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Abstract

Satellites enable widespread, regional or global surveillance of volcanoes and

can provide the first indication of volcanic unrest or eruption. Here we consider

Interferometric Synthetic Aperture Radar (InSAR), which can be employed to

detect surface deformation with a strong statistical link to eruption. Recent

developments in technology as well as improved computational power have re-

sulted in unprecedented quantities of monitoring data, which can no longer be

inspected manually. The ability of machine learning to automatically identify

signals of interest in these large InSAR datasets has already been demonstrated,

but data-driven techniques, such as convolutional neutral networks (CNN) re-

quire balanced training datasets of positive and negative signals to effectively

differentiate between real deformation and noise. As only a small proportion

of volcanoes are deforming and atmospheric noise is ubiquitous, the use of ma-

chine learning for detecting volcanic unrest is more challenging than many other

applications. In this paper, we address this problem using synthetic interfero-

grams to train the AlexNet CNN. The synthetic interferograms are composed

of 3 parts: 1) deformation patterns based on a Monte Carlo selection of pa-

rameters for analytic forward models, 2) stratified atmospheric effects derived

from weather models and 3) turbulent atmospheric effects based on statistical
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simulations of correlated noise. The AlexNet architecture trained with synthetic

data outperforms that trained using real interferograms alone, based on clas-

sification accuracy and positive predictive value (PPV). However, the models

used to generate the synthetic signals are a simplification of the natural pro-

cesses, so we retrain the CNN with a combined dataset consisting of synthetic

models and selected real examples, achieving a final PPV of 82%. Although

applying atmospheric corrections to the entire dataset is computationally ex-

pensive, it is relatively simple to apply them to the small subset of positive

results. This further improves the detection performance without a significant

increase in computational burden (PPV of 100%). Thus, we demonstrate that

training with synthetic examples can improve the ability of CNNs to detect vol-

cano deformation in satellite images, and propose an efficient workflow for the

development of automated systems.

Keywords: Interferometric Synthetic Aperture Radar, volcano, machine

learning, detection

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) employs differences in

the phase of radar waves returning to the satellite to generate maps of surface

deformation. Statistically the deformation at volcanoes is statistically linked to

eruption [1], and unlike other satellite methods, is dominantly detected prior to5

eruption [2]. This could allow volcanologists to monitor volcanic activity in large

and remote areas, which is particularly valuable in developing countries where

expertise and ground monitoring equipment may be insufficient. Contemporary

satellites, such as Sentinel-1, provide global coverage, shorter timespan and high

resolution images. This results in very large amount of data that makes manual10

inspection infeasible.

InSAR images, known as interferograms, contain contributions both from

volcanic deformation and the radar path through the atmosphere. The at-

mospheric artefacts can dwarf the deformation signal [3, 4, 5], making simple
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threshold-based approaches to automatic detection impractical. Atmospheric15

corrections can be applied based on external data sources such weather models,

or GPS tropospheric delays, or by applying statistical approaches to phase-

elevation correlations or time-series [e.g. 6, 7, 8]. However, these are time con-

suming to apply to large datasets, and typically cannot be applied in real-time

or to wrapped data. Blind source separation techniques, such as Independent20

Component Analysis (ICA), have the potential to automatically isolate differ-

ent signals, thus making changes in the deformation component easier to detect

[9, 10], but have so far only been tested on a few case studies.

Deep convolutional neural networks (CNN) – a class of neural networks

inspired by deeply complex hierarchical structure of neurons that connect in25

multiple layers via learnable filters [11] – is one of the feasible methods for

automatically analysing global datasets. Our previous ’proof-of-concept’ study

demonstrated the ability of CNNs to detect rapidly deforming systems that

generate multiple fringes in wrapped interferograms [12] but could not reliably

distinguish between deformation signals and atmospheric artefacts in a small30

percentage of cases. Our approach is to use machine learning to interrogate the

large dataset of wrapped interferograms and identify a subset of images to apply

unwrapping algorithms and atmospheric corrections. Improving the efficiency

of the algorithm by reducing the number of false positives will thus reduce the

need for unwrapping and atmospheric correction.35

CNNs require a balanced dataset for training otherwise the algorithms can

become ’over-tuned’ to specific case studies [13]. This is a challenge for this

application because few automatically-generated interferograms contain signif-

icant deformation signals - most are short-duration and cover volcanoes that

are not deforming, or are deforming slowly. For example, Anantrasirichai et.40

al. [12] used a dataset of >30,000 Sentinel-1 interferograms produced by the

LICSAR system which covered ∼900 volcanoes globally, but only contains 42

interferograms that show deformation signals. The imbalance in training data

can be mitigated by artificially subsampling or upsampling the training set.

Anantrasirichai et. al. [12] used programmatic data augmentation to increase45
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the number of deformation samples by applying transformations (i.e. rotations,

flips, distortions and pixel shifts) on the existing positive samples. However,

the problem of a within-class imbalance is still present [14] because the charac-

teristics of global volcanic deformation cannot be generalised using the limited

number of deformation samples, even when augmented.50

In this paper, we aim to improve the ability of the CNN model to distin-

guish deformation signals from atmospheric artefacts by using synthetic data to

overcome imbalanced training data problem. The synthetic interferograms are

generated from three main components, which are surface deformation, strat-

ified atmosphere and turbulent atmosphere. The synthetic deformation sig-55

nals are produced using simple elastic sources for earthquakes, dykes, sills and

point pressure changes at magma chambers [15, 16, 17]. The stratified atmo-

spheric interferograms are obtained from the Generic Atmospheric Correction

Online Service (GACOS) [18], whilst the turbulent atmospheric interferograms

are simulated using the statistical characteristics of correlated noise in real in-60

terferograms [19, 20]. The classification method is developed through a transfer

learning strategy by fine-tuning a pretrained CNN network.

2. Convolutional Neural Networks and Training Dataset Problems

Machine learning (ML) is a popular approach to data analysis that automati-

cally discriminates input patterns into learnt or defined classes. The most popu-65

lar, and perhaps most powerful, ML tools for image classification and recognition

are deep convolution neural networks (CNNs). These data-driven approaches

are hierarchical feature learning methods, which are straightforward to adapt

to most specific applications without the need for manual feature extraction.

However, the main drawback of CNNs is that the most efficient and successful70

models require a large training set of labelled data.

2.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep feed-forward ar-

tificial neural networks. They comprise a series of convolutional layers that are
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designed to take advantage of 2D structures, such as an image. These convo-75

lutional layers employ locally connected layers that apply convolution between

a predefined-size kernel and an internal signal, i.e. the output of the convolu-

tional layer is the input signal modified by a filter. The weights of the filter are

adjusted using a loss function and backpropagation (the backward propagation

of errors) through multiple forward and backward iterations. This aims to de-80

termine what features are being detected associating to nature of the training

data. The early layers extract low-level features conceptually similar to vision

basis functions found in the primary visual cortex [21].

The most common architecture of a CNN has the convolution layer connected

to a pooling layer, which combines the outputs of neuron clusters at one layer85

into a single neuron. Some architectures omit pooling layers to obtain dense

features [22, 23]. Subsequently, activation functions such as tanh (the hyperbolic

tangent) or ReLU (Rectified Linear Unit) are applied to introduce non-linearity

into the networks [24]. This structure is repeated with similar or different kernel

sizes. As a result, the CNN learns to detect edges from the raw pixels in the90

first layer, then uses the edges to detect simple shapes in the next layer, for

example. The higher layers produce higher-level features, which have more

semantic meanings. The last few layers are the classification part. It consists

of some fully connected layers, having full connections to all the activations in

the previous layer, and a softmax layer, where the output class is modelled as a95

probability distribution - exponentially scaling the output to be between 0 and

1 (also called normalised exponential function).

2.2. Imbalanced training data and solutions

Imbalanced data problems in classification occur when data sets have skewed

class distributions, i.e. the majority of data instances belong to one class and100

far fewer instances belong to others. This causes classifier algorithms to have

a bias towards classes which have a greater number of instances and preferen-

tially predict majority class data. Features of the minority class are treated

as noise and are often ignored. Although deep CNN approaches often perform
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better than traditional machine learning methods in many applications, their105

performance can be worse with imbalanced datasets [13].

Numerous approaches have been introduced to create balanced distributions

of data and these can be divided into two major groups: modification of the

learning algorithm, and data manipulation techniques [25]. The first group

modifies existing algorithms to give greater emphasis to the minority classes.110

This can be achieved using cost-sensitive learning which assigns costs with a

higher penalty for minority class samples [26]. A cost matrix representing the

cost of each type of misclassification is applied and the result is the class with

minimum expected cost, described by the summation of all class probability

estimations weighted with the cost matrix. However, it is generally difficult to115

optimise the cost matrix for this method. The second group tries to rebalance

the class distributions of the training data. Typical methods include downsam-

pling majority classes, oversampling minority classes, or both. This group is

favoured and simpler as the only change needed is the training data rather than

the learning algorithms. The disadvantage of downsampling is that many data120

instances in the majority class are ignored, which may result in the loss of infor-

mation. In contrast, the synthetic minority oversampling technique (SMOTE)

is a powerful method that creates synthetic data points from the existing ones

[27].

However, none of these approaches are suitable for the problem of deforma-125

tion classification in InSAR datasets. The number of interferograms showing

deformation is approximately 0.15% of all acquired interferograms, and if com-

puting in pixels, the ratio of positive and negative areas is only 1:15,000. The

global dataset used in [12] covers over 900 volcanoes in 2016-2017, but only 4

volcanoes deformed, namely Cerro Azul, Sierra Negra, Etna and Erta Ale. This130

means that all existing methods would likely lead to overfitting as the char-

acteristics of known ground deformation are not generic enough to represent

deformation at the wide range of volcanoes globally. Therefore, we propose gen-

erating synthetic data to improve classification performance, using established

models that represent existing data well, but are flexible enough to generate a135
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wider range of possible signals.

3. Generation of Synthetic Training Data

CNNs are data-driven methods, so it is critical to train the networks using

appropriate data. In this paper, we use existing models to create synthetic

examples of a) deformation, b) stratified atmospheric artefacts and c) turbulent140

atmospheric artefacts. We use a Monte Carlo approach to select parameter

values, thereby including scenarios that are considered feasible but have not

actually been observed. The resulting synthetic training datasets should provide

a better generalisation than the real dataset.

InSAR produces maps of phase change between two time-separated radar145

images. The phase shift is a combination of i) satellite viewing geometry, ii) in-

strument thermal noise, iii) atmospheric delay, iv) systematic changes to dielec-

tric properties, v) scattering properties of a pixel, and vi) surface deformation

[e.g. 28, 20, 4]. The atmospheric delay can be decomposed into atmospheric

stratification and turbulent mixing [29]. The first component results in phase150

delays correlated with topography, whilst the second component is frequently

considered as random patterns in space and time, with spatial correlation over

distances of ∼10 km [29].

We generate the 10,000 synthetic images for each of the 3 components under

consideration, namely deformation D, stratified atmosphere S, and turbulent155

atmosphere T . Each image represents a region spanning ∼0.5◦ in latitude and

longitude (equivalent to an image resolution of 500×500 pixels for the Sentinel-1

dataset). Fig. 1 shows example synthetic images of D, S and T (converted to

wrapped images). The methods of synthetic data generation are described as

follows.160

3.1. Deformation

We synthesise deformation signals, D, using widely-used analytic solutions

for describing the surface deformation associated with simple geometric sources
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Figure 1: Synthetic components used for generating synthetic interferograms (shown in

wrapped angles in radians with the size of 500×500 pixels). Column 1 and 2 show different

types of deformations. Column 3 and 4 show weak and strong stratified atmospheres (using

the Generic Atmospheric Correction Online Service (GACOS)) obtained from the same loca-

tions, which are Tungurahua, San Miguel and Erta Ale from top to bottom rows, respectively.

Column 5 shows turbulent atmospheres from low to high σ2
max in the top to the bottom rows,

respectively.

embedded in an elastic half-space. We used a Monte Carlo approach to select

source parameters and project the 3-D surface displacement into the satellite165

line-of-sight using incidence angles of 0◦-45◦, and heading angles of 0◦-360◦. The

CNN is not sensitive to orientation, so this represents the widest range of angles

between source and viewing geometries. Inflation and deflation of a magma

chamber is modelled using a point pressure source (Mogi) model [15], with

depths of 1-10 km, and volumes of 105-107 m3. For sill-like magma intrusions,170

the displacement is calculated using a model of a horizontal circular (penny

shaped) crack [17] using a radius of 0.5-6 km, pressure changes of 105-107 Pa

and depths of 0.5-6 km3. Deformation due to earthquakes, dykes and horizontal

sills is modelled using an Okada dislocation model [16], which describes shear

and tensile dislocations. Earthquakes are allocated strikes in the range 0◦-360◦,175

dip of 45◦-90◦, rake of 0◦-360◦, length of 0.5-10 km, depth of 1-15 km, and slip
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of 0.5-2 m. Dykes are allocated strikes in the range 0◦-360◦, dip of 45◦-90◦,

length of 2-8 km, depth of 1-5 km, and opening of < 1 m. Horizontal sills are

allocated strikes in the range 0◦-360◦, dip of 0◦-10◦, length and width up to

5 km and depth of up to 6 km.180

3.2. Stratified atmosphere

We use the Generic Atmospheric Correction Online Service (GACOS) to

model stratified atmosphere, S, based on weather model data [30, 18, 31]. Zenith

total delay (ZTD) maps are derived from the high-resolution water vapour delays

(0.125◦ and 6-hour resolutions) generated by the European Centre for Medium-185

Range Weather Forecasts (ECMWF). GACOS uses an Iterative Tropospheric

Decomposition (ITD) model [30] to separate stratified and turbulent signals

from tropospheric total delays and the final ZTD maps are interpolated to 90m

spatial resolution and the time of acquisition using the Digital Elevation Model

(DEM) from the Shuttle Radar Topographic Mission (SRTM). We generated190

100 GACOS tropospheric delay maps from each of 100 representative volcanoes

with 12-day intervals between images starting from 1 January 2016. We account

for the different between zenith and the satellite line of sight by applying a scalar

factor representative of Sentinel-1 incidence angles.

3.3. Turbulent atmosphere195

Turbulent atmospheric delays, T , are spatially correlated and their covari-

ance can be described using an exponentially decaying function. For simplicity,

the statistical properties of the atmosphere are assumed to be radially symmet-

ric and have a homogeneous structure across the interferogram [29, 32]. The

one-dimensional covariance function is cij = σ2
maxe

(−κdij), where cij is the co-200

variance between pixels i and j, dij is the distance between the pixels, σ2
max

is maximum covariance and κ is the decay constant, which is equivalent to the

inverse of the e-folding wavelength [20, 33]. We can estimate these parameters

from real interferograms, and based on all available 30,249 Sentinel-1 interfer-

ograms, we employ σ2
max of 5 - 9 mm2 and κ of 4 - 18 km. We use Monte205
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Carlo samples of these distributions to generate synthetic variance-covariance

matrices and use a Cholesky decomposition to produce synthetic images with

the corresponding statistical properties.

4. Method Development

The proposed machine learning framework shown in Figure 2 employs con-210

volutional neural networks to identify volcanic deformation in InSAR data. Ini-

tially we train the network using just the synthetic images (see section 4.1).

They are labelled as 1 or positive, where deformation is included; and 0 or

negative in other combinations. Then, the initial model is employed in the

prediction process (see section 4.2), where the new interferogram is divided215

into overlapping patches and those containing phase jumps are tested with the

trained CNN model. The results are then checked by an expert, the model is

retrained, and the classification is repeated (see section 4.3).

4.1. Initial models with synthetic data

We use a transfer learning strategy, which involves fine-tuning a pretrained220

network rather than training a new network by initialising weights and biases

with zeros or random values. The training process of this approach is faster

as the parameters and features of the pretrained networks have been learnt

using a large number and a variety of natural images, which can be classified

up to 1,000 categories. In this paper, we aim to classify two categories, volcanic225

deformation and non-deformation, so the last two layers -— a fully connected

layer and a softmax layer -— are amended and they are learnt with significantly

faster learning rate than other layers that are directly transferred from the

pretrained network. We use AlexNet as our previous study demonstrated that

it outperforms other pretrained networks for this application [12]. AlexNet230

contains five convolutional layers and three fully connected layers. The first,

the second and the fifth convolutional layers are followed by max-pooling layers.

ReLU is applied after very convolutional and fully connected layer. Our previous
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Figure 2: The proposed framework consists of two parts: (a) the training process and (b) the

prediction process. For training, synthetic examples are first employed to train the CNN to

obtain the initial model. The prediction process tests the patches of new interferograms and

gives the outputs as the probabilities P of being ground deformation, which are merged with

Gaussian weights. Finally, the expert checks the result, and the true and false positives are

included to retrain the CNN using a combination of real and synthetic examples for better

performance. CNN = convolutional neutral network.

work found that the validation accuracy saturates around epoch 30-40 (one

epoch is when the entire dataset is passed forward and backward through the235

neural network), so we set the maximum number of epochs to 50. Setting the

number of epochs too high could result in over-fitting, and early stopping can

be used to stop the training process when validation errors start to increase

[34]. The entire dataset cannot be fed into the neural network at once, so it

is divided into multiple batches. We set the batch size to the maximum of the240

available system memory which is 100. The output of the softmax layer is the

predicted probability for each class. The symbol P in this paper represents the

probability of the interferogram containing a component of deformation.

We use the 10,000 synthetic examples of each component (D, S, and T ) to

create synthetic interferograms which are the summation of two or three signals245
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A

B

Figure 3: Two examples of synthetic interferograms created by combining synthetic un-

wrapped deformation (D), stratified atmosphere (S) and turbulent atmosphere (T ). Both

example A and B use D due to a volcanic magma chamber. A is generated with strong turbu-

lent and stratified atmospheric conditions (S is taken from Etna, 20150805-20150817), whilst

B employs small atmospheric artefact (S is taken from Alutu, 20150101-20150125). The pa-

rameters for generating T are estimated from the real interferograms of the same areas. The

unit of the colourbar is radian.

with equal or unequal weights, i.e. aD+bS+cT , where a, b, c ∈ [0, 1]. Two

examples of synthetic interferograms are shown in Fig. 3, including a difficult

case, A, and an easy case, B. Both example A and B use D due to a volcanic

magma chamber with volume change of 107 m3 at depth of 5 km and incident
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angle of 30◦, but opposing heading angles. A is an example of the challenges250

of classification due to strong turbulent and stratified atmospheric conditions.

In contrast, B is an easier case as the topographically-correlated atmospheric

artefact, S, is small. The synthetic interferograms are then cropped to the

input size for the CNN (e.g. 224×224 pixels for AlexNet [11]) and wrapped

to the interval [−π, π]. For the purposes of machine learning, we convert the255

wrapped interferograms into grayscale images, i.e. the pixel value in the range of

[−π, π] is scaled to [0, 255] or [−125, 125] if zero-centre normalisation is required.

For the following combinations, each class contains 10,000 synthetic wrapped

interferograms.

1. 2-class model: The model is trained with 2 classes: deformation and260

non deformation. We generated the training data by combining signals

D+S+T for the deformation class and only S+T for the non deformation

class. For each combined signal, the components D, S and T are randomly

selected.

2. 3-class model: Initially we trained the CNN with completely separate265

D, S and T signals, but this is a poor representation of real datasets, so

we also trained the classifier with several more realistic combinations (e.g.

D + S,D + T,D + S + T ) as shown in Table 1.

3. 91-class model: We generated weighted interferograms (I) by com-

bining three components as I = (αD + βS + γT )/(α + β + γ), where270

(α, β, γ) ∈ [0, 0.25, 0.5, 0.75, 1]. Varying three weights with five values

creates 91 unique combinations, resulting in 91 classes: class 1 is [α1=0,

β1=0, γ1=1]; class 2 is [α2=0, β2=0.25, γ2=0.75]; class 3 is [α3=0, β3=0.5,

γ3=0.5]; ...; class 91 is [α91=1, β91=1, γ91=1]. We then apply a weight

estimation approach using a multinomial classification. We estimate the275

strength of each component as multi-class problem and the model outputs

a probability of each weight for each class Pc = {Pα, Pβ , Pγ}c. The final
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predicted weight wfinal = {α, β, γ}final is

wfinal =

91∑
c=1

wcPc, wc ∈ {αc, βc, γc} (1)

The training processes were run on a graphics processing unit (GPU) at the

High Performance Computing facility (BlueCrystal phase 4) at the University280

of Bristol. The 2-class, 3-class, and 91-class models were completed in approxi-

mately 10, 14 hours and 108 hours, respectively. The results are shown in Table

1, including classification accuracy (Acc.) and class recall (RC), where RCc is

the recall of class c, numbered following the order of the model name, e.g. for

model “D+S vs S vs T”, c=1 for class D+S, c=2 for class S, and c=3 for class285

T . All models perform well on synthetic testing data (the accuracy and class

recall are all more than 90%).

4.2. Testing with real data

Next we investigate how well a CNN trained with synthetic signals performs

on real interferograms using the same dataset as our proof-of-concept study [12].290

The InSAR data was acquired by the Sentinel-1 radar mission operated by the

European Space Agency (ESA), and processed with the automated InSAR pro-

cessing system LiCSAR (http://comet.nerc.ac.uk/COMET-LiCS-portal/) de-

veloped by the Centre for Observation and Modelling of Earthquakes, Volcanoes

and Tectonics (COMET). Our dataset consists of 30,249 interferograms covering295

∼900 volcanoes during the year 2016 and 2017. The data set is weighted towards

European volcanoes, which correspond to almost 50 % of the total available im-

ages because the orbit cycle is the shortest (every 6 days) and the LiCSAR

system has been running for the longest time period (2 years). The LiCSAR

system routinely calculates inteferograms for the three closest combinations,300

forming a trio of interferograms of increasing time-span. Each interferogram

is cropped to a region spanning 0.5◦ in latitude and longitude centered on the

volcano edifice. From this global dataset, we expect to fully explore the range of

InSAR atmospheric and deformation signals as the volcanoes studied are located
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Table 1: Classification performances of CNN models trained by synthetic data and a combi-

nation of real and synthetic examples. Each model was tested with both the synthetic testing

data and the real data. For the synthetic testing data, the performance is evaluated with

classification accuracy (Acc.) and class recall (RC), where RCc is the recall of class c. For

the 91-class model, the performance of the prediction is measured with the mean square error

(MSE). MSEall is the MSE of all predicted weights, and MSEα, MSEβ , MSEγ are the MSEs

of predicted α, β and γ, respectively. For the real data, the results show the performance

of deformation detection. This evaluated on 30,249 interferograms of the Sentinel-1 dataset,

of which 42 interferograms were marked as true deformations. The objective results show

the total number of predicted positives (P), the numbers of confirmed true positives (TP),

confirmed false positives (FP), and confirmed false negatives (FN).

Model
Synthetic testing data Real data (Sentinel-1)

Acc. RC1 RC2 RC3 # P # TP # FP # FN

2-class
Initial (Envisat) 0.893 0.943 0.844 - 1369 42 1327 0

Combination 0.897 0.880 0.974 - 104 42 62 0

2-class
D+S+T vs S+T 0.981 0.986 0.975 - 363 41 321 1

Combination 0.976 0.972 0.989 - 52 41 11 1

3-class

D vs S vs T 1.000 0.999 0.998 1.000 0 0 0 41

D+S vs S vs T 0.998 0.998 0.998 1.000 18 18 0 24

D+T vs S vs T 0.979 0.944 0.993 1.000 1411 42 1369 0

D+S+T vs S vs T 0.993 0.993 0.986 1.000 1370 42 1328 0

D+S+T vs S+T vs T 0.911 0.992 0.965 0.976 1160 42 1118 0

Combination 0.953 0.977 0.930 0.991 83 42 41 0

91-class
αD+βS+γT

MSEall=0.156, MSEα=0.068
334 38 295 1

MSEβ=0.099, MSEγ=0.071

Combination - - - - 50 41 9 1
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in different climate environments (e.g. temperate, tropical and arid) and have305

different morphologies ranging from steep stratovolcanoes, to shield volcanoes

or calderas.

During the prediction process, we divide the real interferogram into over-

lapping patches at the required input size for AlexNet (224×224 pixels). The

top-left position of each patch is then repeatedly shifted by 28 pixels to cover310

the entire image. We then employ Canny edge detection [35] to detect where

the phase jumps between -π and π. The patches containing the phase discon-

tinuities are fed to the trained CNN model to obtain the probability that they

represent ground deformation. Homogeneous areas, where there are no strong

edges associated with phase discontinuities, are unlikely to contain rapid vol-315

canic deformation. These patches are hence instantly defined as background

and are not tested by the CNN [12]. Finally the output probabilities from over-

lapping patches are merged using a rotationally symmetric Gaussian lowpass

filter with a size of 20 pixels and standard deviation of 5 pixels. The highest

probability Pmax and its location are indicated. The performances shown in320

Table 1 are chosen to emphasise the ability to detect deformation. This means

that if the probability of the class containing D or the weight α is the largest,

that interferogram is classified as deformation or positive (P).

Table 1 shows the number of the Sentinel-1 interferograms correctly classified

as containing deformation (true positive, TP), incorrectly (false positive, FP),325

and misdetection (false negative, FN). The experiments show that the cleaner

signals (“D vs S vs T” and “D+S vs S vs T”) are easier to classify, but the

models trained by them are not suitable for real interferograms. Combining

the turbulent atmospheric T and deformation D components during training

improves performance better than combining stratified atmospheric S and de-330

formation components D (i.e. the model of “D+T vs S vs T” performs better

on real data than that of “D+S vs S vs T”). However, the combined D+S+T

signals give the best performance as their characteristics are closest to the real

interferograms.
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4.3. Retraining with a combination of real and synthetic examples335

The CNN trained with only synthetic data outperforms the initial training

using earlier Envisat data, which found 1327 false positives, but still generates a

significant number of FP (321 for the 2-class model, >1000 for the 3-class model

and 295 for the 91-class model). This is because the synthetic examples are a

simplification of the real signals - for example, the deformation models only340

consider simplified source geometries and homogeneous elastic media, while the

the turbulent models only consider radially symmetric conditions. Hence the

synthetic data cannot fully reproduce the characteristics of the natural signals.

We therefore retrain the algorithm with a combination of the synthetic models

and some selected real examples.345

For the combined training dataset, we select real examples using the results

of the previous algorithm. The data preparation is straightforward for the 2-

class model: the patches included in class D+S+T are i) those of the TP

interferograms that have PD+S+T > 0.5 and ii) the deformation patches of the

FN interferograms. The patches of the FP interferograms that have PS+T > 0.5350

are used as class S+T . For the 3-class model, the model of “D+S+T vs S+T

vs T” gives the best performance and is selected for further analysis. The

patches included in class D+S+T are i) those of the TP interferograms that

have PD+S+T > 1/3, and ii) the deformation patches of the FN interferograms.

The patches of the FP interferograms that have PS+T > 1/3 are used as class355

S+T . For balancing the training samples, new synthetic T signals are also

added in class T and these are generated using σ2
max and κ computed from the

FP interferograms.

For 91-class model, the patches of the TP interferograms having α > β, γ

and the deformation patches of FN interferograms are used as class [α=1, β=0,360

γ=0]. For the FP interferograms, the turbulence parameter σ2
j,max is calculated

from the patch j. It is then used to estimate the weight γj , which equals to

(σ2
j,max − m)/r, where m and r are the minimum and the range values of all

σ2
max of synthetic T (here, m=5 and r=9 − 5=4 as mentioned in Section 3.3).

Consequently the patch j is used in the class c̃, where [αc̃=0, β=1−γc̃, γ=γc̃]365
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and c̃ = argmin
c
{(1− γj − βc)2 + (γj − γc)2}.

For valid evaluation, we carefully selected the false positive patches employed

in the retraining process by spatially-shifting the test patches. This means none

of the retraining data was the same as the test data. The results of the com-

bination models are shown in Table 1. Following training with a combination370

of both synthetic and real examples, our framework achieves the best positive

predictive value (PPV) of 82% using the “αD+βS+γT” model, followed by

the “D+S+T vs S+T” model with a PPV of 79%. These models reduce the

number of false positives by more than half when compared to our previous

study [12], where the initial CNN model was trained using real data from the375

Envisat satellite. However, there is one false negative at Sierra Negra (20170519-

20170531) as shown in Fig. 4 bottom row. This interferogram contains less than

one fringe of deformation, and the expert only identified this as deformation

because longer time period interferograms contain more fringes (e.g. interfer-

ograms of 20170425-20170531 and 20170519-20170718). These interferograms380

were correctly identified by all combination models, and this illustrates the po-

tential of using stacked data to identify smaller rates of deformation. Even the

best-performing combination model still identified 9 false positives, examples of

which are shown in Fig. 4.

4.4. Receiver Operating Characteristics385

The results were evaluated using a receiver operating characteristic (ROC)

curve shown in Fig. 5. This compares performance of each detection algorithm

by calculating true positive (TPR) and false positive rates (FPR) by varying

the probability thresholds for identify positives and negatives on the probabil-

ity map following the Gaussian merge process. (see Fig. 2). The TPR is the390

fraction of predicted positive samples that are retrieved over the total number

of actual positive samples, whilst the FPR is the number of negative samples

wrongly identified as positive divided by the total number of actual negative

samples. Fig. 5 also shows the area under curve (AUC), which is a metric

for binary classification measured by integrating all area under the ROC curve.395
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Figure 4: Results from retraining process using a combination of synthetic and real examples.

Each pair shows the original image (left) and overlaid with probability of being volcanic defor-

mation (right). Top row shows common false positives of all combination models, where the

left plot is at Adwa (20170516-20170609) Pmax=0.528 and the right plot is at Etna (20161214-

20170302) Pmax=0.547. Bottom row shows three successive interferograms at Sierra Negra,

where the left to the right plots are at (20170425-20170531), (20170519-20170531), (20170519-

20170718), respectively. The middle plot was acquired from the shortest duration and the

interferogram shows only one possible fringe, where the CNN models failed to detect this de-

formation, Pmax=0.274. However, the deformation signals were clearer in the longer-duration

interferograms, Pmax=0.988 (left) and Pmax=1 (right). Areas inside dark and bright green

contours are where P >0.5 and P >0.8, respectively. Each colour cycle (fringe) represents 2.8

cm of displacement in the satellite line-of sight.

Good classifiers will give high AUC values as they can detect the deformation

signals correctly and few true negatives are falsely identified as deformation.

The ROC curve in Fig. 5 were computed using 1160 real interferograms pre-

dicted as positives by “D+S+T vs S+T vs T” model. This provides a more

useful performance comparison than using all 30,249 interferograms because the400

large number of correctly predicted negatives will give the AUC of close to 1 for

all the models. The ROC curve reveals that the retraining process with both

synthetic and real data improves the classification performance. The combina-

tion “D+S+T vs S+T” and “αD+βS+γT models outperform the others with

the AUC of 0.983 and 0.982, respectively. We also include the ROC curves of405

the initial model trained by Envisat data and its retrained model with Sentinel-1
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data reported in our previous work [12]. The models trained with the synthetic

samples outperform the initial model with Envisat data by up to 5.6%, and the

combination models can improve the performance by up to 2.5% in term of the

AUC.410
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Figure 5: Receiver operating characteristic (ROC) curves for deformation detection on 1160

Sentinel-1 interferograms, which are all detected as positive by “D+S+T vs S+T vs T”

model. These compare classification performances between the models of “D+S+T vs S+T”,

“D+S+T vs S+T vs T”, “αD+βS+γT”, and their combination models. The plot also

includes the results of our previous work [12], both the initial model with Envisat data and

the retrained model. AUC = area under the curve.

5. Atmospheric correction

The majority of the false positives contain strongly stratified atmospheric

artefacts, which correlate with topography (Figure 4, Table 2). Although it is

not feasible to apply atmospheric corrections to the entire dataset of 30,000

inteferograms, doing so for the small number of positive detections is relatively415

simple.

We manually apply the GACOS corrections as described in section 3.2 to

each of the 51 positive results of the augmented “D+S+T vs S+T” model and

an additional 2 false positives of the augmented “αD+βS+γT”. One true pos-

itive interferogram, Etna (20161003-20161015), was not processed because the420
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the unwrapped file was not available from the LICSAR system. We request

the GACOS zenithal tropospheric delays for the corresponding locations and

acquisition dates and calculate the ZTD difference (slave-master) for each in-

terferogram and reproject it in the corresponding line-of-sight. For any missing

values (incoherent regions), we interpolate them from the pixel values on the425

outer boundary of the missing regions [36]. This technique computes the discrete

Laplacian over the regions and solves the Dirichlet boundary value problem to

find a differential equation that is valid to the available outer boundary values.

We then test the atmosphere-corrected inteferograms using the three best

combination models, i.e. “D+S+T vs S+T” model, “D+S+T vs S+T vs T”430

model, and “αD+βS+γT” model. All 41 true positives are still identified as

positives for all three combination models, which confirms that the atmospheric

correction does not deteriorate the performance of the detection algorithm. 11

of 12 interferograms previously detected as false positives are now correctly

identified by all three combination models. One interferogram of Mount Pico435

(Fig. 6 bottom row) does not contain deformation but is identified as positive

by the “D+S+T vs S+T vs T” model with Pmax=0.652 after atmospheric

correction. However, it is correctly identified by the “D+S+T vs S+T” model

and αD+βS+γT model with Pmax=0.475 and 0.076, respectively. Mount Pico

is located on Pico Island in the Atlantic ocean and because the weather model440

resolution is approximately 10 km, the GACOS correction does not perform

well on such a small island. Table 2 shows the volcano list of false positive

interferograms before applying atmospheric correction. The Pmax (maximum

between the results of the combination “D+S+T vs S+T” and “αD+βS+γT”

models) shows the correct detection after mitigating atmospheric delay.445

Fig. 6 compares the interferograms before and after applying the atmo-

spheric correction. The first column is the unwrapped interferograms. The

second and the third columns are the wrapped interferograms along with the

classification results. The top row (Adwa (20170516-20170609)) reveals that the

atmospheric correction can improve the classification performance, by reduc-450

ing false positives. The second row (Sierra Negra (20170308-20170413)) shows
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Table 2: 12 false positive interferograms before applying atmospheric correction from the

combination “D+S+T vs S+T” and “αD+βS+γT” models. The Pmax of ‘uncorrected’ and

‘corrected’ interferograms are the maximum between the results of the combination “D+S+T

vs S+T” and “αD+βS+γT” models.

Name location type dates
Pmax

uncorrected corrected

Adwa Ethiopia stratovolcano 20170410-20170609 0.521 0.104

Adwa Ethiopia stratovolcano 20170516-20170609 0.528 0.001

Alayta Ethiopia shield volcano 20170104-20170305 0.512 0.000

Alayta Ethiopia shield volcano 20170516-20170609 0.851 0.010

Ale Bagu Ethiopia stratovolcano 20170516-20170609 0.691 0.004

Etna Italy stratovolcano 20161027-20161202 0.689 0.001

Etna Italy stratovolcano 20161202-20161208 0.516 0.004

Etna Italy stratovolcano 20161214-20170302 0.547 0.045

Etna Italy stratovolcano 20170425-20170507 0.543 0.291

Gran Canaria Canary Islands fissure vent 20170417-20170423 0.626 0.465

Gran Canaria Canary Islands fissure vent 20170417-20170505 0.519 0.450

Pico Pico Island stratovolcano 20170621-20170727 0.507 0.475
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correctly detected true positives. The third row (Pico (20170621-20170727))

shows the remaining false positive at Mt Pico where the weather model per-

forms poorly.

Unwrapped interferograms Wrapped interferograms and detected results

Uncorrected Corrected Uncorrected Corrected
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Figure 6: Deformation detection results of the uncorrected and corrected interferograms.

(top-row) Adwa (20170516-20170609) is an example of an improvement on false negative to

true positive for all combination models. (middle-row) Sierra Negra (20170308-20170413)

shows that the true positive result is still correctly identified for all combination models.

(bottom-row) Pico (20170621-20170727) is the remaining false positive identified by only the

combination “D+S+T vs S+T vs T” model. The brighter yellow means higher probability.

Areas inside dark and bright green contours are where P >0.5 and P >0.8, respectively. Each

colour cycle (fringe) of the wrapped interferograms represents 2.8 cm of displacement in the

satellite line-of sight
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6. Discussion455

Satellite systems, such as InSAR, have the potential to routinely monitor

surface deformation at volcanoes globally. They provide a large amount of

data and make it available for public access. However, this has brought new

challenges, as more data are impracticable to be analysed manually. Machine

learning offers a possible solution, but the currently available Sentinel-1 dataset460

has a relatively small number of interferograms that show deformation, leading

to a class imbalance problem in training datasets.

6.1. Performance of the synthetically-trained CNN

This paper presents a machine learning framework based on deep convolu-

tional neural networks (CNNs) and solves the imbalanced training data using465

synthetic examples. It demonstrates the capability to identify rapid deforma-

tion signals from a large data set of interferograms with an improvement over

our previous model which was trained using real interferograms [12]. However,

there are still some limitations in the current process, which are discussed in

this section. These require further development before this could be used as an470

operational global alert system for volcanic unrest.

The CNN models trained with the synthetic examples yield better gener-

alisation performance, which is the ability of prediction on unseen samples,

compared to the CNN models trained by real interferograms only. Using syn-

thetic data overcomes the limitations caused by the small number of observed475

deformation signals, by including patterns which are physically plausible, but

have not yet been observed. However, the mathematical approximations that

we use to generate our synthetic deformation signals simplify the volcano’s mag-

matic plumbing system into a single source geometry (e.g. sphere, rectangular

dislocation) and ignore heterogeneities in material properties and rheological480

parameters, but assuming an elastic half-space. Consequently, it cannot be

guaranteed that our framework is sufficiently flexible to detect all possible de-

formation patterns. One possibility is to lower the probability threshold at

24



which an image is flagged as ‘deformation’ (currently we simply set the thresh-

old at P >0.5), but this would increase the number of false positives (see Fig.485

5). Another possibility is outlier analysis, also known as anomaly detection,

which can be used to identify rare events which differ significantly from the

majority of the data [e.g 37]. For this application, the background, including

homogeneous areas, noise and atmospherically affected areas, could be modelled

as a common multidimensional pattern [38, 39], and deformation flagged when490

the observed signal does not conform.

Tropospheric delays in InSAR can be seperated into a turbulent component

and a stratified component, which correlates with topography and often dom-

inates the signal at volcanic edifices. As shown in Table 2, the false positives

that remain after retraining the CNNs with a combination of real and synthetic495

data occur at the locations and times that have strong stratified atmospheric

delays. In section 5 we show that the atmospheric correction can be applied

to improve detection accuracy. This however requires unwrapping algorithms

which are computationally expensive, particularly in areas of low or patchy co-

herence. The correction method also relies on weather model, e.g. European500

Centre for Medium-Range Weather Forecasts (ECMWF) used in GACOS [18],

which is less accurate at the islands, where surrounding ocean causes complex

and high tropospheric delays. However, by applying this correction only to pos-

itive results identified by the CNN, we reduce the overall computational expense

without sacrificing accuracy.505

6.2. Other sources of error

The synthetic training dataset only considers very simple atmospheric condi-

tions with a radially symmetric turbulent component, but more complex atmo-

spheric phenomena are often observed in interferograms, e.g. atmospheric rolls,

orographic effects ([e.g. 33]). Similarly, our synthetic training dataset does not510

currently consider interferometric coherence. Low coherence values are caused

by changes to backscattering, and typically occur over densely vegetated areas,

such as forests. Affected areas appear as random noise in the interferograms.
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Shadow areas cannot be reached by the radar pulses, and no backscatter is

recorded at these locations. These signals could be misinterpreted by our cur-515

rent models. To improve performance in these cases, the coherence map could

be incorporated into the loss function (cost function), which is used for evalu-

ating how well the learning algorithm models the given data. When calculating

loss value during training, higher weights would be assigned to data with higher

coherence as they are more reliable.520

CNNs have proved their ability to capture noise characteristics through de-

noising applications [40]. The trained kernels extract different low level features,

such as brightness, lines and points. These features are combined in the higher

layers to produce complex features and more semantic meaning. In this study,

non-atmospheric noise is only learnt as part of the negative class during the525

retraining with real data, but synthetic examples could be included in future

studies.

7. Conclusions

This paper presents machine learning frameworks that automatically search

through large volumes of wrapped InSAR images to detect rapid ground defor-530

mation that may be related to volcanic activity. The >30,000 short-term inter-

ferograms at over 900 volcanoes were systematically processed, but the majority

of them were not deforming or were deforming slowly, leading to a problem of

highly imbalanced training data. We solved this issue using synthetic exam-

ples, where three major components, i.e. deformation, stratified and turbulent535

atmospheres, were generated and combined for 2-, 3- and 91-class training.

The synthetic deformations were generated using simple analytic models, the

stratified atmospheres were acquired from the Generic Atmospheric Correction

Online Service (GACOS), and the turbulent atmospheres were generated using

the statistical properties of correlated noise. The classification models were then540

initialised with these synthetic datasets using the pretrained CNN, AlexNet. Af-

ter an initial run, expert classification of the positive results were used to retrain
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the network with a combination of real and synthetic examples. The proposed

framework achieves better performance than using the real interferograms alone

– reducing the number of interferograms that required manual inspection by half545

and decreasing the number of false positives by >80%. Finally we present an

atmospheric correction method used for analysing the suspicious positives. The

results show that the combination CNN model can well classify the corrected

interferograms.
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