evolutionary	 rescue”	 models;	 Bell,	 2013)	 exclude	 the	
genetic	and	demographic	effects	of	dispersal	between	ecologically	
divergent	populations.	The	movement	of	individuals	and	alleles	be-
tween	different	 environments	has	 two	contrasting	effects	 (Bridle,	
Polechová,	&	Vines,	2009;	Bridle	&	Vines,	2007;	Connallon	&	Sgro,	
2018;	 Haldane,	 1956):	 (a)	 it	 reduces	 population	mean	 fitness,	 be-
cause	the	phenotypes	of	incoming	individuals	and	their	offspring	are	
distant	from	the	local	optima	(either	by	changing	the	trait	mean	or	
by	increasing	its	variance,	or	both);	and	(b)	it	increases	evolutionary	
potential	by	increasing	local	genetic	variation.

Models	 exploring	 the	 effect	 of	 gene	 flow	 on	 local	 adaptation	
have	focussed	on	either	a	few	ecologically	divergent	patches	(often	
with	different	 carrying	capacities),	with	varying	 levels	of	dispersal	
between	them	 (see,	e.g.,	Legrande	et	al.,	2017	 for	a	 review);	a	se-
ries	 of	 populations	 with	 stepping‐stone	 dispersal	 (e.g.,	 Alleaume‐
Benharira,	Pen,	&	Ronce,	2005);	or	the	joint	effect	of	gene	flow	and	
selection	 when	 individuals	 are	 distributed	 continuously	 across	 a	
linear	ecological	gradient	in	space	(Barton,	2001;	Bridle,	Polechová,	
Kawata,	&	Butlin,	2010;	Haldane,	1948;	Kirkpatrick	&	Barton,	1997;	
Polechová,	2018;	Polechová	&	Barton,	2015).	These	models	of	eco-
logical	margins	explicitly	couple	population	genetics	with	population	
ecology,	in	that	the	match	of	a	genetically	variable	trait	to	the	opti-
mum	determines	individual	fitness	(see	reviews	by	Bridle,	Polechová,	
et	al.,	2009;	Bridle	&	Vines,	2007;	Kawecki,	2008;	Lenormand,	2002).	
Dispersal	along	ecological	gradients	generates	a	fitness	cost	(termed	
“standing	 load”).	When	 the	 trait	mean	matches	 the	 optimum,	 this	
load	is	the	reduction	in	mean	fitness	that	arises	due	to	the	increased	
phenotypic	variation	in	the	population	that	is	generated	by	disper-
sal.	This	standing	load	reduces	the	rate	of	population	growth.	If	the	
population	mean	also	fails	to	match	the	 local	optimum,	there	 is	an	
additional	“maladaptation	load,”	which	increases	with	the	mismatch	
between	the	trait	mean	and	its	optimum,	and	as	the	strength	of	se-
lection	 increases.	However,	where	 all	 populations	match	 the	 local	
trait	 optima,	 gene	 flow	has	no	effect	on	 the	mean	phenotype	 (al-
though	it	still	affects	the	variance)	because	alleles	arrive	and	leave	
all	populations	equally,	so	that	gene	flow	has	no	net	effect	on	local	
allele	 frequencies	 (Felsenstein,	 1975;	 Kirkpatrick	&	Barton,	 1997).	
However,	where	there	 is	a	mismatch	between	the	 local	trait	mean	
and	 the	 local	 optimum	 (i.e.,	maladaptation	 load),	 asymmetrical	mi-
gration	is	generated	due	to	a	gradient	in	density,	with	density	being	
highest	where	the	mean	matches	the	local	optimum.	This	increases	
maladaptation	in	populations	at	lower	density	and	may	cause	local	
populations	 to	collapse	 through	a	positive	 feedback	between	mal-
adaptation,	population	density	and	asymmetrical	gene	flow.	A	finite	
range	limit	therefore	forms.	However,	such	a	finite	limit	depends	on	

populations	being	able	to	match	the	local	trait	optima	in	some	parts	
of	the	range,	but	failing	to	do	so	in	other	parts	of	the	range.

When	 genetic	 variance	 is	 not	 allowed	 to	 evolve	 as	 a	 result	 of	
dispersal	 along	a	 linear	gradient	Kirkpatrick	&	Barton,	1997),	 three	
regimes	emerge:	“Unlimited	Adaptation”	(where	the	trait	evolves	to	
match	the	spatially	changing	selective	optimum	everywhere);	“Limited	
Adaptation”	(where	the	population	is	well	adapted	to	the	local	opti-
mum	only	at	the	centre	of	the	species’	range);	and	“Extinction”	(where	
the	 population	 cannot	 be	 sustained	 at	 any	 point	 on	 the	 gradient).	
“Limited	Adaptation”	behaviour	is	characterized	by	asymmetrical	dis-
persal	from	the	well‐adapted	central	region,	where	population	den-
sity	is	high,	to	the	poorly	adapted	margins.	In	“Unlimited	Adaptation”	
behaviour,	no	density	gradient	is	generated	because	the	population	is	
well	adapted	everywhere.	Dispersal	is	therefore	symmetrical	across	
the	range,	allowing	the	population	to	expand	in	niche	space	(i.e.,	along	
the	ecological	gradient)	without	limit.

By	 contrast,	 allowing	 additive	 genetic	 variance	 to	 evolve	 due	
to	dispersal	 between	environments	 allows	 adaptation	 along	 virtu-
ally	any	steepness	of	ecological	gradient,	over	a	very	wide	range	of	
conditions,	and	for	a	range	of	quantitative	genetic	models	(Barton,	
2001).	Eventually,	however,	a	deterministic	limit	is	reached	when	the	
variance	 generated	 by	 dispersal	 reduces	 population	 mean	 fitness	
(i.e.,	 growth	 rate)	 sufficiently	 to	 cause	 extinction	 throughout	 the	
whole	range,	despite	allowing	evolution	of	the	trait	mean	to	match	
the	local	optimum	everywhere.	At	this	deterministic	limit,	although	
the	population	has	 sufficient	 genetic	 variance	 to	 track	 the	 rapidly	
changing	 trait	optima,	 the	standing	 load	caused	by	 this	amount	of	
genetic	variance	reduces	population	growth	to	zero	(so	the	popula-
tion	goes	extinct	everywhere	across	the	range).

1.1 | Effects of colonization and finite population 
size on maladaptation

Barton	 (2001)	quantified	 the	ecological	and	genetic	conditions	 for	
which	a	population	that	begins	perfectly	adapted	to	a	linear	gradient	
can	be	sustained.	However,	his	analyses	did	not	 include	stochastic	
effects	on	either	allele	 frequencies	or	population	dynamics.	Bridle	
et	al.	 (2010)	used	 individual‐based	simulations	 to	explore	how	the	
limits	to	local	adaptation	changed	when	a	finite	population	colonized	
a	linear	gradient	at	its	centre.	In	addition,	they	varied	the	maximum	
productivity	(the	“carrying	capacity”)	of	all	patches	across	the	range	
to	test	the	effect	of	population	density	on	local	adaptation.	These	
simulations	 showed	 that:	 (a)	 local	 adaptation	 (and	 niche	 expan-
sion)	was	prevented	 at	 a	 lower	 gradient	 steepness	 than	predicted	
by	deterministic	models;	(2)	for	most	of	parameter	space,	only	two	
outcomes	were	observed	along	a	linear	gradient:	extinction	every-
where,	or	adaptation	without	limit.	The	failure	to	track	a	linear	gradi-
ent	was	associated	with	reduced	population	density,	caused	by	the	
evolution	of	genetic	variance	as	gradient	steepness	increased.	This	
suggested	that	the	stochastic	effects	of	finite	population	size	pre-
vent	adaptation	at	ecological	margins.

Polechová	 and	 Barton	 (2015)	 provided	 an	 analytical	 solution	
for	 the	 issue	highlighted	by	Bridle	 et	 al.	 (2010).	 In	particular,	 they	
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demonstrated	that	 local	adaptation	is	prevented	where	population	
density	 is	 reduced	 below	 a	 critical	 point	 by	 the	 load	 imposed	 by	
the	genetic	variance	generated	by	gene	flow.	Prevention	of	adapta-
tion	was	therefore	due	to	genetic	drift	overcoming	selection	rather	
than	because	of	 stochastic	population	dynamics.	This	 critical	 limit	
is	 found	 without	 genetic	 constraints	 or	 fitness	 trade‐offs,	 where	
allele	 effects	 are	unequal,	 and	 in	 the	presence	of	 epistasis.	 These	
conclusions	have	recently	been	extended	to	two‐dimensional	envi-
ronments	(Polechová,	2018).	Polechová	and	Barton's	(2015)	model	
therefore	provides	a	general	explanation	for	the	failure	for	popula-
tions	to	adapt	at	a	narrower	range	of	parameter	conditions	(in	terms	
of	gradient	steepness	and	population	demography)	 than	predicted	
by	the	deterministic	limit,	as	observed	by	Bridle	et	al.	(2010).

1.2 | Limits to adaptation along nonlinear 
ecological gradients

At	their	most	realistic,	linear	models	of	adaptation	along	ecological	
gradients	typically	produce	only	two	outputs	in	most	regions	of	pa-
rameter	 space:	unlimited	species’	 ranges	 (adaptation	everyone),	or	
extinction	 (adaptation	nowhere).	This	 is	 in	marked	contrast	 to	 the	
limited	 ranges	 that	 are	 ubiquitous	 in	 nature.	 However,	 ecological	
gradients	in	nature	are	rarely	linear,	as	perceived	by	the	organisms	
themselves	 (and	 their	 alleles).	 Instead,	 they	 consist	 of	 patches	 of	
good	habitat	surrounded	by	habitat	of	rapidly	decreasing	suitability.	
For	these	reasons,	ecologists	have	questioned	the	relevance	of	mi-
gration	load,	and	the	modelling	of	linear	gradients,	to	global	species’	
margins	in	nature	(e.g.,	Blows	&	Hoffmann,	2005;	Holt,	2003;	Holt	&	
Keitt,	2005;	Thomas	&	Kunin,	1999).

The	 study	 of	 nonlinear	 (“steepening”)	 gradients	 represents	 an	
important	 link	between	gradient	models,	where	gene	 flow	and	 its	
effects	on	genetic	variance	are	an	emergent	property	of	population	
demography	along	an	ecological	gradient	(e.g.,	Barton,	2001;	Bridle	
et	 al.,	 2010;	Polechová,	Marion,	&	Barton,	2009),	 and	patch	mod-
els,	where	discrete	patches	differ	in	carrying	capacity	(and	therefore	
density),	and	are	subject	to	fixed	probabilities	of	connection	by	dis-
persal	 (Legrande	 et	 al.,	 2017).	 Instead,	 real	 ecological	margins	 are	
likely	to	involve	both	changes	in	the	density	of	suitable	patches,	and	
variation	in	conditions	within	patches.

A	patch	can	be	modelled	as	an	area	in	which	ecological	conditions	
change	progressively	with	distance	from	the	centre,	with	the	rate	of	
change	increasing	to	the	point	where	the	patch	margin	is	determined	
by	the	population's	maximum	rate	of	adaptation	(see	Butlin,	Bridle,	
&	Kawata,	2003).	Nonlinear	gradients	will	be	close	to	reality	in	many	
situations,	for	example	where	multiple	ecological	factors	interact	at	
particular	parts	of	an	ecological	gradient,	or	where	 the	 trait	mean	
must	change	in	a	nonlinear	way	to	match	a	linear	gradient	in	some	
abiotic	factor	such	as	temperature,	due	to	threshold	or	 interacting	
effects	with	 other	 factors,	 or	 the	 presence	 of	 other	 species	 (e.g.,	
Case,	Holt,	McPeek,	&	Keitt,	2005).	Modelling	local	adaptation	along	
steepening	ecological	gradients	also	means	 that	a	stable	margin	 is	
always	predicted	at	a	critical	level	of	steepness,	based	on	the	deter-
ministic	 predictions	 (Barton,	 2001),	 as	well	 as	 analytic	 predictions	

based	on	the	effect	of	genetic	load	on	the	power	of	selection	com-
pared	to	genetic	drift	(Polechová	&	Barton,	2015).

In	this	paper,	we	explore	the	“critical	drift”	threshold	for	adapta-
tion	limits	(Polechová	&	Barton,	2015)	by	extending	the	simulation	
model	of	Bridle	et	al.	 (2010)	 to	 test	 the	effect	of	colonization	and	
of	different	 types	of	nonlinear	ecological	 gradients	on	 local	 adap-
tation.	 Firstly,	 we	 use	 a	 perfectly	 adapted	 starting	 population	 to	
eliminate	stochastic	effects	arising	from	colonization	dynamics	and	
the	establishment	of	phenotypic	clines.	This	allows	us	 to	compare	
the	demographic	and	ecological	parameters	required	for	a	coloniz-
ing	population	to	adapt	along	an	ecological	gradient	with	those	that	
allow	population	persistence.

We	then	explore,	 for	both	 these	 “colonizing”	and	 “established”	
conditions,	the	effect	on	local	adaptation	of	departures	from	linear	
ecological	gradients	using	either:	(a)	“steepening”	gradients,	charac-
terized	by	an	ecological	gradient	that	becomes	increasingly	steeper	
with	distance	from	the	centre	and;	(b)	linear	gradients	with	parame-
ter	conditions	that	generated	unlimited	spread	in	Bridle	et	al.	(2010),	
but	where	the	gradients	are	now	interrupted	by	a	flat	central	portion	
of	variable	width	where	the	optimum	phenotype	does	not	change.

We	show	that	the	introduction	of	even	narrow	regions	without	
change	 along	 a	 linear	 gradient	 prevents	 extinction.	 However,	 this	
flat	 region	 also	 generates	 small	 areas	 of	 high	 population	 density	
that	 create	 the	 asymmetries	 in	 gene	 flow	 that	 prevent	 adaptation	
at	 the	patch	edge,	especially	where	maximum	population	sizes	are	
large.	This	suggests	that	surprisingly	local	regions	of	shallow	gradi-
ent	within	 linear	ecological	gradients	can	generate	narrow	species	
ranges,	even	for	parameter	values	that	would	allow	adaptation	along	
uniform	linear	gradients.	This	observation	has	implications	for	man-
aging	populations	to	maximize	their	evolutionary	resilience.

2  | THE SIMUL ATION MODEL

The	basic	model	 is	 identical	 to	 the	 individual‐based	simulation	de-
scribed	 in	 Bridle	 et	 al.	 (2010).	 The	 evolutionary	 dynamics	 for	 the	
simulated	population	take	place	within	a	continuous	region	of	maxi-
mum	extent	 32,000	×	1,000	units.	 There	 is	 an	 ecological	 gradient	
along	 the	 long	 (x)	 axis,	which	 is	 uniform	with	 slope	b.	 The	 area	 is	
simulated	as	a	cylinder;	 the	edges	of	the	second,	short	 (y)	axis	are	
joined.	Individuals	occupy	the	vertices	of	a	grid	and	more	than	one	
individual	can	occupy	any	given	position.	The	model	either	 (a)	 fol-
lows	 the	 fate	 of	 a	 starting	 population	 of	 500	 individuals	 that	 are	
initially	distributed	in	the	central	500	×	1,000	units	of	the	environ-
ment	(“colonizing	start”);	or	(b)	introduces	a	population	that	is	fully	
adapted	across	the	entire	gradient,	and	allows	the	simulation	to	run	
from	that	point	to	test	its	stability	(“perfect	start”).

The	phenotype	 is	determined	by	diploid	unlinked	bi‐allelic	 loci	
with	additive	effects	that	mutate	symmetrically	at	rate	μ	(μ = 0.0001 
per	 locus	 per	 generation	 unless	 otherwise	 stated).	 For	 all	 runs,	
64	 loci	 were	 used,	 with	 allelic	 effect	 α	=	1	 (maximum	 phenotypic	
range	=	0–128).	Population	growth	is	logistic,	dependent	on	the	local	
density	of	individuals	(N)	and	local	carrying	capacity	(K).
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For	the	colonizing	start	(initially	N	=	7.85	individuals),	individual	
phenotypes	 range	 from	 zopt	−	2α	 to	 zopt + 2α where zopt	 is	 the	 op-
timum	 phenotype	 at	 the	 centre	 of	 the	 range	 For	 the	 perfect	 ad-
aptation	start,	 the	population	density	was	set	at	carrying	capacity	
throughout	 the	 range	 and	 spatial	 positions	were	 drawn	 randomly	
from	a	uniform	distribution.	Genotypes	for	these	perfectly	adapted	
individuals	were	generated	on	the	basis	of	cline	widths	and	spacing	
predicted	by	Barton	(2001)	using	C++	and	R	scripts	available	on	re-
quest	from	the	authors.

Females	 choose	mates	 from	 the	males	available	within	a	 finite	
mating	distance	(MD),	with	a	probability	proportional	to	the	fitness	
of	each	male	at	its	position	on	the	ecological	gradient.	This	was	fixed	
at	MD	=	150	(see	Butlin	et	al.,	2003	for	a	description	of	the	effect	
of	male	dispersal	on	range	expansion).	Offspring	then	disperse	and	
viability	selection	occurs	after	dispersal	through	the	number	of	off-
spring	produced	by	each	 female.	 If	no	male	 is	available	within	 the	
mating	area,	the	female	leaves	no	offspring.

The	offspring	 of	 each	 female	 disperse	 to	 new	positions	 in	 the	
habitat	with	a	Gaussian	distribution	of	dispersal	distances,	mean	0	
and	standard	deviation	D,	in	uniformly	distributed	random	directions.	
Since	mating	is	a	form	of	dispersal	by	males	(or	their	gametes),	the	
standard	deviation	of	 total	dispersal	 is	 given	by	TD=

√

D2+
1

2
SM

2 
(see	Crawford,	1984),	where	SM	is	the	expected	distance	between	
mating	 partners	when	 a	 female	 chooses	 from	 a	 circle	with	 radius	
MD,	hence	SM	=	(MD/√2).	The	expected	distance	σ	along	the	x‐axis	
is	only	in	one	dimension,	hence	σ	=	TD/√2.

The	 fitness	of	both	sexes	 is	determined	by	 the	same	 function.	
The	 number	 of	 offspring	 that	 a	 female	 leaves	 is	 drawn	 from	 a	
Poisson	distribution	with	mean	WF = 2 + rF	(1	−	N/K)	−	s	(b x	−	z)2/2 
(W	≥	0).	In	our	model,	there	are	no	random	effects	on	death	rates,	or	
selective	mortality.	These	are	determined	precisely	by	the	ecological	
gradient	and	the	local	population	density	relative	to	K. The maximum 
rate	of	increase	rm = rF/2; rF	is	set	to	1.6.	K	 is	the	carrying	capacity	
within	a	circle	of	radius	50	around	the	focal	individual,	N	(density)	is	
the	number	of	individuals	in	such	a	circle.	Ux = b x	is	the	phenotypic	
optimum	at	the	point	(x)	on	the	gradient	occupied	by	the	female.	The	
parameter	s	measures	the	rate	of	decline	in	fitness	for	phenotypes	
that	depart	from	the	optimum;	the	strength	of	stabilizing	selection	
VS	is	1/(2s).	Here,	VS	is	set	to	4	and	b	(the	spatial	gradient	in	the	opti-
mum)	is	either	set	to	0.004,	determined	by	the	sigmoid	function,	or	
interrupted	by	a	flat	central	region.

Note	 that	when	drift	 and	 the	effects	of	 the	margins	are	negli-
gible,	 increasing	 dispersal	 with	 constant	 gradient	 is	 equivalent	 to	
increasing	the	gradient	with	constant	dispersal:	by	dispersal	of	a	dis-
tance	σ,	fitness	decreases	by

The	growth	rate	of	a	particular	phenotype	is

and	hence,	the	growth	rate	of	the	population	is	the	average	over	all	
phenotypes

assuming	additive	genetic	variation,	and	no	environmental	or	genetic	
variation	in	phenotype.

For	an	 infinite	population,	 the	population	dynamics	should	ap-
proximately	match	the	continuous	time	model	described	by	equation	
7	in	Kirkpatrick	and	Barton	(1997),	and	if	no	linkage	disequilibria	(LD)	
are	generated,	the	evolution	of	phenotype	should	follow	the	two‐al-
lele n‐loci	model	of	Barton	(2001).	In	our	model,	population	regula-
tion	occurs	over	discrete	generations,	and	populations	are	finite	in	
size,	therefore	allowing	stochastic	effects	on	demography	and	allele	
frequency,	and	the	generation	of	lags.

The	program	was	written	in	C++,	developed	from	that	introduced	
by	 Kawata	 (2002)	 and	 is	 available	 on	 request	 from	 the	 authors.	
Output	 from	 the	 simulations	 for	 a	 given	 generation	was	 analysed	
using	a	script	in	R,	which	calculated	genetic	variance,	cline	widths	for	
each	locus,	population	density	and	the	distribution	of	phenotypes	for	
a	given	portion	of	the	range.	The	scripts	are	also	available	on	request	
from	the	authors.	To	allow	direct	comparison	to	the	predictions	of	
Polechová	and	Barton	(2015),	the	focal	individual	was	removed	from	
all	calculations	of	population	density	for	the	runs	shown	in	Figures	
1b,	2a	and	3,	but	it	was	retained	elsewhere	for	comparison	to	Bridle	
et	al.	(2010).	Note	that	(regardless	of	the	form	of	the	gradient),	the	
carrying	capacity	(K)	remains	constant	throughout	the	potential	geo-
graphical	range,	so	that	gene	flow	will	remain	symmetrical	across	all	
species’	ranges,	provided	the	optimum	is	matched	everywhere.

2.1 | Nonlinear ecological gradients

We	 extended	 our	 linear	 models	 to	 explore	 adaptation	 along	 two	
types	of	nonlinear	gradient:

1. Steepening gradient: a	 sigmoid	 rather	 than	 linear	 gradient	 in	
selective	 optimum,	 where,	 the	 optimum	 phenotypic	 value	
changes	 with	 the	 cube	 of	 distance	 from	 the	 centre	 of	 the	
simulated	 range.	 Here,	 the	 uniform	 gradient	 in	 the	 phenotypic	
optimum	 (Ux	 =	 0.004x)	 was	 replaced	 with	 a	 power	
relationship:

This	differs	 from	the	relationship	used	by	Polechová	and	Barton	
(2015)	and	Polechová	(2018)	which	was	exponential	in	form	with	non-
zero	central	slope.	However,	since	both	represent	smoothly	 increas-
ing	rates	of	environmental	change,	we	do	not	expect	this	difference	
to	 influence	 the	 threshold	 gradient	 at	 which	 further	 adaptation	 is	
prevented.
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2. Flat‐linear gradient: a	 uniform	 gradient	 of	 steepness	 b = 0.004 
(i.e.,	 identical	 to	 the	steepness	of	 linear	gradient	used	by	Bridle	
et	 al.,	 2010),	 which	 is	 interrupted	 by	 a	 central	 flat	 portion	
(b	 =	 0)	 of	 width	 (w).

For	(1),	we	explored	the	effect	of	various	parameter	combinations	
on	the	critical	gradient,	defined	as	the	point	at	which	the	intrinsic	rate	
of	 increase	 is	zero,	given	the	 local	distribution	of	phenotypes	 (rF = 2 
for	N	=	0,	measured	at	generation	3,000).	For	(2),	we	explored	the	pa-
rameter	combinations	of	carrying	capacity	per	cell,	K	=	5–50,	dispersal,	
TD	=	400–1,100,	and	the	width	of	the	central	flat	portion,	w	=	0–4,000,	
that	allow	successful	colonization	of	the	patch	centre,	and	then	subse-
quent	spread	throughout	the	range.	The	majority	of	simulations	were	
run	for	3,000	generations,	although	the	behaviour	of	some	parameter	
combinations	was	tested	for	up	to	10,000	generations.

3  | RESULTS

3.1 | Colonization and local adaptation along linear 
ecological gradients

Figure	1a	 shows	 that	 range	collapse	occurs	even	 from	a	perfectly	
adapted	start,	for	a	similar	range	of	parameter	combinations	to	that	

observed	by	Bridle	et	al.	(2010)	when	populations	were	established	
from	a	central	starting	position.	Populations	on	a	linear	gradient	of	
b	=	0.004,	begun	from	a	perfectly	adapted	condition,	can	persist	dis-
persal	(TD)	less	than	1,100,	but	collapse	quickly	with	TD	more	than	
1,200,	regardless	of	the	value	of	carrying	capacity,	K,	or	the	size	of	
the	 starting	 population	 (Figure	 1a).	 At	 TD	less	 than	 1,100,	 persis-
tence	depends	on	K.	Extinction	still	occurs	from	a	perfect	start,	as	
observed	from	colonization,	suggesting	that	for	much	of	parameter	
space,	stochastic	effects	during	colonization	do	not	affect	niche	ex-
pansion.	However,	perfectly	adapted	populations	within	the	area	of	
parameter	space	that	led	to	“limited	adaptation”	(Bridle	et	al.,	2010)	
fragment	and	collapse	as	the	trait	cline	becomes	 increasingly	shal-
low	 relative	 to	 the	gradient	 in	 the	optimum.	The	process	of	 range	
collapse	from	a	perfectly	adapted	start	 in	this	region	of	parameter	
space	can	take	more	than	10,000	generations.

The	 simulated	 behaviour	 of	 populations	 along	 linear	 gradients	
away	from	the	deterministic	limit	is	qualitatively	similar	to	the	criti-
cal	gradient	predictions	of	Polechová	and	Barton	(2015)	(Figure	1b).	
However,	extinction	occurs	in	our	simulations	at	lower	values	of	dis-
persal	and	carrying	capacity,	associated	with	the	higher	variance	and	
lower	density	we	observe	at	these	parameter	combinations	(Bridle	
et	 al.,	 2010).	 Polechová	 and	Barton's	 (2015)	 analytical	 predictions	
suggest	that	limited	adaptation	should	be	stable	for	a	small	region	of	

F I G U R E  1  Evolution	along	a	linear	ecological	gradient.	(a)	Compares	outcomes	from	different	starting	conditions.	The	grey‐scale	
background	summarizes	data	from	the	“colonizing	start”	runs	of	Bridle	et	al.	(2010),	showing	outcomes	at	generation	3,000	for	five	runs	
for	each	parameter	combination,	for	populations	initially	occupying	only	the	centre	of	the	gradient:	light	grey—unlimited	spread,	mid‐grey—
limited	spread,	dark‐grey—extinction.	The	points	represent	outcomes	for	3–5	runs,	starting	with	a	population	occupying	the	whole	area	and	
perfectly	adapted	to	the	local	optimum	at	each	point:	white—environment	fully	occupied,	black—extinct,	grey—mixed	outcomes,	including	
cases	where	the	population	fragmented.	The	dashed	line	is	the	deterministic	limit	of	spread	(where	population	density	is	reduced	to	zero	
by	variance	load,	even	when	the	phenotypic	mean	matches	the	optimum;	Barton,	2001).	(b)	Compares	“perfect	adaptation”	runs	with	the	
threshold	prediction	from	Polechová	and	Barton's	(2015)	model	(solid	line),	where	B=0.15N�

√

s	(B	is	the	effective	environmental	gradient,	
N is	the	local	population	size,	σ	is	the	dispersal	distance,	and	s	is	the	selection	per	locus).	The	population	is	expected	to	persist	only	for	
dispersal	distances	below	this	threshold.	In	these	simulations,	the	focal	individual	was	removed	from	the	calculation	of	local	density	for	
comparison	with	the	Polechová	and	Barton	(2015)	model.	Points	filled	as	in	(a).	K	is	on	log10	scale	in	both	figures
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parameter	space.	However,	we	do	not	detect	such	a	region	of	param-
eter	space	in	our	simulations.

3.2 | Colonization and adaptation along 
steepening gradients

For	colonizing	start	conditions,	models	of	adaptation	along	steepen-
ing	ecological	gradients	explore	the	establishment	and	growth	of	a	

population	to	occupy	a	patch	of	suitable	habitat.	As	the	population	
expands	through	habitat	at	the	centre	of	the	patch,	where	the	envi-
ronment	changes	gradually	in	space,	its	continued	growth	depends	
increasingly	on	its	ability	to	adapt	at	the	margins,	where	the	environ-
ment	changes	rapidly.

For	both	steepening	and	flat‐linear	forms	of	nonlinear	gradient	
(Figure	 2a,b,	 respectively),	 the	 starting	 population	 is	well	 adapted	
to	the	central	part	of	the	range,	and	so	should	quickly	colonize	and	

F I G U R E  2  Example	plots	of	“colonizing	start”	simulations	at	generation	3,000	for	(a)	a	steepening	and	(b)	a	flat‐linear	gradient,	with	
spatial	plots	of	phenotypic	mean	and	variance,	mean	density	and	allele	frequencies	estimated	from	spatial	slices	of	100	units	for	carrying	
capacity	K	=	25	and	dispersal	TD	=	500	for	(a);	K25	and	dispersal	TD	=	850	with	a	flat	centre	width	of	2,000	for	(b).	Predicted	values	for	(a)	
from	Barton	(2001)	are	shown	as	solid	lines
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expand	throughout	the	shallow	or	flat,	central	portion.	However,	for	
a	 steepening	 gradient	 expansion	 should	 always	 stop	 at	 some	 dis-
tance	from	the	centre,	where	a	critical	rate	of	ecological	change	is	
reached.	By	contrast,	in	the	case	of	a	flat‐linear	gradient	the	popula-
tion	should	continue	to	expand	along	the	linear	part	of	the	gradient	
provided	it	can	evolve	to	pass	the	sudden	change	in	gradient	at	the	
edge	of	the	flat	portion.	Note	that	for	all	of	our	flat‐linear	runs,	we	
use	values	for	dispersal	and	carrying	capacity	that	allow	unlimited	
adaptation	along	a	completely	linear	gradient	of	the	same	steepness.	
This	allows	us	to	assess	the	effect	of	an	abrupt	change	in	the	gradi-
ent	on	local	adaptation.

3.2.1 | Colonization and adaptation along 
steepening gradients

As	 seen	 along	 linear	 gradients	 (Bridle	 et	 al.,	 2010;	 Figure	 1),	 the	
critical	gradient	at	which	adaptation	fails	 increases	as	total	disper-
sal	decreases	and	as	population	density	(determined	by	the	carrying	
capacity,	K)	 becomes	greater	 (Figure	3a).	 The	value	of	 this	 critical	
gradient	 does	 not	 differ	 when	 populations	 colonise	 the	centre	 of	
the	 patch	and	 spread	 as	 they	 adapt,	 compared	 to	 when	 they	 are	
perfectly	 adapted	 along	 the	 entire	ecological	 gradient	 at	 the	 start	
(Figure	3b).

Figure	3a	compares	our	simulations	to	predictions	for	the	critical	
limit	in	Polechová	and	Barton's	(2015)	model.	The	simulated	values	
again	show	a	qualitative	pattern	that	follows	analytical	predictions,	
although	 the	 quantitative	 mismatch	 tends	 to	 increase	 with	 lower	
carrying	capacity	(K).

3.2.2 | Colonization and adaptation along a flat‐
linear gradient

Populations	along	flat‐linear	gradients	differ	from	a	steepening	gra-
dient	in	that	the	shift	in	gradient	steepness	is	abrupt	(it	is	an	inter-
ruption	 of	 an	 otherwise	 linear	 gradient).	 These	 simulations	 show	
that	a	remarkably	small	flat	central	portion	(w)	consistently	prevents	
adaptation	from	colonization	for	up	to	10,000	generations	for	wide	
regions	 of	 parameter	 space	 (Figure	 4),	 particularly	where	 carrying	
capacity,	K,	 is	high.	For	example,	with	dispersal	TD	=	850,	carrying	
capacity	K	=	25	(Figure	4;	bottom	panel),	a	flat	centre	of	only	w = 100 
units	(1/8	of	the	mean	dispersal	distance)	can	prevent	spread	of	the	
population	from	the	centre,	generating	a	finite	range	margin.	Along	
interrupted	gradients,	therefore,	higher	population	density	prevents	
local	adaptation	at	the	edges,	rather	than	making	it	more	likely,	as	is	
the	case	for	the	steepening	gradient.

The	 constraining	 effect	 of	 interrupting	 the	 ecological	 gradient	
is	 reduced	 at	 lower	 values	 of	 carrying	 capacity	 and	 dispersal.	 For	
example,	 at	K	=	7,	TD	=	500	 (Figure	4;	 top	panel)	 the	width	of	 the	
flat	 portion	 needs	 to	 be	 about	w	=	2,000	 units	 to	 prevent	 spread	
from	the	range	centre	(i.e.,	four	times	the	mean	dispersal	distance).	
By	 contrast,	 at	 K	=	12,	 adaptation	 from	 the	 flat	 centre	 is	 consis-
tently	prevented	even	when	its	width	is	¼	of	the	dispersal	distance	
(e.g.,	at	TD850	and	K25,	a	central	width	of	200	typically	prevents	
local	 adaptation).	 At	 lower	 carrying	 capacity	 and	 dispersal	 values,	
greater	variance	in	outcome	is	also	observed	among	simulations	for	
the	same	parameter	values	(Figure	4).	For	example,	the	population	
might	spread	to	only	one	side	of	the	gradient,	on	both	sides,	or	on	

F I G U R E  3   (a)	Critical	gradients	that	define	population	margins	on	a	steeping	gradient.	The	critical	gradient	predicted	by	Polechová	
and	Barton	(2015),	as	in	Figure	1b,	is	compared	to	the	critical	gradient	observed	in	our	simulations	for	different	carrying	capacities,	K,	and	
dispersal,	TD.	Darker	points	indicate	increasing	K	(5;	7;	12;	25);	circles—TD	=	400;	diamonds—TD	=	500;	triangles—TD	=	750;	squares—
TD	=	1,000.	(b)	Comparison	of	critical	gradients	for	parameter	combinations	in	(a)	after	3,000	generations	when	simulations	are	run	from	a	
“perfect	adaptation”	start	compared	to	from	a	“colonizing	start”
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neither	side	in	the	time	available	for	each	simulation	(typically	3,000	
generations).

Note	 that	 although	 a	 remarkably	 small	 interruption	 to	 the	 lin-
ear	 gradient	 can	 prevent	 local	 adaptation	 from	 the	 centre,	 it	 also	

prevents	extinction.	Even	when	dispersal	is	high,	the	central	portion	
remains	 occupied	when	 additional	 simulations	were	 conducted	 at	
dispersal	distances	that	would	cause	rapid	extinction	everywhere	in	
linear	models	(Figure	1a).	Central	population	density	can	also	rise	to	

F I G U R E  4  The	effect	of	a	flat	portion	
in	the	ecological	gradient	of	width	(w)	on	
range	expansion	(from	colonization)	at	
generation	3,000.	The	behaviour	of	the	
simulations	is	summarized	as	follows:	(i)	
LIGHT	GREY:	full	spread;	(ii)	DARK	GREY:	
slow	spread	(a	phenotypic	cline	forms	but	
has	not	spread	outside	7,000	<	x <25,000	
by	generation	3,000);	(iii)	MEDIUM	GREY:	
spread	on	one	side	only	(phenotypic	
cline	forms	but	only	on	one	side	of	
the	gradient);	(iv)	BLACK:	no	spread	
(population	remains	confined	around	flat	
portion	of	gradient,	with	no	phenotypic	
cline)
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about	twice	that	seen	for	the	same	dispersal	and	carrying	capacity	
on	the	linear	gradient,	because	there	is	no	increase	in	genetic	varia-
tion	(and	standing	load)	associated	with	dispersal	at	the	flat	centre.

3.3 | Comparing colonization versus persistence 
along a flat‐linear gradient

Populations	 remain	 fully	 adapted	 for	 at	 least	 3,000	 generations	 if	
they	are	started	from	a	perfectly	adapted	population,	even	for	pa-
rameter	combinations	that	fail	to	spread	from	colonization.	Where	

these	 perfectly	 adapted	 runs	 are	 allowed	 to	 continue	 for	 up	 to	
10,000	generations,	populations	sometimes	fragment	at	the	edges	
of	 the	 flat	 section	 for	 some	 parameter	 combinations	 (especially	
where K	and	TD	are	high),	although	gene	flow	between	populations	
typically	prevents	this	fragmentation	lasting	for	long.	This	suggests	
that	although	the	flat	central	portion	has	systematic	effects	on	local	
adaptation	 from	 colonization,	 it	only	 rarely	 causes	 range	 collapse	
when	populations	are	initially	fully	adapted	to	the	entire	gradient.

Simulations	of	flat‐linear	gradients	from	perfectly	adapted	start	
allow	 exploration	 of	 the	 reasons	 why	populations	 fail	adapt	 from	

F I G U R E  5  Patterns	of	phenotypic	mean,	density	and	genetic	variance	in	simulations	from	perfectly	adapted	start	on	ecological	gradients	
with	a	flat	central	portion,	illustrating	the	increase	in	variance	near	the	edge	of	the	flat	area	and	its	effects	on	adaptation	and	population	
density	for	different	combinations	of	width	(w),	carrying	capacity	(K)	and	dispersal	(TD).	Upper	panels:	The	position	and	width	of	the	central	
(flat)	portion	(w)	is	shown	by	a	solid	line	above	the	observed	trait	mean.	Lower	panels:	Local	density	is	shown	as	open	circles,	local	genetic	
variance	by	a	solid	line.	Note	that,	apart	from	(b),	none	of	these	parameter	combinations	were	able	to	fully	spread	from	a	colonising	start	(see	
Figure	4)
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colonization	even	with	low	widths	of	the	flat	central	region	relative	
to	total	dispersal.	In	parameter	regions	where	colonization	and	sub-
sequent	local	adaptation	is	prevented	by	the	flat	centre,	there	is	an	
inflation	of	variance	at	the	point	where	the	gradient	steepens,	due	to	
the	stronger	effect	of	gene	flow	at	this	position.	This	reduces	popu-
lation	density,	generating	a	density	trough	at	these	points	(Figure	5).	
This	effect	is	greater	for	higher	dispersal	(compare	Figure	5c	and	d),	
and	less	clear	at	lower	values	of	carrying	capacity	(compare	Figure	5a	
and	b).	It	is	difficult	to	observe	at	values	of	w	where	spread	is	only	
sometimes	prevented	 (e.g.,	 for	TD	=	500,	K	=	7,	w	=	100:	Figure	5a	
compared	 with	 Figure	 4	 top	 panel).	 However,	 the	 density	 trough	
generated	by	the	stepped	gradient	becomes	very	marked	when	the	
flat	 centre	 is	wider	 and	 carrying	 capacity	 is	 high.	 For	 example,	 in	
Figure	5e,	where	w	is	more	than	twice	the	mean	dispersal	distance,	
gene	flow	not	only	inflates	variance	and	so	reduces	local	population	
density	(so	increasing	drift),	it	also	generates	maladaptation	load	due	
to	the	mismatch	of	the	local	trait	mean	to	the	optimum.	In	addition,	
as	the	flat	centre	widens	(w	increases),	the	population	density	at	the	
range	centre	approaches	the	carrying	capacity	 (K),	even	when	dis-
persal	is	high.	The	dynamics	of	these	models	therefore	differ	from	
the	linear	gradient,	where	dispersal	has	a	similar	effect	on	variance	
(and	therefore	population	density)	at	all	points	along	the	range.

4  | DISCUSSION

We	 have	 extended	 our	 individual‐based	 simulations	 (Bridle	 et	 al.,	
2010)	to	include	tests	of	the	stability	of	populations	that	are	already	
perfectly	 adapted	 everywhere	 on	 an	 ecological	 gradient,	 across	 a	
range	of	gradient	steepness,	population	density,	and	mean	dispersal.	
This	approach	tests	the	role	of	stochastic	ecological	and	evolution-
ary	processes	on	the	failure	of	populations	to	adapt	along	ecologi-
cal	 gradients.	We	 have	 also	 determined	 the	 parameter	 conditions	
that	cause	maladaptation	along	two	forms	of	nonlinear	gradient,	and	
compared	 results	 for	one	of	 these	 to	 the	analytical	 predictions	of	
Polechová	and	Barton	 (2015).	Below,	we	discuss	these	results	and	
consider	 their	 implications	 for	 practical	 interventions	 to	 increase	
evolutionary	potential	in	populations	and	therefore	the	resilience	of	
ecological	communities	to	environmental	change.

4.1 | Adaptation along linear gradients

Simulations	that	begin	from	a	perfectly	adapted	state	rapidly	(typi-
cally	within	 500	 generations)	 collapse	 in	 almost	 all	 the	 parameter	
combinations	that	showed	“extinction”	behaviour	from	a	colonizing	
start	(Figure	1a).	Similarly,	perfectly	adapted	populations	were	sta-
ble	 in	parameter	 space	 that	previously	generated	 “full	 adaptation”	
behaviour	 (Bridle	et	al.,	2010).	Perfectly	adapted	populations	 took	
longer	to	fragment	and	collapse	close	to	boundary	conditions,	and	
only	 collapsed	 after	10,000	generations	 for	 the	 large	 carrying	 ca-
pacity,	 high	 dispersal	 parameter	 combinations	 that	 characterized	
the	(small)	region	of	“limited	adaptation”	parameter	space	from	col-
onization.	 In	 this	 region,	 populations	 always	 (eventually)	 collapsed	

throughout	their	range,	rather	than	forming	the	long‐lived	but	finite	
species’	ranges	observed	in	Bridle	et	al.	(2010).	This	result	contrasts	
with	Polechová	and	Barton	 (2015),	who	observe	a	 small	 region	of	
parameter	space	that	generates	stable,	finite	ranges.	Our	result	sug-
gests	that	in	our	colonizing	simulations,	finite	ranges	(“limited	adap-
tation”)	 are	 a	product	of	 stochastic	processes,	 for	 example,	 in	 the	
establishment	of	clines	in	allele	frequency	during	range	expansion.

Overall	however,	the	close	match	of	these	“perfect	start”	simula-
tions	with	our	“colonizing	start”	simulations	indicates	that	the	large	
area	 of	 parameter	 space	 where	 extinction	 is	 observed	 (Figure	 1)	
cannot	be	explained	by	stochastic	processes	associated	with	range	
expansion.	Instead,	failure	to	establish	or	maintain	local	adaptation	
(and	broader	niches)	is	due	to	the	inability	of	selection	to	overcome	
genetic	drift	where	population	density	is	reduced	beyond	a	critical	
point	 by	 migration	 load	 (Bridle	 et	 al.,	 2010;	 Polechová	 &	 Barton,	
2015).	 Even	 with	 stochastic	 effects	 on	 allele	 frequency	 and	 de-
mography,	 linear	ecological	 gradients	cannot	easily	explain	 limited	
ranges	in	nature.

Our	 linear	gradient	 simulations	qualitatively	match	 the	 “critical	
gradient”	predictions	of	Polechová	and	Barton	(2015),	although	mal-
adaptation	occurs	at	slightly	 lower	gradient	steepness	and	popula-
tion	density	(Figure	1b).	This	may	be	due	to	nonuniform	distributions	
of	individuals,	reduced	selection	on	males,	and/or	failure	of	females	
to	 mate	 at	 low	 densities,	 given	 that	 genetic	 variance	 was	 higher	
and	density	lower	in	our	simulations	compared	to	analytical	models	
(Bridle	et	al.,	2010).	We	previously	speculated	that	this	inflated	ge-
netic	variance	was	due	to	greater	than	expected	linkage	disequilib-
rium,	based	on	values	for	LD	that	we	estimated	before	rather	than	
after	 selection	 had	 occurred.	 However,	 according	 to	 Felsenstein	
(1976),	linkage	disequilibrium	should	return	almost	to	zero	following	
selection,	meaning	 that	 this	effect	 cannot	explain	our	higher	 than	
expected	levels	of	genetic	variation.

Polechová	and	Barton	 (2015)	explore	 limits	to	 local	adaptation	
in	one‐dimensional,	 rather	than	two‐dimensional	space,	where	the	
effects	of	drift	and	dispersal,	and	their	interaction	with	selection	will	
differ	 (see	Barton,	Depaulis,	&	Etheridge,	2002).	Polechová	 (2018)	
extended	her	critical	gradient	predictions	to	two‐dimensional	hab-
itats,	showing	that	dispersal	 in	the	second	dimension	weakens	the	
effect	of	drift,	so	allowing	adaptation	at	a	greater	range	of	parameter	
values	(i.e.,	moving	the	critical	carrying	capacity	to	the	right	of	the	
predictions	 in	Figure	1b).	This	effect	of	 increased	dimensionality	 is	
therefore	in	the	wrong	direction	to	explain	the	discrepancy	between	
our	simulations	and	Polechová	and	Barton	(2015),	meaning	that	the	
mismatch	must	 be	 due	 to	 other	 differences	 between	 the	models.	
However,	qualitative	agreement	between	our	models	remains	in	that	
increasing	population	size	and	reducing	gene	flow	makes	local	adap-
tation	overall	more	likely.

4.2 | Adaptation along steepening gradients

A	similar	result	to	the	linear	gradient	was	obtained	where	the	eco-
logical	gradient	was	given	a	sigmoid	(steepening)	shape	(Figure	2a).	
A	critical	limit	for	niche	expansion	is	always	reached	at	some	point	
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beyond	the	less‐rapidly	changing	centre	of	the	range.	As	above,	for	
steepening	gradients,	the	behaviour	of	our	simulations	from	perfect	
start	 (Figure	 3b)	 is	 equivalent	 to	 that	 observed	 from	 colonization	
(Bridle	et	al.,	2010),	even	when	simulations	are	run	for	up	to	10,000	
generations.	 Again,	 this	 result	 indicates	 that	 the	 failure	 to	 adapt	
(or	to	maintain	an	adapted	state)	at	ecological	margins	results	from	
a	 failure	 of	 selection	 to	 overcome	 drift	 caused	 by	migration	 load,	
rather	than	from	the	stochastic	effects	of	colonization,	cline	estab-
lishment	or	population	dynamics.	In	contrast	to	the	linear	gradients,	
however,	a	finite	species	range	is	always	observed	(rather	than	ex-
tinction	everywhere),	because	populations	can	always	persist	close	
to	the	range	centre,	where	the	ecological	gradient	is	relatively	shal-
low.	 In	 these	 regions,	 populations	maintain	 sizes	 that	 are	 close	 to	
the	carrying	capacity	of	each	patch,	because	the	inflation	of	genetic	
variance	due	to	gene	flow	within	these	shallow	regions	of	ecological	
change	is	low,	so	reducing	migration	load	(Figure	2a).

Figure	3a	 shows	 the	match	of	our	 steepening	gradient	 simula-
tion	outcomes	to	the	Polechová	and	Barton	(2015)	one‐dimensional	
critical	gradient	prediction.	As	with	linear	gradients,	our	simulations	
show	 a	 qualitative	match,	 in	 that	 higher	 population	 densities	 and	
reduced	dispersal	allow	the	population	trait	mean	to	track	steeper	
local	ecological	gradients.	This	means	 that	 local	adaptation	 is	pre-
vented	closer	to	the	patch	centre	when	the	habitat	carrying	capac-
ity	(K)	(and	therefore	the	population	density)	is	lower,	and	dispersal	
(TD)	is	higher.	However,	along	steepening	gradients,	maladaptation	
occurs	 at	 relatively	 lower	 values	 of	 dispersal	 and	 carrying	 capac-
ity	than	along	linear	gradients,	because	of	increased	density	at	the	
centre	causing	asymmetrical	gene	flow	(and	therefore	swamping	of	
local	adaptation),	at	the	point	where	the	population	fails	to	track	the	
local	optimum.	The	quantitative	mismatch	between	our	simulations	
and	analytical	models	(Polechová	&	Barton,	2015)	is	generally	in	the	
same	direction	as	for	 linear	gradients,	and	so	 is	also	unlikely	to	be	
explained	by	dimensionality.	However,	increasing	carrying	capacity	
tends	 to	 reduce	 this	mismatch	 (Figure	3a).	 This	 suggests	 that	 sto-
chastic	effects	in	regions	of	low	population	density,	possibly	due	to	
nonuniform	distributions	of	males	and	females,	increase	extinction	
risk	in	our	simulations.

4.3 | Adaptation along flat‐linear 
(interrupted) gradients

In	contrast	 to	 the	gradients	explored	above,	 stochastic	population	
processes	 during	 expansion	 consistently	 prevent	 local	 adaptation	
along	 linear	gradients	 that	are	 “interrupted”	by	a	 region	of	habitat	
where	 the	 required	 trait	mean	 does	 not	 change.	Within	 these	 re-
gions,	gene	flow	does	not	inflate	genetic	variance	(or	create	stand-
ing	load),	generating	densities	around	the	patch	centre	that	almost	
match	 the	 local	 carrying	 capacity	 (Figure	 2b).	 In	 turn,	 this	 gener-
ates	 strong	asymmetrical	 gene	 flow	outward	 from	 the	centre	 that	
imposes	 a	 load	 on	 edge	 populations.	 In	 natural	 populations,	 such	
regions	of	reduced	environmental	change	might	be	generated	by	a	
mountain	ridge,	or	area	of	deep	water,	superimposed	on	a	latitudinal	

gradient,	or	an	area	of	habitat	where	a	predator	or	competitor	has	
been	excluded	(Svenning	et	al.,	2014).

Spread	 from	 colonization	 can	 be	 prevented	 by	 a	 remarkably	
small	interruption	 to	 an	 ecological	 gradient,	 even	 for	 as	 long	 as	
10,000	generations	(Figure	4).	However,	when	run	from	a	perfectly	
adapted	 start,	 these	 populations	 remain	 stable	 for	 up	 to	 10,000	
generations.	This	 represents	an	 important	contrast	with	 the	other	
gradient	types,	suggesting	that	stochastic	effects	prevent	expansion	
from	the	range	centre.	Another	important	contrast	is	that	extinction	
never	occurs	at	the	range	centre	(i.e.,	on	the	flat	central	portion)	for	
the	parameter	combinations	 tested.	Flat‐linear	gradients	 therefore	
provide	 stable	 patches	 for	 population	 persistence,	 while	 prevent-
ing	 local	adaptation	at	 their	edges	 for	a	wider	 range	of	conditions	
than	 linear	 gradients.	 These	 simulations	 therefore	 predict	 (some-
what	counter‐intuitively)	that	improved	conditions	at	the	centre	of	a	
patch,	or	a	region	where	the	ecological	gradient	becomes	shallower	
(e.g.,	 a	 region	of	 reduced	dispersal,	or	 an	elevational	gradient	em-
bedded	within	a	 latitudinal	gradient)	may	prevent	niche	expansion	
through	local	adaptation	at	the	patch	edge.

Surprisingly,	increasing	carrying	capacity	has	a	qualitatively	dif-
ferent	effect	along	a	flat‐linear	gradient	than	along	a	steepening	or	
linear	 gradient.	 Instead	 of	 facilitating	 niche	 expansion,	 adaptation	
along	 a	 flat‐linear	 ecological	 gradient	 is	 apparently	 more	 difficult	
at	 higher	 carrying	 capacities.	 For	 example,	 at	K	=	7,	with	dispersal	
TD	=	500,	 the	width	of	 the	flat	portion	needs	to	be	at	 least	1,250	
units	 to	 prevent	 spread	 from	 the	 range	 centre	 (i.e.,	 2.5	 times	 the	
mean	dispersal	distance)	 (Figure	4,	 top	panel).	By	contrast,	 at	 car-
rying	capacity	K	=	25	and	dispersal	TD	=	850,	a	flat	centre	of	width	
only	100	units	(i.e.,	c.	1/8	mean	dispersal)	prevents	expansion	across	
the	 entire	 range	 from	 a	 colonizing	 start	 (Figure	 4,	 bottom	 panel).	
This	is	despite	the	fact	that	perfectly	adapted	runs	are	stable	at	both	
these	 parameter	 conditions.	 This	 contrasting	 effect	 of	 stochastic	
processes	 may	 be	 because	 a	 greater	 and	 more	 consistent	 differ-
ence	 in	 density	 from	 the	 centre	 to	 the	 edge	 is	 achieved	 at	 higher	
carrying	 capacity	 and	 dispersal	 (Figure	 5a	 vs.	 e),	 leading	 to	 more	
consistently	asymmetrical	gene	flow	that	more	effectively	swamps	
local	adaptation	at	the	edges.	Along	flat‐linear	gradients,	therefore,	
stochastic	effects	may	favour	local	adaptation	and	niche	expansion,	
by	weakening	 the	 swamping	 effects	 caused	 by	 the	 local	 inflation	
of	genetic	variance	by	dispersal,	and	consequent	increase	in	stand-
ing	 load.	Abrupt	changes	along	ecological	gradients	 (i.e.,	at	habitat	
patch	 edges),	 therefore	 seem	 highly	 effective	 in	 preventing	 adap-
tation.	This	 is	 true	even	for	patches	that	are	small	 relative	to	 total	
dispersal.	 For	 example,	 our	 simulations	 suggest	 that	 such	 patches	
need	only	be	a	quarter	the	width	of	mean	dispersal	per	generation,	
provided	the	patches	can	support	a	high	local	population	size	at	their	
centre.	Limits	 to	evolutionary	 responses	caused	by	such	nonlinear	
gradients	may	therefore	be	especially	pervasive	for	small,	relatively	
mobile	organisms,	such	as	butterflies.

The	 predictions	 for	 steepening	 gradients	 from	 Polechová	 and	
Barton	 (2015)	 cannot	 be	 applied	 directly	 to	 the	 flat‐linear	 gradi-
ents,	because	 these	estimate	critical	gradients	based	on	a	smooth	
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increase	in	the	rate	of	environmental	change,	not	on	the	effects	of	
abrupt	changes	in	gradient.

4.4 | Relevance of local adaptation in patches to 
global range dynamics

The	types	of	gradient	modelled	here	are	more	likely	to	reflect	local	
patch	 dynamics	 than	 global	 range	 dynamics.	 Populations	 within	
patches	may	adapt	to	local	conditions	but	be	trapped	by	steepening	
gradients	as	 they	expand	away	 from	the	centre.	Patches	may	also	
differ	 in	 overall	 quality,	 reflected	 by	their	 carrying	 capacity.	 This	
means	that	the	evolutionary	dynamics	of	local	patches,	each	deter-
mined	by	the	interaction	between	genetic	load,	genetic	variation	and	
population	demography,	will	drive	 larger	scale	patterns	of	species’	
persistence,	particularly	during	responses	to	ecological	change.

Steepening	gradients	provide	an	important	bridge	between	pop-
ulation	 genetic	models	 of	 adaptation	 along	 uniform	 gradients	 and	
ecological	 reality,	 where	 environmental	gradients	 are	 complex	 in	
form,	but	are	generally	steeper	at	patch	margins	than	within	patches.	
At	a	range	margin,	there	is	also	a	larger	scale	gradient	in	patch	avail-
ability,	size	and	connectedness,	but	these	parameters	are	not	con-
stants.	Instead,	they	depend	on	local	adaptation	within	patches.	The	
more	productive	the	patch,	the	greater	the	density	in	the	centre	and	
therefore	 the	 further	 out	 along	 the	 ecological	 gradient	 the	 patch	
margin	will	form.	This	 larger	(and	more	ecologically	resilient)	patch	
will	therefore	act	as	a	more	effective	source	of	colonists	for	other	
patches	because	of	the	greater	number	of	individuals	and	the	wider	
range	of	genotypes	it	supports.	This	is	because	new	patches	can	only	
be	 colonized	 successfully	 if	 a	 nearby	 patch	 has	 sufficient	 genetic	
variation	 to	host	 phenotypes	 sufficiently	 close	 to	 the	 optimum	 to	
colonize	the	new	patch.

4.5 | Empirical tests of these models

An	important	prediction	of	our	simulations	and	those	of	Polechová	
and	 Barton	 (2015),	 and	 Polechová	 (2018)	 is	 that	 we	 should	 ob-
serve	 relatively	 little	maladaptation	 across	 a	 species’	 geographi-
cal	 range.	 Instead,	 the	 genetic	 variation	generated	by	 gene	 flow	
should	 allow	 a	 population	 to	 track	 the	 local	 trait	 optima	 effec-
tively	 (e.g.,	 Fitzpatrick	&	Reid,	 2019)	 until	 some	 critical	 gradient	
is	 reached	where	 the	 population	 collapses,	 generating	 either	 an	
abrupt	edge	in	the	case	of	a	nonlinear	gradient,	or	extinction	eve-
rywhere	along	a	 linear	gradient.	Standing	 load	 (and	genetic	vari-
ance)	should	therefore	increase	(and	local	density	decline)	as	the	
margin	 is	 approached,	 even	 though	 the	 trait	 mean	matches	 the	
optimum.	 However,	 because	 the	 population	 density	 will	 be	 low	
where	variance	causes	population	collapse,	empirical	estimates	of	
genetic	 variance,	 density	 and	 trait	mean	 are	 challenging	 (Bridle,	
Gavaz,	&	Kennington,	2009;	O'Brien,	Higgie,	Reynolds,	Hoffmann,	
&	Bridle,	2017).	In	our	flat‐linear	simulations,	we	can	infer	the	crit-
ical	values	for	these	parameters	only	because	populations	that	fail	
to	spread	from	colonisation	(Figure	4)	persist	when	started	from	a	
perfectly‐adapted	state	 (Figure	5).	The	environmental	 sensitivity	

of	genotypes	 (plasticity)	may	also	 increase	or	reduce	phenotypic	
variance	 in	 different	 parts	 of	 the	 gradient	 (Saxon,	 O'Brien,	 &	
Bridle,	2018),	potentially	increasing	standing	load,	without	neces-
sarily	increasing	evolutionary	potential	(Chevin,	Collins,	&	Lefevre,	
2013).

Our	simulations	demonstrate	that	stochastic	effects	along	non-
linear	 gradients	 have	 contrasting	 effects	 depending	 on	 how	 and	
where	 the	 gradient	 changes.	 Along	 steepening	 gradients,	 increas-
ing	carrying	capacity	 increases	the	critical	gradient	at	which	adap-
tation	 fails	 (Figure	3a),	 and	so	allows	 the	population	 to	expand	 its	
niche	further	into	the	steepening	regions	of	ecological	change	at	the	
patch	edge.	By	contrast,	where	a	linear	gradient	is	interrupted	by	a	
flat	region	where	gene	flow	generates	no	standing	load,	stochastic-
ity	makes	niche	expansion	more	 likely,	apparently	by	 reducing	 the	
strength	and	consistency	of	the	density	gradient	(and	swamping	ef-
fect)	generated	by	the	abrupt	change	in	the	ecological	gradient.

4.6 | Maximizing evolutionary responses in natural 
populations

Our	simulations,	and	similar	models,	make	important	simplifying	as-
sumptions.	 In	 particular,	 our	 ecological	 gradients	 remain	 constant	
over	100s	or	1,000s	of	generations.	Although	this	might	be	reason-
able	for	some	abiotic	gradients,	it	is	less	likely	where	species’	inter-
actions	are	strong	(e.g.,	Case	et	al.,	2005;	Singer	&	Parmesan,	2019),	
where	 interactions	 occur	 between	 alleles	 from	 different	 species	
(e.g.,	Svensson	&	Connallon,	2018),	or	where	behavioural	responses	
of	 organisms	 may	 smooth	 or	 steepen	 ecological	 gradients	 locally	
(Nadeau,	Urban,	&	Bridle,	2017a,	2017b).	In	particular,	rapid	changes	
in	biotic	 interactions	 (e.g.,	due	to	prey‐switching	or	host‐switching	
by	predators	or	pathogens	in	some	regions	of	climatic	space)	could	
quickly	 create	nonlinear	 ecological	 gradients.	Nonlinear	 ecological	
gradients	will	also	occur	where	changes	in	some	values	for	a	given	
trait	require	more	allelic	substitutions	than	others,	because	of	non-
additive	genetic	effects	(Butlin	et	al.,	2003;	Savolainen,	Lascoux,	&	
Merilä,	2013).

It	remains	difficult	to	obtain	empirical	measurements	of	the	eco-
logical	 and	 genetic	 parameters	 necessary	 to	 predict	 where	 range	
margins	might	occur.	Nevertheless,	our	simulations	do	suggest	some	
principles	 for	 managing	 populations	 to	 maximize	 their	 evolution-
ary	 potential.	 In	 particular,	 the	 surprising	 sensitivity	 of	 population	
density	 to	asymmetrical	effects	generated	by	varying	gradients	 in	
space,	even	on	scales	below	the	dispersal	distance,	suggests	that	im-
provements	in	patch	centres	might	reduce	adaptation	towards	patch	
margins,	 compromising	 the	persistence	of	a	population	 in	a	patch,	
and	 its	potential	 to	act	as	a	 source	of	colonists	 for	other	patches.	
Improving	habitat	at	patch	centres	might	therefore	reduce	the	geo-
graphical	 range	of	 target	populations.	Assisted	migration	and	hab-
itat	 improvements	should	therefore	focus	on	patch	margins	rather	
than	on	their	centres,	which	would	reduce	the	density	gradient	(and	
asymmetry	in	gene	flow)	at	the	patch	edge,	so	helping	populations	
to	adapt	past	the	demographic	sink	created	by	an	abrupt	change	in	
the	environmental	gradient.
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Such	efforts	would	be	especially	important	for	organisms	where	
the	ecological	gradient	varies	in	space	at	a	fine	scale	relative	to	indi-
vidual	mobility,	and	where	local	population	densities	can	vary	widely.	
Similarly,	for	steepening	(but	continuous)	gradients,	 if	conservation	
efforts	focus	on	improving	conditions	at	patch	centres,	gradients	at	
the	edge	will	be	made	steeper	which	will	reduce	the	occupied	area.	
Therefore,	for	 both	 flat‐linear	 and	 steepening	 gradients,	 improving	
the	margin,	even	if	 it	cannot	be	brought	to	the	same	quality	as	the	
centre,	 will	 increase	 the	 area	 of	 ecological	 space	 occupied	 by	 the	
population.	This	will,	in	turn,	increase	genetic	variation	at	the	centre	
(even	if	 it	reduces	central	density),	so	increasing	evolutionary	resil-
ience	to	ongoing	environmental	change	and	the	potential	of	the	patch	
to	act	as	a	source	for	(re)colonization	of	other	ecological	patches.
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