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Dear Prof. Pease
Editor, Precambrian Research

Thank you and the reviewers for their thoughtful comments and suggestions. Here in the revised 
draft we have taken into account all the suggestions and comments and modified the manuscript 
accordingly. All the modifications are highlighted in yellow in the revised draft, figure, table and 
supplementary files and outline every change made by us with line numbers. Please note that 
Section 4 is rewritten and abridged and Figs. 2 and 3 are added. The revised manuscript was 
checked by all the coauthors and they agreed about its content.

Also note that we have taken out the name of Marcin D. Syczewski from the author list. He 
helped one of the co-authors (MS) with SEM and according to MS it is not enough for a co-
authorship.

Sincerely

Amlan Banerjee
Geological Science Unit
Indian Statistical Institute



Dear Dr. Banerjee,

Re: A Palaeoproterozoic dolomite (Vempalle Formation, Cuddapah Basin, India) showing 
Phanerozoic-type dolomitisation 

Thank you for submitting your manuscript to Precambrian Research. I have received comments 
from two reviewers on your manuscript and they both enjoyed reading your manuscript. 
Nonetheless, some improvements can be made and your paper should become acceptable for 
publication after moderate revisions.  In particular, please address the following points:

1. Better integrate the classical sedimentology (facies, facies associations, depositional 
environments) and dolomite geochemistry in the paper by discussing as a function of the 
facies/depositional environments. This may in fact work well with converting Table 1 into a 
facies-graphic. 

Section 4 is rewritten and abridged (line number 194 – 267). New Table 1 and Figs. 2 and 3 are 
also added. 

2. Clarify why the positive Eu anomaly and the relatively high Fe and Mn contents indicate 
dolomitization of Phanerozoic type rather than Precambrian type? 

The argument that the VF dolomitization is more of Phanerozoic type rather than Precambrian 
type is based more on petrographic rather than geochemical analysis. Precambrian dolomites are 
generally characterised by very well-preserved fabrics of the original carbonate grains and early 
cements likely a reflection of seawater chemistry higher Mg/Ca ratio, higher partial pressure 
CO2 (pCO2), higher temperature, and lower SO42- (Tucker 1982, Hood and Wallace 2018), in 
addition, many Precambrian dolomites have drusy dolospar cements, precipitated during shallow 
to moderate burial (e.g. Tewari and Tucker, 2011), a feature rarely seen in Phanerozoic 
dolomites.

Petrographic analysis suggests that the VF carbonates originally precipitated as lime mud and 
calcimicrite and 10 to 15 % of precursor limestone is still preserved in the Vempalle Formation 
in the form of remnant patches of calcimicrite and ooids with calcite spar cement. The ooids 
preserve primary radial and concentric fabrics and radial fractures, and are considered to have 
been originally precipitated as calcite. In places the preserved calcite spar, that is partially 
replaced by fabric destructive dolomite, shows Type I calcite twin lamellae. Petrographic 
observations suggest fabric destructive dolomitization in VF carbonate rocks (Tucker et al., 
2002), and the mimetic to obliterated mosaic texture indicate progressive dolomite replacement 
(Braithwaite, 1991). It is likely that this was a time of calcite precipitation (a “calcite sea”), with 
anoxic, Eu anomaly and ferruginous conditions, and an elevated Mg/Ca ratio but not so high that 
either dolomite precipitation or very early fabric-retentive dolomitization of ooids and cements 
could take place, like those of the Beck Spring Dolomite (Tucker, 1983). On the other hand the 
occurrence of dolomitic micritic facies in the VF suggests that the dolomite crystals rapidly 
precipitated from a dolomite supersaturated fluid having high Mg/Ca ratio and low SO4-2 
concentration as primary precipitates due to evaporation or due to microbial activity and as 
would be expected in the Proterozoic environments. 



3. There is a notable lack of references to other Paleoproterozoic carbonate successions (e.g., 
Grotzinger on the Canadian shield and late Archean carbonate platform successions in South 
Africa and Australia with positive Eu anomalies of Kamber and Webb, 2001, Geochim 
Cosmochim Acta; Schier et al 2018, Precam Research; Eroglu et al., Precam Research, 2017). 

We have added several references (six in numbers) of J.P Grotzinger and the references 
recording positive Eu anomalies from carbonate platform successions as suggested by the 
reviewer. 

1.Grotzinger, J.P., 1989. Facies and evolution of Precambrian carbonate depositional systems: 
emergence of the modern platform archetype, in, SEPM Special Publication 44, p. 79-106 (line 
number 52; and 748-749)

2. Grotzinger, J. P., Read, J. F., 1983. Evidence for primary aragonite precipitation, lower 
Proterozoic (1.9 Ga) dolo- mite, Wopmay orogen, northwest Canada: Geology, v. 11, p. 710-713 
(line number 52; and 750-751)

3. Grotzinger, J.P., Kasting, J. 1993. New constraints on Precambrian ocean composition. 
Journal of Geology, v. 101, p. 235-243 (line number 52; and 752-753)

4. Pope, M. C., Grotzinger, J. P., 2003. Paleoproterozoic Stark Formation, Athapuscow basin, 
northwest Canada: Record of cratonic-scale salinity crisis. Journal of Sedimentary Research, v. 
73, p. 280-295. (77) (line number 49; and 901-903)

5. Saylor, B. Z., Grotzinger, J. P., Germs, J. B. 1995. Sequence stratigraphy and sedimentology 
of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern 
Namibia. Precambrian Research, v. 73, p. 153-171. (line number 48; and 935-937)

6. Kamber B. S., Webb, G. E., 2001. The geochemistry of late Archaean microbial carbonate: 
implications for ocean chemis- try and continental erosion history. Geochim. Cosmochim. Acta 
65, 2509–2525.  (line number 457; and 801-803)

7. Schier, K., Bau, M., Münker, C., Beukes, N., Viehmann, S., 2018.  Trace element and Nd 
isotope composition of shallow seawater prior to the Great Oxidation Event: Evidence from 
stromatolitic bioherms in the Paleoproterozoic Rooinekke and Nelani Formations, South Africa. 
Precambrian Research 315,   92-102 (line number 472; and 939-942)

8. Eroglu, S., van Zuilen, M.A., Taubald, H., Drost, K., Wille, M., Swanner, E.D., Beukes, N.J., 
Schoenberg, R., 2017, Depth-dependent δ13C trends in platform and slope settings of the 
Campbellrand-Malmani carbonate platform and possible implications for Early Earth 
oxygenation. Precambrian Research 302, 122-139. (line number 471; and 712-715)



4. Convert data Table 1 into a schematic strat column or a stylized facies cartoon/graphic. 

See Fig. 2 and Fig. 3

5. Move data tables 2-6 into supplementary material. 

See Supplementary section where Tables 1S to 5S are presented showing all the data (XRD; Ca 
excess and ordering; Major and Trace element concentrations in wt% and ppm; PAAS 
normalized REE values; and oxygen and carbon isotope values).

6. Add scale bars on all images in Figs 3 & 4. 

Done

When resubmitting your manuscript, please carefully consider my comments above and the 
reviewers' comments, outline every change made by line number, and provide suitable rebuttals 
for any comments not addressed.

Reviewer 1

- This is a very well written manuscript. 

Thank you

I have only two major concerns:

1. I do not follow the argument that the dolomitization is of Phanerozoic type rather than 
Precambrian type if you refer to the positive Eu anomaly and the relatively high Fe and Mn 
contents.

The argument that the VF dolomitization is more of Phanerozoic type rather than Precambrian 
type is based more on petrographic rather than geochemical analysis. Precambrian dolomites are 
generally characterised by very well-preserved fabrics of the original carbonate grains and early 
cements likely a reflection of seawater chemistry higher Mg/Ca ratio, higher partial pressure CO2 
(pCO2), higher temperature, and lower SO4

2- (Tucker 1982, Hood and Wallace 2018), in 
addition, many Precambrian dolomites have drusy dolospar cements, precipitated during shallow 
to moderate burial (e.g. Tewari and Tucker, 2011), a feature rarely seen in Phanerozoic 
dolomites.

Petrographic analysis suggests that the VF carbonates originally precipitated as lime mud and 
calcimicrite and 10 to 15 % of precursor limestone is still preserved in the Vempalle Formation 
in the form of remnant patches of calcimicrite and ooids with calcite spar cement. The ooids 
preserve primary radial and concentric fabrics and radial fractures, and are considered to have 
been originally precipitated as calcite. In places the preserved calcite spar, that is partially 



replaced by fabric destructive dolomite, shows Type I calcite twin lamellae. Petrographic 
observations suggest fabric destructive dolomitization in VF carbonate rocks (Tucker et al., 
2002), and the mimetic to obliterated mosaic texture indicate progressive dolomite replacement 
(Braithwaite, 1991). It is likely that this was a time of calcite precipitation (a “calcite sea”), with 
anoxic, Eu anomaly and ferruginous conditions, and an elevated Mg/Ca ratio but not so high that 
either dolomite precipitation or very early fabric-retentive dolomitization of ooids and cements 
could take place, like those of the Beck Spring Dolomite (Tucker, 1983). On the other hand the 
occurrence of dolomitic micritic facies in the VF suggests that the dolomite crystals rapidly 
precipitated from a dolomite supersaturated fluid having high Mg/Ca ratio and low SO4-2 
concentration as primary precipitates due to evaporation or due to microbial activity and as 
would be expected in the Proterozoic environments. 

2. I miss references to other Paleoproterozoic carbonate successions for example as described by 
Grotzinger from the Canadian shield  and  late Archean carbonate platform successions in South 
Africa and Australia with positive Eu anomalies (refer for example to Kamber and Webb, 2001, 
Geochim Cosmochim Acta; Schier et al 2018, Precam Research; Eroglu et al., Precam Research, 
2017).

We have added several references (six in numbers) of J.P Grotzinger and the references 
recording positive Eu anomalies from carbonate platform successions as suggested by the 
reviewer. 

1. Grotzinger, J.P., 1989. Facies and evolution of Precambrian carbonate depositional systems: 
emergence of the modern platform archetype, in, SEPM Special Publication 44, p. 79-106 (Line 
number 52; and 748-749)

2. Grotzinger, J. P., Read, J. F., 1983. Evidence for primary aragonite precipitation, lower 
Proterozoic (1.9 Ga) dolo- mite, Wopmay orogen, northwest Canada: Geology, v. 11, p. 710-713 
(Line number 52; and 750-751)

3. Grotzinger, J.P. and Kasting, J. 1993. New constraints on Precambrian ocean composition. 
Journal of Geology, v. 101, p. 235-243 (Line number 52; and 752-753)

4. Pope, M. C., and Grotzinger, J. P., 2003. Paleoproterozoic Stark Formation, Athapuscow 
basin, northwest Canada: Record of cratonic-scale salinity crisis. Journal of Sedimentary 
Research, v. 73, p. 280-295. (77) (Line number 49; and 901-903)

5. Saylor, B. Z., Grotzinger, J. P., and Germs, J. B. 1995. Sequence stratigraphy and 
sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), 
southwestern Namibia. Precambrian Research 73, 153-171. (Line number 48; and 935-937)

6. Kamber B. S., Webb, G. E., 2001. The geochemistry of late Archaean microbial carbonate: 
implications for ocean chemis- try and continental erosion history. Geochim. Cosmochim. Acta 
65, 2509–2525.  (Line number 457; and 801-803)



7. Schier, K., Bau, M., Münker, C., Beukes, N., Viehmann, S., 2018.  Trace element and Nd 
isotope composition of shallow seawater prior to the Great Oxidation Event: Evidence from 
stromatolitic bioherms in the Paleoproterozoic Rooinekke and Nelani Formations, South Africa. 
Precambrian Research 315,   92-102 (Line number 472; and 939-942)

8. Eroglu, S., van Zuilen, M.A., Taubald, H., Drost, K., Wille, M., Swanner, E.D., Beukes, N.J., 
Schoenberg, R., 2017, Depth-dependent δ13C trends in platform and slope settings of the 
Campbellrand-Malmani carbonate platform and possible implications for Early Earth 
oxygenation. Precambrian Research 302, 122-139. (Line number 471; and 712-715)

Reviewer 2

The manuscript submitted to Precambrian Research by Banerjee and co-authors is an interesting 
work contributing to a better knowledge of the evolution of ocean geochemistry in deep time, 
essentially to what concerns carbonate sediments. It is therefore a paper that adds new 
knowledge for Earth’s history.

Thank you Prof. Pittet.

The manuscript is separated into 2 parts, one devoted to classical sedimentology (facies, facies 
associations, depositional environments) and one to dolomite geochemistry. The problem in the 
manuscript is that these 2 parts are not clearly linked together as dolomite geochemistry is not 
analysed as a function of the facies, or of the environments. It seems that dolomite sampling was 
done rather randomly, at a more or less constant step (15m). I wonder if these 2 parts should not 
be published separately. Alternatively, it is necessary to better relate these 2 parts to write a more 
integrative/homogenous paper. Another alternative possibility is to drastically reduce the facies 
analysis in the present manuscript to focus on dolomite geochemistry. I however think that the 
data presented are of importance, and should be published. I have made comments and 
corrections all along the pdf file -both for the text and the figures- that I will not repeat here

Thank you Prof. Pittet for the comments. Changes made based on your comments and 
suggestions in the text (including figures) are described below.
 
1. Corrected in line 76 and 77 deleted “a short” and “short”

2. Line 82 corrected “18O depleted”

3. Line 107, 109, change gradational in to “transitional”

4. The Facies section is re-written and abridged. Table 1 is added along with Fig. 3. Table 2 is 
modified. All the other tables are shifted to Supplementary section. See Supplementary section 
where Tables 1S to 5S are presented showing all the data (XRD; Ca excess and ordering; Major 
and Trace element concentrations in wt% and ppm; PAAS normalized REE values; and oxygen 
and carbon isotope values).

5. Line number 196 Fig 1a, b, c are now marked.



6. Line no. 244 the environment is “quiescent” is interpreted from the presence of stromatolite 
with low synoptic relief and parallel lamination. Probable interpretation is deposition in a 
relatively quiet-water protected area between two bars or in a relatively deeper-water 
environment. 

7. Line number 285 reference added. Dolomite petrology of the formation is described 
depending on the dolomite classification system by Sibley and Gregg (1987, 1984) where they 
have designated mainly three types of dolomite depending on crystal size distribution and crystal 
boundary shape (preserved crystal face junction). Planar-e dolomites are described as euhedral 
crystals with intercrystalline boundaries filled by other minerals. Planar-s dolomites are 
subhedral to anhedral crystals with straight compromise boundaries and many crystal face 
junctions with low intercrystalline matrix. Nonplanar dolomites are defined by closely packed 
anhedral crystals with irregular intercrystalline boundaries and fewer (<30%) preserved crystal 
face junction. 

8. Line 340-341, Figure 7 is modified and Fig. 7 d) and 7 e) added.

9. Line 347 (Table 3Sa, see Supplementary section) added.

10. Line 399 Tucker (1982) reference added.

11. Line 445 Fig. 7c corrected.

12. Fig. 1 the three figures are labeled a) b) and c); Fig. 2 is modified and New Fig 3 is added; in 
Figure 4 Planer-s explained in the text (see line no. 285); in Figure 5 captions heading e) and f) 
corrected.
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14 Abstract: The Palaeoproterozoic Vempalle Formation of the Cuddapah Basin, India, significantly adds to 
15 our understanding of the evolution of Precambrian marine carbonate systems and the redox state of the 
16 Earth’s early oceans. A facies-microfacies-diagenetic-geochemical examination of samples from a 900-m 
17 long exposure in a freshly-cut canal section shows that 10 to 15 % of precursor limestone is still preserved 
18 in the Vempalle Formation in the form of remnant patches of calcimicrite and ooids with calcite spar 
19 cement. The ooids, preserving primary radial and concentric fabrics and radial fractures, are considered to 
20 have been originally precipitated as calcite, which may have been low-Mg. In places the preserved calcite 
21 spar, that is partially replaced by fabric-destructive dolomite, shows Type I calcite twin lamellae. 
22 Petrographic observations demonstrate that Vempalle Formation dolomite formed through very early 
23 precipitation, which in stromatolites preserved microbial filaments, as well as through fabric-destructive 
24 dolomitization during shallow to moderate burial. Vempalle Formation dolomite is characterized by 
25 micritic dolomite crystals which suggest rapid early dolomitization of lime mud and micritic calcite from 
26 a supersaturated Mg-Ca-rich solution, probably near-surface or during shallow burial. Depletion of Na 
27 and Sr contents of Vempalle Formation dolomite along with negative 18O values indicate dolomite 
28 recrystallisation during burial and further replacement. Dolomite 13C values of -0.5 to 2 ‰ are likely 
29 inherited original marine values. Geochemical proxies (trace elements and rare earths) imply that 
30 Cuddapah Basin seawater and dolomitizing fluids were anoxic and ferruginous but not euxinic. 
31 Geochemical analyses also indicate that the burial diagenetic fluids evolved from Eu-enriched seawater 
32 that probably resulted from continental rifting around 1.9 – 2.0 Ga. This probable ocean chemistry is in 
33 contrast with the anoxic, ferruginous and extremely high Mg/Ca “dolomite oceans” that prevailed during 
34 Proterozoic time. The Vempalle dolomite shows more similarities with dolomitised Phanerozoic platform 
35 carbonates than typical Precambrian dolomite with its well-preserved textures and burial dolospar 
36 cements.  
37
38
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45 1. INTRODUCTION

46 Carbonate ramps and rimmed platforms are a distinctive feature of Neoarchean to 

47 Neoproterozoic deposition and in many cases the dolomite content of these ancient carbonate 

48 platforms is high in comparison with those of the Mesozoic and Cenozoic (Saylor et al., 1995; 

49 Holland and Zimmermann, 2000; Pope and Grotzinger, 2003). The processes of formation of 

50 these ancient dolomites are still the subject of much debate. The Precambrian sedimentary record 

51 to about 3.5 Ga includes dolomites and limestones that likely precipitated as primary aragonite 

52 and calcite (Grotzinger and Read, 1983; Grotzinger, 1989; Grotzinger and Kasting, 1993). 

53 Palaeoproterozoic carbonate sedimentation was marked by less spectacular occurrences of 

54 massively-precipitated aragonite and calcite (Grotzinger and Kasting, 1993). Precambrian 

55 dolomites may have also formed by precipitation directly from seawater or by dolomitization 

56 during very early diagenesis from fluids comparable with seawater (e.g., Veizer and Hoefs, 

57 1976; Tucker, 1982, 1983; Hood and Wallace, 2018). Precambrian dolomites are generally 

58 characterised by very well-preserved fabrics of the original carbonate grains and early cements, 

59 leading to arguments over primary versus replacement dolomite (Tucker 1982, Hood and 

60 Wallace 2018). In addition, many Precambrian dolomites have drusy dolospar cements, 

61 precipitated during shallow to moderate burial (e.g. Tucker, 1983; Tewari and Tucker, 2011), a 

62 feature rarely seen in Phanerozoic dolomites. In India, several Precambrian sedimentary basins 

63 are reported to host dolomite successions several kilometres thick. The Palaeoproterozoic 

64 Vempalle Formation (VF), located in the crescent-shaped intracratonic Cuddapah Basin (CB), 

65 Eastern Dharwar craton, and a part of the Papaghni Group (Fig. 1), is characterized by the 

66 presence of a ~1.9 km-thick stromatolitic dolomite. The VF carbonate platform can be traced for 

67 more than 1000 km without any significant physical break from the SE to the NW part of the 

68 basin. 

69

70 Zachariah et al. (1999) obtained a Pb-Pb age of 1756 ± 29 Ma for the VF dolomite. Taking 

71 into consideration the age of intruded sills (1817±24 Ma; Bhaskar Rao et al., 1995) within VF 

72 carbonate rocks/Pulivendla quartzites and the age of VF dolomite (1756 ± 29 Ma), Zachariah et 

73 al. (1999) proposed 1756 ± 29 Ma as the time of dolomitization of the precursor VF limestone. 

74 Rai et al. (2015), based on a Pb–Pb (PbSL) age of VF dolomite and of the intruded sills of 1885 

75 Ma (U-Pb and Ar-Ar methods; French et al., 2008; Anand et al., 2003), proposed that 
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76 dolomitization of VF limestone might have taken place within 100 My duration of time (from 

77 1900-2000 Ma). This time duration of sedimentation and dolomitization is also reported from the 

78 Wittenoom Formation and Carawine Dolomite of the Hamersley Group, Western Australia, 

79 where the time between deposition, diagenesis and dolomitization is thought to be within 100-

80 150 My (Jahn and Cuvellier, 1994; Jahn and Simson, 1995). On the other hand, Chakrabarti et al. 

81 (2011, 2014), using isotopic (13C and 18O) and elemental (Mg, Ca, Fe, Mn, Sr and SO4
-2) data, 

82 concluded that VF dolomite is primary in nature and precipitated either from 18O depleted marine 

83 water or from a geochemically distinct mixed fluid source. Based on collective geochemical 

84 signatures, 13C and 18O isotopic values, flat REE patterns along with Ce, Eu and Gd 

85 anomalies, and chondritic to superchondritic Y/Ho ratios, Khelen et al. (2017) have recently 

86 proposed that VF dolomite was precipitated from marine water having a hydrothermal signature. 

87 These discrepancies in the plumbing mechanism(s) of VF dolomite warrant the need to revisit 

88 the question about the origin of VF dolomite and related dolomite-precipitating fluids. 

89

90 In this project we have used field and petrographic observations and various geochemical 

91 proxies to understand the mechanism(s) of formation of the shallow-marine VF dolomite and to 

92 assess the redox heterogeneity existing during its time of formation. Geochemical data, 

93 integrated with petrology and tectonic history of the CB, help not only to infer the source of Mg-

94 rich fluids but also to contribute to a better understanding of the redox conditions of this 

95 Proterozoic shallow-water carbonate. In addition, as will be shown, this Palaeoproterozoic 

96 dolomite has more features in common with dolomitised Phanerozoic platform carbonates, than 

97 the typical Precambrian dolomite with well-preserved fabrics, likely a reflection of seawater 

98 chemistry, redox and microbes. 

99

100 2. GEOLOGICAL BACKGROUND

101 The Papaghni Group (~2110 m thick) represents the first sedimentary cycle of the 

102 Cuddapah Supergroup (Patranabis-Deb et al., 2012) in the CB. The succession unconformably 

103 overlies the basement granite, gneiss and greenstone complex of the Eastern Dharwar craton, 

104 which in turn is unconformably overlain by the Chitravati Group (4975 m). The VF (~1900 m) 

105 of the Papaghni Group constitutes the lowermost carbonate-dominated unit of the Cuddapah 

106 Supergroup and overlies a basal siliciclastic unit, the Gulcheru Quartzite (~210 m), with a 



4

107 transitional contact (Nagaraja Rao et al., 1987). The Gulcheru Quartzite constitutes a basal 

108 conglomerate and immature sandstone unit, deposited in a fan-delta to prodelta setting, which 

109 transitionally passes up into a mature quartz arenite unit, deposited in a shallow-shelf 

110 environment (Majumder et al., 2015). The VF is represented mostly by thick stromatolitic 

111 dolomite and minor limestone (10 to 15%). Near the transition zone to the Gulcheru Quartzite, 

112 thin beds of splintery red mudstone alternate with siliciclastic and carbonate beds to form a 

113 mixed siliciclastic-carbonate unit (Fig. 2). Tidal and storm currents played a major role in 

114 sculpturing the sandstone bodies at this transition. 

115

116 Tepee structures, desiccation cracks filled with lime mud and sand and halite casts, are 

117 common in the lower VF (Fig. 2). The upper part is dominated by bedded dolomite deposited in 

118 a range of environments, starting from shallow shelf with intermittent exposure to fairly deep-

119 water conditions below normal wave base. Stromatolite morphologies reflect environments 

120 varying from intertidal to subtidal and facies cycles are the result of multiple rhythms of sea-

121 level change (Patranabis-Deb et al., 2018). Demise of the carbonate platform is marked by the 

122 deposition of thick brown shale with laterally persistent beds of chert. The common occurrence 

123 of sills up to a metre or more thick and thinner dykes of basalt and/or dolerite in the upper part of 

124 the VF succession indicates tectonic-magmatic activity (Anand et al., 2003). Conglomerate and 

125 pebbly sandstone of the basal Chitravati Group, upon a sharp unconformity, mark the beginning 

126 of the second sedimentary cycle. Clasts of chert with stromatolite, oolite, vein quartz, jasper and 

127 volcanics, derived from the Papaghni Group, reflect subaerial exposure and erosion during the 

128 formation of the unconformity between the two groups.

129

130 Rifting of the Eastern Dharwar craton and passive-margin sedimentation deposited the 

131 Gulcheru fan-delta succession (Majumder et al., 2015) followed by deposition of the extensive 

132 VF carbonate platform (Tripathy and Saha, 2008; Patranabis-Deb et al., 2018). Rai et al. (2015) 

133 inferred a minimum age of 2000 Ma for the onset of sedimentation in the Cuddapah Supergroup 

134 and this coincides with the onset of rifting of the supercontinent Columbia, as evidenced by 

135 widespread emplacement of mafic dykes in and around the CB during this period. The 

136 intermittent occurrence of mafic flows, ash-fall tuffs and associated shallow-crustal intrusives in 

137 the upper part of the VF (~1.88 Ga; Ravikant, 2010) is related to the second cycle of rifting that 
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138 possibly represents the initial phase of fragmentation and separation of the south Indian craton 

139 from the North China craton (Ravikant, 2010). With continued passive subsidence, the CB 

140 evolved into a large epicontinental sea with a near-complete cessation of coarse clastic influx and 

141 deposition of the extensive shale–carbonate succession of the Chitravati Group. Tectonically, the 

142 CB is punctuated by multiple unconformities, major tectonic contacts, faults and various basic 

143 sills (Saha and Tripathy, 2012; Saha and Mazumder, 2012; Patranabis-Deb et al., 2012; Collins 

144 et al., 2015), which affected and shaped its sedimentary succession.

145

146 3. METHODS

147

148 3.1. Sample collection for petrological analysis

149 Samples were collected at 5-15 m intervals up-section (Table 1) along a freshly cut canal 

150 section, nearly 4 km long (hereafter referred as the ‘canal section’) that exposed the dolomite 

151 beds of the VF (~1000 m thick dolomite unit, Fig. 2) near Parnapalle village (N14º32'58.3", 

152 E77º58'09.9") in the Cuddapah district, Rayalaseema. Samples collected from the dolomite beds 

153 covered eight facies namely F1, F2, F4, F5, F7, F8, F9 and F10 (Table 1; Fig. 2). F3 and F11 are 

154 intentionally avoided as they are mostly composed of shale, siltstone and dolomite (Table 2). 

155 Thin-sections were made from twenty-nine selected dolomite samples for petrographic analysis. 

156 Carbonate components (calcite, dolomite) were determined by staining the thin-sections with 

157 Alizarin Red S. 

158

159 3.2. X-Ray diffraction

160 Twenty-nine selected dolomite samples were powdered for X-ray diffraction analysis on 

161 a Panalytical X’Pert Pro diffractometer, equipped with a Cu Kɑ X-ray source and an X’Celerator 

162 detector, operating at the following conditions: 40 kV and 40 mA; range 5 – 80 deg 2θ; step size 

163 0.017 deg 2θ; time per step 50.2 sec; fixed divergence slit, angle 0.5º; sample rotation 1 rev sec-1. 

164 The quantities of the mineral phases were determined using the Rietveld method. 

165

166 3.3. Major and trace elements

167 Forty-two selected dolomite samples were powdered for bulk major, trace and REE 

168 analyses, undertaken at the Wadia Institute of Himalayan Geology. The elemental analysis was 
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169 performed using an ICP-MS PerkinElmer SCIEX ELAN DRC-e. Concentrations of REE + Y (n 

170 = 42) were normalized to the Post-Archaean Australian Shale (PAAS) representing an estimate 

171 for the composition of average terrigenous input to the oceanic environment. Specifically, REE 

172 fractionation was calculated as PrSN / YbSN (SN, shale normalized) to avoid problems in case of 

173 anomalous La and Ce concentrations. To avoid any anomalous behaviour of La, Ce, Eu and Gd, 

174 the anomalies were calculated using the geometric equations of Lawrence and Kamber (2006) 

175 and are given as Ce/Ce*, Eu/Eu*, Gd/Gd* and La/La*. 

176

177 3.4. Scanning electron microscopy with energy-dispersive spectroscopy

178 Thin-sections were examined under a scanning electron microscope (SEM) FE-SIGMA 

179 VP (Carl Zeiss Microscopy GmbH) with energy-dispersive (EDS) detector (Quantax XFlash 

180 3|10, Bruker Nano GmbH). Thin-sections were placed on the mount with carbon conductive 

181 tape. Then, samples were coated with a 20 nm layer of carbon by vacuum coater (Quorum 150T 

182 ES).  Furthermore, carbon tape bridges were made for each sample to avoid excessive 

183 accumulation of charge. Analyses were done with 120 μm aperture and 15 keV 

184 accelerationvoltage. Beam intensity was 2.5 nA and working distance was 7.5 mm.

185

186 3.5. Oxygen and carbon stable isotope analysis

187 Thirty-five selected dolomite samples were analysed for bulk carbon and oxygen stable 

188 isotopes at the Activation Laboratories Ltd., Canada. Samples were run on a DELTAPlus XL 

189 stable isotope ratio mass spectrometer (IRMS) coupled with ConFlo III Interface and EA1110 

190 elemental analyser. Standards NBS-19 (13C = 1.95 ‰ and 18O = -2.20 ‰) and NBS-18 (13C = 

191 -5.05 ‰ and 18O = -23.1 ‰) were used for comparison. The results are expressed relative to the 

192 Vienna Peedee Belemnite (VPDB). 

193

194 4. SEDIMENTATION PATTERN AND DEPOSITIONAL ENVIRONMENT 

195 The VF is well exposed along the south-western margin of the CB outcrop (Fig. 1a, b and 

196 c), represented by a ~1000-m thick succession of stromatolitic dolomite, dolomitic limestone and 

197 limestone (~70%), with minor calcimicrite (~20%), and ~10% siliciclastic sandstone and 

198 mudstone. Facies analysis reveals that the succession can be sub-divided into 11 distinct 

199 lithofacies (Table 1) which may be grouped into inner, mid and outer – ramp associations, 
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200 stacked in different orders as part of a major ramp-type carbonate platform (Fig. 3). The platform 

201 maintained a shallow depth throughout its life, thus indicating a keep-up mode of deposition, that 

202 is where the carbonate succession built up to sea level and kept pace with subsequent sea-level 

203 changes, such that a balance was maintained with the generation of accommodation space. 

204 Occasional storms and regular tides were important, distributing clastic sediments at particular 

205 times, which hampered the growth of the platform in time and space. The depth-controlled 

206 growth patterns of the stromatolites give clues to their depositional environment (Patranabis-Deb 

207 et al., 2018), which in the canal section reflects a gradient from shallow-water with exposure to 

208 shallow to moderate depths.

209

210 The VF succession in the canal section (Fig. 2) starts with a basal mixed unit, 

211 representing the transition between the basal siliciclastic unit of the Gulcheru Formation and 

212 carbonate rocks of the VF. It comprises mixed siliciclastic-dolomite (F1), bedded dolomite with 

213 crinkled laminites (F2) and intraformational conglomerate (F9). The mixed siliciclastic-dolomite 

214 beds are characterized by flaser bedding and lenticular bedding with preservation of desiccation 

215 cracks filled with lime mud and sand and halite casts within shale intervals, tepee structures and 

216 fluid-escape structures. The presence of these sedimentary features, suggests intermittent 

217 exposure in a supratidal to upper intertidal flat, in an inner ramp setting. Palaeocurrent directions 

218 measured from trough cross-stratification from the sandy units indicate east-north-easterly flow. 

219

220 The mixed siliciclastic unit passes upward to a thick succession of bedded dolomite with 

221 crinkled laminites (F2), black dolomite with or without stromatolite (F4), dolomite-micrite 

222 rhythmite (F5) and brown shale (F3), without any break. Steel grey to black coloured massive to 

223 stromatolitic dolomite beds (F4) with isolated to laterally-linked mutually-aligned stromatolites 

224 are observed, alternating with dolomite-micrite rhythmite (F5). Isolated occurrences of 

225 stromatolite with low synoptic relief and parallel lamination in black dolomite (F4) indicate a 

226 quiescent water environment. The close association of F4 and F5 also suggests their deposition 

227 in a low-energy protected environment. Thick occurrences of F2 alternating with F5, with 

228 signatures of intermittent exposure at different stratigraphic levels, suggest that they have 

229 possibly formed a barrier, which imposed a rimmed-shelf profile to the platform, creating 

230 lagoons on the shoreward side with an open shelf to seaward. 



8

231 The mid-ramp association consists of oolite (F6), with intercalations of dolomite mud 

232 rhythmite (F5), columnar stromatolite (F7), conical stromatolite (F8) and thickly – bedded 

233 dolomite (F10). The association starts with the occurrence of oolite (F6), as shoaling-up bars. 

234 The oolites comprise well-rounded, well-sorted medium- to coarse-grained ooids, usually 

235 preserving a concentric fabric with a clastic grain as the nucleus. Medium-to-fine-grained ooids 

236 with a radial fabric (with or without a clastic grain in the centre) and superficial ooids are also 

237 observed. Oolite beds are generally trough cross-stratified, showing NE and SW palaeocurrent 

238 directions with bidirectional pattern. The abundance of siliciclastic grains as nuclei to ooids 

239 indicates a ready source of clastics on the landward side. The oolite bank may have further acted 

240 as a barrier with the seaward side being cut off from the coastal sediments so that ooids formed 

241 without sand nuclei and a radial fabric. F6 is interbedded with small columnar stromatolites (4-

242 14 cm in height). F7 suggests spatial and temporal variations in the intensity and fluctuations of 

243 wave action (Swett and Knoll, 1989; Holland and Patzkowsky, 1998) in a lower intertidal to 

244 upper subtidal environment. The rhythmite facies (F5) may have been deposited as interbars in a 

245 relatively quiet-water protected area between two bars or in a relatively deeper-water 

246 environment. Up-section the columns increase in number and size and coalesce to form a 

247 continuous biostromal structure (F7), many metres thick, commonly intercalating with parallel-

248 stratified dolomite (F10). 

249

250 Planar-parallel to wavy-parallel stratified and trough cross-stratified dolomite beds of F10 

251 strongly suggest that this facies was deposited by traction currents. Gutter casts (Fig. 3d) and 

252 pillow and ball structures within the dolomite beds suggest storm waves on a shallow shelf. 

253 Changes of stromatolite type from shallow intertidal columnar to columnar biostromes, and a 

254 conical type, indicate deposition on a low-gradient ramp where the distribution of microbialite 

255 facies is distinctly depth-partitioned (Patrabanis-Deb et al., 2018). The gradual change in the 

256 shape, size and synoptic relief of stromatolites also suggests balanced sedimentation, deposition 

257 and accommodation space generation. 

258

259 The top part of the VF is mainly characterized by F10 and F11, interpreted to be 

260 deposited in an outer ramp environment, below fair-weather wave base. The association 

261 comprises a rhythmic occurrence of plane-parallel laminated dolomite (F10) with interbedded 
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262 green shale/siltstone and dolomite (F11), commonly interrupted by igneous intrusions. This 

263 depozone predominantly involved deposition from background suspension rarely interrupted by 

264 strong storm surges. Isolated gutter casts within the dolomite beds are thought to have been 

265 produced by storm-generated return flows (Fairchild and Herrington, 1989; Myrow, 1992). Chert 

266 and steatite nodules of various shapes and sizes (Fig. 3f) are common with iso-volumetric 

267 metasomatic alteration of dolomite to talc observed in the upper part of the VF.

268

269 5. RESULTS

270 5.1. Petrography

271 Petrographic analysis of the VF dolomite led to the identification of four microfacies: i) 

272 dolo-micrite with few quartz and feldspar grains, ii) stromatolitic dolomite bindstone, iii) oolitic 

273 grainstone (limestone and dolomite), and iv) calcimicrite with local limestone clasts. Micritic 

274 dolomite is plane-parallel laminated, where laminae are defined by alternating light (micrite) and 

275 dark (clay-rich) layers (Fig. 4a). Dolomicrite is commonly mixed with fine sand or silt-sized 

276 grains of well-rounded to sub-rounded quartz and feldspar (Fig. 4b). Dolomicrite shows grain 

277 enlargement due to recrystallization (Fig. 4c). Stromatolitic dolomite preserves crinkly to smooth 

278 lamination defined by alternating dolomicrite and microbial filaments (Fig. 4d). Preservation of 

279 the primary microbial texture suggests that this VF dolomite is either a very early mimetic 

280 replacement of CaCO3, preserving the original microbial filaments, or it is a primary microbial 

281 dolomite precipitating directly from ancient seawater (Tucker, 1983, Corsetti et al., 2006, van 

282 Smeerdijk Hood and Wallace, 2012). Good preservation of microbial structures also indicates 

283 little or no recrystallization during diagenesis. The stromatolitic dolomite is characterized by 

284 polymodal planar–e and subhedral to anhedral planar–s or non–planar micritic dolomite crystals 

285 (see dolomite classification by Sibley and Gregg, 1984, Gregg and Sibley, 1987), with sharp 

286 intercrystalline boundaries (Fig. 4e, f). Moreover, the SEM-EDS analysis of thin-sections did not 

287 show any relics of calcite crystals. 

288

289 The coarser carbonate facies include grainstone, mostly with spheroidal ooids, but also 

290 eye-shaped ooids. Stages of dolomitization are well-documented and recorded by the ooids (Fig. 

291 5a-f). At one extreme, the ooids are composed entirely of calcite crystals having a radial fabric, 

292 such that a continuous sweep of the extinction is seen on stage rotation under crossed polars (Fig. 
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293 5a, b). Preserved calcite ooids show well-developed primary concentric, radial and radial–

294 concentric fabrics; some have an outer silicified zone (cf. Tucker, 1984, 1985). Some of the 

295 ooids are radially fractured as a result of compaction (Fig. 5a). These radial fractures crudely 

296 coincide with the radial fabric which is probably a primary feature. Also the presence of primary 

297 radial – concentric fabrics as observed within the unreplaced calcite ooids suggest its growth in a 

298 mud-free environment whereas the radial fabric results from ooid growth in a relatively calm 

299 environment with the presence of lime mud (Tucker, 1984). The good fabric preservation of the 

300 ooids could suggest that they were originally composed of low-Mg calcite since this tends to 

301 resist dolomitization; however, they could originally have been high-Mg calcite, with the Mg 

302 leached out before dolomitisation (Tucker 1984, 1985). Some calcitic ooids have euhedral 

303 rhombic dolomite crystals in the nucleus of the ooid (Fig. 5c). At the other extreme, the ooid 

304 cortex is completely replaced by planar–e (euhedral) and subhedral to anhedral planar–s 

305 (subhedral) or non–planar micritic dolomite crystals, with sharp but slightly ragged 

306 intercrystalline boundaries, completely obliterating the internal fabric but still preserving the 

307 shape of the ooids (Fig. 5f). In between there are ooids that show incomplete replacement 

308 phenomena where the central part of the ooid is composed of coarse euhedral and mostly planar–

309 e to planar–s dolomite crystals obliterating the internal fabrics, but the outer rim is composed of 

310 calcite crystals still preserving the original radial–concentric fabrics (Fig. 5d). The primary radial 

311 fabric of the ooid at the peripheral margin is commonly partially destroyed by replacement 

312 micritic dolomite (Fig. 5e). Within massive dolomite there are still patches and lenses of 

313 limestone that preserve the primary micritic calcite matrix and calcite spar (Fig. 6a); the latter 

314 shows Type I calcite twin lamellae and it is partially replaced by dolomicrite destroying the 

315 primary fabric (Fig. 6b). Thin-section evidence of fabric-destructive dolomite in VF carbonate 

316 rocks indicates a replacement origin (Tucker et al., 2002), and the mimetic to obliterated mosaic 

317 texture indicates progressive dolomite replacement (Braithwaite, 1991). 

318

319 5.2. X-ray diffraction

320 XRD analysis shows that dolomite is the dominant mineral in the samples analysed, with 

321 subordinate quartz and minor K-feldspar (Table 1S, Supplementary section). Barring three 

322 samples, calcite is absent in VF dolomite samples analysed. Trace amounts of talc, barite, mica, 

323 chlorite and hematite were also detected. Calcium excess of VF dolomites is calculated using the 
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324 formula: CaCO3 mol% = 333.33*d104 – 911.99 (Lumsden, 1979, where d104 is the peak position 

325 in angstrom units, Table 2S). VF dolomites have a nearly stoichiometric composition (mole % 

326 CaCO3 = 49–51, mean 50) indicating an ideal composition of the dolomite (Mg:Ca = 1). 

327 Ordering of VF dolomite crystals ranges from 0.40 to 1.07 (average 0.56), according to the 

328 method described by Hardy and Tucker (1988). Only five samples had an ordering ratio <0.5 and 

329 >0.4. 

330

331 5.3. Geochemistry

332 Total iron content of VF dolomite varies from 19,235 ppm to 2170 ppm (average 5240 

333 ppm); Mn ranges from 2040 ppm to 125 ppm (average 320 ppm), whereas Al varies from 19,955 

334 ppm to 160 ppm (average 5475 ppm) (Table 3Sa,b). Average Fe/Mn and Fe/Al ratios are 19.6 

335 and 3.4, respectively. Sodium and Sr concentrations range from 60 ppm to 735 ppm (average 290 

336 ppm) and from 40 ppm to 420 ppm (average 85 ppm), respectively (Table 3Sa,b). Fe and Mn 

337 concentrations show a positive correlation (Fig. 7a), whereas the Sr/Ca ratio versus Na2O shows 

338 a poor correlation (Fig. 7b). Mn and Fe concentrations versus the Mg/Ca ratio can be used to 

339 explore modification of the carbonate chemistry during burial diagenesis (Gilleaudeau and Kah, 

340 2013). Fe and Mn concentrations of VF dolomites are independent of the Mg/Ca ratio (Fig. 7d, 

341 e). The Fe/Sr and Mn/Sr ratios can also be regarded as sensitive indicators of diagenetic 

342 alteration as both of the elements Fe and Mn replace Sr during diagenesis (Veizer, 1983; Derry et 

343 al., 1992). The Mn/Sr ratio is typically >2 (average 5.1; only five samples have Mn/Sr <2) and 

344 the Fe/Sr versus Mn/Sr ratios show positive covariance (Fig. 7c). 

345

346 V/(V+Ni) ratios vary from 0.6 to 0.9 (average 0.7), whereas the (Cu+Mo)/Zn ratios 

347 (Hallberg, 1976; 1982) vary from 5.9 to 0.4 (Table 3Sa). The enrichment factors of redox-

348 sensitive trace elements such as Mo, V and Co (EFX = (XT/AlT)/(XSN/AlSN)) can be calculated to 

349 estimate their relative enrichment or depletion (Tribovillard et al., 2006). VF dolomite is 

350 significantly enriched in Mo, V and Co (enrichment factor > 1) relative to PAAS.

351

352 The ΣREEs (Table 4S) in dolomite samples range from 0.49 to 11.06 ppm (average 2.4 

353 ppm; standard deviation, SD = 2.5 ppm). Dolomites have mostly homogeneous geochemical 

354 features (flat REE + Y patterns, Fig. 8; (La/Sm)SN ≈ 1, (Gd/Yb)SN ≈ 1, Fig. 9) with MREE 
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355 enrichment and a positive Eu anomaly (Eu/Eu* = 82.2 to 1.02, average Eu/Eu* = 8.25, SD = 

356 15.6). The dolomite samples display a small negative Gd anomaly (0.8<Gd/Gd*<1.3, average 

357 Gd/Gd* = 0.99, SD = 0.09), a positive La anomaly (0.7<La/La*<2.08, average La/La* = 1.08, 

358 SD = 0.3) and a slightly positive Ce anomaly (0.7<Ce/Ce*<1.3, average Ce/Ce* = 1.03, SD = 

359 0.16). The Y/Ho ratios range between 0.94 and 1.46 (average 1.15, SD = 0.14) and the Pr/Yb 

360 ratios range from 0.73 to 3.83 (average 1.32, SD = 0.59), respectively. Marine carbonate 

361 sediments in general have a ΣREE range of 0.04 to 14 ppm (Turekian and Wedepohl, 1961). The 

362 average ΣREE of typical marine carbonate is 28 ppm (Bellanca et al., 1997). The ΣREE of VF 

363 dolomite samples, normalized to PAAS ranges from 11.06 to 0.49 ppm (average 2.4 ppm) and 

364 does not show any positive correlation with the major elements (Fe, Mn, Al and Si).

365

366 5.4. Oxygen and carbon isotopes

367 The whole–rock δ18O and δ13C values of VF dolomite range from −8.1 to −5.2 ‰ 

368 (average –6.8 ‰) and −0.35 to 2.0 ‰ (average 0.5 ‰), respectively (Table 5S), and they show 

369 an inverse correlation (Fig. 10). Most of the δ13C values are near 0 ‰ (average 0.5 ‰), with six 

370 samples showing slightly depleted values (-0.35 ‰ < δ13C < 0 ‰), and the majority with slightly 

371 elevated δ13C, maximizing at 2‰. 

372

373 6. Discussion 

374 6.1. XRD mineralogy and petrography

375 The non-ferroan type dolomites (FeCO3 <2 mol%; Tucker and Wright, 1990) are nearly 

376 stoichiometric (mol% CaCO3 = 49 to 51, mean 50, Lumsden, 1979) and they are relatively well 

377 ordered (degree of order ranging from 0.4 to 1.0, mean 0.6, Hardy and Tucker, 1988). The near 

378 stoichiometric and relatively well-ordered nature of the dolomite crystals could reflect slow 

379 growth controlled by elevated temperature. This could be the result of dolomitization during 

380 burial or burial recrystallization of earlier, near-surface-formed dolomite. Lithospheric stretching 

381 and crustal sagging associated with volcanic activity during the interval 1.8 – 2.0 Ga in the CB 

382 (Anand et al., 2003; Ravikant et al., 2014) could have provided a higher than normal geothermal 

383 gradient during burial. 

384
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385 Petrographic analysis of VF dolomite shows patches of remnant calcimicrite (Fig. 6a) and 

386 calcite spar still preserving their primary fabrics like calcite twin-lamellae (Fig. 6b). The 

387 presence of twin-lamellae in the precursor calcite suggests a minimum temperature of 170oC is 

388 required for diagenetic deformation (Ferrill et al., 2004). Since the calcite ooids with original 

389 internal fabrics and textures are primary, and there is no evidence of calcitised aragonite (cf. 

390 Tucker, 1985), it is likely that the original lime mud (now calcimicrite) would have been calcitic 

391 and this was probably the precursor sediment of VF dolomite. Planar-s dolomite crystals (mostly 

392 5-15 µm) show cloudy centres (due to the presence of minute inclusions) and clear rims; this 

393 could suggest either replacement of original limestone or recrystallization of an earlier 

394 dolomicrite at depth. Petrographic study has shown that VF dolomite is characterized by the 

395 presence of micritic dolomite crystals that commonly exhibit crystal enlargement 

396 (recrystallization). The widespread occurrence of dolomitic micritic facies in the VF suggests 

397 that the dolomite crystals precipitated rapidly from a dolomite-supersaturated fluid with a high 

398 Mg/Ca ratio and low SO4
-2 concentration, as would be expected in the Proterozoic compared to 

399 typical Phanerozoic environments (Tucker, 1982), because of rapid nucleation and 

400 crystallization in a supratidal/upper tidal-flat environment. Rapid dolomite 

401 precipitation/replacement might also have been facilitated by fine-grained precursor carbonate 

402 sediment that had a high reactive surface area to volume ratio and high density of nucleation sites 

403 (Sibley and Gregg, 1987). Microbial influences within the sediment inducing suitable conditions 

404 for dolomite precipitation may well have been involved as well (e.g. Bontognali et al., 2010; 

405 Petrash et al., 2017; Perri et al., 2018).

406

407 6.2. Redox conditions

408 MREE enrichment (Haley et al., 2004) (Fig. 8), strong Europium anomalies (Bau, 1991) 

409 (Fig. 8) and absence of negative Ce anomalies (Bau and Koschinsky, 2009) (Fig. 11) in VF 

410 dolomite are compelling evidence suggesting its formation from anoxic marine-derived waters. 

411 High Fe and Mn concentrations (>1000 ppm and >50 ppm, respectively) of dolomites indicate 

412 that the fluids responsible for dolomite formation were iron-rich (Fe2+) and reducing in nature 

413 (Budd, 1997). The Fe/Mn ratio of VF dolomite, correlated with the Fe/Al ratio, implies 

414 insignificant sulphate reduction and pyrite precipitation during dolomite formation (Barnaby and 

415 Read, 1992), and this is consistent with the petrographic observations, where little pyrite was 
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416 detected. The Fe/Al ratio (Anderson and Raiswell, 2004; Lyons and Severmann, 2006) of VF 

417 dolomite also implies that the fluids responsible for dolomite formation were anoxic but not 

418 euxinic. Had the palaeo-fluids been euxinic, Fe2+ and other metal ions would have preferred to 

419 precipitate as sulphides (such as pyrite), and these were not observed. Hatch and Leventhal 

420 (1992) suggested a V/(V+Ni) ratio greater than 0.84 for euxinic, 0.54–0.82 for anoxic, and 0.46–

421 0.60 for dysoxic conditions. The V/(V+Ni) values of VF dolomite vary from 0.6 to 0.88 (average 

422 0.7) indicating chiefly anoxic waters of precipitation. The highest V/(V+Ni) ratio likely suggests 

423 euxinic depositional conditions. Hallberg (1976, 1982) proposed that the (Cu+Mo)/Zn ratio can 

424 also be used as a proxy to infer redox conditions. This ratio increases under reducing conditions 

425 and decreases when the environment is oxidising. VF dolomite samples show that the 

426 (Cu+Mo)/Zn ratio can be as high as 5.9 or as low as 0.37; this suggests dolomite formation 

427 mostly under reducing conditions. The V/(V+Ni) and (Cu+Mo)/Zn ratios also indicate anoxic 

428 depositional conditions. Molybdenum and vanadium are enriched in more reducing 

429 environments (Crusius et al., 1996; Algeo and Maynard, 2004; Breit and Wanty, 1991; Wanty 

430 and Goldhaber, 1992), whereas Co tends to be less soluble under reducing conditions (Algeo and 

431 Maynard, 2004). The enrichment factors (EFX = (XT/AlT)/(XSN/AlSN); Tribovillard et al., 2006) 

432 of redox-sensitive trace elements (Mo, V and Co) show that dolomite samples are significantly 

433 enriched in redox-sensitive trace elements relative to PAAS, suggesting reducing conditions 

434 during dolomite precipitation. 

435

436 6.3. Post-depositional alteration

437 The flat REE patterns of VF dolomite could indicate very limited siliciclastic input to the 

438 basin during carbonate deposition. The range of PAAS normalized ΣREE values (0.5 ppm-11.0 

439 ppm) and average ΣREE value (2.4 ppm) of VF dolomite suggests that the precursor rock is 

440 probably of marine origin (Turekian and Wedepohl, 1961; Bellanca et al., 1997) and the REE 

441 contribution from non-carbonate fractions (Fe-Mn oxides and siliciclastic contamination) 

442 appears to be minor (Fig. 12, Piper, 1974; Palmer, 1985). In addition, the Mn and Fe 

443 concentrations are independent of the Mg/Ca ratio suggesting minimal post-depositional 

444 alteration of VF dolomite (Nordeng and Sibley, 1994; Malone et al., 1996; Machel, 2004). 

445 However, The Fe/Sr versus Mn/Sr plot (Fig. 7c) shows clustered data with moderate covariance, 

446 suggesting that diagenesis could have altered the parent sediment geochemical signal. However, 
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447 elevated Mn/Sr ratios of VF dolomite (average 4.9) could be interpreted as a signature of 

448 diagenetic alteration (following, for example, Derry et al., 1992, 1994; Kaufman and Knoll, 

449 1995; Montañez et al., 1996), although on the other hand, this may not necessarily always be the 

450 case (for an alternative view see Knoll et al., 1995; Lindsay and Brasier, 2000); it could be 

451 related to the fluid chemistry (Yoshioka et al., 2003; Shen et al., 2005; Font et al., 2006; Hurtgen 

452 et al., 2006; Nédélec et al., 2007). Also, Archean and Palaeoproterozoic dolomites on average 

453 contain more Fe and Mn than younger carbonate rocks (Veizer et al., 1990), thus complicating 

454 the application of the Mn/Sr ratio as an index of alteration. The low Y/Ho ratio (0.94-1.46; mean 

455 1.15, SD = 0.14) and the Y/Ho and Ce/Ce* cross-plot (Fig. 13) probably indicate a variable 

456 degree of contamination of the precursor carbonate by clay material, reflecting the depositional 

457 setting in a shoreline or lagoonal environment (Kamber and Webb, 2001).

458

459 6.4. Fluid source

460 The PAAS-normalized REE profiles for VF dolomite show no LREE depletion, show 

461 MREE enrichment (cf. Haley et al., 2004) and have positive Eu and Y/Ho anomalies with a 

462 weakly positive Ce anomaly. These observed REE characteristics are consistent with the 

463 chemistry of anoxic marine basins (Bau and Möller, 1993), ferruginous lakes, marine 

464 hydrothermal plumes and anoxic diagenetic waters (Johannesson and Zhou 1999; Sherrell et al., 

465 1999; Haley et al., 2004; Wang et al., 2018). The weakly positive Gd anomaly present in VF 

466 dolomite may reflect seawater precipitation (Bau, 1999). Eu is also normally enriched in 

467 Archean seawater-precipitated carbonate too (Bolhar and Karnendonk, 2007), the source of 

468 which can be either hydrothermal solutions derived from mid-ocean ridges and/or back-arc 

469 spreading centres, or burial diagenetic fluids (Michard et al., 1983; Michard, 1989; Derry and 

470 Jacobsen, 1990; German et al., 1990; Murray et al., 1991; Danielson et al., 1992; German et al., 

471 1993; German et al., 1999; Douville et al., 1999; Kamber and Webb, 2001; Eroglu et al., 2017; 

472 Schier et al., 2018). In VF dolomite significant positive correlation is observed between Eu/Eu* 

473 and Ba content (Fig. 14) and this clearly indicates the influence of hydrothermal activity on the 

474 studied carbonates (Khelen et al., 2017). Extensive volcanic activity in the CB around 1.9 to 2.0 

475 Ga in a continental rift setting (Anand et al., 2003; Ravikant et al., 2014) could be the source for 

476 Eu. However, diagenetic alteration of the precursor carbonate sediments is suggested by the 
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477 Fe/Sr versus Mn/Sr plot (Fig. 8c), low Y/Ho ratio (0.94-1.46; mean 1.15, SD = 0.14) and the 

478 Y/Ho and Ce/Ce* plot (Fig. 13), and this could also have enhanced the Eu anomaly. 

479

480 Sodium content of dolomites can be used as an indicator of salinity of the fluid from 

481 which the dolomites precipitated (Land and Hoops, 1973; Sass and Katz, 1982; Sass and Bein, 

482 1988; Budd, 1997). The low Na concentrations (60-735 ppm, average 290 ppm) of VF dolomite 

483 along with the poor correlation of Sr/Ca vs. Na2O (Fig. 8b) rules out their hypersaline fluid 

484 origin and probably suggests a diagenetic fluid source. Depletion in Na, however, can also be a 

485 consequence of burial (Sachan, 1993), as successive episodes of dolomitization of limestone and 

486 dolomite recrystallisation would reduce the levels of Na (Warren, 2000). Similarly, low 

487 strontium concentrations (40–420 ppm, average 85 ppm; average Sr value of lithospheric 

488 carbonate rocks is 610 ppm; Turekian and Wedepohl, 1961) of VF dolomite probably reflect a 

489 Sr-depleted water-buffered diagenetic system (Budd, 1997; Warren, 2000; Azmy et al., 2001), 

490 supporting a burial diagenetic effect (Sachan, 1993; Warren, 2000). Tucker (1983), from studies 

491 of the Precambrian Beck Spring Dolomite, suggested that low concentrations of Na and Sr in 

492 ancient dolomites excludes precipitation from marine fluids and warrants either fluid–mixing or 

493 wet–recrystallization of an initially precipitated poorly-ordered calcian dolomite that drives out 

494 Na and Sr.

495

496 The δ13C values (− 0.4 ‰ to 2.0 ‰; average value 0.5 ‰) of dolomite samples probably 

497 reflect the carbon isotopic composition of the precursor carbonate precipitated from the 

498 Proterozoic seawater. Palaeoproterozoic carbonate successions are characterized by 18O values 

499 ranging from –6 to –12 ‰ (Tucker, 1982; Burdett et al., 1990; Veizer et al., 1992a; 1992b; 

500 Melezhik et al., 1997; Bekker et al., 2001; 2003a, b).  The oxygen isotope range (–5.2 to –8.1 ‰) 

501 for VF dolomite is within this range and is consistent with precipitation (or recrystallization) 

502 during shallow to moderate burial (Sachan, 1993; Warren, 2000). 

503

504 7. PROBABLE MECHANISM OF DOLOMITIZATION 

505 The field observations and petrographic features of the dolomites within the 

506 Palaeoproterozoic VF can be interpreted in terms of early dolomitization of peritidal platform 

507 carbonate sediment consisting of lime mud and calcimicrite. Preservation of microbial fabric 
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508 elements of the stromatolitic dolomite suggests that either VF dolomite associated with 

509 microbial-laminites formed as primary precipitates due to microbial activity and minor 

510 evaporation (Hird et al., 1987) or that they are very early, replacement mimetic dolomites. 

511 During subsequent shallow sub-surface burial and diagenesis, fabric-destructive dolomitization 

512 of the undolomitized oolitic grainstones and calcimicrite, along with recrystallization of the 

513 early-formed peritidal dolomite happened as suggested by the petrographic textures. In terms of 

514 seawater chemistry in the Palaeoproterozoic CB, it is likely that this was a time of calcite 

515 precipitation (a “calcite sea”), with anoxic and ferruginous conditions, and an elevated Mg/Ca 

516 ratio but not so high that very early fabric-retentive dolomitization of ooids and cements could 

517 take place, like those of the Beck Spring Dolomite (Tucker, 1983). The lack of a very high 

518 seawater Mg/Ca ratio could be related to the onset of rifting of supercontinent Columbia around 

519 2.0 Ga that coincides with the VF carbonate sedimentation. Grotzinger (1989) proposed that 

520 Precambrian seawater was oversaturated with respect to calcium carbonate that favoured abiotic 

521 carbonate precipitation that gradually decreased the carbonate saturation through the Proterozoic 

522 to Phanerozoic levels. This process, coupled with a fast rate of sea-floor spreading, would draw 

523 Mg2+ down producing a “calcite ocean” (Wilkinson and Algeo, 1989; Bots et al., 2011). This 

524 ocean chemistry is in contrast to the anoxic, ferruginous and extremely high Mg/Ca conditions 

525 that prevailed during Neoproterozoic time (Hood and Wallace, 2018). In addition, the coarse 

526 replacement VF dolomite crystallized from a burial fluid that evolved from the europium-

527 enriched anoxic seawater with a lower SO4 content (Hood and Wallace, 2018), as marine water 

528 or its derivative is the only known infinite source of Mg2+ and Ca2+. The PAAS-normalized REE 

529 profiles for VF dolomite are consistent with the chemistry of anoxic diagenetic waters. Low Na 

530 and Sr concentrations of VF dolomite in and around Parnapalle also suggest their precipitation 

531 (or early recrystallisation) during burial diagenesis (Veizer, 1983; Vahrenkamp and Stewart, 

532 1990; Tucker and Wright, 1990; Banner, 1995; Budd, 1997; Warren, 2000; Azmy et al., 2001; 

533 Balter et al., 2011; Sosdian et al., 2012); this is also supported by the stable isotope (18O) values 

534 that fall within the range of the burial dolomite model (Warren, 2000; Machel, 2004). The 13C, 

535 on the other hand, having ‘marine’ values, suggests that the original lime mud and/or micritic 

536 calcite were derived from seawater (Tucker and Wright, 1990). The likely factor promoting 

537 dolomite formation during early burial diagenesis could be the presence of an early, finely-

538 crystalline, less well-ordered dolomite, as is being precipitated in modern tidal flats and 
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539 microbial mats in Abu Dhabi and Qatar (e.g., Bontognalli et al., 2010; Perri et al., 2018). These 

540 early Ca-Mg precipitates could have provided the nuclei and substrates for continued dolomite 

541 formation. The near-stoichiometric and relatively well-ordered VF dolomite crystals probably 

542 would be the result of dolomite recrystallisation during burial, possibly promoted by an elevated 

543 geothermal gradient from crustal thinning and mafic volcanic activity around 2.0 – 1.8 Ga 

544 (Anand et al., 2003; Ravikant et al., 2014). Such tectonic-volcanic processes may have 

545 diagenetically-modified the then seawater composition and be responsible for the positive Eu 

546 anomaly (Eu/Eu* = 89.33-1.03) recorded in VF dolomite. 

547  

548 8. CONCLUSIONS

549 Combined field data and microscopic observations suggest that the Cuddapah Basin 

550 carbonate rocks initially precipitated as fine lime mud and/or micritic calcite in tidal–flat and 

551 associated shallow-marine environments. These sediments were replaced by dolomicrite during 

552 early peritidal dolomitization. Petrographic observations also reveal fabric-retentive dolomite 

553 textures, including filaments, in stromatolites, possibly reflecting microbial dolomite 

554 precipitation-dolomitisation. During shallow sub-surface burial, fabric destructive dolomitization 

555 of undolomitized oolitic grainstone and calcimicrite took place, along with recrystallization of 

556 the early-formed peritidal dolomite. The 18O and 13C values of VF dolomite samples suggest 

557 that these dolomites were either precipitated or recrystallised from burial diagenetic fluids that 

558 evolved from Eu-enriched seawater. Burial diagenetic precipitation and recrystallisation of 

559 dolomite are also supported by depleted Na and Sr contents. Ratios and contents of redox-

560 sensitive metals (Cu, Co, Fe, Mn, Mo, Ni, V, Zn), REE distribution and high FeT/Al ratios imply 

561 that dolomitizing fluids were anoxic and ferruginous but not euxinic. The positive Eu anomaly 

562 could reflect a hydrothermal source and this may have been related to fluids connected to 

563 continental rifting and volcanic activity within the CB around 1.9 – 2.0 Ga. The pattern of 

564 diagenesis and dolomitisation recorded in the VF is more typical of Phanerozoic platform 

565 carbonates than many Precambrian dolomites which show perfect preservation of original 

566 textures (such as ooids and fibrous cements) and continued precipitation of dolomite in the burial 

567 environment as a dolospar cement.    

568

569
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HIGHLIGHTS

Field study shows that the exposed ~900 m outcrop of Vempalle Formation (VF) of the Cuddapah Basin 
(CB), India along the south-western margin of the basin is represented by a thick succession of 
stromatolitic dolomite, dolomitic limestone and limestone (~70%), with minor calcimicrite (~20%), and 
~10% siliciclastic sandstone and mudstone. Facies analysis reveals that the succession can be sub-divided 
into 14 distinct lithofacies which can be grouped into five distinct facies associations, stacked in different 
orders as part of a major ramp-type carbonate platform.

Petrographic study shows preservation of 10 to 15 % of precursor limestone in the form of remnant 
patches of calcimicrite and ooids with calcite spar cement. Petrographic analysis suggests that the ooids, 
preserving primary radial and concentric fabrics and radial fractures, are considered to have been 
originally precipitated as calcite, which may have been low-Mg. In places the preserved calcite spar, that 
is partially replaced by fabric destructive dolomite, shows Type I calcite twin lamellae. Petrographic 
observations suggest that Vempalle Formation dolomite probably formed through very early precipitation, 
which in stromatolites preserved microbial filaments, as well as through fabric-destructive dolomitization 
during shallow to moderate burial. Vempalle Formation dolomite is characterized by micritic dolomite 
crystals that suggest rapid early dolomitization of lime mud and micritic calcite from a supersaturated 
Mg-Ca-rich solution, probably near-surface or during shallow burial. 

Geochemical data suggest that depletion of Na and Sr contents along with negative 18O values indicate 
dolomite recrystallisation during burial and further replacement. Dolomite  13C values of -0.5 to 2 ‰ are 
likely inherited original marine values. Geochemical proxies (trace elements and rare earths) imply that 
Cuddapah Basin seawater and dolomitizing fluids were anoxic and ferruginous but not euxinic. 
Geochemical analyses also indicate that the burial diagenetic fluids evolved from Eu-enriched seawater 
that probably resulted from continental rifting around 1.9 – 2.0 Ga. 

In terms of seawater chemistry in the Palaeoproterozoic CB, it is likely that this was a time of calcite 
precipitation (a “calcite sea”), with anoxic and ferruginous conditions, and an elevated Mg/Ca ratio but 
not so high that very early fabric-retentive dolomitization of ooids and cements could take place, like 
those of the Beck Spring Dolomite. The lack of a very high seawater Mg/Ca ratio could be related to the 
onset of rifting of supercontinent Columbia around 2.0 Ga that coincides with the VF carbonate 
sedimentation. This tectonic process with a fast rate of sea-floor spreading would draw Mg2+ down 
producing a “calcite ocean”. This ocean chemistry is in contrast to the anoxic, ferruginous and extremely 
high Mg/Ca conditions that prevailed during Neoproterozoic time.
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23 precipitation, which in stromatolites preserved microbial filaments, as well as through fabric-destructive 
24 dolomitization during shallow to moderate burial. Vempalle Formation dolomite is characterized by 
25 micritic dolomite crystals which suggest rapid early dolomitization of lime mud and micritic calcite from 
26 a supersaturated Mg-Ca-rich solution, probably near-surface or during shallow burial. Depletion of Na 
27 and Sr contents of Vempalle Formation dolomite along with negative 18O values indicate dolomite 
28 recrystallisation during burial and further replacement. Dolomite 13C values of -0.5 to 2 ‰ are likely 
29 inherited original marine values. Geochemical proxies (trace elements and rare earths) imply that 
30 Cuddapah Basin seawater and dolomitizing fluids were anoxic and ferruginous but not euxinic. 
31 Geochemical analyses also indicate that the burial diagenetic fluids evolved from Eu-enriched seawater 
32 that probably resulted from continental rifting around 1.9 – 2.0 Ga. This probable ocean chemistry is in 
33 contrast with the anoxic, ferruginous and extremely high Mg/Ca “dolomite oceans” that prevailed during 
34 Proterozoic time. The Vempalle dolomite shows more similarities with dolomitised Phanerozoic platform 
35 carbonates than typical Precambrian dolomite with its well-preserved textures and burial dolospar 
36 cements.  
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45 1. INTRODUCTION

46 Carbonate ramps and rimmed platforms are a distinctive feature of Neoarchean to 

47 Neoproterozoic deposition and in many cases the dolomite content of these ancient carbonate 

48 platforms is high in comparison with those of the Mesozoic and Cenozoic (Saylor et al., 1995; 

49 Holland and Zimmermann, 2000; Pope and Grotzinger, 2003). The processes of formation of 

50 these ancient dolomites are still the subject of much debate. The Precambrian sedimentary record 

51 to about 3.5 Ga includes dolomites and limestones that likely precipitated as primary aragonite 

52 and calcite (Grotzinger and Read, 1983; Grotzinger, 1989; Grotzinger and Kasting, 1993). 

53 Palaeoproterozoic carbonate sedimentation was marked by less spectacular occurrences of 

54 massively-precipitated aragonite and calcite (Grotzinger and Kasting, 1993). Precambrian 

55 dolomites may have also formed by precipitation directly from seawater or by dolomitization 

56 during very early diagenesis from fluids comparable with seawater (e.g., Veizer and Hoefs, 

57 1976; Tucker, 1982, 1983; Hood and Wallace, 2018). Precambrian dolomites are generally 

58 characterised by very well-preserved fabrics of the original carbonate grains and early cements, 

59 leading to arguments over primary versus replacement dolomite (Tucker 1982, Hood and 

60 Wallace 2018). In addition, many Precambrian dolomites have drusy dolospar cements, 

61 precipitated during shallow to moderate burial (e.g. Tucker, 1983; Tewari and Tucker, 2011), a 

62 feature rarely seen in Phanerozoic dolomites. In India, several Precambrian sedimentary basins 

63 are reported to host dolomite successions several kilometres thick. The Palaeoproterozoic 

64 Vempalle Formation (VF), located in the crescent-shaped intracratonic Cuddapah Basin (CB), 

65 Eastern Dharwar craton, and a part of the Papaghni Group (Fig. 1), is characterized by the 

66 presence of a ~1.9 km-thick stromatolitic dolomite. The VF carbonate platform can be traced for 

67 more than 1000 km without any significant physical break from the SE to the NW part of the 

68 basin. 

69

70 Zachariah et al. (1999) obtained a Pb-Pb age of 1756 ± 29 Ma for the VF dolomite. Taking 

71 into consideration the age of intruded sills (1817±24 Ma; Bhaskar Rao et al., 1995) within VF 

72 carbonate rocks/Pulivendla quartzites and the age of VF dolomite (1756 ± 29 Ma), Zachariah et 

73 al. (1999) proposed 1756 ± 29 Ma as the time of dolomitization of the precursor VF limestone. 

74 Rai et al. (2015), based on a Pb–Pb (PbSL) age of VF dolomite and of the intruded sills of 1885 

75 Ma (U-Pb and Ar-Ar methods; French et al., 2008; Anand et al., 2003), proposed that 
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76 dolomitization of VF limestone might have taken place within 100 My duration of time (from 

77 1900-2000 Ma). This time duration of sedimentation and dolomitization is also reported from the 

78 Wittenoom Formation and Carawine Dolomite of the Hamersley Group, Western Australia, 

79 where the time between deposition, diagenesis and dolomitization is thought to be within 100-

80 150 My (Jahn and Cuvellier, 1994; Jahn and Simson, 1995). On the other hand, Chakrabarti et al. 

81 (2011, 2014), using isotopic (13C and 18O) and elemental (Mg, Ca, Fe, Mn, Sr and SO4
-2) data, 

82 concluded that VF dolomite is primary in nature and precipitated either from 18O depleted marine 

83 water or from a geochemically distinct mixed fluid source. Based on collective geochemical 

84 signatures, 13C and 18O isotopic values, flat REE patterns along with Ce, Eu and Gd 

85 anomalies, and chondritic to superchondritic Y/Ho ratios, Khelen et al. (2017) have recently 

86 proposed that VF dolomite was precipitated from marine water having a hydrothermal signature. 

87 These discrepancies in the plumbing mechanism(s) of VF dolomite warrant the need to revisit 

88 the question about the origin of VF dolomite and related dolomite-precipitating fluids. 

89

90 In this project we have used field and petrographic observations and various geochemical 

91 proxies to understand the mechanism(s) of formation of the shallow-marine VF dolomite and to 

92 assess the redox heterogeneity existing during its time of formation. Geochemical data, 

93 integrated with petrology and tectonic history of the CB, help not only to infer the source of Mg-

94 rich fluids but also to contribute to a better understanding of the redox conditions of this 

95 Proterozoic shallow-water carbonate. In addition, as will be shown, this Palaeoproterozoic 

96 dolomite has more features in common with dolomitised Phanerozoic platform carbonates, than 

97 the typical Precambrian dolomite with well-preserved fabrics, likely a reflection of seawater 

98 chemistry, redox and microbes. 

99

100 2. GEOLOGICAL BACKGROUND

101 The Papaghni Group (~2110 m thick) represents the first sedimentary cycle of the 

102 Cuddapah Supergroup (Patranabis-Deb et al., 2012) in the CB. The succession unconformably 

103 overlies the basement granite, gneiss and greenstone complex of the Eastern Dharwar craton, 

104 which in turn is unconformably overlain by the Chitravati Group (4975 m). The VF (~1900 m) 

105 of the Papaghni Group constitutes the lowermost carbonate-dominated unit of the Cuddapah 

106 Supergroup and overlies a basal siliciclastic unit, the Gulcheru Quartzite (~210 m), with a 
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107 transitional contact (Nagaraja Rao et al., 1987). The Gulcheru Quartzite constitutes a basal 

108 conglomerate and immature sandstone unit, deposited in a fan-delta to prodelta setting, which 

109 transitionally passes up into a mature quartz arenite unit, deposited in a shallow-shelf 

110 environment (Majumder et al., 2015). The VF is represented mostly by thick stromatolitic 

111 dolomite and minor limestone (10 to 15%). Near the transition zone to the Gulcheru Quartzite, 

112 thin beds of splintery red mudstone alternate with siliciclastic and carbonate beds to form a 

113 mixed siliciclastic-carbonate unit (Fig. 2). Tidal and storm currents played a major role in 

114 sculpturing the sandstone bodies at this transition. 

115

116 Tepee structures, desiccation cracks filled with lime mud and sand and halite casts, are 

117 common in the lower VF (Fig. 2). The upper part is dominated by bedded dolomite deposited in 

118 a range of environments, starting from shallow shelf with intermittent exposure to fairly deep-

119 water conditions below normal wave base. Stromatolite morphologies reflect environments 

120 varying from intertidal to subtidal and facies cycles are the result of multiple rhythms of sea-

121 level change (Patranabis-Deb et al., 2018). Demise of the carbonate platform is marked by the 

122 deposition of thick brown shale with laterally persistent beds of chert. The common occurrence 

123 of sills up to a metre or more thick and thinner dykes of basalt and/or dolerite in the upper part of 

124 the VF succession indicates tectonic-magmatic activity (Anand et al., 2003). Conglomerate and 

125 pebbly sandstone of the basal Chitravati Group, upon a sharp unconformity, mark the beginning 

126 of the second sedimentary cycle. Clasts of chert with stromatolite, oolite, vein quartz, jasper and 

127 volcanics, derived from the Papaghni Group, reflect subaerial exposure and erosion during the 

128 formation of the unconformity between the two groups.

129

130 Rifting of the Eastern Dharwar craton and passive-margin sedimentation deposited the 

131 Gulcheru fan-delta succession (Majumder et al., 2015) followed by deposition of the extensive 

132 VF carbonate platform (Tripathy and Saha, 2008; Patranabis-Deb et al., 2018). Rai et al. (2015) 

133 inferred a minimum age of 2000 Ma for the onset of sedimentation in the Cuddapah Supergroup 

134 and this coincides with the onset of rifting of the supercontinent Columbia, as evidenced by 

135 widespread emplacement of mafic dykes in and around the CB during this period. The 

136 intermittent occurrence of mafic flows, ash-fall tuffs and associated shallow-crustal intrusives in 

137 the upper part of the VF (~1.88 Ga; Ravikant, 2010) is related to the second cycle of rifting that 



5

138 possibly represents the initial phase of fragmentation and separation of the south Indian craton 

139 from the North China craton (Ravikant, 2010). With continued passive subsidence, the CB 

140 evolved into a large epicontinental sea with a near-complete cessation of coarse clastic influx and 

141 deposition of the extensive shale–carbonate succession of the Chitravati Group. Tectonically, the 

142 CB is punctuated by multiple unconformities, major tectonic contacts, faults and various basic 

143 sills (Saha and Tripathy, 2012; Saha and Mazumder, 2012; Patranabis-Deb et al., 2012; Collins 

144 et al., 2015), which affected and shaped its sedimentary succession.

145

146 3. METHODS

147

148 3.1. Sample collection for petrological analysis

149 Samples were collected at 5-15 m intervals up-section (Table 1) along a freshly cut canal 

150 section, nearly 4 km long (hereafter referred as the ‘canal section’) that exposed the dolomite 

151 beds of the VF (~1000 m thick dolomite unit, Fig. 2) near Parnapalle village (N14º32'58.3", 

152 E77º58'09.9") in the Cuddapah district, Rayalaseema. Samples collected from the dolomite beds 

153 covered eight facies namely F1, F2, F4, F5, F7, F8, F9 and F10 (Table 1; Fig. 2). F3 and F11 are 

154 intentionally avoided as they are mostly composed of shale, siltstone and dolomite (Table 2). 

155 Thin-sections were made from twenty-nine selected dolomite samples for petrographic analysis. 

156 Carbonate components (calcite, dolomite) were determined by staining the thin-sections with 

157 Alizarin Red S. 

158

159 3.2. X-Ray diffraction

160 Twenty-nine selected dolomite samples were powdered for X-ray diffraction analysis on 

161 a Panalytical X’Pert Pro diffractometer, equipped with a Cu Kɑ X-ray source and an X’Celerator 

162 detector, operating at the following conditions: 40 kV and 40 mA; range 5 – 80 deg 2θ; step size 

163 0.017 deg 2θ; time per step 50.2 sec; fixed divergence slit, angle 0.5º; sample rotation 1 rev sec-1. 

164 The quantities of the mineral phases were determined using the Rietveld method. 

165

166 3.3. Major and trace elements

167 Forty-two selected dolomite samples were powdered for bulk major, trace and REE 

168 analyses, undertaken at the Wadia Institute of Himalayan Geology. The elemental analysis was 
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169 performed using an ICP-MS PerkinElmer SCIEX ELAN DRC-e. Concentrations of REE + Y (n 

170 = 42) were normalized to the Post-Archaean Australian Shale (PAAS) representing an estimate 

171 for the composition of average terrigenous input to the oceanic environment. Specifically, REE 

172 fractionation was calculated as PrSN / YbSN (SN, shale normalized) to avoid problems in case of 

173 anomalous La and Ce concentrations. To avoid any anomalous behaviour of La, Ce, Eu and Gd, 

174 the anomalies were calculated using the geometric equations of Lawrence and Kamber (2006) 

175 and are given as Ce/Ce*, Eu/Eu*, Gd/Gd* and La/La*. 

176

177 3.4. Scanning electron microscopy with energy-dispersive spectroscopy

178 Thin-sections were examined under a scanning electron microscope (SEM) FE-SIGMA 

179 VP (Carl Zeiss Microscopy GmbH) with energy-dispersive (EDS) detector (Quantax XFlash 

180 3|10, Bruker Nano GmbH). Thin-sections were placed on the mount with carbon conductive 

181 tape. Then, samples were coated with a 20 nm layer of carbon by vacuum coater (Quorum 150T 

182 ES).  Furthermore, carbon tape bridges were made for each sample to avoid excessive 

183 accumulation of charge. Analyses were done with 120 μm aperture and 15 keV 

184 accelerationvoltage. Beam intensity was 2.5 nA and working distance was 7.5 mm.

185

186 3.5. Oxygen and carbon stable isotope analysis

187 Thirty-five selected dolomite samples were analysed for bulk carbon and oxygen stable 

188 isotopes at the Activation Laboratories Ltd., Canada. Samples were run on a DELTAPlus XL 

189 stable isotope ratio mass spectrometer (IRMS) coupled with ConFlo III Interface and EA1110 

190 elemental analyser. Standards NBS-19 (13C = 1.95 ‰ and 18O = -2.20 ‰) and NBS-18 (13C = 

191 -5.05 ‰ and 18O = -23.1 ‰) were used for comparison. The results are expressed relative to the 

192 Vienna Peedee Belemnite (VPDB). 

193

194 4. SEDIMENTATION PATTERN AND DEPOSITIONAL ENVIRONMENT 

195 The VF is well exposed along the south-western margin of the CB outcrop (Fig. 1a, b and 

196 c), represented by a ~1000-m thick succession of stromatolitic dolomite, dolomitic limestone and 

197 limestone (~70%), with minor calcimicrite (~20%), and ~10% siliciclastic sandstone and 

198 mudstone. Facies analysis reveals that the succession can be sub-divided into 11 distinct 

199 lithofacies (Table 1) which may be grouped into inner, mid and outer – ramp associations, 
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200 stacked in different orders as part of a major ramp-type carbonate platform (Fig. 3). The platform 

201 maintained a shallow depth throughout its life, thus indicating a keep-up mode of deposition, that 

202 is where the carbonate succession built up to sea level and kept pace with subsequent sea-level 

203 changes, such that a balance was maintained with the generation of accommodation space. 

204 Occasional storms and regular tides were important, distributing clastic sediments at particular 

205 times, which hampered the growth of the platform in time and space. The depth-controlled 

206 growth patterns of the stromatolites give clues to their depositional environment (Patranabis-Deb 

207 et al., 2018), which in the canal section reflects a gradient from shallow-water with exposure to 

208 shallow to moderate depths.

209

210 The VF succession in the canal section (Fig. 2) starts with a basal mixed unit, 

211 representing the transition between the basal siliciclastic unit of the Gulcheru Formation and 

212 carbonate rocks of the VF. It comprises mixed siliciclastic-dolomite (F1), bedded dolomite with 

213 crinkled laminites (F2) and intraformational conglomerate (F9). The mixed siliciclastic-dolomite 

214 beds are characterized by flaser bedding and lenticular bedding with preservation of desiccation 

215 cracks filled with lime mud and sand and halite casts within shale intervals, tepee structures and 

216 fluid-escape structures. The presence of these sedimentary features, suggests intermittent 

217 exposure in a supratidal to upper intertidal flat, in an inner ramp setting. Palaeocurrent directions 

218 measured from trough cross-stratification from the sandy units indicate east-north-easterly flow. 

219

220 The mixed siliciclastic unit passes upward to a thick succession of bedded dolomite with 

221 crinkled laminites (F2), black dolomite with or without stromatolite (F4), dolomite-micrite 

222 rhythmite (F5) and brown shale (F3), without any break. Steel grey to black coloured massive to 

223 stromatolitic dolomite beds (F4) with isolated to laterally-linked mutually-aligned stromatolites 

224 are observed, alternating with dolomite-micrite rhythmite (F5). Isolated occurrences of 

225 stromatolite with low synoptic relief and parallel lamination in black dolomite (F4) indicate a 

226 quiescent water environment. The close association of F4 and F5 also suggests their deposition 

227 in a low-energy protected environment. Thick occurrences of F2 alternating with F5, with 

228 signatures of intermittent exposure at different stratigraphic levels, suggest that they have 

229 possibly formed a barrier, which imposed a rimmed-shelf profile to the platform, creating 

230 lagoons on the shoreward side with an open shelf to seaward. 
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231 The mid-ramp association consists of oolite (F6), with intercalations of dolomite mud 

232 rhythmite (F5), columnar stromatolite (F7), conical stromatolite (F8) and thickly – bedded 

233 dolomite (F10). The association starts with the occurrence of oolite (F6), as shoaling-up bars. 

234 The oolites comprise well-rounded, well-sorted medium- to coarse-grained ooids, usually 

235 preserving a concentric fabric with a clastic grain as the nucleus. Medium-to-fine-grained ooids 

236 with a radial fabric (with or without a clastic grain in the centre) and superficial ooids are also 

237 observed. Oolite beds are generally trough cross-stratified, showing NE and SW palaeocurrent 

238 directions with bidirectional pattern. The abundance of siliciclastic grains as nuclei to ooids 

239 indicates a ready source of clastics on the landward side. The oolite bank may have further acted 

240 as a barrier with the seaward side being cut off from the coastal sediments so that ooids formed 

241 without sand nuclei and a radial fabric. F6 is interbedded with small columnar stromatolites (4-

242 14 cm in height). F7 suggests spatial and temporal variations in the intensity and fluctuations of 

243 wave action (Swett and Knoll, 1989; Holland and Patzkowsky, 1998) in a lower intertidal to 

244 upper subtidal environment. The rhythmite facies (F5) may have been deposited as interbars in a 

245 relatively quiet-water protected area between two bars or in a relatively deeper-water 

246 environment. Up-section the columns increase in number and size and coalesce to form a 

247 continuous biostromal structure (F7), many metres thick, commonly intercalating with parallel-

248 stratified dolomite (F10). 

249

250 Planar-parallel to wavy-parallel stratified and trough cross-stratified dolomite beds of F10 

251 strongly suggest that this facies was deposited by traction currents. Gutter casts (Fig. 3d) and 

252 pillow and ball structures within the dolomite beds suggest storm waves on a shallow shelf. 

253 Changes of stromatolite type from shallow intertidal columnar to columnar biostromes, and a 

254 conical type, indicate deposition on a low-gradient ramp where the distribution of microbialite 

255 facies is distinctly depth-partitioned (Patrabanis-Deb et al., 2018). The gradual change in the 

256 shape, size and synoptic relief of stromatolites also suggests balanced sedimentation, deposition 

257 and accommodation space generation. 

258

259 The top part of the VF is mainly characterized by F10 and F11, interpreted to be 

260 deposited in an outer ramp environment, below fair-weather wave base. The association 

261 comprises a rhythmic occurrence of plane-parallel laminated dolomite (F10) with interbedded 
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262 green shale/siltstone and dolomite (F11), commonly interrupted by igneous intrusions. This 

263 depozone predominantly involved deposition from background suspension rarely interrupted by 

264 strong storm surges. Isolated gutter casts within the dolomite beds are thought to have been 

265 produced by storm-generated return flows (Fairchild and Herrington, 1989; Myrow, 1992). Chert 

266 and steatite nodules of various shapes and sizes (Fig. 3f) are common with iso-volumetric 

267 metasomatic alteration of dolomite to talc observed in the upper part of the VF.

268

269 5. RESULTS

270 5.1. Petrography

271 Petrographic analysis of the VF dolomite led to the identification of four microfacies: i) 

272 dolo-micrite with few quartz and feldspar grains, ii) stromatolitic dolomite bindstone, iii) oolitic 

273 grainstone (limestone and dolomite), and iv) calcimicrite with local limestone clasts. Micritic 

274 dolomite is plane-parallel laminated, where laminae are defined by alternating light (micrite) and 

275 dark (clay-rich) layers (Fig. 4a). Dolomicrite is commonly mixed with fine sand or silt-sized 

276 grains of well-rounded to sub-rounded quartz and feldspar (Fig. 4b). Dolomicrite shows grain 

277 enlargement due to recrystallization (Fig. 4c). Stromatolitic dolomite preserves crinkly to smooth 

278 lamination defined by alternating dolomicrite and microbial filaments (Fig. 4d). Preservation of 

279 the primary microbial texture suggests that this VF dolomite is either a very early mimetic 

280 replacement of CaCO3, preserving the original microbial filaments, or it is a primary microbial 

281 dolomite precipitating directly from ancient seawater (Tucker, 1983, Corsetti et al., 2006, van 

282 Smeerdijk Hood and Wallace, 2012). Good preservation of microbial structures also indicates 

283 little or no recrystallization during diagenesis. The stromatolitic dolomite is characterized by 

284 polymodal planar–e and subhedral to anhedral planar–s or non–planar micritic dolomite crystals 

285 (see dolomite classification by Sibley and Gregg, 1984, Gregg and Sibley, 1987), with sharp 

286 intercrystalline boundaries (Fig. 4e, f). Moreover, the SEM-EDS analysis of thin-sections did not 

287 show any relics of calcite crystals. 

288

289 The coarser carbonate facies include grainstone, mostly with spheroidal ooids, but also 

290 eye-shaped ooids. Stages of dolomitization are well-documented and recorded by the ooids (Fig. 

291 5a-f). At one extreme, the ooids are composed entirely of calcite crystals having a radial fabric, 

292 such that a continuous sweep of the extinction is seen on stage rotation under crossed polars (Fig. 
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293 5a, b). Preserved calcite ooids show well-developed primary concentric, radial and radial–

294 concentric fabrics; some have an outer silicified zone (cf. Tucker, 1984, 1985). Some of the 

295 ooids are radially fractured as a result of compaction (Fig. 5a). These radial fractures crudely 

296 coincide with the radial fabric which is probably a primary feature. Also the presence of primary 

297 radial – concentric fabrics as observed within the unreplaced calcite ooids suggest its growth in a 

298 mud-free environment whereas the radial fabric results from ooid growth in a relatively calm 

299 environment with the presence of lime mud (Tucker, 1984). The good fabric preservation of the 

300 ooids could suggest that they were originally composed of low-Mg calcite since this tends to 

301 resist dolomitization; however, they could originally have been high-Mg calcite, with the Mg 

302 leached out before dolomitisation (Tucker 1984, 1985). Some calcitic ooids have euhedral 

303 rhombic dolomite crystals in the nucleus of the ooid (Fig. 5c). At the other extreme, the ooid 

304 cortex is completely replaced by planar–e (euhedral) and subhedral to anhedral planar–s 

305 (subhedral) or non–planar micritic dolomite crystals, with sharp but slightly ragged 

306 intercrystalline boundaries, completely obliterating the internal fabric but still preserving the 

307 shape of the ooids (Fig. 5f). In between there are ooids that show incomplete replacement 

308 phenomena where the central part of the ooid is composed of coarse euhedral and mostly planar–

309 e to planar–s dolomite crystals obliterating the internal fabrics, but the outer rim is composed of 

310 calcite crystals still preserving the original radial–concentric fabrics (Fig. 5d). The primary radial 

311 fabric of the ooid at the peripheral margin is commonly partially destroyed by replacement 

312 micritic dolomite (Fig. 5e). Within massive dolomite there are still patches and lenses of 

313 limestone that preserve the primary micritic calcite matrix and calcite spar (Fig. 6a); the latter 

314 shows Type I calcite twin lamellae and it is partially replaced by dolomicrite destroying the 

315 primary fabric (Fig. 6b). Thin-section evidence of fabric-destructive dolomite in VF carbonate 

316 rocks indicates a replacement origin (Tucker et al., 2002), and the mimetic to obliterated mosaic 

317 texture indicates progressive dolomite replacement (Braithwaite, 1991). 

318

319 5.2. X-ray diffraction

320 XRD analysis shows that dolomite is the dominant mineral in the samples analysed, with 

321 subordinate quartz and minor K-feldspar (Table 1S, Supplementary section). Barring three 

322 samples, calcite is absent in VF dolomite samples analysed. Trace amounts of talc, barite, mica, 

323 chlorite and hematite were also detected. Calcium excess of VF dolomites is calculated using the 
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324 formula: CaCO3 mol% = 333.33*d104 – 911.99 (Lumsden, 1979, where d104 is the peak position 

325 in angstrom units, Table 2S). VF dolomites have a nearly stoichiometric composition (mole % 

326 CaCO3 = 49–51, mean 50) indicating an ideal composition of the dolomite (Mg:Ca = 1). 

327 Ordering of VF dolomite crystals ranges from 0.40 to 1.07 (average 0.56), according to the 

328 method described by Hardy and Tucker (1988). Only five samples had an ordering ratio <0.5 and 

329 >0.4. 

330

331 5.3. Geochemistry

332 Total iron content of VF dolomite varies from 19,235 ppm to 2170 ppm (average 5240 

333 ppm); Mn ranges from 2040 ppm to 125 ppm (average 320 ppm), whereas Al varies from 19,955 

334 ppm to 160 ppm (average 5475 ppm) (Table 3Sa,b). Average Fe/Mn and Fe/Al ratios are 19.6 

335 and 3.4, respectively. Sodium and Sr concentrations range from 60 ppm to 735 ppm (average 290 

336 ppm) and from 40 ppm to 420 ppm (average 85 ppm), respectively (Table 3Sa,b). Fe and Mn 

337 concentrations show a positive correlation (Fig. 7a), whereas the Sr/Ca ratio versus Na2O shows 

338 a poor correlation (Fig. 7b). Mn and Fe concentrations versus the Mg/Ca ratio can be used to 

339 explore modification of the carbonate chemistry during burial diagenesis (Gilleaudeau and Kah, 

340 2013). Fe and Mn concentrations of VF dolomites are independent of the Mg/Ca ratio (Fig. 7d, 

341 e). The Fe/Sr and Mn/Sr ratios can also be regarded as sensitive indicators of diagenetic 

342 alteration as both of the elements Fe and Mn replace Sr during diagenesis (Veizer, 1983; Derry et 

343 al., 1992). The Mn/Sr ratio is typically >2 (average 5.1; only five samples have Mn/Sr <2) and 

344 the Fe/Sr versus Mn/Sr ratios show positive covariance (Fig. 7c). 

345

346 V/(V+Ni) ratios vary from 0.6 to 0.9 (average 0.7), whereas the (Cu+Mo)/Zn ratios 

347 (Hallberg, 1976; 1982) vary from 5.9 to 0.4 (Table 3Sa). The enrichment factors of redox-

348 sensitive trace elements such as Mo, V and Co (EFX = (XT/AlT)/(XSN/AlSN)) can be calculated to 

349 estimate their relative enrichment or depletion (Tribovillard et al., 2006). VF dolomite is 

350 significantly enriched in Mo, V and Co (enrichment factor > 1) relative to PAAS.

351

352 The ΣREEs (Table 4S) in dolomite samples range from 0.49 to 11.06 ppm (average 2.4 

353 ppm; standard deviation, SD = 2.5 ppm). Dolomites have mostly homogeneous geochemical 

354 features (flat REE + Y patterns, Fig. 8; (La/Sm)SN ≈ 1, (Gd/Yb)SN ≈ 1, Fig. 9) with MREE 
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355 enrichment and a positive Eu anomaly (Eu/Eu* = 82.2 to 1.02, average Eu/Eu* = 8.25, SD = 

356 15.6). The dolomite samples display a small negative Gd anomaly (0.8<Gd/Gd*<1.3, average 

357 Gd/Gd* = 0.99, SD = 0.09), a positive La anomaly (0.7<La/La*<2.08, average La/La* = 1.08, 

358 SD = 0.3) and a slightly positive Ce anomaly (0.7<Ce/Ce*<1.3, average Ce/Ce* = 1.03, SD = 

359 0.16). The Y/Ho ratios range between 0.94 and 1.46 (average 1.15, SD = 0.14) and the Pr/Yb 

360 ratios range from 0.73 to 3.83 (average 1.32, SD = 0.59), respectively. Marine carbonate 

361 sediments in general have a ΣREE range of 0.04 to 14 ppm (Turekian and Wedepohl, 1961). The 

362 average ΣREE of typical marine carbonate is 28 ppm (Bellanca et al., 1997). The ΣREE of VF 

363 dolomite samples, normalized to PAAS ranges from 11.06 to 0.49 ppm (average 2.4 ppm) and 

364 does not show any positive correlation with the major elements (Fe, Mn, Al and Si).

365

366 5.4. Oxygen and carbon isotopes

367 The whole–rock δ18O and δ13C values of VF dolomite range from −8.1 to −5.2 ‰ 

368 (average –6.8 ‰) and −0.35 to 2.0 ‰ (average 0.5 ‰), respectively (Table 5S), and they show 

369 an inverse correlation (Fig. 10). Most of the δ13C values are near 0 ‰ (average 0.5 ‰), with six 

370 samples showing slightly depleted values (-0.35 ‰ < δ13C < 0 ‰), and the majority with slightly 

371 elevated δ13C, maximizing at 2‰. 

372

373 6. Discussion 

374 6.1. XRD mineralogy and petrography

375 The non-ferroan type dolomites (FeCO3 <2 mol%; Tucker and Wright, 1990) are nearly 

376 stoichiometric (mol% CaCO3 = 49 to 51, mean 50, Lumsden, 1979) and they are relatively well 

377 ordered (degree of order ranging from 0.4 to 1.0, mean 0.6, Hardy and Tucker, 1988). The near 

378 stoichiometric and relatively well-ordered nature of the dolomite crystals could reflect slow 

379 growth controlled by elevated temperature. This could be the result of dolomitization during 

380 burial or burial recrystallization of earlier, near-surface-formed dolomite. Lithospheric stretching 

381 and crustal sagging associated with volcanic activity during the interval 1.8 – 2.0 Ga in the CB 

382 (Anand et al., 2003; Ravikant et al., 2014) could have provided a higher than normal geothermal 

383 gradient during burial. 

384
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385 Petrographic analysis of VF dolomite shows patches of remnant calcimicrite (Fig. 6a) and 

386 calcite spar still preserving their primary fabrics like calcite twin-lamellae (Fig. 6b). The 

387 presence of twin-lamellae in the precursor calcite suggests a minimum temperature of 170oC is 

388 required for diagenetic deformation (Ferrill et al., 2004). Since the calcite ooids with original 

389 internal fabrics and textures are primary, and there is no evidence of calcitised aragonite (cf. 

390 Tucker, 1985), it is likely that the original lime mud (now calcimicrite) would have been calcitic 

391 and this was probably the precursor sediment of VF dolomite. Planar-s dolomite crystals (mostly 

392 5-15 µm) show cloudy centres (due to the presence of minute inclusions) and clear rims; this 

393 could suggest either replacement of original limestone or recrystallization of an earlier 

394 dolomicrite at depth. Petrographic study has shown that VF dolomite is characterized by the 

395 presence of micritic dolomite crystals that commonly exhibit crystal enlargement 

396 (recrystallization). The widespread occurrence of dolomitic micritic facies in the VF suggests 

397 that the dolomite crystals precipitated rapidly from a dolomite-supersaturated fluid with a high 

398 Mg/Ca ratio and low SO4
-2 concentration, as would be expected in the Proterozoic compared to 

399 typical Phanerozoic environments (Tucker, 1982), because of rapid nucleation and 

400 crystallization in a supratidal/upper tidal-flat environment. Rapid dolomite 

401 precipitation/replacement might also have been facilitated by fine-grained precursor carbonate 

402 sediment that had a high reactive surface area to volume ratio and high density of nucleation sites 

403 (Sibley and Gregg, 1987). Microbial influences within the sediment inducing suitable conditions 

404 for dolomite precipitation may well have been involved as well (e.g. Bontognali et al., 2010; 

405 Petrash et al., 2017; Perri et al., 2018).

406

407 6.2. Redox conditions

408 MREE enrichment (Haley et al., 2004) (Fig. 8), strong Europium anomalies (Bau, 1991) 

409 (Fig. 8) and absence of negative Ce anomalies (Bau and Koschinsky, 2009) (Fig. 11) in VF 

410 dolomite are compelling evidence suggesting its formation from anoxic marine-derived waters. 

411 High Fe and Mn concentrations (>1000 ppm and >50 ppm, respectively) of dolomites indicate 

412 that the fluids responsible for dolomite formation were iron-rich (Fe2+) and reducing in nature 

413 (Budd, 1997). The Fe/Mn ratio of VF dolomite, correlated with the Fe/Al ratio, implies 

414 insignificant sulphate reduction and pyrite precipitation during dolomite formation (Barnaby and 

415 Read, 1992), and this is consistent with the petrographic observations, where little pyrite was 
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416 detected. The Fe/Al ratio (Anderson and Raiswell, 2004; Lyons and Severmann, 2006) of VF 

417 dolomite also implies that the fluids responsible for dolomite formation were anoxic but not 

418 euxinic. Had the palaeo-fluids been euxinic, Fe2+ and other metal ions would have preferred to 

419 precipitate as sulphides (such as pyrite), and these were not observed. Hatch and Leventhal 

420 (1992) suggested a V/(V+Ni) ratio greater than 0.84 for euxinic, 0.54–0.82 for anoxic, and 0.46–

421 0.60 for dysoxic conditions. The V/(V+Ni) values of VF dolomite vary from 0.6 to 0.88 (average 

422 0.7) indicating chiefly anoxic waters of precipitation. The highest V/(V+Ni) ratio likely suggests 

423 euxinic depositional conditions. Hallberg (1976, 1982) proposed that the (Cu+Mo)/Zn ratio can 

424 also be used as a proxy to infer redox conditions. This ratio increases under reducing conditions 

425 and decreases when the environment is oxidising. VF dolomite samples show that the 

426 (Cu+Mo)/Zn ratio can be as high as 5.9 or as low as 0.37; this suggests dolomite formation 

427 mostly under reducing conditions. The V/(V+Ni) and (Cu+Mo)/Zn ratios also indicate anoxic 

428 depositional conditions. Molybdenum and vanadium are enriched in more reducing 

429 environments (Crusius et al., 1996; Algeo and Maynard, 2004; Breit and Wanty, 1991; Wanty 

430 and Goldhaber, 1992), whereas Co tends to be less soluble under reducing conditions (Algeo and 

431 Maynard, 2004). The enrichment factors (EFX = (XT/AlT)/(XSN/AlSN); Tribovillard et al., 2006) 

432 of redox-sensitive trace elements (Mo, V and Co) show that dolomite samples are significantly 

433 enriched in redox-sensitive trace elements relative to PAAS, suggesting reducing conditions 

434 during dolomite precipitation. 

435

436 6.3. Post-depositional alteration

437 The flat REE patterns of VF dolomite could indicate very limited siliciclastic input to the 

438 basin during carbonate deposition. The range of PAAS normalized ΣREE values (0.5 ppm-11.0 

439 ppm) and average ΣREE value (2.4 ppm) of VF dolomite suggests that the precursor rock is 

440 probably of marine origin (Turekian and Wedepohl, 1961; Bellanca et al., 1997) and the REE 

441 contribution from non-carbonate fractions (Fe-Mn oxides and siliciclastic contamination) 

442 appears to be minor (Fig. 12, Piper, 1974; Palmer, 1985). In addition, the Mn and Fe 

443 concentrations are independent of the Mg/Ca ratio suggesting minimal post-depositional 

444 alteration of VF dolomite (Nordeng and Sibley, 1994; Malone et al., 1996; Machel, 2004). 

445 However, The Fe/Sr versus Mn/Sr plot (Fig. 7c) shows clustered data with moderate covariance, 

446 suggesting that diagenesis could have altered the parent sediment geochemical signal. However, 
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447 elevated Mn/Sr ratios of VF dolomite (average 4.9) could be interpreted as a signature of 

448 diagenetic alteration (following, for example, Derry et al., 1992, 1994; Kaufman and Knoll, 

449 1995; Montañez et al., 1996), although on the other hand, this may not necessarily always be the 

450 case (for an alternative view see Knoll et al., 1995; Lindsay and Brasier, 2000); it could be 

451 related to the fluid chemistry (Yoshioka et al., 2003; Shen et al., 2005; Font et al., 2006; Hurtgen 

452 et al., 2006; Nédélec et al., 2007). Also, Archean and Palaeoproterozoic dolomites on average 

453 contain more Fe and Mn than younger carbonate rocks (Veizer et al., 1990), thus complicating 

454 the application of the Mn/Sr ratio as an index of alteration. The low Y/Ho ratio (0.94-1.46; mean 

455 1.15, SD = 0.14) and the Y/Ho and Ce/Ce* cross-plot (Fig. 13) probably indicate a variable 

456 degree of contamination of the precursor carbonate by clay material, reflecting the depositional 

457 setting in a shoreline or lagoonal environment (Kamber and Webb, 2001).

458

459 6.4. Fluid source

460 The PAAS-normalized REE profiles for VF dolomite show no LREE depletion, show 

461 MREE enrichment (cf. Haley et al., 2004) and have positive Eu and Y/Ho anomalies with a 

462 weakly positive Ce anomaly. These observed REE characteristics are consistent with the 

463 chemistry of anoxic marine basins (Bau and Möller, 1993), ferruginous lakes, marine 

464 hydrothermal plumes and anoxic diagenetic waters (Johannesson and Zhou 1999; Sherrell et al., 

465 1999; Haley et al., 2004; Wang et al., 2018). The weakly positive Gd anomaly present in VF 

466 dolomite may reflect seawater precipitation (Bau, 1999). Eu is also normally enriched in 

467 Archean seawater-precipitated carbonate too (Bolhar and Karnendonk, 2007), the source of 

468 which can be either hydrothermal solutions derived from mid-ocean ridges and/or back-arc 

469 spreading centres, or burial diagenetic fluids (Michard et al., 1983; Michard, 1989; Derry and 

470 Jacobsen, 1990; German et al., 1990; Murray et al., 1991; Danielson et al., 1992; German et al., 

471 1993; German et al., 1999; Douville et al., 1999; Kamber and Webb, 2001; Eroglu et al., 2017; 

472 Schier et al., 2018). In VF dolomite significant positive correlation is observed between Eu/Eu* 

473 and Ba content (Fig. 14) and this clearly indicates the influence of hydrothermal activity on the 

474 studied carbonates (Khelen et al., 2017). Extensive volcanic activity in the CB around 1.9 to 2.0 

475 Ga in a continental rift setting (Anand et al., 2003; Ravikant et al., 2014) could be the source for 

476 Eu. However, diagenetic alteration of the precursor carbonate sediments is suggested by the 
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477 Fe/Sr versus Mn/Sr plot (Fig. 8c), low Y/Ho ratio (0.94-1.46; mean 1.15, SD = 0.14) and the 

478 Y/Ho and Ce/Ce* plot (Fig. 13), and this could also have enhanced the Eu anomaly. 

479

480 Sodium content of dolomites can be used as an indicator of salinity of the fluid from 

481 which the dolomites precipitated (Land and Hoops, 1973; Sass and Katz, 1982; Sass and Bein, 

482 1988; Budd, 1997). The low Na concentrations (60-735 ppm, average 290 ppm) of VF dolomite 

483 along with the poor correlation of Sr/Ca vs. Na2O (Fig. 8b) rules out their hypersaline fluid 

484 origin and probably suggests a diagenetic fluid source. Depletion in Na, however, can also be a 

485 consequence of burial (Sachan, 1993), as successive episodes of dolomitization of limestone and 

486 dolomite recrystallisation would reduce the levels of Na (Warren, 2000). Similarly, low 

487 strontium concentrations (40–420 ppm, average 85 ppm; average Sr value of lithospheric 

488 carbonate rocks is 610 ppm; Turekian and Wedepohl, 1961) of VF dolomite probably reflect a 

489 Sr-depleted water-buffered diagenetic system (Budd, 1997; Warren, 2000; Azmy et al., 2001), 

490 supporting a burial diagenetic effect (Sachan, 1993; Warren, 2000). Tucker (1983), from studies 

491 of the Precambrian Beck Spring Dolomite, suggested that low concentrations of Na and Sr in 

492 ancient dolomites excludes precipitation from marine fluids and warrants either fluid–mixing or 

493 wet–recrystallization of an initially precipitated poorly-ordered calcian dolomite that drives out 

494 Na and Sr.

495

496 The δ13C values (− 0.4 ‰ to 2.0 ‰; average value 0.5 ‰) of dolomite samples probably 

497 reflect the carbon isotopic composition of the precursor carbonate precipitated from the 

498 Proterozoic seawater. Palaeoproterozoic carbonate successions are characterized by 18O values 

499 ranging from –6 to –12 ‰ (Tucker, 1982; Burdett et al., 1990; Veizer et al., 1992a; 1992b; 

500 Melezhik et al., 1997; Bekker et al., 2001; 2003a, b).  The oxygen isotope range (–5.2 to –8.1 ‰) 

501 for VF dolomite is within this range and is consistent with precipitation (or recrystallization) 

502 during shallow to moderate burial (Sachan, 1993; Warren, 2000). 

503

504 7. PROBABLE MECHANISM OF DOLOMITIZATION 

505 The field observations and petrographic features of the dolomites within the 

506 Palaeoproterozoic VF can be interpreted in terms of early dolomitization of peritidal platform 

507 carbonate sediment consisting of lime mud and calcimicrite. Preservation of microbial fabric 
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508 elements of the stromatolitic dolomite suggests that either VF dolomite associated with 

509 microbial-laminites formed as primary precipitates due to microbial activity and minor 

510 evaporation (Hird et al., 1987) or that they are very early, replacement mimetic dolomites. 

511 During subsequent shallow sub-surface burial and diagenesis, fabric-destructive dolomitization 

512 of the undolomitized oolitic grainstones and calcimicrite, along with recrystallization of the 

513 early-formed peritidal dolomite happened as suggested by the petrographic textures. In terms of 

514 seawater chemistry in the Palaeoproterozoic CB, it is likely that this was a time of calcite 

515 precipitation (a “calcite sea”), with anoxic and ferruginous conditions, and an elevated Mg/Ca 

516 ratio but not so high that very early fabric-retentive dolomitization of ooids and cements could 

517 take place, like those of the Beck Spring Dolomite (Tucker, 1983). The lack of a very high 

518 seawater Mg/Ca ratio could be related to the onset of rifting of supercontinent Columbia around 

519 2.0 Ga that coincides with the VF carbonate sedimentation. Grotzinger (1989) proposed that 

520 Precambrian seawater was oversaturated with respect to calcium carbonate that favoured abiotic 

521 carbonate precipitation that gradually decreased the carbonate saturation through the Proterozoic 

522 to Phanerozoic levels. This process, coupled with a fast rate of sea-floor spreading, would draw 

523 Mg2+ down producing a “calcite ocean” (Wilkinson and Algeo, 1989; Bots et al., 2011). This 

524 ocean chemistry is in contrast to the anoxic, ferruginous and extremely high Mg/Ca conditions 

525 that prevailed during Neoproterozoic time (Hood and Wallace, 2018). In addition, the coarse 

526 replacement VF dolomite crystallized from a burial fluid that evolved from the europium-

527 enriched anoxic seawater with a lower SO4 content (Hood and Wallace, 2018), as marine water 

528 or its derivative is the only known infinite source of Mg2+ and Ca2+. The PAAS-normalized REE 

529 profiles for VF dolomite are consistent with the chemistry of anoxic diagenetic waters. Low Na 

530 and Sr concentrations of VF dolomite in and around Parnapalle also suggest their precipitation 

531 (or early recrystallisation) during burial diagenesis (Veizer, 1983; Vahrenkamp and Stewart, 

532 1990; Tucker and Wright, 1990; Banner, 1995; Budd, 1997; Warren, 2000; Azmy et al., 2001; 

533 Balter et al., 2011; Sosdian et al., 2012); this is also supported by the stable isotope (18O) values 

534 that fall within the range of the burial dolomite model (Warren, 2000; Machel, 2004). The 13C, 

535 on the other hand, having ‘marine’ values, suggests that the original lime mud and/or micritic 

536 calcite were derived from seawater (Tucker and Wright, 1990). The likely factor promoting 

537 dolomite formation during early burial diagenesis could be the presence of an early, finely-

538 crystalline, less well-ordered dolomite, as is being precipitated in modern tidal flats and 
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539 microbial mats in Abu Dhabi and Qatar (e.g., Bontognalli et al., 2010; Perri et al., 2018). These 

540 early Ca-Mg precipitates could have provided the nuclei and substrates for continued dolomite 

541 formation. The near-stoichiometric and relatively well-ordered VF dolomite crystals probably 

542 would be the result of dolomite recrystallisation during burial, possibly promoted by an elevated 

543 geothermal gradient from crustal thinning and mafic volcanic activity around 2.0 – 1.8 Ga 

544 (Anand et al., 2003; Ravikant et al., 2014). Such tectonic-volcanic processes may have 

545 diagenetically-modified the then seawater composition and be responsible for the positive Eu 

546 anomaly (Eu/Eu* = 89.33-1.03) recorded in VF dolomite. 

547  

548 8. CONCLUSIONS

549 Combined field data and microscopic observations suggest that the Cuddapah Basin 

550 carbonate rocks initially precipitated as fine lime mud and/or micritic calcite in tidal–flat and 

551 associated shallow-marine environments. These sediments were replaced by dolomicrite during 

552 early peritidal dolomitization. Petrographic observations also reveal fabric-retentive dolomite 

553 textures, including filaments, in stromatolites, possibly reflecting microbial dolomite 

554 precipitation-dolomitisation. During shallow sub-surface burial, fabric destructive dolomitization 

555 of undolomitized oolitic grainstone and calcimicrite took place, along with recrystallization of 

556 the early-formed peritidal dolomite. The 18O and 13C values of VF dolomite samples suggest 

557 that these dolomites were either precipitated or recrystallised from burial diagenetic fluids that 

558 evolved from Eu-enriched seawater. Burial diagenetic precipitation and recrystallisation of 

559 dolomite are also supported by depleted Na and Sr contents. Ratios and contents of redox-

560 sensitive metals (Cu, Co, Fe, Mn, Mo, Ni, V, Zn), REE distribution and high FeT/Al ratios imply 

561 that dolomitizing fluids were anoxic and ferruginous but not euxinic. The positive Eu anomaly 

562 could reflect a hydrothermal source and this may have been related to fluids connected to 

563 continental rifting and volcanic activity within the CB around 1.9 – 2.0 Ga. The pattern of 

564 diagenesis and dolomitisation recorded in the VF is more typical of Phanerozoic platform 

565 carbonates than many Precambrian dolomites which show perfect preservation of original 

566 textures (such as ooids and fibrous cements) and continued precipitation of dolomite in the burial 

567 environment as a dolospar cement.    

568

569
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Fig. 1. (a) Distribution of the major Proterozoic basins in India. The red, dashed, outlined rectangle demarcates the 
Cuddapah Basin; (b) Outline sketch of the Cuddapah Basin showing four sub-basins (after Ramam and Murty, 1997). 
The red, outlined rectangle demarcates the study area in the Papaghni sub-basin, Cuddapah Basin; (c) General 
geological map of the south-western part of the Papaghni sub-basin showing the different lithostratigraphic units of 
formation status. The study area is located near Parnapalle village (N14º32'58.3", E77º58'09.9").  
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Fig. 2. Representative litho-log showing the vertical 
arrangement of facies, at a canal-cut section exposing 
~1000 m of the Vempalle Formation.
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Fig. 3. Field photographs showing different features of the Vempalle Formation, referred in the 
interpretative block diagram showing the VF depositional environment. a) Mixed siliciclastic 
dolomite (sandstone-mudstone heterolith, F1); b) Mixed siliciclastic dolomite (laminated 
calcareous mudstone with siliciclastic input, F1); c) Bedded dolomite with crinkled laminites 
(F2) characterized by flat or wavy lamination; d) Dolomite-micrite rhythmite (F5) characterized 
by buff-coloured dolomite alternating with green or brown shale; e) Thick occurrence of brown 
shale (F3), where the bed-sets (~1.5 m) laterally persist more than 10 m; f) Black dolomite with 
chert nodules (F4); g) Tabular biostromes of laterally-linked domes of stromatolite (F7); h) 
Planar- and trough-stratified oolitic grainstone beds (F6); i) Tabular biostromes of columnar 
stromatolites; j) Tabular biostromes of conical stromatolites (F9); k) Tabular beds of parallel 
stratified dolomite (F10) alternating with buff-coloured marl and green shale (F11) with steatite 
(talc) interbeds; l) Schematic representation of the palaeogeography of the VF. The hammer in 
photograph a, c is 32.5 cm in length. The hammer in photograph b is 28.5 cm and the scale in 
photograph j is 15 cm. The bar scale in other photographs (marked by black coloured line) is 1.6 
m long.



Fig. 4. a) Mixed siliciclastic-carbonate with >10% of terrigenous material characterized mostly 
by sub-rounded to well-rounded quartz with minor feldspar (XPL). b) Lithic fragments of quartz 
(centre) and feldspar (upper right). c) Non-planar polymodal relatively coarse-crystalline 
dolomite completely replaced the calcimicrite matrix. Note the curved crystal faces and undulose 
extinction of the non-planar dolomite (XPL). d) Stromatolitic dolomite showing alternate 
occurrence of fine- and coarse- crystalline dolomite and microbial laminae (PPL). e) Polymodal 
non-planar dolomite crystals from the coarse-crystalline layers of the stromatolitic dolomite. 
Note the preservation of crystal-face junctions in the non-planar dolomite compared to the 
planar-s dolomite (XPL). f) Fine-crystalline polymodal planar-s to non-planar dolomite crystals 
from the dolomite layers of the stromatolitic dolomite (XPL).



Fig. 5. a) Ooids of different sizes showing concentric rims and radial cracks (PPL); b) Ooids 
composed of calcite crystals, showing radial fabric (XPL) c) Presence of euhedral rhombic 
dolomite crystals at the nucleus of the ooid. Radial fabric is clearly visible showing sweeping 
extinction (XPL); d) Partially replaced ooid grain preserving concentric rims and radial fabric at 
the outer margin. Dolomite replacement at the inner part of the ooid completely destroyed the 
primary fabric. Also note presence of silica rim at the margin of the ooid (PPL); e) Partial 
destruction of the primary radial fabric of the ooid at the peripheral margin by micritic dolomite 
crystals during replacement (XPL); f) ooid cortex is completely replaced by planar-e, planar - s 
and non-planar micritic dolomite crystals completely obliterating the internal fabric but still 
preserving the shape of the ooids.   



Fig. 6. Photomicrograph of massive VF dolomite from the upper part of the formation. a) Still 
preserved unreplaced calcimicrite with medium-grained, polymodal calcite microspar (XPL). b) 
Calcite spar showing lamellae engulfing dolomite crystals (XPL).



Fig. 7. Cross-plots of a) Mn vs Fe, b) Sr/Ca vs Na2O, and c) Fe/Sr vs Mn/Sr d) Mg/Ca vs Fe and 
e) Mg/Ca vs Mn from VF dolomite samples (oxide percent is converted in to ppm: oxide percent 
x conversion factor x 10000). 

d) e)



Fig. 8. Example of the typical PAAS-normalized REE patterns of Vempalle Formation dolomite 
samples. A red dashed-line represents an average of a chosen data-set and shows a pronounced 
positive Eu anomaly. 

Fig. 9. Distribution of PAAS-normalised (Gd/Yb)SN vs (La/Sm)SN of Vempalle Formation 
dolomite samples. 



Fig. 10. Cross-plot of oxygen vs carbon isotope values obtained from the Vempalle Formation 
dolomites showing an inverse correlation.

Fig. 11. Plot of CeSN and PrSN anomalies for the Vempalle Formation dolomites shows a wide 
range of anomalies from large positive Ce anomalies to moderately negative anomalies. Fields 
after Bau and Dulski (1996). 



Fig. 12. The PAAS-normalized low ΣREE of the Vempalle Formation dolomites suggests that 
the precursor rock is probably of marine origin and the REE contribution from non-carbonate 
fractions (Fe-Mn oxides and siliciclastic contamination) appears to be minor.



Fig. 13. Correlation between Y/Ho versus Ce/Ce* of the Vempalle Formation dolomites suggests 
variable contamination of the precursor carbonate sediments. 

Fig. 14. Strong correlation between Ba (ppm) versus PAAS normalized Eu of the VF dolomites 
clearly indicates the signature of hydrothermal activity. 



TABLES 

Table 1. Sample list of Vempalle Formation rocks from the Papaghni Group. ✔ - Sample 
analyzed; -- - sample not analyzed

Sample 
No.

Color of Rock 
Sample Lithology Facies Height Major 

oxide
Trace 

element REE XRD Isotope

VT1/12 Light Grey,
5Y 6/1

Locally algal laminated 
fine grained dolomicrite F1 3.56m ✔ - -- ✔ --

VT2/12

Grayish pink (5R 
8/2) with 

elongated patches 
of grayish purple

Laminated Fine grained 
dolomicrite F1 14.4m ✔ ✔ ✔ ✔ --

VT3A/12
Grayish pink (5R 
8/2) with banding 
of grayish purple

Fine grained dolomicrite F1 26.72m ✔ ✔ ✔ ✔ --

VT3B/12

Very light gray 
(N8) colored clast 
in a Grayish pink 
(5R 8/2) colored 

cement

Intraformational 
Conglomerate (Large, 

elongated limestone clasts 
in dolomite cement)

F1 29.92m ✔ ✔ ✔ ✔ --

VT4/12 Grayish Pink, 5R 
8/2

Algal laminated Fine 
grained dolomicrite F1 44.3m ✔ ✔ ✔ ✔ --

97.85m Unexposed

M1 Medium gray, N5 Fine grained dolomicrite F1 228.35m ✔ ✔ ✔ ✔ ✔

M5 Dark gray, N3 Fine grained black 
dolomite F4 251.85m ✔ ✔ ✔ -- --

M7 Medium dark 
gray, N4

Fine grained black 
dolomite F4 257.65m ✔ ✔ ✔ ✔ --

M11 Very light gray, 
N8

Fine grained black 
dolomite F4 287.7m ✔ ✔ ✔ -- --

M15 Light Gray, N7 Algal laminated bedded 
dolomite F2 306.88m ✔ ✔ ✔ ✔ --

M17 Medium gray, N5 Fine grained black 
dolomite F4 317.63m ✔ ✔ ✔ -- --

M18 Medium light 
gray, N6 Fine grained dolomite F5 324.92m -- ✔ -- ✔ --

M19 Grayish black, N2 Medium grained black 
dolomite F4 334.62m ✔ ✔ ✔ -- --

M20 Pale brown, 5YR 
5/2

Algal laminated fine-
grained bedded dolomite F2 345.69m ✔ ✔ ✔ ✔ --

M22 Grayish black, N2 Medium grained black 
dolomite with stromatolite F4 364.14m ✔ ✔ ✔ ✔ --

25m unexposed

V1/12 Light Gray, N7 Fine grained dolomite F5 389.83m -- ✔ ✔ ✔ --



V4/12 Grayish black, N2 Fine grained black 
dolomite F4. 402.69m -- - -- -- ✔

V7/12 Light Gray, N7 Fine grained dolomite F5 415.2m -- - -- -- ✔

V9/12 Grayish black, N2 Fine grained black 
dolomite F4. 423.82m -- - -- -- ✔

V10/12 White, N9 Fine grained dolomite F5 428.25m ✔ ✔ ✔ ✔ --

V12/12 Grayish black, N2 Fine grained dolomite F5 436.73m -- - -- -- ✔

V14/12 Medium gray, N5
Stromatolitic black 

dolomite
F7 480.33m -- - -- -- ✔

V15/12
Medium light 

gray, N6
Fine grained dolomite

F5
501.66m ✔ ✔ ✔ ✔ --

V17/12 Light Gray, N7 Stromatolitic dolomite F7 533.04m ✔ ✔ ✔ ✔ ✔

V19/12
Medium light 

gray, N6
Fine grained dolomicrite F10 557.03m ✔ ✔ ✔ -- ✔

V21/12 Medium light 
gray, N6 Fine grained dolomite F5 580.83m ✔ ✔ ✔ ✔ ✔

V23/12 Pale yellowish 
brown, 10YR 6/2 Very fine-grained dolomite F5 604.02m ✔ - -- -- --

V26/12 Medium dark 
gray, N4 Stromatolitic dolomite F8 633.75m ✔ ✔ ✔ ✔ ✔

V28/12 Medium dark 
gray, N4 Stromatolitic dolomite F7 644.53m ✔ ✔ ✔ -- --

V29/12 Light Gray, N7 Stromatolitic dolomite F7 650.54m -- ✔ ✔ -- --

V30/12 Light Gray, N7 Stromatolitic dolomite F7 655.74m ✔ ✔ ✔ ✔ --

V32/12

Light Gray, (N7) 
with medium dark 
gray (N4) colored 

banding

Stromatolitic dolomite F7 666.4m ✔ ✔ ✔ -- --

V35/12 Very light gray, 
N8 Fine grained dolomite F5 682.2m ✔ ✔ ✔ ✔ ✔

V36/12 Medium light 
gray, N6 Fine grained dolomite F5 687.65m ✔ ✔ ✔ -- --

V37/12

Grayish red 
purple (5RP 4/2) 
with dark reddish 
brown (10R 3/4) 

laminites in 
between

Dolomicrite F5 695.67m ✔ ✔ ✔ ✔ --

V39/12 Pale yellowish 
brown, 10YR 6/2 Fine grained dolomite F5 706.8m ✔ ✔ ✔ ✔ --



V42/12 Grayish pink, 5R 
8/2 Stromatolitic dolomite F7 730.93m ✔ ✔ ✔ ✔ ✔

V44/12 Medium gray, N5 Stromatolitic dolomite F7 752.63m ✔ ✔ ✔ ✔ --

V44/12 Cream/white oolite F8 752.81m ✔ - ✔ -- --

V46/12 Medium light 
gray, N6 Fine grained dolomite F5 775.16m ✔ ✔ ✔ -- --

V47/12 Grayish black, N2 Stromatolitic black 
dolomite F7 786.01m -- - -- -- ✔

V48/12

Pale yellowish 
brown (10YR 6/2) 

colored large 
clasts in black 
(N1) colored 

cement

Intraformational 
Conglomerate (Large, 

elongated limestone clasts 
in dolomicrite)

F9 804.32m ✔ ✔ ✔ ✔ --

V49/12

Alternate layering 
of medium gray 
(N5) and grayish 
black (N2) color

Stromatolitic dolomite F7 814.72m -- - -- ✔ --

V50/12 Grayish black, N2 Stromatolitic dolomite F7 825.72m ✔ ✔ ✔ ✔ ✔

V51/12 Medium gray, N5 Stromatolitic dolomite F7 835.92m ✔ ✔ ✔ -- --

V52/12 Pale brown, 5YR 
5/2 Stromatolitic dolomite F7 846.92m ✔ ✔ ✔ -- --

V53/12 Pale yellowish 
brown, 10YR 6/2 Stromatolitic dolomite F7 857.92m ✔ ✔ ✔ ✔ --

V54/12 Medium dark 
gray, N4 Stromatolitic dolomite F7 868.07m ✔ ✔ ✔ -- --

V55/12 Medium dark 
gray, N4 Stromatolitic dolomite F7 878.79m ✔ ✔ ✔ ✔ ✔

V56/12 Medium dark 
gray, N4 Stromatolitic dolomite F7 889.09m ✔ ✔ ✔ ✔ --

V57/12

Alternate layering 
of light gray (N7) 

and black (N1) 
color

Stromatolitic dolomite F7 900.09m ✔ ✔ ✔ ✔ --



Table 2. Facies descriptions of Vempalle Formation rocks from the Papaghni Group. 

Facies Description Interpretation

F1: Mixed siliciclastic-
dolomite

Dolomite-sandstone-mudstone heterolithic beds, 
occupying ~100 m of the lowermost part of the 
succession Planar to wavy-parallel laminated or trough 
cross stratified 2-14 cm thick medium to fine-grained 
sandstone alternating with either reddish brown or local 
green mudstone or 5-25 cm, massive or planar parallel 
laminated tabular dolomite beds. Locally sandstones 
amalgamate to form 20-30 cm thick beds with ripple 
drift lamination, flaser bedding and graded bedding. 
Birds-eye structure (fenestral fabric, now filled with 
silica), locally developed breccias, tepee 
antiform structures, buckled margins of saucer‐like 
megapolygons and chert nodules are common in the 
dolomites. Well-rounded, very coarse to coarse sand 
inter-layers or intraclastic conglomerate with sand matrix 
are also common.

The heterolith with flaser bedding, 
syneresis cracks strongly support a 
supratidal to upper intertidal zone of 
deposition for the sediments. Tepee 
structures, fluid-escape structures along 
with breccias indicate subaerial exposure 
in a tropical to subtropical climate; and 
back-beach or back‐barrier deposition.  
Flat parallel laminae of the dolomites 
suggest supratidal to intertidal deposition 
with gentle waves.

F2: Bedded dolomite with 
crinkled laminites 
(bindstone)

Laterally-persistent, 50-80 cm thick, tabular beds 
(amalgamated up to 1.5 m) of grey fine-grained dolomite 
characterized by flat or wavy beds, 2-5 cm thick, light 
colored dolomite, separated by brown colored mm thin 
laminae.  Crinkled lamination with sharp angular kinks 
(relict ripple marks), and mud drapes. Randomly 
distributed, irregularly-shaped fenestrae, parallel to 
bedding and soft-sediment deformation with microfaults. 

Crinkle lamination and fenestrae 
suggesting tidal flat.

F3: Brown shale/
mudstone

Thin-bedded (0.5-2 cm), reddish brown, plane-parallel to 
wavy-parallel laminated mudstone. Individual beds 
laterally pinch out within a meter, but bed-sets, ~1.5 m 
thick, can be traced laterally up to 10 m. Wrinkle marks 
(adhesion ripples) and dolomite-filled polygonal cracks 
common on top surfaces of beds.

Thin-bedded parallel-laminated mudrock 
reflects low-energy sedimentation. The 
brown colour suggests well-drained, 
relatively oxidizing conditions.

F4: Black dolomite with 
or without stromatolite
(wackestone)

Characterized by tabular, laterally persistent 40-60 cm 
thick (maximum 1.2 m) steel grey to black colored 
stromatolitic dolomite beds within brown, green or grey 
stripped shale. Stromatolite bed boundaries sharp with 
convex-up upper surface forming isolated bioherms or 
laterally-linked mutually-aligned biostromes with 3-15 
cm high columns. Internal laminae of stromatolites 
closely packed, smooth convex up with low synoptic 
relief. Cm-scale slump structures and dolomite or silica 
filled irregularly shaped laminoid fenestrae. Chert 
nodules restricted to dolomite beds. Some dolomite beds 
massive in nature, either microbialites reworked or not 
developed.

Laterally-persistent stromatolitic 
dolomite beds within variegated colored 
shale indicates quiet conditions with 
fluctuating sea level and/or sediment 
supply. Small slumps and broken 
stromatolites suggest occasional storms. 
Transitional zone between subtidal to 
intertidal is suggested, where high 
sedimentation rate favored massive 
carbonate and a lower rate permitted 
stromatolite growth.

F5: Dolomite-micrite 
rhythmite 
(wackestone-mudstone)

Alternating grey to buff colored massive, normally 
graded to plane-parallel laminated fine-grained dolomite 
(2-25 cm bed thickness) and green to brown colored 
plane to wavy parallel-laminated calcareous mudstone 
(1-5 cm beds).  Symmetrical ripples on bed upper 
surfaces.  Dolomite-filled polygonal cracks, salt 
pseudomorphs, rain-drop prints at several horizons.

Fine grain-size and plane-parallel 
lamination suggests low energy in a 
shallow shelf/lagoon. Normal grading, 
rip-up clasts and symmetrical ripples 
point to occasional storms. Polygonal 
cracks, salt pseudomorphs, rain-drop 
prints indicate emergence in intertidal 
area of the shallow coast. Predominance 



of mud indicates restricted environment, 
possibly lagoon.

F6: Cross-stratified oolite 
(grainstone)

Oolite of well-rounded, well-sorted medium to coarse 
ooids as linear positive relief bodies, mostly forming 
shoaling-up bars and banks. Successive 10-70 cm thick 
wavy lenticular or pinch and swale beds separated by 1-2 
cm thin mud layers constitute a shoreline barrier 
structure. Beds generally trough cross- stratified with 
subordinate planar cross-stratification, with a NE or SE 
palaeocurrent direction and a small component towards 
the SW. Local herringbone cross-stratification.  Bed tops 
show symmetrical ripples with NE-SW ripple axis, 
straight, rounded crests and tuning-fork bifurcation. 
Ooids generally preserve a concentric fabric with clastic 
grains in the core. Medium to fine-grained ooids with a 
radial fabric and some superficial ooids. 

Oolite beds with planar or trough cross-
stratification deposited by migrating 2D 
and 3D subaqueous dunes in high-energy 
subtidal to intertidal shoals. Presence of 
herringbone cross-stratification and 
bidirectional palaeocurrents suggests a 
tidal influence in association with wave 
action. Oolite deposition with concentric 
fabric and clastic core points to an 
environment with high salinity and 
wave-agitated shoreline. Sand free ooids 
with radial fabric may be deposited in 
relatively quiet water.

F7: Columnar stromatolite 
(bindstone)

Laterally persistent biostromes and bioherms of 
columnar stromatolite. 2 types: (a) Tabular biostromes 
(0.7-2 m height), with erect, locally inclined, cylindrical 
columns, convex up, closely-spaced, linked smooth to 
wavy internal laminae with low synoptic relief.  (b) 
Biostromes of laterally-linked domes (1.5-2 m width and 
25-80 cm height) with crinkly to smooth laminae parallel 
to the dome surface. Intraformational conglomerates at 
the head part of stromatolites locally present.

Smooth lamination indicates quiet water. 
Large sizes suggest growth in deep 
water. Intraformational conglomerates 
reflect frequent storm events.

F8: Conical stromatolite
(bindstone)

Biostromes and bioherms of conical stromatolites, 
embedded within calcareous mudstone. Individual 
stromatolites isolated to partially linked with open 
spacing ranging between 5-30 cm and sharp apical angle 
varying between 20⁰-40⁰ with moderate to high synoptic 
relief, closely packed, smooth internal laminae. 
Biostromes laterally persistent and vary in height from 
15-55 cm, bounded by sharp upper and lower surfaces.

Conical shape with high apical angle 
suggests deep water below wave base, 
where microbes need to grow fast with 
maximum apex reaching the light in a 
deep subtidal environment. 

F9: Intraformational 
conglomerate
(grainstone/packstone)

2 types of conglomerate, occurring concurrently in the 
succession.

(a) 3.2-30.8 cm thick, planar tabular beds of 
matrix-supported, massive ungraded to 
inversely-graded beds of intraformational 
conglomerate.. Poorly-sorted, sub-rounded 
clasts of stromatolite, lime mud and oolite with 
various shapes (lensoid, elongated, spherical, 
sinusoidal) and sizes (0.5-17 cm) embedded in a 
calcareous matrix.. Conglomerates alternate 
with beds of same lithology as the clasts. Small-
scale slumps and fluid-escape structures 
common. Large (30-41 cm) cabbage-shaped 
oncoids present.
Laterally-persistent, 0.4-1.5 m thick, grey to 
buff colored, planar, tabular, normally-graded 
beds of intraformational conglomerate. 
Conglomerates occur as thin layers (14-32 cm 
thick) mainly in the lower parts of beds, upon a 
sharp erosional surface, and grade upward to 
grey colored fine-grained dolomite. 
Conglomerates comprise clasts (0.6-9 cm) of 
lime mud and/or shale, in a micritic matrix. 

Conglomerates are event beds from mass 
flow and/or break-up of stromatolites 
either by local earthquakes or strong 
storms.  Laterally-persistent graded beds 
suggest deposition by strong storm 
events. Presence of oncoids indicates 
wave reworking during storms.



F10: Parallel-stratified 
dolomite with isolated 
bioherms
(packstone)

5-40 cm thick (amalgamated up to 1.2 m), planar, tabular 
dark grey colored dolomite beds with sharp to slightly 
uneven lower and upper bounding surfaces. Internally, 
plane-parallel to wavy-parallel laminated. Trough cross-
stratification, pillow and ball structure and gutter casts 
common. Isolated bioherms with domal morphology 
(width 45 cm, height 26 cm) and interspaces filled with 
muddy carbonate in some restricted dolomite beds. 
Abundant chert and steatite nodules of various shapes 
(kidney-bean shaped, lensoid, spherical) and sizes (long 
axis of 3-26 cm and short axis of 2.5-14 cm). Dolomite 
beds commonly alternating with mm to 6 cm thick 
calcareous mudstone.

Plane-parallel stratification attributed to 
tractional deposition by waves with high 
near-bottom orbital velocities. Trough 
cross-stratification suggests 3D dune 
migration. Gutter casts from storm 
events. Isolated bioherms indicate quiet 
conditions, without regular wave and 
current activity. Chert and steatite 
nodules from later diagenetic event/s. 

F11: Interbedded green 
shale/siltstone and 
dolomite
(wackestone-mudstone)

1-2 cm thin laterally pinching out, plane-parallel 
laminated green to dark green colored shale /siltstone 
alternating with laterally persistent, 1-5 cm thick, plane 
to wavy-parallel or ripple cross- laminated buff to light 
grey colored very fine-grained dolomite. 

Plane-parallel laminated shale deposited 
by suspension fall-out below storm wave 
base. Green colour from reducing 
environment. 



TABLES

Table 1S. Modal percentage of mineral phases identified in Vempalle Formation dolomites using the bulk XRD 
method.

ID Dolomite Calcite Quartz K-feldspar Mica Talc Chlorite Barite Hematite Total
VT1/12 80.4 0 9.3 4.2 6.1 0 0 0 0 100
VT2/12 90.4 0 4.7 4.9 0 0 0 0 0 100

VT3A/12 93.2 0 6 0.8 0 0 0 0 0 100
VT4/12 83.9 0 9.1 7 0 0 0 0 0 100

M1 83.3 0 15.7 1 0 0 0 0 0 100
M7 97.1 0 2.9 0 0 0 0 0 0 100
M15 99.6 0 0.4 0 0 0 0 0 0 100
M20 88.7 0 8.6 2.7 0 0 0 0 0 100
M18 87.9 1.1 7.4 0 0 0 0 3.6 0 100
M22 100 0 0 0 0 0 0 0 0 100

V1/12 86 0 9.3 0 0 0 0 4.7 0 100
V10/12 40.9 0 20.4 0 0 38.7 0 0 0 100
V15/12 82.5 4.3 11.8 0 0 1.3 0 0 0 99.9
V17/12 82.6 4.4 11.7 0 0 1.3 0 0 0 100
V21/12 99.8 0 0.2 0 0 0 0 0 0 100
V26/12 100 0 0 0 0 0 0 0 0 100
V30/12 96.1 0 3.9 0 0 0 0 0 0 100
V35/12 84.8 0 12.5 0 0 0 0 2.7 0 100
V37/12 83.3 0 7.1 7.7 0 0 1 0 0.8 99.9
V39/12 85.9 0 8.1 0.5 0 0 0 5.4 0 99.9
V42/12 95.1 0 3.4 1.5 0 0 0 0 0 100
V44/12 83.4 0 16.6 0 0 0 0 0 0 100
V48/12 86 0 12.9 1.1 0 0 0 0 0 100
V49/12 71.5 0 28.5 0 0 0 0 0 0 100
V50/12 93.8 0 3.7 2.5 0 0 0 0 0 100
V53/12 87.3 0 10 2.7 0 0 0 0 0 100
V55/12 82.7 0 16.1 1.2 0 0 0 0 0 100
V56/12 71 0 28.1 0.9 0 0 0 0 0 100
V57/12 90.5 0 8.3 1.1 0 0 0 0 0 99.9



Table 2S. Calculated calcium (Ca) excess (Lumsden, 1979) and ordering of Vempalle Formation dolomite crystals 
(Tucker 1995).

ID mole % MgCO3 mole % CaCO3 Order
VT 1/12 44 50 0.4
VT 2/12 44 50 0.57

VT 3A/12 44 50 0.57
VT 4/12 43 50 0.51

M1 43 50 0.46
M7 45 49 1.07
M15 44 50 0.55
M20 44 50 0.57
M18 44 50 0.46
M22 44 50 0.57

V1/12 44 50 0.47
V10/12 44 50 0.58
V15/12 44 50 0.57
V17/12 44 50 0.57
V21/12 43 50 0.47
V26/12 44 49 0.56
V30/12 44 50 0.56
V35/12 44 50 0.56
V37/12 43 51 0.58
V39/12 44 50 0.56
V42/12 44 50 0.56
V44/12 43 50 0.56
V48/12 43 50 0.56
V49/12 44 49 0.56
V50/12 44 49 0.56
V53/12 43 50 0.56
V55/12 44 50 0.56
V56/12 44 49 0.56
V57/12 44 50 0.56



Table 3Sa. Major and trace element concentrations (n = 42) from Vempalle Formation dolomites. The major 
element concentrations are in wt% whereas Sr concentration is in ppm.

ID Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 SUM LOI Sr
VT1/12 0.054 16.55 1.10 10 0.04 0.28 26.95 0.058 0.031 0.42 55.48 36.41 418
VT2/12 0.049 18.55 3.76 9.01 0.43 2.43 27.36 0.113 0.081 1.48 63.26 39.00 81

VT3A/12 0.033 18.02 1.35 7.84 0.31 2.33 28.49 0.079 0.077 1.34 59.87 38.06 93
VT3B/12 0.045 18.06 2.34 10.57 0.06 1.54 36.95 0.100 0.090 1.98 71.735 39.39 50
VT4/12 0.040 17.15 1.45 12.16 0.21 2.07 27.60 0.103 0.067 1.06 61.91 37.29 95

M1 0.036 18.40 1.30 12.13 0.02 0.12 27.66 0.031 0.055 1.09 60.85 38.46 128
M5 0.012 21.25 0.12 1.50 0.01 0.04 30.09 0.005 0.048 0.42 53.49 42.27 52
M7 0.015 20.75 0.20 3.01 0.01 0.14 29.71 0.012 0.064 0.62 54.53 41.61 46
M11 0.043 15.78 1.19 27.75 0.02 0.02 26.30 0.011 0.033 0.47 71.61 31.58 56
M15 0.008 21.73 0.03 0.12 0.00 0.01 30.19 0.003 0.026 0.44 52.56 42.69 56
M17 0.012 21.07 0.09 1.18 0.00 0.03 30.14 0.007 0.036 0.39 52.96 42.24 58
M18 0.041 17.48 0.46 6.29 0.01 0.05 28.34 0.027 0.087 0.58 53.37 39.99 269
M19 0.009 21.60 0.05 0.36 0.00 0.05 30.20 0.006 0.042 0.45 52.77 41.76 43
M20 0.055 18.62 2.40 12.56 0.03 0.22 27.34 0.082 0.036 1.05 62.39 39.56 49
M22 0.011 21.24 0.08 0.40 0.00 0.01 30.25 0.005 0.054 0.54 52.59 44.16 46

V10/12 0.048 25.68 0.45 51.47 0.01 0.01 14.07 0.001 0.024 0.79 92.55 20.89 39
V15/12 0.099 19.21 0.23 14.36 0.01 0.01 28.36 0.001 0.038 0.47 62.78 36.73 80
V17/12 0.059 14.73 1.32 28.73 0.02 0.01 24.97 0.022 0.024 0.35 70.23 30.21 149
V19/12 0.009 21.72 0.07 0.39 0.00 0.01 30.13 0.005 0.021 0.41 52.77 41.94 68
V21/12 0.008 22.29 0.11 4.48 0.00 0.04 29.67 0.005 0.019 0.50 57.12 41.34 44
V23/12 0.037 17.97 1.78 15.80 0.01 0.14 27.30 0.046 0.016 0.76 63.86 38.51 64
V26/12 0.012 21.33 0.07 0.56 0.00 0.01 30.19 0.005 0.020 0.73 52.93 44.38 56
V28/12 0.037 17.04 0.61 23.37 0.01 0.04 27.50 0.007 0.019 0.59 69.22 37.04 66
V30/12 0.077 19.49 0.81 6.85 0.01 0.03 29.53 0.016 0.023 0.77 57.60 41.51 64
V32/12 0.010 21.34 0.05 0.97 0.00 0.07 30.07 0.005 0.026 0.77 53.31 41.92 42
V35/12 0.051 16.54 0.18 10.47 0.01 0.01 27.71 0.022 0.032 0.75 55.77 38.41 289
V36/12 0.072 15.75 3.29 23.02 0.37 1.50 26.08 0.202 0.263 2.63 73.18 34.66 62
V37/12 0.062 16.56 3.77 24.71 0.06 1.38 25.36 0.226 0.036 2.75 74.91 34.81 64
V39/12 0.066 14.07 1.13 23.07 0.03 0.16 25.69 0.054 0.028 0.68 64.98 32.87 271
V42/12 0.019 20.38 0.21 4.87 0.01 0.44 29.35 0.038 0.024 0.72 56.06 43.85 44

V44/12Grey 0.061 13.65 0.85 36.76 0.01 0.01 24.87 0.005 0.026 0.40 76.64 23.27 57
V44/12Cream 0.027 18.60 0.46 14.51 0.00 0.07 28.43 0.010 0.020 0.62 62.75 24.89 45

V46/12 0.051 15.83 1.05 27.62 0.01 0.01 26.37 0.012 0.036 0.50 71.49 30.34 52
V48/12 0.042 18.39 1.80 13.09 0.02 0.39 27.27 0.071 0.025 0.54 61.64 39.47 51
V50/12 0.023 19.56 0.12 6.31 0.01 0.60 29.27 0.045 0.018 0.31 56.26 39.50 46
V51/12 0.046 17.30 2.27 18.53 0.01 0.07 26.68 0.057 0.018 0.41 65.39 36.73 44
V52/12 0.039 18.24 0.54 13.24 0.00 0.02 27.84 0.008 0.028 0.49 60.45 35.09 46
V53/12 0.039 18.13 1.85 13.12 0.02 0.23 27.31 0.053 0.024 0.60 61.37 37.66 49
V54/12 0.050 20.42 0.28 5.52 0.01 0.27 29.32 0.020 0.019 0.36 56.26 38.29 41
V55/12 0.051 17.03 1.98 17.49 0.01 0.01 26.55 0.031 0.016 0.44 63.61 34.49 45
V56/12 0.036 19.08 1.26 11.15 0.01 0.17 28.01 0.033 0.027 0.36 60.13 36.43 42
V57/12 0.035 19.51 0.97 9.28 0.01 0.26 28.51 0.037 0.031 0.42 59.06 38.53 42



Table 3Sb. The trace element concentrations (n = 43, in ppm) obtained from Vempalle Formation dolomites.

ID Ni Cu Co Zn Pb Li Cd Mo Ga Sb V Rb Ba
VT 2/12 16 7 12.9 20 10.8 13 0.082 0.4 4.4 0.34 33 28 170

VT 3B/12 12 7 15.9 17 6.8 9 0.074 0.4 7.5 0.22 26 22 464
VT 4/12 9 101 19.8 17 6.5 6 0.068 0.4 3.9 0.24 47 22 141
VT 34/12 12 8 13.4 17 6.2 8 0.09 0.4 4.4 0.24 35 18 216

M.1 8 7 9.7 12 8.4 20 0.069 0.3 70.8 0.19 17 6 9550
M.5 4 24 6.1 12 4.5 18 0.109 0.4 1.8 0.33 16 2 86
M.7 5 9 9.9 9 8.2 11 0.067 1.2 0.7 0.12 13 2 30
M.11 4 8 8.8 10 2.6 12 0.004 0.2 7.1 0.12 11 2 520
M.15 6 11 7.8 10 7.1 33 0.053 0.3 56 0.12 23 11 7389
M.17 5 10 7.8 18 6.7 5 0.03 0.4 30.5 0.1 14 1 4044
M.18 6 9 17.8 15 6.7 11 0.028 0.4 366 0.2 21 2 51515
M.19 4 19 12.5 9 5.6 3 0.023 1.3 2 0.12 11 1 146
M.20 10 74 15.9 15 9.7 28 0.17 0.5 17.6 0.24 26 15 2218
M.22 3 6 35.6 10 7.2 5 0.072 0.3 1.8 0.09 14 2 81

V 1/12 5 10 13.3 12 6 14 0.032 0.6 465 0.1 17 7 64776
V.10/12 5 8 5.4 12 6.3 27 0.026 0.4 3.1 0.12 13 1 189
V 15/12 4 6 15.1 10 6.1 10 0.021 0.2 2.4 0.16 9 0.3 169
V.17/12 4 20 14.7 15 5.5 35 0.19 0.2 170 0.17 15 5 21793
V 19/12 4 7 4.8 11 6.2 8 0.027 0.2 11.7 0.1 18 1 857
V.21/12 5 8 5.8 11 11.5 4 0.115 0.4 1.2 0.12 12 1 71
V 26/12 5 5 4.1 8 4.8 4 0.03 0.6 13 0.08 11 1 1786
V 28/12 6 14 11.8 15 5.2 10 0.135 0.5 14.8 0.17 9 2 1903
V 29/12 4 12 5.1 11 9.5 5 0.09 0.3 2 0.15 11 5 123
V.32/12 8 8 10.3 12 10 4 0.049 2.9 2.1 0.16 13 4 130
V 35/12 6 6 12 9 4.5 5 0.013 0.2 264 0.09 14 1 36249
V 36/12 20 38 19.4 22 5.5 16 0.06 0.7 28 0.29 45 49 3183
V.37/12 19 17 15.6 24 5.6 99 0.145 0.5 49 0.36 38 42 6312
V 39/12 5 25 12.4 14 6 6 0.152 0.6 501 0.16 11 4 70163
V 42/12 6 16 8.1 13 4.6 4 0.105 0.2 2.5 0.19 17 7 151
V 46/12 4 6 25.5 9 4.7 4 0.013 0.3 0.7 0.07 8 1 41
V 48/12 6 24 8.3 21 8.7 53 0.044 0.5 4.9 0.2 18 17 280
V 51/12 4 7 10 12 8 25 0.09 0.3 3.6 0.14 21 13 154
V 52/12 5 21 17 12 6.6 4 0.129 0.2 1.4 0.16 15 2 67
V 53/12 8 10 7.8 15 8.9 17 0.036 0.3 5.9 0.16 16 12 385
V 55/12 6 19 18.7 17 8.3 25 0.168 0.4 2.4 0.23 11 10 116
V 56/12 4 8 11 13 7.5 17 0.038 0.2 1.5 0.12 12 9 57
V 57/12 5 16 11.4 19 9.7 22 0.199 0.3 2.2 0.18 13 9 100
V.44/12 4 9 37.2 10 3.6 5 0.014 0.2 2.7 0.12 30 2 86
V.44/12 4 13 9.1 7 2.9 20 0.008 0.4 1.9 0.12 14 4 94
V.54/12 3 11 4.8 9 4.1 5 0.016 0.2 1.8 0.13 10 5 114
V.30/12 4 7 6.3 7 2.4 3 0.003 0.2 38.4 0.11 11 1 5220

VT.3A/12 10 9 12.3 13 3.7 7 0.052 0.3 4 0.23 30 17 209
V.50/12 3 13 8.4 16 5.1 18 0.018 0.1 2.8 0.18 17 10 126



Table 4S. The PAAS-normalized REE concentrations (ppm) of samples from Vempalle Formation dolomites. 

Element M.1 M.5 M.7 M.11 M.15 M.17 M.18 M.19 M.20 M.22 VT 2/12
La 0.147 0.081 0.055 0.037 0.086 0.034 0.084 0.037 0.126 0.047 0.183
Ce 0.155 0.072 0.057 0.036 0.084 0.038 0.093 0.034 0.133 0.041 0.202
Pr 0.147 0.057 0.057 0.034 0.079 0.034 0.102 0.034 0.136 0.045 0.193
Nd 0.150 0.059 0.053 0.035 0.091 0.035 0.109 0.032 0.150 0.038 0.212
Sm 0.211 0.068 0.070 0.043 0.137 0.049 0.182 0.040 0.222 0.041 0.261
Eu 1.407 0.083 0.074 0.176 1.019 0.574 6.213 0.074 0.491 0.065 0.333
Gd 0.195 0.067 0.073 0.043 0.118 0.047 0.142 0.039 0.197 0.043 0.247
Tb 0.194 0.078 0.078 0.039 0.129 0.039 0.155 0.026 0.220 0.039 0.233
Dy 0.190 0.060 0.071 0.041 0.115 0.041 0.139 0.028 0.207 0.034 0.212
Y 0.181 0.059 0.085 0.044 0.107 0.048 0.130 0.033 0.204 0.041 0.211
Ho 0.182 0.050 0.071 0.040 0.101 0.040 0.121 0.030 0.202 0.030 0.202
Er 0.172 0.060 0.067 0.035 0.098 0.039 0.116 0.021 0.196 0.028 0.189
Tm 0.173 0.049 0.074 0.025 0.099 0.025 0.123 0.025 0.198 0.025 0.173
Yb 0.138 0.043 0.043 0.032 0.089 0.028 0.089 0.014 0.163 0.021 0.163
Lu 0.162 0.046 0.046 0.023 0.092 0.046 0.139 0.023 0.162 0.023 0.162

∑REE 3.804 0.932 0.972 0.683 2.446 1.117 7.935 0.490 3.006 0.562 3.176

Element VT3B/12 VT 4/12 VT 34/12 V 1/12 V.10/12 V 15/12 V.17/12 V 19/12 V.21/12 V 26/12 V 28/12 V 29/12
La 0.120 0.120 0.141 0.092 0.246 0.113 0.063 0.076 0.050 0.039 0.031 0.065
Ce 0.126 0.132 0.155 0.097 0.165 0.079 0.062 0.058 0.048 0.039 0.029 0.054
Pr 0.113 0.125 0.147 0.102 0.136 0.068 0.057 0.057 0.045 0.045 0.034 0.057
Nd 0.112 0.136 0.150 0.103 0.127 0.065 0.059 0.050 0.047 0.044 0.029 0.053
Sm 0.142 0.180 0.177 0.214 0.132 0.070 0.085 0.050 0.056 0.059 0.036 0.054
Eu 0.259 0.241 0.259 7.824 0.167 0.111 2.824 0.231 0.074 0.287 0.287 0.093
Gd 0.144 0.163 0.180 0.155 0.142 0.073 0.073 0.054 0.054 0.054 0.034 0.056
Tb 0.155 0.168 0.181 0.168 0.116 0.065 0.065 0.052 0.052 0.052 0.039 0.052
Dy 0.145 0.177 0.167 0.162 0.088 0.053 0.068 0.041 0.047 0.051 0.028 0.051
Y 0.148 0.156 0.163 0.152 0.096 0.063 0.067 0.048 0.056 0.056 0.030 0.063
Ho 0.151 0.161 0.172 0.151 0.071 0.050 0.071 0.040 0.040 0.040 0.030 0.050
Er 0.144 0.168 0.158 0.140 0.067 0.049 0.070 0.039 0.039 0.046 0.028 0.053
Tm 0.173 0.198 0.173 0.148 0.049 0.049 0.074 0.025 0.025 0.049 0.025 0.049
Yb 0.142 0.163 0.135 0.124 0.035 0.035 0.064 0.028 0.032 0.032 0.021 0.039
Lu 0.162 0.139 0.139 0.185 0.046 0.046 0.092 0.023 0.023 0.023 0.023 0.046

∑REE 2.237 2.427 2.496 9.817 1.682 0.990 3.792 0.872 0.686 0.917 0.705 0.835



Table 4S. contd.

Element V.32/12 V 35/12 V 36/12 V.37/12 V 39/12 V 42/12 V 46/12 V 48/12 V 51/12 V 52/12 V 53/12
La 0.092 0.060 0.270 0.243 0.071 0.058 0.060 0.139 0.086 0.050 0.115
Ce 0.088 0.067 0.299 0.234 0.065 0.060 0.058 0.127 0.092 0.048 0.114
Pr 0.091 0.079 0.283 0.215 0.057 0.068 0.057 0.125 0.091 0.057 0.125
Nd 0.088 0.083 0.330 0.230 0.065 0.065 0.059 0.127 0.100 0.056 0.124
Sm 0.103 0.157 0.523 0.306 0.137 0.086 0.072 0.155 0.141 0.072 0.151
Eu 0.102 4.926 1.065 1.250 9.806 0.139 0.083 0.194 0.176 0.083 0.241
Gd 0.094 0.127 0.487 0.303 0.088 0.079 0.071 0.144 0.131 0.062 0.133
Tb 0.090 0.155 0.530 0.336 0.090 0.078 0.065 0.142 0.129 0.065 0.129
Dy 0.071 0.143 0.491 0.323 0.085 0.075 0.058 0.137 0.135 0.060 0.120
Y 0.070 0.144 0.441 0.337 0.096 0.085 0.063 0.133 0.148 0.056 0.119
Ho 0.061 0.131 0.464 0.323 0.091 0.071 0.061 0.121 0.131 0.050 0.111
Er 0.056 0.119 0.456 0.326 0.098 0.074 0.053 0.123 0.123 0.046 0.123
Tm 0.049 0.123 0.469 0.346 0.099 0.074 0.049 0.123 0.123 0.049 0.123
Yb 0.039 0.096 0.379 0.291 0.071 0.053 0.043 0.110 0.124 0.035 0.099
Lu 0.046 0.139 0.370 0.323 0.139 0.046 0.046 0.115 0.115 0.046 0.115

∑REE 1.140 6.549 6.857 5.386 11.058 1.111 0.896 2.015 1.845 0.835 1.943

Element V 55/12 V 56/12 V 57/12 V.44/12 V.44/12 V.54/12 V.30/12 VT.3A/12 V.50/12
La 0.230 0.089 0.092 0.045 0.052 0.063 0.031 0.136 0.063
Ce 0.190 0.084 0.080 0.039 0.052 0.053 0.024 0.148 0.055
Pr 0.147 0.091 0.079 0.045 0.057 0.057 0.023 0.136 0.057
Nd 0.153 0.088 0.080 0.038 0.053 0.050 0.024 0.147 0.062
Sm 0.142 0.112 0.094 0.040 0.074 0.058 0.032 0.175 0.074
Eu 0.167 0.130 0.120 0.056 0.102 0.083 0.769 0.259 0.093
Gd 0.146 0.105 0.092 0.043 0.069 0.056 0.028 0.167 0.073
Tb 0.129 0.116 0.103 0.039 0.078 0.065 0.026 0.168 0.065
Dy 0.115 0.109 0.096 0.036 0.068 0.053 0.019 0.160 0.066
Y 0.130 0.137 0.122 0.041 0.070 0.067 0.030 0.170 0.081
Ho 0.101 0.111 0.101 0.030 0.061 0.050 0.020 0.151 0.061
Er 0.126 0.112 0.098 0.028 0.056 0.049 0.021 0.154 0.070
Tm 0.123 0.123 0.099 0.025 0.049 0.049 0.025 0.173 0.074
Yb 0.096 0.099 0.089 0.021 0.046 0.046 0.014 0.138 0.060
Lu 0.092 0.115 0.092 0.023 0.046 0.046 0.023 0.139 0.069

∑REE 2.089 1.623 1.438 0.548 0.933 0.845 1.108 2.423 1.023



Table 5S. The 18O and 13C values of Vempalle Formation dolomites.

ID 13C (‰ PDB) 18O (‰ PDB)
R1 0.71 -6.53
R2 0.635 -6.44
R3 0.57 -6.6
R4 0.74 -6.48
R5 0.58 -7.07
R6 0.54 -6.55
R7 0.65 -8.08
R8 0.5 -7
R9 0.33 -7.13
R10 0.35 -7.68
R11 0.14 -7.38
M1 0.835 -5.82
M15 2 -5.2
M20 0.55 -7.05

V1/12 1.3 -6.8
V4/12 0.25 -8.11
V7/12 -0.24 -7.91
V9/12 -0.21 -7.93
V12/12 0.18 -6.99
V14/12 0.46 -7.07
V17/12 0.68 -6.31
V19/12 -0.26 -7.43
V21/12 -0.25 -7.11
V23/12 0.6 -6.7
V26/12 0.54 -6.85
V30/12 1.35 -6.7
V35/12 0.35 -7.24
V39/12 0.7 -6.6
V42/12 -0.19 -6.12
V44/12 0.3 -6.2
V47/12 -0.355 -6.35
V50/12 0.26 -6.55
V53/12 1 -6.45
V55/12 0.34 -5.52
V57/12 1 -6.1


