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Abstract
Population genetic models of evolution along linear environmental gradients cannot 
explain why adaptation stops at ecological margins. This is because, unless models 
impose reductions in carrying capacity at species’ edges, the dominant effect of gene 
flow is to increase genetic variance and adaptive potential rather than swamping local 
adaptation. This allows the population to match even very steep changes in trait op-
tima. We extend our previous simulations to explore two nonlinear models of ecologi-
cal gradients: (a) a sigmoid (steepening) gradient and (b) a linear gradient with a flat 
centre of variable width. We compare the parameter conditions that allow local adap-
tation and range expansion from the centre, with those that permit the persistence of 
a perfectly adapted population distributed across the entire range. Along nonlinear 
gradients, colonization is easier, and extinction rarer, than along a linear gradient. This 
is because the shallow environmental gradient near the range centre does not cause 
gene flow to increase genetic variation, and so does not result in reduced population 
density. However, as gradient steepness increases, gene flow inflates genetic variance 
and reduces local population density sufficiently that genetic drift overcomes local 
selection, creating a finite range margin. When a flat centre is superimposed on a lin-
ear gradient, gene flow increases genetic variation dramatically at its edges, leading to 
an abrupt reduction in density that prevents niche expansion. Remarkably local inter-
ruptions in a linear ecological gradient (of a width much less than the mean dispersal 
distance) can prevent local adaptation beyond this flat centre. In contrast to other 
situations, this effect is stronger and more consistent where carrying capacity is 
high. Practically speaking, this means that habitat improvement at patch margins will 
make evolutionary rescue more likely. By contrast, even small improvements in habi-
tat at patch centres may confine populations to limited areas of ecological space.
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1  | INTRODUC TION

Why is local adaptation prevented in some ecological and 
genetic situations, meaning that populations cannot track 

changing environments, and so have finite ranges in space and 
time? Understanding when and where such limits to adaptation 
occur is critical for predicting species’ extinction rates in time, 
their geographical distributions in space, and the evolution of 
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ecological communities. Information on maximum rates of evo-
lution allows estimates of where and when rapid environmental 
change will cause the loss of species from ecological communi-
ties. Understanding how genetic and ecological processes inter-
act also allows scientists to provide guidance on how to maximize 
evolutionary rates in populations that are close to critical rates of 
environmental change.

Single population models for the maximum sustainable rate of 
evolution (“evolutionary rescue” models; Bell, 2013) exclude the 
genetic and demographic effects of dispersal between ecologically 
divergent populations. The movement of individuals and alleles be-
tween different environments has two contrasting effects (Bridle, 
Polechová, & Vines, 2009; Bridle & Vines, 2007; Connallon & Sgro, 
2018; Haldane, 1956): (a) it reduces population mean fitness, be-
cause the phenotypes of incoming individuals and their offspring are 
distant from the local optima (either by changing the trait mean or 
by increasing its variance, or both); and (b) it increases evolutionary 
potential by increasing local genetic variation.

Models exploring the effect of gene flow on local adaptation 
have focussed on either a few ecologically divergent patches (often 
with different carrying capacities), with varying levels of dispersal 
between them (see, e.g., Legrande et al., 2017 for a review); a se-
ries of populations with stepping‐stone dispersal (e.g., Alleaume‐
Benharira, Pen, & Ronce, 2005); or the joint effect of gene flow and 
selection when individuals are distributed continuously across a 
linear ecological gradient in space (Barton, 2001; Bridle, Polechová, 
Kawata, & Butlin, 2010; Haldane, 1948; Kirkpatrick & Barton, 1997; 
Polechová, 2018; Polechová & Barton, 2015). These models of eco-
logical margins explicitly couple population genetics with population 
ecology, in that the match of a genetically variable trait to the opti-
mum determines individual fitness (see reviews by Bridle, Polechová, 
et al., 2009; Bridle & Vines, 2007; Kawecki, 2008; Lenormand, 2002). 
Dispersal along ecological gradients generates a fitness cost (termed 
“standing load”). When the trait mean matches the optimum, this 
load is the reduction in mean fitness that arises due to the increased 
phenotypic variation in the population that is generated by disper-
sal. This standing load reduces the rate of population growth. If the 
population mean also fails to match the local optimum, there is an 
additional “maladaptation load,” which increases with the mismatch 
between the trait mean and its optimum, and as the strength of se-
lection increases. However, where all populations match the local 
trait optima, gene flow has no effect on the mean phenotype (al-
though it still affects the variance) because alleles arrive and leave 
all populations equally, so that gene flow has no net effect on local 
allele frequencies (Felsenstein, 1975; Kirkpatrick & Barton, 1997). 
However, where there is a mismatch between the local trait mean 
and the local optimum (i.e., maladaptation load), asymmetrical mi-
gration is generated due to a gradient in density, with density being 
highest where the mean matches the local optimum. This increases 
maladaptation in populations at lower density and may cause local 
populations to collapse through a positive feedback between mal-
adaptation, population density and asymmetrical gene flow. A finite 
range limit therefore forms. However, such a finite limit depends on 

populations being able to match the local trait optima in some parts 
of the range, but failing to do so in other parts of the range.

When genetic variance is not allowed to evolve as a result of 
dispersal along a linear gradient Kirkpatrick & Barton, 1997), three 
regimes emerge: “Unlimited Adaptation” (where the trait evolves to 
match the spatially changing selective optimum everywhere); “Limited 
Adaptation” (where the population is well adapted to the local opti-
mum only at the centre of the species’ range); and “Extinction” (where 
the population cannot be sustained at any point on the gradient). 
“Limited Adaptation” behaviour is characterized by asymmetrical dis-
persal from the well‐adapted central region, where population den-
sity is high, to the poorly adapted margins. In “Unlimited Adaptation” 
behaviour, no density gradient is generated because the population is 
well adapted everywhere. Dispersal is therefore symmetrical across 
the range, allowing the population to expand in niche space (i.e., along 
the ecological gradient) without limit.

By contrast, allowing additive genetic variance to evolve due 
to dispersal between environments allows adaptation along virtu-
ally any steepness of ecological gradient, over a very wide range of 
conditions, and for a range of quantitative genetic models (Barton, 
2001). Eventually, however, a deterministic limit is reached when the 
variance generated by dispersal reduces population mean fitness 
(i.e., growth rate) sufficiently to cause extinction throughout the 
whole range, despite allowing evolution of the trait mean to match 
the local optimum everywhere. At this deterministic limit, although 
the population has sufficient genetic variance to track the rapidly 
changing trait optima, the standing load caused by this amount of 
genetic variance reduces population growth to zero (so the popula-
tion goes extinct everywhere across the range).

1.1 | Effects of colonization and finite population 
size on maladaptation

Barton (2001) quantified the ecological and genetic conditions for 
which a population that begins perfectly adapted to a linear gradient 
can be sustained. However, his analyses did not include stochastic 
effects on either allele frequencies or population dynamics. Bridle 
et al. (2010) used individual‐based simulations to explore how the 
limits to local adaptation changed when a finite population colonized 
a linear gradient at its centre. In addition, they varied the maximum 
productivity (the “carrying capacity”) of all patches across the range 
to test the effect of population density on local adaptation. These 
simulations showed that: (a) local adaptation (and niche expan-
sion) was prevented at a lower gradient steepness than predicted 
by deterministic models; (2) for most of parameter space, only two 
outcomes were observed along a linear gradient: extinction every-
where, or adaptation without limit. The failure to track a linear gradi-
ent was associated with reduced population density, caused by the 
evolution of genetic variance as gradient steepness increased. This 
suggested that the stochastic effects of finite population size pre-
vent adaptation at ecological margins.

Polechová and Barton (2015) provided an analytical solution 
for the issue highlighted by Bridle et al. (2010). In particular, they 
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demonstrated that local adaptation is prevented where population 
density is reduced below a critical point by the load imposed by 
the genetic variance generated by gene flow. Prevention of adapta-
tion was therefore due to genetic drift overcoming selection rather 
than because of stochastic population dynamics. This critical limit 
is found without genetic constraints or fitness trade‐offs, where 
allele effects are unequal, and in the presence of epistasis. These 
conclusions have recently been extended to two‐dimensional envi-
ronments (Polechová, 2018). Polechová and Barton's (2015) model 
therefore provides a general explanation for the failure for popula-
tions to adapt at a narrower range of parameter conditions (in terms 
of gradient steepness and population demography) than predicted 
by the deterministic limit, as observed by Bridle et al. (2010).

1.2 | Limits to adaptation along nonlinear 
ecological gradients

At their most realistic, linear models of adaptation along ecological 
gradients typically produce only two outputs in most regions of pa-
rameter space: unlimited species’ ranges (adaptation everyone), or 
extinction (adaptation nowhere). This is in marked contrast to the 
limited ranges that are ubiquitous in nature. However, ecological 
gradients in nature are rarely linear, as perceived by the organisms 
themselves (and their alleles). Instead, they consist of patches of 
good habitat surrounded by habitat of rapidly decreasing suitability. 
For these reasons, ecologists have questioned the relevance of mi-
gration load, and the modelling of linear gradients, to global species’ 
margins in nature (e.g., Blows & Hoffmann, 2005; Holt, 2003; Holt & 
Keitt, 2005; Thomas & Kunin, 1999).

The study of nonlinear (“steepening”) gradients represents an 
important link between gradient models, where gene flow and its 
effects on genetic variance are an emergent property of population 
demography along an ecological gradient (e.g., Barton, 2001; Bridle 
et al., 2010; Polechová, Marion, & Barton, 2009), and patch mod-
els, where discrete patches differ in carrying capacity (and therefore 
density), and are subject to fixed probabilities of connection by dis-
persal (Legrande et al., 2017). Instead, real ecological margins are 
likely to involve both changes in the density of suitable patches, and 
variation in conditions within patches.

A patch can be modelled as an area in which ecological conditions 
change progressively with distance from the centre, with the rate of 
change increasing to the point where the patch margin is determined 
by the population's maximum rate of adaptation (see Butlin, Bridle, 
& Kawata, 2003). Nonlinear gradients will be close to reality in many 
situations, for example where multiple ecological factors interact at 
particular parts of an ecological gradient, or where the trait mean 
must change in a nonlinear way to match a linear gradient in some 
abiotic factor such as temperature, due to threshold or interacting 
effects with other factors, or the presence of other species (e.g., 
Case, Holt, McPeek, & Keitt, 2005). Modelling local adaptation along 
steepening ecological gradients also means that a stable margin is 
always predicted at a critical level of steepness, based on the deter-
ministic predictions (Barton, 2001), as well as analytic predictions 

based on the effect of genetic load on the power of selection com-
pared to genetic drift (Polechová & Barton, 2015).

In this paper, we explore the “critical drift” threshold for adapta-
tion limits (Polechová & Barton, 2015) by extending the simulation 
model of Bridle et al. (2010) to test the effect of colonization and 
of different types of nonlinear ecological gradients on local adap-
tation. Firstly, we use a perfectly adapted starting population to 
eliminate stochastic effects arising from colonization dynamics and 
the establishment of phenotypic clines. This allows us to compare 
the demographic and ecological parameters required for a coloniz-
ing population to adapt along an ecological gradient with those that 
allow population persistence.

We then explore, for both these “colonizing” and “established” 
conditions, the effect on local adaptation of departures from linear 
ecological gradients using either: (a) “steepening” gradients, charac-
terized by an ecological gradient that becomes increasingly steeper 
with distance from the centre and; (b) linear gradients with parame-
ter conditions that generated unlimited spread in Bridle et al. (2010), 
but where the gradients are now interrupted by a flat central portion 
of variable width where the optimum phenotype does not change.

We show that the introduction of even narrow regions without 
change along a linear gradient prevents extinction. However, this 
flat region also generates small areas of high population density 
that create the asymmetries in gene flow that prevent adaptation 
at the patch edge, especially where maximum population sizes are 
large. This suggests that surprisingly local regions of shallow gradi-
ent within linear ecological gradients can generate narrow species 
ranges, even for parameter values that would allow adaptation along 
uniform linear gradients. This observation has implications for man-
aging populations to maximize their evolutionary resilience.

2  | THE SIMUL ATION MODEL

The basic model is identical to the individual‐based simulation de-
scribed in Bridle et al. (2010). The evolutionary dynamics for the 
simulated population take place within a continuous region of maxi-
mum extent 32,000 × 1,000 units. There is an ecological gradient 
along the long (x) axis, which is uniform with slope b. The area is 
simulated as a cylinder; the edges of the second, short (y) axis are 
joined. Individuals occupy the vertices of a grid and more than one 
individual can occupy any given position. The model either (a) fol-
lows the fate of a starting population of 500 individuals that are 
initially distributed in the central 500 × 1,000 units of the environ-
ment (“colonizing start”); or (b) introduces a population that is fully 
adapted across the entire gradient, and allows the simulation to run 
from that point to test its stability (“perfect start”).

The phenotype is determined by diploid unlinked bi‐allelic loci 
with additive effects that mutate symmetrically at rate μ (μ = 0.0001 
per locus per generation unless otherwise stated). For all runs, 
64 loci were used, with allelic effect α = 1 (maximum phenotypic 
range = 0–128). Population growth is logistic, dependent on the local 
density of individuals (N) and local carrying capacity (K).
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For the colonizing start (initially N = 7.85 individuals), individual 
phenotypes range from zopt − 2α to zopt + 2α where zopt is the op-
timum phenotype at the centre of the range For the perfect ad-
aptation start, the population density was set at carrying capacity 
throughout the range and spatial positions were drawn randomly 
from a uniform distribution. Genotypes for these perfectly adapted 
individuals were generated on the basis of cline widths and spacing 
predicted by Barton (2001) using C++ and R scripts available on re-
quest from the authors.

Females choose mates from the males available within a finite 
mating distance (MD), with a probability proportional to the fitness 
of each male at its position on the ecological gradient. This was fixed 
at MD = 150 (see Butlin et al., 2003 for a description of the effect 
of male dispersal on range expansion). Offspring then disperse and 
viability selection occurs after dispersal through the number of off-
spring produced by each female. If no male is available within the 
mating area, the female leaves no offspring.

The offspring of each female disperse to new positions in the 
habitat with a Gaussian distribution of dispersal distances, mean 0 
and standard deviation D, in uniformly distributed random directions. 
Since mating is a form of dispersal by males (or their gametes), the 
standard deviation of total dispersal is given by TD=

√

D2+
1

2
SM

2 
(see Crawford, 1984), where SM is the expected distance between 
mating partners when a female chooses from a circle with radius 
MD, hence SM = (MD/√2). The expected distance σ along the x‐axis 
is only in one dimension, hence σ = TD/√2.

The fitness of both sexes is determined by the same function. 
The number of offspring that a female leaves is drawn from a 
Poisson distribution with mean WF = 2 + rF (1 − N/K) − s (b x − z)2/2 
(W ≥ 0). In our model, there are no random effects on death rates, or 
selective mortality. These are determined precisely by the ecological 
gradient and the local population density relative to K. The maximum 
rate of increase rm = rF/2; rF is set to 1.6. K is the carrying capacity 
within a circle of radius 50 around the focal individual, N (density) is 
the number of individuals in such a circle. Ux = b x is the phenotypic 
optimum at the point (x) on the gradient occupied by the female. The 
parameter s measures the rate of decline in fitness for phenotypes 
that depart from the optimum; the strength of stabilizing selection 
VS is 1/(2s). Here, VS is set to 4 and b (the spatial gradient in the opti-
mum) is either set to 0.004, determined by the sigmoid function, or 
interrupted by a flat central region.

Note that when drift and the effects of the margins are negli-
gible, increasing dispersal with constant gradient is equivalent to 
increasing the gradient with constant dispersal: by dispersal of a dis-
tance σ, fitness decreases by

The growth rate of a particular phenotype is

and hence, the growth rate of the population is the average over all 
phenotypes

assuming additive genetic variation, and no environmental or genetic 
variation in phenotype.

For an infinite population, the population dynamics should ap-
proximately match the continuous time model described by equation 
7 in Kirkpatrick and Barton (1997), and if no linkage disequilibria (LD) 
are generated, the evolution of phenotype should follow the two‐al-
lele n‐loci model of Barton (2001). In our model, population regula-
tion occurs over discrete generations, and populations are finite in 
size, therefore allowing stochastic effects on demography and allele 
frequency, and the generation of lags.

The program was written in C++, developed from that introduced 
by Kawata (2002) and is available on request from the authors. 
Output from the simulations for a given generation was analysed 
using a script in R, which calculated genetic variance, cline widths for 
each locus, population density and the distribution of phenotypes for 
a given portion of the range. The scripts are also available on request 
from the authors. To allow direct comparison to the predictions of 
Polechová and Barton (2015), the focal individual was removed from 
all calculations of population density for the runs shown in Figures 
1b, 2a and 3, but it was retained elsewhere for comparison to Bridle 
et al. (2010). Note that (regardless of the form of the gradient), the 
carrying capacity (K) remains constant throughout the potential geo-
graphical range, so that gene flow will remain symmetrical across all 
species’ ranges, provided the optimum is matched everywhere.

2.1 | Nonlinear ecological gradients

We extended our linear models to explore adaptation along two 
types of nonlinear gradient:

1.	 Steepening gradient: a sigmoid rather than linear gradient in 
selective optimum, where, the optimum phenotypic value 
changes with the cube of distance from the centre of the 
simulated range. Here, the uniform gradient in the phenotypic 
optimum (Ux  =  0.004x) was replaced with a power 
relationship:

This differs from the relationship used by Polechová and Barton 
(2015) and Polechová (2018) which was exponential in form with non-
zero central slope. However, since both represent smoothly increas-
ing rates of environmental change, we do not expect this difference 
to influence the threshold gradient at which further adaptation is 
prevented.

b2�2

2VS

r[z,N]= rm

(

1−
N

K

)

−
(z−Ux)

2

2VS

,

rN=
⟨

r[z,N]
⟩

= rm

(

1−
N

K

)

−
(z̄−Ux)

2

2VS

−
VP

2VS

Ux=64+
1.56(x−16000)3

1011
.
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2.	 Flat‐linear gradient: a uniform gradient of steepness b  =  0.004 
(i.e., identical to the steepness of linear gradient used by Bridle 
et al., 2010), which is interrupted by a central flat portion 
(b  =  0) of width (w).

For (1), we explored the effect of various parameter combinations 
on the critical gradient, defined as the point at which the intrinsic rate 
of increase is zero, given the local distribution of phenotypes (rF = 2 
for N = 0, measured at generation 3,000). For (2), we explored the pa-
rameter combinations of carrying capacity per cell, K = 5–50, dispersal, 
TD = 400–1,100, and the width of the central flat portion, w = 0–4,000, 
that allow successful colonization of the patch centre, and then subse-
quent spread throughout the range. The majority of simulations were 
run for 3,000 generations, although the behaviour of some parameter 
combinations was tested for up to 10,000 generations.

3  | RESULTS

3.1 | Colonization and local adaptation along linear 
ecological gradients

Figure 1a shows that range collapse occurs even from a perfectly 
adapted start, for a similar range of parameter combinations to that 

observed by Bridle et al. (2010) when populations were established 
from a central starting position. Populations on a linear gradient of 
b = 0.004, begun from a perfectly adapted condition, can persist dis-
persal (TD) less than 1,100, but collapse quickly with TD more than 
1,200, regardless of the value of carrying capacity, K, or the size of 
the starting population (Figure 1a). At TD less than 1,100, persis-
tence depends on K. Extinction still occurs from a perfect start, as 
observed from colonization, suggesting that for much of parameter 
space, stochastic effects during colonization do not affect niche ex-
pansion. However, perfectly adapted populations within the area of 
parameter space that led to “limited adaptation” (Bridle et al., 2010) 
fragment and collapse as the trait cline becomes increasingly shal-
low relative to the gradient in the optimum. The process of range 
collapse from a perfectly adapted start in this region of parameter 
space can take more than 10,000 generations.

The simulated behaviour of populations along linear gradients 
away from the deterministic limit is qualitatively similar to the criti-
cal gradient predictions of Polechová and Barton (2015) (Figure 1b). 
However, extinction occurs in our simulations at lower values of dis-
persal and carrying capacity, associated with the higher variance and 
lower density we observe at these parameter combinations (Bridle 
et al., 2010). Polechová and Barton's (2015) analytical predictions 
suggest that limited adaptation should be stable for a small region of 

F I G U R E  1  Evolution along a linear ecological gradient. (a) Compares outcomes from different starting conditions. The grey‐scale 
background summarizes data from the “colonizing start” runs of Bridle et al. (2010), showing outcomes at generation 3,000 for five runs 
for each parameter combination, for populations initially occupying only the centre of the gradient: light grey—unlimited spread, mid‐grey—
limited spread, dark‐grey—extinction. The points represent outcomes for 3–5 runs, starting with a population occupying the whole area and 
perfectly adapted to the local optimum at each point: white—environment fully occupied, black—extinct, grey—mixed outcomes, including 
cases where the population fragmented. The dashed line is the deterministic limit of spread (where population density is reduced to zero 
by variance load, even when the phenotypic mean matches the optimum; Barton, 2001). (b) Compares “perfect adaptation” runs with the 
threshold prediction from Polechová and Barton's (2015) model (solid line), where B=0.15N�

√

s (B is the effective environmental gradient, 
N is the local population size, σ is the dispersal distance, and s is the selection per locus). The population is expected to persist only for 
dispersal distances below this threshold. In these simulations, the focal individual was removed from the calculation of local density for 
comparison with the Polechová and Barton (2015) model. Points filled as in (a). K is on log10 scale in both figures

Dispersal

lo
g(

C
ar

ry
in

g 
ca

pa
ci

ty
)

0.8

1.0

1.2

1.4

1.6

400 600 800 1,000 1,200

�

�

�

�

��

� �

� � � � � � �

� � � � �

� � � �

� � �

�

�

� � � �

� � � �

� � �

� � � � �

� � � � � ��

� � � � � �� ��

Dispersal

lo
g(

C
ar

ry
in

g 
ca

pa
ci

ty
)

0.8

1.0

1.2

1.4

1.6

400 600 800 1,000 1,200

�

�

�

�

��

� �

� � � � � � �

� � � � �

� � � �

� � �

�

�

� � � �

� � � �

� � �

� � � � �

� � � � � ��

� � � � � �� ��

(a) (b)



6  |     BRIDLE et al.

parameter space. However, we do not detect such a region of param-
eter space in our simulations.

3.2 | Colonization and adaptation along 
steepening gradients

For colonizing start conditions, models of adaptation along steepen-
ing ecological gradients explore the establishment and growth of a 

population to occupy a patch of suitable habitat. As the population 
expands through habitat at the centre of the patch, where the envi-
ronment changes gradually in space, its continued growth depends 
increasingly on its ability to adapt at the margins, where the environ-
ment changes rapidly.

For both steepening and flat‐linear forms of nonlinear gradient 
(Figure 2a,b, respectively), the starting population is well adapted 
to the central part of the range, and so should quickly colonize and 

F I G U R E  2  Example plots of “colonizing start” simulations at generation 3,000 for (a) a steepening and (b) a flat‐linear gradient, with 
spatial plots of phenotypic mean and variance, mean density and allele frequencies estimated from spatial slices of 100 units for carrying 
capacity K = 25 and dispersal TD = 500 for (a); K25 and dispersal TD = 850 with a flat centre width of 2,000 for (b). Predicted values for (a) 
from Barton (2001) are shown as solid lines
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expand throughout the shallow or flat, central portion. However, for 
a steepening gradient expansion should always stop at some dis-
tance from the centre, where a critical rate of ecological change is 
reached. By contrast, in the case of a flat‐linear gradient the popula-
tion should continue to expand along the linear part of the gradient 
provided it can evolve to pass the sudden change in gradient at the 
edge of the flat portion. Note that for all of our flat‐linear runs, we 
use values for dispersal and carrying capacity that allow unlimited 
adaptation along a completely linear gradient of the same steepness. 
This allows us to assess the effect of an abrupt change in the gradi-
ent on local adaptation.

3.2.1 | Colonization and adaptation along 
steepening gradients

As seen along linear gradients (Bridle et al., 2010; Figure 1), the 
critical gradient at which adaptation fails increases as total disper-
sal decreases and as population density (determined by the carrying 
capacity, K) becomes greater (Figure 3a). The value of this critical 
gradient does not differ when populations colonise the centre of 
the patch and spread as they adapt, compared to when they are 
perfectly adapted along the entire ecological gradient at the start 
(Figure 3b).

Figure 3a compares our simulations to predictions for the critical 
limit in Polechová and Barton's (2015) model. The simulated values 
again show a qualitative pattern that follows analytical predictions, 
although the quantitative mismatch tends to increase with lower 
carrying capacity (K).

3.2.2 | Colonization and adaptation along a flat‐
linear gradient

Populations along flat‐linear gradients differ from a steepening gra-
dient in that the shift in gradient steepness is abrupt (it is an inter-
ruption of an otherwise linear gradient). These simulations show 
that a remarkably small flat central portion (w) consistently prevents 
adaptation from colonization for up to 10,000 generations for wide 
regions of parameter space (Figure 4), particularly where carrying 
capacity, K, is high. For example, with dispersal TD = 850, carrying 
capacity K = 25 (Figure 4; bottom panel), a flat centre of only w = 100 
units (1/8 of the mean dispersal distance) can prevent spread of the 
population from the centre, generating a finite range margin. Along 
interrupted gradients, therefore, higher population density prevents 
local adaptation at the edges, rather than making it more likely, as is 
the case for the steepening gradient.

The constraining effect of interrupting the ecological gradient 
is reduced at lower values of carrying capacity and dispersal. For 
example, at K = 7, TD = 500 (Figure 4; top panel) the width of the 
flat portion needs to be about w = 2,000 units to prevent spread 
from the range centre (i.e., four times the mean dispersal distance). 
By contrast, at K = 12, adaptation from the flat centre is consis-
tently prevented even when its width is ¼ of the dispersal distance 
(e.g., at TD850 and K25, a central width of 200 typically prevents 
local adaptation). At lower carrying capacity and dispersal values, 
greater variance in outcome is also observed among simulations for 
the same parameter values (Figure 4). For example, the population 
might spread to only one side of the gradient, on both sides, or on 

F I G U R E  3   (a) Critical gradients that define population margins on a steeping gradient. The critical gradient predicted by Polechová 
and Barton (2015), as in Figure 1b, is compared to the critical gradient observed in our simulations for different carrying capacities, K, and 
dispersal, TD. Darker points indicate increasing K (5; 7; 12; 25); circles—TD = 400; diamonds—TD = 500; triangles—TD = 750; squares—
TD = 1,000. (b) Comparison of critical gradients for parameter combinations in (a) after 3,000 generations when simulations are run from a 
“perfect adaptation” start compared to from a “colonizing start”
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neither side in the time available for each simulation (typically 3,000 
generations).

Note that although a remarkably small interruption to the lin-
ear gradient can prevent local adaptation from the centre, it also 

prevents extinction. Even when dispersal is high, the central portion 
remains occupied when additional simulations were conducted at 
dispersal distances that would cause rapid extinction everywhere in 
linear models (Figure 1a). Central population density can also rise to 

F I G U R E  4  The effect of a flat portion 
in the ecological gradient of width (w) on 
range expansion (from colonization) at 
generation 3,000. The behaviour of the 
simulations is summarized as follows: (i) 
LIGHT GREY: full spread; (ii) DARK GREY: 
slow spread (a phenotypic cline forms but 
has not spread outside 7,000 < x <25,000 
by generation 3,000); (iii) MEDIUM GREY: 
spread on one side only (phenotypic 
cline forms but only on one side of 
the gradient); (iv) BLACK: no spread 
(population remains confined around flat 
portion of gradient, with no phenotypic 
cline)
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about twice that seen for the same dispersal and carrying capacity 
on the linear gradient, because there is no increase in genetic varia-
tion (and standing load) associated with dispersal at the flat centre.

3.3 | Comparing colonization versus persistence 
along a flat‐linear gradient

Populations remain fully adapted for at least 3,000 generations if 
they are started from a perfectly adapted population, even for pa-
rameter combinations that fail to spread from colonization. Where 

these perfectly adapted runs are allowed to continue for up to 
10,000 generations, populations sometimes fragment at the edges 
of the flat section for some parameter combinations (especially 
where K and TD are high), although gene flow between populations 
typically prevents this fragmentation lasting for long. This suggests 
that although the flat central portion has systematic effects on local 
adaptation from colonization, it only rarely causes range collapse 
when populations are initially fully adapted to the entire gradient.

Simulations of flat‐linear gradients from perfectly adapted start 
allow exploration of the reasons why populations fail adapt from 

F I G U R E  5  Patterns of phenotypic mean, density and genetic variance in simulations from perfectly adapted start on ecological gradients 
with a flat central portion, illustrating the increase in variance near the edge of the flat area and its effects on adaptation and population 
density for different combinations of width (w), carrying capacity (K) and dispersal (TD). Upper panels: The position and width of the central 
(flat) portion (w) is shown by a solid line above the observed trait mean. Lower panels: Local density is shown as open circles, local genetic 
variance by a solid line. Note that, apart from (b), none of these parameter combinations were able to fully spread from a colonising start (see 
Figure 4)
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colonization even with low widths of the flat central region relative 
to total dispersal. In parameter regions where colonization and sub-
sequent local adaptation is prevented by the flat centre, there is an 
inflation of variance at the point where the gradient steepens, due to 
the stronger effect of gene flow at this position. This reduces popu-
lation density, generating a density trough at these points (Figure 5). 
This effect is greater for higher dispersal (compare Figure 5c and d), 
and less clear at lower values of carrying capacity (compare Figure 5a 
and b). It is difficult to observe at values of w where spread is only 
sometimes prevented (e.g., for TD = 500, K = 7, w = 100: Figure 5a 
compared with Figure 4 top panel). However, the density trough 
generated by the stepped gradient becomes very marked when the 
flat centre is wider and carrying capacity is high. For example, in 
Figure 5e, where w is more than twice the mean dispersal distance, 
gene flow not only inflates variance and so reduces local population 
density (so increasing drift), it also generates maladaptation load due 
to the mismatch of the local trait mean to the optimum. In addition, 
as the flat centre widens (w increases), the population density at the 
range centre approaches the carrying capacity (K), even when dis-
persal is high. The dynamics of these models therefore differ from 
the linear gradient, where dispersal has a similar effect on variance 
(and therefore population density) at all points along the range.

4  | DISCUSSION

We have extended our individual‐based simulations (Bridle et al., 
2010) to include tests of the stability of populations that are already 
perfectly adapted everywhere on an ecological gradient, across a 
range of gradient steepness, population density, and mean dispersal. 
This approach tests the role of stochastic ecological and evolution-
ary processes on the failure of populations to adapt along ecologi-
cal gradients. We have also determined the parameter conditions 
that cause maladaptation along two forms of nonlinear gradient, and 
compared results for one of these to the analytical predictions of 
Polechová and Barton (2015). Below, we discuss these results and 
consider their implications for practical interventions to increase 
evolutionary potential in populations and therefore the resilience of 
ecological communities to environmental change.

4.1 | Adaptation along linear gradients

Simulations that begin from a perfectly adapted state rapidly (typi-
cally within 500 generations) collapse in almost all the parameter 
combinations that showed “extinction” behaviour from a colonizing 
start (Figure 1a). Similarly, perfectly adapted populations were sta-
ble in parameter space that previously generated “full adaptation” 
behaviour (Bridle et al., 2010). Perfectly adapted populations took 
longer to fragment and collapse close to boundary conditions, and 
only collapsed after 10,000 generations for the large carrying ca-
pacity, high dispersal parameter combinations that characterized 
the (small) region of “limited adaptation” parameter space from col-
onization. In this region, populations always (eventually) collapsed 

throughout their range, rather than forming the long‐lived but finite 
species’ ranges observed in Bridle et al. (2010). This result contrasts 
with Polechová and Barton (2015), who observe a small region of 
parameter space that generates stable, finite ranges. Our result sug-
gests that in our colonizing simulations, finite ranges (“limited adap-
tation”) are a product of stochastic processes, for example, in the 
establishment of clines in allele frequency during range expansion.

Overall however, the close match of these “perfect start” simula-
tions with our “colonizing start” simulations indicates that the large 
area of parameter space where extinction is observed (Figure 1) 
cannot be explained by stochastic processes associated with range 
expansion. Instead, failure to establish or maintain local adaptation 
(and broader niches) is due to the inability of selection to overcome 
genetic drift where population density is reduced beyond a critical 
point by migration load (Bridle et al., 2010; Polechová & Barton, 
2015). Even with stochastic effects on allele frequency and de-
mography, linear ecological gradients cannot easily explain limited 
ranges in nature.

Our linear gradient simulations qualitatively match the “critical 
gradient” predictions of Polechová and Barton (2015), although mal-
adaptation occurs at slightly lower gradient steepness and popula-
tion density (Figure 1b). This may be due to nonuniform distributions 
of individuals, reduced selection on males, and/or failure of females 
to mate at low densities, given that genetic variance was higher 
and density lower in our simulations compared to analytical models 
(Bridle et al., 2010). We previously speculated that this inflated ge-
netic variance was due to greater than expected linkage disequilib-
rium, based on values for LD that we estimated before rather than 
after selection had occurred. However, according to Felsenstein 
(1976), linkage disequilibrium should return almost to zero following 
selection, meaning that this effect cannot explain our higher than 
expected levels of genetic variation.

Polechová and Barton (2015) explore limits to local adaptation 
in one‐dimensional, rather than two‐dimensional space, where the 
effects of drift and dispersal, and their interaction with selection will 
differ (see Barton, Depaulis, & Etheridge, 2002). Polechová (2018) 
extended her critical gradient predictions to two‐dimensional hab-
itats, showing that dispersal in the second dimension weakens the 
effect of drift, so allowing adaptation at a greater range of parameter 
values (i.e., moving the critical carrying capacity to the right of the 
predictions in Figure 1b). This effect of increased dimensionality is 
therefore in the wrong direction to explain the discrepancy between 
our simulations and Polechová and Barton (2015), meaning that the 
mismatch must be due to other differences between the models. 
However, qualitative agreement between our models remains in that 
increasing population size and reducing gene flow makes local adap-
tation overall more likely.

4.2 | Adaptation along steepening gradients

A similar result to the linear gradient was obtained where the eco-
logical gradient was given a sigmoid (steepening) shape (Figure 2a). 
A critical limit for niche expansion is always reached at some point 



     |  11BRIDLE et al.

beyond the less‐rapidly changing centre of the range. As above, for 
steepening gradients, the behaviour of our simulations from perfect 
start (Figure 3b) is equivalent to that observed from colonization 
(Bridle et al., 2010), even when simulations are run for up to 10,000 
generations. Again, this result indicates that the failure to adapt 
(or to maintain an adapted state) at ecological margins results from 
a failure of selection to overcome drift caused by migration load, 
rather than from the stochastic effects of colonization, cline estab-
lishment or population dynamics. In contrast to the linear gradients, 
however, a finite species range is always observed (rather than ex-
tinction everywhere), because populations can always persist close 
to the range centre, where the ecological gradient is relatively shal-
low. In these regions, populations maintain sizes that are close to 
the carrying capacity of each patch, because the inflation of genetic 
variance due to gene flow within these shallow regions of ecological 
change is low, so reducing migration load (Figure 2a).

Figure 3a shows the match of our steepening gradient simula-
tion outcomes to the Polechová and Barton (2015) one‐dimensional 
critical gradient prediction. As with linear gradients, our simulations 
show a qualitative match, in that higher population densities and 
reduced dispersal allow the population trait mean to track steeper 
local ecological gradients. This means that local adaptation is pre-
vented closer to the patch centre when the habitat carrying capac-
ity (K) (and therefore the population density) is lower, and dispersal 
(TD) is higher. However, along steepening gradients, maladaptation 
occurs at relatively lower values of dispersal and carrying capac-
ity than along linear gradients, because of increased density at the 
centre causing asymmetrical gene flow (and therefore swamping of 
local adaptation), at the point where the population fails to track the 
local optimum. The quantitative mismatch between our simulations 
and analytical models (Polechová & Barton, 2015) is generally in the 
same direction as for linear gradients, and so is also unlikely to be 
explained by dimensionality. However, increasing carrying capacity 
tends to reduce this mismatch (Figure 3a). This suggests that sto-
chastic effects in regions of low population density, possibly due to 
nonuniform distributions of males and females, increase extinction 
risk in our simulations.

4.3 | Adaptation along flat‐linear 
(interrupted) gradients

In contrast to the gradients explored above, stochastic population 
processes during expansion consistently prevent local adaptation 
along linear gradients that are “interrupted” by a region of habitat 
where the required trait mean does not change. Within these re-
gions, gene flow does not inflate genetic variance (or create stand-
ing load), generating densities around the patch centre that almost 
match the local carrying capacity (Figure 2b). In turn, this gener-
ates strong asymmetrical gene flow outward from the centre that 
imposes a load on edge populations. In natural populations, such 
regions of reduced environmental change might be generated by a 
mountain ridge, or area of deep water, superimposed on a latitudinal 

gradient, or an area of habitat where a predator or competitor has 
been excluded (Svenning et al., 2014).

Spread from colonization can be prevented by a remarkably 
small interruption to an ecological gradient, even for as long as 
10,000 generations (Figure 4). However, when run from a perfectly 
adapted start, these populations remain stable for up to 10,000 
generations. This represents an important contrast with the other 
gradient types, suggesting that stochastic effects prevent expansion 
from the range centre. Another important contrast is that extinction 
never occurs at the range centre (i.e., on the flat central portion) for 
the parameter combinations tested. Flat‐linear gradients therefore 
provide stable patches for population persistence, while prevent-
ing local adaptation at their edges for a wider range of conditions 
than linear gradients. These simulations therefore predict (some-
what counter‐intuitively) that improved conditions at the centre of a 
patch, or a region where the ecological gradient becomes shallower 
(e.g., a region of reduced dispersal, or an elevational gradient em-
bedded within a latitudinal gradient) may prevent niche expansion 
through local adaptation at the patch edge.

Surprisingly, increasing carrying capacity has a qualitatively dif-
ferent effect along a flat‐linear gradient than along a steepening or 
linear gradient. Instead of facilitating niche expansion, adaptation 
along a flat‐linear ecological gradient is apparently more difficult 
at higher carrying capacities. For example, at K = 7, with dispersal 
TD = 500, the width of the flat portion needs to be at least 1,250 
units to prevent spread from the range centre (i.e., 2.5 times the 
mean dispersal distance) (Figure 4, top panel). By contrast, at car-
rying capacity K = 25 and dispersal TD = 850, a flat centre of width 
only 100 units (i.e., c. 1/8 mean dispersal) prevents expansion across 
the entire range from a colonizing start (Figure 4, bottom panel). 
This is despite the fact that perfectly adapted runs are stable at both 
these parameter conditions. This contrasting effect of stochastic 
processes may be because a greater and more consistent differ-
ence in density from the centre to the edge is achieved at higher 
carrying capacity and dispersal (Figure 5a vs. e), leading to more 
consistently asymmetrical gene flow that more effectively swamps 
local adaptation at the edges. Along flat‐linear gradients, therefore, 
stochastic effects may favour local adaptation and niche expansion, 
by weakening the swamping effects caused by the local inflation 
of genetic variance by dispersal, and consequent increase in stand-
ing load. Abrupt changes along ecological gradients (i.e., at habitat 
patch edges), therefore seem highly effective in preventing adap-
tation. This is true even for patches that are small relative to total 
dispersal. For example, our simulations suggest that such patches 
need only be a quarter the width of mean dispersal per generation, 
provided the patches can support a high local population size at their 
centre. Limits to evolutionary responses caused by such nonlinear 
gradients may therefore be especially pervasive for small, relatively 
mobile organisms, such as butterflies.

The predictions for steepening gradients from Polechová and 
Barton (2015) cannot be applied directly to the flat‐linear gradi-
ents, because these estimate critical gradients based on a smooth 
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increase in the rate of environmental change, not on the effects of 
abrupt changes in gradient.

4.4 | Relevance of local adaptation in patches to 
global range dynamics

The types of gradient modelled here are more likely to reflect local 
patch dynamics than global range dynamics. Populations within 
patches may adapt to local conditions but be trapped by steepening 
gradients as they expand away from the centre. Patches may also 
differ in overall quality, reflected by their carrying capacity. This 
means that the evolutionary dynamics of local patches, each deter-
mined by the interaction between genetic load, genetic variation and 
population demography, will drive larger scale patterns of species’ 
persistence, particularly during responses to ecological change.

Steepening gradients provide an important bridge between pop-
ulation genetic models of adaptation along uniform gradients and 
ecological reality, where environmental gradients are complex in 
form, but are generally steeper at patch margins than within patches. 
At a range margin, there is also a larger scale gradient in patch avail-
ability, size and connectedness, but these parameters are not con-
stants. Instead, they depend on local adaptation within patches. The 
more productive the patch, the greater the density in the centre and 
therefore the further out along the ecological gradient the patch 
margin will form. This larger (and more ecologically resilient) patch 
will therefore act as a more effective source of colonists for other 
patches because of the greater number of individuals and the wider 
range of genotypes it supports. This is because new patches can only 
be colonized successfully if a nearby patch has sufficient genetic 
variation to host phenotypes sufficiently close to the optimum to 
colonize the new patch.

4.5 | Empirical tests of these models

An important prediction of our simulations and those of Polechová 
and Barton (2015), and Polechová (2018) is that we should ob-
serve relatively little maladaptation across a species’ geographi-
cal range. Instead, the genetic variation generated by gene flow 
should allow a population to track the local trait optima effec-
tively (e.g., Fitzpatrick & Reid, 2019) until some critical gradient 
is reached where the population collapses, generating either an 
abrupt edge in the case of a nonlinear gradient, or extinction eve-
rywhere along a linear gradient. Standing load (and genetic vari-
ance) should therefore increase (and local density decline) as the 
margin is approached, even though the trait mean matches the 
optimum. However, because the population density will be low 
where variance causes population collapse, empirical estimates of 
genetic variance, density and trait mean are challenging (Bridle, 
Gavaz, & Kennington, 2009; O'Brien, Higgie, Reynolds, Hoffmann, 
& Bridle, 2017). In our flat‐linear simulations, we can infer the crit-
ical values for these parameters only because populations that fail 
to spread from colonisation (Figure 4) persist when started from a 
perfectly‐adapted state (Figure 5). The environmental sensitivity 

of genotypes (plasticity) may also increase or reduce phenotypic 
variance in different parts of the gradient (Saxon, O'Brien, & 
Bridle, 2018), potentially increasing standing load, without neces-
sarily increasing evolutionary potential (Chevin, Collins, & Lefevre, 
2013).

Our simulations demonstrate that stochastic effects along non-
linear gradients have contrasting effects depending on how and 
where the gradient changes. Along steepening gradients, increas-
ing carrying capacity increases the critical gradient at which adap-
tation fails (Figure 3a), and so allows the population to expand its 
niche further into the steepening regions of ecological change at the 
patch edge. By contrast, where a linear gradient is interrupted by a 
flat region where gene flow generates no standing load, stochastic-
ity makes niche expansion more likely, apparently by reducing the 
strength and consistency of the density gradient (and swamping ef-
fect) generated by the abrupt change in the ecological gradient.

4.6 | Maximizing evolutionary responses in natural 
populations

Our simulations, and similar models, make important simplifying as-
sumptions. In particular, our ecological gradients remain constant 
over 100s or 1,000s of generations. Although this might be reason-
able for some abiotic gradients, it is less likely where species’ inter-
actions are strong (e.g., Case et al., 2005; Singer & Parmesan, 2019), 
where interactions occur between alleles from different species 
(e.g., Svensson & Connallon, 2018), or where behavioural responses 
of organisms may smooth or steepen ecological gradients locally 
(Nadeau, Urban, & Bridle, 2017a, 2017b). In particular, rapid changes 
in biotic interactions (e.g., due to prey‐switching or host‐switching 
by predators or pathogens in some regions of climatic space) could 
quickly create nonlinear ecological gradients. Nonlinear ecological 
gradients will also occur where changes in some values for a given 
trait require more allelic substitutions than others, because of non-
additive genetic effects (Butlin et al., 2003; Savolainen, Lascoux, & 
Merilä, 2013).

It remains difficult to obtain empirical measurements of the eco-
logical and genetic parameters necessary to predict where range 
margins might occur. Nevertheless, our simulations do suggest some 
principles for managing populations to maximize their evolution-
ary potential. In particular, the surprising sensitivity of population 
density to asymmetrical effects generated by varying gradients in 
space, even on scales below the dispersal distance, suggests that im-
provements in patch centres might reduce adaptation towards patch 
margins, compromising the persistence of a population in a patch, 
and its potential to act as a source of colonists for other patches. 
Improving habitat at patch centres might therefore reduce the geo-
graphical range of target populations. Assisted migration and hab-
itat improvements should therefore focus on patch margins rather 
than on their centres, which would reduce the density gradient (and 
asymmetry in gene flow) at the patch edge, so helping populations 
to adapt past the demographic sink created by an abrupt change in 
the environmental gradient.
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Such efforts would be especially important for organisms where 
the ecological gradient varies in space at a fine scale relative to indi-
vidual mobility, and where local population densities can vary widely. 
Similarly, for steepening (but continuous) gradients, if conservation 
efforts focus on improving conditions at patch centres, gradients at 
the edge will be made steeper which will reduce the occupied area. 
Therefore, for both flat‐linear and steepening gradients, improving 
the margin, even if it cannot be brought to the same quality as the 
centre, will increase the area of ecological space occupied by the 
population. This will, in turn, increase genetic variation at the centre 
(even if it reduces central density), so increasing evolutionary resil-
ience to ongoing environmental change and the potential of the patch 
to act as a source for (re)colonization of other ecological patches.
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