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Abstract
The starting point of the proposed procedure for seismic evaluation of existing structures is 
that the yield displacement of a structure in flexure is constant and that it depends only on 
the yield strain of the yielding material and the geometrical characteristics of the structure, 
not on the yield strength of that structure. The fundamental vibration period of the struc-
ture is, thus the dependent variable derived from the estimated yield strength and yield 
displacement of the structure. To facilitate an evaluation of the maximum inelastic defor-
mation of an existing structure using a corresponding single-degree-of-freedom system 
approach, a new relation between the yield strength (defined using a new yield strength 
reduction factor) and the displacement ductility demand of a corresponding single-degree-
of-freedom system is proposed. This relation is consistent with the constant yield displace-
ment assumption and characterizes the relevant properties of the structure using the yield 
strain of its yield material, its aspect ratio and its size. The proposed Constant-Yield-Dis-
placement-Evaluation (CYDE) procedure for seismic evaluation of existing structures has 
four steps. Given an existing structure, its seismic hazard environment, and an estimate 
of its strength, the CYDE procedure estimates the displacement ductility demand, i.e. the 
maximum inelastic displacement, the structure may experience at the examined seismic 
hazard levels. The proposed CYDE evaluation procedure is similar to the current con-
stant-period procedures, but provides a more realistic estimate of the displacement ductil-
ity demand for stiff structures, enabling a more accurate seismic assessment of numerous 
existing structures.
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1  Introduction

Evaluation of existing structures to examine their seismic behavior and assess their perfor-
mance and safety at various seismic hazard levels is a difficult task. Structural characteris-
tics and seismic hazard are the main sources of uncertainty in a seismic evaluation proce-
dure due to the aging of construction material, cyclic deterioration in strength and stiffness 
characteristics considering experienced ground motions and the seismicity of the region to 
generate an expected event. Engineers’ tasks are often further compounded by the need to 
undertake economically justifiable retrofit actions based on the outcome of the conducted 
seismic evaluation.

Modern code provisions (e.g. the ASCE 31-41 family (ASCE 31-03 2003; ASCE 
41-06 2006; ASCE 41-13 2013; ASCE 41-17 2017) and Eurocode 8 Part 3 (2004) address 
the complexity of existing building seismic evaluation by offering different evaluation 
tiers, each requiring increasing knowledge about the structure and increasing hazard and 
response analysis complexity, associated with the correspondingly increasing levels of 
accuracy and confidence in the obtained assessment.

An important ingredient of the non-linear static evaluation procedures is the estimation 
of the inelastic force and deformation demands the elements of an existing structure are 
likely to experience at the seismic hazard levels the structure is evaluated at. Such demands 
are often assessed using a simplified simulation of the existing structure based on an ide-
alization of the actual inelastic force–deformation response envelope of the structure using 
the elastic, post-yield hardening, and post-peak softening branches, or even simpler, using 
an elastic-perfectly-plastic model as originally done by Veletsos and Newmark (1960) as 
shown in Fig. 1. Inherent to this simplification is the assumption that the seismic response 
of the existing structure can be represented by a corresponding single-degree-of-freedom 
(SDOF) model with sufficient accuracy.

Then, the main parameters of this model are the yield displacement uy,s and the yield 
strength Fy,s: together they define the Yield Point (YP in Fig. 1) of the model (Aschheim 
and Black 2000; Aschheim 2002). Associated with the YP is the elastic stiffness ks (Fig. 1), 
a parameter dependent on the yield displacement and the yield strength. If the correspond-
ence between the existing structure and the SDOF model is extended to the participating 

Fig. 1   Seismic response param-
eters of the corresponding SDOF 
model
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mass (or weight), then an elastic vibration period Tn can also be associated with the SDOF 
model. Notably, only two of the three SDOF model parameters are independent.

If the response of the evaluated structure, i.e. the corresponding SDOF model, to an 
earthquake ground motion remains elastic, the maximum displacement of the model uel,s is 
the elastic displacement demand, while the corresponding force Fel,s is the minimum SDOF 
model strength required to maintain the response of the model to a ground motion excita-
tion in the elastic range (Fig. 1). If, however, the yield strength of the SDOF model Fy,s is 
smaller than Fel,s, the response of the model to the same ground motion excitation will be 
inelastic, characterized by the maximum attained inelastic displacement um,s (Fig. 1). Two 
ratios are often (e.g. Chopra 2017) used to normalize the strength and the displacement 
of the SDOF model. The ratio Ry denotes the strength reduction factor of the structure, 
expressed as follows:

The displacement ductility μ of the structure, as defined by Tsiavos (2017), Tsiavos 
et al. (2017) is:

Veletsos and Newmark (1960) estimated the maximum inelastic displacement of a cor-
responding SDOF model of structures with a given yield strength focused on investigat-
ing the relationship between Ry, μ and Tn under earthquake ground motion excitation. This 
relation was investigated assuming that the elastic vibration period Tn of the SDOF system 
remains constant and does not change with the variation of its yield strength: this approach 
will be referred to as the constant-period (CP) approach.

The findings were presented in the form of constant-strength or constant-ductility ine-
lastic earthquake ground motion response spectra. Newmark and Hall (1973) presented 
linear approximations of the computed Ry–μ–Tn relations. Riddell et al. (1989) and Vidic 
et  al. (1994) proposed bilinear Ry–μ–Tn relations. Elghadamsi and Mohraz (1987), Nas-
sar and Krawinkler (1991), Miranda (1993), and Miranda and Bertero (1994) suggested 
continuous nonlinear Ry–μ–Tn functions. Confirming Veletsos et  al. (1965), all existing 
Ry–μ–Tn relations for stiff fixed-base structures (elastic vibration period shorter than the 
corner period of an elastic earthquake response spectrum, typically 0.5 s) indicate that the 
inelastic seismic displacement ductility demand for such structures would be very high if 
they were allowed to yield.

The constant-period assumption used to generate the Ry–μ–Tn relations leads to unre-
alistically small yield displacements of the corresponding constant-period SDOF model 
(Fig.  1) that, in turn, result in unrealistically large ductility demand values (Eq. 2) even 
though the maximum inelastic displacement of the SDOF model may not vary significantly. 
This effect is even more pronounced for seismically isolated superstructures, as pointed out 
by Sollogoub (1994), Vassiliou et al. (2013), Tsiavos (2017) and Tsiavos et al. (2013a, b, 
2017) as a result of the small forces exciting the isolated superstructures that, according to 
the CP approach, lead to unrealistically small yield displacements.

Many researchers (e.g. Priestley 2000; Aschheim and Black 2000; Beyer et  al. 2014) 
concluded that the yield displacement of a structure uy,s is virtually constant, as it depends 
only on the geometric characteristics of the structure and the mechanical properties of the 
yielding material and is only slightly affected by the variation of the yield strength of the 

(1)Ry =
Fel,s

Fy,s

(2)� =
um,s

uy,s
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structure. Therefore, the constant-strength or constant-ductility earthquake ground motion 
response spectra may also be computed using the constant-yield-displacement (CYD) 
approach. The inelastic seismic response spectra generated using the CYD assumption may 
provide a better estimate of the ductility demand for stiff structures, leading to an overall 
better estimate of the maximum inelastic displacements across the spectrum. This, in turn, 
may improve the methods for evaluation of existing structures based on non-linear static 
procedures.

The first part of this paper is about computing inelastic earthquake response spectra 
using the CYD approach. The new CYD SDOF model is defined first. This model explic-
itly considers the geometry of the structure, through its height H and aspect ratio H/B, and 
the material properties of the structure, through its yield strain. The CYD SDOF model is 
a flexural response model that maintains a constant yield displacement as its strength is 
varied.

In the second part of this paper, a new strength reduction factor R* is defined to repre-
sent this important property of the CYD SDOF model. Development of constant-R* inelas-
tic displacement ductility seismic response spectra, parametrized by the geometry and the 
yield strain of the CYD SDOF model, is presented next. These µ–R*–H/B spectra make it 
possible to determine the displacement ductility demand, and thus the maximum inelastic 
displacement, of the CYD SDOF model of an existing structure.

The third and final part of this paper is devoted to a novel Constant Yield Displacement 
Evaluation (CYDE) procedure. The fundamental elements of the CYDE procedure are the 
constant-R* inelastic displacement ductility earthquake spectra and the elastic capacity 
spectrum representation of the seismic hazard.

Based on the values of the yield displacement and the yield strength of the CYD SDOF 
model of an existing structure and the seismic hazard it is evaluated for, the CYDE proce-
dure provides an estimate of the displacement ductility demand the structure is likely to 
experience. This ductility demand can be compared to the ductility capacity of an existing 
structure to determine if it meets the required performance objective or not. The CYDE 
procedure is demonstrated in a simple example. To conclude this paper, the benefits and 
shortcomings of the CYDE procedure are discussed.

2 � CYD SDOF model

The CYD SDOF model consists of a cantilever structure shown in Fig. 2, as presented by 
Tsiavos (2017). The response mode of the model is flexural. Each of the symmetrically 
arranged areas of the yielding material in the cross-section of the structure is denoted as 
A. These symmetrically arranged areas simulate, for example, the areas of the flanges of 
a common steel I-shaped section or the steel reinforcement of a symmetrically-reinforced 
concrete or reinforced masonry section.

The yielding material is structural steel, but other materials manifesting ductile inelastic 
response can also be considered. Mass ms represents the lumped mass of the CYD SDOF 
model. The quantities ks, cs denote the elastic stiffness and damping of the model, while the 
post-yield hardening of the model is simulated using the coefficient αs. The displacement 
of the mass relative to the ground is us. The definitions of the response parameters of the 
CYD SDOF model, as presented by Tsiavos (2017), are given below:
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1.	 Yield displacement uy,s:

where εy,s is the yield strain of the material, H is the height of the CYD SDOF model 
and B is the width of the CYD SDOF model, measured as the distance between the sym-
metrically arranged yielding material areas A. The moment of inertia of the cross section is 
denoted as I.

As shown in Eq. 3, the yield displacement of the cantilever CYD SDOF model depends 
only on the aspect ratio H/B, the height H and the yield strain of the material εy,s.

2.	 CYD strength reduction factor R* (Fig. 3):

where F*
el,s is the elastic strength of the CYD SDOF model and F*

y,s is the yield strength of 
the SDOF model, shown in Fig. 3.

The yield displacement uy,s of the CYD SDOF model is not influenced by the change of 
its strength F*

y,s, as presented in Fig. 3. The elastic strength demand is expressed as follows:

where C*
el,s is the elastic base shear coefficient of the CYD SDOF model, obtained from 

elastic viscously damped seismic design spectra for a given seismic hazard level.

(3)uy,s =
My,s

3EI∕H2
=

AE�y,sB

3EI∕H2
=

AE�y,sB

3E
(

AB2

2

)
∕H2

=
2

3
�y,s

H2

B

(4)R∗ =
F∗
el,s

F∗
y,s

(5)F∗
el,s

= msgC
∗
el,s

Fig. 2   Geometry and force–displacement response parameters of the CYD SDOF model
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3.	 Yield stiffness ky of the CYD SDOF model:

4.	 Elastic vibration period and cyclic frequency of the CYD SDOF model:

5.	 Yield vibration period and cyclic frequency of the CYD SDOF model:

Note that the relation between Ty and Tn is:

6.	 Viscous damping ratio of the CYD SDOF model:

The inelastic seismic response of the CYD SDOF model is simulated using a bilinear 
elastic–plastic force–displacement relation, as shown by Tsiavos (2017) and Vassiliou et al. 
(2013). The yield strength of the CYD SDOF model is (Fig. 3):

(6)ky =
ks

R∗

(7)Tn = 2�

√
ms

ks
= 2�

√
ms

F∗
el,s

∕uy,s
, �n =

√
ks

ms

=

√
F∗
el,s

∕uy,s

ms

(8)Ty = 2�

√
ms

ky
= 2�

√
ms

F∗
el,s

∕(R∗uy,s)
, �y =

√
ky

ms

=

√
F∗
el,s

∕(R∗uy,s)

ms

(9)Ty = Tn

√
R∗

(10)�s =
cs

2ms�s

(11)F∗
y,s

= kyuy,s

Fig. 3   CYD SDOF model seismic response parameters
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Dynamic equation of motion for the CYD SDOF model with stiffness ky and strength F*
y,s 

(Fig. 3) gives:

Using Eq. 6 in Eq. 12 gives:

Further, dividing Eq. 13 by ms gives:

The state space solution of the dynamic equation of motion (Eq. 14) with the modified 
Bouc–Wen force–displacement relation presented by Tsiavos (2017) and Vassiliou et  al. 
(2013) was performed in Matlab (2012). The dimensionless coefficients controlling the hys-
teretic behavior of the Bouc–Wen model are β = 0.5, γ = 0.5 and n = 50 to facilitate a sharp 
transition from the elastic to the inelastic behavior range of the force–displacement response 
envelope of the CYD SDOF model.

2.1 � Dimensional analysis of the CYD SDOF model pulse response

The CYD SDOF structure shown in Fig. 2 is excited by a symmetric Ricker (1943) pulse, 
defined by Eq. 15 and shown in Fig. 4 as the ground motion acceleration üg(t) with a period 
Tp = 0.5 s and peak acceleration ap = 0.25 g. The well-defined ground motion characteristics 
of the Ricker pulse ground motion excitation facilitate its use for dimensional analysis.

Equation 16 shows that the maximum deformation um,s of the CYD SDOF model excited 
by a Ricker pulse is a function of 7 arguments:

(12)𝛼skyus + (1 − 𝛼s)kyuy,szs + csu̇s = −ms(üg + üs)

(13)𝛼sksus∕R
∗ + (1 − 𝛼s)ksuy,szs∕R

∗ + csu̇s = −ms(üg + üs)

(14)üs = − 𝛼s𝜔
2

n
us∕R

∗ − (1 − 𝛼s)𝜔
2

n
uy,szs∕R

∗ − 2𝜉s𝜔nu̇s − üg

(15)üg(t) = ap

(
1 −

2𝜋2(t − 2)2

T2
p

)
e
−

1

2

2𝜋2 (t−2)2

T2p

(16)um,s = f1
(
Tn, �s, uy,s, �s,R

∗, ap, Tp
)

Fig. 4   Ricker pulse ground motion excitation with Tp = 0.5 s and ap = 0.25 g
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The yield displacement uy,s of the CYD SDOF model (Eq. 3) depends on the geometrical 
characteristics of the model and the mechanical properties of the model yielding material:

Following Priestley et  al. (2000, 2007), the elastic vibration period Tn of the CYD 
SDOF model is the shortest vibration period that produces the computed CYD SDOF 
model yield displacement uy,s from the symmetric Ricker pulse viscously damped elas-
tic response spectrum, (Fig. 5; Eq. 18). Thus, Tn is a dependent variable.

The strength of the CYD SDOF model required for it to remain elastic is obtained 
using the relation between elastic spectral displacement and pseudo-acceleration is:

The CYD strength reduction factor R* is then determined by the yield strength of 
the CYD SDOF model F*

y,s using Eq. 4. Finally, displacement ductility demand for the 
CYD SDOF model subjected to the presented Ricker pulse excitation is a function of 8 
variables:

Therefore, the principal CYD SDOF model variables that affect its displacement duc-
tility demand are the yield strain of its yielding material, its geometry (height and aspect 
ratio), the hardening coefficient that defines the post-yielding branch of its force–dis-
placement response envelope, its non-hysteretic (viscous) damping ratio, and the CYD 
strength reduction factor used to determine its yield strength.

(17)uy,s = f2

(
�y,s,H,

H

B

)

(18)Tn = f3
(
uy,s, ap, Tp, �s

)

(19)F∗
el,s

= ms

(
2�

Tn

)2

uy,s

(20)� =
um,s

uy,s
= f4(H,H∕B, �y,s,R

∗, �s, �s, ap, Tp)

Fig. 5   Identification of the vibration period Tn of the CYD SDOF model that leads to the chosen value of 
its yield displacement for a 5% viscously damped elastic displacement response spectrum of a Ricker pulse 
ground motion excitation with Tp = 0.5 s and ap = 0.25 g
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2.2 � Comparison of CP and CYD approaches

A steel structure is modeled using the presented CYD SDOF model with H/B = 2, height 
H  =  2  m, mass ms  =  1000t, and an elastic-perfectly-plastic force–deformation response 
(hardening coefficient αs = 0). Both models are subjected to a Ricker pulse ground motion 
excitation with Tp = 0.5 s and ap = 0.25 g (Eq. 15).

The yield displacement of the CYD SDOF model is uy,s = 4.8 mm (Eq. 3). Its elastic 
vibration period is Tn = 0.22 s (Fig. 5) and its elastic strength is F*

el,s = 3915.2 kN (Eq. 19). 
The CP SDOF model of the same structure is assumed to have the same elastic vibra-
tion period and elastic strength. The yield strength of both models is set to be the same 
(F*

y,s = Fy,s = 978.8 kN), defined using the CP strength reduction factor Ry = 4 and the 
CYD strength reduction factor R* = 4. Note: this yield strength results in the yield dis-
placement of the CP SDOF model uy,s = Fy,s/ks = 1.2 mm (Fig. 3).

First, the response of the CYD SDOF model to the symmetric Ricker pulse ground 
motion excitation is computed by solving its equation of motion (Eq. 14) and plotted in 
Fig. 6 for a damping ratio value ξs = 0. The maximum inelastic displacement of the CYD 
SDOF model um,s = 45.9 mm and the displacement ductility demand µ = 9.56. Then, the 
response of the constant-period SDOF model to the same excitation is computed by solv-
ing its equation motion (Eq. 14) and plotted in Fig. 6. The maximum inelastic displacement 
of the constant-period SDOF model is um,s = 37.9 mm, resulting in a displacement ductility 
demand µ = 31.6. Even though the displacement response time histories of the two mod-
els are similar (Fig. 6), the displacement ductility demand computed using the constant-
period approach is significantly higher than that calculated using the CYD approach. This 
is attributed to the difference between the yield displacements of the two SDOF models.

Force–deformation response of the SDOF models to the Ricker Pulse ground motion are 
compared in Fig. 7 to show the difference between the constant-period and constant-yield-
displacement approaches and to illustrate the role of viscous damping ratio on the inelastic 
response. The response of the CP SDOF model and the CYD SDOF model differ substan-
tially in their initial stiffness. The effect of non-hysteretic damping ratio ξs, 0.001% (for 
numerical reasons, labeled as 0% in subsequent plots) and 5%, on the inelastic displace-
ment time history response of the SDOF structure with yield strength, subjected to Ricker 
pulse excitation with Tp = 0.5 s and same yield strength ap =  0.25 g (Eq. 15) is presented 

Fig. 6   Displacement time-history response of the CP and CYD SDOF models for a damping ratio value 
ξs = 0
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in Fig. 7. The maximum inelastic displacement of the structure with a larger damping value 
is 18% smaller. This reduction of the inelastic displacement of the structure with increasing 
non-hysteretic damping values shown in this example is consistent with the observations in 
Chapter 7 of Chopra (2017). Therefore, the use of very low non-hysteretic damping value 
to determine the µ–R*–H/B relation is conservative and the determination of this relation 
for the displacement-based CYD methodology presented later in this study is based on the 
use of this low damping value (ξs =  0).

2.3 � Comparison of the CP and CYD strength reduction factors

The CYD strength reduction factor R* defined in this seismic evaluation procedure (Eq. 4; 
Fig. 3) differs from the CP strength reduction factor Ry (Eq. 1) that is commonly used in 
seismic design today. The relation between the two strength reduction factors is determined 
by comparing a CP and a CYD SDOF model with the same yield strength F*

y,s= Fy,s.
The fundamental difference between the two strength reduction factors is attributed to 

the different forces required for the two structures to remain elastic (Fel,s and F*
el,s), as they 

are calculated using different vibration periods (namely, Tn and Ty), as presented in Fig. 8. 
The relation between R* and Ry can be derived from a pseudo-acceleration design spectrum 
shown in Fig. 9.

Fig. 7   Force-displacement response of the two CP and CYD SDOF models. The response of the CYD 
SDOF model is computed using two different viscous damping ratios ξs = 0.001% (approximately 0%) and 
ξs = 5%

Fig. 8   Comparison of strength 
reduction factors R* with Ry
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Under the assumption that the strengths defined in the two methodologies are the same 
(F*

y,s =  Fy,s), and that the periods Tn and Ty are both larger than the corner period Tc of the 
design spectrum, the strength reduction factor ratio R*, as presented by Tsiavos (2017) is:

where C = Sa,maxTc and Sa,max is the maximum acceleration in the design spectrum (Fig. 9).
Using Eq. 9, Eq. 21 becomes:

leading to:

Similarly, assuming that Tn and Ty are both smaller than the corner period Tc of the 
design spectrum, the following holds:

3 � Constant‑R* maximum inelastic displacement response spectra

Maximum inelastic displacement spectra for a CYD SDOF model shown in Fig. 2 were 
determined based on the time history response data obtained by subjecting this CYD 
SDOF model to a suite of 80 recorded ground motions listed in the “Appendix” (Mackie 
and Stojadinovic 2005). The ground motion records were obtained from the Pacific Earth-
quake Engineering Research (PEER) Center next generation attenuation (NGA) strong 
motion database (PEER 2014). These 80 ground motion records were not scaled, instead 
they are chosen to represent an ensemble of earthquake ground motion types (near- and far-
field), magnitudes (5.5–7.7), and distances (10–60 km). The ground motions were grouped 

(21)R∗

Ry

=

F∗
el,s

F∗
y,s

Fel,s

Fy,s

=
F∗
el,s

Fel,s

=
ms

C

Tn

ms
C

Ty

=
Ty

Tn

(22)
R∗

Ry

=
√
R∗

(23)Ry =
√
R∗

(24)Ry = R∗

Fig. 9   Tn–Ty period shift shown in a generic pseudo-acceleration design spectrum
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into four bins: a bin with ground motions recorded at small epicentral distance R ranging 
between 15 and 30 km due to earthquake events with magnitude Mw smaller than 6.5; a 
bin with ground motions recorded at small epicentral distance (15 km <R < 30 km) due to 
earthquake events with large magnitude (Mw >  6.5); a bin with ground motions recorded at 
large epicentral distance (R > 30 km) due to earthquake events with magnitude Mw smaller 
than 6.5; and a bin with ground motions recorded at large epicentral distance (R > 30 km) 
due to earthquake events with large magnitude (Mw > 6.5).

Elastic displacement response spectra were computed for each ground motion using a 
very low value of viscous damping ratio ξs  =  0.001% (for numerical reasons). Inelastic 
displacement response spectra were computed using the modified Bouc–Wen force–defor-
mation response model with a bilinear response envelope. As shown in Sect. 2.2, the use of 
0% viscous damping for the determination of constant-R* displacement ductility spectra is 
conservative, because it leads to the largest displacement ductility demand for the selected 
force–deformation behavior and the given strength reduction factor R*.

Then, the average elastic displacement response spectrum for these motions was com-
puted. This spectrum is compared to an Eurocode 8 (CEN, Eurocode 8 Part 1 2004) elas-
tic displacement design spectrum to determine the corner periods Tc and Td, as shown in 
Fig. 10.

The geometry of the CYD SDOF model, its aspect ratio H/B and height H, and the yield 
strain of the material εy,s are the fundamental design parameters of the CYD SDOF model 
because they determine the displacement uy,s of the model (Eqs. 3, 17). Thus, an ensemble 
of CYD SDOF models was generated by setting the height H, the yield strain of the yield-
ing material εy,s (thereby setting the yield displacement), the hardening coefficient αs and 
the strength reduction factor R* and by choosing the values of the aspect ratio H/B from the 
set{1, 2, …, 10}. Each CYD SDOF model in the ensemble, therefore, had its specific yield 
displacement, and was examined using the CYD approach (Sect. 2.1) for each one of the 80 
ground motions. First, the undamped elastic displacement design spectrum for each ground 
motion was used to determine the corresponding elastic vibration period Tn of the CYD 
SDOF model, followed by the calculation of the CYD SDOF elastic strength F*

el,s. Second, 
the yield strength F*

y,s of each of the 10 CYD SDOF models with different aspect ratio H/B 
values for one ground motion was determined using the selected CYD strength reduction 

Fig. 10   Average elastic displacement response spectrum for the 80 ground motions (viscous damping ratio 
ξs = 0.001%) and the fitted EC8 elastic displacement design spectrum
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factor R* to create spectra for a predetermined R* value (constant-R* seismic response spec-
tra). Note that the yield strength F*

y,s is constant for an existing structure, but in order to 
generate constant-R* seismic response spectra, the value of yield strength varies in itera-
tions, representing CYD SDOF models with the same geometry, but different strengths. 
Third, the maximum inelastic displacement of the CYD SDOF models and the correspond-
ing displacement ductility were determined for each of the 80 ground motion records used 
in this study by solving the equation of motion (Eq. 14) of the CYD SDOF model.

Finally, constant-R* displacement ductility spectra (the µ–R*–H/B spectra) for the gener-
ated ensemble of CYD SDOF models were constructed by finding the median displacement 
ductility demand for the 80 ground motions at each considered value of the aspect ratio 
H/B. An example median R* = 3 displacement ductility demand spectrum for an ensemble 
of CYD SDOF models with H = 2 m, εy,s = 0.2% and αs = 0 is shown in Fig. 11a. The 
yielding material was a structural steel with a nominal yield strength fy,s = 420 MPa and 
an elasticity modulus E = 210 GPa. The horizontal line in Fig. 11a indicates the value of 
the ductility demand derived using the so-called equal displacement rule ( Ry = � =

√
R∗ ) 

assuming the yield vibration periods of the CYD SDOF models in the ensemble are longer 
than the elastic response spectrum corner period Tc (Fig. 10).

The generated CYD SDOF models did not yield (i.e. µ < 1) for a number of combi-
nations of values of its parameters and several records used in this study. Therefore, two 
median displacement ductility R*  =  3 spectra are plotted in Fig.  11a: one includes only 
the analyses where yielding occurred, while the other considers all conducted analyses. 
The percentage of structures that did not experience yielding grows above 10% when the 
aspect ratio is larger than 5, and exceeds 40% when the aspect ratio is 10. Such slender, 
deformable structures have a relatively large yield displacement compared to the elastic 
displacement response spectrum of the selected ground motions (Fig. 10) and do not yield. 

(a) (b)

(c) (d)

Fig. 11   a Displacement ductility demand spectra for H = 2 m, fy,s = 420 MPa and αs = 0 and R* = 3; b Dis-
placement ductility spectra for R* = 2, 3, 4, H = 2 m, fy,s = 420 MPa and αs = 0; c Displacement ductility 
spectra for varying nominal steel yield strength fy,s values of the yielding material, computed using H = 2 m 
and αs = 0 and R* = 3; d Displacement ductility spectra for varying hardening ratio αs values computed 
using H = 2 m and fy,s = 420 MPa and R* = 3



2150	 Bulletin of Earthquake Engineering (2019) 17:2137–2164

1 3

Henceforth, the data presented in this study pertains only to the events in which the ana-
lyzed structure yielded.

The median constant-R* displacement ductility µ–R*–H/B spectra for R* = {2, 3, 4} are 
shown in Fig.  11b for the CYD SDOF model ensemble with H = 2  m, εy,s = 0.2% and  
αs = 0. Only the CYD SDOF models that yielded when excited by the ground motions 
of the 80-motion ensemble were included in the statistical analysis of their maximum 
response. These values of R* were selected because they correspond to reasonable values 
of the conventional strength reduction factor Ry (Eqs. 23 and 24).

Clearly, the ductility demand grows for larger CYD strength reduction factor R* values. 
This is expected: in a Yield Point Spectrum approach (Aschheim and Black 2000) the Yield 
Points of weaker structures are on constant ductility demand capacity spectra with higher 
displacement ductility. Furthermore, the rate of ductility demand increase becomes larger 
for structures with smaller aspect ratios. This behavior is a consequence of the shape of a 
typical pseudo-acceleration design spectrum (Fig. 9). Namely, as the aspect ratio decreases, 
all other parameters being equal, the yield displacement of the structure is smaller, resulting 
in shorter elastic and yielding vibration periods Tn and Ty of the CYD SDOF model. Once 
these periods become smaller than the elastic spectral corner period Tc, where the transition 
between Eqs. 23 and 24 occurs, the rate of ductility demand change increases.

The median constant R*  =  3 displacement ductility µ–R*–H/B spectra for two differ-
ent yield strain values (i.e. εy,s = 0.11% and εy,s = 0.2% for two different nominal yield 
strengths of structural steel) are shown in Fig. 11c for the H = 2 m and αs = 0 ensemble 
of CYD SDOF models. The µ–R*–H/B relation is somewhat sensitive to the yield strain 
value (Eq. 20): smaller yield strains result in smaller yield displacements and shorter vibra-
tion periods of the SDOF structures. Therefore, the displacement ductility demand is some-
what larger for structures with smaller yield strains (weaker structural steels). Fortunately, 
weaker steels are often more ductile than stronger ones. Figure 11d shows the influence of 
the hardening ratio αs on the ductility spectra for the H = 2 m ensemble of SDOF struc-
tures: this influence is small, indicating that the hardening ratio is not an influential param-
eter in Eq. 20.

The distributions of the ductility demand values at aspect ratios H/B equal to 1, 5 and 
10 for the R* = 3, H = 2 m, εy,s = 0.2% and αs = 0 ensemble of CYD SDOF models are 
shown in Fig. 12. The mean and median values of these distributions are listed in Table 1. 
Lognormal distributions were fit to the response analysis results. The distributions of the 
ductility demand values (larger than 1) for the investigated aspect ratios are skewed, more 
so for smaller aspect ratios.

Furthermore, a comparison of the medians of the displacement ductility demand values 
to the so-called equal displacement rule (Table 1) indicates that the inelastic CYD SDOF 
models displace, on average, less than their equivalent elastic counterparts, and that this 
difference is growing as the aspect ratio of the CYD SDOF models increases. A similar 
trend can also be observed in the data presented by Chopra and Chintanapakdee (2001a, b). 
Therefore, the so-called equal displacement rule is only a conservative approximation of 
the actual maximum inelastic displacements of a SDOF model.

A strength–ductility–geometry relation that approximates the computed constant-R* 
displacement ductility demand µ–R*–H/B spectra is shown in Fig.  13 and formalized in 
Eq. 25.

This approximate µ–R*–H/B relation gives the ductility demand µ related to a CYD strength 
reduction factor value R* for an inelastic CYD SDOF model that responds in flexure to 
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earthquake ground motion excitation. The fundamental response behavior of the CYD SDOF 
investigated in this study is bending. Thus, the proposed approximate µ–R*–H/B relation does 
not account for structures with aspect ratios smaller than 1, which are shear dominated.

Fig. 12   Displacement ductility spectrum for the CYD SDOF models that yielded (Fig. 11a) and the fitted 
lognormal distributions for CYD SDOF models with H = 2 m, fy,s = 420 MPa, αs = 0 and H/B values of 1, 
5 and 10 and R* = 3

Table 1   Statistical values of 
displacement ductility demand 
µ for H/B values of 1, 5 and 10, 
computed for R* = 3, H = 2 m, 
fy,s = 420 MPa and αs = 0 CYD 
SDOF model

a Ry = μ = 
√
R

*

H/B H/B H/B
1 5 10

Mean/median µ (all) 2.95/1.92 1.54/1.32 1.38/1.30 1.73a

Mean/median µ (yielding) 2.95/1.92 1.46/1.30 1.27/1.24 1.73a

Fig. 13   Displacement ductility spectra for H  =  2  m, fy,s  =  420  MPa and αs  =  0 CYD SDOF models 
(Fig. 11a) and the proposed approximate µ–R*–H/B relation for R* = 3
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The critical aspect ratio value (H/B)c is determined as the aspect ratio value after 
which the equal displacement rule (µ  = 

√
R*) holds. The values of (H/B)c computed 

for five different types of construction steel (i.e. five different yield strain εy,s values) 
and three values of the structure force–displacement response hardening coefficient 
αs = {0, 5%, 10%} are shown in Table 2. The critical aspect ratio values are presented 
as dimensionless ratios of predetermined values given in meters (either 4  m or 5  m) 
to the height of the CYD SDOF model H, also expressed in meters. For example, the 
critical aspect ratio of a CYD SDOF model with H = 3 m, αs = 0, fy,s = 235 MPa and 
R* = 2 is 5 m/3 m = 1.67. The values of (H/B)c in Eq. 25 for the intermediate values of 
the CYD SDOF model response parameters can be linearly interpolated using the values 
in Table 2.

The critical aspect ratio (H/B)c is inversely proportional to the height of the CYD 
SDOF model. Taller models are more deformable and have larger yield displacements 
for the same aspect ratio H/B value (Eq. 3). Similarly, CYD SDOF models with stronger 
steel yielding materials have larger yield strains, resulting in larger yield displacements 
for the same aspect ratio H/B value. Thus, the displacement ductility demand μ devel-
oped by these models is smaller (for the same aspect ratio H/B value). Consequently, 
the value of the critical aspect ratio (H/B)c, after which the equal displacement rule 
( � =

√
R∗ ) holds, is smaller. Higher values of hardening αs lead to a less significant 

reduction of the displacement ductility demand μ (for the same aspect ratio value H/B), 
thus decreasing the value of the critical aspect ratio (H/B)c in a similar way. The value 
of this critical aspect ratio (H/B)c is independent from the value of the CYD strength 
reduction factor R* (Fig. 11b): this was similarly shown by Chopra and Chintanapakdee 
(2001b) for various values of the strength reduction factor Ry.

Based on the data in Table 2, the hyperbolic portion of the µ–R*–H/B relations van-
ishes for practically all SDOF structures with heights H  >   4  m. Only for structures 
with relatively weak steels (small yield strains) the hyperbolic portion of the proposed 
µ–R*–H/B relation remains. In such cases, it becomes shorter when the hardening coef-
ficient αs increases. To show this, the proposed µ–R*–H/B relations (Eq. 25) for R* = 4, 
nominal steel yield strength fy,s = 235 MPa (yield strain εy,s =   0.11%), and hardening 

(25)𝜇 =

⎧
⎪⎨⎪⎩

not applicable H∕B ≤ 1�
1 + (R∗ − 1)

(H∕B)c

(H∕B)
1 < H∕B ≤ (H∕B)c√

R∗ H∕B > (H∕B)c

Table 2   Non-dimensional (H/B)c values for varying values of CYD SDOF model strength reduction fac-
tor R*, force–deformation response hardening ratio αs and nominal steel yield strengths fy,s with H also 
expressed in meters

fy,s (MPa) R* = 2 R* = 3 R* = 4

αs = 0 αs = 0.05 αs = 0.1 αs = 0 αs = 0.05 αs = 0.1 αs = 0 αs = 0.05 αs = 0.1

235 5 m/H 5 m/H 5 m/H 5 m/H 5 m/H 5 m/H 5 m/H 5 m/H 5 m/H
275 5 m/H 4 m/H 4 m/H 5 m/H 4 m/H 4 m/H 5 m/H 4 m/H 4 m/H
355 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H
420 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H
500 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H 4 m/H
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ratio αs = 0 are plotted in Fig. 14 for three different values of the CYD SDOF model 
height H = {1, 2, 4} m.

4 � Constant yield displacement seismic evaluation procedure

The approximate µ–R*–H/B relations for CYD SDOF models make it possible to develop a 
displacement-based seismic performance evaluation procedure for existing structures that 
respond to ground motion excitation predominantly in flexure, the Constant Yield Displace-
ment Evaluation (CYDE) procedure. The intent is to parallel the conventional non-linear 
static seismic evaluation procedures based on maximum inelastic displacement estimates, 
such as those developed by Ruiz-García and Miranda (2003) and implemented in ASCE 
41-13 (2013), or yield strength estimates obtained using conventional Ry–µ–Tn relations and 
implemented in numerous evaluation and design procedures as discussed in Chopra (2017).

Starting from the basic parameters of an existing structure, namely its geometry (height, 
aspect ratios, areas), the mechanical characteristics of its yielding material, and its mass 
and mass distribution, the goal of the CYDE procedure is to determine the displacement 
ductility demand µ for the existing structure subjected to earthquake ground motion excita-
tions expected for the seismic hazard level the structure is evaluated at, and compare it to 
the displacement ductility capacity of the existing structure to determine if this structure is 
satisfactory.

The CYDE procedure to determine the displacement ductility demand for a given seis-
mic hazard level comprises the following steps (Fig. 15):

1.	 Determine the properties of the CYD SDOF model of the existing structure: Fol-
lowing the procedure developed by Tjhin et al. (2007), based on a fundamental vibration 
mode equivalent SDOF system, determine the effective height H, the yield displacement 
uy,s, the participating seismic mass ms and the yield strength F*

y,s of the CYD SDOF 
model.

2.	 Calculate F*
el,s, the strength required for this CYD SDOF model to remain elastic for the 

given design seismic hazard. This can be done in two ways. First, using the viscously 

Fig. 14   Proposed approximate µ–R*–H/B relations for varying heights H (m), with the strength reduction 
factor R* = 4, fy,s = 235 MPa and αs = 0, i.e. (H/B)c = 5 m/H 
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undamped elastic displacement seismic response spectrum for the evaluated seismic 
hazard level, find the shortest elastic vibration period Tn corresponding to the calculated 
yield displacement uy,s as shown in Fig. 5, and then use Eq. 19. Alternatively, construct 
the viscously undamped elastic capacity response spectrum for the considered seismic 
hazard level and, starting with the CYD SDOF yield displacement, read the desired 
elastic base shear coefficient C*

el,s directly, then multiply by the seismic weight as in 
Eq. 5.

3.	 Determine R*, the strength reduction factor of the CYD SDOF model using the yield 
strength F*

y,s using Eq. 4.
4.	 Calculate the displacement ductility demand µ of the structure from the µ–R*–H/B 

relations (Eq. 25) and the maximum inelastic displacement um,s from Eq. 2. Obtain an 
elastic-perfectly-plastic force–displacement response of the CYD SDOF system and 
convert it back to the model of the existing structure using the Tjhin et al. (2007) pro-
cedure. Compare the obtained displacement ductility demand (or maximum inelastic 
displacement) to the expected displacement ductility capacity of the existing structure 
and determine if it satisfies the performance objective(s) for the selected seismic hazard 
level.

4.1 � Comparison of the CYD µ–R*–H/B relations and test data

The CYD µ–R*–H/B approximate relations represent the constant-R* seismic 
response spectra for a CYD SDOF derived using a statistical rendering of the time 
history response data obtained using an ensemble of 80 recorded ground motions 
(“Appendix”). Here the displacement ductility demand estimated using the proposed 
µ–R*–H/B relation (Eq.  25) is compared to the results obtained from a large-scale 

Fig. 15   Steps of the CYDE procedure
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shake table test of a 3-storey reinforced concrete shear wall completed by Lestuzzi 
and Bachmann (2007). The 3-story structure WDH1 shown in Fig. 16 has a height of 
4.3 m, an effective height of the first-mode equivalent CYD SDOF model (Tjhin et al. 
2007) H  =  (0.833)·4.3  m = 3.58  m and a width of 1.00  m, making the aspect ratio 
H/B  =  3.58. The participating mass of the CYD SDOF model is ms  =  35.87t. The 
strength of the steel reinforcement is fy,s = 500  MPa. The yield displacement of the 
structure determined using Eq. 3 is uy,s = 20.34 mm.

In the test, the structure was subjected to a synthetic ground motion simulating a design 
earthquake valid for the most severe seismic zone (Zone 3b) of the Swiss Earthquake Code 
SIA 160 (1989) for a peak ground acceleration of 1.6 m/s2. The elastic spectral accelera-
tion for this structure is Sa(uy,s = 23.7 mm) = 0.34 g, based on a SIA 160 elastic design 
spectrum with 10% probability of exceedance in 50  years. Then, the elastic strength is 
 F*

el,s = 358.7 kN·0.34 = 122 kN. The base shear yield strength of the tested wall was not 
measured directly, so it is estimated in two ways. First, the experimentally derived yield 
vibration period of the structure Ty = 0.8 s, resulting in the yield strength of the structure 
being F*

y,s = ky·uy,s = ms·(2π/Ty)2·uy,s = 45 kN, and the strength reduction factor R* = 2.71 
(Eq.  4). Second, using the nominal bending strength of the structure My  =  157.5  kNm 
(Lestuzzi and Bachmann 2007) and a linear first-mode lateral force distribution, the yield 
strength of the structure F*

y,s = 43.4 kN, resulting in a strength reduction factor R* = 2.81. 
The critical aspect ratio is (H/B)c = 1.12 (Table 2). Using the proposed µ–R*–H/B rela-
tions (Eq. 25), the displacement ductility demand estimates for the presented structure are 
µ = 

√
R* = 1.65 and 1.68, respectively. The ductility demand µ observed during the test 

was 1.5 (Lestuzzi and Bachmann 2007). Thus, the estimates of the specimen displacement 

Fig. 16   A 3-storey reinforced concrete shear wall tested by Lestuzzi and Bachmann (2007)
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ductility demand computed using the µ–R*–H/B relations are in good agreement with the 
experimental results. They are slightly larger, thus on the conservative side, as intended by 
the derivation of the µ–R*–H/B relations.

4.2 � Application of the CYDE procedure

A symmetric four-story reinforced concrete building with a total height Hw = 11.2 m 
(floor height is 2.8  m) and seismic mass ms,total  =  4·335t = 1340t is seismically 
designed using four reinforced concrete shear walls of the same cross-section (Fig. 17). 
For this existing building a life-safety limit state, the roof-level displacement ductil-
ity capacity of the walls is estimated at 2.0. The steel reinforcement yield strength is 
fy,s = 420 MPa. The vertical reinforcement, relevant for flexural resistance of the shear 
walls, is assumed to be concentrated in the boundary elements. The total reinforcement 
area in one boundary element A = 0.00723 m2, and the distance between the centroids 
of these areas is B = 1.4 m (Fig. 17). Following the CYDE procedure in Fig. 15, the 
effective height of this CYD SDOF model H = 0.816 Hw = 9.14 m (Tjhin et al. 2007), 
the aspect ratio is H/B = 6.53 and the yield displacement of the CYD SDOF model is 
uy,s = 0.08 m (Eq. 3).

The participating mass of the CYD SDOF model is ms  = 
∑4

i=1
mi�i1 = 837.5t, where 

 mi = 335t is the mass of the ith floor and φi1 is the first mode shape (assumed as linear for 
this example) amplitude at the ith floor. The yield strength of the building is Vy,s = 2Vy,wall 
in each of the horizontal directions (Vy,wall = fy,sAB/H = 465.65 kN is the flexural strength 
of each wall). The yield strength of the CYD SDOF model is F*

y,s = (ms/ms,total)Vy,s/α1 = 0.88
Vy,s = 819.55 kN, where α1 = 0.707 is the effective modal mass coefficient for the first mode 
(Tjhin et al. 2007). The elastic base shear coefficient corresponding to the CYD SDOF yield 
displacement of 0.08 m is C*

el,s = 0.4, as shown in the design capacity spectrum shown in 
Fig. 17. Consequently, the base shear strength of the CYD SDOF model such that remains 
elastic for the considered seismic hazard level is F*

el,s = 837.5t·9.81 m/s2·0.4 = 3286.35 kN, 
resulting in a CYD strength reduction factor R* = 4. The critical aspect ratio is (H/B)c = 0.44 
(Table  2). Using the µ–R*–H/B relation (Eq.  25), the estimate of the CYD SDOF ductil-
ity demand µ = 

√
R* = 2. The CYD SDOF estimate of the displacement ductility demand 

H
Hw

B

X Y

ms

mi

wall cross-section

uy,s 

Cel,s
* =0.4

Elastic design 
capacity spectrum

A A

Fig. 17   Transformation of a MDOF model of a structure to a CYD SDOF model
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remains unchanged through the transformation to the building MDOF model. Evidently, 
the existing building meets the life safety performance objective (displacement ductility 
demand = displacement ductility capacity).

5 � Conclusions

Seismic performance evaluation is an important task conducted often in design offices sim-
ply because a large majority of the built inventory of a typical established community is 
already there and exposed to seismic hazard. The non-linear static seismic evaluation pro-
cedure is the method of choice for many engineers because of a favorable balance between 
the quality of the obtained information about the behavior of an existing structure and the 
complexity of performing the evaluation. Practically all such procedures represent the seis-
mic response of the existing structure using a corresponding single-degree-of-freedom 
model. In addition, many non-linear static procedures are based on relations between the 
strength of the structure, the deformation ductility of the structure and the fundamental 
vibration period of the structure (Ry–μ–Tn relations) derived using an assumption that the 
period of the structure remains constant as its strength is varied.

A different approach was taken in this paper. It is based on the fact that the yield dis-
placement of a structure depends on its geometry and mechanical properties of its yield 
material, and is also constant for an existing structure. The so-called constant-yield-dis-
placement approach was developed first, and used to compute the inelastic earthquake 
response spectra of the CYD SDOF model of an existing structure. In the process, a new 
strength reduction factor R* was defined in accordance with the constant yield displace-
ment assumption. Then, constant-R* inelastic displacement ductility seismic response 
spectra, parametrized by the geometry and the yield strain of the CYD SDOF model, were 
developed by statistical rendering of the results of non-linear time history analyses of CYD 
SDOF model seismic responses to an ensemble of 80 recorded ground motions. These 
µ–R*–H/B seismic response spectra make it possible to determine the displacement ductil-
ity demand, and thus the maximum inelastic displacement, of the CYD SDOF model of an 
existing structure.

A novel Constant Yield Displacement Evaluation (CYDE) procedure for seismic evalu-
ation of existing structures was proposed. Based on the values of the yield displacement 
and the yield strength of the CYD SDOF model of an existing structure, which can be 
determined with confidence for many existing structures, and the seismic hazard the struc-
ture is evaluated for, the CYDE procedure provides an estimate of the displacement ductil-
ity demand the structure is likely to experience. This ductility demand can be compared 
to the ductility capacity of an existing structure to determine if it meets the required per-
formance objective or not. The four-step CYDE procedure was demonstrated in a simple 
example, showing that it is similar to the existing constant-period-based seismic evaluation 
procedures and easy to do.

The principal advantage of the CYDE seismic evaluation procedure is that the funda-
mental vibration period of the structure is derived from estimates of its yield displacement 
and yield strength. Thus, estimates of the fundamental vibration period, i.e. the stiffness, 
of the structure are not needed in the evaluation procedure. Another advantage is that 
the µ–R*–H/B response spectra do not vary dramatically across the range of CYD SDOF 
aspect ratio values and are predictably sensitive to the changes in the yield strength of the 
structure. This makes the CYDE seismic evaluation procedure fairly stable in the face of 
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possible errors in the estimate of geometric and mechanical properties of the evaluated 
structure.

The shortcomings of the developed µ–R*–H/B relations and the CYDE procedure stem 
from the assumptions made about the behavior of the CYD SDOF model. First, the CYD 
SDOF model was assumed to respond in flexure. Thus, the µ–R*–H/B relations should be 
used with caution for CYD SDOF model aspect ratios H/B < 2 and do not apply for aspect 
ratios H/B < 1. For CYD SDOF models with H/B < 1, new µ–R*–H/B relations should be 
developed to account for the shear or the sliding inelastic response. Second, the proposed 
µ–R*–H/B relations were developed using the bilinear elastic–plastic force–displacement 
response model. This model provides a good balance between the ability to simulate the 
critical aspects of the dynamics of the evaluated structure and the simplicity needed to 
automate the analysis of the response of the structure for a wide range of ground motion 
excitations. However, other force–displacement response models, in particular those with 
pinched hysteresis loops and degrading response envelopes should be investigated to deter-
mine if and how they affect the proposed µ–R*–H/B relations. Finally, the proposed CYDE 
procedure needs to be applied to a wider variety of structures with different lateral load 
resisting systems and materials as well as geometric irregularities in order to demonstrate 
its robustness. Work to overcome these shortcomings is ongoing.
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Appendix

See Table 3.
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