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Key Points: 18 

• A global hydrography map was generated using latest topography datasets 19 

• Near-automatic algorithm applicable for global hydrography delineation 20 

• Adjusted elevation and river width layers consistent with flow direction map 21 
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Abstract 22 

High-resolution raster hydrography maps are a fundamental data source for many geoscience 23 
applications. Here we introduce MERIT Hydro, a new global flow direction map at 3 arc-second 24 
resolution (~90 m at the equator) derived from the latest elevation data (MERIT DEM) and water 25 
body datasets (G1WBM, GSWO, and OpenStreetMap). We developed a new algorithm to 26 
extract river networks near-automatically by separating actual inland basins from dummy 27 
depressions caused by the errors in input elevation data. After a minimum amount of hand-28 
editing, the constructed hydrography map shows good agreement with existing quality-controlled 29 
river network datasets in terms of flow accumulation area and river basin shape. The location of 30 
river streamlines was realistically aligned with existing satellite-based global river channel data. 31 
Relative error in the drainage area was <0.05 for 90% of GRDC gauges, confirming the accuracy 32 
of the delineated global river networks. Discrepancies in flow accumulation area were found 33 
mostly in arid river basins containing depressions that are occasionally connected at high water 34 
levels and thus resulting in uncertain watershed boundaries. MERIT Hydro improves on existing 35 
global hydrography datasets in terms of spatial coverage (between N90 and S60) and 36 
representation of small streams, mainly due to increased availability of high-quality baseline 37 
geospatial datasets. The new flow direction and flow accumulation maps, along with 38 
accompanying supplementary layers on hydrologically adjusted elevation and channel width, 39 
will advance geoscience studies related to river hydrology at both global and local scales. 40 

 41 

Plain Language Summary 42 

Rivers play important roles in global hydrological and biogeochemical cycles, and many socio-43 
economic activities also depend on water resources in river basins. Global-scale frontier studies 44 
of river networks and surface waters require that all rivers on the Earth are precisely mapped at 45 
high resolution, but until now, no such map has been produced. Here we present “MERIT 46 
Hydro”, the first high-resolution, global map of river networks developed by combining the 47 
latest global map of land surface elevation with the latest maps of water bodies that were built 48 
using satellites and open databases. Surface flow direction of each 3-arcsecond pixel (~90m size 49 
at the equator) is mapped across the entire globe except Antarctica, and many supplemental maps 50 
(such as flow accumulation area, river width, and a vectorized river network) are generated. 51 
MERIT Hydro thus represents a major advance in our ability to represent the global river 52 
network and is a dataset that is anticipated to enhance a wide range of geoscience applications 53 
including flood risk assessment, aquatic carbon emissions, and climate modelling. 54 

 55 

1 Introduction 56 

A hydrography map is important baseline data source for many geoscience studies, such 57 
as land hydrology and flood inundation modeling (Miguez-Macho et al. 2007; Yamazaki et al. 58 
2014a), analysis of ecosystem and biodiversity (Turner et al., 2012), global carbon budget 59 
estimation (Raymond et al., 2013), and terrain type classification (Hengle and Evans, 2009; 60 
Nobre et al., 2011). Typically, a hydrography map is provided as a high-resolution raster grid of 61 
surface flow directions (Lehner et al. 2008), with river networks represented by pixels with large 62 
flow accumulation areas. By analyzing surface flow directions, many hydrological parameters 63 
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can be delineated, such as catchment boundaries, flow distance, height above nearest drainage 64 
(Noble et al., 2008), and river channel width (Yamazaki et al., 2014b). Thus, the accuracy of the 65 
hydrography map is critically important for many applications to reduce uncertainties. 66 

The flow direction of each high-resolution pixel can be precisely determined if very 67 
accurate topography data are available, however, construction of a high quality hydrography map 68 
is still difficult for much of the globe because of the errors and limitations in available 69 
topography datasets. Digital Elevation Models (DEMs) are the primary topography data for the 70 
development of a hydrography map, but they usually contain non-negligible vertical errors which 71 
distort the terrain slope that is used to estimate flow directions (Yamazaki et al. 2017). Small 72 
streams whose width is smaller than the pixel size of the DEM are not represented in many cases 73 
(Turcotte et al., 2001). Even wide rivers and large lakes may not be well captured because DEMs 74 
usually represent mean water surface elevations rather than the bed elevation of these features.  75 

At regional scales where the focus is on one or a few river basins, several methods for 76 
extracting a high-accuracy hydrography map from DEMs have been proposed (e.g. Tarboton, 77 
1997). In many cases, supplementary information on river streamlines is used to modify the 78 
DEM to generate realistic river networks. However, at a continental or global scale, automatic or 79 
near-automatic river network delineation has not yet been realized in a practical manner because 80 
it is difficult to separate actual inland endorheic basins from dummy depressions caused by DEM 81 
errors. Up to now, HydroSHEDS, which was developed based on the SRTM3 DEM (Lehner et 82 
al., 2008), has been the only available global-scale high-resolution (3 arc-second, about 90m at 83 
the equator) hydrography map, but the development of the HydroSHEDS data set required a 84 
substantial amount of manual editing to ensure the reality of the represented river networks 85 
(Lehner et al., 2006). Because of this manual editing, reproducing this process so it can be 86 
repeated with more recent high-quality terrain data sets has not been feasible. 87 

In recent years, a number of highly accurate topography datasets that are potentially 88 
helpful in producing more accurate hydrography maps have been released. For example, high-89 
resolution DEMs such as TanDEM-X (Krieger et al., 2007) and AW3D-30m (Tadono et al., 90 
2016) have become available. To enhance the applicability of spaceborne DEMs, the MERIT 91 
DEM (Yamazaki et al., 2017) was developed by applying a global-scale error-removal algorithm 92 
to existing spaceborne DEMs. The availability of global water layer data, another input required 93 
by hydrography delineation, has also increased rapidly. Global-scale analysis of Landsat images 94 
is now possible (e.g. Gorelick et al., 2017), and water body maps considering the frequency of 95 
water existence have been produced (GSWO by Pekel et al, 2016; G3WBM by Yamazaki et al. 96 
2015). Furthermore, the availability of local geospatial information is increasing rapidly (such as 97 
OpenStreetMap, Haklay et al., 2008), following recent trends towards “Open Data” policies by 98 
local and national governments and the crowd-sourcing of vector maps. 99 

In the decade that has passed since the development of HydroSHEDS, the appearance of 100 
new global topography datasets and enhanced computing capacity means there is now an urgent 101 
need to produce methods to near-automatically delineate global hydrography maps. Furthermore, 102 
as the accuracy and spatial-coverage of the baseline high-resolution topography datasets have 103 
increased in recent years, more precise representation of river networks should also be possible 104 
by overcoming the limitations of HydroSHEDS. For example, the locations of small rivers were 105 
not well represented in HydroSHEDS, especially in forested areas (Figure S1), because the 106 
elevations in satellite DEMs were biased due to tree canopy artefacts. Representation of the flow 107 
directions over large water bodies in HydroSHEDS was not also adequate due to the limitations 108 
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2.1 Input data sources 129 

We used the MERIT DEM (Multi-Error-Removed Improved-Terrain Digital Elevation 130 
Model; Yamazaki et al. 2017, available at: http://hydro.iis.u-131 
tokyo.ac.jp/~yamadai/MERIT_DEM) as the baseline elevation data for the hydrography 132 
delineation. The MERIT DEM was developed by removing multiple error components from the 133 
SRTM3 (Farr et al, 2007) and AW3D-30m DEMs (Tadono et al., 2016). As the original DEMs 134 
were affected by non-negligible height errors and tree canopy biases that distort river network 135 
structures, the use of the error-removed DEM was essential for the hydrography analysis. The 136 
spatial resolution of the MERIT DEM is 3 arc-second (~90m at the equator), and it covers the 137 
entire globe except for Antarctica (between 90N and 60S). 138 

A water layer dataset is also needed to improve hydrography delineation as a complement 139 
to the elevation data. As the accuracy of the MERIT DEM is limited by the remaining height 140 
errors and its spatial resolution, the water layer data is used to mitigate the impact of remaining 141 
errors and to represent streams smaller than the DEM pixel size. We used multiple water layer 142 
datasets to reflect the different characteristic of each product. The synthetic water layer map was 143 
generated by combining the G1WBM (Global 1-second Water Body Map; Yamazaki et al. 2015), 144 
GSWO (Global Surface Water Occurrence; Pekel et al. 2016) and water-related layers from 145 
OpenStreetMap (Figure 2a). The synthetic water layer map represents the “likelihood” of water 146 
existence at each pixel using a value ranging between 0 and 100 (Figure 2b), and the elevation 147 
data was modified following this likelihood value (see section 2.2). The synthetic water layer 148 
map was generated at 1-arcsecond resolution, and then upscaled to 3-arcsecond resolution by 149 
taking the maximum value within 3x3 pixels. The procedure to generate the synthetic water layer 150 
map is described below. 151 

As the baseline data for the synthetic water layer map, we used the G1WBM permanent 152 
water layer at 1 arc-second spatial resolution (Figure 2a, red color). G1WBM is the new global 153 
water body map we generated for MERIT Hydro development. It is the new version of the 154 
G3WBM water layer (Yamazaki et al. 2015) with the increased spatial resolution (enhanced 155 
from 3 arc-second to 1 arc-second), though the same input data and algorithm were used (see 156 
Yamazaki et al. 2015 for details). G1WBM is available at: http://hydro.iis.u-157 
tokyo.ac.jp/~yamadai/G3WBM/. For the hydrography map development, it is better to use a 158 
water layer dataset that corresponds to the baseline MERIT DEM, because any temporal changes 159 
in water layers, for example those caused by channel migration, could have a negative impact on 160 
the hydrography delineation. The G1WBM dataset was created by merging water layers from 4-161 
epochs in the Landsat GLS collection (Gutman et al., 2013), and the continuity of river channels 162 
was ensured by integrating the SWBD (SRTM Water Body Data, acquired simultaneously with 163 
SRTM DEM). Thus, G1WBM is considered to have better consistency to the MERIT DEM 164 
compared to other global water layer datasets (e.g. GSWO), because SRTM-related products 165 
were used both in MERIT DEM and G1WBM. In the synthetic water layer map, the likelihood 166 
value of 100 is given to the G1WBM permanent water layer pixels. 167 

We also integrate GSWO (Pekel et al. 2016) into the synthetic water layer map (Figure 2a, 168 
cyan and blue colors), in addition to G1WBM. GSWO represents the water occurrence frequency 169 
based on the entire global Landsat archive (~3 million images) at 1-arcsecond resolution. It has 170 
the potential to correct the remaining error in the MERIT DEM, because pixels with higher water 171 
occurrence value are expected to be lower elevation than adjacent pixels with lower water 172 
occurrence frequency. In the synthetic water layer map, the GSWO occurrence value (originally 173 
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between 0 and 100) was rescaled to the range 0-70, and overlaid onto the G1WBM permanent 174 
water layer. The rescaling was adopted in order to enhance the contrast between the permanent 175 
water bodies (such as river channels) and seasonally inundated water bodies (such as 176 
floodplains). 177 

To represent small streams that are not visible in 1 arc-second (~30m at the equator) 178 
resolution Landsat data, we also used water layers from OpenStreetMap. First, we extracted all 179 
water related components from the OpenStreetMap datasets (i.e. “planet.osm” file, downloaded 180 
from https://planet.openstreetmap.org/ on 16 January 2018). The water-related features were 181 
extracted by using the OSM tags: “natural=water”, “waterway=*”, “landuse=reservoir”. Then, 182 
the extracted water-related features were classified to three different types: [1] “large rivers and 183 
lakes” represented as closed vector polygon data; [2] “middle-sized river channels” represented 184 
as line data with the OSM tag “waterway=riverbank, river”; and [3] “small streams” with the 185 
tag “waterway=canal, drain, ditch, stream, brook, wadi, drystream”. The “large rivers and 186 
lakes”, “middle-sized river channels”, and “small stream” classes extracted from OpenStreetMap 187 
are represented by orange, green, and gray colors in Figure 2a. Then, extracted water-related 188 
vector data were converted to raster format at 1-arcsecond resolution, and these OpenStreetMap 189 
water layers were integrated with the synthetic water layer map. When integrating, the water 190 
occurrence likelihood value for “large rivers and lakes”, “middle-size rivers”, “small streams” 191 
were set to 25, 20 and 5 respectively, with these values selected by trial and error. Relatively 192 
small likelihood values were used for OpenStreetMap water layers especially for “small streams” 193 
as its mapping accuracy is considered to be lower than Landsat-based water maps. The extracted 194 
OpenStreetMap water-related layer data are made available online at: http://hydro.iis.u-195 
tokyo.ac.jp/~yamadai/OSM_Water/. 196 

In addition to the above elevation and water layer datasets, the Landsat tree density map 197 
(Hansen et al. 2013) was used as a quality flag for the MERIT DEM elevation. Even though the 198 
tree canopy bias was removed in the MERIT DEM, the elevation value in forested pixels has 199 
higher uncertainty compared to non-forested pixels. When elevation data has a problem with 200 
hydrological consistency (e.g. catchment upstream elevations are lower than downstream 201 
elevations), the elevations in areas covered by higher tree density are likely to be the cause of the 202 
problem. A more detailed description of how tree density data are used to reduce these errors is 203 
given in the following algorithm section. 204 

2.2 Hydrography generation algorithm 205 

The schematic diagram for the hydrography delineation procedure is shown in Figure 1. 206 
First, a “conditioned DEM” was generated by lowering the elevation of water pixels in the 207 
MERIT DEM. Similar to other spaceborne DEMs, the MERIT DEM represents the elevation of 208 
the water surface for water bodies, not the bathymetric elevation of the river or lake bed. 209 
Furthermore, streams smaller than the pixel size cannot be well represented in MERIT. In order 210 
to better represent river networks, the elevation of DEM pixels overlain by water should be 211 
lowered before the flow direction is calculated (a similar approach was taken when 212 
HydroSHEDS was generated, i.e. the elevation of the SRTM3 DEM was lowered using the 213 
SWBD water mask, see Lehner et al. 2006). We lowered the original MERIT DEM elevation 214 
based on the water likelihood value of the synthetic water layer data. The conditioned elevation 215 𝑍௖௢௡ for a water body pixel (𝐿௪௔௧ > 0) is given by the equation (1): 216 𝑍௖௢௡ = 𝑍௢௥௜ − (3.0 + 0.17𝐿௪௔௧)       (1) 217 
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In the last step, actual inland basins were detected and separated, because artificial 259 
depressions caused by DEM errors and actual inland basins were treated together in the previous 260 
step. Inland basins were identified by calculating how much volume of topography needed to be 261 
modified to reverse the flow directions in the previous step (i.e. reducing downstream elevations 262 
and/or lifting upstream elevations). We assumed that the dummy depression could be connected 263 
to its adjacent sub-basin by slightly modifying the elevations around the sub-basin boundary, 264 
while actual inland basins should remain independent unless the topography was modified 265 
significantly. We calculated the minimum amount of topography modification by combining the 266 
downstream reduction and upstream lifting, following the method developed by Yamazaki et al. 267 
(2012). 268 

The schematic illustration of the method for inland basin detection is shown in Figure 4. 269 
First, depressions are defined as an area where the downstream elevation is higher than the 270 
upstream elevation (Figure 4ab). Then, the highest elevation on the depression downstream ridge 271 
(𝑍௠௔௫) and the lowest elevation in the depression area (𝑍௠௜௡) were detected. The area consisting 272 
of the “upstream depression” lower than 𝑍௠௔௫ and the “downstream uplift” higher than 𝑍௠௜௡ is 273 
considered for inland basin detection. By assuming flat topography after modification for 274 
reducing computational complexity, the modified elevation (𝑍௠௢ௗ) after the depression removal 275 
can take a value ranging between 𝑍௠௜௡ and 𝑍௠௔௫. For simplification, in case of Figure 3, it is 276 
assumed that  𝑍௠௔௫ = 𝑍௠௜௡ + 2 and the elevation increment is 1.  Thus, three values (𝑍௠௜௡ , 277 𝑍௠௜௡+1, and 𝑍௠௔௫ ) should be considered as a potential modified elevation 𝑍௠௢ௗ . Then, the 278 
required volume of topography modification (𝑉) is calculated for each possible modification. 279 
The modification pattern that requires the minimum modification volume is selected as the final 280 
modified elevation. In case of Figure 3, the required volume becomes minimum (V=2) when the 281 
modified elevation is 𝑍௠௜௡+1, thus it is decided that 𝑍௠௢ௗ = 𝑍௠௜௡ + 1. Note that the original 282 
algorithm by Yamazaki et al. (2012) was developed for the SRTM3 DEM, which is in integer 283 
format (1m increment), but the MERIT DEM is provided as real-numbers (32 bit float). In order 284 
to reduce computational cost, we converted the original MERIT DEM elevations from 285 
continuous real numbers to discrete values with 10cm increments. 286 

Then, the depression area is determined to be an actual inland basin if the required 287 
modification volume is larger than a threshold value. After several trial and error tests, we 288 
decided to adopt 2,500,000 m3 as the threshold modification volume to separate actual inland 289 
basins from dummy depressions (equivalent to 2.5 m constant depth depression with 1 km2 area). 290 
Here, we considered some uncertainties in the DEM to avoid confusion between the actual 291 
inland basin and dummy depressions due to height errors. First, DEM elevations over a water 292 
body are not reliable as they are usually estimated by interpolating surrounding terra firma 293 
elevations, thus 1 m was removed from the modified height value when calculating the modified 294 
volume over a water body. Second, the DEM height uncertainty is larger in forested areas 295 
(Yamazaki et al. 2017), thus the calculated modified volume of a forest pixel was reduced by 296 
50%. We assumed a pixel is treated as forest when its Landsat tree density (Hansen et al. 2013) 297 
is >50%. Third, the elevation over glaciers has large errors, and thus we did not modify 298 
depressions over glacier pixels. Glaciated pixels were identified by the “ice” tag in the G3WBM 299 
data (Yamazaki et al., 2015). 300 

Finally, the flow directions in the detected inland basins were returned to the original 301 
direction (Figure 3c, yellow arrows), thereby separating inland basins from dummy depressions. 302 
By applying the above algorithm, the automatic calculation of the hydrography data is realized, 303 
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2.3 Supplementary Data Layer 324 

In addition to the basic hydrography parameters (e.g. flow direction, flow accumulation 325 
in pixels, flow accumulation area), other potentially useful supplementary data layers can also be 326 
produced from the hydrography processing chain (Figure 1, bottom row). In particular, the 327 
HAND parameter (Height Above Nearest Drainage; Nobre et al. 2011), hydrologically adjusted 328 
elevation, and river width were determined. 329 

The hydrologically adjusted elevation represents the DEM in which elevations were 330 
modified to satisfy the condition that “downstream is not higher than upstream”. In order to 331 
minimize the amount of modification from the original DEM, for this we used the same 332 
algorithm employed for inland sink detection (Figure 4; Yamazaki et al. 2012). 333 

The HAND parameter represents the relative height of each pixel above the elevation of 334 
its nearest downstream drainage pixel. This topography index is useful for many types of 335 
hydrologically-relevant terrain analysis (Nobre et al. 2011). We calculated the HAND value 336 
using a 0.5km2 threshold to define drainage. The threshold for defining drainage could differ by 337 
region or by climate, but we used a globally-uniform value to prepare the HAND data. Users are 338 
recommended to re-calculate HAND using their own region-specific threshold if their 339 
application is sensitive to the thresholding value. Note that the hydrologically adjusted elevation 340 
was used to calculate the HAND parameter. 341 

The river width is an important parameter for many applications such as flood inundation 342 
modelling. We calculated river width using the developed flow direction data and the G1WBM 343 
permanent water body layer by applying an existing algorithm for river width calculation 344 
(Yamazaki et al., 2014b). As the original river width algorithm was only applicable to the binary 345 
water mask (land/water classification), we modified the code to handle sub-pixel water fraction 346 
data (percentage of 1 arc-second permanent water pixels within a 3 arc-second flow direction 347 
pixel). 348 

 349 

3 Results and Validation 350 

3.1 Delineated River Network 351 

The delineated river network in MERIT Hydro is illustrated in Figure 5. As an example, 352 
three regions were selected: (a) the Pearl River (Zhujiang) basin in Southern China, which 353 
contains both mountainous areas and alluvial floodplains; (b) the Ob River mouth region in 354 
Western Siberia in Russia as a representative of high latitude regions not covered in 355 
HydroSHEDS, and (c) the Danakil Desert in Ethiopia, which contains many inland basins. Pixels 356 
with flow accumulation area >5km2 are represented as streams. The dark blue lines represent the 357 
streams that overlap with the Landsat water layer data, while black lines represent streams not 358 
coincident with Landsat water observations. The thickness of stream lines corresponds to the 359 
flow accumulation area. Similar figures for all other regions on the globe are accessible from the 360 
data product webpage. 361 

The Pearl River basin (Figure 5a) contains an alluvial delta region (around N22.8, 362 
E113.2), and also high mountain areas in the basin headwaters. In high mountain regions, many 363 
dummy depressions exist because height errors are larger for high relief topography. The river 364 
network of the Pearl River was reasonably delineated by connecting these dummy depressions 365 
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Figure 6. Spatial distribution of the detected inland basins in MERIT Hydro. The dot represents 432 
the locations of inland basin terminations, with colors representing their drainage area. 433 

 434 

3.2 Supplementary Data Layers 435 

The calculated river channel width of the Pearl River basin is illustrated in Figure 7a. By 436 
using the Landsat-based G1WBM water mask at 1 arc-second resolution, narrow streams whose 437 
width is around 100m are well represented. The algorithm to calculate river width is designed to 438 
keep consistency between the flow direction, water body location, and channel width (for the 439 
detailed explanation of the method, see Yamazaki et al., 2014b).  The width value is therefore 440 
given to the pixels which represent the flow path of the high-resolution hydrography data. This 441 
consistency between different layers (i.e. river width, water body, flow direction and flow 442 
accumulation) is a significant advantage of the constructed global hydrography datasets when 443 
used for hydrology/hydrodynamic models, especially given that consistency between the 444 
hydrography map and river width map was not fully considered in previous datasets (see Figure 445 
S2 as an example). Note that in the developed river width layer, rivers and lakes are not 446 
distinguished (e.g. width is given within the reservoir around N23.8 E114.5). Development in the 447 
future of a river-lake classification mask will be helpful for a more detailed analysis of river 448 
morphology for advanced land hydrology modelling. 449 

The Height Above Nearest Drainage (HAND) was also developed as a supplemental data 450 
layer (Figure 7a). As discussed by Nobre et al. (2011), HAND is a good indicator of hydrology-451 
relevant topography such as floodplains. For example, flat basins at high elevation (e.g. the flat 452 
region around N23.5 E110.5) can be recognized in the HAND layer, while this is difficult to 453 
visualize when absolute elevation values are used. In addition to the Pearl River basin in Figure 7, 454 
the tiled figures of HAND and river channel width for the entire globe are accessible from the 455 
product webpage. 456 

 457 
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Figure 8. Adjusted elevation in the lower Ob River basin. (a) Original MERIT DEM elevation. 486 
(b) Hydrologically adjusted elevation. (c) Difference between the adjusted and original 487 
elevations. (d) Delineated river networks. (e) Elevation profile along the Ob River mainstem 488 
(pink streamline in Figure 8d). 489 

 490 

3.3 Evaluation Against Existing Global Products 491 

 In addition to extensive quality control by visual inspection, we validated the accuracy of 492 
the developed hydrography maps by comparison to previous products. First, the flow 493 
accumulation area of the new hydrography map was compared against HydroSHEDS (Lehner 494 
and Grill, 2008) whose resolution is also 3 arc-second resolution (~90m at the equator). 495 
HydroSHEDS was developed based on the SRTM3 DEM, and is currently the most widely used 496 
global-scale hydrography map. Even though the location accuracy of streams may be limited in 497 
HydroSHEDS due to the errors in the SRTM3 DEM and limitations with available water-related 498 
data at the time of its development, the large-scale river network structure (i.e. upstream-499 
downstream relationship) should be reliable because of the extensive quality control (Lehner and 500 
Grill, 2008). Thus, we assumed that the flow accumulation area of HydroSHEDS could be used 501 
to evaluate the river network structure of the new hydrography map. Note that the flow 502 
accumulation data are not included in the original HydroSHEDS datasets, thus we calculated 503 
them from the flow direction data using our own algorithm used for MERIT Hydro. 504 

In order to compare the flow accumulation areas between the two datasets, the following 505 
method was used to consider the difference in stream locations. 1) Flow accumulation area is 506 
upscaled to 1-arcmin resolution to reduce computational cost. 2) For each pixel with >1000 km2 507 
flow accumulation area in the new hydrography map, the flow accumulation area of 508 
HydroSHEDS pixels within 2-arcmin distance (i.e. 5x5 pixels) was checked to find the minimum 509 
relative error. Note that for northern region above N60, we used GDBD (Global Drainage Basin 510 
Database, Masutomi et al. 2009) as a reference hydrography map instead of HydroSHEDS. 511 

 Figure 9a illustrates the relative error of flow accumulation area between the new 512 
hydrography map and previous datasets (HydroSHEDS and GDBD above N60). It is found that 513 
for most rivers in the world, the relative error is smaller than 5% (white lines in Figure 9a), 514 
suggesting that the upstream-downstream relationship of the river network was well reproduced 515 
by the new algorithm. A significant difference was found mainly in arid regions, because inland 516 
basins are sometimes treated differently in the different hydrography maps. For example, the 517 
flow accumulation area of the Niger River was underestimated up to 15% in the new 518 
hydrography map compared to HydroSHEDS. This difference was caused because some 519 
depressions that were not delineated separately in HydroSHEDS were treated as inland basins in 520 
the new hydrography (green colored areas). These depressions are connected to the Niger River 521 
mainstem in high water years (Pekel et al. 2016), but are isolated in more typical years. There is 522 
a difficulty in treating this seasonally variable connectivity behaviour in different hydrography 523 
products. Discrepancies between the hydrography maps due to treatment of inland basins was 524 
also found in the Amur River basin, Arabian Peninsula, and southern coast of Australia. 525 

  526 
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problem can be recognized in some of the river segments with overestimation and 542 
underestimation of flow accumulation areas (e.g. Ob, Makenzie, Mississippi-Atchafalaya). The 543 
discrepancy is similarly present for lakes with multiple outlets, such as Southern Indian Lake 544 
(N57.3, W98.4) and Wollaston Lake (N58.2, W103.3) in Canada. 545 

 The reasons for other discrepancies between the hydrography maps were basin-specific. 546 
The flow accumulation area was larger in the Pyasina River and smaller in the Khatanga River 547 
and Taymyr River (around N71, E93) in the new hydrography data. We found that some parts of 548 
the Pyasina River basin were wrongly treated as upstream areas of the Khatanga River and 549 
Taymyr River in the GDBD hydrography, probably because it is difficult to calculate river 550 
networks appropriately in these regions with very flat topography. The Caspian Sea was treated 551 
as “sea” (no data) in HydroSHEDS, so no flow directions or flow accumulation areas were 552 
assigned. The difference in the Parana River basin (around S25, W60) was probably caused by 553 
the lack of water layer information. It is difficult to decide the location of streams in this region 554 
because topography is relatively flat and the river width is too narrow to be observed by Landsat. 555 
The stream location data from OpenStreetMap was also limited. Availability of higher-resolution 556 
data on elevation and water bodies must be a key to improve the accuracy of hydrography maps 557 
in the future. 558 

 In addition to flow accumulation areas, we also compared the shape of river basins 559 
between the new hydrography map and HydroSHEDS using the Critical Success Index (CSI). 560 
CSI for one river basin is calculated as in Equation (2): 561 

 𝐶𝑆𝐼 = ே∩ுே∪ு        (2), 562 

where N and H are the group of pixels in the considering river basin in the new hydrography map 563 
and HydroSHEDS, respectively. The CSI is 1 when the shape of the considering river basin is 564 
exactly same in the two datasets, while CSI is zero when there is no overlap between the two 565 
datasets. The CSI values for the world’s 200 largest river basins are shown in Figure 9b. In 566 
addition, the drainage area of the 200 largest river basins is compared between the new 567 
hydrography map and HydroSHEDS in Figure 9c. 568 

It is found that the CSI is very close to 1 for most river basins, suggesting the shapes of 569 
river basins are similar between the two datasets. River basins which contain arid and semi-arid 570 
regions tend to have lower CSI index (e.g. the Mississippi and Nelson Rivers, which contain arid 571 
inland basins) because the connectivity of some inland depressions is treated differently in the 572 
two datasets. The CSI of inland river basins located in desert regions is relatively low (CSI<0.8). 573 
The CSI was also low in cases where the location of a river mouth is different in the two datasets 574 
(e.g. a river basin in one dataset could be represented in two separate river basins if the boundary 575 
of land and ocean is different in the other dataset). For example, the Caspian Sea is treated as 576 
“land” and all rivers flowing to the Caspian Sea are treated as one large basin in the new 577 
hydrography, while HydroSHEDS treats the Caspian Sea as “ocean (not land)”. As the shapes of 578 
river basins are highly affected by the treatment of inland depressions and by the specific 579 
land/ocean mask used, it is difficult to compare the accuracy of the river basin shape only using 580 
the Critical Success Index. 581 
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channel location error was calculated as “absolute distance of centerline locations divided by 598 
river channel width”. A relative distance error larger than 50% means the centerline in one 599 
product is located outside of the river channel mask of another product. 600 

The calculated relative channel location error is shown in Figure 10a. For most large 601 
rivers, the relative error was smaller than 20%, and thus stream locations are nearly identical in 602 
the GRWL product and the new hydrography. However, the relative error is sometimes larger 603 
than 50% in small rivers, probably because a 1-pixel shift in stream location is more critical here. 604 
The cumulative distribution function (CDF) of the relative channel location error for each river 605 
width bin is shown in Figure 10b. The relative location error was smaller than 50% for 95% of 606 
river segments for any channel width bin, suggesting the channel centerline locations are very 607 
similar between the new hydrography map and GRWL. This is reasonable given that channel 608 
location and river width in both datasets were based on Landsat water body data. From Figure 609 
10b, we can observe that the relative channel location error tends to be smaller for wider rivers. 610 
On the other hand, the relationship between channel location error and flow accumulation area 611 
was not clear (Figure 10c). This is probably because larger rivers tend to have more bifurcating 612 
or braided sections where determination of river centerlines and channel width is difficult. 613 

 We also compared the flow accumulation area of the new hydrography map against the 614 
reported area at gauging stations registered in the Global Runoff Data Center (GRDC) archive. 615 
The flow accumulation area was compared at 5795 gauging stations whose area was >1000 km2 616 
(Figure 11). For 90% of gauging stations, the relative error was <0.05, suggesting the modelled 617 
flow accumulation area agreed with reported areas. We found some gauging stations with large 618 
errors in flow accumulation area. The large differences in reported and modelled flow 619 
accumulation area can have various causes. First, some lakes and reservoirs have multiple outlets, 620 
and the downstream accumulation area changed significantly depending on which outlet was 621 
chosen in the hydrography map. For example, the Churchill River in Canada is diverted to the 622 
Nelson River at South Indian Lake for a hydropower project, but MERIT-Hydro treated the 623 
diverted route as the trunk stream. This resulted in the overestimation of flow accumulation in 624 
the Nelson River, while underestimating the Churchill River accumulation area compared to 625 
GRDC reported values. Second, determining the connectivity of inland depressions in arid rivers 626 
is difficult and thus both the modelled and the reported flow accumulation values have 627 
uncertainties (e.g. Lake Chad basin, Rio Salado in Argentina). Third, the metadata of GRDC 628 
gauges (i.e. longitude, latitude and accumulation area) sometimes contains significant errors, and 629 
it is probably incorrect to assume all reported values are precise. Despite these limitations, the 630 
general agreement between the modelled and reported flow accumulation area suggested that the 631 
new hydrography map has an adequate accuracy for global-scale hydrology studies; we expect it 632 
to also be of sufficiently high quality for analysis in smaller-scale rivers (>1000 km2) . 633 
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4 Discussion 641 

4.1 Importance of input data 642 

 As described in the methods section, the new hydrography map was constructed using 643 
multiple input data sources. In order to check the importance of each input data, we constructed 644 
hydrography maps with different configurations of input data usage. Figure 12 illustrates the 645 
constructed river network maps of the Tone River basin in Japan for cases: (a) using all input 646 
data (MERIT DEM, G1WBM, GSWO, and OpenStreetMap); (b) using only MERIT DEM (no 647 
water-related input); (c) using MERIT DEM, G1WBM and GSWO (i.e. without 648 
OpenStreetMap). Note that the availability of the water-related input data for the same domain is 649 
shown in Figure 2a. As a reference, the river network of HydroSHEDS is illustrated in Figure 650 
12d. The new hydrography map captures more detailed river networks compared to 651 
HydroSHEDS, mainly because of the increased availability of input datasets. 652 

It is found that the river networks cannot be constructed precisely if water-related input 653 
data are not used (Figure 12b). For example, the two rivers flowing parallelly from north to south 654 
(Kinu River and Kokai River, marked with “A” in Figure 12e) were wrongly merged around 655 
[N36.0, E140.0]. If elevation data are not enhanced using water-related input layers it is difficult 656 
to resolve narrow river segments, especially when a river is running through a narrow valley (see 657 
Figure 2c-d). It is also confirmed that the information from OpenStreetMap water layers is 658 
essential to represent smaller streams whose channel width is smaller than the DEM pixel size. 659 
Especially in flat topography (e.g. around N36.1, E139.6, marked with “E” in Figure 12e), it is 660 
virtually impossible to generate actual stream networks that mostly consist of narrow, man-made 661 
narrow irrigation canals without OpenStreetMap data. This result suggest that the Landsat-based 662 
water input is essential to represent the major river networks, and it is desirable to use the 663 
information from OpenStreetMap to realistically represent streams narrower than the pixel size. 664 
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4.2 Limitations & Future Work 674 

Although the newly developed hydrography map has improved accuracy compared to 675 
previous products, there still exist several limitations that should be addressed in the future. First, 676 
channel bifurcations are not represented in the current hydrography map framework, as only one 677 
downstream direction is assumed at each pixel. As delta regions, where such bifurcations are 678 
common, are important for climate change (Chmura et al. 2003) and flood risk (Ikeuchi et al. 679 
2017), representation of channel bifurcations by allowing multiple downstream directions is 680 
required. There is a method to analyze bifurcation channels in the field of flood inundation 681 
modelling (Yamazaki et al. 2014a), and applying a similar method may be useful even for a 682 
global high-resolution hydrography map. 683 

Similarly, multi-level crossing of flow pathways cannot be represented in the current 684 
framework. For example, there are many underground channels in karst topography, and 685 
representing underground channels is essential to estimate large-scale water balance beyond 686 
watershed boundaries at the terrain surface. Man-made canals sometimes have under-ground and 687 
over-ground crossings, so representation of a multi-level stream network could also be important 688 
for local and regional water resources management purposes. 689 

Representation of human-made structures is a remaining challenge. MERIT Hydro 690 
contains some artificial channels which are visible in Landsat imagery or included in 691 
OpenStreetMap, but most small canals are likely not represented in current datasets. 692 
Furthermore, human-made channel networks usually have a complex upstream-downstream 693 
relationship, especially in urbanized flat terrain, so estimated flow directions in artificial 694 
channels may contain errors. Also, representation of artificial reservoirs in MERIT Hydro needs 695 
to be enhanced for more advanced applications. Currently, reservoirs are represented simply as 696 
“pixels with water bodies”, without any separation from natural lakes and rivers. Aggregation 697 
and classification of water body pixels as rivers, lakes, or reservoirs will be a future task. 698 

It is known that D8 flow direction methods are not adequate to represent flow 699 
contributing area in headwater regions, and for these zones more flexible D16 or D-Infinity flow 700 
direction representations have been proposed (Tarboton et al. 1997). In this study, a D8 approach 701 
was adopted for achieving the calculation of flow directions at a global scale, but probably more 702 
flexible and precise flow direction methods, such as D-Infinity, could be applied as post-703 
processing. 704 

Careful inspection is recommended when the MERIT Hydro is used in coastal areas. 705 
Even though the flow directions were calculated based on the latest topography datasets, 706 
coastlines are sometimes not well represented due to discrepancies in input datasets or temporal 707 
change in shorelines.  The definition of the boundary between river and sea is usually ambiguous, 708 
thus it is recommended that users are recommended to check the river networks and river mouth 709 
locations of MERIT Hydro, especially for coastal hydrology applications. 710 

Even though the quality of input datasets (MERIT DEM, G1WBM, GSWO, 711 
OpenStreetMap) was improved compared those available at the time of HydroSHEDS 712 
development, the currently-used input data still have some uncertainties. It is therefore 713 
recommended to re-generate the hydrography map regularly when new and higher-quality input 714 
data becomes available. In particular, the availability and quality of OpenStreetMap varies 715 
greatly from region to region, and any improvements to the OpenStreetMap water layer could 716 
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have a significant impact. Updating of the global hydrography map is now achievable, given that 717 
a nearly-automated algorithm for flow direction calculation was developed in this study.  718 

5 Conclusions 719 

In this study, we constructed MERIT Hydro, a new global hydrography map (raster flow 720 
direction map) based on the latest topography and water layer data (MERIT DEM, G1WBM, 721 
GSWO, and OpenStreetMap). The MERIT Hydro more precisely represents river networks 722 
compared to previous hydrography maps such as HydroSHEDS, mainly because of improved 723 
data availability and quality that has been achieved over the past 10 years, especially for small 724 
streams and rivers in high latitude. Comparison to the GRDC, HydroSHEDS and GRWL 725 
datasets suggested that the new hydrography map does not contain significant errors in upstream-726 
downstream relationships and channel locations in continental-scale rivers, which is very 727 
important for many application studies. 728 

In addition to the flow direction and river networks, we also prepared supplementary data 729 
layers such as river width and hydrologically adjusted elevation. These supplementary products 730 
are carefully developed to ensure consistency among the different hydrography data layers. For 731 
example, the streamlines of the new hydrography map follow the channel centerline calculated 732 
based on the high-resolution water body data, and the channel width value is given to the river 733 
streamline pixels. This consistency among different layers will be helpful when utilizing the 734 
hydrography data for hydrology modelling, especially flood inundation models which require 735 
precise and coherent river networks, floodplain elevations, and channel cross-section parameters. 736 

Even though some limitations remain, as discussed in section 4, we anticipate that the 737 
new hydrography map will be useful to studies relevant to river hydrology and hydrodynamics. 738 
The new hydrography data “MERIT Hydro” (MERIT-DEM based Hydrography map) will be 739 
freely available for academic research and education purpose. 740 
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