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Abstract: Drug-drug interactions (DDIs) may bring huge health risks and dangerous effects to a
patient’s body when taking two or more drugs at the same time or within a certain period of time.
Therefore, the automatic extraction of unknown DDIs has great potential for the development of
pharmaceutical agents and the safety of drug use. In this article, we propose a novel recurrent
hybrid convolutional neural network (RHCNN) for DDI extraction from biomedical literature.
In the embedding layer, the texts mentioning two entities are represented as a sequence of semantic
embeddings and position embeddings. In particular, the complete semantic embedding is obtained
by the information fusion between a word embedding and its contextual information which is learnt
by recurrent structure. After that, the hybrid convolutional neural network is employed to learn
the sentence-level features which consist of the local context features from consecutive words and
the dependency features between separated words for DDI extraction. Lastly but most significantly,
in order to make up for the defects of the traditional cross-entropy loss function when dealing with
class imbalanced data, we apply an improved focal loss function to mitigate against this problem
when using the DDIExtraction 2013 dataset. In our experiments, we achieve DDI automatic extraction
with a micro F-score of 75.48% on the DDIExtraction 2013 dataset, outperforming the state-of-the-art
approach by 2.49%.

Keywords: drug-drug interaction; convolutional neural network; dilated convolutions; cross-entropy;
focal loss; relation extraction

1. Introduction

A drug-drug interaction (DDI) is a combined effect produced by taking two or more drugs at the
same time or within a certain period of time. Adverse drug reactions (ADRs) may bring huge health
risks and dangerous effects to a patient’s body [1]. Therefore, increasing our understanding of unknown
interactions between drugs is of great importance in order to reduce public health safety accidents.
With the increasing research efforts of medical practitioners on DDIs, a large amount of valuable
information is buried in a body of unstructured biomedical literature which is growing exponentially.
Currently, many DDIs can be found in publicly available drug-related databases such as Drugbank [2],
PharmGKB [3], Drug Interaction database [4] and Stockley’s Drug Interactions [5]. However, the most
common way to update databases is still to rely on human experts; this is time-consuming and

Entropy 2019, 21, 37; doi:10.3390/e21010037 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/200202315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-0572-641X
https://orcid.org/0000-0002-6067-2517
https://orcid.org/0000-0002-5549-5691
https://orcid.org/0000-0002-0706-2103
http://www.mdpi.com/1099-4300/21/1/37?type=check_update&version=1
http://dx.doi.org/10.3390/e21010037
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 37 2 of 17

dependent on the availability of suitable experts who are able to find DDIs from many sources and
keep up-to-date with the latest discoveries. Therefore, the automatic extraction of structured DDIs
from the overwhelming amount of unstructured biomedical literature has become an urgent problem
for researchers.

DDI extraction is a typical relation-extraction task in natural language processing (NLP). Early
DDI extraction was relatively rare due to the lack of annotated gold standard corpora. In recent years,
with the success of the DDIExtraction 2011 [6] and DDIExtraction 2013 [7] challenges, a well-recognized
benchmarking corpus was provided to evaluate the performance of various DDI extraction methods,
which greatly stimulated the research enthusiasm of researchers and played an important role in the
development of DDI tasks. The challenge of DDIExtraction 2013—Extraction of drug-drug interactions
from biomedical texts is to classify the interaction types (Mechanism, Effect, Advice, Int and Negative)
between two drug entities in a sentence from the biomedical literature. For instance, given the example
sentence [8]

“[Pantoprazole]e1 has a much weaker effect on [clopidogrel]e2’s pharmacokinetics and on
platelet reactivity during concomitant use.”

with annotated target drug entity mentions

e1 = “pantoprazole” and e2 = “clopidogrel”

the goal is to automatically recognize that this sentence expresses a Mechanism DDI type between
e1 and e2.

In recent years, considerable efforts have been devoted to DDI extraction; existing methods can be
divided into two categories: rule-based methods and machine-learning-based methods. The rule-based
methods [9,10] use manually pre-defined rules which match expression patterns in the labelled text
which correspond to DDI pairs. The limitation of these methods is that the performance will depend
heavily on the ability of professionals and domain experts to devise large bodies of rules.

Compared with rule-based methods, machine-learning-based methods usually show better
performance and generalization. These methods regard DDI extraction as a standard supervised
learning problem. Various types of features are extracted and fed to a classifier, for example context
features [11], shortest path features, domain knowledge features [12], heterogeneous features [13],
a combination of word, parse tree and dependency graph features [14], integrated lexical, syntactic
and phrase auxiliary features [15], and so on. The biggest challenges of feature-based machine learning
methods are firstly to choose good features which result in effective learning, and secondly to extract
those features accurately from a biomedical text.

With the improvement in computing power, the availability of large data sets and the continuous
innovation of algorithms, deep learning technology has developed rapidly, and has achieved great
success in many health data analysis tasks. The Convolutional Neural Network (CNN) is well-known
deep learning approach. Morabito et al. [16] employed CNNs to detect early-stage Creutzfeldt-Jakob
disease (CJD) from other forms of rapidly progressive dementia (RPD) and achieved outstanding
experimental results. Acharya et al. [17] presented a novel computer model for EEG-based screening
of depression using CNNs, which extended the diagnosis of different stages and levels of severity of
depression. Yu et al. [18] proposed a CNN-based method to segment small organs from abdominal CT
scans, hence enabling computers to assist human doctors for clinical purposes. Rajpurkar et al. [19]
developed an algorithm which employs a 121-layer convolutional neural network to detect pneumonia
from chest X-rays at a level exceeding practicing radiologists. Recently, some researchers have already
successfully applied CNNs to DDI extraction and have shown better results than traditional statistical
feature-based machine learning methods. CNNs aim to generalize the local and consecutive context of
the sentence that mentions a DDI by using filters of different sizes. Liu et al. applied a CNN model to
DDI extraction with word and position embedding [20]. Zhao et al. used a syntax word embedding to
capture the syntactic information of a sentence and fed it into a CNN model for detecting DDIs [21].
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Quan et al. used a multichannel CNN model with five types of word embedding to extract DDIs
from unstructured biomedical literature [22]. Asada et al. encoded textual drug pairs with CNNs and
encoded their molecular pairs with graph convolutional networks (GCNs) to predict DDIs [23], and
obtained the best result so far for CNN-based DDI extraction methods. Although CNNs have been
shown to perform well in the DDI task, due to the characteristics of a typical convolution operation,
CNNs cannot capture the dependency between words or phrases which are some distance apart in a
text. An example is a referring expression like “Azithromycin...” and an anaphoric reference to it later
on in the text such as “it”, as shown in the following: “Azithromycin had no significant impact on the
Cmax and AUC of zidovudine , although it significantly decreased the zidovudine tmax by 44% and
increased the intracellular exposure to phosphorylated zidovudine by 110%.”

In addition to CNN models, Recurrent Neural Network (RNN) models have also been applied
in DDI extraction. RNNs adaptively accumulate the contextual features in the whole sentence
sequence via memory units [24]. Huang et al. presented a two-stage method, in which the first
stage identified the positive instances using a feature-based binary classifier, and the second stage
classified the positive instances into a specific category using a Long Short Term Memory (LSTM)
based classifier [25]. Sahu and Anand used a joint RNN model with attention pooling to extract DDI
information, and obtained a higher result than CNN-based methods [26]. Zhang et al. proposed a
hierarchical RNN-based method to integrate the Shortest Dependency Paths (SDPs) and the sentence
sequence for DDI extraction [27]. Zhou et al. employed the relative position information by means of
an attention-based Bidirectional Long Short Term Memory (BiLSTM) to extract DDIs from biomedical
texts [28]. This approach achieved an F-score of 72.99% which is the best performance so far on the
DDIExtraction 2013 corpus. Although many methods have been proposed, DDI extraction research is
still at an early stage and there is great potential for further improvements in its performance. However,
four problems have first to be addressed:

Firstly, the embedding layers of existing models only use word embeddings to express the
semantics of the text. However, polysemy is very common: in different contexts, the same word may
have different meanings. Simply relying on word embeddings does not accurately express the actual
meaning of the words. For example, the word “agent” shows different meanings in the following
sentences; In “There is the risk of convulsions occurring in susceptible patients following the use of the
new anaesthetic agents which are capable of inducing CNS excitability”, the word “agent” is referring
to a drug. By contrast, in “All these years he’s been an agent for the East”, “agent” is referring to
a person.

Secondly, most of the existing models that achieve better performance used off-the-shelf NLP
toolkits to obtain stems, POS tags, syntactic chunk features [12], syntactic features [21], shortest
dependency paths [27] and so on. Such tools may not be as accurate as they could be, because they are
not tailored to the application domain; this can result in avoidable errors which propagate through the
system and hence reduce its performance.

Thirdly, position embedding is the key information that reflects the core word information inside
the sentence and allows the differences between the sentences in a DDI task to be distinguished [20,29].
Inappropriate setting of a model’s embedding vector dimension can cause effective information to be
overwhelmed. For example, in the methods of Liu et al. [20] and Zhou et al. [28], the word embedding
is set to 300 dimensions while position embedding is just 20 dimensions, meaning that important
position information is almost ignored.

Lastly, the ratios of positive and negative instances in the original training set and test set
(the DDIExtraction 2013 corpus) are 1:5.91 and 1:4.84 respectively. Obviously, the data set has a very
serious class imbalance problem. Liu et al. [20] and Quan et al. [22] used negative instance filtering
to alleviate class imbalance issues. The fundamental problem of class imbalance, however, remains.
Therefore, other strategies are needed to solve this problem.

To address all four issues which we have described above, we propose a novel Recurrent Hybrid
Convolutional Neural Network (RHCNN) for DDI extraction from biomedical literature. As stated
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in Lai et al. [30], a recurrent structure can capture contextual information. So we combine word
embedding with the left- and right-context information of each word which is obtained by a BiLSTM
model. Then we use the fully-connected layer for information fusion to obtain the final semantic
embedding of the current word. Meanwhile, this operation will reduce the dimension of the semantic
embedding, so that there is no large dimension gap between semantic information and position
information; this avoids valuable position information being overwhelmed.

In addition, we propose a hybrid convolutional neural network that consists of typical
convolutions and dilated convolutions to construct a sentence-level representation which contains
both the local context features and the dependency features. The local and consecutive context
features of the sentence that mentions DDI candidates are captured by typical convolution operations.
The dependency features between separated words, such as are needed to link phrases or perform
anaphora resolution, are extracted by dilated convolution operations. The architecture is based
on the idea that dilated convolutions operate on a sliding window of context which need not
be consecutive—the dilated window skips over every dilation of width d − 1 inputs. Dilated
convolutions have exhibited great potential for other NLP tasks such as machine translation [31],
entity recognition [32] and text modeling [33]. To the best of our knowledge, it is the first time dilated
CNNs have been used for DDI extraction.

The DDIExtraction 2013 corpus is divided into five categories, but the number of samples in
each category is extremely imbalanced. Inspired by the work of focal loss in the image recognition
field [34], we use the improved focal loss function for multiclass classification model training to avoid
class imbalance and over-fitting. The proposed model (The experimental source-code is available at
https://github.com/DongKeee/DDIExtraction) has been evaluated on the DDIExtraction 2013 corpus
and achieves a micro F-score of 75.48%, outperforming the state-of-the-art approach [28] by 2.49%,
thus demonstrating its effectiveness.

In sum, our key contributions are as follows:

• Our model does not rely on any NLP tools in the embedding layer, instead the sentences
that mention DDI pairs are represented as sequences of semantic embeddings and position
embeddings. In particular, we use the fully-connected layer for semantic information fusion
between a word embedding and the contextual information that is learnt by recurrent structure;
the two combined are employed to obtain a complete semantic representation of each word.

• We propose a hybrid convolutional neural network that consists of typical convolutions and
dilated convolutions, and we believe it is the first time dilated CNNs have been used for
DDI extraction.

• We introduce an improved focal loss function into the multiclass classification task in order to
avoid class imbalance and the resulting over-fitting problem.

• We achieve state-of-the-art results for DDI extraction with a micro F-score of 75.48% on
the DDIExtraction 2013 dataset, outperforming the methods relying on significantly richer
domain knowledge.

2. Method

In this section, we present our recurrent hybrid convolutional neural network model. Figure 1
illustrates the overview of our architecture for DDI extraction. Given an input sentence S with a labeled
pair of drug entity mentions e1 and e1, DDI extraction is the task of identifying the semantic relation
holding between e1 and e1 among a set of candidate DDI types. In the word embedding layer, each
word is represented by a semantic embedding and a position embedding. The semantic embedding is
fused by the fully connected layer, which contains a word embedding for each word as well as the
contextual features captured by the BiLSTM model from the word’s left and right context. These are
combined to obtain a semantic vector for each word and hence narrow the dimension gap between
semantic information and position information.

https://github.com/DongKeee/DDIExtraction
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Figure 1. The architecture of recurrent hybrid convolutional neural network model. This figure
is an example of the sentence after drug blinding “DRUG1 modifies DRUG2 metabolism with
increased serum levels of DRUG0.” (DDIExtraction 2013 dataset, file Acetazolamide-ddi.xml, sentence
DDI-DrugBank.d368.s0).

Next we use the hybrid convolutional neural network that consists of typical convolutions and
dilated convolutions to construct the sentence-level representation which contains the local context
features from consecutive words together with the dependency features between separated words.
In the max pooling layer, the most important features are extracted from the output of the previous
layer, and the dimensions of the features are reduced at the same time. Finally, we concatenate
these features to form the sentence representation, and feed it to the fully-connected softmax layer
for classification. Recall also that the final output is given by a new improved focal loss function.
The remainder of this section will provide further details about this architecture.

2.1. Preprocessing

The DDI corpus contains two or more drug entities in each sentence. Given a sentence of n entities,
there are c2

n DDI candidates which need to be classified. To allow generalization during learning and
to keep only one drug pair remaining in each instance, we replace the two candidate entities with
symbols “DRUG1” and “DRUG2” while all other drug entities are replaced by “DRUG0”, in common
with previous methods [14,35]. Table 1 shows one example of a drug blinding. However, the result
of the preprocessing operation is to generate a dataset with an imbalanced sample. For example,
the sentence

“When drugEntity1 or other hepatic enzyme inducers such as drugEntity2 and drugEntity3
have been taken concurrently with drugEntity4, lowered drugEntity5 plasma levels have
been reported.”

contains 5 drug entities, and three positive instances of DDI pairs: (drugEntity1, drugEntity4),
(drugEntity2, drugEntity4) and (drugEntity3, drugEntity4). Thus the sentence reflects the existence
of interactions between the stated drug entity pairs, and the DDI type for each pair is one of Mechanism,
Effect, Advice and Int. On the other hand, the c2

5 − 3 i.e., 7 DDI pairs such as (drugEntity1, drugEntity2),
(drugEntity1, drugEntity3), (drugEntity1, drugEntity5) and so on are all negative instances, meaning that
the sentence does not reflect the existence of these interactions. So the number of negative samples (7)
is significantly more than that of the positive samples (3). In order to alleviate the problem of class
imbalance and prevent the resulting performance degradation, we use a negative instance filtering
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strategy to filter out as many negative instances as possible, based on manually-formulated rules
proposed by other researchers [14,20,22]. These rules can be summarised as follows:

• If a drug pair has the same name (like the instance shown in the third row of Table 1) or one drug
is an abbreviation of the other entity, filter out the corresponding instances.

• If a drug pair are in a coordinate structure, filter out the corresponding instances.
• If one drug is a special case of the other, filter out the corresponding instances.

The statistics of the resulting dataset after negative instance filtering are shown in Table 2.

Table 1. An example for drug blinding preprocessing of sentence “DIAMOX modifies phenytoin metabolism
with increased serum levels of phenytoin.” (DDIExtraction 2013 dataset, file Acetazolamide-ddi.xml, sentence
DDI-DrugBank.d368.s0).

Drug Pair (e1,e2) DDI Candidate after Drug Blinding

(DIAMOX, phenytoin) DRUG1 modifies DRUG2 metabolism with increased serum levels of DRUG0.
(DIAMOX, phenytoin) DRUG1 modifies DRUG0 metabolism with increased serum levels of DRUG2.
(phenytoin, phenytoin) DRUG0 modifies DRUG1 metabolism with increased serum levels of DRUG2.

Table 2. The statistic of DDIExtraction 2013 dataset.

Types
Training Set Test Set

Original Filtered Original Filtered

DDI pairs 27,792 23,010 5716 4721
Positive 4020 3998 979 976

Negative 23,772 19,012 4737 3745
Advice 826 822 221 221
Effect 1687 1669 360 360

Mechanism 1319 1319 302 299
Int 188 188 96 96

2.2. Embedding Layer

The input to our model is a sentence S that mentions two drug entities, where S =

{w1, w2, . . . , wn}, wk = “DRUG1” and wt = “DRUG2” (k, t ∈ [1, n] , k 6= t). Each word wi of the
sentence sequence is represented by both a semantic embedding and a position embedding.

Recently, word embedding has been successfully applied in various NLP tasks, such as sentiment
analysis [36], relation classification [29], information retrieval [37] and so on. Word embedding refers to
the mapping of words or phrases to real-value vectors, which must be learnt from significant amounts
of unlabeled data. Various models [38–40] have been proposed to learn the word embedding. In order
to obtain suitable high-quality vector space representations for biomedical NLP tasks, it is necessary to
use a large number of articles in the biomedical field as training data. Unfortunately, it always takes too
much time to train word embeddings. However, there are many pre-trained word embeddings that are
freely available and of high quality [41,42]. So our experiments directly utilize the embedding provided
by Pyysalo et al. [41], which is trained using articles from PubMed and the English Wikipedia.

Simply relying on word embeddings alone does not accurately express the actual meaning of
a word due to the fact that it may have different meanings in different contexts, so we combine
the embedding with contextual information to obtain fuller semantic information for each word.
As depicted in Figure 2, the semantic embedding is generated by the bidirectional long short term
memory model. Let ew (wi),el (wi) and er (wi) denote the word embeddings, left-context embeddings
and right-context embeddings. The left-side and right-side context embeddings are calculated by
Equations (1)–(6):

−→
hl (wi) = f

(
→
W

in

l ew (wi−1) +
→
W

rec

l
−→
hl (wi−1)

)
(1)
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←
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←
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←−
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)
(2)
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[−→
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←−
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]
(3)

←−
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(
←
W
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r ew (wi+1) +
←
W

rec

r
←−
hr (wi−1)

)
(4)

−→
hr (wi) = f

(
→
W

in

r ew (wi+1) +
→
W

rec

r
−→
hr (wi+1)

)
(5)

er (wi) =
[←−

hr (wi) ;
−→
hr (wi)

]
(6)

where f is a non-linear activation function, Win and Wrec are weight matrices of the input and
recurrent connections respectively. Then the semantic information can be represented as Se (wi) =

[el (wi) ; ew (wi) ; er (wi)], and the number of dimensions of it is ns = nl + nw + nr where nl , nw, nr

are the number of dimensions of the left-context embedding, word embedding and right-context
embedding. To get the final semantic embedding Es (wi) of each word, we fuse the word and contextual
features by a fully connected layer, using Equation (7).

Es (wi) = WsSe (wi) + bs (7)

Figure 2. The bidirectional recurrent structure used for obtaining the actual semantic embedding of
each word. This figure is a partial example of the sentence “DRUG1 modifies DRUG2 metabolism with
increased serum levels of DRUG0.” (DDIExtraction 2013 dataset, file Acetazolamide-ddi.xml, sentence
DDI-DrugBank.d368.s0).

In order to capture significant information about the target entities, we combine semantic and
position embedding. The position embedding is the key information that reflects the core word
information inside the sentence and the differences between the sentences. In DDI extraction, given
a sentence of n entities, there are c2

n DDI candidates which need to be classified, and these samples’
semantic embeddings are very similar. So it is necessary to specifically distinguish the target drug
entities and magnify the differences between similar sentences. In our method, the position embedding
Epos (wi) is the combination of the vectors ep1 (wi) and ep2 (wi), which themselves are the relative
distances of the word wi from the two marked entity mentions wk and wt [29,43] and which are then
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mapped to a randomly initialized vector of dimension nd. So the final word embedding for wi is
Ei =

[
Es (wi) ; Epos (wi)

]
and is of size NE = ns + nd + nd = nl + nw + nr + 2nd.

2.3. Hybrid Convolutional Layer

From the embedding layer we can obtain the local basic features for each word. In DDI extraction,
the DDI types are judged by the semantic expression of whole sentences, so it is necessary to utilize
all kinds of local features and to predict a candidate DDI type globally [29]. In our method, we use a
hybrid convolutional neural network which consists of typical convolutions and dilated convolutions
to obtain the sentence level representation.

The typical convolution operation is used to capture the local and consecutive contextual features
of the sentence that mention DDI pairs, and the approach is expressed by Equation (8):

Convi = ReLU
(

W f Ei:i+k−1 + B f

)
(8)

where k donates the filter size. W f ∈ RNE×k is the filter applied to all possible consecutive context
windows of k words. B f∈R is a bias term, and rectified linear units (ReLU) is a non-linear activation
function. Then, a consecutive contextual feature vector Fconv = [Conv1, Conv2, . . . , Convn−k+1]

is obtained.
The dilated convolution operation is used to learn the dependency features between separated

words in a text, such as a phrase and an anaphoric reference to it, and the method is expressed by
Equation (9):

D_convi = ReLU
(

WD_ f Ei:i+(D_k−1)×d + BD_ f

)
(9)

where D_k donates the filter size, d is the dilation size, WD_ f ∈ RNE×(D_k−1)d+1 is the filter applied
to all possible consecutive context windows of k words, and BD_ f∈R is a bias term. Then, an interval

contextual feature vector from separated words FD_conv =
[

D_conv1, D_conv2, . . . , D_convn−(k−1)×d

]
is obtained.

2.4. Max Pooling Layer

After the hybrid convolutional layer, the consecutive contextual features and the dependency
features between the separated words are obtained. To determine the important local feature in each
feature vector learnt by the prior layer and to reduce the computational complexity by decreasing
the feature vector dimension, we use the max pooling operation to take the maximum value of each
local feature of Fconv and FD_conv, using Equations (10) and (11) where w is the window size of the
pooling layer:

F̂C_i = max (Convi:i+w−1) (10)

F̂D_i = max (D_convi:i+w−1) (11)

Then we will get the higher level features, denoted by Fc =
[
F̂C_1, F̂C_2, . . . , F̂C_n−w+1

]
and FD =[

F̂D_1, F̂D_2, . . . , F̂D_n−w+1
]
. In our model, we use two layers of typical convolutions and dilated

convolutions followed by a max pooling layer. When we get the final feature vectors Fc and FD
obtained by hybrid convolutions and a max pooling layer, the sentence vectorS = {w1, w2, . . . , wn}
will be represented as s = [Fc,FD].

2.5. Softmax Layer for Classification

In order to prevent the model from overfitting, we randomly drop out the neuron units from the
network during the training process [44]. To do this, we randomly set some elements of s to 0 with a
probability p and get a new sentence vector S∗. Then it will be fed to a fully-connected softmax layer
in which the output size is the number of the DDI classes, and the conditional probability value P of
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each DDI type is obtained by Equation (12) where the softmax is a non-linear activation to achieve
probability normalization:

P (i|S, θ) = so f tmax (WoS∗ + bo) (12)

2.6. Model Training

The following parameters of the RHCNN model need to be updated during training:

θ =
{

Win, Wrec, Ws,bs,ep1 (wi) , ep2 (wi) , W f ,B f ,WD_ f ,BD_ f ,Wo,bo

}
Recently, the cross-entropy function is widely used as a loss function in the training of the existing

DDI extraction models as shown in Equation (13):

CE (p, y) = −
C

∑
i=1

yilog (P (i|S, θ)) (13)

where y is the one-hot vector corresponding to the true category of the instance, and C is the number of
DDI types. Cross-entropy reflects the gap between the predicted probability distribution and the true
probability distribution. In model training, we expect the probability that the model predicts the sample
to be as similar as possible to the true probability. As can be seen from the equation, if the predicted
probability P (i|S, θ) that the model predicted its true category (when yi = 1) as close to its true
probability distribution yi as we expect, the contribution of this sample to loss function (cross-entropy)
will be reduced. Using cross-entropy as a loss function, aiming at minimizing the objective loss
function will yield results that are consistent with our expectations. Therefore, cross-entropy is a
commonly-used loss function in model training. In our experiments, the DDIExtraction 2013 corpus
we used divides the samples into five categories (Mechanism, Effect, Advice, Int and Negative) and
is imbalanced. The statistics of each category are shown in Table 2. As can be seen from the table,
the Negative class has the largest number of samples. If we use cross-entropy as the objective function,
it will give equal weight to all categories when calculating loss and cause huge interference to the
learning process of the model parameters. A vast number of Negative class samples constitute a large
proportion of the losses and hence dominate the direction of the gradient update so that the final
trained model is more inclined to classify the sample into this type. However, it does not make much
sense for us to divide the sample into Negative category to achieve a higher performance, because
this category means that the text does not reflect the existence of interaction between two target
drug entities. The DDI extraction task is more interested in knowing which interaction (Advice, Effect,
Mechanism and Int) between drug entities is expressed in the biomedical literature.

Therefore, in order to solve the problems in the above cross-entropy function and avoid
over-fitting, we use the improved focal loss function which consists of the focal loss together with
the cross-entropy function for multiclass classification model training inspired by the work of focal
loss in the image field [34] which has been used to solve the binary classification problem when data
is imbalanced.

For notational convenience, we define pt as the corresponding P (i|S, θ) when yi is 1. So the
cross-entropy loss function can be rewritten as Equation (14):

CE (p, y) = CE (pt) = −log (pt) (14)

The improved objective function is shown as Equation (15):

L = −eα(1− pt)
γ log (pt)− (1− e) log (pt) (15)

where the left side of Equation (15) is the focal loss function proposed by Lin et al. [34], α is a weighting
factor to balance the importance of samples from different classes (α ∈ [0, 1]), and is calculated by
Equation (16), where Counti is the instance number of the i-th type. Under the action of α, we can
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flexibly calculate the weights of various samples according to the number of samples from different
categories in the dataset, so that the final trained model has stronger ability to divide specific DDI
categories than one using the traditional cross-entropy function. The α value of each category in the
training set after the instance filtering of our experiment is shown in Table 3. As seen in table, the class
with a small number of samples has larger weight and the type with a larger number of samples has
smaller weight.

αi =

∑5
i=1 Counti
Counti

∑5
i=1

∑5
i=1 Counti
Counti

(16)

The γ is a modulating factor for the improved focal loss function (γ > 0), and smoothly adjusts
the weight of easily-classified samples. For instance, when γ = 2, a sample with the probability
pt = 0.9 (such that 1− pt = 0.1) has a loss contribution 100 times lower than one using a traditional
cross-entropy function. Intuitively, the modulating factor reduces the loss contribution of examples
that are easy to classify, so that more attention is paid to more difficult examples.

In addition, to prevent overfitting, we combine the focal loss with a traditional cross-entropy
function [45], where e is a hyperparameter to adjust the weights of two functions. We optimize the
parameters of the objective function Lwith the Adam Method [46] used in each training step. After the
end of training, our model can classify the interaction types between two drug entities with an excellent
performance.

Table 3. The α value of each category in the training set after the instance filtering.

DDI Type The Number of Sample α

Advice 822 0.15
Effect 1669 0.08

Mechanism 1319 0.10
Int 188 0.67

Negative 19,012 0.01

3. Experiments

3.1. Datasets

We evaluated our RHCNN model on the DDIExtraction 2013 dataset, which is an established
benchmark for DDI extraction [47,48]. The dataset is composed of 175 MEDLINE abstracts and
730 DrugBank documents, and has 5 distinguished DDI types, as follows:

1. Mechanism is used to annotate texts mentioning DDIs that describe the pharmacokinetic
mechanism of two drug entities. e.g., Probenecid competes with meropenem for active tubular secretion
and thus inhibits the renal excretion of meropenem.

2. Effect is used to annotate texts mentioning DDIs that describe an effect or a pharmacodynamic.
e.g., The action of Mecamylamine may be potentiated by anesthesia, other antihypertensive drugs
and alcohol.

3. Advice is used to annotate texts mentioning DDIs that give a recommendation or advice
regarding a drug interaction. e.g., Therefore, the coadministration of probenecid with meropenem
is not recommended.

4. Int is used to annotate texts mentioning DDIs that do not provide any additional information
about when a DDI appears. e.g., Ketoconazole: Potential interaction of Ketoconazole and Isoniazid
may exist.

5. Negative is used to annotate texts mentioning DDIs that do not reflect the existence of
interaction between two target drug entities. e.g., Drug-Drug Interactions: The pharmacokinetic and
pharmacodynamic interactions between UROXATRAL and other alpha-blockers have not been determined.
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The corpus is divided into two parts: a training set and a test set, and the statistics of each set are
shown in Table 2.

3.2. Experimental Setting

In our experiments, we use the Keras library with the backend of TensorFlow to implement our
RHCNN model, and the code is written in Python3.6. Since the calculation of the CNN model requires
a fixed data length and the actual length of each text instance is inconsistent, we set the maximum
sentence length to 150. When the text length is less than this value, it is automatically padded with 0,
otherwise the long sentence is cut to the maximum length. The dimensions of the word embeddings
nw, the left- and right-context embeddings nl and nr, and the position embeddings nd are 200, 200,
200 and 15, respectively. The hyperparameters of our model are as follows. The maximal length of
the sentence that mentions DDI pairs is set to 150. The hidden unit number of BiLSTM is set to 100.
We use two kinds of filters for both typical and dilated convolution in which the filter sizes k are set to
3 and 5, and the dilation size d is set as 2. The factors e and γ in our objective function are set to 0.9
and 2. The batch size is set to 32, and the dropout rate is 0.5. The existing DDI extraction models are
evaluated by micro-averaged F-scores. This metric is defined as Equations (17)–(19):

micro-P =
TP

TP + FP
(17)

micro-R =
TP

TP + FN
(18)

micro-F =
2×micro-P×micro-R

micro-P + micro-R
(19)

where TP, FP, FN denote the average value calculated across different classes of true positives, false
positives and false negatives, respectively. In order to compare the RHCNN performance with other
models, we also use the micro-averaged F-score to evaluate our models.

3.3. Performance Comparison with Other Methods

In this section, we compare the performance of our RHCNN model with other established
methods. Table 4 shows the experimental results of different models on the DDIExtraction 2013
dataset. As the table shows, we calculate the overall Precision (P), Recall (R) and F-score to assess the
performance of our model, and achieve scores of 77.30%, 73.75% and 75.48%, which are all higher
than the current state-of-the-art method of Zhou et al. [28] by 1.5%, 3.37% and 2.49%, respectively.
It can be seen that the performance of the neural network-based methods is generally higher than
that of the traditional feature-based methods. This is because the former methods can learn efficient
and useful features automatically, avoiding the time-consuming and laborious task of obtaining such
features manually.

To assess the level of difficulty of detecting each type of interaction, we evaluate each DDI type
separately. The F-score of the Advice, Effect, Mechanism, and Int types is 80.54%, 73.49%, 78.25% and
58.90% respectively. Among the four types, our RHCNN model performs best on Advice instances
and worst on Int instances, the difference between the F-score on these two types being 21.64%.
By comparison with other excellent models, our model achieves the highest performance yet on Effect,
Mechanism and Int types, these being 1.49%, 1.93% and 4% higher than the highest records respectively.
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Table 4. Performance comparison with other state-of-art methods.

Models
F-Score of Each DDI Type Overall

Advice Effect Mechanism Int Precision Recall F-Score

UTurku [12] 63.0 60.0 58.2 50.7 73.20 49.90 59.40
Feature-based FBK irst [49] 69.20 62.80 67.90 54.70 64.60 65.60 65.10

method Kim [14] 72.50 66.20 69.30 48.30 - - 67.00
Raihani [15] 77.40 69.60 73.60 52.40 73.70 68.70 71.10

CNN [20] 77.72 69.32 70.23 46.37 75.70 64.66 69.75
SCNN [21] - - - - 72.50 65.10 68.60

MCCNN [22] 78.00 68.20 72.20 51.00 75.99 65.25 70.21
Neural GRU [50] - - - - 73.67 70.79 72.20

network-based CNN-GCNs [23] 81.62 71.03 73.83 45.83 73.31 71.81 72.55
method SVM-LSTM [25] 71.50 72.00 73.80 54.90 75.30 63.70 69.00

Joint-LSTMs [26] 79.41 67.57 76.32 43.07 73.41 69.66 71.48
Hierarchical RNNs [27] 80.30 71.80 74.00 54.30 74.10 71.80 72.90

PM-BLSTM [28] 81.60 71.28 74.42 48.57 75.80 70.38 72.99
Our method RHCNN 80.54 73.49 78.25 58.90 77.30 73.75 75.48

After comparing and analyzing existing state-of-the-art models, our model achieves better
performance mainly due to the following aspects. Firstly, instead of using features that need to be
obtained by NLP tools, we use features that can be automatically obtained during the training process.
In existing models with better performance, Zhao et al. [21], Huang et al. [25] and Zhang et al. [27]
used the Enju parser [51], GDep [52] and the Stanford parser [53] respectively to parse the sentences
and extract the important features, each achieving F-scores of 68.6%, 69% and 72.9%. However, these
tools may not be entirely accurate, potentially leading to the propagation of errors which hinder the
performance of these models.

Secondly, we combine contextual information with lexical features to obtain a more complete
semantic representation of a word than has been used in this task hitherto. In the existing methods that
only use the word embedding and position embedding as features [20,22,28], the semantic information
in the feature only contains the word embedding. However, polysemy is a universal phenomenon
of language: the meaning of a word may depend on its context of use. Therefore, using only word
embedding information does not guarantee that the semantics are correctly expressed. We fuse the
information of word and context to get a more complete semantic representation which can achieve an
F-score 2.49% higher than best existing method.

Thirdly, the importance of position features has been enhanced by our method. The position
features provide core information that can identify keywords within a sentence and expand differences
between sentences. The dimensional differences between semantic embedding and position embedding
are very large in the work of Liu et al. [20] and Sahu and Anand [26],which will cause the important
position information to be ignored, resulting in a large impact on performance. Our method
outperforms the best model of them (Sahu and Anand’s work) by 4% in micro F-score.

Fourthly and finally, we address the data imbalance problem in the DDI data set. As seen from
Table 2, the existing advanced models generally have poor classification performance on the Int
instances, mainly due to the data of the Int type being very small in the original DDIExtraction 2013
dataset. When evaluating each DDI type separately, our model has an F-score 4% higher than other
approaches applied to the Int type, which is the highest degree of improvement compared to other
categories. This is because we mitigate against the data imbalance problem by means of negative
instance filtering and an improved loss function.

3.4. The Effect of the Strategies and Features on Performance

To further investigate the effectiveness of our strategies, we separate the effect of each strategy
on the overall F-score, as shown in Table 5. When we remove the negative instance filtering strategy,
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the overall F-score of our model drops by 1.16%. The ratio of positive and negative instances in the
original training set and test set is 1:5.91 and 1:4.84. As we have previously discussed, the original data
set has a very serious data imbalance problem, which will make the classification result of the model
shift to the category with more instances. After the negative instance filtering strategy is applied to
filter out some distinct negative instances, the problem of data imbalance can be alleviated to some
extent and the ratio changes from 1:5.91 to 1:4.76 and 1:4.84 to 1:3.83, respectively.

Table 5. The effect of different strategies on performance.

Strategy F-Score ∆

basic RHCNN + improved focal loss function + information fusion + negative instance filtering 75.48 -
basic RHCNN + improved focal loss function + information fusion 74.32 −1.16

basic RHCNN + improved focal loss function + negative instance filtering 74.39 −1.09
basic RHCNN + cross-entropy loss function + negative instance filtering + information fusion 73.29 −2.19

Next, we discover that the information fusion strategy is indispensable to the DDI classification
problem as the F-score decreases by 1.09% when it is removed. After we use the BiLSTM model to
obtain the left-side and right-side context information separately, if we simply concatenate them with
the current word as [ew (wi) ; el (wi) ; er (wi)], we will in fact get three independent features, which
cannot fully capture the semantics of the current word. Then we use the fully-connected layer to fuse
context and word information so as to get a more complete semantic representation of the current word.

After that, we change our improved focal loss function to the original cross entropy loss function
and find that the F-score is reduced by 2.19%. The traditional cross-entropy function gives equal
weight to all categories of instances. In the DDI dataset with its imbalance problem, the model is
biased towards the category with the largest number of samples (i.e., the negative class), which
seriously impairs performance. The improved focal loss used in our model obtains better performance,
which addresses the data imbalance problem and over-fitting problem by a weighting factor α to
balance the importance of different class samples, together with a modulating factor γ to reduce
the loss contribution of examples that are easy to classify, so that more attention is paid to more
difficult examples.

In order to verify the necessity of each feature, we compare the original model with the model
that continuously adds new features. The experimental results are shown in Table 6. When only
using the word embedding, our model achieves an F-score of 69.57%. When the position embedding,
initialized randomly and learnt automatically, is integrated with the word embedding, the performance
is further improved; this demonstrates the importance of position features in DDI tasks for identifying
drug entities in similar sentences, highlighting the key information within sentences as well as the
differences between sentences. Next, we use an LSTM and BiLSTM model respectively to obtain the
contextual information. Because a BiLSTM learns both forward and backward information, it can
obtain more complete contextual information, contributing to an F-score improvement of 5.28%.

Table 6. The effect of different features on performance.

Embedding Feature F-Score ∆

word 69.57 −
word + position 70.20 +0.63

word + context + position context trained by LSTM 73.66 +3.46
context trained by BiLSTM 75.48 +5.28

Although our RHCNN model outperforms all other state-of-the-art methods on the DDIExtraction
2013 dataset, there is still some room for further improvements. As seen from Table 7 (where the
numbers on the left and right sides of the plus signs represent the results of the RHCNN prediction and
the results of the negative instance filter rules, respectively [20]), a total of 399 samples in our model are
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misclassified. Furthermore, 187 out of 979 positive instances are misclassified into negative instances,
accounting for about 47% of the misclassified instances. In addition, 142 out of 4737 negative instances
are misclassified into positive instances, accounting for about 36% of the misclassified instances.
Seventy out of 979 instances are misclassified between four different categories of positive instances,
accounting for about 17% of the misclassified instances. It can be seen from the above statistics that the
main error lies in the misclassification between positive and negative instances. In addition, among the
misclassifications between different categories of positive instances, 36 out of 70 instances (i.e., nearly
50%) occur when an Int type is wrongly classified as an Effect type, mainly because the number of
Int type samples is small and the semantics between the two types are similar. Therefore, reducing
the misclassification between positive and negative on the one hand, and misclassification between
different positive instances on the other hand, will be the key issues that we need to solve in the future.

Table 7. Prediction results of our Recurrent Hybrid Convolutional Neural Network (RHCNN) method.

Prediction Results

Types Advice Effect Mechanism Int Negative Total

True label

Advice 178 5 3 2 33 221
Effect 2 269 9 0 80 360

Mechanism 7 4 232 0 56 + 3 302
Int 0 36 2 43 15 96

Negative 34 58 45 5 3603 + 992 4737
Total 221 372 291 50 4782 5716

4. Conclusions

In this paper, we have proposed a novel method using a Recurrent Hybrid Convolutional Neural
Network (RHCNN) for DDI extraction from biomedical literature. In our network, the contextual
information is captured by recurrent structure, which is fused with word embeddings, resulting in
a more complete semantic representation for each of the words. These representations are then
sent to the concatenated word-level representation which consists of the semantic and position
embeddings. These in turn form the input to a hybrid convolutional neural network so as to obtain the
sentence-level representation which contains the local contextual features from consecutive words and
the dependency features between interval words for DDI extraction. To the best of our knowledge, it is
the first research to use dilated convolutions for the DDI extraction task. Last but not least, in order
to make up for the defects of the traditional cross-entropy loss function when dealing with class
imbalanced data, we apply an improved focal loss function to mitigate this problem. Our approach
achieves an F-score of 75.48% on the DDIExtraction 2013 dataset, which outperforms the state-of-the-art
approach by 2.49%.
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