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Abstract
The aetiologies of obesity and type 2 diabetes are incredibly complex, but the potential role of paternal influences remains
relatively understudied. A better understanding of paternal influences on offspring risk of obesity and type 2 diabetes could have
profound implications for public health, clinical practice and society. In this review, we outline potential biological and social
mechanisms through which fathers might exert an impact on the health of their offspring. We also present a systematically
compiled overview of the current evidence linking paternal factors to offspring development of obesity and type 2 diabetes
throughout the life course. Although evidence is accumulating to support paternal associations with offspring outcomes, more
high-quality research is needed to overcome specific methodological challenges and provide stronger causal evidence.

Keywords Developmental origins of health and disease . Epigenetics . Fathers . Life course development . Obesity . Paternal
effects . Review . Type 2 diabetes

Abbreviation
PGC Primordial germ cells

Introduction

Research on the early-life origins of health and disease has
traditionally focused on the maternal (mostly intrauterine) im-
pact on offspring health [1, 2]. Although much of this work
has been correlative, it has also produced some causal

evidence that certain maternal characteristics (for example,
gestational diabetes and extreme obesity in pregnancy) influ-
ence offspring greater adiposity and risk of type 2 diabetes [3].
Because of this, it has been suggested that overweight mothers
might be the root cause of the current obesity epidemic [4].
However, the aetiologies of obesity and type 2 diabetes are
incredibly complex and there are increasing calls for more
research on other causal factors, including postnatal and pa-
ternal influences [5, 6].

In this review, we discuss the implications of paternal im-
pacts on offspring risk of obesity and type 2 diabetes. We then
outline potential biological and social mechanisms through
which fathers might exert an impact on the health of their
offspring, before providing an overview of the current evi-
dence linking paternal factors to offspring development of
obesity and type 2 diabetes throughout the life course.
Finally, we discuss future research challenges and suggest
potential strategies to overcome them.

Paternal impacts on obesity and type 2
diabetes risk: implications for public health,
clinical practice and society

Appreciation of the idea that fathers might influence risk of
obesity and type 2 diabetes in their offspring would challenge
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assumptions about the causal primacy of maternal effects in
pregnancy [2] and could have profound, wide-reaching
implications.

Implications for public health, policy and clinical practice
Fathers are a potential target for advice and interventions to
improve offspring health, including risk of obesity and type 2
diabetes. However, currently very little health advice is of-
fered to fathers-to-be. In a recent (2013) review of preconcep-
tion care policy, guidelines and recommendations from six
European countries, care was found to be inconsistent and
fragmentary for healthy women and no country published
specific guidelines for men alone [7]. Advice aimed at
fathers-to-be has the potential to improve men’s health, mater-
nal health and the health of their offspring,

There is considerable sociodemographic variation in pater-
nal involvement during pregnancy and parenting [8], but a
greater appreciation of the role of fathers in shaping offspring
health across the life course could lead to efforts to increase
involvement amongst groups who tend to be more distanced
or disengaged. There is a large body of evidence suggesting
that this would be beneficial for the health of the whole family
[9–11]. A better understanding of paternal impacts could also
translate into improved provision of paternity leave and strat-
egies to support paternal childcare by employers.

Implications for society A greater understanding of the role of
fathers could lessen the focus onmothers, and sometimes non-
pregnant women of child-bearing age, as the main ‘vectors’
for the intergenerational transmission of disease risk [12]. As
mentioned above, mothers have been ‘blamed’ for the obesity
epidemic in the scientific literature [4], and this has beenwide-
ly covered in the mainstream media too [13, 14]. There are
multiple examples of these ideas infiltrating the public dis-
course around maternal impacts on offspring health in a way
that can limit women’s autonomy, increase surveillance and
lead to social reproach and even criminalisation [2, 15]. At the
same time, these ideas diminish the role fathers play in the
care of their children and downplay the role of wider societal
structures that influence health and wellbeing. Effective trans-
lation of research on paternal impacts on offspring health
could help to balance the public perception of intergeneration-
al harms and lessen the burden on pregnant women.

Potential mechanisms for paternal impacts
on offspring health

There are several potential mechanisms through which fathers
might influence health and risk of obesity or type 2 diabetes in
their offspring (reviewed in detail in [16, 17]). In evolutionary
biology, the term ‘paternal effect’ (and ‘maternal effect’ [18])
has a precise definition describing a causal association

between variation in paternal (or maternal) genotype or phe-
notype and variation in offspring phenotype, independently of
variation in offspring genotype [19]. In this paper, we talk
more broadly about paternal impacts or influences, which do
not necessarily conform to these stricter definitions of paternal
effects. We categorise the potential mechanisms underlying
paternal impacts as genetic or non-genetic, and direct or indi-
rect (see Fig. 1); however, there is likely to be a high-degree of
overlap and interaction between the various pathways we
describe.

Direct genetic paternal impacts Through genetic transmission
of alleles, fathers provide roughly half of their offspring’s
nuclear DNA, thereby influencing their genetic risk of disease.
This includes offspring inheritance of genetic information at
paternally derived imprinted loci, where only the paternal al-
lele is expressed because the maternal allele is silenced by
DNA methylation [20]. However, there is evidence that fac-
tors like paternal age and environmental exposures can also
directly influence offspring genotype and subsequent pheno-
type through inducing DNA damage and de novo genetic
mutations in the male germline [21–23]. Another plausible
explanation is that the paternal environment selects for certain
haploid genomes by skewing the genotype distribution in
ejaculate and/or by causing mutations that influence sperm
function and chances of success [16]. For example, high-fat-
diet-induced obesity can reduce sperm number, motility, mor-
phology and reduce capacitation and oocyte binding in mice
[24].

Although these genetic effects could underlie a paternal
impact on offspring phenotype, it should be noted that they
are not considered true paternal effects because variation in
offspring phenotype would reflect variation in offspring geno-
type; i.e. true paternal effects are those that occur independent-
ly of offspring genotype [19].

Direct non-genetic paternal impacts In species exhibiting pa-
ternal care (including humans), perhaps the most obvious way
that fathers can influence offspring phenotype directly is
through a direct effect on the offspring postnatal environment.
This will be affected by multiple factors, including the father’s
frequency and style of parenting, their socioeconomic and
cultural circumstances and their own health behaviours
[25–27]. In some cases, epigenetic mediation might be in-
volved in the biological manifestation of these effects [28].
There is also growing evidence that direct non-genetic pater-
nal effects can be transmitted prenatally. The most commonly
postulated mechanism is transmission of epigenetic factors in
sperm, such as DNA methylation, chromatin modifications
and non-coding RNAs [29]. We consider a broad definition
of the term ‘epigenetics’ as heritable molecular changes that
affect gene expression but do not involve changes to the un-
derlying sequence of DNA [30]. DNAmethylation is the most
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widely studied epigenetic mechanism in humans in this con-
text. In mammals, DNAmethylation undergoes two rounds of
‘reprogramming’ between generations, which involves waves
of demethylation and remethylation. The first round occurs
shortly after fertilisation, during embryogenesis, and the sec-
ond occurs in the primordial germ cells (PGCs) of the devel-
oping fetus during gametogenesis. For DNA methylation pat-
terns to be passed between generations to influence gene ex-
pression and phenotype, some loci must escape this

reprogramming. The number of reprogramming waves that
must be overcome depends crucially on whether the inheri-
tance is ‘intergenerational’ or ‘transgenerational’ [31] (see
Text box). There is evidence that methylation at some loci of
the sperm epigenome can escape epigenetic reprogramming at
embryogenesis. Although the majority of the sperm genome is
packaged in protamines, the small fraction (5–10%) that re-
mains attached to histones may be protected from demethyla-
tion [32]. This fraction includes paternally derived imprinted

Fig. 1 Potential mechanism
through which fathers might have
an impact on offspring health,
including obesity and risk of type
2 diabetes. Pathways for ‘true’
paternal effects are highlighted in
blue (direct paternal impact) and
purple (indirect paternal impact).
Genetic pathways (which are not
considered ‘true’ paternal effects
[19]) are shown in grey. For
simplicity, not all potential
connections are depicted here
(e.g. we have not drawn a
connection from offspring
genetics to offspring epigenetics,
although one exists). This figure
is available as part of a
downloadable slideset
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loci [32, 33] . Proposed windows of susceptibility [34] when
the gamete epigenome of a father-to-be might be particularly
susceptible to environmental exposures are: (1) during PGC
reprogramming in utero; (2) before puberty, as methylation is
re-established; and (3) during each reproductive cycle, as
methylation profiles become fully established in mature sper-
matozoa [34]. It has also been suggested that methylation at
imprinted genes (because only one allele is active) might be
particularly vulnerable to environmental perturbation [35].
Aside from DNA methylation, there is increasing evidence
that sperm RNAs and histone modifications are compelling
candidates for epigenetic inheritance, but understanding of
these mechanisms is in its infancy [32].

In addition to epigenetic factors, sperm can also transmit
cytoplasmic factors to offspring at fertilisation. These include
activation factor, centrosomes, messenger RNA and
microRNAs, which could modify post-fertilisation events
and offspring embryonic development [17, 23]. Components
of the non-sperm fraction of the ejaculate (e.g. seminal fluid
proteins, peptides, lipids, salts, etc.) have also been shown to
vary with paternal environment [36] and there is some evi-
dence from animals that, in addition to an effect on sperm
function, success and selection, they can also have a direct
effect on offspring phenotype [37], although the mechanisms
are unclear.

Indirect genetic paternal impacts Indirect genetic paternal ef-
fects occur when the offspring phenotype is affected by genes
being expressed in the father [42]. Paternal genetic liability to
non-genetic factors, for example, health behaviours, like
smoking, or certain epigenetic signatures, might influence off-
spring phenotype via ‘genetic nurture’, regardless of genetic
transmission of the liability-increasing alleles. For example,
Kong et al [43] showed that polygenic scores generated using
only non-transmitted alleles for educational attainment were
robustly associated with offspring educational attainment. The
authors found similar effects estimates for polygenic scores
generated using maternal and paternal non-transmitted alleles.

Indirect non-genetic paternal impacts Many pathways of in-
fluence between fathers and offspring are mediated or moder-
ated by maternal responses, thus blurring the lines between
maternally mediated paternal effects and male-induced mater-
nal effects [19]. For example, seminal fluid can interact with
female tract physiology with implications for embryo devel-
opment [44]. In addition, female tract physiology (including
any way in which it is modified by seminal fluid) influences
sperm selection and, therefore, the ‘successful’ sperm and off-
spring genomes. During pregnancy, a father can influence a
mother’s environment and physiology (e.g. through passive
smoke exposure, stress, emotional support, etc), which might
have an intrauterine environmental effect on the fetus (poten-
tially via the fetal epigenome [45]). If this father-induced

intrauterine exposure has an effect soon after fertilisation, it
could disrupt epigenetic reprogramming in the embryo [34].
Additionally, a father can also influence themother’s postnatal
environment, which could affect (positively or negatively) the
type and level of care she provides for offspring. Across the
life course (both pre- and postnatally) there is also evidence
that parents influence each other’s behaviours [46, 47], there-
by further blurring the distinction between maternal and pa-
ternal impacts on offspring health.

Literature review of paternal impacts
on obesity and type 2 diabetes

Having outlined potential mechanisms for paternal impacts on
offspring health, we now briefly assess the extent to which
these have been studied in relation to paternal impacts on
obesity and type 2 diabetes across the life course.

Methods To help ensure an unbiased review, we conducted a
systematic search of PubMed using cross-sections of key
words relating to paternity (‘paternal’, ‘father*’, ‘intergenera-
tional’, ‘transgenerational’), and obesity (‘obes*’, ‘over-
weight’, ‘body weight’, ‘BMI’, ‘body mass index’, ‘fat’, ‘ad-
iposity’, ‘adipose’) or type 2 diabetes (‘diabet*’, ‘T2D’,
‘metabol*’, ‘glucose’, ‘insulin’). We specified that these
words had to be contained in the titles of identified articles.
The search was conducted on the 13 March 2019 and identi-
fied 483 articles. After exclusion of non-journal articles (n =
27), reviews (n = 48) and papers not in the English language
(n = 10), 398 abstracts were screened. Of these, 128 described
original data on paternal exposures/characteristics and rele-
vant (i.e. obesity- or type 2 diabetes-related) offspring out-
comes. It should be noted that we did not consider studies
where the directly exposed generation was female (see
‘Scenario 2’ illustration in the text box) to be studies of pater-
nal exposures, even if the females were pregnant with male
fetuses; we considered these to be studies of (grand-)maternal
rather than paternal impacts. From the 128 included articles,
data were extracted regarding the species studied, class of
paternal exposure, class of offspring outcome and whether
the study found evidence of a correlation. Information on the
mechanism driving any potential paternal causal effect was
also extracted from studies that explicitly investigated this.
We did not formally assess the quality of included studies or
conduct anymeta-analyses. A full table of the studies included
and our findings is provided in the electronic supplementary
material (ESM) Table 1.

Results Of 128 studies, 78 (61%) were conducted in humans
and 50 (39%) were conducted in animals (mainly rodents [n =
45], but also drosophila [n = 3], Caenorhabditis elegans [n =
1] and pigs [n = 1]). In 116 studies (91%), there was at least
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correlative evidence linking paternal factors to offspring
obesity- or type 2 diabetes-related traits. All of the 12 null
studies were of humans. Figure 2 summarises the focus of
the 116 studies that found some evidence of association.
Most of these (n = 47 [41%]) found a link between paternal
adiposity (including BMI and high-fat-diet-induced obesity)
and obesity- or type 2 diabetes-related offspring outcomes
(including birthweight, body fat, BMI, obesity-related gene
expression, adipose tissue remodelling, metabolic function,
glucose tolerance and insulin sensitivity). Of the 12 null stud-
ies, two investigated paternal BMI and found no evidence of
association with offspring obesity-related traits (i.e. 2/49 [4%]
of studies of paternal adiposity were null). In addition to pa-
ternal adiposity, the other top five most studied paternal fac-
tors were genetic factors (11 non-null, 1 null), glycaemic ex-
posures, such as diabetes and hyperglycaemia (10 non-null, 1
null), demographic factors such as socioeconomic position
and age (9 non-null, 2 null), and health behaviours such as
smoking and drinking alcohol (8 non-null, 1 null).

The majority of studies (n = 79 [62%]) did not explicitly
explore potential mechanisms linking paternal factors to off-
spring obesity or type 2 diabetes. Of those that did, the most
commonly explored mechanisms were postnatal (15 non-null,
5 null), genetic imprinting (9 non-null, 0 null), sperm epige-
netics (7 non-null, 0 null), paternal genetics (4 non-null, 1
null) and perinatal offspring epigenetics (3 non-null, 0 null).

Only nine studies reported evidence of a paternal impact
ove r more than two gene ra t ions , sugges t ing a
transgenerational effect. The vast majority of studies explored
intergenerational associations only.

All the animal studies involved testing the effects of exper-
imental manipulations, whereas all the human studies were
based on observational data. One human study [48] was based
on a randomised control trial of the effect of a weight loss
intervention on fathers’ diet, but no offspring outcomes were
explored in relation to whether the fathers were randomised to
intervention or control. Results that were relevant to this re-
viewwere cross-sectional baseline correlations between pater-
nal and offspring obesogenic diet.

Animal studies appeared equally likely to explore potential
mechanisms (19/50 [38%]) as human studies (30/78 [38%]),
although this can be explained by 20 human studies where the
exposure, and therefore the mechanism, was postnatal.
Mechanisms involving genetics or prenatal factors were far
more likely to be explored in animal studies (19/50, 38%) than
human studies (10/78 [13%]).

Discussion and suggestions for future research In line with
what we see in the developmental origins of health and disease
field more widely [1, 2], compared with studies of maternal
impacts, there have been relatively few studies of paternal
impacts on offspring obesity and type 2 diabetes. Of the 128

Fig. 2 A summary of the outcomes, exposures and mechanisms explored by 116 studies that showed at least correlative evidence linking paternal
characteristics to offspring risk of obesity and type 2 diabetes. The data used to produce this figure is provided in ESMTable 1. T2D, type 2 diabetes. This
figure is available as part of a downloadable slideset
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studies that we identified, a high proportion showed evidence
of at least a correlative link between paternal factors and these
offspring outcomes across the life course (with a limited num-
ber of studies also exploring potential transgenerational ef-
fects), which highlights that this is a promising avenue of
research that should be further pursued.

However, we also consider that a high proportion of non-
null studies could indicate publication bias and/or be an arte-
fact of our search strategy (i.e. we restricted our keyword
searches to article titles, which are perhaps less likely to ad-
vertise null results). Our review aimed to provide an overview
of the current literature on paternal impacts on offspring obe-
sity and type 2 diabetes. Although beyond the scope of this
paper, a more detailed review and meta-analysis to assess
average effect estimates and evidence of heterogeneity and
small-study (publication) bias is warranted. A previous sys-
tematic review andmeta-analysis of human studies found only
modest average effects of various paternal exposures on car-
diometabolic outcomes and identified some issues with the
quality of evidence [49].

Most of the studies we identified were human observation-
al studies and causal evidence for paternal impacts (in humans
at least) is lacking. Most studies did not explore the biological
or social mechanisms through which fathers might influence
obesity and type 2 diabetes risk in offspring, but identification
and clarification of such mechanisms would be one way to
strengthen causal inference.

There are some specific challenges to the study of paternal
effects that must be tackled by future research. In human ob-
servational studies, two major challenges are confounding and
bias. When studying paternal direct effects, a major source of
confounding is likely to arise from high correlation with ma-
ternal exposures due to shared environments and assortative
mating [50]. Compared with maternal data, paternal data may
have a higher degree of measurement error (e.g. due to
maternal-report rather than self-report) and missingness (part-
ly due to birth cohort recruitment strategies that primarily
target mothers and partly due to the overall lower response
to health studies by men compared with women [2]). This
could bias paternal estimates towards or away from the null
depending on the nature of the error/bias, sample and study
design [51]. We might expect high rates of non-paternity
(whereby mothers are more genetically related to their chil-
dren than fathers are) to have a similar biasing effect, but
sensitivity analyses around this have shown that even with
very high (and likely implausible) simulated rates of non-pa-
ternity, the bias was minimal [52]. Strategies to tackle these
specific issues with confounding and bias include: (1)
collecting more and better quality data on fathers or linking
to other datasets, such as national registries, with more com-
plete data on men; (2) triangulating evidence [53] from differ-
ent causal inference techniques, such as Mendelian
randomisation [54] and negative control designs [55]; and

(3) testing the robustness of estimates to adjustments for sim-
ulated levels of non-paternity [50]. The same issues with ob-
servational data may not apply to animal experiments, but
there are other issues, such as the focus on more extreme
exposures than are usually seen in humans, and the translat-
ability of some exposures and mechanisms to human contexts.
We identified more human than animal studies of paternal
exposures in our review, which is in line with our previous
finding that the overwhelming focus on maternal exposures in
the developmental origin of health and disease field is partic-
ularly evident in the animal literature [1].

Conclusion

A better understanding of paternal influences on offspring risk
of obesity and type 2 diabetes could have profound implica-
tions for public health, clinical practice and society. There are
multiple possible mechanisms through which paternal expo-
sures might influence offspring health and development.
Evidence is accumulating to support paternal associations
with offspring outcomes; however, more high quality research
is needed to overcome specific methodological challenges and
provide stronger causal evidence.
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